Changes in / [7030dab:71d6bd8]
- Files:
-
- 35 added
- 151 deleted
- 291 edited
Legend:
- Unmodified
- Added
- Removed
-
Jenkinsfile_disabled
r7030dab r71d6bd8 126 126 } 127 127 128 sh "${SrcDir}/configure CXX=${Settings.Compiler.CXX} CC=${Settings.Compiler.CC} ${Settings.Architecture.flags} AR=gcc-ar RANLIB=gcc-ranlib ${targets} --quiet --prefix=${BuildDir}"128 sh "${SrcDir}/configure CXX=${Settings.Compiler.CXX} CC=${Settings.Compiler.CC} ${Settings.Architecture.flags} ${targets} --quiet" 129 129 130 130 // Configure libcfa … … 155 155 dir (BuildDir) { 156 156 sh "make -j 8 --no-print-directory -C libcfa/${Settings.Architecture.name}-nodebug" 157 }158 }159 160 build_stage('Build : install', true) {161 // Build outside of the src tree to ease cleaning162 dir (BuildDir) {163 sh "make -j 8 --no-print-directory install"164 157 } 165 158 } … … 186 179 echo "Archiving core dumps" 187 180 dir (BuildDir) { 188 archiveArtifacts artifacts: "tests/crashes/**/* ,lib/**/lib*.so*", fingerprint: true181 archiveArtifacts artifacts: "tests/crashes/**/*", fingerprint: true 189 182 } 190 183 throw err … … 222 215 223 216 //Then publish the results 224 do_plot(Settings.RunBenchmark && Settings.Publish, 'compile' 225 do_plot(Settings.RunBenchmark && Settings.Publish, 'compile.diff' 226 do_plot(Settings.RunBenchmark && Settings.Publish, 'ctxswitch' 227 do_plot(Settings.RunBenchmark && Settings.Publish, 'ctxswitch.diff' 228 do_plot(Settings.RunBenchmark && Settings.Publish, 'mutex' 229 do_plot(Settings.RunBenchmark && Settings.Publish, 'mutex.diff' 230 do_plot(Settings.RunBenchmark && Settings.Publish, 's cheduling', groupConcurrency, false, 'Internal and External Scheduling')231 do_plot(Settings.RunBenchmark && Settings.Publish, 's cheduling.diff', groupConcurrency, true , 'Internal and External Scheduling (relative)')217 do_plot(Settings.RunBenchmark && Settings.Publish, 'compile' , groupCompile , false, 'Compilation') 218 do_plot(Settings.RunBenchmark && Settings.Publish, 'compile.diff' , groupCompile , true , 'Compilation (relative)') 219 do_plot(Settings.RunBenchmark && Settings.Publish, 'ctxswitch' , groupConcurrency, false, 'Context Switching') 220 do_plot(Settings.RunBenchmark && Settings.Publish, 'ctxswitch.diff', groupConcurrency, true , 'Context Switching (relative)') 221 do_plot(Settings.RunBenchmark && Settings.Publish, 'mutex' , groupConcurrency, false, 'Mutual Exclusion') 222 do_plot(Settings.RunBenchmark && Settings.Publish, 'mutex.diff' , groupConcurrency, true , 'Mutual Exclusion (relative)') 223 do_plot(Settings.RunBenchmark && Settings.Publish, 'signal' , groupConcurrency, false, 'Internal and External Scheduling') 224 do_plot(Settings.RunBenchmark && Settings.Publish, 'signal.diff' , groupConcurrency, true , 'Internal and External Scheduling (relative)') 232 225 } 233 226 } … … 332 325 public String CXX 333 326 public String CC 334 public String lto 335 336 CC_Desc(String name, String CXX, String CC, String lto) { 327 328 CC_Desc(String name, String CXX, String CC) { 337 329 this.name = name 338 330 this.CXX = CXX 339 this.CC = CC 340 this.lto = lto 331 this.CC = CC 341 332 } 342 333 } … … 373 364 switch( param.Compiler ) { 374 365 case 'gcc-9': 375 this.Compiler = new CC_Desc('gcc-9', 'g++-9', 'gcc-9' , '-flto=auto')366 this.Compiler = new CC_Desc('gcc-9', 'g++-9', 'gcc-9') 376 367 break 377 368 case 'gcc-8': 378 this.Compiler = new CC_Desc('gcc-8', 'g++-8', 'gcc-8' , '-flto=auto')369 this.Compiler = new CC_Desc('gcc-8', 'g++-8', 'gcc-8') 379 370 break 380 371 case 'gcc-7': 381 this.Compiler = new CC_Desc('gcc-7', 'g++-7', 'gcc-7' , '-flto=auto')372 this.Compiler = new CC_Desc('gcc-7', 'g++-7', 'gcc-7') 382 373 break 383 374 case 'gcc-6': 384 this.Compiler = new CC_Desc('gcc-6', 'g++-6', 'gcc-6' , '-flto=auto')375 this.Compiler = new CC_Desc('gcc-6', 'g++-6', 'gcc-6') 385 376 break 386 377 case 'gcc-5': 387 this.Compiler = new CC_Desc('gcc-5', 'g++-5', 'gcc-5' , '-flto=auto')378 this.Compiler = new CC_Desc('gcc-5', 'g++-5', 'gcc-5') 388 379 break 389 380 case 'gcc-4.9': 390 this.Compiler = new CC_Desc('gcc-4.9', 'g++-4.9', 'gcc-4.9' , '-flto=auto')381 this.Compiler = new CC_Desc('gcc-4.9', 'g++-4.9', 'gcc-4.9') 391 382 break 392 383 case 'clang': 393 this.Compiler = new CC_Desc('clang', 'clang++-6.0', 'gcc-6' , '-flto=thin -flto-jobs=0')384 this.Compiler = new CC_Desc('clang', 'clang++-6.0', 'gcc-6') 394 385 break 395 386 default : … … 448 439 // prepare the properties 449 440 properties ([ \ 450 buildDiscarder(logRotator( \451 artifactDaysToKeepStr: '', \452 artifactNumToKeepStr: '', \453 daysToKeepStr: '730', \454 numToKeepStr: '1000' \455 )), \456 441 [$class: 'ParametersDefinitionProperty', \ 457 442 parameterDefinitions: [ \ -
benchmark/Makefile.am
r7030dab r71d6bd8 11 11 ## Created On : Sun May 31 09:08:15 2015 12 12 ## Last Modified By : Peter A. Buhr 13 ## Last Modified On : Tue Mar 10 11:41:18 202014 ## Update Count : 25813 ## Last Modified On : Mon Jul 29 18:02:19 2019 14 ## Update Count : 54 15 15 ############################################################################### 16 16 … … 28 28 BENCH_V_CFA = $(__bench_v_CFA_$(__quiet)) 29 29 BENCH_V_CXX = $(__bench_v_CXX_$(__quiet)) 30 BENCH_V_GOC = $(__bench_v_GOC_$(__quiet)) 31 BENCH_V_JAVAC = $(__bench_v_JAVAC_$(__quiet)) 30 32 BENCH_V_UPP = $(__bench_v_UPP_$(__quiet)) 31 BENCH_V_GOC = $(__bench_v_GOC_$(__quiet))32 BENCH_V_PY = $(__bench_v_PY_$(__quiet))33 BENCH_V_RUSTC = $(__bench_v_RUSTC_$(__quiet))34 BENCH_V_NODEJS = $(__bench_v_NODEJS_$(__quiet))35 BENCH_V_JAVAC = $(__bench_v_JAVAC_$(__quiet))36 33 37 34 __quiet = verbose … … 39 36 __bench_v_CFA_quiet = @ 40 37 __bench_v_CXX_quiet = @ 38 __bench_v_GOC_quiet = @ 39 __bench_v_JAVAC_quiet = @ 41 40 __bench_v_UPP_quiet = @ 42 __bench_v_GOC_quiet = @43 __bench_v_RUSTC_quiet = @44 __bench_v_JAVAC_quiet = @45 41 __bench_v_CC_verbose = $(AM_V_CC) 46 42 __bench_v_CFA_verbose = $(AM_V_CFA) 47 43 __bench_v_CXX_verbose = $(AM_V_CXX) 44 __bench_v_GOC_verbose = $(AM_V_GOC) 45 __bench_v_JAVAC_verbose = $(AM_V_JAVAC) 48 46 __bench_v_UPP_verbose = $(AM_V_UPP) 49 __bench_v_GOC_verbose = $(AM_V_GOC)50 __bench_v_PY_verbose = $(AM_V_PY)51 __bench_v_RUSTC_verbose = $(AM_V_RUST)52 __bench_v_NODEJS_verbose = $(AM_V_NODEJS)53 __bench_v_JAVAC_verbose = $(AM_V_JAVAC)54 47 55 48 … … 58 51 STATS = ${abs_top_srcdir}/tools/stat.py 59 52 # NEED AT LEAST 4 DATA VALUES FOR BENCHMARKS BECAUSE THE MAX AND MIN VALUES ARE REMOVED 60 repeats = 13# 31 for benchmarks53 repeats = 5 # 31 for benchmarks 61 54 arch = x64 62 55 skipcompile = no … … 69 62 70 63 dummyC.c: 71 echo "int main() { return 0; }" > ${@}64 @echo "int main() { return 0; }" > ${@} 72 65 73 66 dummyCXX.cpp: 74 echo "int main() { return 0; }" > ${@} 75 76 .SILENT: # do not print recipe 67 @echo "int main() { return 0; }" > ${@} 68 77 69 .NOTPARALLEL: 78 .PHONY: jenkins cleancsv 79 80 ## ========================================================================================================= 81 82 all : basic$(EXEEXT) ctxswitch$(EXEEXT) mutex$(EXEEXT) schedint$(EXEEXT) schedext$(EXEEXT) creation$(EXEEXT) 83 84 basic_loop_DURATION = 15000000000 85 basic_function_DURATION = 10000000000 86 basic_tls_fetch_add_DURATION = 10000000000 87 basic_DURATION = 250000000 88 89 ctxswitch_pthread_DURATION = 25000000 90 ctxswitch_rust_thread_DURATION = $(ctxswitch_pthread_DURATION) 91 ctxswitch_cfa_generator_DURATION = 5000000000 92 ctxswitch_nodejs_await_DURATION = 5000000 93 ctxswitch_DURATION = 100000000 94 95 #mutex_java_DURATION = 10000000 96 mutex_DURATION = 50000000 97 98 schedint_pthread_DURATION = 1000000 99 schedint_java_DURATION = $(schedint_pthread_DURATION) 100 schedint_rust_DURATION = $(schedint_pthread_DURATION) 101 schedint_DURATION = 10000000 102 103 schedext_DURATION = 10000000 104 105 creation_pthread_DURATION = 250000 106 creation_rust_thread_DURATION = ${creation_pthread_DURATION} 107 creation_java_thread_DURATION = ${creation_pthread_DURATION} 108 creation_cfa_coroutine_DURATION = 100000000 109 creation_cfa_coroutine_eager_DURATION = 10000000 110 creation_cfa_generator_DURATION = 1000000000 111 creation_upp_coroutine_DURATION = ${creation_cfa_coroutine_eager_DURATION} 112 creation_cfa_thread_DURATION = 10000000 113 creation_upp_thread_DURATION = ${creation_cfa_thread_DURATION} 114 creation_DURATION = 10000000 70 .PHONY: compile.csv ctxswitch.csv mutex.csv signal.csv 71 72 ## ========================================================================================================= 73 all : ctxswitch$(EXEEXT) mutex$(EXEEXT) signal$(EXEEXT) waitfor$(EXEEXT) creation$(EXEEXT) 115 74 116 75 %.run : %$(EXEEXT) ${REPEAT} 117 rm -f .result.log 118 echo "------------------------------------------------------" 119 echo $< 120 ${REPEAT} ${repeats} -- ./a.out\ 121 $(if ${$(subst -,_,$(basename $@))_DURATION},\ 122 ${$(subst -,_,$(basename $@))_DURATION},\ 123 ${$(firstword $(subst -, ,$(basename $@)))_DURATION}) | tee -a .result.log 124 ${STATS} .result.log 125 echo "------------------------------------------------------" 126 rm -f a.out .result.log *.class 127 128 # ${REPEAT} ${repeats} -- /usr/bin/time -f "%Uu %Ss %Er %Mkb" ./a.out 76 @rm -f .result.log 77 @echo "------------------------------------------------------" 78 @echo $< 79 @${REPEAT} ${repeats} ./a.out | tee -a .result.log 80 @${STATS} .result.log 81 @echo "------------------------------------------------------" 82 @rm -f a.out .result.log *.class 129 83 130 84 %.runquiet : 131 +make $(basename $@) CFLAGS="-w" __quiet=quiet132 taskset -c 1 ./a.out133 rm -f a.out85 @+make $(basename $@) CFLAGS="-w" __quiet=quiet 86 @taskset -c 1 ./a.out 87 @rm -f a.out 134 88 135 89 %.make : 136 printf "${PRINT_FORMAT}" $(basename $(subst compile-,,$@))137 +/usr/bin/time -f ${TIME_FORMAT} make $(basename $@) 2>&190 @printf "${PRINT_FORMAT}" $(basename $(subst compile-,,$@)) 91 @+/usr/bin/time -f ${TIME_FORMAT} make $(basename $@) 2>&1 138 92 139 93 ${REPEAT} : 140 +make -C ${abs_top_builddir}/tools repeat94 @+make -C ${abs_top_builddir}/tools repeat 141 95 142 96 ## ========================================================================================================= … … 144 98 FIX_NEW_LINES = cat $@ | tr "\n" "\t" | sed -r 's/\t,/,/' | tr "\t" "\n" > $@ 145 99 146 cleancsv: 147 rm -f compile.csv basic.csv ctxswitch.csv mutex.csv scheduling.csv 148 149 jenkins$(EXEEXT): cleancsv 100 jenkins$(EXEEXT): 150 101 @DOifskipcompile@ 151 +make compile.csv152 -+make compile.diff.csv102 @+make compile.csv 103 @-+make compile.diff.csv 153 104 @DOendif@ 154 +make ctxswitch.csv155 -+make ctxswitch.diff.csv156 +make mutex.csv157 -+make mutex.diff.csv158 +make scheduling.csv159 -+make scheduling.diff.csv105 @+make ctxswitch.csv 106 @-+make ctxswitch.diff.csv 107 @+make mutex.csv 108 @-+make mutex.diff.csv 109 @+make signal.csv 110 @-+make signal.diff.csv 160 111 @DOifskipcompile@ 161 112 cat compile.csv … … 166 117 cat mutex.csv 167 118 -cat mutex.diff.csv 168 cat s cheduling.csv169 -cat s cheduling.diff.csv119 cat signal.csv 120 -cat signal.diff.csv 170 121 171 122 compile.csv: 172 echo "building $@" 173 echo "array,attributes,empty,expression,io,monitor,operators,typeof" > $@ 174 +make TIME_FORMAT='%e,' PRINT_FORMAT='' compile-array.make >> $@ 175 +make TIME_FORMAT='%e,' PRINT_FORMAT='' compile-attributes.make >> $@ 176 +make TIME_FORMAT='%e,' PRINT_FORMAT='' compile-empty.make >> $@ 177 +make TIME_FORMAT='%e,' PRINT_FORMAT='' compile-expression.make >> $@ 178 +make TIME_FORMAT='%e,' PRINT_FORMAT='' compile-io.make >> $@ 179 +make TIME_FORMAT='%e,' PRINT_FORMAT='' compile-monitor.make >> $@ 180 +make TIME_FORMAT='%e,' PRINT_FORMAT='' compile-operators.make >> $@ 181 +make TIME_FORMAT='%e' PRINT_FORMAT='' compile-typeof.make >> $@ 182 $(srcdir)/fixcsv.sh $@ 123 @echo "array,attributes,empty,expression,io,monitor,operators,typeof" > $@ 124 @+make TIME_FORMAT='%e,' PRINT_FORMAT='' compile-array.make >> $@ 125 @+make TIME_FORMAT='%e,' PRINT_FORMAT='' compile-attributes.make >> $@ 126 @+make TIME_FORMAT='%e,' PRINT_FORMAT='' compile-empty.make >> $@ 127 @+make TIME_FORMAT='%e,' PRINT_FORMAT='' compile-expression.make >> $@ 128 @+make TIME_FORMAT='%e,' PRINT_FORMAT='' compile-io.make >> $@ 129 @+make TIME_FORMAT='%e,' PRINT_FORMAT='' compile-monitor.make >> $@ 130 @+make TIME_FORMAT='%e,' PRINT_FORMAT='' compile-operators.make >> $@ 131 @+make TIME_FORMAT='%e' PRINT_FORMAT='' compile-typeof.make >> $@ 132 @$(srcdir)/fixcsv.sh $@ 183 133 184 134 ctxswitch.csv: 185 echo "building $@" 186 echo "generator,coroutine,thread" > $@ 187 +make ctxswitch-cfa_generator.runquiet >> $@ && echo -n ',' >> $@ 188 +make ctxswitch-cfa_coroutine.runquiet >> $@ && echo -n ',' >> $@ 189 +make ctxswitch-cfa_thread.runquiet >> $@ 190 $(srcdir)/fixcsv.sh $@ 135 @echo "generator,coroutine,thread" > $@ 136 @+make ctxswitch-cfa_generator.runquiet >> $@ && echo -n ',' >> $@ 137 @+make ctxswitch-cfa_coroutine.runquiet >> $@ && echo -n ',' >> $@ 138 @+make ctxswitch-cfa_thread.runquiet >> $@ 139 @$(srcdir)/fixcsv.sh $@ 191 140 192 141 mutex.csv: 193 echo "building $@" 194 echo "1-monitor,2-monitor" > $@ 195 +make mutex-cfa1.runquiet >> $@ && echo -n ',' >> $@ 196 +make mutex-cfa2.runquiet >> $@ 197 $(srcdir)/fixcsv.sh $@ 198 199 scheduling.csv: 200 echo "building $@" 201 echo "schedint-1,schedint-2,schedext-1,schedext-2" > $@ 202 +make schedint-cfa1.runquiet >> $@ && echo -n ',' >> $@ 203 +make schedint-cfa2.runquiet >> $@ && echo -n ',' >> $@ 204 +make schedext-cfa1.runquiet >> $@ && echo -n ',' >> $@ 205 +make schedext-cfa2.runquiet >> $@ 206 $(srcdir)/fixcsv.sh $@ 142 @echo "1-monitor,2-monitor" > $@ 143 @+make mutex-cfa1.runquiet >> $@ && echo -n ',' >> $@ 144 @+make mutex-cfa2.runquiet >> $@ 145 @$(srcdir)/fixcsv.sh $@ 146 147 signal.csv: 148 @echo "signal-1,signal-2,waitfor-1,waitfor-2" > $@ 149 @+make signal-cfa1.runquiet >> $@ && echo -n ',' >> $@ 150 @+make signal-cfa2.runquiet >> $@ && echo -n ',' >> $@ 151 @+make waitfor-cfa1.runquiet >> $@ && echo -n ',' >> $@ 152 @+make waitfor-cfa2.runquiet >> $@ 153 @$(srcdir)/fixcsv.sh $@ 207 154 208 155 %.diff.csv: %.csv 209 test -e $(srcdir)/baselines/$(arch)/$< || (echo "Error : Missing baseline for ${<}" && false) 210 $(srcdir)/baselines/calc.py $(srcdir)/baselines/$(arch)/$(<) $(<) > $@ 211 212 ## ========================================================================================================= 213 214 BASIC_DEPEND = \ 215 basic-loop.run \ 216 basic-function.run \ 217 basic-fetch_add.run \ 218 basic-ttst_lock.run \ 219 basic-tls-fetch_add.run 220 221 basic-loop$(EXEEXT): 222 $(BENCH_V_CC)$(COMPILE) $(srcdir)/basic/loop.c 223 224 basic-function$(EXEEXT): 225 $(BENCH_V_CC)$(COMPILE) $(srcdir)/basic/function.c 226 227 basic-fetch_add$(EXEEXT): 228 $(BENCH_V_CC)$(COMPILE) $(srcdir)/basic/fetch_add.c 229 230 basic-ttst_lock$(EXEEXT): 231 $(BENCH_V_CC)$(COMPILE) $(srcdir)/basic/ttst_lock.c 232 233 basic-tls-fetch_add$(EXEEXT): 234 $(BENCH_V_CC)$(COMPILE) $(srcdir)/basic/tls_fetch_add.c 235 236 basic$(EXEEXT): $(BASIC_DEPEND) 237 238 ## ========================================================================================================= 239 240 CTXSWITCH_DEPEND = \ 156 @test -e $(srcdir)/baselines/$(arch)/$< || (echo "Error : Missing baseline for ${<}" && false) 157 @$(srcdir)/baselines/calc.py $(srcdir)/baselines/$(arch)/$(<) $(<) > $@ 158 159 160 ## ========================================================================================================= 161 loop$(EXEEXT): 162 $(BENCH_V_CC)$(COMPILE) -DBENCH_N=5000000000 $(srcdir)/loop.c 163 164 function$(EXEEXT): 165 $(BENCH_V_CC)$(COMPILE) -DBENCH_N=5000000000 $(srcdir)/function.c 166 167 fetch_add$(EXEEXT): 168 $(BENCH_V_CC)$(COMPILE) -DBENCH_N=500000000 $(srcdir)/fetch_add.c 169 170 ttst_lock$(EXEEXT): 171 $(BENCH_V_CC)$(COMPILE) -DBENCH_N=500000000 $(srcdir)/ttst_lock.c 172 173 tls-fetch_add$(EXEEXT): 174 $(BENCH_V_CC)$(COMPILE) -DBENCH_N=500000000 $(srcdir)/tls-fetch_add.c 175 176 ## ========================================================================================================= 177 CTXSWITCH_DEPEND = \ 178 loop.run \ 179 function.run \ 180 fetch_add.run \ 181 ttst_lock.run \ 182 tls-fetch_add.run \ 183 ctxswitch-pthread.run \ 241 184 ctxswitch-cfa_generator.run \ 242 185 ctxswitch-cfa_coroutine.run \ … … 245 188 ctxswitch-upp_coroutine.run \ 246 189 ctxswitch-upp_thread.run \ 247 ctxswitch-python_coroutine.run \ 248 ctxswitch-nodejs_coroutine.run \ 249 ctxswitch-nodejs_await.run \ 250 ctxswitch-goroutine_thread.run \ 251 ctxswitch-rust_thread.run \ 252 ctxswitch-nodejs_coroutine.run \ 253 ctxswitch-java_thread.run \ 254 ctxswitch-pthread.run 190 ctxswitch-goroutine.run \ 191 ctxswitch-java_thread.run 192 255 193 256 194 if WITH_LIBFIBRE 257 CTXSWITCH_DEPEND += 258 ctxswitch-kos_fibre.run 195 CTXSWITCH_DEPEND += \ 196 ctxswitch-kos_fibre.run \ 259 197 ctxswitch-kos_fibre2.run 198 260 199 261 200 ctxswitch-kos_fibre$(EXEEXT): … … 268 207 ctxswitch$(EXEEXT): $(CTXSWITCH_DEPEND) 269 208 209 ctxswitch-pthread$(EXEEXT): 210 $(BENCH_V_CC)$(COMPILE) -DBENCH_N=50000000 $(srcdir)/ctxswitch/pthreads.c 211 270 212 ctxswitch-cfa_generator$(EXEEXT): 271 $(BENCH_V_CFA)$(CFACOMPILE) $(srcdir)/ctxswitch/cfa_gen.cfa213 $(BENCH_V_CFA)$(CFACOMPILE) -DBENCH_N=50000000 $(srcdir)/ctxswitch/cfa_gen.cfa 272 214 273 215 ctxswitch-cfa_coroutine$(EXEEXT): 274 $(BENCH_V_CFA)$(CFACOMPILE) $(srcdir)/ctxswitch/cfa_cor.cfa216 $(BENCH_V_CFA)$(CFACOMPILE) -DBENCH_N=50000000 $(srcdir)/ctxswitch/cfa_cor.cfa 275 217 276 218 ctxswitch-cfa_thread$(EXEEXT): 277 $(BENCH_V_CFA)$(CFACOMPILE) $(srcdir)/ctxswitch/cfa_thrd.cfa219 $(BENCH_V_CFA)$(CFACOMPILE) -DBENCH_N=50000000 $(srcdir)/ctxswitch/cfa_thrd.cfa 278 220 279 221 ctxswitch-cfa_thread2$(EXEEXT): 280 $(BENCH_V_CFA)$(CFACOMPILE) $(srcdir)/ctxswitch/cfa_thrd2.cfa222 $(BENCH_V_CFA)$(CFACOMPILE) -DBENCH_N=50000000 $(srcdir)/ctxswitch/cfa_thrd2.cfa 281 223 282 224 ctxswitch-upp_coroutine$(EXEEXT): 283 $(BENCH_V_UPP)$(UPPCOMPILE) $(srcdir)/ctxswitch/upp_cor.cc225 $(BENCH_V_UPP)$(UPPCOMPILE) -DBENCH_N=50000000 $(srcdir)/ctxswitch/upp_cor.cc 284 226 285 227 ctxswitch-upp_thread$(EXEEXT): 286 $(BENCH_V_UPP)$(UPPCOMPILE) $(srcdir)/ctxswitch/upp_thrd.cc 287 288 ctxswitch-python_coroutine$(EXEEXT): 289 $(BENCH_V_PY)echo "#!/bin/sh" > a.out 290 echo "python3.7 $(srcdir)/ctxswitch/python_cor.py" >> a.out 291 chmod a+x a.out 292 293 ctxswitch-nodejs_coroutine$(EXEEXT): 294 $(BENCH_V_NODEJS)echo "#!/bin/sh" > a.out 295 echo "nodejs $(srcdir)/ctxswitch/node_cor.js" >> a.out 296 chmod a+x a.out 297 298 ctxswitch-nodejs_await$(EXEEXT): 299 $(BENCH_V_NODEJS)echo "#!/bin/sh" > a.out 300 echo "nodejs $(srcdir)/ctxswitch/node_await.js" >> a.out 301 chmod a+x a.out 302 303 ctxswitch-goroutine_thread$(EXEEXT): 228 $(BENCH_V_UPP)$(UPPCOMPILE) -DBENCH_N=50000000 $(srcdir)/ctxswitch/upp_thrd.cc 229 230 ctxswitch-goroutine$(EXEEXT): 304 231 $(BENCH_V_GOC)go build -o a.out $(srcdir)/ctxswitch/goroutine.go 305 306 ctxswitch-rust_thread$(EXEEXT):307 $(BENCH_V_RUSTC)rustc -C opt-level=3 -o a.out $(srcdir)/ctxswitch/rust_thrd.rs308 232 309 233 ctxswitch-java_thread$(EXEEXT): 310 234 $(BENCH_V_JAVAC)javac -d $(builddir) $(srcdir)/ctxswitch/JavaThread.java 311 echo "#!/bin/sh" > a.out 312 echo "java JavaThread" >> a.out 313 chmod a+x a.out 314 315 ctxswitch-pthread$(EXEEXT): 316 $(BENCH_V_CC)$(COMPILE) $(srcdir)/ctxswitch/pthreads.c 317 318 ## ========================================================================================================= 319 320 mutex$(EXEEXT) : \ 235 @echo "#!/bin/sh" > a.out 236 @echo "java JavaThread" >> a.out 237 @chmod a+x a.out 238 239 ## ========================================================================================================= 240 mutex$(EXEEXT) :\ 241 loop.run \ 242 function.run \ 243 fetch_add.run \ 244 mutex-pthread_lock.run \ 245 mutex-upp.run \ 321 246 mutex-cfa1.run \ 322 247 mutex-cfa2.run \ 323 248 mutex-cfa4.run \ 324 mutex-upp.run \ 325 mutex-go.run \ 326 mutex-rust.run \ 327 mutex-java.run \ 328 mutex-pthread.run 329 330 mutex-pthread$(EXEEXT): 331 $(BENCH_V_CC)$(COMPILE) $(srcdir)/mutex/pthreads.c 249 mutex-java_thread.run 250 251 mutex-pthread_lock$(EXEEXT): 252 $(BENCH_V_CC)$(COMPILE) -DBENCH_N=50000000 $(srcdir)/mutex/pthreads.c 253 254 mutex-upp$(EXEEXT): 255 $(BENCH_V_UPP)$(UPPCOMPILE) -DBENCH_N=50000000 $(srcdir)/mutex/upp.cc 332 256 333 257 mutex-cfa1$(EXEEXT): 334 $(BENCH_V_CFA)$(CFACOMPILE) $(srcdir)/mutex/cfa1.cfa258 $(BENCH_V_CFA)$(CFACOMPILE) -DBENCH_N=5000000 $(srcdir)/mutex/cfa1.cfa 335 259 336 260 mutex-cfa2$(EXEEXT): 337 $(BENCH_V_CFA)$(CFACOMPILE) $(srcdir)/mutex/cfa2.cfa261 $(BENCH_V_CFA)$(CFACOMPILE) -DBENCH_N=5000000 $(srcdir)/mutex/cfa2.cfa 338 262 339 263 mutex-cfa4$(EXEEXT): 340 $(BENCH_V_CFA)$(CFACOMPILE) $(srcdir)/mutex/cfa4.cfa 341 342 mutex-upp$(EXEEXT): 343 $(BENCH_V_UPP)$(UPPCOMPILE) $(srcdir)/mutex/upp.cc 344 345 mutex-go$(EXEEXT): 346 $(BENCH_V_GOC)go build -o a.out $(srcdir)/mutex/goroutine.go 347 348 mutex-rust$(EXEEXT): 349 $(BENCH_V_RUSTC)rustc -C opt-level=3 -o a.out $(srcdir)/mutex/rust.rs 350 351 mutex-java$(EXEEXT): 264 $(BENCH_V_CFA)$(CFACOMPILE) -DBENCH_N=5000000 $(srcdir)/mutex/cfa4.cfa 265 266 mutex-java_thread$(EXEEXT): 352 267 $(BENCH_V_JAVAC)javac -d $(builddir) $(srcdir)/mutex/JavaThread.java 353 echo "#!/bin/sh" > a.out 354 echo "java JavaThread" >> a.out 355 chmod a+x a.out 356 357 ## ========================================================================================================= 358 359 schedint$(EXEEXT) : \ 360 schedint-cfa1.run \ 361 schedint-cfa2.run \ 362 schedint-cfa4.run \ 363 schedint-upp.run \ 364 schedint-rust.run \ 365 schedint-java.run \ 366 schedint-pthread.run 367 368 schedint-cfa1$(EXEEXT): 369 $(BENCH_V_CFA)$(CFACOMPILE) $(srcdir)/schedint/cfa1.cfa 370 371 schedint-cfa2$(EXEEXT): 372 $(BENCH_V_CFA)$(CFACOMPILE) $(srcdir)/schedint/cfa2.cfa 373 374 schedint-cfa4$(EXEEXT): 375 $(BENCH_V_CFA)$(CFACOMPILE) $(srcdir)/schedint/cfa4.cfa 376 377 schedint-upp$(EXEEXT): 378 $(BENCH_V_UPP)$(UPPCOMPILE) $(srcdir)/schedint/upp.cc 379 380 schedint-rust$(EXEEXT): 381 $(BENCH_V_RUSTC)rustc -C opt-level=3 -o a.out $(srcdir)/schedint/rust.rs 382 383 schedint-java$(EXEEXT): 268 @echo "#!/bin/sh" > a.out 269 @echo "java JavaThread" >> a.out 270 @chmod a+x a.out 271 272 ## ========================================================================================================= 273 signal$(EXEEXT) :\ 274 signal-pthread_cond.run \ 275 signal-upp.run \ 276 signal-cfa1.run \ 277 signal-cfa2.run \ 278 signal-cfa4.run \ 279 signal-java_thread.run 280 281 signal-pthread_cond$(EXEEXT): 282 $(BENCH_V_CC)$(COMPILE) -DBENCH_N=500000 $(srcdir)/schedint/pthreads.c 283 284 signal-upp$(EXEEXT): 285 $(BENCH_V_UPP)$(UPPCOMPILE) -DBENCH_N=5000000 $(srcdir)/schedint/upp.cc 286 287 signal-cfa1$(EXEEXT): 288 $(BENCH_V_CFA)$(CFACOMPILE) -DBENCH_N=500000 $(srcdir)/schedint/cfa1.cfa 289 290 signal-cfa2$(EXEEXT): 291 $(BENCH_V_CFA)$(CFACOMPILE) -DBENCH_N=500000 $(srcdir)/schedint/cfa2.cfa 292 293 signal-cfa4$(EXEEXT): 294 $(BENCH_V_CFA)$(CFACOMPILE) -DBENCH_N=500000 $(srcdir)/schedint/cfa4.cfa 295 296 signal-java_thread$(EXEEXT): 384 297 $(BENCH_V_JAVAC)javac -d $(builddir) $(srcdir)/schedint/JavaThread.java 385 echo "#!/bin/sh" > a.out 386 echo "java JavaThread" >> a.out 387 chmod a+x a.out 388 389 schedint-pthread$(EXEEXT): 390 $(BENCH_V_CC)$(COMPILE) $(srcdir)/schedint/pthreads.c 391 392 ## ========================================================================================================= 393 394 schedext$(EXEEXT) : \ 395 schedext-cfa1.run \ 396 schedext-cfa2.run \ 397 schedext-cfa4.run \ 398 schedext-upp.run \ 399 schedext-goroutine.run 400 401 schedext-cfa1$(EXEEXT): 402 $(BENCH_V_CFA)$(CFACOMPILE) $(srcdir)/schedext/cfa1.cfa 403 404 schedext-cfa2$(EXEEXT): 405 $(BENCH_V_CFA)$(CFACOMPILE) $(srcdir)/schedext/cfa2.cfa 406 407 schedext-cfa4$(EXEEXT): 408 $(BENCH_V_CFA)$(CFACOMPILE) $(srcdir)/schedext/cfa4.cfa 409 410 schedext-upp$(EXEEXT): 411 $(BENCH_V_UPP)$(UPPCOMPILE) $(srcdir)/schedext/upp.cc 412 413 schedext-goroutine$(EXEEXT): 414 $(BENCH_V_GOC)go build -o a.out $(srcdir)/schedext/goroutine.go 415 416 417 ## ========================================================================================================= 418 419 creation$(EXEEXT) : \ 420 creation-cfa_generator.run \ 298 @echo "#!/bin/sh" > a.out 299 @echo "java JavaThread" >> a.out 300 @chmod a+x a.out 301 302 303 ## ========================================================================================================= 304 waitfor$(EXEEXT) :\ 305 waitfor-upp.run \ 306 waitfor-cfa1.run \ 307 waitfor-cfa2.run \ 308 waitfor-cfa4.run 309 310 waitfor-upp$(EXEEXT): 311 $(BENCH_V_UPP)$(UPPCOMPILE) -DBENCH_N=5000000 $(srcdir)/schedext/upp.cc 312 313 waitfor-cfa1$(EXEEXT): 314 $(BENCH_V_CFA)$(CFACOMPILE) -DBENCH_N=500000 $(srcdir)/schedext/cfa1.cfa 315 316 waitfor-cfa2$(EXEEXT): 317 $(BENCH_V_CFA)$(CFACOMPILE) -DBENCH_N=500000 $(srcdir)/schedext/cfa2.cfa 318 319 waitfor-cfa4$(EXEEXT): 320 $(BENCH_V_CFA)$(CFACOMPILE) -DBENCH_N=500000 $(srcdir)/schedext/cfa4.cfa 321 322 ## ========================================================================================================= 323 creation$(EXEEXT) :\ 324 creation-pthread.run \ 421 325 creation-cfa_coroutine.run \ 422 326 creation-cfa_coroutine_eager.run \ … … 424 328 creation-upp_coroutine.run \ 425 329 creation-upp_thread.run \ 426 creation-python_coroutine.run \ 427 creation-nodejs_coroutine.run \ 428 creation-goroutine_thread.run \ 429 creation-rust_thread.run \ 430 creation-java_thread.run \ 431 creation-pthread.run 432 433 creation-cfa_generator$(EXEEXT): 434 $(BENCH_V_CFA)$(CFACOMPILE) $(srcdir)/creation/cfa_gen.cfa 330 creation-goroutine.run \ 331 creation-java_thread.run 435 332 436 333 creation-cfa_coroutine$(EXEEXT): 437 $(BENCH_V_CFA)$(CFACOMPILE) $(srcdir)/creation/cfa_cor.cfa334 $(BENCH_V_CFA)$(CFACOMPILE) -DBENCH_N=10000000 $(srcdir)/creation/cfa_cor.cfa 438 335 439 336 creation-cfa_coroutine_eager$(EXEEXT): 440 $(BENCH_V_CFA)$(CFACOMPILE) $(srcdir)/creation/cfa_cor.cfa -DEAGER337 $(BENCH_V_CFA)$(CFACOMPILE) -DBENCH_N=10000000 $(srcdir)/creation/cfa_cor.cfa -DEAGER 441 338 442 339 creation-cfa_thread$(EXEEXT): 443 $(BENCH_V_CFA)$(CFACOMPILE) $(srcdir)/creation/cfa_thrd.cfa340 $(BENCH_V_CFA)$(CFACOMPILE) -DBENCH_N=10000000 $(srcdir)/creation/cfa_thrd.cfa 444 341 445 342 creation-upp_coroutine$(EXEEXT): 446 $(BENCH_V_UPP)$(UPPCOMPILE) $(srcdir)/creation/upp_cor.cc343 $(BENCH_V_UPP)$(UPPCOMPILE) -DBENCH_N=50000000 $(srcdir)/creation/upp_cor.cc 447 344 448 345 creation-upp_thread$(EXEEXT): 449 $(BENCH_V_UPP)$(UPPCOMPILE) $(srcdir)/creation/upp_thrd.cc 450 451 creation-python_coroutine$(EXEEXT): 452 $(BENCH_V_PY)echo "#!/bin/sh" > a.out 453 echo "python3.7 $(srcdir)/creation/python_cor.py" >> a.out 454 chmod a+x a.out 455 456 creation-nodejs_coroutine$(EXEEXT): 457 $(BENCH_V_NODEJS)echo "#!/bin/sh" > a.out 458 echo "nodejs $(srcdir)/creation/node_cor.js" >> a.out 459 chmod a+x a.out 460 461 creation-goroutine_thread$(EXEEXT): 346 $(BENCH_V_UPP)$(UPPCOMPILE) -DBENCH_N=50000000 $(srcdir)/creation/upp_thrd.cc 347 348 creation-pthread$(EXEEXT): 349 $(BENCH_V_CC)$(COMPILE) -DBENCH_N=250000 $(srcdir)/creation/pthreads.c 350 351 creation-goroutine$(EXEEXT): 462 352 $(BENCH_V_GOC)go build -o a.out $(srcdir)/creation/goroutine.go 463 464 creation-rust_thread$(EXEEXT):465 $(BENCH_V_RUSTC)rustc -C opt-level=3 -o a.out $(srcdir)/creation/rust_thrd.rs466 353 467 354 creation-java_thread$(EXEEXT): 468 355 $(BENCH_V_JAVAC)javac -d $(builddir) $(srcdir)/creation/JavaThread.java 469 echo "#!/bin/sh" > a.out 470 echo "java JavaThread" >> a.out 471 chmod a+x a.out 472 473 creation-pthread$(EXEEXT): 474 $(BENCH_V_CC)$(COMPILE) $(srcdir)/creation/pthreads.c 475 476 ## ========================================================================================================= 477 478 compile$(EXEEXT) : \ 356 @echo "#!/bin/sh" > a.out 357 @echo "java JavaThread" >> a.out 358 @chmod a+x a.out 359 360 ## ========================================================================================================= 361 362 compile$(EXEEXT) :\ 479 363 compile-array.make \ 480 364 compile-attributes.make \ … … 486 370 compile-typeof.make 487 371 372 488 373 testdir = $(top_srcdir)/tests 489 374 490 375 compile-array$(EXEEXT): 491 $(CFACOMPILE) -fsyntax-only -w $(testdir)/array.cfa376 @$(CFACOMPILE) -fsyntax-only -w $(testdir)/array.cfa 492 377 493 378 compile-attributes$(EXEEXT): 494 $(CFACOMPILE) -fsyntax-only -w $(testdir)/attributes.cfa379 @$(CFACOMPILE) -fsyntax-only -w $(testdir)/attributes.cfa 495 380 496 381 compile-empty$(EXEEXT): 497 $(CFACOMPILE) -fsyntax-only -w $(srcdir)/compile/empty.cfa382 @$(CFACOMPILE) -fsyntax-only -w $(srcdir)/compile/empty.cfa 498 383 499 384 compile-expression$(EXEEXT): 500 $(CFACOMPILE) -fsyntax-only -w $(testdir)/expression.cfa385 @$(CFACOMPILE) -fsyntax-only -w $(testdir)/expression.cfa 501 386 502 387 compile-io$(EXEEXT): 503 $(CFACOMPILE) -fsyntax-only -w $(testdir)/io1.cfa388 @$(CFACOMPILE) -fsyntax-only -w $(testdir)/io1.cfa 504 389 505 390 compile-monitor$(EXEEXT): 506 $(CFACOMPILE) -fsyntax-only -w $(testdir)/concurrent/monitor.cfa391 @$(CFACOMPILE) -fsyntax-only -w $(testdir)/concurrent/monitor.cfa 507 392 508 393 compile-operators$(EXEEXT): 509 $(CFACOMPILE) -fsyntax-only -w $(testdir)/operators.cfa394 @$(CFACOMPILE) -fsyntax-only -w $(testdir)/operators.cfa 510 395 511 396 compile-thread$(EXEEXT): 512 $(CFACOMPILE) -fsyntax-only -w $(testdir)/concurrent/thread.cfa397 @$(CFACOMPILE) -fsyntax-only -w $(testdir)/concurrent/thread.cfa 513 398 514 399 compile-typeof$(EXEEXT): 515 $(CFACOMPILE) -fsyntax-only -w $(testdir)/typeof.cfa 516 517 ## ========================================================================================================= 518 519 size$(EXEEXT) : size-cfa.runquiet 520 521 size-cfa$(EXEEXT): 522 $(BENCH_V_CFA)$(CFACOMPILE) $(srcdir)/size/size.cfa 400 @$(CFACOMPILE) -fsyntax-only -w $(testdir)/typeof.cfa -
benchmark/Makefile.in
r7030dab r71d6bd8 93 93 EXTRA_PROGRAMS = dummy$(EXEEXT) 94 94 @WITH_LIBFIBRE_TRUE@am__append_1 = \ 95 @WITH_LIBFIBRE_TRUE@ ctxswitch-kos_fibre.run 95 @WITH_LIBFIBRE_TRUE@ ctxswitch-kos_fibre.run \ 96 96 @WITH_LIBFIBRE_TRUE@ ctxswitch-kos_fibre2.run 97 97 … … 352 352 LTCFACOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ 353 353 $(LIBTOOLFLAGS) --mode=compile $(CFACC) $(DEFS) \ 354 $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CFAFLAGS) $(AM_CFLAGS) $(CFAFLAGS) $(CFLAGS) 354 $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CFAFLAGS) $(CFAFLAGS) \ 355 $(AM_CFLAGS) $(CFLAGS) 355 356 356 357 AM_V_CFA = $(am__v_CFA_@AM_V@) … … 358 359 am__v_CFA_0 = @echo " CFA " $@; 359 360 am__v_CFA_1 = 361 AM_V_JAVAC = $(am__v_JAVAC_@AM_V@) 362 am__v_JAVAC_ = $(am__v_JAVAC_@AM_DEFAULT_V@) 363 am__v_JAVAC_0 = @echo " JAVAC " $@; 364 am__v_JAVAC_1 = 365 AM_V_GOC = $(am__v_GOC_@AM_V@) 366 am__v_GOC_ = $(am__v_GOC_@AM_DEFAULT_V@) 367 am__v_GOC_0 = @echo " GOC " $@; 368 am__v_GOC_1 = 360 369 UPPCC = u++ 361 370 UPPCOMPILE = $(UPPCC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_UPPFLAGS) $(UPPFLAGS) $(AM_CXXFLAGS) $(CXXFLAGS) $(AM_CFLAGS) $(CFLAGS) … … 364 373 am__v_UPP_0 = @echo " UPP " $@; 365 374 am__v_UPP_1 = 366 AM_V_GOC = $(am__v_GOC_@AM_V@)367 am__v_GOC_ = $(am__v_GOC_@AM_DEFAULT_V@)368 am__v_GOC_0 = @echo " GOC " $@;369 am__v_GOC_1 =370 AM_V_PY = $(am__v_PY_@AM_V@)371 am__v_PY_ = $(am__v_PY_@AM_DEFAULT_V@)372 am__v_PY_0 = @echo " PYTHON " $@;373 am__v_PY_1 =374 AM_V_RUST = $(am__v_RUST_@AM_V@)375 am__v_RUST_ = $(am__v_RUST_@AM_DEFAULT_V@)376 am__v_RUST_0 = @echo " RUST " $@;377 am__v_RUST_1 =378 AM_V_NODEJS = $(am__v_NODEJS_@AM_V@)379 am__v_NODEJS_ = $(am__v_NODEJS_@AM_DEFAULT_V@)380 am__v_NODEJS_0 = @echo " NODEJS " $@;381 am__v_NODEJS_1 =382 AM_V_JAVAC = $(am__v_JAVAC_@AM_V@)383 am__v_JAVAC_ = $(am__v_JAVAC_@AM_DEFAULT_V@)384 am__v_JAVAC_0 = @echo " JAVAC " $@;385 am__v_JAVAC_1 =386 375 387 376 # applies to both programs … … 392 381 BENCH_V_CFA = $(__bench_v_CFA_$(__quiet)) 393 382 BENCH_V_CXX = $(__bench_v_CXX_$(__quiet)) 383 BENCH_V_GOC = $(__bench_v_GOC_$(__quiet)) 384 BENCH_V_JAVAC = $(__bench_v_JAVAC_$(__quiet)) 394 385 BENCH_V_UPP = $(__bench_v_UPP_$(__quiet)) 395 BENCH_V_GOC = $(__bench_v_GOC_$(__quiet))396 BENCH_V_PY = $(__bench_v_PY_$(__quiet))397 BENCH_V_RUSTC = $(__bench_v_RUSTC_$(__quiet))398 BENCH_V_NODEJS = $(__bench_v_NODEJS_$(__quiet))399 BENCH_V_JAVAC = $(__bench_v_JAVAC_$(__quiet))400 386 __quiet = verbose 401 387 __bench_v_CC_quiet = @ 402 388 __bench_v_CFA_quiet = @ 403 389 __bench_v_CXX_quiet = @ 390 __bench_v_GOC_quiet = @ 391 __bench_v_JAVAC_quiet = @ 404 392 __bench_v_UPP_quiet = @ 405 __bench_v_GOC_quiet = @406 __bench_v_RUSTC_quiet = @407 __bench_v_JAVAC_quiet = @408 393 __bench_v_CC_verbose = $(AM_V_CC) 409 394 __bench_v_CFA_verbose = $(AM_V_CFA) 410 395 __bench_v_CXX_verbose = $(AM_V_CXX) 396 __bench_v_GOC_verbose = $(AM_V_GOC) 397 __bench_v_JAVAC_verbose = $(AM_V_JAVAC) 411 398 __bench_v_UPP_verbose = $(AM_V_UPP) 412 __bench_v_GOC_verbose = $(AM_V_GOC)413 __bench_v_PY_verbose = $(AM_V_PY)414 __bench_v_RUSTC_verbose = $(AM_V_RUST)415 __bench_v_NODEJS_verbose = $(AM_V_NODEJS)416 __bench_v_JAVAC_verbose = $(AM_V_JAVAC)417 399 TOOLSDIR = ${abs_top_builddir}/tools/ 418 400 REPEAT = ${abs_top_builddir}/tools/repeat 419 401 STATS = ${abs_top_srcdir}/tools/stat.py 420 402 # NEED AT LEAST 4 DATA VALUES FOR BENCHMARKS BECAUSE THE MAX AND MIN VALUES ARE REMOVED 421 repeats = 13# 31 for benchmarks403 repeats = 5 # 31 for benchmarks 422 404 arch = x64 423 405 skipcompile = no … … 425 407 PRINT_FORMAT = %20s: #Comments needed for spacing 426 408 dummy_SOURCES = dummyC.c dummyCXX.cpp 427 basic_loop_DURATION = 15000000000428 basic_function_DURATION = 10000000000429 basic_tls_fetch_add_DURATION = 10000000000430 basic_DURATION = 250000000431 ctxswitch_pthread_DURATION = 25000000432 ctxswitch_rust_thread_DURATION = $(ctxswitch_pthread_DURATION)433 ctxswitch_cfa_generator_DURATION = 5000000000434 ctxswitch_nodejs_await_DURATION = 5000000435 ctxswitch_DURATION = 100000000436 437 #mutex_java_DURATION = 10000000438 mutex_DURATION = 50000000439 schedint_pthread_DURATION = 1000000440 schedint_java_DURATION = $(schedint_pthread_DURATION)441 schedint_rust_DURATION = $(schedint_pthread_DURATION)442 schedint_DURATION = 10000000443 schedext_DURATION = 10000000444 creation_pthread_DURATION = 250000445 creation_rust_thread_DURATION = ${creation_pthread_DURATION}446 creation_java_thread_DURATION = ${creation_pthread_DURATION}447 creation_cfa_coroutine_DURATION = 100000000448 creation_cfa_coroutine_eager_DURATION = 10000000449 creation_cfa_generator_DURATION = 1000000000450 creation_upp_coroutine_DURATION = ${creation_cfa_coroutine_eager_DURATION}451 creation_cfa_thread_DURATION = 10000000452 creation_upp_thread_DURATION = ${creation_cfa_thread_DURATION}453 creation_DURATION = 10000000454 409 FIX_NEW_LINES = cat $@ | tr "\n" "\t" | sed -r 's/\t,/,/' | tr "\t" "\n" > $@ 455 BASIC_DEPEND = \ 456 basic-loop.run \ 457 basic-function.run \ 458 basic-fetch_add.run \ 459 basic-ttst_lock.run \ 460 basic-tls-fetch_add.run 461 462 CTXSWITCH_DEPEND = ctxswitch-cfa_generator.run \ 463 ctxswitch-cfa_coroutine.run ctxswitch-cfa_thread.run \ 464 ctxswitch-cfa_thread2.run ctxswitch-upp_coroutine.run \ 465 ctxswitch-upp_thread.run ctxswitch-python_coroutine.run \ 466 ctxswitch-nodejs_coroutine.run ctxswitch-nodejs_await.run \ 467 ctxswitch-goroutine_thread.run ctxswitch-rust_thread.run \ 468 ctxswitch-nodejs_coroutine.run ctxswitch-java_thread.run \ 469 ctxswitch-pthread.run $(am__append_1) 410 CTXSWITCH_DEPEND = loop.run function.run fetch_add.run ttst_lock.run \ 411 tls-fetch_add.run ctxswitch-pthread.run \ 412 ctxswitch-cfa_generator.run ctxswitch-cfa_coroutine.run \ 413 ctxswitch-cfa_thread.run ctxswitch-cfa_thread2.run \ 414 ctxswitch-upp_coroutine.run ctxswitch-upp_thread.run \ 415 ctxswitch-goroutine.run ctxswitch-java_thread.run \ 416 $(am__append_1) 470 417 testdir = $(top_srcdir)/tests 471 418 all: all-am … … 786 733 787 734 dummyC.c: 788 echo "int main() { return 0; }" > ${@}735 @echo "int main() { return 0; }" > ${@} 789 736 790 737 dummyCXX.cpp: 791 echo "int main() { return 0; }" > ${@} 792 793 .SILENT: # do not print recipe 738 @echo "int main() { return 0; }" > ${@} 739 794 740 .NOTPARALLEL: 795 .PHONY: jenkins cleancsv796 797 all : basic$(EXEEXT) ctxswitch$(EXEEXT) mutex$(EXEEXT) schedint$(EXEEXT) schedext$(EXEEXT) creation$(EXEEXT)741 .PHONY: compile.csv ctxswitch.csv mutex.csv signal.csv 742 743 all : ctxswitch$(EXEEXT) mutex$(EXEEXT) signal$(EXEEXT) waitfor$(EXEEXT) creation$(EXEEXT) 798 744 799 745 %.run : %$(EXEEXT) ${REPEAT} 800 rm -f .result.log 801 echo "------------------------------------------------------" 802 echo $< 803 ${REPEAT} ${repeats} -- ./a.out\ 804 $(if ${$(subst -,_,$(basename $@))_DURATION},\ 805 ${$(subst -,_,$(basename $@))_DURATION},\ 806 ${$(firstword $(subst -, ,$(basename $@)))_DURATION}) | tee -a .result.log 807 ${STATS} .result.log 808 echo "------------------------------------------------------" 809 rm -f a.out .result.log *.class 810 811 # ${REPEAT} ${repeats} -- /usr/bin/time -f "%Uu %Ss %Er %Mkb" ./a.out 746 @rm -f .result.log 747 @echo "------------------------------------------------------" 748 @echo $< 749 @${REPEAT} ${repeats} ./a.out | tee -a .result.log 750 @${STATS} .result.log 751 @echo "------------------------------------------------------" 752 @rm -f a.out .result.log *.class 812 753 813 754 %.runquiet : 814 +make $(basename $@) CFLAGS="-w" __quiet=quiet815 taskset -c 1 ./a.out816 rm -f a.out755 @+make $(basename $@) CFLAGS="-w" __quiet=quiet 756 @taskset -c 1 ./a.out 757 @rm -f a.out 817 758 818 759 %.make : 819 printf "${PRINT_FORMAT}" $(basename $(subst compile-,,$@))820 +/usr/bin/time -f ${TIME_FORMAT} make $(basename $@) 2>&1760 @printf "${PRINT_FORMAT}" $(basename $(subst compile-,,$@)) 761 @+/usr/bin/time -f ${TIME_FORMAT} make $(basename $@) 2>&1 821 762 822 763 ${REPEAT} : 823 +make -C ${abs_top_builddir}/tools repeat 824 825 cleancsv: 826 rm -f compile.csv basic.csv ctxswitch.csv mutex.csv scheduling.csv 827 828 jenkins$(EXEEXT): cleancsv 764 @+make -C ${abs_top_builddir}/tools repeat 765 766 jenkins$(EXEEXT): 829 767 @DOifskipcompile@ 830 +make compile.csv831 -+make compile.diff.csv768 @+make compile.csv 769 @-+make compile.diff.csv 832 770 @DOendif@ 833 +make ctxswitch.csv834 -+make ctxswitch.diff.csv835 +make mutex.csv836 -+make mutex.diff.csv837 +make scheduling.csv838 -+make scheduling.diff.csv771 @+make ctxswitch.csv 772 @-+make ctxswitch.diff.csv 773 @+make mutex.csv 774 @-+make mutex.diff.csv 775 @+make signal.csv 776 @-+make signal.diff.csv 839 777 @DOifskipcompile@ 840 778 cat compile.csv … … 845 783 cat mutex.csv 846 784 -cat mutex.diff.csv 847 cat s cheduling.csv848 -cat s cheduling.diff.csv785 cat signal.csv 786 -cat signal.diff.csv 849 787 850 788 compile.csv: 851 echo "building $@" 852 echo "array,attributes,empty,expression,io,monitor,operators,typeof" > $@ 853 +make TIME_FORMAT='%e,' PRINT_FORMAT='' compile-array.make >> $@ 854 +make TIME_FORMAT='%e,' PRINT_FORMAT='' compile-attributes.make >> $@ 855 +make TIME_FORMAT='%e,' PRINT_FORMAT='' compile-empty.make >> $@ 856 +make TIME_FORMAT='%e,' PRINT_FORMAT='' compile-expression.make >> $@ 857 +make TIME_FORMAT='%e,' PRINT_FORMAT='' compile-io.make >> $@ 858 +make TIME_FORMAT='%e,' PRINT_FORMAT='' compile-monitor.make >> $@ 859 +make TIME_FORMAT='%e,' PRINT_FORMAT='' compile-operators.make >> $@ 860 +make TIME_FORMAT='%e' PRINT_FORMAT='' compile-typeof.make >> $@ 861 $(srcdir)/fixcsv.sh $@ 789 @echo "array,attributes,empty,expression,io,monitor,operators,typeof" > $@ 790 @+make TIME_FORMAT='%e,' PRINT_FORMAT='' compile-array.make >> $@ 791 @+make TIME_FORMAT='%e,' PRINT_FORMAT='' compile-attributes.make >> $@ 792 @+make TIME_FORMAT='%e,' PRINT_FORMAT='' compile-empty.make >> $@ 793 @+make TIME_FORMAT='%e,' PRINT_FORMAT='' compile-expression.make >> $@ 794 @+make TIME_FORMAT='%e,' PRINT_FORMAT='' compile-io.make >> $@ 795 @+make TIME_FORMAT='%e,' PRINT_FORMAT='' compile-monitor.make >> $@ 796 @+make TIME_FORMAT='%e,' PRINT_FORMAT='' compile-operators.make >> $@ 797 @+make TIME_FORMAT='%e' PRINT_FORMAT='' compile-typeof.make >> $@ 798 @$(srcdir)/fixcsv.sh $@ 862 799 863 800 ctxswitch.csv: 864 echo "building $@" 865 echo "generator,coroutine,thread" > $@ 866 +make ctxswitch-cfa_generator.runquiet >> $@ && echo -n ',' >> $@ 867 +make ctxswitch-cfa_coroutine.runquiet >> $@ && echo -n ',' >> $@ 868 +make ctxswitch-cfa_thread.runquiet >> $@ 869 $(srcdir)/fixcsv.sh $@ 801 @echo "generator,coroutine,thread" > $@ 802 @+make ctxswitch-cfa_generator.runquiet >> $@ && echo -n ',' >> $@ 803 @+make ctxswitch-cfa_coroutine.runquiet >> $@ && echo -n ',' >> $@ 804 @+make ctxswitch-cfa_thread.runquiet >> $@ 805 @$(srcdir)/fixcsv.sh $@ 870 806 871 807 mutex.csv: 872 echo "building $@" 873 echo "1-monitor,2-monitor" > $@ 874 +make mutex-cfa1.runquiet >> $@ && echo -n ',' >> $@ 875 +make mutex-cfa2.runquiet >> $@ 876 $(srcdir)/fixcsv.sh $@ 877 878 scheduling.csv: 879 echo "building $@" 880 echo "schedint-1,schedint-2,schedext-1,schedext-2" > $@ 881 +make schedint-cfa1.runquiet >> $@ && echo -n ',' >> $@ 882 +make schedint-cfa2.runquiet >> $@ && echo -n ',' >> $@ 883 +make schedext-cfa1.runquiet >> $@ && echo -n ',' >> $@ 884 +make schedext-cfa2.runquiet >> $@ 885 $(srcdir)/fixcsv.sh $@ 808 @echo "1-monitor,2-monitor" > $@ 809 @+make mutex-cfa1.runquiet >> $@ && echo -n ',' >> $@ 810 @+make mutex-cfa2.runquiet >> $@ 811 @$(srcdir)/fixcsv.sh $@ 812 813 signal.csv: 814 @echo "signal-1,signal-2,waitfor-1,waitfor-2" > $@ 815 @+make signal-cfa1.runquiet >> $@ && echo -n ',' >> $@ 816 @+make signal-cfa2.runquiet >> $@ && echo -n ',' >> $@ 817 @+make waitfor-cfa1.runquiet >> $@ && echo -n ',' >> $@ 818 @+make waitfor-cfa2.runquiet >> $@ 819 @$(srcdir)/fixcsv.sh $@ 886 820 887 821 %.diff.csv: %.csv 888 test -e $(srcdir)/baselines/$(arch)/$< || (echo "Error : Missing baseline for ${<}" && false) 889 $(srcdir)/baselines/calc.py $(srcdir)/baselines/$(arch)/$(<) $(<) > $@ 890 891 basic-loop$(EXEEXT): 892 $(BENCH_V_CC)$(COMPILE) $(srcdir)/basic/loop.c 893 894 basic-function$(EXEEXT): 895 $(BENCH_V_CC)$(COMPILE) $(srcdir)/basic/function.c 896 897 basic-fetch_add$(EXEEXT): 898 $(BENCH_V_CC)$(COMPILE) $(srcdir)/basic/fetch_add.c 899 900 basic-ttst_lock$(EXEEXT): 901 $(BENCH_V_CC)$(COMPILE) $(srcdir)/basic/ttst_lock.c 902 903 basic-tls-fetch_add$(EXEEXT): 904 $(BENCH_V_CC)$(COMPILE) $(srcdir)/basic/tls_fetch_add.c 905 906 basic$(EXEEXT): $(BASIC_DEPEND) 822 @test -e $(srcdir)/baselines/$(arch)/$< || (echo "Error : Missing baseline for ${<}" && false) 823 @$(srcdir)/baselines/calc.py $(srcdir)/baselines/$(arch)/$(<) $(<) > $@ 824 825 loop$(EXEEXT): 826 $(BENCH_V_CC)$(COMPILE) -DBENCH_N=5000000000 $(srcdir)/loop.c 827 828 function$(EXEEXT): 829 $(BENCH_V_CC)$(COMPILE) -DBENCH_N=5000000000 $(srcdir)/function.c 830 831 fetch_add$(EXEEXT): 832 $(BENCH_V_CC)$(COMPILE) -DBENCH_N=500000000 $(srcdir)/fetch_add.c 833 834 ttst_lock$(EXEEXT): 835 $(BENCH_V_CC)$(COMPILE) -DBENCH_N=500000000 $(srcdir)/ttst_lock.c 836 837 tls-fetch_add$(EXEEXT): 838 $(BENCH_V_CC)$(COMPILE) -DBENCH_N=500000000 $(srcdir)/tls-fetch_add.c 907 839 908 840 @WITH_LIBFIBRE_TRUE@ctxswitch-kos_fibre$(EXEEXT): … … 914 846 ctxswitch$(EXEEXT): $(CTXSWITCH_DEPEND) 915 847 848 ctxswitch-pthread$(EXEEXT): 849 $(BENCH_V_CC)$(COMPILE) -DBENCH_N=50000000 $(srcdir)/ctxswitch/pthreads.c 850 916 851 ctxswitch-cfa_generator$(EXEEXT): 917 $(BENCH_V_CFA)$(CFACOMPILE) $(srcdir)/ctxswitch/cfa_gen.cfa852 $(BENCH_V_CFA)$(CFACOMPILE) -DBENCH_N=50000000 $(srcdir)/ctxswitch/cfa_gen.cfa 918 853 919 854 ctxswitch-cfa_coroutine$(EXEEXT): 920 $(BENCH_V_CFA)$(CFACOMPILE) $(srcdir)/ctxswitch/cfa_cor.cfa855 $(BENCH_V_CFA)$(CFACOMPILE) -DBENCH_N=50000000 $(srcdir)/ctxswitch/cfa_cor.cfa 921 856 922 857 ctxswitch-cfa_thread$(EXEEXT): 923 $(BENCH_V_CFA)$(CFACOMPILE) $(srcdir)/ctxswitch/cfa_thrd.cfa858 $(BENCH_V_CFA)$(CFACOMPILE) -DBENCH_N=50000000 $(srcdir)/ctxswitch/cfa_thrd.cfa 924 859 925 860 ctxswitch-cfa_thread2$(EXEEXT): 926 $(BENCH_V_CFA)$(CFACOMPILE) $(srcdir)/ctxswitch/cfa_thrd2.cfa861 $(BENCH_V_CFA)$(CFACOMPILE) -DBENCH_N=50000000 $(srcdir)/ctxswitch/cfa_thrd2.cfa 927 862 928 863 ctxswitch-upp_coroutine$(EXEEXT): 929 $(BENCH_V_UPP)$(UPPCOMPILE) $(srcdir)/ctxswitch/upp_cor.cc864 $(BENCH_V_UPP)$(UPPCOMPILE) -DBENCH_N=50000000 $(srcdir)/ctxswitch/upp_cor.cc 930 865 931 866 ctxswitch-upp_thread$(EXEEXT): 932 $(BENCH_V_UPP)$(UPPCOMPILE) $(srcdir)/ctxswitch/upp_thrd.cc 933 934 ctxswitch-python_coroutine$(EXEEXT): 935 $(BENCH_V_PY)echo "#!/bin/sh" > a.out 936 echo "python3.7 $(srcdir)/ctxswitch/python_cor.py" >> a.out 937 chmod a+x a.out 938 939 ctxswitch-nodejs_coroutine$(EXEEXT): 940 $(BENCH_V_NODEJS)echo "#!/bin/sh" > a.out 941 echo "nodejs $(srcdir)/ctxswitch/node_cor.js" >> a.out 942 chmod a+x a.out 943 944 ctxswitch-nodejs_await$(EXEEXT): 945 $(BENCH_V_NODEJS)echo "#!/bin/sh" > a.out 946 echo "nodejs $(srcdir)/ctxswitch/node_await.js" >> a.out 947 chmod a+x a.out 948 949 ctxswitch-goroutine_thread$(EXEEXT): 867 $(BENCH_V_UPP)$(UPPCOMPILE) -DBENCH_N=50000000 $(srcdir)/ctxswitch/upp_thrd.cc 868 869 ctxswitch-goroutine$(EXEEXT): 950 870 $(BENCH_V_GOC)go build -o a.out $(srcdir)/ctxswitch/goroutine.go 951 952 ctxswitch-rust_thread$(EXEEXT):953 $(BENCH_V_RUSTC)rustc -C opt-level=3 -o a.out $(srcdir)/ctxswitch/rust_thrd.rs954 871 955 872 ctxswitch-java_thread$(EXEEXT): 956 873 $(BENCH_V_JAVAC)javac -d $(builddir) $(srcdir)/ctxswitch/JavaThread.java 957 echo "#!/bin/sh" > a.out 958 echo "java JavaThread" >> a.out 959 chmod a+x a.out 960 961 ctxswitch-pthread$(EXEEXT): 962 $(BENCH_V_CC)$(COMPILE) $(srcdir)/ctxswitch/pthreads.c 963 964 mutex$(EXEEXT) : \ 874 @echo "#!/bin/sh" > a.out 875 @echo "java JavaThread" >> a.out 876 @chmod a+x a.out 877 878 mutex$(EXEEXT) :\ 879 loop.run \ 880 function.run \ 881 fetch_add.run \ 882 mutex-pthread_lock.run \ 883 mutex-upp.run \ 965 884 mutex-cfa1.run \ 966 885 mutex-cfa2.run \ 967 886 mutex-cfa4.run \ 968 mutex-upp.run \ 969 mutex-go.run \ 970 mutex-rust.run \ 971 mutex-java.run \ 972 mutex-pthread.run 973 974 mutex-pthread$(EXEEXT): 975 $(BENCH_V_CC)$(COMPILE) $(srcdir)/mutex/pthreads.c 887 mutex-java_thread.run 888 889 mutex-pthread_lock$(EXEEXT): 890 $(BENCH_V_CC)$(COMPILE) -DBENCH_N=50000000 $(srcdir)/mutex/pthreads.c 891 892 mutex-upp$(EXEEXT): 893 $(BENCH_V_UPP)$(UPPCOMPILE) -DBENCH_N=50000000 $(srcdir)/mutex/upp.cc 976 894 977 895 mutex-cfa1$(EXEEXT): 978 $(BENCH_V_CFA)$(CFACOMPILE) $(srcdir)/mutex/cfa1.cfa896 $(BENCH_V_CFA)$(CFACOMPILE) -DBENCH_N=5000000 $(srcdir)/mutex/cfa1.cfa 979 897 980 898 mutex-cfa2$(EXEEXT): 981 $(BENCH_V_CFA)$(CFACOMPILE) $(srcdir)/mutex/cfa2.cfa899 $(BENCH_V_CFA)$(CFACOMPILE) -DBENCH_N=5000000 $(srcdir)/mutex/cfa2.cfa 982 900 983 901 mutex-cfa4$(EXEEXT): 984 $(BENCH_V_CFA)$(CFACOMPILE) $(srcdir)/mutex/cfa4.cfa 985 986 mutex-upp$(EXEEXT): 987 $(BENCH_V_UPP)$(UPPCOMPILE) $(srcdir)/mutex/upp.cc 988 989 mutex-go$(EXEEXT): 990 $(BENCH_V_GOC)go build -o a.out $(srcdir)/mutex/goroutine.go 991 992 mutex-rust$(EXEEXT): 993 $(BENCH_V_RUSTC)rustc -C opt-level=3 -o a.out $(srcdir)/mutex/rust.rs 994 995 mutex-java$(EXEEXT): 902 $(BENCH_V_CFA)$(CFACOMPILE) -DBENCH_N=5000000 $(srcdir)/mutex/cfa4.cfa 903 904 mutex-java_thread$(EXEEXT): 996 905 $(BENCH_V_JAVAC)javac -d $(builddir) $(srcdir)/mutex/JavaThread.java 997 echo "#!/bin/sh" > a.out 998 echo "java JavaThread" >> a.out 999 chmod a+x a.out 1000 1001 schedint$(EXEEXT) : \ 1002 schedint-cfa1.run \ 1003 schedint-cfa2.run \ 1004 schedint-cfa4.run \ 1005 schedint-upp.run \ 1006 schedint-rust.run \ 1007 schedint-java.run \ 1008 schedint-pthread.run 1009 1010 schedint-cfa1$(EXEEXT): 1011 $(BENCH_V_CFA)$(CFACOMPILE) $(srcdir)/schedint/cfa1.cfa 1012 1013 schedint-cfa2$(EXEEXT): 1014 $(BENCH_V_CFA)$(CFACOMPILE) $(srcdir)/schedint/cfa2.cfa 1015 1016 schedint-cfa4$(EXEEXT): 1017 $(BENCH_V_CFA)$(CFACOMPILE) $(srcdir)/schedint/cfa4.cfa 1018 1019 schedint-upp$(EXEEXT): 1020 $(BENCH_V_UPP)$(UPPCOMPILE) $(srcdir)/schedint/upp.cc 1021 1022 schedint-rust$(EXEEXT): 1023 $(BENCH_V_RUSTC)rustc -C opt-level=3 -o a.out $(srcdir)/schedint/rust.rs 1024 1025 schedint-java$(EXEEXT): 906 @echo "#!/bin/sh" > a.out 907 @echo "java JavaThread" >> a.out 908 @chmod a+x a.out 909 910 signal$(EXEEXT) :\ 911 signal-pthread_cond.run \ 912 signal-upp.run \ 913 signal-cfa1.run \ 914 signal-cfa2.run \ 915 signal-cfa4.run \ 916 signal-java_thread.run 917 918 signal-pthread_cond$(EXEEXT): 919 $(BENCH_V_CC)$(COMPILE) -DBENCH_N=500000 $(srcdir)/schedint/pthreads.c 920 921 signal-upp$(EXEEXT): 922 $(BENCH_V_UPP)$(UPPCOMPILE) -DBENCH_N=5000000 $(srcdir)/schedint/upp.cc 923 924 signal-cfa1$(EXEEXT): 925 $(BENCH_V_CFA)$(CFACOMPILE) -DBENCH_N=500000 $(srcdir)/schedint/cfa1.cfa 926 927 signal-cfa2$(EXEEXT): 928 $(BENCH_V_CFA)$(CFACOMPILE) -DBENCH_N=500000 $(srcdir)/schedint/cfa2.cfa 929 930 signal-cfa4$(EXEEXT): 931 $(BENCH_V_CFA)$(CFACOMPILE) -DBENCH_N=500000 $(srcdir)/schedint/cfa4.cfa 932 933 signal-java_thread$(EXEEXT): 1026 934 $(BENCH_V_JAVAC)javac -d $(builddir) $(srcdir)/schedint/JavaThread.java 1027 echo "#!/bin/sh" > a.out 1028 echo "java JavaThread" >> a.out 1029 chmod a+x a.out 1030 1031 schedint-pthread$(EXEEXT): 1032 $(BENCH_V_CC)$(COMPILE) $(srcdir)/schedint/pthreads.c 1033 1034 schedext$(EXEEXT) : \ 1035 schedext-cfa1.run \ 1036 schedext-cfa2.run \ 1037 schedext-cfa4.run \ 1038 schedext-upp.run \ 1039 schedext-goroutine.run 1040 1041 schedext-cfa1$(EXEEXT): 1042 $(BENCH_V_CFA)$(CFACOMPILE) $(srcdir)/schedext/cfa1.cfa 1043 1044 schedext-cfa2$(EXEEXT): 1045 $(BENCH_V_CFA)$(CFACOMPILE) $(srcdir)/schedext/cfa2.cfa 1046 1047 schedext-cfa4$(EXEEXT): 1048 $(BENCH_V_CFA)$(CFACOMPILE) $(srcdir)/schedext/cfa4.cfa 1049 1050 schedext-upp$(EXEEXT): 1051 $(BENCH_V_UPP)$(UPPCOMPILE) $(srcdir)/schedext/upp.cc 1052 1053 schedext-goroutine$(EXEEXT): 1054 $(BENCH_V_GOC)go build -o a.out $(srcdir)/schedext/goroutine.go 1055 1056 creation$(EXEEXT) : \ 1057 creation-cfa_generator.run \ 935 @echo "#!/bin/sh" > a.out 936 @echo "java JavaThread" >> a.out 937 @chmod a+x a.out 938 939 waitfor$(EXEEXT) :\ 940 waitfor-upp.run \ 941 waitfor-cfa1.run \ 942 waitfor-cfa2.run \ 943 waitfor-cfa4.run 944 945 waitfor-upp$(EXEEXT): 946 $(BENCH_V_UPP)$(UPPCOMPILE) -DBENCH_N=5000000 $(srcdir)/schedext/upp.cc 947 948 waitfor-cfa1$(EXEEXT): 949 $(BENCH_V_CFA)$(CFACOMPILE) -DBENCH_N=500000 $(srcdir)/schedext/cfa1.cfa 950 951 waitfor-cfa2$(EXEEXT): 952 $(BENCH_V_CFA)$(CFACOMPILE) -DBENCH_N=500000 $(srcdir)/schedext/cfa2.cfa 953 954 waitfor-cfa4$(EXEEXT): 955 $(BENCH_V_CFA)$(CFACOMPILE) -DBENCH_N=500000 $(srcdir)/schedext/cfa4.cfa 956 957 creation$(EXEEXT) :\ 958 creation-pthread.run \ 1058 959 creation-cfa_coroutine.run \ 1059 960 creation-cfa_coroutine_eager.run \ … … 1061 962 creation-upp_coroutine.run \ 1062 963 creation-upp_thread.run \ 1063 creation-python_coroutine.run \ 1064 creation-nodejs_coroutine.run \ 1065 creation-goroutine_thread.run \ 1066 creation-rust_thread.run \ 1067 creation-java_thread.run \ 1068 creation-pthread.run 1069 1070 creation-cfa_generator$(EXEEXT): 1071 $(BENCH_V_CFA)$(CFACOMPILE) $(srcdir)/creation/cfa_gen.cfa 964 creation-goroutine.run \ 965 creation-java_thread.run 1072 966 1073 967 creation-cfa_coroutine$(EXEEXT): 1074 $(BENCH_V_CFA)$(CFACOMPILE) $(srcdir)/creation/cfa_cor.cfa968 $(BENCH_V_CFA)$(CFACOMPILE) -DBENCH_N=10000000 $(srcdir)/creation/cfa_cor.cfa 1075 969 1076 970 creation-cfa_coroutine_eager$(EXEEXT): 1077 $(BENCH_V_CFA)$(CFACOMPILE) $(srcdir)/creation/cfa_cor.cfa -DEAGER971 $(BENCH_V_CFA)$(CFACOMPILE) -DBENCH_N=10000000 $(srcdir)/creation/cfa_cor.cfa -DEAGER 1078 972 1079 973 creation-cfa_thread$(EXEEXT): 1080 $(BENCH_V_CFA)$(CFACOMPILE) $(srcdir)/creation/cfa_thrd.cfa974 $(BENCH_V_CFA)$(CFACOMPILE) -DBENCH_N=10000000 $(srcdir)/creation/cfa_thrd.cfa 1081 975 1082 976 creation-upp_coroutine$(EXEEXT): 1083 $(BENCH_V_UPP)$(UPPCOMPILE) $(srcdir)/creation/upp_cor.cc977 $(BENCH_V_UPP)$(UPPCOMPILE) -DBENCH_N=50000000 $(srcdir)/creation/upp_cor.cc 1084 978 1085 979 creation-upp_thread$(EXEEXT): 1086 $(BENCH_V_UPP)$(UPPCOMPILE) $(srcdir)/creation/upp_thrd.cc 1087 1088 creation-python_coroutine$(EXEEXT): 1089 $(BENCH_V_PY)echo "#!/bin/sh" > a.out 1090 echo "python3.7 $(srcdir)/creation/python_cor.py" >> a.out 1091 chmod a+x a.out 1092 1093 creation-nodejs_coroutine$(EXEEXT): 1094 $(BENCH_V_NODEJS)echo "#!/bin/sh" > a.out 1095 echo "nodejs $(srcdir)/creation/node_cor.js" >> a.out 1096 chmod a+x a.out 1097 1098 creation-goroutine_thread$(EXEEXT): 980 $(BENCH_V_UPP)$(UPPCOMPILE) -DBENCH_N=50000000 $(srcdir)/creation/upp_thrd.cc 981 982 creation-pthread$(EXEEXT): 983 $(BENCH_V_CC)$(COMPILE) -DBENCH_N=250000 $(srcdir)/creation/pthreads.c 984 985 creation-goroutine$(EXEEXT): 1099 986 $(BENCH_V_GOC)go build -o a.out $(srcdir)/creation/goroutine.go 1100 1101 creation-rust_thread$(EXEEXT):1102 $(BENCH_V_RUSTC)rustc -C opt-level=3 -o a.out $(srcdir)/creation/rust_thrd.rs1103 987 1104 988 creation-java_thread$(EXEEXT): 1105 989 $(BENCH_V_JAVAC)javac -d $(builddir) $(srcdir)/creation/JavaThread.java 1106 echo "#!/bin/sh" > a.out 1107 echo "java JavaThread" >> a.out 1108 chmod a+x a.out 1109 1110 creation-pthread$(EXEEXT): 1111 $(BENCH_V_CC)$(COMPILE) $(srcdir)/creation/pthreads.c 1112 1113 compile$(EXEEXT) : \ 990 @echo "#!/bin/sh" > a.out 991 @echo "java JavaThread" >> a.out 992 @chmod a+x a.out 993 994 compile$(EXEEXT) :\ 1114 995 compile-array.make \ 1115 996 compile-attributes.make \ … … 1122 1003 1123 1004 compile-array$(EXEEXT): 1124 $(CFACOMPILE) -fsyntax-only -w $(testdir)/array.cfa1005 @$(CFACOMPILE) -fsyntax-only -w $(testdir)/array.cfa 1125 1006 1126 1007 compile-attributes$(EXEEXT): 1127 $(CFACOMPILE) -fsyntax-only -w $(testdir)/attributes.cfa1008 @$(CFACOMPILE) -fsyntax-only -w $(testdir)/attributes.cfa 1128 1009 1129 1010 compile-empty$(EXEEXT): 1130 $(CFACOMPILE) -fsyntax-only -w $(srcdir)/compile/empty.cfa1011 @$(CFACOMPILE) -fsyntax-only -w $(srcdir)/compile/empty.cfa 1131 1012 1132 1013 compile-expression$(EXEEXT): 1133 $(CFACOMPILE) -fsyntax-only -w $(testdir)/expression.cfa1014 @$(CFACOMPILE) -fsyntax-only -w $(testdir)/expression.cfa 1134 1015 1135 1016 compile-io$(EXEEXT): 1136 $(CFACOMPILE) -fsyntax-only -w $(testdir)/io1.cfa1017 @$(CFACOMPILE) -fsyntax-only -w $(testdir)/io1.cfa 1137 1018 1138 1019 compile-monitor$(EXEEXT): 1139 $(CFACOMPILE) -fsyntax-only -w $(testdir)/concurrent/monitor.cfa1020 @$(CFACOMPILE) -fsyntax-only -w $(testdir)/concurrent/monitor.cfa 1140 1021 1141 1022 compile-operators$(EXEEXT): 1142 $(CFACOMPILE) -fsyntax-only -w $(testdir)/operators.cfa1023 @$(CFACOMPILE) -fsyntax-only -w $(testdir)/operators.cfa 1143 1024 1144 1025 compile-thread$(EXEEXT): 1145 $(CFACOMPILE) -fsyntax-only -w $(testdir)/concurrent/thread.cfa1026 @$(CFACOMPILE) -fsyntax-only -w $(testdir)/concurrent/thread.cfa 1146 1027 1147 1028 compile-typeof$(EXEEXT): 1148 $(CFACOMPILE) -fsyntax-only -w $(testdir)/typeof.cfa 1149 1150 size$(EXEEXT) : size-cfa.runquiet 1151 1152 size-cfa$(EXEEXT): 1153 $(BENCH_V_CFA)$(CFACOMPILE) $(srcdir)/size/size.cfa 1029 @$(CFACOMPILE) -fsyntax-only -w $(testdir)/typeof.cfa 1154 1030 1155 1031 # Tell versions [3.59,3.63) of GNU make to not export all variables. -
benchmark/bench.h
r7030dab r71d6bd8 5 5 #endif 6 6 #include <stdlib.h> 7 #include <stdint.h> // uint64_t 8 #include <unistd.h> // sysconf 7 #include <unistd.h> // sysconf 9 8 #if ! defined(__cforall) 10 9 #include <time.h> … … 16 15 17 16 18 static inline uint64_t bench_time() { 19 struct timespec ts; 20 clock_gettime( CLOCK_THREAD_CPUTIME_ID, &ts ); 21 return 1000000000LL * ts.tv_sec + ts.tv_nsec; 22 } // bench_time 17 static inline unsigned long long int bench_time() { 18 struct timespec ts; 19 clock_gettime( 20 #if defined( __linux__ ) 21 CLOCK_THREAD_CPUTIME_ID, 22 #elif defined( __freebsd__ ) 23 CLOCK_PROF, 24 #elif defined( __solaris__ ) 25 CLOCK_HIGHRES, 26 #else 27 #error uC++ : internal error, unsupported architecture 28 #endif 29 &ts ); 30 return 1000000000LL * ts.tv_sec + ts.tv_nsec; 31 } // Time 23 32 24 33 #ifndef BENCH_N 25 #define BENCH_N 1000000034 #define BENCH_N 500 //10000000 26 35 #endif 27 36 28 size_t times = BENCH_N;29 30 #define BENCH_START() \31 if ( argc > 2 ) exit( EXIT_FAILURE ); \32 if ( argc == 2 ) { \33 times = atoi( argv[1] ); \34 }35 36 37 #define BENCH(statement, output) \ 37 uint64_t StartTime, EndTime; \ 38 size_t n = BENCH_N; \ 39 if( argc > 2 ) return 1; \ 40 if( argc == 2 ) { \ 41 n = atoi(argv[1]); \ 42 } \ 43 long long int StartTime, EndTime; \ 38 44 StartTime = bench_time(); \ 39 statement; \45 statement; \ 40 46 EndTime = bench_time(); \ 41 double output = (double)( EndTime - StartTime ) / times;42 47 double output = \ 48 (double)( EndTime - StartTime ) / n; 43 49 44 50 #if defined(__cforall) … … 47 53 } 48 54 #endif 49 #if defined(__U_CPLUSPLUS__)50 unsigned int uDefaultPreemption() {51 return 0;52 }53 #endif -
benchmark/creation/JavaThread.java
r7030dab r71d6bd8 26 26 static int x = 2; 27 27 28 static private int times = Integer.parseInt("10000") ;28 static private final int NoOfTimes = Integer.parseInt("10000") ; 29 29 30 30 public static class MyThread extends Thread { … … 33 33 } 34 34 public static void helper() throws InterruptedException { 35 for(int i = 1; i <= times; i += 1) {35 for(int i = 1; i <= NoOfTimes; i += 1) { 36 36 MyThread m = new MyThread(); 37 37 x = nextRandom( x ); … … 44 44 helper(); 45 45 long end = System.nanoTime(); 46 System.out.println( (end - start) / times );46 System.out.println( (end - start) / NoOfTimes ); 47 47 } 48 48 public static void main(String[] args) throws InterruptedException { 49 if ( args.length > 2 ) System.exit( 1 ); 50 if ( args.length == 2 ) { times = Integer.parseInt(args[1]); } 51 52 for (int i = Integer.parseInt("5"); --i >= 0 ; ) { 49 for (int n = Integer.parseInt("5"); --n >= 0 ; ) { 53 50 InnerMain(); 54 Thread.sleep(2000); 51 Thread.sleep(2000); // 2 seconds 55 52 x = nextRandom(x); 56 53 } … … 58 55 } 59 56 } 60 61 // Local Variables: //62 // tab-width: 4 //63 // End: // -
benchmark/creation/cfa_cor.cfa
r7030dab r71d6bd8 5 5 6 6 coroutine MyCoroutine {}; 7 void ?{} ( MyCoroutine & this) {7 void ?{} (MyCoroutine & this) { 8 8 #ifdef EAGER 9 resume( this);9 resume(this); 10 10 #endif 11 11 } 12 void main( MyCoroutine &) {}12 void main(MyCoroutine &) {} 13 13 14 int main( int argc, char * argv[] ) { 15 BENCH_START() 14 int main(int argc, char* argv[]) { 16 15 BENCH( 17 for ( times) {18 MyCoroutine c;16 for ( i; n ) { 17 MyCoroutine m; 19 18 }, 20 19 result 21 20 ) 22 printf( "%g\n", result ); 21 22 printf("%g\n", result); 23 23 } 24 25 // Local Variables: //26 // tab-width: 4 //27 // End: // -
benchmark/creation/cfa_thrd.cfa
r7030dab r71d6bd8 7 7 void main(MyThread &) {} 8 8 9 int main( int argc, char * argv[] ) { 10 BENCH_START() 9 int main(int argc, char* argv[]) { 11 10 BENCH( 12 for ( times) {11 for ( i; n ) { 13 12 MyThread m; 14 13 }, 15 14 result 16 15 ) 17 printf( "%g\n", result ); 16 17 printf("%g\n", result); 18 18 } 19 20 // Local Variables: //21 // tab-width: 4 //22 // End: // -
benchmark/creation/goroutine.go
r7030dab r71d6bd8 2 2 3 3 import ( 4 "fmt" 5 "time" 6 "os" 7 "strconv" 4 "fmt" 5 "time" 8 6 ) 9 7 … … 19 17 20 18 func main() { 21 var times int = 10000000 22 if len( os.Args ) > 2 { os.Exit( 1 ) } 23 if len( os.Args ) == 2 { times, _ = strconv.Atoi(os.Args[1]) } 24 19 const NoOfTimes = 500000 25 20 start := time.Now() 26 for i := 1; i <= times; i += 1 {21 for i := 1; i <= NoOfTimes; i += 1 { 27 22 go noop() // creation 28 <- shake // wait for completion29 23 } 30 24 end := time.Now() 31 fmt.Printf( "%d\n", end.Sub(start) / time.Duration(times) ) 25 fmt.Printf("%d\n", end.Sub(start) / time.Duration(NoOfTimes)) 26 <- shake 32 27 } 33 34 // Local Variables: //35 // tab-width: 4 //36 // End: // -
benchmark/creation/pthreads.c
r7030dab r71d6bd8 4 4 #include "bench.h" 5 5 6 static void * 6 static void *foo(void *arg) { 7 7 return arg; 8 8 } 9 9 10 int main( int argc, char * argv[] ) { 11 BENCH_START() 10 int main(int argc, char* argv[]) { 12 11 BENCH( 13 for (size_t i = 0; i < times; i++) {12 for (size_t i = 0; i < n; i++) { 14 13 pthread_t thread; 15 14 if (pthread_create(&thread, NULL, foo, NULL) < 0) { … … 17 16 return 1; 18 17 } 18 19 19 if (pthread_join( thread, NULL) < 0) { 20 20 perror( "failure" ); … … 24 24 result 25 25 ) 26 printf( "%g\n", result ); 26 27 printf("%g\n", result); 27 28 } 28 29 // Local Variables: //30 // tab-width: 4 //31 // End: // -
benchmark/creation/upp_cor.cc
r7030dab r71d6bd8 5 5 _Coroutine MyCor { 6 6 void main() {} 7 public:8 MyCor() { resume(); }9 7 }; 10 8 11 int main( int argc, char * argv[] ) { 12 BENCH_START() 9 int main(int argc, char* argv[]) { 13 10 BENCH( 14 for (size_t i = 0; i < times; i++) {11 for (size_t i = 0; i < n; i++) { 15 12 MyCor m; 16 13 }, 17 14 result 18 15 ) 19 printf( "%g\n", result ); 16 17 printf("%g\n", result); 20 18 } 21 22 // Local Variables: //23 // tab-width: 4 //24 // End: // -
benchmark/creation/upp_thrd.cc
r7030dab r71d6bd8 7 7 }; 8 8 9 int main( int argc, char * argv[] ) { 10 BENCH_START() 9 int main(int argc, char* argv[]) { 11 10 BENCH( 12 for (size_t i = 0; i < times; i++) {11 for (size_t i = 0; i < n; i++) { 13 12 MyThread m; 14 13 }, 15 14 result 16 15 ) 17 printf( "%g\n", result ); 16 17 printf("%g\n", result); 18 18 } 19 20 // Local Variables: //21 // tab-width: 4 //22 // End: // -
benchmark/ctxswitch/JavaThread.java
r7030dab r71d6bd8 26 26 static int x = 2; 27 27 28 static private int times = Integer.parseInt("100000");28 static private final int NoOfTimes = Integer.parseInt("1000000") ; 29 29 30 30 public static void helper() { 31 for(int i = 1; i <= times; i += 1) {31 for(int i = 1; i <= NoOfTimes; i += 1) { 32 32 Thread.yield(); 33 33 } … … 37 37 helper(); 38 38 long end = System.nanoTime(); 39 System.out.println( (end - start) / times );39 System.out.println( (end - start) / NoOfTimes ); 40 40 } 41 41 public static void main(String[] args) throws InterruptedException { 42 if ( args.length > 2 ) System.exit( 1 ); 43 if ( args.length == 2 ) { times = Integer.parseInt(args[1]); } 44 45 for (int i = Integer.parseInt("5"); --i >= 0 ; ) { 42 for (int n = Integer.parseInt("5"); --n >= 0 ; ) { 46 43 InnerMain(); 47 Thread.sleep(2000); 44 Thread.sleep(2000); // 2 seconds 48 45 x = nextRandom(x); 49 46 } … … 51 48 } 52 49 } 53 54 // Local Variables: //55 // tab-width: 4 //56 // End: // -
benchmark/ctxswitch/cfa_cor.cfa
r7030dab r71d6bd8 2 2 #include <thread.hfa> 3 3 4 #include " ../bench.h"4 #include "bench.h" 5 5 6 coroutine C {}; 7 void main( __attribute__((unused)) C & ) { 8 for () { 9 suspend; 6 coroutine GreatSuspender {}; 7 8 void ?{}( GreatSuspender & this ) { 9 prime(this); 10 } 11 12 void main( __attribute__((unused)) GreatSuspender & this ) { 13 while( true ) { 14 suspend(); 10 15 } 11 16 } 12 int main( int argc, char * argv[] ) { 13 C c; 14 BENCH_START() 17 18 int main(int argc, char* argv[]) { 19 GreatSuspender s; 20 15 21 BENCH( 16 for ( times) {17 resume( c);22 for ( i; n ) { 23 resume( s ); 18 24 }, 19 25 result 20 26 ) 21 printf( "%g\n", result ); 27 28 printf("%g\n", result); 22 29 } 23 24 // Local Variables: //25 // tab-width: 4 //26 // End: // -
benchmark/ctxswitch/cfa_cor_then.cfa
r7030dab r71d6bd8 6 6 void noOp(void) {} 7 7 8 coroutine C {} c;8 coroutine GreatSuspender {}; 9 9 10 void ?{}( C& this ) {10 void ?{}( GreatSuspender & this ) { 11 11 prime(this); 12 12 } 13 13 14 void main( __attribute__((unused)) C& this ) {15 while () {14 void main( __attribute__((unused)) GreatSuspender & this ) { 15 while( true ) { 16 16 suspend_then(noOp); 17 17 } 18 18 } 19 19 20 int main( int argc, char * argv[] ) { 21 BENCH_START() 20 int main(int argc, char* argv[]) { 21 GreatSuspender s; 22 22 23 BENCH( 23 for ( times) {24 resume( c);24 for ( i; n ) { 25 resume( s ); 25 26 }, 26 27 result 27 28 ) 28 printf( "%g\n", result ); 29 30 printf("%g\n", result); 29 31 } 30 31 // Local Variables: //32 // tab-width: 4 //33 // End: // -
benchmark/ctxswitch/cfa_gen.cfa
r7030dab r71d6bd8 1 1 #include "../bench.h" 2 2 3 generator G {}; 4 void main( G & ) { 3 typedef struct { 4 void * next; 5 } GreatSuspender; 6 7 void comain( GreatSuspender * this ) { 8 if ( __builtin_expect(this->next != 0, 1) ) goto *(this->next); 9 this->next = &&s1; 5 10 for () { 6 suspend; 11 return; 12 s1: ; 7 13 } 8 14 } 9 15 10 int main( int argc, char * argv[]) {11 G g;12 BENCH_START() 16 int main(int argc, char* argv[]) { 17 GreatSuspender s = { 0 }; 18 13 19 BENCH( 14 for ( times) {15 resume( g);20 for ( i; n ) { 21 comain( &s ); 16 22 }, 17 23 result 18 24 ) 19 printf( "%g\n", result ); 25 26 printf("%g\n", result); 20 27 } 21 22 // Local Variables: //23 // tab-width: 4 //24 // End: // -
benchmark/ctxswitch/cfa_thrd.cfa
r7030dab r71d6bd8 3 3 #include "bench.h" 4 4 5 int main( int argc, char * argv[] ) { 6 BENCH_START() 5 int main(int argc, char* argv[]) { 7 6 BENCH( 8 for ( times) {7 for ( i; n ) { 9 8 yield(); 10 9 }, 11 10 result 12 11 ) 13 printf( "%g\n", result ); 12 13 printf("%g\n", result); 14 14 } 15 16 // Local Variables: //17 // tab-width: 4 //18 // End: // -
benchmark/ctxswitch/cfa_thrd2.cfa
r7030dab r71d6bd8 8 8 9 9 void main(__attribute__((unused)) Fibre & this) { 10 while ( ! done) {10 while(!done) { 11 11 yield(); 12 12 } 13 13 } 14 14 15 int main( int argc, char * argv[] ) { 16 BENCH_START() 15 int main(int argc, char* argv[]) { 17 16 Fibre f1; 18 17 BENCH( 19 for ( times) {18 for ( i; n ) { 20 19 yield(); 21 20 }, 22 21 result 23 22 ) 24 printf( "%g\n", result ); 23 24 printf("%g\n", result); 25 25 done = true; 26 return 0; 26 27 } 27 28 // Local Variables: //29 // tab-width: 4 //30 // End: // -
benchmark/ctxswitch/goroutine.go
r7030dab r71d6bd8 2 2 3 3 import ( 4 "fmt" 5 "time" 6 "os" 7 "strconv" 8 "runtime" 4 "fmt" 5 "runtime" 6 "time" 9 7 ) 10 8 … … 30 28 31 29 func main() { 32 var times int = 10000000 33 if len( os.Args ) > 2 { os.Exit( 1 ) } 34 if len( os.Args ) == 2 { times, _ = strconv.Atoi(os.Args[1]) } 35 go ContextSwitch( times ) // context switch 30 const NoOfTimes = 10000000 31 go ContextSwitch( NoOfTimes ) // context switch 36 32 <- shake 37 33 } 38 39 // Local Variables: //40 // tab-width: 4 //41 // End: // -
benchmark/ctxswitch/kos_fibre.cpp
r7030dab r71d6bd8 3 3 #include "bench.h" 4 4 5 int main( int argc, char * argv[] ) { 6 BENCH_START() 5 int main(int argc, char* argv[]) { 7 6 BENCH( 8 for (size_t i = 0; i < times; i++) {7 for (size_t i = 0; i < n; i++) { 9 8 Fibre::yield(); 10 9 }, 11 10 result 12 11 ) 13 printf( "%g\n", result ); 12 printf("%g\n", result); 13 return 0; 14 14 } 15 16 // Local Variables: //17 // tab-width: 4 //18 // End: // -
benchmark/ctxswitch/kos_fibre2.cpp
r7030dab r71d6bd8 11 11 } 12 12 13 int main( int argc, char * argv[] ) { 14 BENCH_START() 13 int main(int argc, char* argv[]) { 15 14 Fibre* f1 = (new Fibre)->run(f1main); 16 15 BENCH( 17 for (size_t i = 0; i < times; i++) {16 for (size_t i = 0; i < n; i++) { 18 17 Fibre::yield(); 19 18 }, 20 19 result 21 20 ) 22 printf( "%g\n", result);21 printf("%g\n", result); 23 22 done = true; 24 23 Fibre::yield(); 25 24 f1->join(); 25 return 0; 26 26 } 27 28 // Local Variables: //29 // tab-width: 4 //30 // End: // -
benchmark/ctxswitch/pthreads.c
r7030dab r71d6bd8 6 6 #include "bench.h" 7 7 8 int main( int argc, char * argv[] ) { 9 BENCH_START() 8 int main(int argc, char* argv[]) { 10 9 BENCH( 11 for (size_t i = 0; i < times; i++) {10 for (size_t i = 0; i < n; i++) { 12 11 sched_yield(); 13 12 }, 14 13 result 15 14 ) 16 printf( "%g\n", result ); 15 16 printf("%g\n", result); 17 17 } -
benchmark/ctxswitch/upp_cor.cc
r7030dab r71d6bd8 3 3 #include "bench.h" 4 4 5 _Coroutine C { 5 _Coroutine GreatSuspender { 6 public: 7 GreatSuspender() { 8 resume(); 9 } 10 11 void do_resume() { 12 resume(); 13 } 14 private: 6 15 void main() { 7 16 while( true ) { … … 9 18 } 10 19 } 11 public: 12 void do_resume() { 13 resume(); 14 } 15 } c; 16 int main( int argc, char * argv[] ) { 17 BENCH_START() 20 }; 21 22 int main(int argc, char* argv[]) { 23 GreatSuspender s; 24 18 25 BENCH( 19 for (size_t i = 0; i < times; i++) {20 c.do_resume();26 for (size_t i = 0; i < n; i++) { 27 s.do_resume(); 21 28 }, 22 29 result 23 30 ) 24 printf( "%g\n", result ); 31 32 printf("%g\n", result); 25 33 } 26 27 // Local Variables: //28 // tab-width: 4 //29 // End: // -
benchmark/ctxswitch/upp_thrd.cc
r7030dab r71d6bd8 3 3 #include "bench.h" 4 4 5 int main( int argc, char * argv[] ) { 6 BENCH_START() 5 int main(int argc, char* argv[]) { 7 6 BENCH( 8 for (size_t i = 0; i < times; i++) {7 for (size_t i = 0; i < n; i++) { 9 8 uThisTask().yield(); 10 9 }, 11 10 result 12 11 ) 13 printf( "%g\n", result ); 12 13 printf("%g\n", result); 14 14 } 15 16 // Local Variables: //17 // tab-width: 4 //18 // End: // -
benchmark/mutex/JavaThread.java
r7030dab r71d6bd8 26 26 static int x = 2; 27 27 28 static private int times = Integer.parseInt("100000000");28 static private final int NoOfTimes = Integer.parseInt("100000000") ; 29 29 30 30 public synchronized void noop() { … … 35 35 // Inhibit biased locking ... 36 36 x = (j.hashCode() ^ System.identityHashCode(j)) | 1 ; 37 for(int i = 1; i <= times; i += 1) {37 for(int i = 1; i <= NoOfTimes; i += 1) { 38 38 x = nextRandom(x); 39 39 j.noop(); … … 44 44 helper(); 45 45 long end = System.nanoTime(); 46 System.out.println( (end - start) / times );46 System.out.println( (end - start) / NoOfTimes ); 47 47 } 48 48 public static void main(String[] args) throws InterruptedException { 49 if ( args.length > 2 ) System.exit( 1 );50 if ( args.length == 2 ) { times = Integer.parseInt(args[1]); }51 52 49 for (int n = Integer.parseInt("5"); --n >= 0 ; ) { 53 50 InnerMain(); … … 58 55 } 59 56 } 60 61 // Local Variables: //62 // tab-width: 4 //63 // End: // -
benchmark/mutex/cfa1.cfa
r7030dab r71d6bd8 4 4 #include "bench.h" 5 5 6 monitor M {} m1;7 void __attribute__((noinline)) call( M & mutex p1) {}6 monitor M {}; 7 void __attribute__((noinline)) call( M & mutex m ) {} 8 8 9 int main( int argc, char * argv[]) {10 BENCH_START()9 int main(int argc, char* argv[]) { 10 M m; 11 11 BENCH( 12 for ( times) {13 call( m1);12 for ( i; n ) { 13 call(m); 14 14 }, 15 15 result 16 16 ) 17 printf( "%g\n", result ); 17 18 printf("%g\n", result); 18 19 } 19 20 // Local Variables: //21 // tab-width: 4 //22 // End: // -
benchmark/mutex/cfa2.cfa
r7030dab r71d6bd8 4 4 #include "bench.h" 5 5 6 monitor M {} m1, m2; 6 monitor M {}; 7 void __attribute__((noinline)) call( M & mutex m1, M & mutex m2 ) {} 7 8 8 void __attribute__((noinline)) call( M & mutex p1, M & mutex p2 ) {} 9 10 int main( int argc, char * argv[] ) { 11 BENCH_START() 9 int main(int argc, char* argv[]) { 10 M m1, m2; 12 11 BENCH( 13 for ( times) {14 call( m1, m2);12 for ( i; n ) { 13 call(m1, m2); 15 14 }, 16 15 result 17 16 ) 18 printf( "%g\n", result ); 17 18 printf("%g\n", result); 19 19 } 20 21 // Local Variables: //22 // tab-width: 4 //23 // End: // -
benchmark/mutex/cfa4.cfa
r7030dab r71d6bd8 5 5 6 6 7 monitor M {} m1, m2, m3, m4;8 void __attribute__((noinline)) call( M & mutex p1, M & mutex p2, M & mutex p3, M & mutex p4 ) {}7 monitor M {}; 8 void __attribute__((noinline)) call( M & mutex m1, M & mutex m2, M & mutex m3, M & mutex m4 ) {} 9 9 10 int main( int argc, char * argv[]) {11 BENCH_START()10 int main(int argc, char* argv[]) { 11 M m1, m2, m3, m4; 12 12 BENCH( 13 for ( times) {14 call( m1, m2, m3, m4);13 for ( i; n ) { 14 call(m1, m2, m3, m4); 15 15 }, 16 16 result 17 17 ) 18 printf( "%g\n", result ); 18 19 printf("%g\n", result); 19 20 } 20 21 // Local Variables: //22 // tab-width: 4 //23 // End: // -
benchmark/mutex/pthreads.c
r7030dab r71d6bd8 7 7 8 8 void __attribute__((noinline)) call() { 9 pthread_mutex_lock ( &mutex);10 pthread_mutex_unlock( &mutex);9 pthread_mutex_lock (&mutex); 10 pthread_mutex_unlock(&mutex); 11 11 } 12 int main( int argc, char * argv[] ) { 13 BENCH_START() 12 13 int main(int argc, char* argv[]) { 14 14 BENCH( 15 for ( size_t i = 0; i < times; i++) {15 for (size_t i = 0; i < n; i++) { 16 16 call(); 17 17 }, 18 18 result 19 19 ) 20 printf( "%g\n", result ); 20 21 printf("%g\n", result); 21 22 } 22 23 // Local Variables: //24 // tab-width: 4 //25 // End: // -
benchmark/mutex/upp.cc
r7030dab r71d6bd8 8 8 }; 9 9 10 int main( int argc, char * argv[] ) { 11 BENCH_START() 10 int main(int argc, char* argv[]) { 12 11 MyMonitor m; 13 12 BENCH( 14 for ( size_t i = 0; i < times; i++) {13 for (size_t i = 0; i < n; i++) { 15 14 m.call(); 16 15 }, 17 16 result 18 17 ) 19 printf( "%g\n", result ); 18 19 printf("%g\n", result); 20 20 } 21 22 // Local Variables: //23 // tab-width: 4 //24 // End: // -
benchmark/schedext/cfa1.cfa
r7030dab r71d6bd8 4 4 #include <stdio.h> 5 5 6 #include " ../bench.h"6 #include "bench.h" 7 7 8 monitor M {} m1; 8 int argc; 9 char** argv; 10 volatile int go = 0; 9 11 10 void __attribute__((noinline)) call( M & mutex p1 ) {} 11 void __attribute__((noinline)) wait( M & mutex p1 ) { 12 for ( times ) { 13 waitfor( call : p1 ); 14 } 12 monitor M {}; 13 M m1; 14 15 void __attribute__((noinline)) call( M & mutex a1 ) {} 16 17 int __attribute__((noinline)) wait( M & mutex a1 ) { 18 go = 1; 19 BENCH( 20 for ( i; n ) { 21 waitfor(call, a1); 22 }, 23 result 24 ) 25 26 printf("%g\n", result); 27 go = 0; 28 return 0; 15 29 } 16 30 17 31 thread T {}; 32 void ^?{}( T & mutex this ) {} 18 33 void main( T & ) { 19 BENCH( 20 for ( times ) { call( m1 ); }, 21 result 22 ) 23 printf( "%g\n", result ); 34 while(go == 0) { yield(); } 35 while(go == 1) { call(m1); } 36 24 37 } 25 38 26 int main( int argc, char * argv[] ) { 27 BENCH_START() 39 int main(__attribute__((unused)) int argc, __attribute__((unused)) char* argv[]) { 28 40 T t; 29 wait( m1);41 return wait(m1); 30 42 } 31 32 // Local Variables: //33 // tab-width: 4 //34 // End: // -
benchmark/schedext/cfa2.cfa
r7030dab r71d6bd8 4 4 #include <stdio.h> 5 5 6 #include " ../bench.h"6 #include "bench.h" 7 7 8 monitor M {} m1, m2; 8 int argc; 9 char** argv; 10 volatile int go = 0; 9 11 10 void __attribute__((noinline)) call( M & mutex p1, M & mutex p2 ) {} 11 void __attribute__((noinline)) wait( M & mutex p1, M & mutex p2 ) { 12 for ( times ) { 13 waitfor( call : p1, p2 ); 14 } 15 } 16 thread T {}; 17 void main( T & ) { 12 monitor M {}; 13 M m1, m2; 14 15 void __attribute__((noinline)) call( M & mutex a1, M & mutex a2 ) {} 16 17 int __attribute__((noinline)) wait( M & mutex a1, M & mutex a2 ) { 18 go = 1; 18 19 BENCH( 19 for ( times) {20 call( m1, m2);20 for ( i; n ) { 21 waitfor(call, a1, a2); 21 22 }, 22 23 result 23 24 ) 24 printf( "%g\n", result ); 25 26 printf("%g\n", result); 27 go = 0; 28 return 0; 25 29 } 26 30 27 int main( int argc, char * argv[] ) { 28 BENCH_START() 29 T t; 30 wait( m1, m2 ); 31 thread T {}; 32 void ^?{}( T & mutex this ) {} 33 void main( T & ) { 34 while(go == 0) { yield(); } 35 while(go == 1) { call(m1, m2); } 36 31 37 } 32 38 33 // Local Variables: // 34 // tab-width: 4 // 35 // End: // 39 int main(__attribute__((unused)) int argc, __attribute__((unused)) char* argv[]) { 40 T t; 41 return wait(m1, m2); 42 } -
benchmark/schedext/cfa4.cfa
r7030dab r71d6bd8 4 4 #include <stdio.h> 5 5 6 #include " ../bench.h"6 #include "bench.h" 7 7 8 monitor M {} m1, m2, m3, m4; 8 int argc; 9 char** argv; 10 volatile int go = 0; 9 11 10 void __attribute__((noinline)) call( M & mutex p1, M & mutex p2, M & mutex p3, M & mutex p4 ) {} 11 void __attribute__((noinline)) wait( M & mutex p1, M & mutex p2, M & mutex p3, M & mutex p4 ) { 12 for ( times ) { 13 waitfor( call : p1, p2, p3, p4 ); 14 } 15 } 16 thread T {}; 17 void main( T & ) { 12 monitor M {}; 13 M m1, m2, m3, m4; 14 15 void __attribute__((noinline)) call( M & mutex a1, M & mutex a2, M & mutex a3, M & mutex a4 ) {} 16 17 int __attribute__((noinline)) wait( M & mutex a1, M & mutex a2, M & mutex a3, M & mutex a4 ) { 18 go = 1; 18 19 BENCH( 19 for ( times) {20 call( m1, m2, m3, m4);20 for ( i; n ) { 21 waitfor(call, a1, a2, a3, a4); 21 22 }, 22 23 result 23 24 ) 24 printf( "%g\n", result ); 25 26 printf("%g\n", result); 27 go = 0; 28 return 0; 25 29 } 26 30 27 int main( int argc, char * argv[] ) { 28 BENCH_START() 29 T t; 30 wait( m1, m2, m3, m4 ); 31 thread T {}; 32 void ^?{}( T & mutex this ) {} 33 void main( T & ) { 34 while(go == 0) { yield(); } 35 while(go == 1) { call(m1, m2, m3, m4); } 36 31 37 } 32 38 33 // Local Variables: // 34 // tab-width: 4 // 35 // End: // 39 int main(__attribute__((unused)) int argc, __attribute__((unused)) char* argv[]) { 40 T t; 41 return wait(m1, m2, m3, m4); 42 } -
benchmark/schedext/upp.cc
r7030dab r71d6bd8 3 3 #include "bench.h" 4 4 5 int argc; 6 char** argv; 7 volatile int go = 0; 8 5 9 _Monitor M { 6 10 public: 7 11 void __attribute__((noinline)) call() {} 8 void __attribute__((noinline)) wait() { 9 for ( size_t i = 0; i < times; i++ ) { 10 _Accept(call); 11 } 12 13 int __attribute__((noinline)) wait() { 14 go = 1; 15 BENCH( 16 for (size_t i = 0; i < n; i++) { 17 _Accept(call); 18 }, 19 result 20 ) 21 22 printf("%g\n", result); 23 go = 0; 24 return 0; 12 25 } 13 } m; 26 }; 27 28 M m; 14 29 15 30 _Task T { 16 31 void main() { 17 BENCH( 18 for ( size_t i = 0; i < times; i++ ) { 19 m.call(); 20 }, 21 result 22 ) 23 printf( "%g\n", result ); 32 while(go == 0) { yield(); } 33 while(go == 1) { m.call(); } 34 24 35 } 25 36 }; 26 37 27 int main( int argc, char * argv[] ) { 28 BENCH_START() 38 int main(int margc, char* margv[]) { 39 argc = margc; 40 argv = margv; 29 41 T t; 30 m.wait();42 return m.wait(); 31 43 } 32 33 // Local Variables: //34 // tab-width: 4 //35 // End: // -
benchmark/schedint/JavaThread.java
r7030dab r71d6bd8 49 49 static int x = 2; 50 50 51 static private int times = Integer.parseInt("1000000");51 static private final int NoOfTimes = Integer.parseInt("1000000") ; 52 52 53 53 public static void helper( Monitor m ) throws InterruptedException { 54 for(int i = 1; i <= times; i += 1) {54 for(int i = 1; i <= NoOfTimes; i += 1) { 55 55 m.wait(); // relase monitor lock 56 56 m.next = true; … … 63 63 synchronized(m) { 64 64 s.start(); 65 while( ! Monitor.go ) { // waiter must start first65 while( !Monitor.go ) { 66 66 Thread.yield(); 67 67 } … … 72 72 Monitor.go = false; 73 73 s.join(); 74 System.out.println( (end - start) / times);74 System.out.println( (end - start) / NoOfTimes); 75 75 } 76 76 public static void main(String[] args) throws InterruptedException { 77 if ( args.length > 2 ) System.exit( 1 );78 if ( args.length == 2 ) { times = Integer.parseInt(args[1]); }79 80 77 for (int n = Integer.parseInt("5"); --n >= 0 ; ) { 81 78 InnerMain(); … … 86 83 } 87 84 } 88 89 // Local Variables: //90 // tab-width: 4 //91 // End: // -
benchmark/schedint/cfa1.cfa
r7030dab r71d6bd8 4 4 #include <stdio.h> 5 5 6 #include " ../bench.h"6 #include "bench.h" 7 7 8 int argc; 9 char** argv; 8 10 volatile int go = 0; 9 11 10 12 condition c; 11 monitor M {} m1; 13 monitor M {}; 14 M m1; 12 15 13 void __attribute__((noinline)) call( M & mutex p1 ) {14 signal( c);16 void __attribute__((noinline)) call( M & mutex a1 ) { 17 signal(c); 15 18 } 16 void __attribute__((noinline)) wait( M & mutex p1 ) { 19 20 int __attribute__((noinline)) wait( M & mutex a1 ) { 17 21 go = 1; 18 for ( times ) { 19 wait( c ); 20 } 22 BENCH( 23 for ( i; n ) { 24 wait(c); 25 }, 26 result 27 ) 28 29 printf("%g\n", result); 30 go = 0; 31 return 0; 21 32 } 22 33 23 34 thread T {}; 35 void ^?{}( T & mutex ) {} 24 36 void main( T & ) { 25 while ( go == 0 ) { yield(); } // waiter must start first 26 BENCH( 27 for ( times ) { call( m1 ); }, 28 result 29 ) 30 printf( "%g\n", result ); 37 while(go == 0) { yield(); } 38 while(go == 1) { call(m1); } 39 31 40 } 32 41 33 int main( int argc, char * argv[] ) { 34 BENCH_START() 42 int main(__attribute__((unused)) int argc, __attribute__((unused)) char* argv[]) { 35 43 T t; 36 wait( m1);44 return wait(m1); 37 45 } 38 39 // Local Variables: //40 // tab-width: 4 //41 // End: // -
benchmark/schedint/cfa2.cfa
r7030dab r71d6bd8 4 4 #include <stdio.h> 5 5 6 #include " ../bench.h"6 #include "bench.h" 7 7 8 int argc; 9 char** argv; 8 10 volatile int go = 0; 9 11 10 12 condition c; 11 monitor M {} m1, m2; 13 monitor M {}; 14 M m1, m2; 12 15 13 void __attribute__((noinline)) call( M & mutex p1, M & mutex p2 ) {14 signal( c);16 void __attribute__((noinline)) call( M & mutex a1, M & mutex a2 ) { 17 signal(c); 15 18 } 16 void __attribute__((noinline)) wait( M & mutex p1, M & mutex p2 ) { 19 20 int __attribute__((noinline)) wait( M & mutex a1, M & mutex a2 ) { 17 21 go = 1; 18 for ( times ) { 19 wait( c ); 20 } 22 BENCH( 23 for ( i; n ) { 24 wait(c); 25 }, 26 result 27 ) 28 29 printf("%g\n", result); 30 go = 0; 31 return 0; 21 32 } 22 33 23 34 thread T {}; 35 void ^?{}( T & mutex this ) {} 24 36 void main( T & ) { 25 while ( go == 0 ) { yield(); } // waiter must start first 26 BENCH( 27 for ( times ) { call( m1, m2 ); }, 28 result 29 ) 30 printf( "%g\n", result ); 37 while(go == 0) { yield(); } 38 while(go == 1) { call(m1, m2); } 39 31 40 } 32 41 33 int main( int argc, char * argv[] ) { 34 BENCH_START() 42 int main(__attribute__((unused)) int argc, __attribute__((unused)) char* argv[]) { 35 43 T t; 36 wait( m1, m2);44 return wait(m1, m2); 37 45 } 38 39 // Local Variables: //40 // tab-width: 4 //41 // End: // -
benchmark/schedint/cfa4.cfa
r7030dab r71d6bd8 4 4 #include <stdio.h> 5 5 6 #include " ../bench.h"6 #include "bench.h" 7 7 8 int argc; 9 char** argv; 8 10 volatile int go = 0; 9 11 10 12 condition c; 11 monitor M {} m1, m2, m3, m4; 13 monitor M {}; 14 M m1, m2, m3, m4; 12 15 13 void __attribute__((noinline)) call( M & mutex p1, M & mutex p2, M & mutex p3, M & mutex p4 ) {14 signal( c);16 void __attribute__((noinline)) call( M & mutex a1, M & mutex a2, M & mutex a3, M & mutex a4 ) { 17 signal(c); 15 18 } 16 void __attribute__((noinline)) wait( M & mutex p1, M & mutex p2, M & mutex p3, M & mutex p4 ) { 19 20 int __attribute__((noinline)) wait( M & mutex a1, M & mutex a2, M & mutex a3, M & mutex a4 ) { 17 21 go = 1; 18 for ( times ) { 19 wait( c ); 20 } 22 BENCH( 23 for ( i; n ) { 24 wait(c); 25 }, 26 result 27 ) 28 29 printf("%g\n", result); 30 go = 0; 31 return 0; 21 32 } 22 33 23 34 thread T {}; 35 void ^?{}( T & mutex this ) {} 24 36 void main( T & ) { 25 while ( go == 0 ) { yield(); } // waiter must start first 26 BENCH( 27 for ( times ) { call( m1, m2, m3, m4 ); }, 28 result 29 ) 30 printf( "%g\n", result ); 37 while(go == 0) { yield(); } 38 while(go == 1) { call(m1, m2, m3, m4); } 39 31 40 } 32 41 33 int main( int argc, char * argv[] ) { 34 BENCH_START() 42 int main(__attribute__((unused)) int argc, __attribute__((unused)) char* argv[]) { 35 43 T t; 36 wait( m1, m2, m3, m4);44 return wait(m1, m2, m3, m4); 37 45 } 38 39 // Local Variables: //40 // tab-width: 4 //41 // End: // -
benchmark/schedint/pthreads.c
r7030dab r71d6bd8 4 4 #include "bench.h" 5 5 6 int argc; 7 char** argv; 6 8 volatile int go = 0; 7 9 10 pthread_cond_t c; 8 11 pthread_mutex_t m; 9 pthread_cond_t c;10 12 11 13 void __attribute__((noinline)) call() { 12 pthread_mutex_lock( &m);13 pthread_cond_signal( &c);14 pthread_mutex_unlock( &m);14 pthread_mutex_lock(&m); 15 pthread_cond_signal(&c); 16 pthread_mutex_unlock(&m); 15 17 } 16 18 17 void__attribute__((noinline)) wait() {19 int __attribute__((noinline)) wait() { 18 20 pthread_mutex_lock(&m); 19 21 go = 1; 20 for ( size_t i = 0; i < times; i++ ) { 21 pthread_cond_wait( &c, &m ); 22 } 22 BENCH( 23 for (size_t i = 0; i < n; i++) { 24 pthread_cond_wait(&c, &m); 25 }, 26 result 27 ) 28 29 printf("%g\n", result); 23 30 go = 0; 24 pthread_mutex_unlock( &m ); 31 pthread_mutex_unlock(&m); 32 return 0; 25 33 } 26 34 27 void * thread_main( __attribute__((unused)) void * arg ) { 28 while ( go == 0 ) { sched_yield(); } // waiter must start first 29 // barging for lock acquire => may not execute N times 30 BENCH( 31 while ( go == 1 ) { call(); }, 32 result 33 ) 34 printf( "%g\n", result ); 35 void* thread_main(__attribute__((unused)) void * arg ) { 36 while(go == 0) { sched_yield(); } 37 while(go == 1) { call(); } 35 38 return NULL; 36 39 } 37 40 38 int main( int argc, char * argv[] ) { 39 BENCH_START() 41 int main(__attribute__((unused)) int argc, __attribute__((unused)) char* argv[]) { 40 42 pthread_t thread; 41 if ( pthread_create( &thread, NULL, thread_main, NULL ) < 0) {43 if (pthread_create(&thread, NULL, thread_main, NULL) < 0) { 42 44 perror( "failure" ); 43 45 return 1; 44 46 } 45 47 wait(); 46 if ( pthread_join( thread, NULL ) < 0) {48 if (pthread_join( thread, NULL) < 0) { 47 49 perror( "failure" ); 48 50 return 1; 49 51 } 52 return 0; 50 53 } 51 52 // Local Variables: //53 // tab-width: 4 //54 // End: // -
benchmark/schedint/upp.cc
r7030dab r71d6bd8 3 3 #include "bench.h" 4 4 5 int argc; 6 char** argv; 5 7 volatile int go = 0; 6 8 … … 11 13 cond.signal(); 12 14 } 13 void __attribute__((noinline)) wait() { 15 16 int __attribute__((noinline)) wait() { 14 17 go = 1; 15 for ( size_t i = 0; i < times; i++ ) { 16 cond.wait(); 17 } 18 BENCH( 19 for (size_t i = 0; i < n; i++) { 20 cond.wait(); 21 }, 22 result 23 ) 24 25 printf("%g\n", result); 26 go = 0; 27 return 0; 18 28 } 19 } m; 29 }; 30 31 M m; 20 32 21 33 _Task T { 22 34 void main() { 23 while ( go == 0 ) { yield(); } // waiter must start first 24 BENCH( 25 for ( size_t i = 0; i < times; i++ ) { 26 m.call(); 27 }, 28 result 29 ) 30 printf( "%g\n", result ); 35 while(go == 0) { yield(); } 36 while(go == 1) { m.call(); } 37 31 38 } 32 39 }; 33 40 34 int main( int argc, char * argv[] ) { 35 BENCH_START() 41 int main(__attribute__((unused)) int argc, __attribute__((unused)) char* argv[]) { 36 42 T t; 37 m.wait();43 return m.wait(); 38 44 } 39 40 // Local Variables: //41 // tab-width: 4 //42 // End: // -
configure
r7030dab r71d6bd8 2557 2557 # don't use the default CFLAGS as they unconditonnaly add -O2 2558 2558 : ${CFLAGS=""} 2559 : ${CXXFLAGS=""}2560 2559 2561 2560 am__api_version='1.15' -
configure.ac
r7030dab r71d6bd8 14 14 # don't use the default CFLAGS as they unconditonnaly add -O2 15 15 : ${CFLAGS=""} 16 : ${CXXFLAGS=""}17 16 18 17 AM_INIT_AUTOMAKE([subdir-objects]) -
doc/bibliography/pl.bib
r7030dab r71d6bd8 9 9 % Predefined journal names: 10 10 % acmcs: Computing Surveys acta: Acta Infomatica 11 @string{acta="Acta Infomatica"} 11 12 % cacm: Communications of the ACM 12 13 % ibmjrd: IBM J. Research & Development ibmsj: IBM Systems Journal … … 21 22 % tcs: Theoretical Computer Science 22 23 23 @string{acta="Acta Infomatica"}24 24 string{ieeepds="IEEE Transactions on Parallel and Distributed Systems"} 25 25 @string{ieeepds="IEEE Trans. Parallel Distrib. Syst."} … … 124 124 series = {ACM Distinguished Dissertations}, 125 125 year = 1983, 126 }127 128 @article{Zhang19,129 keywords = {Algebraic effects, dynamic scoping, exceptions, parametricity, type systems},130 author = {Zhang, Yizhou and Myers, Andrew C.},131 title = {Abstraction-safe Effect Handlers via Tunneling},132 journal = {Proc. ACM Program. Lang.},133 issue_date = {January 2019},134 volume = {3},135 number = {POPL},136 month = jan,137 year = {2019},138 issn = {2475-1421},139 pages = {5:1--5:29},140 articleno = {5},141 publisher = {ACM},142 address = {New York, NY, USA},143 }144 145 @inproceedings{Zhang16,146 keywords = {Exception tunneling, Genus, exception handling},147 author = {Zhang, Yizhou and Salvaneschi, Guido and Beightol, Quinn and Liskov, Barbara and Myers, Andrew C.},148 title = {Accepting Blame for Safe Tunneled Exceptions},149 booktitle = {Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation},150 series = {PLDI'16},151 year = {2016},152 location = {Santa Barbara, CA, USA},153 pages = {281--295},154 publisher = {ACM},155 address = {New York, NY, USA},156 126 } 157 127 … … 428 398 journal = sigplan, 429 399 year = 1981, 430 month = feb, 431 volume = 16, 432 number = 2, 433 pages = {48-52}, 400 month = feb, volume = 16, number = 2, pages = {48-52}, 434 401 comment = { 435 402 A one-pass, top-down algorithm for overload resolution. Input is a … … 510 477 title = {An Alternative to Subclassing}, 511 478 journal = sigplan, 512 volume = {21}, 513 number = {11}, 479 volume = {21}, number = {11}, 514 480 pages = {424-428}, 515 month = nov, 516 year = 1986, 481 month = nov, year = 1986, 517 482 comment = { 518 483 The Smalltalk class hierarchy has three uses: factoring out code; … … 568 533 isbn = {3-540-66538-2}, 569 534 location = {Toulouse, France}, 535 doi = {http://doi.acm.org/10.1145/318773.319251}, 570 536 publisher = {Springer}, 571 537 address = {London, UK}, … … 665 631 year = 2010, 666 632 pages = {39--50}, 633 numpages = {12}, 667 634 publisher = {IEEE Computer Society}, 668 635 address = {Washington, DC, USA}, … … 955 922 } 956 923 957 @manual{C99,958 keywords = {ISO/IEC C 9899},959 contributer = {pabuhr@plg},960 key = {C99},961 title = {C Programming Language {ISO/IEC} 9899:1999(E)},962 edition = {2nd},963 publisher = {International Standard Organization},964 address = {\href{https://webstore.ansi.org/Standards/INCITS/INCITSISOIEC98991999R2005}{https://webstore.ansi.org/\-Standards/\-INCITS/\-INCITSISOIEC98991999R2005}},965 year = 1999,966 }967 968 924 @manual{C11, 969 925 keywords = {ISO/IEC C 11}, … … 1349 1305 location = {London, United Kingdom}, 1350 1306 pages = {41--53}, 1307 numpages = {13}, 1308 url = {http://doi.acm.org/10.1145/360204.360207}, 1309 doi = {10.1145/360204.360207}, 1310 acmid = {360207}, 1351 1311 publisher = {ACM}, 1352 1312 address = {New York, NY, USA}, … … 2448 2408 year = 1993, 2449 2409 pages = {201--208}, 2410 url = {http://doi.acm.org/10.1145/155360.155580}, 2450 2411 publisher = {ACM}, 2451 2412 address = {New York, NY, USA}, … … 2645 2606 location = {Boulder, Colorado, USA}, 2646 2607 pages = {91--97}, 2608 numpages = {7}, 2647 2609 publisher = {ACM}, 2648 2610 address = {New York, NY, USA}, … … 2675 2637 issn = {0004-5411}, 2676 2638 pages = {215--225}, 2639 numpages = {11}, 2640 url = {http://doi.acm.org/10.1145/321879.321884}, 2641 doi = {10.1145/321879.321884}, 2642 acmid = {321884}, 2677 2643 publisher = {ACM}, 2678 2644 address = {New York, NY, USA}, … … 2742 2708 } 2743 2709 2744 @misc{Drepper13,2745 keywords = {thread-local storage},2746 contributer = {pabuhr@plg},2747 author = {Ulrich Drepper},2748 title = {{ELF} Handling For Thread-Local Storage},2749 year = 2013,2750 month = aug,2751 note = {WikipediA},2752 howpublished= {\href{http://www.akkadia.org/drepper/tls.pdf}2753 {http://\-www.akkadia.org/\-drepper/\-tls.pdf}},2754 }2755 2756 2710 @misc{Turley99, 2757 2711 keywords = {embedded system, micrprocessor}, … … 2764 2718 howpublished= {\href{https://www.eetimes.com/author.asp?sectionid=36&doc_id=1287712} 2765 2719 {https://\-www.eetimes.com/\-author.asp?sectionid=\-36&doc_id=1287712}}, 2766 }2767 2768 @article{Xiao19,2769 keywords = {bug classification, fault trigger, Linux operating system, regression bug},2770 contributer = {pabuhr@plg},2771 author = {Guanping Xiao and Zheng Zheng and Beibei Yin and Kishor S. Trivedi and Xiaoting Du and Kai-Yuan Cai},2772 title = {An Empirical Study of Fault Triggers in the Linux Operating System: An Evolutionary Perspective},2773 journal = {IEEE Transactions on Reliability},2774 month = dec,2775 year = 2019,2776 volume = 68,2777 number = 4,2778 pages = {1356-1383},2779 2720 } 2780 2721 … … 3196 3137 } 3197 3138 3198 @inproceedings{Palix11,3199 keywords = {Linux, fault-finding tools},3200 contributer = {pabuhr@plg},3201 author = {Nicolas Palix and Ga\"el Thomas and Suman Saha and Christophe Calv\`es and Julia Lawall and Gilles Muller},3202 title = {Faults in Linux: Ten Years Later},3203 booktitle = {Proc. of the 16 International Conf. on Arch. Support for Prog. Lang. and Oper. Sys.},3204 series = {ASPLOS'11},3205 month = mar,3206 year = 2011,3207 location = {Newport Beach, California, USA},3208 pages = {305-318},3209 publisher = {ACM},3210 address = {New York, NY, USA},3211 }3212 3213 3139 @article{Lamport87, 3214 3140 keywords = {software solutions, mutual exclusion, fast}, … … 3332 3258 issn = {0001-0782}, 3333 3259 pages = {107--115}, 3260 numpages = {9}, 3261 url = {http://doi.acm.org/10.1145/1538788.1538814}, 3262 doi = {10.1145/1538788.1538814}, 3263 acmid = {1538814}, 3334 3264 publisher = {ACM}, 3335 3265 address = {New York, NY, USA}, … … 3734 3664 } 3735 3665 3736 @mastersthesis{Radhakrishnan19,3737 author = {Srihari Radhakrishnan},3738 title = {High Performance Web Servers: A Study In Concurrent Programming Models},3739 school = {School of Computer Sc., University of Waterloo},3740 year = 2019,3741 optaddress = {Waterloo, Ontario, Canada, N2L 3G1},3742 note = {\href{https://uwspace.uwaterloo.ca/handle/10012/14706}{https://\-uwspace.uwaterloo.ca/\-handle/\-10012/\-14706}},3743 }3744 3745 3666 @article{katzenelson83b, 3746 3667 contributer = {gjditchfield@plg}, … … 3776 3697 pages = {115-138}, 3777 3698 year = 1971, 3778 }3779 3780 @inproceedings{Hagersten03,3781 keywords = {cache storage, parallel architectures, performance evaluation, shared memory systems},3782 author = {Zoran Radovi\'{c} and Erik Hagersten},3783 title = {Hierarchical backoff locks for nonuniform communication architectures},3784 booktitle = {Proceedings of the Ninth International Symposium on High-Performance Computer Architecture},3785 year = {2003},3786 location = {Anaheim, CA, USA},3787 pages = {241-252},3788 publisher = {IEEE},3789 3699 } 3790 3700 … … 4455 4365 } 4456 4366 4457 @misc{gccValueLabels,4458 keywords = {gcc extension, value labels},4459 contributer = {pabuhr@plg},4460 key = {Labels as Values},4461 author = {{gcc Extension}},4462 title = {Labels as Values},4463 year = {since gcc-3},4464 howpublished= {\href{https://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html}4465 {https:\-//gcc.gnu.org/\-onlinedocs/\-gcc/\-Labels-as-Values.html}},4466 }4467 4468 4367 @mastersthesis{Clarke90, 4469 4368 keywords = {concurrency, postponing requests}, … … 4558 4457 4559 4458 @article{Pierce00, 4560 keywords = {Scala , polymorphism, subtyping, type inference},4459 keywords = {Scala}, 4561 4460 contributer = {a3moss@uwaterloo.ca}, 4562 4461 author = {Pierce, Benjamin C. and Turner, David N.}, … … 4570 4469 issn = {0164-0925}, 4571 4470 pages = {1--44}, 4471 numpages = {44}, 4472 url = {http://doi.acm.org/10.1145/345099.345100}, 4473 doi = {10.1145/345099.345100}, 4474 acmid = {345100}, 4572 4475 publisher = {ACM}, 4573 4476 address = {New York, NY, USA}, 4477 keywords = {polymorphism, subtyping, type inference}, 4574 4478 } 4575 4576 @article{Dice15,4577 keywords = {Concurrency, NUMA, hierarchical locks, locks, multicore, mutex, mutual exclusion, spin locks},4578 author = {Dice, David and Marathe, Virendra J. and Shavit, Nir},4579 title = {Lock Cohorting: A General Technique for Designing NUMA Locks},4580 journal = {ACM Trans. Parallel Comput.},4581 issue_date = {January 2015},4582 volume = 1,4583 number = 2,4584 month = feb,4585 year = 2015,4586 pages = {13:1--13:42},4587 publisher = {ACM},4588 address = {New York, NY, USA},4589 }4590 4479 4591 4480 @article{Sundell08, … … 4665 4554 journal = sigplan, 4666 4555 year = 1989, 4667 month = jun, 4668 volume = 24, 4669 number = 6, 4670 pages = {37-48}, 4556 month = jun, volume = 24, number = 6, pages = {37-48}, 4671 4557 abstract = { 4672 4558 This paper describes a scheme we have used to manage a large … … 5109 4995 year = 1986, 5110 4996 pages = {313--326}, 4997 numpages = {14}, 5111 4998 publisher = {ACM}, 5112 4999 address = {New York, NY, USA}, … … 5124 5011 year = 1986, 5125 5012 pages = {327--348}, 5013 numpages = {22}, 5126 5014 publisher = {ACM}, 5127 5015 address = {New York, NY, USA}, … … 5320 5208 year = 2005, 5321 5209 pages = {146-196}, 5210 numpages = {51}, 5322 5211 publisher = {ACM}, 5323 5212 address = {New York, NY, USA}, … … 5465 5354 year = 2000, 5466 5355 pages = {29-46}, 5467 note = {OOPSLA'00, Oct. 15--19, 2000, Minneapolis, Minn ., U.S.A.},5356 note = {OOPSLA'00, Oct. 15--19, 2000, Minneapolis, Minnesota, U.S.A.}, 5468 5357 } 5469 5358 … … 5579 5468 location = {San Diego, California, USA}, 5580 5469 pages = {101--112}, 5470 numpages = {12}, 5471 url = {http://doi.acm.org/10.1145/2535838.2535878}, 5472 doi = {10.1145/2535838.2535878}, 5473 acmid = {2535878}, 5581 5474 publisher = {ACM}, 5582 5475 address = {New York, NY, USA}, … … 5682 5575 issn = {0362-1340}, 5683 5576 pages = {30--42}, 5577 numpages = {13}, 5578 url = {http://doi.acm.org/10.1145/947586.947589}, 5579 doi = {10.1145/947586.947589}, 5684 5580 publisher = {ACM}, 5685 5581 address = {New York, NY, USA} … … 6216 6112 month = 9, 6217 6113 year = 2005, 6218 }6219 6220 @article{Bauer15,6221 keywords = {resumption exceptions, theory},6222 contributer = {pabuhr@plg},6223 author = {Andrej Bauer and Matija Pretnar},6224 title = {Programming with Algebraic Effects and Handlers},6225 journal = {Journal of Logical and Algebraic Methods in Programming},6226 publisher = {Elsevier BV},6227 volume = 84,6228 number = 1,6229 month = jan,6230 year = 2015,6231 pages = {108-123},6232 6114 } 6233 6115 … … 6617 6499 issn = {0164-0925}, 6618 6500 pages = {429-475}, 6501 url = {http://doi.acm.org/10.1145/1133651.1133653}, 6502 doi = {10.1145/1133651.1133653}, 6503 acmid = {1133653}, 6619 6504 publisher = {ACM}, 6620 6505 address = {New York, NY, USA}, … … 6994 6879 issn = {0001-0782}, 6995 6880 pages = {565--569}, 6881 numpages = {5}, 6882 url = {http://doi.acm.org/10.1145/359545.359566}, 6883 doi = {10.1145/359545.359566}, 6884 acmid = {359566}, 6996 6885 publisher = {ACM}, 6997 6886 address = {New York, NY, USA} … … 7011 6900 issn = {0362-1340}, 7012 6901 pages = {145--147}, 6902 numpages = {3}, 6903 url = {http://doi.acm.org/10.1145/122598.122614}, 6904 doi = {10.1145/122598.122614}, 6905 acmid = {122614}, 7013 6906 publisher = {ACM}, 7014 6907 address = {New York, NY, USA}, … … 7113 7006 issn = {0362-1340}, 7114 7007 pages = {82--87}, 7008 numpages = {6}, 7009 url = {http://doi.acm.org/10.1145/947680.947688}, 7010 doi = {10.1145/947680.947688}, 7115 7011 publisher = {ACM}, 7116 7012 address = {New York, NY, USA}, … … 7257 7153 } 7258 7154 7259 @article{Cascaval08,7260 author = {Cascaval, Calin and Blundell, Colin and Michael, Maged and Cain, Harold W. and Wu, Peng and Chiras, Stefanie and Chatterjee, Siddhartha},7261 title = {Software Transactional Memory: Why Is It Only a Research Toy?},7262 journal = {Queue},7263 volume = {6},7264 number = {5},7265 month = sep,7266 year = {2008},7267 pages = {40:46--40:58},7268 publisher = {ACM},7269 address = {New York, NY, USA},7270 }7271 7272 7155 @article{Dijkstra65a, 7273 7156 keywords = {N-thread software-solution mutual exclusion}, … … 7480 7363 year = 1974, 7481 7364 pages = {261-301}, 7365 issn = {0360-0300}, 7366 doi = {http://doi.acm.org/10.1145/356635.356640}, 7482 7367 publisher = {ACM}, 7483 7368 address = {New York, NY, USA}, … … 7569 7454 publisher = {ACM Press}, 7570 7455 address = {New York, NY, USA}, 7456 doi = {http://doi.acm.org/10.1145/356586.356588}, 7571 7457 } 7572 7458 … … 7869 7755 howpublished= {\href{https://projects.eclipse.org/proposals/trace-compass}{https://\-projects.eclipse.org/\-proposals/\-trace-compass}}, 7870 7756 } 7871 7872 @inproceedings{Boehm09, 7873 author = {Boehm, Hans-J.}, 7874 title = {Transactional Memory Should Be an Implementation Technique, Not a Programming Interface}, 7875 booktitle = {Proceedings of the First USENIX Conference on Hot Topics in Parallelism}, 7876 series = {HotPar'09}, 7877 year = {2009}, 7878 location = {Berkeley, California}, 7879 publisher = {USENIX Association}, 7880 address = {Berkeley, CA, USA}, 7881 } 7882 7757 7883 7758 @article{Leroy00, 7884 7759 keywords = {type-systems, exceptions}, … … 7930 7805 number = {2}, 7931 7806 pages = {204-214}, 7932 month = apr, 7933 year = 1988, 7807 month = apr, year = 1988, 7934 7808 comment = { 7935 7809 Extended record types add fields to their base record. Assignment … … 8236 8110 issn = {0004-5411}, 8237 8111 pages = {245--281}, 8112 numpages = {37}, 8113 url = {http://doi.acm.org/10.1145/62.2160}, 8114 doi = {10.1145/62.2160}, 8115 acmid = {2160}, 8238 8116 publisher = {ACM}, 8239 8117 address = {New York, NY, USA}, … … 8248 8126 contributer = {pabuhr@plg}, 8249 8127 author = {Boehm, Hans-J. and Adve, Sarita V.}, 8250 title = {You Don' tKnow Jack About Shared Variables or Memory Models},8128 title = {You Don'T Know Jack About Shared Variables or Memory Models}, 8251 8129 journal = cacm, 8252 8130 volume = 55, -
doc/papers/concurrency/Paper.tex
r7030dab r71d6bd8 61 61 \newcommand{\CCseventeen}{\textrm{C}\kern-.1em\hbox{+\kern-.25em+}17\xspace} % C++17 symbolic name 62 62 \newcommand{\CCtwenty}{\textrm{C}\kern-.1em\hbox{+\kern-.25em+}20\xspace} % C++20 symbolic name 63 \newcommand{\Csharp}{C\raisebox{-0.7ex}{\ large$^\sharp$}\xspace} % C# symbolic name63 \newcommand{\Csharp}{C\raisebox{-0.7ex}{\Large$^\sharp$}\xspace} % C# symbolic name 64 64 65 65 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% … … 127 127 \newcommand*{\etc}{% 128 128 \@ifnextchar{.}{\ETC}% 129 129 {\ETC.\xspace}% 130 130 }}{}% 131 131 \@ifundefined{etal}{ 132 132 \newcommand{\ETAL}{\abbrevFont{et}~\abbrevFont{al}} 133 133 \newcommand*{\etal}{% 134 \@ifnextchar{.}{\ ETAL}%135 {\ ETAL.\xspace}%134 \@ifnextchar{.}{\protect\ETAL}% 135 {\protect\ETAL.\xspace}% 136 136 }}{}% 137 137 \@ifundefined{viz}{ … … 163 163 __float80, float80, __float128, float128, forall, ftype, generator, _Generic, _Imaginary, __imag, __imag__, 164 164 inline, __inline, __inline__, __int128, int128, __label__, monitor, mutex, _Noreturn, one_t, or, 165 otype, restrict, resume, __restrict, __restrict__, __signed, __signed__, _Static_assert, suspend, thread,165 otype, restrict, __restrict, __restrict__, __signed, __signed__, _Static_assert, thread, 166 166 _Thread_local, throw, throwResume, timeout, trait, try, ttype, typeof, __typeof, __typeof__, 167 167 virtual, __volatile, __volatile__, waitfor, when, with, zero_t}, 168 168 moredirectives={defined,include_next}, 169 169 % replace/adjust listing characters that look bad in sanserif 170 literate={-}{\makebox[1ex][c]{\raisebox{0. 5ex}{\rule{0.8ex}{0.1ex}}}}1 {^}{\raisebox{0.6ex}{$\scriptstyle\land\,$}}1170 literate={-}{\makebox[1ex][c]{\raisebox{0.4ex}{\rule{0.8ex}{0.1ex}}}}1 {^}{\raisebox{0.6ex}{$\scriptstyle\land\,$}}1 171 171 {~}{\raisebox{0.3ex}{$\scriptstyle\sim\,$}}1 % {`}{\ttfamily\upshape\hspace*{-0.1ex}`}1 172 172 {<}{\textrm{\textless}}1 {>}{\textrm{\textgreater}}1 … … 197 197 _Else, _Enable, _Event, _Finally, _Monitor, _Mutex, _Nomutex, _PeriodicTask, _RealTimeTask, 198 198 _Resume, _Select, _SporadicTask, _Task, _Timeout, _When, _With, _Throw}, 199 } 200 \lstdefinelanguage{Golang}{ 201 morekeywords=[1]{package,import,func,type,struct,return,defer,panic,recover,select,var,const,iota,}, 202 morekeywords=[2]{string,uint,uint8,uint16,uint32,uint64,int,int8,int16,int32,int64, 203 bool,float32,float64,complex64,complex128,byte,rune,uintptr, error,interface}, 204 morekeywords=[3]{map,slice,make,new,nil,len,cap,copy,close,true,false,delete,append,real,imag,complex,chan,}, 205 morekeywords=[4]{for,break,continue,range,goto,switch,case,fallthrough,if,else,default,}, 206 morekeywords=[5]{Println,Printf,Error,}, 207 sensitive=true, 208 morecomment=[l]{//}, 209 morecomment=[s]{/*}{*/}, 210 morestring=[b]', 211 morestring=[b]", 212 morestring=[s]{`}{`}, 199 213 } 200 214 … … 227 241 {} 228 242 \lstnewenvironment{uC++}[1][] 229 {\lstset{ language=uC++,moredelim=**[is][\protect\color{red}]{`}{`},#1}\lstset{#1}}243 {\lstset{#1}} 230 244 {} 231 245 \lstnewenvironment{Go}[1][] … … 248 262 } 249 263 250 \new savebox{\myboxA}251 \new savebox{\myboxB}252 \new savebox{\myboxC}253 \new savebox{\myboxD}264 \newbox\myboxA 265 \newbox\myboxB 266 \newbox\myboxC 267 \newbox\myboxD 254 268 255 269 \title{\texorpdfstring{Advanced Control-flow and Concurrency in \protect\CFA}{Advanced Control-flow in Cforall}} … … 268 282 \CFA is a polymorphic, non-object-oriented, concurrent, backwards-compatible extension of the C programming language. 269 283 This paper discusses the design philosophy and implementation of its advanced control-flow and concurrent/parallel features, along with the supporting runtime written in \CFA. 270 These features are created from scratch as ISO C has only low-level and/or unimplemented concurrency, so C programmers continue to rely on library approaches like pthreads.284 These features are created from scratch as ISO C has only low-level and/or unimplemented concurrency, so C programmers continue to rely on library features like pthreads. 271 285 \CFA introduces modern language-level control-flow mechanisms, like generators, coroutines, user-level threading, and monitors for mutual exclusion and synchronization. 272 286 % Library extension for executors, futures, and actors are built on these basic mechanisms. … … 281 295 282 296 \begin{document} 283 \linenumbers 297 \linenumbers % comment out to turn off line numbering 284 298 285 299 \maketitle … … 288 302 \section{Introduction} 289 303 290 \CFA~\cite{Moss18,Cforall} is a modern, polymorphic, non-object-oriented\footnote{ 291 \CFA has object-oriented features, such as constructors, destructors, virtuals and simple trait/interface inheritance. 292 % Go interfaces, Rust traits, Swift Protocols, Haskell Type Classes and Java Interfaces. 293 % "Trait inheritance" works for me. "Interface inheritance" might also be a good choice, and distinguish clearly from implementation inheritance. 294 % You'll want to be a little bit careful with terms like "structural" and "nominal" inheritance as well. CFA has structural inheritance (I think Go as well) -- it's inferred based on the structure of the code. Java, Rust, and Haskell (not sure about Swift) have nominal inheritance, where there needs to be a specific statement that "this type inherits from this type". 304 This paper discusses the design philosophy and implementation of advanced language-level control-flow and concurrent/parallel features in \CFA~\cite{Moss18,Cforall} and its runtime, which is written entirely in \CFA. 305 \CFA is a modern, polymorphic, non-object-oriented\footnote{ 306 \CFA has features often associated with object-oriented programming languages, such as constructors, destructors, virtuals and simple inheritance. 295 307 However, functions \emph{cannot} be nested in structures, so there is no lexical binding between a structure and set of functions (member/method) implemented by an implicit \lstinline@this@ (receiver) parameter.}, 296 308 backwards-compatible extension of the C programming language. 297 In many ways, \CFA is to C as Scala~\cite{Scala} is to Java, providing a \emph{research vehicle} for new typing and control-flow capabilities on top of a highly popular programming language\footnote{ 298 The TIOBE index~\cite{TIOBE} for December 2019 ranks the top five \emph{popular} programming languages as Java 17\%, C 16\%, Python 10\%, and \CC 6\%, \Csharp 5\% = 54\%, and over the past 30 years, C has always ranked either first or second in popularity.} 299 allowing immediate dissemination. 300 This paper discusses the design philosophy and implementation of advanced language-level control-flow and concurrent/parallel features in \CFA and its runtime, which is written entirely in \CFA. 301 The \CFA control-flow framework extends ISO \Celeven~\cite{C11} with new call/return and concurrent/parallel control-flow. 302 303 % The call/return extensions retain state between callee and caller versus losing the callee's state on return; 304 % the concurrency extensions allow high-level management of threads. 305 306 Call/return control-flow with argument/parameter passing appeared in the first programming languages. 307 Over the past 50 years, call/return has been augmented with features like static/dynamic call, exceptions (multi-level return) and generators/coroutines (retain state between calls). 308 While \CFA has mechanisms for dynamic call (algebraic effects) and exceptions\footnote{ 309 \CFA exception handling will be presented in a separate paper. 310 The key feature that dovetails with this paper is nonlocal exceptions allowing exceptions to be raised across stacks, with synchronous exceptions raised among coroutines and asynchronous exceptions raised among threads, similar to that in \uC~\cite[\S~5]{uC++}}, this work only discusses retaining state between calls via generators/coroutines. 311 \newterm{Coroutining} was introduced by Conway~\cite{Conway63} (1963), discussed by Knuth~\cite[\S~1.4.2]{Knuth73V1}, implemented in Simula67~\cite{Simula67}, formalized by Marlin~\cite{Marlin80}, and is now popular and appears in old and new programming languages: CLU~\cite{CLU}, \Csharp~\cite{Csharp}, Ruby~\cite{Ruby}, Python~\cite{Python}, JavaScript~\cite{JavaScript}, Lua~\cite{Lua}, \CCtwenty~\cite{C++20Coroutine19}. 312 Coroutining is sequential execution requiring direct handoff among coroutines, \ie only the programmer is controlling execution order. 313 If coroutines transfer to an internal event-engine for scheduling the next coroutines, the program transitions into the realm of concurrency~\cite[\S~3]{Buhr05a}. 314 Coroutines are only a stepping stone towards concurrency where the commonality is that coroutines and threads retain state between calls. 315 316 \Celeven/\CCeleven define concurrency~\cite[\S~7.26]{C11}, but it is largely wrappers for a subset of the pthreads library~\cite{Pthreads}.\footnote{Pthreads concurrency is based on simple thread fork/join in a function and mutex/condition locks, which is low-level and error-prone} 317 Interestingly, almost a decade after the \Celeven standard, neither gcc-9, clang-9 nor msvc-19 (most recent versions) support the \Celeven include @threads.h@, indicating no interest in the C11 concurrency approach (possibly because of the recent effort to add concurrency to \CC). 318 While the \Celeven standard does not state a threading model, the historical association with pthreads suggests implementations would adopt kernel-level threading (1:1)~\cite{ThreadModel}, as for \CC. 309 In many ways, \CFA is to C as Scala~\cite{Scala} is to Java, providing a \emph{research vehicle} for new typing and control-flow capabilities on top of a highly popular programming language allowing immediate dissemination. 310 Within the \CFA framework, new control-flow features are created from scratch because ISO \Celeven defines only a subset of the \CFA extensions, where the overlapping features are concurrency~\cite[\S~7.26]{C11}. 311 However, \Celeven concurrency is largely wrappers for a subset of the pthreads library~\cite{Butenhof97,Pthreads}, and \Celeven and pthreads concurrency is simple, based on thread fork/join in a function and mutex/condition locks, which is low-level and error-prone; 312 no high-level language concurrency features are defined. 313 Interestingly, almost a decade after publication of the \Celeven standard, neither gcc-8, clang-9 nor msvc-19 (most recent versions) support the \Celeven include @threads.h@, indicating little interest in the C11 concurrency approach (possibly because the effort to add concurrency to \CC). 314 Finally, while the \Celeven standard does not state a threading model, the historical association with pthreads suggests implementations would adopt kernel-level threading (1:1)~\cite{ThreadModel}. 315 319 316 In contrast, there has been a renewed interest during the past decade in user-level (M:N, green) threading in old and new programming languages. 320 317 As multi-core hardware became available in the 1980/90s, both user and kernel threading were examined. 321 318 Kernel threading was chosen, largely because of its simplicity and fit with the simpler operating systems and hardware architectures at the time, which gave it a performance advantage~\cite{Drepper03}. 322 319 Libraries like pthreads were developed for C, and the Solaris operating-system switched from user (JDK 1.1~\cite{JDK1.1}) to kernel threads. 323 As a result, many current languages implementations adopt the 1:1 kernel-threading model, like Java (Scala), Objective-C~\cite{obj-c-book}, \CCeleven~\cite{C11}, C\#~\cite{Csharp} and Rust~\cite{Rust}, with a variety of presentation mechanisms.324 From 2000 onwards, several language implementations have championed the M:N user-threading model, like Go~\cite{Go}, Erlang~\cite{Erlang}, Haskell~\cite{Haskell}, D~\cite{D}, and \uC~\cite{uC++,uC++book}, including putting green threads back into Java~\cite{Quasar}, and many user-threading libraries have appeared~\cite{Qthreads,MPC,Marcel}.325 The main argument for user-level threading is that it is lighter weight than kernel threading (locking and context switching do not cross the kernel boundary), so there is less restriction on programming styles that encourage s large numbers of threads performing medium-sized workto facilitate load balancing by the runtime~\cite{Verch12}.320 As a result, languages like Java, Scala, Objective-C~\cite{obj-c-book}, \CCeleven~\cite{C11}, and C\#~\cite{Csharp} adopt the 1:1 kernel-threading model, with a variety of presentation mechanisms. 321 From 2000 onwards, languages like Go~\cite{Go}, Erlang~\cite{Erlang}, Haskell~\cite{Haskell}, D~\cite{D}, and \uC~\cite{uC++,uC++book} have championed the M:N user-threading model, and many user-threading libraries have appeared~\cite{Qthreads,MPC,Marcel}, including putting green threads back into Java~\cite{Quasar}. 322 The main argument for user-level threading is that it is lighter weight than kernel threading (locking and context switching do not cross the kernel boundary), so there is less restriction on programming styles that encourage large numbers of threads performing medium work units to facilitate load balancing by the runtime~\cite{Verch12}. 326 323 As well, user-threading facilitates a simpler concurrency approach using thread objects that leverage sequential patterns versus events with call-backs~\cite{Adya02,vonBehren03}. 327 324 Finally, performant user-threading implementations (both time and space) meet or exceed direct kernel-threading implementations, while achieving the programming advantages of high concurrency levels and safety. 328 325 329 A further effort over the past two decades is the development of language memory models to deal with the conflict between language features and compiler/hardware optimizations, \ egsome language features are unsafe in the presence of aggressive sequential optimizations~\cite{Buhr95a,Boehm05}.326 A further effort over the past two decades is the development of language memory models to deal with the conflict between language features and compiler/hardware optimizations, \ie some language features are unsafe in the presence of aggressive sequential optimizations~\cite{Buhr95a,Boehm05}. 330 327 The consequence is that a language must provide sufficient tools to program around safety issues, as inline and library code is all sequential to the compiler. 331 328 One solution is low-level qualifiers and functions (\eg @volatile@ and atomics) allowing \emph{programmers} to explicitly write safe (race-free~\cite{Boehm12}) programs. 332 A safer solution is high-level language constructs so the \emph{compiler} knows the concurrency boundaries (where mutual exclusion and synchronization are acquired/released) and provide implicit safety at and across these boundaries. 333 While the optimization problem is best known with respect to concurrency, it applies to other complex control-flow, like exceptions and coroutines. 334 As well, language solutions allow matching the language paradigm with the approach, \eg matching the functional paradigm with data-flow programming or the imperative paradigm with thread programming. 335 336 Finally, it is important for a language to provide safety over performance \emph{as the default}, allowing careful reduction of safety (unsafe code) for performance when necessary. 337 Two concurrency violations of this philosophy are \emph{spurious wakeup} (random wakeup~\cite[\S~9]{Buhr05a}) and \emph{barging}\footnote{ 338 Barging is competitive succession instead of direct handoff, \ie after a lock is released both arriving and preexisting waiter threads compete to acquire the lock. 339 Hence, an arriving thread can temporally \emph{barge} ahead of threads already waiting for an event, which can repeat indefinitely leading to starvation of waiter threads. 329 A safer solution is high-level language constructs so the \emph{compiler} knows the optimization boundaries, and hence, provides implicit safety. 330 This problem is best known with respect to concurrency, but applies to other complex control-flow, like exceptions\footnote{ 331 \CFA exception handling will be presented in a separate paper. 332 The key feature that dovetails with this paper is nonlocal exceptions allowing exceptions to be raised across stacks, with synchronous exceptions raised among coroutines and asynchronous exceptions raised among threads, similar to that in \uC~\cite[\S~5]{uC++} 333 } and coroutines. 334 Finally, language solutions allow matching constructs with language paradigm, \ie imperative and functional languages often have different presentations of the same concept to fit their programming model. 335 336 Finally, it is important for a language to provide safety over performance \emph{as the default}, allowing careful reduction of safety for performance when necessary. 337 Two concurrency violations of this philosophy are \emph{spurious wakeup} (random wakeup~\cite[\S~8]{Buhr05a}) and \emph{barging}\footnote{ 338 The notion of competitive succession instead of direct handoff, \ie a lock owner releases the lock and an arriving thread acquires it ahead of preexisting waiter threads. 340 339 } (signals-as-hints~\cite[\S~8]{Buhr05a}), where one is a consequence of the other, \ie once there is spurious wakeup, signals-as-hints follow. 341 (Author experience teaching concurrency is that students are confused by these semantics.) 342 However, spurious wakeup is \emph{not} a foundational concurrency property~\cite[\S~9]{Buhr05a}; 343 it is a performance design choice. 344 We argue removing spurious wakeup and signals-as-hints make concurrent programming simpler and safer as there is less local non-determinism to manage. 345 If barging acquisition is allowed, its specialized performance advantage should be available as an option not the default. 346 347 \CFA embraces language extensions for advanced control-flow, user-level threading, and safety as the default. 348 We present comparative examples to support our argument that the \CFA control-flow extensions are as expressive and safe as those in other concurrent imperative programming languages, and perform experiments to show the \CFA runtime is competitive with other similar mechanisms. 340 However, spurious wakeup is \emph{not} a foundational concurrency property~\cite[\S~8]{Buhr05a}, it is a performance design choice. 341 Similarly, signals-as-hints are often a performance decision. 342 We argue removing spurious wakeup and signals-as-hints make concurrent programming significantly safer because it removes local non-determinism and matches with programmer expectation. 343 (Author experience teaching concurrency is that students are highly confused by these semantics.) 344 Clawing back performance, when local non-determinism is unimportant, should be an option not the default. 345 346 \begin{comment} 347 Most augmented traditional (Fortran 18~\cite{Fortran18}, Cobol 14~\cite{Cobol14}, Ada 12~\cite{Ada12}, Java 11~\cite{Java11}) and new languages (Go~\cite{Go}, Rust~\cite{Rust}, and D~\cite{D}), except \CC, diverge from C with different syntax and semantics, only interoperate indirectly with C, and are not systems languages, for those with managed memory. 348 As a result, there is a significant learning curve to move to these languages, and C legacy-code must be rewritten. 349 While \CC, like \CFA, takes an evolutionary approach to extend C, \CC's constantly growing complex and interdependent features-set (\eg objects, inheritance, templates, etc.) mean idiomatic \CC code is difficult to use from C, and C programmers must expend significant effort learning \CC. 350 Hence, rewriting and retraining costs for these languages, even \CC, are prohibitive for companies with a large C software-base. 351 \CFA with its orthogonal feature-set, its high-performance runtime, and direct access to all existing C libraries circumvents these problems. 352 \end{comment} 353 354 \CFA embraces user-level threading, language extensions for advanced control-flow, and safety as the default. 355 We present comparative examples so the reader can judge if the \CFA control-flow extensions are better and safer than those in other concurrent, imperative programming languages, and perform experiments to show the \CFA runtime is competitive with other similar mechanisms. 349 356 The main contributions of this work are: 350 \begin{itemize}[topsep=3pt,itemsep= 0pt]357 \begin{itemize}[topsep=3pt,itemsep=1pt] 351 358 \item 352 a set of fundamental execution properties that dictate which language-level control-flow features need to be supported, 353 359 language-level generators, coroutines and user-level threading, which respect the expectations of C programmers. 354 360 \item 355 integration of these language-level control-flow features, while respecting the style and expectations of C programmers, 356 361 monitor synchronization without barging, and the ability to safely acquiring multiple monitors \emph{simultaneously} (deadlock free), while seamlessly integrating these capabilities with all monitor synchronization mechanisms. 357 362 \item 358 monitor synchronization without barging, and the ability to safely acquiring multiple monitors \emph{simultaneously} (deadlock free), while seamlessly integrating these capabilities with all monitor synchronization mechanisms, 359 360 \item 361 providing statically type-safe interfaces that integrate with the \CFA polymorphic type-system and other language features, 362 363 providing statically type-safe interfaces that integrate with the \CFA polymorphic type-system and other language features. 363 364 % \item 364 365 % library extensions for executors, futures, and actors built on the basic mechanisms. 365 366 366 \item 367 a runtime system without spurious wake-up and no performance loss, 368 367 a runtime system with no spurious wakeup. 369 368 \item 370 a dynamic partitioning mechanism to segregate groups of executing user and kernel threads performing specialized work (\eg web-server or compute engine) or requiring different scheduling (\eg NUMA or real-time). 371 369 a dynamic partitioning mechanism to segregate the execution environment for specialized requirements. 372 370 % \item 373 371 % a non-blocking I/O library 374 375 372 \item 376 experimental results showing comparable performance of the \CFA features with similar mechanisms in otherlanguages.373 experimental results showing comparable performance of the new features with similar mechanisms in other programming languages. 377 374 \end{itemize} 378 375 379 Section~\ref{s:FundamentalExecutionProperties} presents the compositional hierarchy of execution properties directing the design of control-flow features in \CFA. 380 Section~\ref{s:StatefulFunction} begins advanced control by introducing sequential functions that retain data and execution state between calls producing constructs @generator@ and @coroutine@. 381 Section~\ref{s:Concurrency} begins concurrency, or how to create (fork) and destroy (join) a thread producing the @thread@ construct. 376 Section~\ref{s:StatefulFunction} begins advanced control by introducing sequential functions that retain data and execution state between calls, which produces constructs @generator@ and @coroutine@. 377 Section~\ref{s:Concurrency} begins concurrency, or how to create (fork) and destroy (join) a thread, which produces the @thread@ construct. 382 378 Section~\ref{s:MutualExclusionSynchronization} discusses the two mechanisms to restricted nondeterminism when controlling shared access to resources (mutual exclusion) and timing relationships among threads (synchronization). 383 379 Section~\ref{s:Monitor} shows how both mutual exclusion and synchronization are safely embedded in the @monitor@ and @thread@ constructs. 384 380 Section~\ref{s:CFARuntimeStructure} describes the large-scale mechanism to structure (cluster) threads and virtual processors (kernel threads). 385 Section~\ref{s:Performance} uses a series of microbenchmarks to compare \CFA threading with pthreads, Java 11.0.6, Go 1.12.6, Rust 1.37.0, Python 3.7.6, Node.js 12.14.1, and \uC 7.0.0. 386 387 388 \section{Fundamental Execution Properties} 389 \label{s:FundamentalExecutionProperties} 390 391 The features in a programming language should be composed from a set of fundamental properties rather than an ad hoc collection chosen by the designers. 392 To this end, the control-flow features created for \CFA are based on the fundamental properties of any language with function-stack control-flow (see also \uC~\cite[pp.~140-142]{uC++}). 393 The fundamental properties are execution state, thread, and mutual-exclusion/synchronization (MES). 394 These independent properties can be used alone, in pairs, or in triplets to compose different language features, forming a compositional hierarchy where the most advanced feature has all the properties (state/thread/MES). 395 While it is possible for a language to only support the most advanced feature~\cite{Hermes90}, this unnecessarily complicates and makes inefficient solutions to certain classes of problems. 396 As is shown, each of the (non-rejected) composed features solves a particular set of problems, and hence, has a defensible position in a programming language. 397 If a compositional feature is missing, a programmer has too few/many fundamental properties resulting in a complex and/or is inefficient solution. 398 399 In detail, the fundamental properties are: 400 \begin{description}[leftmargin=\parindent,topsep=3pt,parsep=0pt] 401 \item[\newterm{execution state}:] 402 is the state information needed by a control-flow feature to initialize, manage compute data and execution location(s), and de-initialize. 403 State is retained in fixed-sized aggregate structures and dynamic-sized stack(s), often allocated in the heap(s) managed by the runtime system. 404 The lifetime of the state varies with the control-flow feature, where longer life-time and dynamic size provide greater power but also increase usage complexity and cost. 405 Control-flow transfers among execution states occurs in multiple ways, such as function call, context switch, asynchronous await, etc. 406 Because the programming language determines what constitutes an execution state, implicitly manages this state, and defines movement mechanisms among states, execution state is an elementary property of the semantics of a programming language. 407 % An execution-state is related to the notion of a process continuation \cite{Hieb90}. 408 409 \item[\newterm{threading}:] 410 is execution of code that occurs independently of other execution, \ie the execution resulting from a thread is sequential. 411 Multiple threads provide \emph{concurrent execution}; 412 concurrent execution becomes parallel when run on multiple processing units (hyper-threading, cores, sockets). 413 There must be language mechanisms to create, block/unblock, and join with a thread. 414 415 \item[\newterm{MES}:] 416 is the concurrency mechanisms to perform an action without interruption and establish timing relationships among multiple threads. 417 These two properties are independent, \ie mutual exclusion cannot provide synchronization and vice versa without introducing additional threads~\cite[\S~4]{Buhr05a}. 418 Limiting MES, \eg no access to shared data, results in contrived solutions and inefficiency on multi-core von Neumann computers where shared memory is a foundational aspect of its design. 419 \end{description} 420 These properties are fundamental because they cannot be built from existing language features, \eg a basic programming language like C99~\cite{C99} cannot create new control-flow features, concurrency, or provide MES using atomic hardware mechanisms. 421 422 423 \subsection{Execution Properties} 424 425 Table~\ref{t:ExecutionPropertyComposition} shows how the three fundamental execution properties: state, thread, and mutual exclusion compose a hierarchy of control-flow features needed in a programming language. 426 (When doing case analysis, not all combinations are meaningful.) 427 Note, basic von Neumann execution requires at least one thread and an execution state providing some form of call stack. 428 For table entries missing these minimal components, the property is borrowed from the invoker (caller). 429 430 Case 1 is a function that borrows storage for its state (stack frame/activation) and a thread from its invoker and retains this state across \emph{callees}, \ie function local-variables are retained on the stack across calls. 431 Case 2 is case 1 with access to shared state so callers are restricted during update (mutual exclusion) and scheduling for other threads (synchronization). 432 Case 3 is a stateful function supporting resume/suspend along with call/return to retain state across \emph{callers}, but has some restrictions because the function's state is stackless. 433 Note, stackless functions still borrow the caller's stack and thread, where the stack is used to preserve state across its callees. 434 Case 4 is cases 2 and 3 with protection to shared state for stackless functions. 435 Cases 5 and 6 are the same as 3 and 4 but only the thread is borrowed as the function state is stackful, so resume/suspend is a context switch from the caller's to the function's stack. 436 Cases 7 and 8 are rejected because a function that is given a new thread must have its own stack where the thread begins and stack frames are stored for calls, \ie there is no stack to borrow. 437 Cases 9 and 10 are rejected because a thread with a fixed state (no stack) cannot accept calls, make calls, block, or be preempted, all of which require an unknown amount of additional dynamic state. 438 Hence, once started, this kind of thread must execute to completion, \ie computation only, which severely restricts runtime management. 439 Cases 11 and 12 have a stackful thread with and without safe access to shared state. 440 Execution properties increase the cost of creation and execution along with complexity of usage. 441 442 \begin{table} 443 \caption{Execution property composition} 444 \centering 445 \label{t:ExecutionPropertyComposition} 446 \renewcommand{\arraystretch}{1.25} 447 %\setlength{\tabcolsep}{5pt} 448 \begin{tabular}{c|c||l|l} 449 \multicolumn{2}{c||}{execution properties} & \multicolumn{2}{c}{mutual exclusion / synchronization} \\ 450 \hline 451 stateful & thread & \multicolumn{1}{c|}{No} & \multicolumn{1}{c}{Yes} \\ 452 \hline 453 \hline 454 No & No & \textbf{1}\ \ \ function & \textbf{2}\ \ \ @monitor@ function \\ 455 \hline 456 Yes (stackless) & No & \textbf{3}\ \ \ @generator@ & \textbf{4}\ \ \ @monitor@ @generator@ \\ 457 \hline 458 Yes (stackful) & No & \textbf{5}\ \ \ @coroutine@ & \textbf{6}\ \ \ @monitor@ @coroutine@ \\ 459 \hline 460 No & Yes & \textbf{7}\ \ \ {\color{red}rejected} & \textbf{8}\ \ \ {\color{red}rejected} \\ 461 \hline 462 Yes (stackless) & Yes & \textbf{9}\ \ \ {\color{red}rejected} & \textbf{10}\ \ \ {\color{red}rejected} \\ 463 \hline 464 Yes (stackful) & Yes & \textbf{11}\ \ \ @thread@ & \textbf{12}\ \ @monitor@ @thread@ \\ 465 \end{tabular} 466 \end{table} 467 468 Given the execution-properties taxonomy, programmers can now answer three basic questions: is state necessary across calls and how much, is a separate thread necessary, is access to shared state necessary. 469 The answers define the optimal language feature need for implementing a programming problem. 470 The next sections discusses how \CFA fills in the table with language features, while other programming languages may only provide a subset of the table. 471 472 473 \subsection{Design Requirements} 474 475 The following design requirements largely stem from building \CFA on top of C. 476 \begin{itemize}[topsep=3pt,parsep=0pt] 477 \item 478 All communication must be statically type checkable for early detection of errors and efficient code generation. 479 This requirement is consistent with the fact that C is a statically-typed programming-language. 480 481 \item 482 Direct interaction among language features must be possible allowing any feature to be selected without restricting comm\-unication. 483 For example, many concurrent languages do not provide direct communication (calls) among threads, \ie threads only communicate indirectly through monitors, channels, messages, and/or futures. 484 Indirect communication increases the number of objects, consuming more resources, and require additional synchronization and possibly data transfer. 485 486 \item 487 All communication is performed using function calls, \ie data is transmitted from argument to parameter and results are returned from function calls. 488 Alternative forms of communication, such as call-backs, message passing, channels, or communication ports, step outside of C's normal form of communication. 489 490 \item 491 All stateful features must follow the same declaration scopes and lifetimes as other language data. 492 For C that means at program startup, during block and function activation, and on demand using dynamic allocation. 493 494 \item 495 MES must be available implicitly in language constructs as well as explicitly for specialized requirements, because requiring programmers to build MES using low-level locks often leads to incorrect programs. 496 Furthermore, reducing synchronization scope by encapsulating it within language constructs further reduces errors in concurrent programs. 497 498 \item 499 Both synchronous and asynchronous communication are needed. 500 However, we believe the best way to provide asynchrony, such as call-buffering/chaining and/or returning futures~\cite{multilisp}, is building it from expressive synchronous features. 501 502 \item 503 Synchronization must be able to control the service order of requests including prioritizing selection from different kinds of outstanding requests, and postponing a request for an unspecified time while continuing to accept new requests. 504 Otherwise, certain concurrency problems are difficult, e.g.\ web server, disk scheduling, and the amount of concurrency is inhibited~\cite{Gentleman81}. 505 \end{itemize} 506 We have satisfied these requirements in \CFA while maintaining backwards compatibility with the huge body of legacy C programs. 507 % In contrast, other new programming languages must still access C programs (\eg operating-system service routines), but do so through fragile C interfaces. 508 509 510 \subsection{Asynchronous Await / Call} 511 512 Asynchronous await/call is a caller mechanism for structuring programs and/or increasing concurrency, where the caller (client) postpones an action into the future, which is subsequently executed by a callee (server). 513 The caller detects the action's completion through a \newterm{future}/\newterm{promise}. 514 The benefit is asynchronous caller execution with respect to the callee until future resolution. 515 For single-threaded languages like JavaScript, an asynchronous call passes a callee action, which is queued in the event-engine, and continues execution with a promise. 516 When the caller needs the promise to be fulfilled, it executes @await@. 517 A promise-completion call-back can be part of the callee action or the caller is rescheduled; 518 in either case, the call back is executed after the promise is fulfilled. 519 While asynchronous calls generate new callee (server) events, we content this mechanism is insufficient for advanced control-flow mechanisms like generators or coroutines (which are discussed next). 520 Specifically, control between caller and callee occurs indirectly through the event-engine precluding direct handoff and cycling among events, and requires complex resolution of a control promise and data. 521 Note, @async-await@ is just syntactic-sugar over the event engine so it does not solve these deficiencies. 522 For multi-threaded languages like Java, the asynchronous call queues a callee action with an executor (server), which subsequently executes the work by a thread in the executor thread-pool. 523 The problem is when concurrent work-units need to interact and/or block as this effects the executor, \eg stops threads. 524 While it is possible to extend this approach to support the necessary mechanisms, \eg message passing in Actors, we show monitors and threads provide an equally competitive approach that does not deviate from normal call communication and can be used to build asynchronous call, as is done in Java. 381 Section~\ref{s:Performance} uses a series of microbenchmarks to compare \CFA threading with pthreads, Java OpenJDK-9, Go 1.12.6 and \uC 7.0.0. 525 382 526 383 … … 528 385 \label{s:StatefulFunction} 529 386 530 A \emph{stateful function} has the ability to remember state between calls, where state can be either data or execution, \eg plugin, device driver, finite-state machine (FSM). 531 A simple technique to retain data state between calls is @static@ declarations within a function, which is often implemented by hoisting the declarations to the global scope but hiding the names within the function using name mangling. 532 However, each call starts the function at the top making it difficult to determine the last point of execution in an algorithm, and requiring multiple flag variables and testing to reestablish the continuation point. 533 Hence, the next step of generalizing function state is implicitly remembering the return point between calls and reentering the function at this point rather than the top, called \emph{generators}\,/\,\emph{iterators} or \emph{stackless coroutines}. 534 For example, a Fibonacci generator retains data and execution state allowing it to remember prior values needed to generate the next value and the location in the algorithm to compute that value. 535 The next step of generalization is instantiating the function to allow multiple named instances, \eg multiple Fibonacci generators, where each instance has its own state, and hence, can generate an independent sequence of values. 536 Note, a subset of generator state is a function \emph{closure}, \ie the technique of capturing lexical references when returning a nested function. 537 A further generalization is adding a stack to a generator's state, called a \emph{coroutine}, so it can suspend outside of itself, \eg call helper functions to arbitrary depth before suspending back to its resumer without unwinding these calls. 538 For example, a coroutine iterator for a binary tree can stop the traversal at the visit point (pre, infix, post traversal), return the node value to the caller, and then continue the recursive traversal from the current node on the next call. 539 540 There are two styles of activating a stateful function, \emph{asymmetric} or \emph{symmetric}, identified by resume/suspend (no cycles) and resume/resume (cycles). 541 These styles \emph{do not} cause incremental stack growth, \eg a million resume/suspend or resume/resume cycles do not remember each cycle just the last resumer for each cycle. 542 Selecting between stackless/stackful semantics and asymmetric/symmetric style is a tradeoff between programming requirements, performance, and design, where stackless is faster and smaller (modified call/return between closures), stackful is more general but slower and larger (context switching between distinct stacks), and asymmetric is simpler control-flow than symmetric. 543 Additionally, storage management for the closure/stack (especially in unmanaged languages, \ie no garbage collection) must be factored into design and performance. 544 Note, creation cost (closure/stack) is amortized across usage, so activation cost (resume/suspend) is usually the dominant factor. 545 546 % The stateful function is an old idea~\cite{Conway63,Marlin80} that is new again~\cite{C++20Coroutine19}, where execution is temporarily suspended and later resumed, \eg plugin, device driver, finite-state machine. 547 % Hence, a stateful function may not end when it returns to its caller, allowing it to be restarted with the data and execution location present at the point of suspension. 548 % If the closure is fixed size, we call it a \emph{generator} (or \emph{stackless}), and its control flow is restricted, \eg suspending outside the generator is prohibited. 549 % If the closure is variable size, we call it a \emph{coroutine} (or \emph{stackful}), and as the names implies, often implemented with a separate stack with no programming restrictions. 550 % Hence, refactoring a stackless coroutine may require changing it to stackful. 551 % A foundational property of all \emph{stateful functions} is that resume/suspend \emph{do not} cause incremental stack growth, \ie resume/suspend operations are remembered through the closure not the stack. 552 % As well, activating a stateful function is \emph{asymmetric} or \emph{symmetric}, identified by resume/suspend (no cycles) and resume/resume (cycles). 553 % A fixed closure activated by modified call/return is faster than a variable closure activated by context switching. 554 % Additionally, any storage management for the closure (especially in unmanaged languages, \ie no garbage collection) must also be factored into design and performance. 555 % Therefore, selecting between stackless and stackful semantics is a tradeoff between programming requirements and performance, where stackless is faster and stackful is more general. 556 % nppNote, creation cost is amortized across usage, so activation cost is usually the dominant factor. 557 558 For example, Python presents asymmetric generators as a function object, \uC presents symmetric coroutines as a \lstinline[language=C++]|class|-like object, and many languages present threading using function pointers, @pthreads@~\cite{Butenhof97}, \Csharp~\cite{Csharp}, Go~\cite{Go}, and Scala~\cite{Scala}. 559 \begin{center} 560 \begin{tabular}{@{}l|l|l@{}} 561 \multicolumn{1}{@{}c|}{Python asymmetric generator} & \multicolumn{1}{c|}{\uC symmetric coroutine} & \multicolumn{1}{c@{}}{Pthreads thread} \\ 562 \hline 563 \begin{python} 564 `def Gen():` $\LstCommentStyle{\color{red}// function}$ 565 ... yield val ... 566 gen = Gen() 567 for i in range( 10 ): 568 print( next( gen ) ) 569 \end{python} 570 & 571 \begin{uC++} 572 `_Coroutine Cycle {` $\LstCommentStyle{\color{red}// class}$ 573 Cycle * p; 574 void main() { p->cycle(); } 575 void cycle() { resume(); } `};` 576 Cycle c1, c2; c1.p=&c2; c2.p=&c1; c1.cycle(); 577 \end{uC++} 578 & 579 \begin{cfa} 580 void * rtn( void * arg ) { ... } 581 int i = 3, rc; 582 pthread_t t; $\C{// thread id}$ 583 $\LstCommentStyle{\color{red}// function pointer}$ 584 rc=pthread_create(&t, `rtn`, (void *)i); 585 \end{cfa} 586 \end{tabular} 587 \end{center} 588 \CFA's preferred presentation model for generators/coroutines/threads is a hybrid of functions and classes, giving an object-oriented flavour. 589 Essentially, the generator/coroutine/thread function is semantically coupled with a generator/coroutine/thread custom type via the type's name. 590 The custom type solves several issues, while accessing the underlying mechanisms used by the custom types is still allowed for flexibility reasons. 591 Each custom type is discussed in detail in the following sections. 592 593 594 \subsection{Generator} 595 596 Stackless generators (Table~\ref{t:ExecutionPropertyComposition} case 3) have the potential to be very small and fast, \ie as small and fast as function call/return for both creation and execution. 597 The \CFA goal is to achieve this performance target, possibly at the cost of some semantic complexity. 598 A series of different kinds of generators and their implementation demonstrate how this goal is accomplished.\footnote{ 599 The \CFA operator syntax uses \lstinline|?| to denote operands, which allows precise definitions for pre, post, and infix operators, \eg \lstinline|?++|, \lstinline|++?|, and \lstinline|?+?|, in addition \lstinline|?\{\}| denotes a constructor, as in \lstinline|foo `f` = `\{`...`\}`|, \lstinline|^?\{\}| denotes a destructor, and \lstinline|?()| is \CC function call \lstinline|operator()|. 600 Operator \lstinline+|+ is overloaded for printing, like bit-shift \lstinline|<<| in \CC. 601 The \CFA \lstinline|with| clause opens an aggregate scope making its fields directly accessible, like Pascal \lstinline|with|, but using parallel semantics; 602 multiple aggregates may be opened. 603 \CFA has rebindable references \lstinline|int i, & ip = i, j; `&ip = &j;`| and non-rebindable references \lstinline|int i, & `const` ip = i, j; `&ip = &j;` // disallowed|. 604 }% 387 The stateful function is an old idea~\cite{Conway63,Marlin80} that is new again~\cite{C++20Coroutine19}, where execution is temporarily suspended and later resumed, \eg plugin, device driver, finite-state machine. 388 Hence, a stateful function may not end when it returns to its caller, allowing it to be restarted with the data and execution location present at the point of suspension. 389 This capability is accomplished by retaining a data/execution \emph{closure} between invocations. 390 If the closure is fixed size, we call it a \emph{generator} (or \emph{stackless}), and its control flow is restricted, \eg suspending outside the generator is prohibited. 391 If the closure is variable size, we call it a \emph{coroutine} (or \emph{stackful}), and as the names implies, often implemented with a separate stack with no programming restrictions. 392 Hence, refactoring a stackless coroutine may require changing it to stackful. 393 A foundational property of all \emph{stateful functions} is that resume/suspend \emph{do not} cause incremental stack growth, \ie resume/suspend operations are remembered through the closure not the stack. 394 As well, activating a stateful function is \emph{asymmetric} or \emph{symmetric}, identified by resume/suspend (no cycles) and resume/resume (cycles). 395 A fixed closure activated by modified call/return is faster than a variable closure activated by context switching. 396 Additionally, any storage management for the closure (especially in unmanaged languages, \ie no garbage collection) must also be factored into design and performance. 397 Therefore, selecting between stackless and stackful semantics is a tradeoff between programming requirements and performance, where stackless is faster and stackful is more general. 398 Note, creation cost is amortized across usage, so activation cost is usually the dominant factor. 605 399 606 400 \begin{figure} … … 616 410 617 411 618 619 620 412 int fn = f->fn; f->fn = f->fn1; 621 413 f->fn1 = f->fn + fn; 622 414 return fn; 415 623 416 } 624 417 int main() { … … 639 432 void `main(Fib & fib)` with(fib) { 640 433 641 642 434 [fn1, fn] = [1, 0]; 643 435 for () { … … 659 451 \begin{cfa}[aboveskip=0pt,belowskip=0pt] 660 452 typedef struct { 661 int `restart`, fn1, fn;453 int fn1, fn; void * `next`; 662 454 } Fib; 663 #define FibCtor { `0`, 1, 0}455 #define FibCtor { 1, 0, NULL } 664 456 Fib * comain( Fib * f ) { 665 `static void * states[] = {&&s0, &&s1};` 666 `goto *states[f->restart];` 667 s0: f->`restart` = 1; 457 if ( f->next ) goto *f->next; 458 f->next = &&s1; 668 459 for ( ;; ) { 669 460 return f; 670 461 s1:; int fn = f->fn + f->fn1; 671 f->fn1 = f->fn; f->fn = fn;462 f->fn1 = f->fn; f->fn = fn; 672 463 } 673 464 } … … 681 472 \end{lrbox} 682 473 683 \subfloat[C ]{\label{f:CFibonacci}\usebox\myboxA}474 \subfloat[C asymmetric generator]{\label{f:CFibonacci}\usebox\myboxA} 684 475 \hspace{3pt} 685 476 \vrule 686 477 \hspace{3pt} 687 \subfloat[\CFA ]{\label{f:CFAFibonacciGen}\usebox\myboxB}478 \subfloat[\CFA asymmetric generator]{\label{f:CFAFibonacciGen}\usebox\myboxB} 688 479 \hspace{3pt} 689 480 \vrule 690 481 \hspace{3pt} 691 \subfloat[C generat ed code for \CFA version]{\label{f:CFibonacciSim}\usebox\myboxC}482 \subfloat[C generator implementation]{\label{f:CFibonacciSim}\usebox\myboxC} 692 483 \caption{Fibonacci (output) asymmetric generator} 693 484 \label{f:FibonacciAsymmetricGenerator} … … 702 493 }; 703 494 void ?{}( Fmt & fmt ) { `resume(fmt);` } // constructor 704 void ^?{}( Fmt & f ) with(f) { $\C[ 2.25in]{// destructor}$495 void ^?{}( Fmt & f ) with(f) { $\C[1.75in]{// destructor}$ 705 496 if ( g != 0 || b != 0 ) sout | nl; } 706 497 void `main( Fmt & f )` with(f) { … … 708 499 for ( ; g < 5; g += 1 ) { $\C{// groups}$ 709 500 for ( ; b < 4; b += 1 ) { $\C{// blocks}$ 710 do {`suspend;` $\C{// wait for character}$711 while ( ch == '\n' ) ; // ignore newline712 sout | ch; $\C{// print character}$713 } sout | " "; $\C{// block separator}$714 } sout | nl; $\C{// group separator}$501 `suspend;` $\C{// wait for character}$ 502 while ( ch == '\n' ) `suspend;` // ignore 503 sout | ch; // newline 504 } sout | " "; // block spacer 505 } sout | nl; // group newline 715 506 } 716 507 } … … 730 521 \begin{cfa}[aboveskip=0pt,belowskip=0pt] 731 522 typedef struct { 732 int `restart`, g, b;523 void * next; 733 524 char ch; 525 int g, b; 734 526 } Fmt; 735 527 void comain( Fmt * f ) { 736 `static void * states[] = {&&s0, &&s1};` 737 `goto *states[f->restart];` 738 s0: f->`restart` = 1; 528 if ( f->next ) goto *f->next; 529 f->next = &&s1; 739 530 for ( ;; ) { 740 531 for ( f->g = 0; f->g < 5; f->g += 1 ) { 741 532 for ( f->b = 0; f->b < 4; f->b += 1 ) { 742 do { return; s1:;743 } while ( f->ch == '\n' );533 return; 534 s1:; while ( f->ch == '\n' ) return; 744 535 printf( "%c", f->ch ); 745 536 } printf( " " ); … … 748 539 } 749 540 int main() { 750 Fmt fmt = { `0`}; comain( &fmt ); // prime541 Fmt fmt = { NULL }; comain( &fmt ); // prime 751 542 for ( ;; ) { 752 543 scanf( "%c", &fmt.ch ); … … 759 550 \end{lrbox} 760 551 761 \subfloat[\CFA ]{\label{f:CFAFormatGen}\usebox\myboxA}762 \hspace{3 5pt}552 \subfloat[\CFA asymmetric generator]{\label{f:CFAFormatGen}\usebox\myboxA} 553 \hspace{3pt} 763 554 \vrule 764 555 \hspace{3pt} 765 \subfloat[C generat ed code for \CFA version]{\label{f:CFormatGenImpl}\usebox\myboxB}556 \subfloat[C generator simulation]{\label{f:CFormatSim}\usebox\myboxB} 766 557 \hspace{3pt} 767 558 \caption{Formatter (input) asymmetric generator} … … 769 560 \end{figure} 770 561 771 Figure~\ref{f:FibonacciAsymmetricGenerator} shows an unbounded asymmetric generator for an infinite sequence of Fibonacci numbers written (left to right) in C, \CFA, and showing the underlying C implementation for the \CFA version. 562 Stateful functions appear as generators, coroutines, and threads, where presentations are based on function objects or pointers~\cite{Butenhof97, C++14, MS:VisualC++, BoostCoroutines15}. 563 For example, Python presents generators as a function object: 564 \begin{python} 565 def Gen(): 566 ... `yield val` ... 567 gen = Gen() 568 for i in range( 10 ): 569 print( next( gen ) ) 570 \end{python} 571 Boost presents coroutines in terms of four functor object-types: 572 \begin{cfa} 573 asymmetric_coroutine<>::pull_type 574 asymmetric_coroutine<>::push_type 575 symmetric_coroutine<>::call_type 576 symmetric_coroutine<>::yield_type 577 \end{cfa} 578 and many languages present threading using function pointers, @pthreads@~\cite{Butenhof97}, \Csharp~\cite{Csharp}, Go~\cite{Go}, and Scala~\cite{Scala}, \eg pthreads: 579 \begin{cfa} 580 void * rtn( void * arg ) { ... } 581 int i = 3, rc; 582 pthread_t t; $\C{// thread id}$ 583 `rc = pthread_create( &t, rtn, (void *)i );` $\C{// create and initialized task, type-unsafe input parameter}$ 584 \end{cfa} 585 % void mycor( pthread_t cid, void * arg ) { 586 % int * value = (int *)arg; $\C{// type unsafe, pointer-size only}$ 587 % // thread body 588 % } 589 % int main() { 590 % int input = 0, output; 591 % coroutine_t cid = coroutine_create( &mycor, (void *)&input ); $\C{// type unsafe, pointer-size only}$ 592 % coroutine_resume( cid, (void *)input, (void **)&output ); $\C{// type unsafe, pointer-size only}$ 593 % } 594 \CFA's preferred presentation model for generators/coroutines/threads is a hybrid of objects and functions, with an object-oriented flavour. 595 Essentially, the generator/coroutine/thread function is semantically coupled with a generator/coroutine/thread custom type. 596 The custom type solves several issues, while accessing the underlying mechanisms used by the custom types is still allowed. 597 598 599 \subsection{Generator} 600 601 Stackless generators have the potential to be very small and fast, \ie as small and fast as function call/return for both creation and execution. 602 The \CFA goal is to achieve this performance target, possibly at the cost of some semantic complexity. 603 A series of different kinds of generators and their implementation demonstrate how this goal is accomplished. 604 605 Figure~\ref{f:FibonacciAsymmetricGenerator} shows an unbounded asymmetric generator for an infinite sequence of Fibonacci numbers written in C and \CFA, with a simple C implementation for the \CFA version. 772 606 This generator is an \emph{output generator}, producing a new result on each resumption. 773 607 To compute Fibonacci, the previous two values in the sequence are retained to generate the next value, \ie @fn1@ and @fn@, plus the execution location where control restarts when the generator is resumed, \ie top or middle. … … 777 611 The C version only has the middle execution state because the top execution state is declaration initialization. 778 612 Figure~\ref{f:CFAFibonacciGen} shows the \CFA approach, which also has a manual closure, but replaces the structure with a custom \CFA @generator@ type. 779 Each generator type must have a function named \lstinline|main|, 780 % \footnote{ 781 % The name \lstinline|main| has special meaning in C, specifically the function where a program starts execution. 782 % Leveraging starting semantics to this name for generator/coroutine/thread is a logical extension.} 783 called a \emph{generator main} (leveraging the starting semantics for program @main@ in C), which is connected to the generator type via its single reference parameter. 613 This generator type is then connected to a function that \emph{must be named \lstinline|main|},\footnote{ 614 The name \lstinline|main| has special meaning in C, specifically the function where a program starts execution. 615 Hence, overloading this name for other starting points (generator/coroutine/thread) is a logical extension.} 616 called a \emph{generator main},which takes as its only parameter a reference to the generator type. 784 617 The generator main contains @suspend@ statements that suspend execution without ending the generator versus @return@. 785 For the Fibonacci generator-main, 618 For the Fibonacci generator-main,\footnote{ 619 The \CFA \lstinline|with| opens an aggregate scope making its fields directly accessible, like Pascal \lstinline|with|, but using parallel semantics. 620 Multiple aggregates may be opened.} 786 621 the top initialization state appears at the start and the middle execution state is denoted by statement @suspend@. 787 622 Any local variables in @main@ \emph{are not retained} between calls; … … 792 627 Resuming an ended (returned) generator is undefined. 793 628 Function @resume@ returns its argument generator so it can be cascaded in an expression, in this case to print the next Fibonacci value @fn@ computed in the generator instance. 794 Figure~\ref{f:CFibonacciSim} shows the C implementation of the \CFA asymmetric generator. 795 Only one execution-state field, @restart@, is needed to subscript the suspension points in the generator. 796 At the start of the generator main, the @static@ declaration, @states@, is initialized to the N suspend points in the generator (where operator @&&@ dereferences/references a label~\cite{gccValueLabels}). 797 Next, the computed @goto@ selects the last suspend point and branches to it. 798 The cost of setting @restart@ and branching via the computed @goto@ adds very little cost to the suspend/resume calls. 799 800 An advantage of the \CFA explicit generator type is the ability to allow multiple type-safe interface functions taking and returning arbitrary types. 629 Figure~\ref{f:CFibonacciSim} shows the C implementation of the \CFA generator only needs one additional field, @next@, to handle retention of execution state. 630 The computed @goto@ at the start of the generator main, which branches after the previous suspend, adds very little cost to the resume call. 631 Finally, an explicit generator type provides both design and performance benefits, such as multiple type-safe interface functions taking and returning arbitrary types.\footnote{ 632 The \CFA operator syntax uses \lstinline|?| to denote operands, which allows precise definitions for pre, post, and infix operators, \eg \lstinline|++?|, \lstinline|?++|, and \lstinline|?+?|, in addition \lstinline|?\{\}| denotes a constructor, as in \lstinline|foo `f` = `\{`...`\}`|, \lstinline|^?\{\}| denotes a destructor, and \lstinline|?()| is \CC function call \lstinline|operator()|. 633 }% 801 634 \begin{cfa} 802 635 int ?()( Fib & fib ) { return `resume( fib )`.fn; } $\C[3.9in]{// function-call interface}$ 803 int ?()( Fib & fib, int N ) { for ( N - 1 ) `fib()`; return `fib()`; } $\C{// add parameter to skip N values}$ 804 double ?()( Fib & fib ) { return (int)`fib()` / 3.14159; } $\C{// different return type, cast prevents recursive call}$ 805 Fib f; int i; double d; 806 i = f(); i = f( 2 ); d = f(); $\C{// alternative interfaces}\CRT$ 636 int ?()( Fib & fib, int N ) { for ( N - 1 ) `fib()`; return `fib()`; } $\C{// use function-call interface to skip N values}$ 637 double ?()( Fib & fib ) { return (int)`fib()` / 3.14159; } $\C{// different return type, cast prevents recursive call}\CRT$ 638 sout | (int)f1() | (double)f1() | f2( 2 ); // alternative interface, cast selects call based on return type, step 2 values 807 639 \end{cfa} 808 640 Now, the generator can be a separately compiled opaque-type only accessed through its interface functions. 809 641 For contrast, Figure~\ref{f:PythonFibonacci} shows the equivalent Python Fibonacci generator, which does not use a generator type, and hence only has a single interface, but an implicit closure. 810 642 811 \begin{figure} 812 %\centering 813 \newbox\myboxA 814 \begin{lrbox}{\myboxA} 815 \begin{python}[aboveskip=0pt,belowskip=0pt] 816 def Fib(): 817 fn1, fn = 0, 1 818 while True: 819 `yield fn1` 820 fn1, fn = fn, fn1 + fn 821 f1 = Fib() 822 f2 = Fib() 823 for i in range( 10 ): 824 print( next( f1 ), next( f2 ) ) 825 826 827 828 829 830 831 832 833 834 835 \end{python} 836 \end{lrbox} 837 838 \newbox\myboxB 839 \begin{lrbox}{\myboxB} 840 \begin{python}[aboveskip=0pt,belowskip=0pt] 841 def Fmt(): 842 try: 843 while True: $\C[2.5in]{\# until destructor call}$ 844 for g in range( 5 ): $\C{\# groups}$ 845 for b in range( 4 ): $\C{\# blocks}$ 846 while True: 847 ch = (yield) $\C{\# receive from send}$ 848 if '\n' not in ch: $\C{\# ignore newline}$ 849 break 850 print( ch, end='' ) $\C{\# print character}$ 851 print( ' ', end='' ) $\C{\# block separator}$ 852 print() $\C{\# group separator}$ 853 except GeneratorExit: $\C{\# destructor}$ 854 if g != 0 | b != 0: $\C{\# special case}$ 855 print() 856 fmt = Fmt() 857 `next( fmt )` $\C{\# prime, next prewritten}$ 858 for i in range( 41 ): 859 `fmt.send( 'a' );` $\C{\# send to yield}$ 860 \end{python} 861 \end{lrbox} 862 863 \hspace{30pt} 864 \subfloat[Fibonacci]{\label{f:PythonFibonacci}\usebox\myboxA} 865 \hspace{3pt} 866 \vrule 867 \hspace{3pt} 868 \subfloat[Formatter]{\label{f:PythonFormatter}\usebox\myboxB} 869 \caption{Python generator} 870 \label{f:PythonGenerator} 871 \end{figure} 872 873 Having to manually create the generator closure by moving local-state variables into the generator type is an additional programmer burden (removed by the coroutine in Section~\ref{s:Coroutine}). 874 This manual requirement follows from the generality of allowing variable-size local-state, \eg local state with a variable-length array requires dynamic allocation as the array size is unknown at compile time. 643 Having to manually create the generator closure by moving local-state variables into the generator type is an additional programmer burden. 644 (This restriction is removed by the coroutine in Section~\ref{s:Coroutine}.) 645 This requirement follows from the generality of variable-size local-state, \eg local state with a variable-length array requires dynamic allocation because the array size is unknown at compile time. 875 646 However, dynamic allocation significantly increases the cost of generator creation/destruction and is a showstopper for embedded real-time programming. 876 647 But more importantly, the size of the generator type is tied to the local state in the generator main, which precludes separate compilation of the generator main, \ie a generator must be inlined or local state must be dynamically allocated. 877 With respect to safety, we believe static analysis can discriminate persistent generator state from temporary generator-main state and raise a compile-time error for temporary usage spanning suspend points.878 Our experience using generators is that theproblems have simple data state, including local state, but complex execution state, so the burden of creating the generator type is small.648 With respect to safety, we believe static analysis can discriminate local state from temporary variables in a generator, \ie variable usage spanning @suspend@, and generate a compile-time error. 649 Finally, our current experience is that most generator problems have simple data state, including local state, but complex execution state, so the burden of creating the generator type is small. 879 650 As well, C programmers are not afraid of this kind of semantic programming requirement, if it results in very small, fast generators. 880 651 … … 898 669 The example takes advantage of resuming a generator in the constructor to prime the loops so the first character sent for formatting appears inside the nested loops. 899 670 The destructor provides a newline, if formatted text ends with a full line. 900 Figure~\ref{f:CFormatGenImpl} shows the C implementation of the \CFA input generator with one additional field and the computed @goto@. 901 For contrast, Figure~\ref{f:PythonFormatter} shows the equivalent Python format generator with the same properties as the format generator. 902 903 % https://dl-acm-org.proxy.lib.uwaterloo.ca/ 904 905 Figure~\ref{f:DeviceDriverGen} shows an important application for an asymmetric generator, a device-driver, because device drivers are a significant source of operating-system errors: 85\% in Windows XP~\cite[p.~78]{Swift05} and 51.6\% in Linux~\cite[p.~1358,]{Xiao19}. %\cite{Palix11} 906 Swift \etal~\cite[p.~86]{Swift05} restructure device drivers using the Extension Procedure Call (XPC) within the kernel via functions @nooks_driver_call@ and @nooks_kernel_call@, which have coroutine properties context switching to separate stacks with explicit hand-off calls; 907 however, the calls do not retain execution state, and hence always start from the top. 908 The alternative approach for implementing device drivers is using stack-ripping. 909 However, Adya \etal~\cite{Adya02} argue against stack ripping in Section 3.2 and suggest a hybrid approach in Section 4 using cooperatively scheduled \emph{fibers}, which is coroutining. 910 911 As an example, the following protocol: 671 Figure~\ref{f:CFormatSim} shows the C implementation of the \CFA input generator with one additional field and the computed @goto@. 672 For contrast, Figure~\ref{f:PythonFormatter} shows the equivalent Python format generator with the same properties as the Fibonacci generator. 673 674 Figure~\ref{f:DeviceDriverGen} shows a \emph{killer} asymmetric generator, a device-driver, because device drivers caused 70\%-85\% of failures in Windows/Linux~\cite{Swift05}. 675 Device drives follow the pattern of simple data state but complex execution state, \ie finite state-machine (FSM) parsing a protocol. 676 For example, the following protocol: 912 677 \begin{center} 913 678 \ldots\, STX \ldots\, message \ldots\, ESC ETX \ldots\, message \ldots\, ETX 2-byte crc \ldots 914 679 \end{center} 915 is for a simplenetwork message beginning with the control character STX, ending with an ETX, and followed by a 2-byte cyclic-redundancy check.680 is a network message beginning with the control character STX, ending with an ETX, and followed by a 2-byte cyclic-redundancy check. 916 681 Control characters may appear in a message if preceded by an ESC. 917 682 When a message byte arrives, it triggers an interrupt, and the operating system services the interrupt by calling the device driver with the byte read from a hardware register. 918 The device driver returns a status code of its current state, and when a complete message is obtained, the operating system read the message accumulated in the supplied buffer. 919 Hence, the device driver is an input/output generator, where the cost of resuming the device-driver generator is the same as call/return, so performance in an operating-system kernel is excellent. 920 The key benefits of using a generator are correctness, safety, and maintenance because the execution states are transcribed directly into the programming language rather than table lookup or stack ripping. 921 The conclusion is that FSMs are complex and occur in important domains, so direct generator support is important in a system programming language. 683 The device driver returns a status code of its current state, and when a complete message is obtained, the operating system knows the message is in the message buffer. 684 Hence, the device driver is an input/output generator. 685 686 Note, the cost of creating and resuming the device-driver generator, @Driver@, is virtually identical to call/return, so performance in an operating-system kernel is excellent. 687 As well, the data state is small, where variables @byte@ and @msg@ are communication variables for passing in message bytes and returning the message, and variables @lnth@, @crc@, and @sum@ are local variable that must be retained between calls and are manually hoisted into the generator type. 688 % Manually, detecting and hoisting local-state variables is easy when the number is small. 689 In contrast, the execution state is large, with one @resume@ and seven @suspend@s. 690 Hence, the key benefits of the generator are correctness, safety, and maintenance because the execution states are transcribed directly into the programming language rather than using a table-driven approach. 691 Because FSMs can be complex and frequently occur in important domains, direct generator support is important in a system programming language. 922 692 923 693 \begin{figure} 924 694 \centering 695 \newbox\myboxA 696 \begin{lrbox}{\myboxA} 697 \begin{python}[aboveskip=0pt,belowskip=0pt] 698 def Fib(): 699 fn1, fn = 0, 1 700 while True: 701 `yield fn1` 702 fn1, fn = fn, fn1 + fn 703 f1 = Fib() 704 f2 = Fib() 705 for i in range( 10 ): 706 print( next( f1 ), next( f2 ) ) 707 708 709 710 711 712 713 \end{python} 714 \end{lrbox} 715 716 \newbox\myboxB 717 \begin{lrbox}{\myboxB} 718 \begin{python}[aboveskip=0pt,belowskip=0pt] 719 def Fmt(): 720 try: 721 while True: 722 for g in range( 5 ): 723 for b in range( 4 ): 724 print( `(yield)`, end='' ) 725 print( ' ', end='' ) 726 print() 727 except GeneratorExit: 728 if g != 0 | b != 0: 729 print() 730 fmt = Fmt() 731 `next( fmt )` # prime, next prewritten 732 for i in range( 41 ): 733 `fmt.send( 'a' );` # send to yield 734 \end{python} 735 \end{lrbox} 736 \subfloat[Fibonacci]{\label{f:PythonFibonacci}\usebox\myboxA} 737 \hspace{3pt} 738 \vrule 739 \hspace{3pt} 740 \subfloat[Formatter]{\label{f:PythonFormatter}\usebox\myboxB} 741 \caption{Python generator} 742 \label{f:PythonGenerator} 743 744 \bigskip 745 925 746 \begin{tabular}{@{}l|l@{}} 926 747 \begin{cfa}[aboveskip=0pt,belowskip=0pt] … … 929 750 `generator` Driver { 930 751 Status status; 931 char byte, * msg; // communication932 int lnth, sum; // local state933 short int crc;752 unsigned char byte, * msg; // communication 753 unsigned int lnth, sum; // local state 754 unsigned short int crc; 934 755 }; 935 756 void ?{}( Driver & d, char * m ) { d.msg = m; } … … 979 800 (The trivial cycle is a generator resuming itself.) 980 801 This control flow is similar to recursion for functions but without stack growth. 981 Figure~\ref{f:PingPongFullCoroutineSteps} shows the steps for symmetric control-flow are creating, executing, and terminating the cycle.802 The steps for symmetric control-flow are creating, executing, and terminating the cycle. 982 803 Constructing the cycle must deal with definition-before-use to close the cycle, \ie, the first generator must know about the last generator, which is not within scope. 983 804 (This issue occurs for any cyclic data structure.) 984 The example creates the generators, @ping@/@pong@,and then assigns the partners that form the cycle.985 % (Alternatively, the constructor can assign the partners as they are declared, except the first, and the first-generator partner is set after the last generator declaration to close the cycle.)986 Once the cycle is formed, the program main resumes one of the generators, @ping@,and the generators can then traverse an arbitrary cycle using @resume@ to activate partner generator(s).805 % The example creates all the generators and then assigns the partners that form the cycle. 806 % Alternatively, the constructor can assign the partners as they are declared, except the first, and the first-generator partner is set after the last generator declaration to close the cycle. 807 Once the cycle is formed, the program main resumes one of the generators, and the generators can then traverse an arbitrary cycle using @resume@ to activate partner generator(s). 987 808 Terminating the cycle is accomplished by @suspend@ or @return@, both of which go back to the stack frame that started the cycle (program main in the example). 988 Note, the creator and starter may be different, \eg if the creator calls another function that starts the cycle.989 809 The starting stack-frame is below the last active generator because the resume/resume cycle does not grow the stack. 990 Also, since local variables are not retained in the generator function, there are no objects with destructors to be called, so the cost is the same as a function return. 991 Destructor cost occurs when the generator instance is deallocated by the creator. 810 Also, since local variables are not retained in the generator function, it does not contain any objects with destructors that must be called, so the cost is the same as a function return. 811 Destructor cost occurs when the generator instance is deallocated, which is easily controlled by the programmer. 812 813 Figure~\ref{f:CPingPongSim} shows the implementation of the symmetric generator, where the complexity is the @resume@, which needs an extension to the calling convention to perform a forward rather than backward jump. 814 This jump-starts at the top of the next generator main to re-execute the normal calling convention to make space on the stack for its local variables. 815 However, before the jump, the caller must reset its stack (and any registers) equivalent to a @return@, but subsequently jump forward. 816 This semantics is basically a tail-call optimization, which compilers already perform. 817 The example shows the assembly code to undo the generator's entry code before the direct jump. 818 This assembly code depends on what entry code is generated, specifically if there are local variables and the level of optimization. 819 To provide this new calling convention requires a mechanism built into the compiler, which is beyond the scope of \CFA at this time. 820 Nevertheless, it is possible to hand generate any symmetric generators for proof of concept and performance testing. 821 A compiler could also eliminate other artifacts in the generator simulation to further increase performance, \eg LLVM has various coroutine support~\cite{CoroutineTS}, and \CFA can leverage this support should it fork @clang@. 992 822 993 823 \begin{figure} … … 996 826 \begin{cfa}[aboveskip=0pt,belowskip=0pt] 997 827 `generator PingPong` { 998 int N, i; // local state999 828 const char * name; 829 int N; 830 int i; // local state 1000 831 PingPong & partner; // rebindable reference 1001 832 }; 1002 833 1003 834 void `main( PingPong & pp )` with(pp) { 1004 1005 1006 835 for ( ; i < N; i += 1 ) { 1007 836 sout | name | i; … … 1021 850 \begin{cfa}[escapechar={},aboveskip=0pt,belowskip=0pt] 1022 851 typedef struct PingPong { 1023 int restart, N, i;1024 852 const char * name; 853 int N, i; 1025 854 struct PingPong * partner; 855 void * next; 1026 856 } PingPong; 1027 #define PPCtor(name, N) { 0, N, 0, name,NULL}857 #define PPCtor(name, N) {name,N,0,NULL,NULL} 1028 858 void comain( PingPong * pp ) { 1029 static void * states[] = {&&s0, &&s1}; 1030 goto *states[pp->restart]; 1031 s0: pp->restart = 1; 859 if ( pp->next ) goto *pp->next; 860 pp->next = &&cycle; 1032 861 for ( ; pp->i < pp->N; pp->i += 1 ) { 1033 862 printf( "%s %d\n", pp->name, pp->i ); 1034 863 asm( "mov %0,%%rdi" : "=m" (pp->partner) ); 1035 864 asm( "mov %rdi,%rax" ); 1036 asm( "add $16, %rsp" ); 1037 asm( "popq %rbp" ); 865 asm( "popq %rbx" ); 1038 866 asm( "jmp comain" ); 1039 s1: ;867 cycle: ; 1040 868 } 1041 869 } … … 1053 881 \end{figure} 1054 882 1055 \begin{figure} 1056 \centering 1057 \input{FullCoroutinePhases.pstex_t} 1058 \vspace*{-10pt} 1059 \caption{Symmetric coroutine steps: Ping / Pong} 1060 \label{f:PingPongFullCoroutineSteps} 1061 \end{figure} 1062 1063 Figure~\ref{f:CPingPongSim} shows the C implementation of the \CFA symmetric generator, where there is still only one additional field, @restart@, but @resume@ is more complex because it does a forward rather than backward jump. 1064 Before the jump, the parameter for the next call @partner@ is placed into the register used for the first parameter, @rdi@, and the remaining registers are reset for a return. 1065 The @jmp comain@ restarts the function but with a different parameter, so the new call's behaviour depends on the state of the coroutine type, i.e., branch to restart location with different data state. 1066 While the semantics of call forward is a tail-call optimization, which compilers perform, the generator state is different on each call rather a common state for a tail-recursive function (i.e., the parameter to the function never changes during the forward calls. 1067 However, this assembler code depends on what entry code is generated, specifically if there are local variables and the level of optimization. 1068 Hence, internal compiler support is necessary for any forward call (or backwards return), \eg LLVM has various coroutine support~\cite{CoroutineTS}, and \CFA can leverage this support should it eventually fork @clang@. 1069 For this reason, \CFA does not support general symmetric generators at this time, but, it is possible to hand generate any symmetric generators (as in Figure~\ref{f:CPingPongSim}) for proof of concept and performance testing. 1070 1071 Finally, part of this generator work was inspired by the recent \CCtwenty coroutine proposal~\cite{C++20Coroutine19}, which uses the general term coroutine to mean generator. 883 Finally, part of this generator work was inspired by the recent \CCtwenty generator proposal~\cite{C++20Coroutine19} (which they call coroutines). 1072 884 Our work provides the same high-performance asymmetric generators as \CCtwenty, and extends their work with symmetric generators. 1073 885 An additional \CCtwenty generator feature allows @suspend@ and @resume@ to be followed by a restricted compound statement that is executed after the current generator has reset its stack but before calling the next generator, specified with \CFA syntax: … … 1084 896 \label{s:Coroutine} 1085 897 1086 Stackful coroutines (Table~\ref{t:ExecutionPropertyComposition} case 5)extend generator semantics, \ie there is an implicit closure and @suspend@ may appear in a helper function called from the coroutine main.898 Stackful coroutines extend generator semantics, \ie there is an implicit closure and @suspend@ may appear in a helper function called from the coroutine main. 1087 899 A coroutine is specified by replacing @generator@ with @coroutine@ for the type. 1088 Coroutine generality results in higher cost for creation, due to dynamic stack allocation, for execution, due to context switching among stacks, and forterminating, due to possible stack unwinding and dynamic stack deallocation.900 Coroutine generality results in higher cost for creation, due to dynamic stack allocation, execution, due to context switching among stacks, and terminating, due to possible stack unwinding and dynamic stack deallocation. 1089 901 A series of different kinds of coroutines and their implementations demonstrate how coroutines extend generators. 1090 902 1091 903 First, the previous generator examples are converted to their coroutine counterparts, allowing local-state variables to be moved from the generator type into the coroutine main. 1092 \begin{center} 1093 \begin{tabular}{@{}l|l|l|l@{}} 1094 \multicolumn{1}{c|}{Fibonacci} & \multicolumn{1}{c|}{Formatter} & \multicolumn{1}{c|}{Device Driver} & \multicolumn{1}{c}{PingPong} \\ 1095 \hline 904 \begin{description} 905 \item[Fibonacci] 906 Move the declaration of @fn1@ to the start of coroutine main. 1096 907 \begin{cfa}[xleftmargin=0pt] 1097 void main( Fib & fib ) ...908 void main( Fib & fib ) with(fib) { 1098 909 `int fn1;` 1099 1100 1101 \end{cfa} 1102 & 910 \end{cfa} 911 \item[Formatter] 912 Move the declaration of @g@ and @b@ to the for loops in the coroutine main. 1103 913 \begin{cfa}[xleftmargin=0pt] 1104 914 for ( `g`; 5 ) { 1105 915 for ( `b`; 4 ) { 1106 1107 1108 \end{cfa} 1109 & 916 \end{cfa} 917 \item[Device Driver] 918 Move the declaration of @lnth@ and @sum@ to their points of initialization. 1110 919 \begin{cfa}[xleftmargin=0pt] 1111 status = CONT; 1112 `int lnth = 0, sum = 0;` 1113 ... 1114 `short int crc = byte << 8;` 1115 \end{cfa} 1116 & 920 status = CONT; 921 `unsigned int lnth = 0, sum = 0;` 922 ... 923 `unsigned short int crc = byte << 8;` 924 \end{cfa} 925 \item[PingPong] 926 Move the declaration of @i@ to the for loop in the coroutine main. 1117 927 \begin{cfa}[xleftmargin=0pt] 1118 void main( PingPong & pp ) ...928 void main( PingPong & pp ) with(pp) { 1119 929 for ( `i`; N ) { 1120 1121 1122 \end{cfa} 1123 \end{tabular} 1124 \end{center} 930 \end{cfa} 931 \end{description} 1125 932 It is also possible to refactor code containing local-state and @suspend@ statements into a helper function, like the computation of the CRC for the device driver. 1126 933 \begin{cfa} 1127 int Crc() {934 unsigned int Crc() { 1128 935 `suspend;` 1129 short int crc = byte << 8;936 unsigned short int crc = byte << 8; 1130 937 `suspend;` 1131 938 status = (crc | byte) == sum ? MSG : ECRC; … … 1138 945 1139 946 \begin{comment} 1140 Figure~\ref{f:Coroutine3States} creates a @coroutine@ type, @`coroutine` Fib { int fn; }@, which provides communication, @fn@, for the \newterm{coroutine main}, @main@, which runs on the coroutine stack, and possibly multiple interface functions, \eg @ restart@.947 Figure~\ref{f:Coroutine3States} creates a @coroutine@ type, @`coroutine` Fib { int fn; }@, which provides communication, @fn@, for the \newterm{coroutine main}, @main@, which runs on the coroutine stack, and possibly multiple interface functions, \eg @next@. 1141 948 Like the structure in Figure~\ref{f:ExternalState}, the coroutine type allows multiple instances, where instances of this type are passed to the (overloaded) coroutine main. 1142 949 The coroutine main's stack holds the state for the next generation, @f1@ and @f2@, and the code represents the three states in the Fibonacci formula via the three suspend points, to context switch back to the caller's @resume@. 1143 The interface function @ restart@, takes a Fibonacci instance and context switches to it using @resume@;950 The interface function @next@, takes a Fibonacci instance and context switches to it using @resume@; 1144 951 on restart, the Fibonacci field, @fn@, contains the next value in the sequence, which is returned. 1145 952 The first @resume@ is special because it allocates the coroutine stack and cocalls its coroutine main on that stack; … … 1307 1114 \begin{figure} 1308 1115 \centering 1116 \lstset{language=CFA,escapechar={},moredelim=**[is][\protect\color{red}]{`}{`}}% allow $ 1309 1117 \begin{tabular}{@{}l@{\hspace{2\parindentlnth}}l@{}} 1310 1118 \begin{cfa} 1311 1119 `coroutine` Prod { 1312 Cons & c; $\C[1.5in]{// communication}$1120 Cons & c; // communication 1313 1121 int N, money, receipt; 1314 1122 }; 1315 1123 void main( Prod & prod ) with( prod ) { 1316 for ( i; N ) { $\C{// 1st resume}\CRT$ 1124 // 1st resume starts here 1125 for ( i; N ) { 1317 1126 int p1 = random( 100 ), p2 = random( 100 ); 1127 sout | p1 | " " | p2; 1318 1128 int status = delivery( c, p1, p2 ); 1129 sout | " $" | money | nl | status; 1319 1130 receipt += 1; 1320 1131 } 1321 1132 stop( c ); 1133 sout | "prod stops"; 1322 1134 } 1323 1135 int payment( Prod & prod, int money ) { … … 1340 1152 \begin{cfa} 1341 1153 `coroutine` Cons { 1342 Prod & p; $\C[1.5in]{// communication}$1154 Prod & p; // communication 1343 1155 int p1, p2, status; 1344 1156 bool done; 1345 1157 }; 1346 1158 void ?{}( Cons & cons, Prod & p ) { 1347 &cons.p = &p; $\C{// reassignable reference}$1159 &cons.p = &p; // reassignable reference 1348 1160 cons.[status, done ] = [0, false]; 1349 1161 } 1350 1162 void main( Cons & cons ) with( cons ) { 1351 int money = 1, receipt; $\C{// 1st resume}\CRT$ 1163 // 1st resume starts here 1164 int money = 1, receipt; 1352 1165 for ( ; ! done; ) { 1166 sout | p1 | " " | p2 | nl | " $" | money; 1353 1167 status += 1; 1354 1168 receipt = payment( p, money ); 1169 sout | " #" | receipt; 1355 1170 money += 1; 1356 1171 } 1172 sout | "cons stops"; 1357 1173 } 1358 1174 int delivery( Cons & cons, int p1, int p2 ) { … … 1375 1191 This example is illustrative because both producer/consumer have two interface functions with @resume@s that suspend execution in these interface (helper) functions. 1376 1192 The program main creates the producer coroutine, passes it to the consumer coroutine in its initialization, and closes the cycle at the call to @start@ along with the number of items to be produced. 1377 The call to @start@ is the first @resume@ of @prod@, which remembers the program main as the starter and creates @prod@'s stack with a frame for @prod@'s coroutine main at the top, and context switches to it. 1378 @prod@'s coroutine main starts, creates local-state variables that are retained between coroutine activations, and executes $N$ iterations, each generating two random values, calling the consumer's @deliver@ function to transfer the values, and printing the status returned from the consumer. 1193 The first @resume@ of @prod@ creates @prod@'s stack with a frame for @prod@'s coroutine main at the top, and context switches to it. 1194 @prod@'s coroutine main starts, creates local-state variables that are retained between coroutine activations, and executes $N$ iterations, each generating two random values, calling the consumer to deliver the values, and printing the status returned from the consumer. 1195 1379 1196 The producer call to @delivery@ transfers values into the consumer's communication variables, resumes the consumer, and returns the consumer status. 1380 Similarly on the first resume, @cons@'s stack is created and initialized, holding local-state variables retained between subsequent activations of the coroutine. 1381 The symmetric coroutine cycle forms when the consumer calls the producer's @payment@ function, which resumes the producer in the consumer's delivery function. 1382 When the producer calls @delivery@ again, it resumes the consumer in the @payment@ function. 1383 Both interface function than return to the their corresponding coroutine-main functions for the next cycle. 1197 On the first resume, @cons@'s stack is created and initialized, holding local-state variables retained between subsequent activations of the coroutine. 1198 The consumer iterates until the @done@ flag is set, prints the values delivered by the producer, increments status, and calls back to the producer via @payment@, and on return from @payment@, prints the receipt from the producer and increments @money@ (inflation). 1199 The call from the consumer to @payment@ introduces the cycle between producer and consumer. 1200 When @payment@ is called, the consumer copies values into the producer's communication variable and a resume is executed. 1201 The context switch restarts the producer at the point where it last context switched, so it continues in @delivery@ after the resume. 1202 @delivery@ returns the status value in @prod@'s coroutine main, where the status is printed. 1203 The loop then repeats calling @delivery@, where each call resumes the consumer coroutine. 1204 The context switch to the consumer continues in @payment@. 1205 The consumer increments and returns the receipt to the call in @cons@'s coroutine main. 1206 The loop then repeats calling @payment@, where each call resumes the producer coroutine. 1384 1207 Figure~\ref{f:ProdConsRuntimeStacks} shows the runtime stacks of the program main, and the coroutine mains for @prod@ and @cons@ during the cycling. 1385 As a consequence of a coroutine retaining its last resumer for suspending back, these reverse pointers allow @suspend@ to cycle \emph{backwards} around a symmetric coroutine cycle.1386 1208 1387 1209 \begin{figure} … … 1392 1214 \caption{Producer / consumer runtime stacks} 1393 1215 \label{f:ProdConsRuntimeStacks} 1216 1217 \medskip 1218 1219 \begin{center} 1220 \input{FullCoroutinePhases.pstex_t} 1221 \end{center} 1222 \vspace*{-10pt} 1223 \caption{Ping / Pong coroutine steps} 1224 \label{f:PingPongFullCoroutineSteps} 1394 1225 \end{figure} 1395 1226 1396 1227 Terminating a coroutine cycle is more complex than a generator cycle, because it requires context switching to the program main's \emph{stack} to shutdown the program, whereas generators started by the program main run on its stack. 1397 Furthermore, each deallocated coroutine must execute all destructors for object allocated in the coroutine type \emph{and} allocated on the coroutine's stack at the point of suspension, which can be arbitrarily deep. 1398 In the example, termination begins with the producer's loop stopping after N iterations and calling the consumer's @stop@ function, which sets the @done@ flag, resumes the consumer in function @payment@, terminating the call, and the consumer's loop in its coroutine main. 1399 % (Not shown is having @prod@ raise a nonlocal @stop@ exception at @cons@ after it finishes generating values and suspend back to @cons@, which catches the @stop@ exception to terminate its loop.) 1400 When the consumer's main ends, its stack is already unwound so any stack allocated objects with destructors are finalized. 1401 The question now is where does control continue? 1402 1228 Furthermore, each deallocated coroutine must guarantee all destructors are run for object allocated in the coroutine type \emph{and} allocated on the coroutine's stack at the point of suspension, which can be arbitrarily deep. 1229 When a coroutine's main ends, its stack is already unwound so any stack allocated objects with destructors have been finalized. 1403 1230 The na\"{i}ve semantics for coroutine-cycle termination is to context switch to the last resumer, like executing a @suspend@/@return@ in a generator. 1404 1231 However, for coroutines, the last resumer is \emph{not} implicitly below the current stack frame, as for generators, because each coroutine's stack is independent. 1405 1232 Unfortunately, it is impossible to determine statically if a coroutine is in a cycle and unrealistic to check dynamically (graph-cycle problem). 1406 1233 Hence, a compromise solution is necessary that works for asymmetric (acyclic) and symmetric (cyclic) coroutines. 1407 Our solution is to retain a coroutine's starter (first resumer), and context switch back to the starter when the coroutine ends. 1408 Hence, the consumer restarts its first resumer, @prod@, in @stop@, and when the producer ends, it restarts its first resumer, program main, in @start@ (see dashed lines from the end of the coroutine mains in Figure~\ref{f:ProdConsRuntimeStacks}).1234 1235 Our solution is to context switch back to the first resumer (starter) once the coroutine ends. 1409 1236 This semantics works well for the most common asymmetric and symmetric coroutine usage patterns. 1410 For asymmetric coroutines, it is common for the first resumer (starter) coroutine to be the only resumer; 1411 for symmetric coroutines, it is common for the cycle creator to persist for the lifetime of the cycle. 1237 For asymmetric coroutines, it is common for the first resumer (starter) coroutine to be the only resumer. 1238 All previous generators converted to coroutines have this property. 1239 For symmetric coroutines, it is common for the cycle creator to persist for the lifetime of the cycle. 1240 Hence, the starter coroutine is remembered on the first resume and ending the coroutine resumes the starter. 1241 Figure~\ref{f:ProdConsRuntimeStacks} shows this semantic by the dashed lines from the end of the coroutine mains: @prod@ starts @cons@ so @cons@ resumes @prod@ at the end, and the program main starts @prod@ so @prod@ resumes the program main at the end. 1412 1242 For other scenarios, it is always possible to devise a solution with additional programming effort, such as forcing the cycle forward (backward) to a safe point before starting termination. 1413 1243 1414 Note, the producer/consumer example does not illustrate the full power of the starter semantics because @cons@ always ends first. 1415 Assume generator @PingPong@ in Figure~\ref{f:PingPongSymmetricGenerator} is converted to a coroutine. 1416 Unlike generators, coroutines have a starter structure with multiple levels, where the program main starts @ping@ and @ping@ starts @pong@. 1417 By adjusting $N$ for either @ping@/@pong@, it is possible to have either finish first. 1418 If @pong@ ends first, it resumes its starter @ping@ in its coroutine main, then @ping@ ends and resumes its starter the program main on return; 1419 if @ping@ ends first, it resumes its starter the program main on return. 1420 Regardless of the cycle complexity, the starter structure always leads back to the program main, but the path can be entered at an arbitrary point. 1421 Once back at the program main (creator), coroutines @ping@ and @pong@ are deallocated, runnning any destructors for objects within the coroutine and possibly deallocating any coroutine stacks for non-terminated coroutines, where stack deallocation implies stack unwinding to find destructors for allocated objects on the stack. 1422 Hence, the \CFA termination semantics for the generator and coroutine ensure correct deallocation semnatics, regardless of the coroutine's state (terminated or active), like any other aggregate object. 1244 The producer/consumer example does not illustrate the full power of the starter semantics because @cons@ always ends first. 1245 Assume generator @PingPong@ is converted to a coroutine. 1246 Figure~\ref{f:PingPongFullCoroutineSteps} shows the creation, starter, and cyclic execution steps of the coroutine version. 1247 The program main creates (declares) coroutine instances @ping@ and @pong@. 1248 Next, program main resumes @ping@, making it @ping@'s starter, and @ping@'s main resumes @pong@'s main, making it @pong@'s starter. 1249 Execution forms a cycle when @pong@ resumes @ping@, and cycles $N$ times. 1250 By adjusting $N$ for either @ping@/@pong@, it is possible to have either one finish first, instead of @pong@ always ending first. 1251 If @pong@ ends first, it resumes its starter @ping@ in its coroutine main, then @ping@ ends and resumes its starter the program main in function @start@. 1252 If @ping@ ends first, it resumes its starter the program main in function @start@. 1253 Regardless of the cycle complexity, the starter stack always leads back to the program main, but the stack can be entered at an arbitrary point. 1254 Once back at the program main, coroutines @ping@ and @pong@ are deallocated. 1255 For generators, deallocation runs the destructors for all objects in the generator type. 1256 For coroutines, deallocation deals with objects in the coroutine type and must also run the destructors for any objects pending on the coroutine's stack for any unterminated coroutine. 1257 Hence, if a coroutine's destructor detects the coroutine is not ended, it implicitly raises a cancellation exception (uncatchable exception) at the coroutine and resumes it so the cancellation exception can propagate to the root of the coroutine's stack destroying all local variable on the stack. 1258 So the \CFA semantics for the generator and coroutine, ensure both can be safely deallocated at any time, regardless of their current state, like any other aggregate object. 1259 Explicitly raising normal exceptions at another coroutine can replace flag variables, like @stop@, \eg @prod@ raises a @stop@ exception at @cons@ after it finishes generating values and resumes @cons@, which catches the @stop@ exception to terminate its loop. 1260 1261 Finally, there is an interesting effect for @suspend@ with symmetric coroutines. 1262 A coroutine must retain its last resumer to suspend back because the resumer is on a different stack. 1263 These reverse pointers allow @suspend@ to cycle \emph{backwards}, which may be useful in certain cases. 1264 However, there is an anomaly if a coroutine resumes itself, because it overwrites its last resumer with itself, losing the ability to resume the last external resumer. 1265 To prevent losing this information, a self-resume does not overwrite the last resumer. 1423 1266 1424 1267 … … 1451 1294 Users wanting to extend custom types or build their own can only do so in ways offered by the language. 1452 1295 Furthermore, implementing custom types without language support may display the power of a programming language. 1453 \CFA blends the two approaches, providing custom type for idiomatic \CFA code, while extending and building new custom types is still possible, similar to Java concurrency with builtin and library (@java.util.concurrent@) monitors.1296 \CFA blends the two approaches, providing custom type for idiomatic \CFA code, while extending and building new custom types is still possible, similar to Java concurrency with builtin and library. 1454 1297 1455 1298 Part of the mechanism to generalize custom types is the \CFA trait~\cite[\S~2.3]{Moss18}, \eg the definition for custom-type @coroutine@ is anything satisfying the trait @is_coroutine@, and this trait both enforces and restricts the coroutine-interface functions. … … 1461 1304 forall( `dtype` T | is_coroutine(T) ) void $suspend$( T & ), resume( T & ); 1462 1305 \end{cfa} 1463 Note, copying generators/coroutines/threads is undefined because muliple objects cannot execute on a shared stack and stack copying does not work in unmanaged languages (no garbage collection), like C, because the stack may contain pointers to objects within it that require updating for the copy. 1306 Note, copying generators/coroutines/threads is not meaningful. 1307 For example, both the resumer and suspender descriptors can have bidirectional pointers; 1308 copying these coroutines does not update the internal pointers so behaviour of both copies would be difficult to understand. 1309 Furthermore, two coroutines cannot logically execute on the same stack. 1310 A deep coroutine copy, which copies the stack, is also meaningless in an unmanaged language (no garbage collection), like C, because the stack may contain pointers to object within it that require updating for the copy. 1464 1311 The \CFA @dtype@ property provides no \emph{implicit} copying operations and the @is_coroutine@ trait provides no \emph{explicit} copying operations, so all coroutines must be passed by reference (pointer). 1465 1312 The function definitions ensure there is a statically typed @main@ function that is the starting point (first stack frame) of a coroutine, and a mechanism to get (read) the coroutine descriptor from its handle. … … 1505 1352 The combination of custom types and fundamental @trait@ description of these types allows a concise specification for programmers and tools, while more advanced programmers can have tighter control over memory layout and initialization. 1506 1353 1507 Figure~\ref{f:CoroutineMemoryLayout} shows different memory-layout options for a coroutine (where a t hreadis similar).1354 Figure~\ref{f:CoroutineMemoryLayout} shows different memory-layout options for a coroutine (where a task is similar). 1508 1355 The coroutine handle is the @coroutine@ instance containing programmer specified type global/communication variables across interface functions. 1509 1356 The coroutine descriptor contains all implicit declarations needed by the runtime, \eg @suspend@/@resume@, and can be part of the coroutine handle or separate. 1510 1357 The coroutine stack can appear in a number of locations and be fixed or variable sized. 1511 Hence, the coroutine's stack could be a variable-length structure (VLS)\footnote{1512 We are examining VLSs, where fields can be variable-sized structures or arrays.1358 Hence, the coroutine's stack could be a VLS\footnote{ 1359 We are examining variable-sized structures (VLS), where fields can be variable-sized structures or arrays. 1513 1360 Once allocated, a VLS is fixed sized.} 1514 1361 on the allocating stack, provided the allocating stack is large enough. 1515 1362 For a VLS stack allocation/deallocation is an inexpensive adjustment of the stack pointer, modulo any stack constructor costs (\eg initial frame setup). 1516 For stack allocation in the heap, allocation/deallocation is an expensive allocation, where the heap can be a shared resource, modulo any stack constructor costs.1517 It is also possible to use a split (segmented) stack calling convention, available with gcc and clang, allowing a variable-sized stack via a set of connected blocks in the heap.1363 For heap stack allocation, allocation/deallocation is an expensive heap allocation (where the heap can be a shared resource), modulo any stack constructor costs. 1364 With heap stack allocation, it is also possible to use a split (segmented) stack calling convention, available with gcc and clang, so the stack is variable sized. 1518 1365 Currently, \CFA supports stack/heap allocated descriptors but only fixed-sized heap allocated stacks. 1519 1366 In \CFA debug-mode, the fixed-sized stack is terminated with a write-only page, which catches most stack overflows. 1520 1367 Experience teaching concurrency with \uC~\cite{CS343} shows fixed-sized stacks are rarely an issue for students. 1521 Split-stack allocation is under development but requires recompilation of legacy code, which is not alwayspossible.1368 Split-stack allocation is under development but requires recompilation of legacy code, which may be impossible. 1522 1369 1523 1370 \begin{figure} … … 1533 1380 1534 1381 Concurrency is nondeterministic scheduling of independent sequential execution paths (threads), where each thread has its own stack. 1535 A single thread with multiple stacks, \ie coroutining, does \emph{not} imply concurrency~\cite[\S~3]{Buhr05a}.1536 Coroutiningself-schedule the thread across stacks so execution is deterministic.1382 A single thread with multiple call stacks, \newterm{coroutining}~\cite{Conway63,Marlin80}, does \emph{not} imply concurrency~\cite[\S~2]{Buhr05a}. 1383 In coroutining, coroutines self-schedule the thread across stacks so execution is deterministic. 1537 1384 (It is \emph{impossible} to generate a concurrency error when coroutining.) 1538 1539 The transition to concurrency, even for a single thread with multiple stacks, occurs when coroutines context switch to a \newterm{scheduling coroutine}, introducing non-determinism from the coroutine perspective~\cite[\S~3]{Buhr05a}. 1385 However, coroutines are a stepping stone towards concurrency. 1386 1387 The transition to concurrency, even for a single thread with multiple stacks, occurs when coroutines context switch to a \newterm{scheduling coroutine}, introducing non-determinism from the coroutine perspective~\cite[\S~3,]{Buhr05a}. 1540 1388 Therefore, a minimal concurrency system requires coroutines \emph{in conjunction with a nondeterministic scheduler}. 1541 The resulting execution system now follows a cooperative threading-model~\cite{Adya02,libdill} because context-switching points to the scheduler (blocking) are known, but the next unblocking point is unknown due to the scheduler. 1542 Adding \newterm{preemption} introduces \newterm{non-cooperative} or \newterm{preemptive} scheduling, where context switching points to the scheduler are unknown as they can occur randomly between any two instructions often based on a timer interrupt. 1389 The resulting execution system now follows a cooperative threading model~\cite{Adya02,libdill}, called \newterm{non-preemptive scheduling}. 1390 Adding \newterm{preemption} introduces non-cooperative scheduling, where context switching occurs randomly between any two instructions often based on a timer interrupt, called \newterm{preemptive scheduling}. 1391 While a scheduler introduces uncertain execution among explicit context switches, preemption introduces uncertainty by introducing implicit context switches. 1543 1392 Uncertainty gives the illusion of parallelism on a single processor and provides a mechanism to access and increase performance on multiple processors. 1544 1393 The reason is that the scheduler/runtime have complete knowledge about resources and how to best utilized them. 1545 However, the introduction of unrestricted nondeterminism results in the need for \newterm{mutual exclusion} and \newterm{synchronization} ~\cite[\S~4]{Buhr05a}, which restrict nondeterminism for correctness;1394 However, the introduction of unrestricted nondeterminism results in the need for \newterm{mutual exclusion} and \newterm{synchronization}, which restrict nondeterminism for correctness; 1546 1395 otherwise, it is impossible to write meaningful concurrent programs. 1547 1396 Optimal concurrent performance is often obtained by having as much nondeterminism as mutual exclusion and synchronization correctness allow. 1548 1397 1549 A scheduler can also bestackless or stackful.1398 A scheduler can either be a stackless or stackful. 1550 1399 For stackless, the scheduler performs scheduling on the stack of the current coroutine and switches directly to the next coroutine, so there is one context switch. 1551 1400 For stackful, the current coroutine switches to the scheduler, which performs scheduling, and it then switches to the next coroutine, so there are two context switches. … … 1556 1405 \label{s:threads} 1557 1406 1558 Threading (Table~\ref{t:ExecutionPropertyComposition} case 11)needs the ability to start a thread and wait for its completion.1407 Threading needs the ability to start a thread and wait for its completion. 1559 1408 A common API for this ability is @fork@ and @join@. 1560 \vspace{4pt} 1561 \par\noindent 1562 \begin{tabular}{@{}l|l|l@{}} 1563 \multicolumn{1}{c|}{\textbf{Java}} & \multicolumn{1}{c|}{\textbf{\Celeven}} & \multicolumn{1}{c}{\textbf{pthreads}} \\ 1564 \hline 1565 \begin{cfa} 1566 class MyThread extends Thread {...} 1567 mythread t = new MyThread(...); 1409 \begin{cquote} 1410 \begin{tabular}{@{}lll@{}} 1411 \multicolumn{1}{c}{\textbf{Java}} & \multicolumn{1}{c}{\textbf{\Celeven}} & \multicolumn{1}{c}{\textbf{pthreads}} \\ 1412 \begin{cfa} 1413 class MyTask extends Thread {...} 1414 mytask t = new MyTask(...); 1568 1415 `t.start();` // start 1569 1416 // concurrency … … 1572 1419 & 1573 1420 \begin{cfa} 1574 class MyT hread{ ... } // functor1575 MyT hread mythread;1576 `thread t( myt hread, ... );` // start1421 class MyTask { ... } // functor 1422 MyTask mytask; 1423 `thread t( mytask, ... );` // start 1577 1424 // concurrency 1578 1425 `t.join();` // wait … … 1587 1434 \end{cfa} 1588 1435 \end{tabular} 1589 \vspace{1pt} 1590 \par\noindent 1436 \end{cquote} 1591 1437 \CFA has a simpler approach using a custom @thread@ type and leveraging declaration semantics (allocation/deallocation), where threads implicitly @fork@ after construction and @join@ before destruction. 1592 1438 \begin{cfa} 1593 thread MyT hread{};1594 void main( MyT hread& this ) { ... }1439 thread MyTask {}; 1440 void main( MyTask & this ) { ... } 1595 1441 int main() { 1596 MyT hreadteam`[10]`; $\C[2.5in]{// allocate stack-based threads, implicit start after construction}$1442 MyTask team`[10]`; $\C[2.5in]{// allocate stack-based threads, implicit start after construction}$ 1597 1443 // concurrency 1598 1444 } $\C{// deallocate stack-based threads, implicit joins before destruction}$ … … 1602 1448 Arbitrary topologies are possible using dynamic allocation, allowing threads to outlive their declaration scope, identical to normal dynamic allocation. 1603 1449 \begin{cfa} 1604 MyT hread* factory( int N ) { ... return `anew( N )`; } $\C{// allocate heap-based threads, implicit start after construction}$1450 MyTask * factory( int N ) { ... return `anew( N )`; } $\C{// allocate heap-based threads, implicit start after construction}$ 1605 1451 int main() { 1606 MyT hread* team = factory( 10 );1452 MyTask * team = factory( 10 ); 1607 1453 // concurrency 1608 1454 `delete( team );` $\C{// deallocate heap-based threads, implicit joins before destruction}\CRT$ … … 1650 1496 1651 1497 Threads in \CFA are user level run by runtime kernel threads (see Section~\ref{s:CFARuntimeStructure}), where user threads provide concurrency and kernel threads provide parallelism. 1652 Like coroutines, and for the same design reasons, \CFA provides a custom @thread@ type and a @trait@ to enforce and restrict the t hread-interface functions.1498 Like coroutines, and for the same design reasons, \CFA provides a custom @thread@ type and a @trait@ to enforce and restrict the task-interface functions. 1653 1499 \begin{cquote} 1654 1500 \begin{tabular}{@{}c@{\hspace{3\parindentlnth}}c@{}} … … 1681 1527 \label{s:MutualExclusionSynchronization} 1682 1528 1683 Unrestricted nondeterminism is meaningless as there is no way to know when a result is completed and safe to access.1529 Unrestricted nondeterminism is meaningless as there is no way to know when the result is completed without synchronization. 1684 1530 To produce meaningful execution requires clawing back some determinism using mutual exclusion and synchronization, where mutual exclusion provides access control for threads using shared data, and synchronization is a timing relationship among threads~\cite[\S~4]{Buhr05a}. 1685 The shared data protected by mutual exlusion is called a \newterm{critical section}~\cite{Dijkstra65}, and the protection can be simple (only 1 thread) or complex (only N kinds of threads, \eg group~\cite{Joung00} or readers/writer~\cite{Courtois71}). 1686 Without synchronization control in a critical section, an arriving thread can barge ahead of preexisting waiter threads resulting in short/long-term starvation, staleness/freshness problems, and/or incorrect transfer of data. 1687 Preventing or detecting barging is a challenge with low-level locks, but made easier through higher-level constructs. 1688 This challenge is often split into two different approaches: barging \emph{avoidance} and \emph{prevention}. 1689 Approaches that unconditionally releasing a lock for competing threads to acquire must use barging avoidance with flag/counter variable(s) to force barging threads to wait; 1690 approaches that conditionally hold locks during synchronization, \eg baton-passing~\cite{Andrews89}, prevent barging completely. 1691 1692 At the lowest level, concurrent control is provided by atomic operations, upon which different kinds of locking mechanisms are constructed, \eg spin locks, semaphores~\cite{Dijkstra68b}, barriers, and path expressions~\cite{Campbell74}. 1693 However, for productivity it is always desirable to use the highest-level construct that provides the necessary efficiency~\cite{Hochstein05}. 1694 A significant challenge with locks is composability because it takes careful organization for multiple locks to be used while preventing deadlock. 1695 Easing composability is another feature higher-level mutual-exclusion mechanisms can offer. 1696 Some concurrent systems eliminate mutable shared-state by switching to non-shared communication like message passing~\cite{Thoth,Harmony,V-Kernel,MPI} (Erlang, MPI), channels~\cite{CSP} (CSP,Go), actors~\cite{Akka} (Akka, Scala), or functional techniques (Haskell). 1531 Some concurrent systems eliminate mutable shared-state by switching to stateless communication like message passing~\cite{Thoth,Harmony,V-Kernel,MPI} (Erlang, MPI), channels~\cite{CSP} (CSP,Go), actors~\cite{Akka} (Akka, Scala), or functional techniques (Haskell). 1697 1532 However, these approaches introduce a new communication mechanism for concurrency different from the standard communication using function call/return. 1698 1533 Hence, a programmer must learn and manipulate two sets of design/programming patterns. 1699 1534 While this distinction can be hidden away in library code, effective use of the library still has to take both paradigms into account. 1700 In contrast, approaches based on shared-state models more closely resemble the standard call/return programming model, resulting in a single programming paradigm. 1701 Finally, a newer approach for restricting non-determinism is transactional memory~\cite{Herlihy93}. 1702 While this approach is pursued in hardware~\cite{Nakaike15} and system languages, like \CC~\cite{Cpp-Transactions}, the performance and feature set is still too restrictive~\cite{Cascaval08,Boehm09} to be the main concurrency paradigm for system languages. 1535 In contrast, approaches based on stateful models more closely resemble the standard call/return programming model, resulting in a single programming paradigm. 1536 1537 At the lowest level, concurrent control is implemented by atomic operations, upon which different kinds of locking mechanisms are constructed, \eg semaphores~\cite{Dijkstra68b}, barriers, and path expressions~\cite{Campbell74}. 1538 However, for productivity it is always desirable to use the highest-level construct that provides the necessary efficiency~\cite{Hochstein05}. 1539 A newer approach for restricting non-determinism is transactional memory~\cite{Herlihy93}. 1540 While this approach is pursued in hardware~\cite{Nakaike15} and system languages, like \CC~\cite{Cpp-Transactions}, the performance and feature set is still too restrictive to be the main concurrency paradigm for system languages, which is why it is rejected as the core paradigm for concurrency in \CFA. 1541 1542 One of the most natural, elegant, and efficient mechanisms for mutual exclusion and synchronization for shared-memory systems is the \emph{monitor}. 1543 First proposed by Brinch Hansen~\cite{Hansen73} and later described and extended by C.A.R.~Hoare~\cite{Hoare74}, many concurrent programming languages provide monitors as an explicit language construct: \eg Concurrent Pascal~\cite{ConcurrentPascal}, Mesa~\cite{Mesa}, Modula~\cite{Modula-2}, Turing~\cite{Turing:old}, Modula-3~\cite{Modula-3}, NeWS~\cite{NeWS}, Emerald~\cite{Emerald}, \uC~\cite{Buhr92a} and Java~\cite{Java}. 1544 In addition, operating-system kernels and device drivers have a monitor-like structure, although they often use lower-level primitives such as mutex locks or semaphores to simulate monitors. 1545 For these reasons, \CFA selected monitors as the core high-level concurrency construct, upon which higher-level approaches can be easily constructed. 1546 1547 1548 \subsection{Mutual Exclusion} 1549 1550 A group of instructions manipulating a specific instance of shared data that must be performed atomically is called a \newterm{critical section}~\cite{Dijkstra65}, which is enforced by \newterm{simple mutual-exclusion}. 1551 The generalization is called a \newterm{group critical-section}~\cite{Joung00}, where multiple tasks with the same session use the resource simultaneously and different sessions are segregated, which is enforced by \newterm{complex mutual-exclusion} providing the correct kind and number of threads using a group critical-section. 1552 The readers/writer problem~\cite{Courtois71} is an instance of a group critical-section, where readers share a session but writers have a unique session. 1553 1554 However, many solutions exist for mutual exclusion, which vary in terms of performance, flexibility and ease of use. 1555 Methods range from low-level locks, which are fast and flexible but require significant attention for correctness, to higher-level concurrency techniques, which sacrifice some performance to improve ease of use. 1556 Ease of use comes by either guaranteeing some problems cannot occur, \eg deadlock free, or by offering a more explicit coupling between shared data and critical section. 1557 For example, the \CC @std::atomic<T>@ offers an easy way to express mutual-exclusion on a restricted set of operations, \eg reading/writing, for numerical types. 1558 However, a significant challenge with locks is composability because it takes careful organization for multiple locks to be used while preventing deadlock. 1559 Easing composability is another feature higher-level mutual-exclusion mechanisms can offer. 1560 1561 1562 \subsection{Synchronization} 1563 1564 Synchronization enforces relative ordering of execution, and synchronization tools provide numerous mechanisms to establish these timing relationships. 1565 Low-level synchronization primitives offer good performance and flexibility at the cost of ease of use; 1566 higher-level mechanisms often simplify usage by adding better coupling between synchronization and data, \eg receive-specific versus receive-any thread in message passing or offering specialized solutions, \eg barrier lock. 1567 Often synchronization is used to order access to a critical section, \eg ensuring a waiting writer thread enters the critical section before a calling reader thread. 1568 If the calling reader is scheduled before the waiting writer, the reader has barged. 1569 Barging can result in staleness/freshness problems, where a reader barges ahead of a writer and reads temporally stale data, or a writer barges ahead of another writer overwriting data with a fresh value preventing the previous value from ever being read (lost computation). 1570 Preventing or detecting barging is an involved challenge with low-level locks, which is made easier through higher-level constructs. 1571 This challenge is often split into two different approaches: barging avoidance and prevention. 1572 Algorithms that unconditionally releasing a lock for competing threads to acquire use barging avoidance during synchronization to force a barging thread to wait; 1573 algorithms that conditionally hold locks during synchronization, \eg baton-passing~\cite{Andrews89}, prevent barging completely. 1703 1574 1704 1575 … … 1706 1577 \label{s:Monitor} 1707 1578 1708 One of the most natural, elegant, efficient, high-level mechanisms for mutual exclusion and synchronization for shared-memory systems is the \emph{monitor} (Table~\ref{t:ExecutionPropertyComposition} case 2). 1709 First proposed by Brinch Hansen~\cite{Hansen73} and later described and extended by C.A.R.~Hoare~\cite{Hoare74}, many concurrent programming languages provide monitors as an explicit language construct: \eg Concurrent Pascal~\cite{ConcurrentPascal}, Mesa~\cite{Mesa}, Modula~\cite{Modula-2}, Turing~\cite{Turing:old}, Modula-3~\cite{Modula-3}, NeWS~\cite{NeWS}, Emerald~\cite{Emerald}, \uC~\cite{Buhr92a} and Java~\cite{Java}. 1710 In addition, operating-system kernels and device drivers have a monitor-like structure, although they often use lower-level primitives such as mutex locks or semaphores to manually implement a monitor. 1711 For these reasons, \CFA selected monitors as the core high-level concurrency construct, upon which higher-level approaches can be easily constructed. 1712 1713 Specifically, a \textbf{monitor} is a set of functions that ensure mutual exclusion when accessing shared state. 1714 More precisely, a monitor is a programming technique that implicitly binds mutual exclusion to static function scope by call/return, as opposed to locks, where mutual-exclusion is defined by acquire/release calls, independent of lexical context (analogous to block and heap storage allocation). 1579 A \textbf{monitor} is a set of functions that ensure mutual exclusion when accessing shared state. 1580 More precisely, a monitor is a programming technique that implicitly binds mutual exclusion to static function scope, as opposed to locks, where mutual-exclusion is defined by acquire/release calls, independent of lexical context (analogous to block and heap storage allocation). 1715 1581 Restricting acquire/release points eases programming, comprehension, and maintenance, at a slight cost in flexibility and efficiency. 1716 1582 \CFA uses a custom @monitor@ type and leverages declaration semantics (deallocation) to protect active or waiting threads in a monitor. 1717 1583 1718 1584 The following is a \CFA monitor implementation of an atomic counter. 1719 \begin{cfa} 1585 \begin{cfa}[morekeywords=nomutex] 1720 1586 `monitor` Aint { int cnt; }; $\C[4.25in]{// atomic integer counter}$ 1721 int ++?( Aint & `mutex` this ) with( this ) { return ++cnt; } $\C{// increment}$ 1722 int ?=?( Aint & `mutex` lhs, int rhs ) with( lhs ) { cnt = rhs; } $\C{// conversions with int, mutex optional}\CRT$ 1723 int ?=?( int & lhs, Aint & `mutex` rhs ) with( rhs ) { lhs = cnt; } 1724 \end{cfa} 1725 The operators use the parameter-only declaration type-qualifier @mutex@ to mark which parameters require locking during function execution to protect from race conditions. 1726 The assignment operators provide bidirectional conversion between an atomic and normal integer without accessing field @cnt@. 1727 (These operations only need @mutex@, if reading/writing the implementation type is not atomic.) 1728 The atomic counter is used without any explicit mutual-exclusion and provides thread-safe semantics. 1587 int ++?( Aint & `mutex`$\(_{opt}\)$ this ) with( this ) { return ++cnt; } $\C{// increment}$ 1588 int ?=?( Aint & `mutex`$\(_{opt}\)$ lhs, int rhs ) with( lhs ) { cnt = rhs; } $\C{// conversions with int}\CRT$ 1589 int ?=?( int & lhs, Aint & `mutex`$\(_{opt}\)$ rhs ) with( rhs ) { lhs = cnt; } 1590 \end{cfa} 1591 % The @Aint@ constructor, @?{}@, uses the \lstinline[morekeywords=nomutex]@nomutex@ qualifier indicating mutual exclusion is unnecessary during construction because an object is inaccessible (private) until after it is initialized. 1592 % (While a constructor may publish its address into a global variable, doing so generates a race-condition.) 1593 The prefix increment operation, @++?@, is normally @mutex@, indicating mutual exclusion is necessary during function execution, to protect the incrementing from race conditions, unless there is an atomic increment instruction for the implementation type. 1594 The assignment operators provide bidirectional conversion between an atomic and normal integer without accessing field @cnt@; 1595 these operations only need @mutex@, if reading/writing the implementation type is not atomic. 1596 The atomic counter is used without any explicit mutual-exclusion and provides thread-safe semantics, which is similar to the \CC template @std::atomic@. 1729 1597 \begin{cfa} 1730 1598 int i = 0, j = 0, k = 5; … … 1734 1602 i = x; j = y; k = z; 1735 1603 \end{cfa} 1736 Note, like other concurrent programming languages, \CFA has specializations for the basic types using atomic instructions for performance and a general trait similar to the \CC template @std::atomic@.1737 1604 1738 1605 \CFA monitors have \newterm{multi-acquire} semantics so the thread in the monitor may acquire it multiple times without deadlock, allowing recursion and calling other interface functions. 1739 \newpage1740 1606 \begin{cfa} 1741 1607 monitor M { ... } m; … … 1746 1612 \end{cfa} 1747 1613 \CFA monitors also ensure the monitor lock is released regardless of how an acquiring function ends (normal or exceptional), and returning a shared variable is safe via copying before the lock is released. 1748 Similar safety is offered by \emph{explicit} opt-in disciplines like \CC RAII versus the monitor \emph{implicit} language-enforced safety guarantee ensuring no programmer usage errors. 1614 Similar safety is offered by \emph{explicit} mechanisms like \CC RAII; 1615 monitor \emph{implicit} safety ensures no programmer usage errors. 1749 1616 Furthermore, RAII mechanisms cannot handle complex synchronization within a monitor, where the monitor lock may not be released on function exit because it is passed to an unblocking thread; 1750 1617 RAII is purely a mutual-exclusion mechanism (see Section~\ref{s:Scheduling}). … … 1772 1639 \end{cquote} 1773 1640 The @dtype@ property prevents \emph{implicit} copy operations and the @is_monitor@ trait provides no \emph{explicit} copy operations, so monitors must be passed by reference (pointer). 1641 % Copying a lock is insecure because it is possible to copy an open lock and then use the open copy when the original lock is closed to simultaneously access the shared data. 1642 % Copying a monitor is secure because both the lock and shared data are copies, but copying the shared data is meaningless because it no longer represents a unique entity. 1774 1643 Similarly, the function definitions ensures there is a mechanism to get (read) the monitor descriptor from its handle, and a special destructor to prevent deallocation if a thread using the shared data. 1775 1644 The custom monitor type also inserts any locks needed to implement the mutual exclusion semantics. … … 1783 1652 For example, a monitor may be passed through multiple helper functions before it is necessary to acquire the monitor's mutual exclusion. 1784 1653 1785 \CFA requires programmers to identify the kind of parameter with the @mutex@ keyword and uses no keyword to mean \lstinline[morekeywords=nomutex]@nomutex@, because @mutex@ parameters are rare and no keyword is the \emph{normal} parameter semantics. 1786 Hence, @mutex@ parameters are documentation, at the function and its prototype, to both programmer and compiler, without other redundant keywords. 1787 Furthermore, \CFA relies heavily on traits as an abstraction mechanism, so the @mutex@ qualifier prevents coincidentally matching of a monitor trait with a type that is not a monitor, similar to coincidental inheritance where a shape and playing card can both be drawable. 1654 The benefit of mandatory monitor qualifiers is self-documentation, but requiring both @mutex@ and \lstinline[morekeywords=nomutex]@nomutex@ for all monitor parameters is redundant. 1655 Instead, the semantics has one qualifier as the default and the other required. 1656 For example, make the safe @mutex@ qualifier the default because assuming \lstinline[morekeywords=nomutex]@nomutex@ may cause subtle errors. 1657 Alternatively, make the unsafe \lstinline[morekeywords=nomutex]@nomutex@ qualifier the default because it is the \emph{normal} parameter semantics while @mutex@ parameters are rare. 1658 Providing a default qualifier implies knowing whether a parameter is a monitor. 1659 Since \CFA relies heavily on traits as an abstraction mechanism, types can coincidentally match the monitor trait but not be a monitor, similar to inheritance where a shape and playing card can both be drawable. 1660 For this reason, \CFA requires programmers to identify the kind of parameter with the @mutex@ keyword and uses no keyword to mean \lstinline[morekeywords=nomutex]@nomutex@. 1788 1661 1789 1662 The next semantic decision is establishing which parameter \emph{types} may be qualified with @mutex@. … … 1799 1672 Function @f3@ has a multiple object matrix, and @f4@ a multiple object data structure. 1800 1673 While shown shortly, multiple object acquisition is possible, but the number of objects must be statically known. 1801 Therefore, \CFA only acquires one monitor per parameter with exactly one level of indirection, and exclude pointer types to unknown sized arrays.1674 Therefore, \CFA only acquires one monitor per parameter with at most one level of indirection, excluding pointers as it is impossible to statically determine the size. 1802 1675 1803 1676 For object-oriented monitors, \eg Java, calling a mutex member \emph{implicitly} acquires mutual exclusion of the receiver object, @`rec`.foo(...)@. … … 1806 1679 While object-oriented monitors can be extended with a mutex qualifier for multiple-monitor members, no prior example of this feature could be found.} 1807 1680 called \newterm{bulk acquire}. 1808 \CFA guarantees bulk acquisition order is consistent across calls to @mutex@ functions using the same monitors as arguments, so acquiring multiple monitors in a bulk acquireis safe from deadlock.1681 \CFA guarantees acquisition order is consistent across calls to @mutex@ functions using the same monitors as arguments, so acquiring multiple monitors is safe from deadlock. 1809 1682 Figure~\ref{f:BankTransfer} shows a trivial solution to the bank transfer problem~\cite{BankTransfer}, where two resources must be locked simultaneously, using \CFA monitors with implicit locking and \CC with explicit locking. 1810 1683 A \CFA programmer only has to manage when to acquire mutual exclusion; … … 1826 1699 void transfer( BankAccount & `mutex` my, 1827 1700 BankAccount & `mutex` your, int me2you ) { 1828 // bulk acquire 1701 1829 1702 deposit( my, -me2you ); // debit 1830 1703 deposit( your, me2you ); // credit … … 1856 1729 void transfer( BankAccount & my, 1857 1730 BankAccount & your, int me2you ) { 1858 `scoped_lock lock( my.m, your.m );` // bulk acquire1731 `scoped_lock lock( my.m, your.m );` 1859 1732 deposit( my, -me2you ); // debit 1860 1733 deposit( your, me2you ); // credit … … 1884 1757 \end{figure} 1885 1758 1886 Users can still force the acquiring order by using or not using @mutex@.1759 Users can still force the acquiring order by using @mutex@/\lstinline[morekeywords=nomutex]@nomutex@. 1887 1760 \begin{cfa} 1888 1761 void foo( M & mutex m1, M & mutex m2 ); $\C{// acquire m1 and m2}$ 1889 void bar( M & mutex m1, M & m2 ) { $\C{// onlyacquire m1}$1762 void bar( M & mutex m1, M & /* nomutex */ m2 ) { $\C{// acquire m1}$ 1890 1763 ... foo( m1, m2 ); ... $\C{// acquire m2}$ 1891 1764 } 1892 void baz( M & m1, M & mutex m2 ) { $\C{// onlyacquire m2}$1765 void baz( M & /* nomutex */ m1, M & mutex m2 ) { $\C{// acquire m2}$ 1893 1766 ... foo( m1, m2 ); ... $\C{// acquire m1}$ 1894 1767 } … … 1933 1806 % There are many aspects of scheduling in a concurrency system, all related to resource utilization by waiting threads, \ie which thread gets the resource next. 1934 1807 % Different forms of scheduling include access to processors by threads (see Section~\ref{s:RuntimeStructureCluster}), another is access to a shared resource by a lock or monitor. 1935 This section discusses scheduling for waiting threads eligible for monitor entry, \ie which user thread gets the shared resource next. (See Section~\ref{s:RuntimeStructureCluster} for scheduling kernel threads on virtual processors.) 1936 While monitor mutual-exclusion provides safe access to its shared data, the data may indicate a thread cannot proceed, \eg a bounded buffer may be full/\-empty so produce/consumer threads must block. 1937 Leaving the monitor and retrying (busy waiting) is impractical for high-level programming. 1938 1939 Monitors eliminate busy waiting by providing synchronization within the monitor critical-section to schedule threads needing access to the shared data, where threads block versus spin. 1808 This section discusses monitor scheduling for waiting threads eligible for entry, \ie which thread gets the shared resource next. (See Section~\ref{s:RuntimeStructureCluster} for scheduling threads on virtual processors.) 1809 While monitor mutual-exclusion provides safe access to shared data, the monitor data may indicate that a thread accessing it cannot proceed, \eg a bounded buffer may be full/empty so produce/consumer threads must block. 1810 Leaving the monitor and trying again (busy waiting) is impractical for high-level programming. 1811 Monitors eliminate busy waiting by providing synchronization to schedule threads needing access to the shared data, where threads block versus spinning. 1940 1812 Synchronization is generally achieved with internal~\cite{Hoare74} or external~\cite[\S~2.9.2]{uC++} scheduling. 1941 \newterm{Internal} (largely) schedules threads located \emph{inside} the monitor and is accomplished using condition variables with signal and wait. 1942 \newterm{External} (largely) schedules threads located \emph{outside} the monitor and is accomplished with the @waitfor@ statement. 1943 Note, internal scheduling has a small amount of external scheduling and vice versus, so the naming denotes where the majority of the block threads reside (inside or outside) for scheduling. 1944 For complex scheduling, the approaches can be combined, so there can be an equal number of threads waiting inside and outside. 1945 1946 \CFA monitors do not allow calling threads to barge ahead of signalled threads (via barging prevention), which simplifies synchronization among threads in the monitor and increases correctness. 1947 A direct consequence of this semantics is that unblocked waiting threads are not required to recheck the waiting condition, \ie waits are not in a starvation-prone busy-loop as required by the signals-as-hints style with barging. 1948 Preventing barging comes directly from Hoare's semantics in the seminal paper on monitors~\cite[p.~550]{Hoare74}. 1813 \newterm{Internal scheduling} is characterized by each thread entering the monitor and making an individual decision about proceeding or blocking, while \newterm{external scheduling} is characterized by an entering thread making a decision about proceeding for itself and on behalf of other threads attempting entry. 1814 Finally, \CFA monitors do not allow calling threads to barge ahead of signalled threads, which simplifies synchronization among threads in the monitor and increases correctness. 1815 If barging is allowed, synchronization between a signaller and signallee is difficult, often requiring additional flags and multiple unblock/block cycles. 1816 In fact, signals-as-hints is completely opposite from that proposed by Hoare in the seminal paper on monitors~\cite[p.~550]{Hoare74}. 1949 1817 % \begin{cquote} 1950 1818 % However, we decree that a signal operation be followed immediately by resumption of a waiting program, without possibility of an intervening procedure call from yet a third program. 1951 1819 % It is only in this way that a waiting program has an absolute guarantee that it can acquire the resource just released by the signalling program without any danger that a third program will interpose a monitor entry and seize the resource instead.~\cite[p.~550]{Hoare74} 1952 1820 % \end{cquote} 1953 Furthermore, \CFA concurrency has no spurious wakeup~\cite[\S~9]{Buhr05a}, which eliminates an implicit self barging. 1954 1955 Monitor mutual-exclusion means signalling cannot have the signaller and signalled thread in the monitor simultaneously, so only the signaller or signallee can proceed. 1956 Figure~\ref{f:MonitorScheduling} shows internal/external scheduling for the bounded-buffer examples in Figure~\ref{f:GenericBoundedBuffer}. 1957 For internal scheduling in Figure~\ref{f:BBInt}, the @signal@ moves the signallee (front thread of the specified condition queue) to urgent and the signaller continues (solid line). 1958 Multiple signals move multiple signallees to urgent until the condition queue is empty. 1959 When the signaller exits or waits, a thread is implicitly unblocked from urgent (if available) before unblocking a calling thread to prevent barging. 1821 Furthermore, \CFA concurrency has no spurious wakeup~\cite[\S~9]{Buhr05a}, which eliminates an implicit form of self barging. 1822 Hence, a \CFA @wait@ statement is not enclosed in a @while@ loop retesting a blocking predicate, which can cause thread starvation due to barging. 1823 1824 Figure~\ref{f:MonitorScheduling} shows general internal/external scheduling (for the bounded-buffer example in Figure~\ref{f:InternalExternalScheduling}). 1825 External calling threads block on the calling queue, if the monitor is occupied, otherwise they enter in FIFO order. 1826 Internal threads block on condition queues via @wait@ and reenter from the condition in FIFO order. 1827 Alternatively, internal threads block on urgent from the @signal_block@ or @waitfor@, and reenter implicitly when the monitor becomes empty, \ie, the thread in the monitor exits or waits. 1828 1829 There are three signalling mechanisms to unblock waiting threads to enter the monitor. 1830 Note, signalling cannot have the signaller and signalled thread in the monitor simultaneously because of the mutual exclusion, so either the signaller or signallee can proceed. 1831 For internal scheduling, threads are unblocked from condition queues using @signal@, where the signallee is moved to urgent and the signaller continues (solid line). 1832 Multiple signals move multiple signallees to urgent until the condition is empty. 1833 When the signaller exits or waits, a thread blocked on urgent is processed before calling threads to prevent barging. 1960 1834 (Java conceptually moves the signalled thread to the calling queue, and hence, allows barging.) 1961 Signal is used when the signaller is providing the cooperation needed by the signallee (\eg creating an empty slot in a buffer for a producer) and the signaller immediately exits the monitor to run concurrently (consume the buffer element) and passes control of the monitor to the signalled thread, which can immediately take advantage of the state change. 1962 Specifically, the @wait@ function atomically blocks the calling thread and implicitly releases the monitor lock(s) for all monitors in the function's parameter list. 1963 Signalling is unconditional because signalling an empty condition queue does nothing. 1964 It is common to declare condition queues as monitor fields to prevent shared access, hence no locking is required for access as the queues are protected by the monitor lock. 1965 In \CFA, a condition queue can be created/stored independently. 1835 The alternative unblock is in the opposite order using @signal_block@, where the signaller is moved to urgent and the signallee continues (dashed line), and is implicitly unblocked from urgent when the signallee exits or waits. 1836 1837 For external scheduling, the condition queues are not used; 1838 instead threads are unblocked directly from the calling queue using @waitfor@ based on function names requesting mutual exclusion. 1839 (The linear search through the calling queue to locate a particular call can be reduced to $O(1)$.) 1840 The @waitfor@ has the same semantics as @signal_block@, where the signalled thread executes before the signallee, which waits on urgent. 1841 Executing multiple @waitfor@s from different signalled functions causes the calling threads to move to urgent. 1842 External scheduling requires urgent to be a stack, because the signaller expects to execute immediately after the specified monitor call has exited or waited. 1843 Internal scheduling behaves the same for an urgent stack or queue, except for multiple signalling, where the threads unblock from urgent in reverse order from signalling. 1844 If the restart order is important, multiple signalling by a signal thread can be transformed into daisy-chain signalling among threads, where each thread signals the next thread. 1845 We tried both a stack for @waitfor@ and queue for signalling, but that resulted in complex semantics about which thread enters next. 1846 Hence, \CFA uses a single urgent stack to correctly handle @waitfor@ and adequately support both forms of signalling. 1966 1847 1967 1848 \begin{figure} … … 1981 1862 \end{figure} 1982 1863 1864 Figure~\ref{f:BBInt} shows a \CFA generic bounded-buffer with internal scheduling, where producers/consumers enter the monitor, detect the buffer is full/empty, and block on an appropriate condition variable, @full@/@empty@. 1865 The @wait@ function atomically blocks the calling thread and implicitly releases the monitor lock(s) for all monitors in the function's parameter list. 1866 The appropriate condition variable is signalled to unblock an opposite kind of thread after an element is inserted/removed from the buffer. 1867 Signalling is unconditional, because signalling an empty condition variable does nothing. 1868 It is common to declare condition variables as monitor fields to prevent shared access, hence no locking is required for access as the conditions are protected by the monitor lock. 1869 In \CFA, a condition variable can be created/stored independently. 1870 % To still prevent expensive locking on access, a condition variable is tied to a \emph{group} of monitors on first use, called \newterm{branding}, resulting in a low-cost boolean test to detect sharing from other monitors. 1871 1872 % Signalling semantics cannot have the signaller and signalled thread in the monitor simultaneously, which means: 1873 % \begin{enumerate} 1874 % \item 1875 % The signalling thread returns immediately and the signalled thread continues. 1876 % \item 1877 % The signalling thread continues and the signalled thread is marked for urgent unblocking at the next scheduling point (exit/wait). 1878 % \item 1879 % The signalling thread blocks but is marked for urgent unblocking at the next scheduling point and the signalled thread continues. 1880 % \end{enumerate} 1881 % The first approach is too restrictive, as it precludes solving a reasonable class of problems, \eg dating service (see Figure~\ref{f:DatingService}). 1882 % \CFA supports the next two semantics as both are useful. 1883 1983 1884 \begin{figure} 1984 1885 \centering … … 1992 1893 T elements[10]; 1993 1894 }; 1994 void ?{}( Buffer(T) & buf ) with(buf) {1895 void ?{}( Buffer(T) & buffer ) with(buffer) { 1995 1896 front = back = count = 0; 1996 1897 } 1997 1998 void insert(Buffer(T) & mutex buf, T elm) with(buf){1999 if ( count == 10 ) `wait( empty )`; // full ?2000 // insert el m into buf1898 void insert( Buffer(T) & mutex buffer, T elem ) 1899 with(buffer) { 1900 if ( count == 10 ) `wait( empty )`; 1901 // insert elem into buffer 2001 1902 `signal( full )`; 2002 1903 } 2003 T remove( Buffer(T) & mutex buf ) with(buf) {2004 if ( count == 0 ) `wait( full )`; // empty ?2005 // remove el m from buf1904 T remove( Buffer(T) & mutex buffer ) with(buffer) { 1905 if ( count == 0 ) `wait( full )`; 1906 // remove elem from buffer 2006 1907 `signal( empty )`; 2007 return el m;1908 return elem; 2008 1909 } 2009 1910 } 2010 1911 \end{cfa} 2011 1912 \end{lrbox} 1913 1914 % \newbox\myboxB 1915 % \begin{lrbox}{\myboxB} 1916 % \begin{cfa}[aboveskip=0pt,belowskip=0pt] 1917 % forall( otype T ) { // distribute forall 1918 % monitor Buffer { 1919 % 1920 % int front, back, count; 1921 % T elements[10]; 1922 % }; 1923 % void ?{}( Buffer(T) & buffer ) with(buffer) { 1924 % [front, back, count] = 0; 1925 % } 1926 % T remove( Buffer(T) & mutex buffer ); // forward 1927 % void insert( Buffer(T) & mutex buffer, T elem ) 1928 % with(buffer) { 1929 % if ( count == 10 ) `waitfor( remove, buffer )`; 1930 % // insert elem into buffer 1931 % 1932 % } 1933 % T remove( Buffer(T) & mutex buffer ) with(buffer) { 1934 % if ( count == 0 ) `waitfor( insert, buffer )`; 1935 % // remove elem from buffer 1936 % 1937 % return elem; 1938 % } 1939 % } 1940 % \end{cfa} 1941 % \end{lrbox} 2012 1942 2013 1943 \newbox\myboxB 2014 1944 \begin{lrbox}{\myboxB} 2015 1945 \begin{cfa}[aboveskip=0pt,belowskip=0pt] 2016 forall( otype T ) { // distribute forall2017 monitor Buffer {2018 2019 int front, back, count;2020 T elements[10];2021 };2022 void ?{}( Buffer(T) & buf ) with(buf) {2023 front = back = count = 0;2024 }2025 T remove( Buffer(T) & mutex buf ); // forward2026 void insert(Buffer(T) & mutex buf, T elm) with(buf){2027 if ( count == 10 ) `waitfor( remove : buf )`;2028 // insert elm into buf2029 2030 }2031 T remove( Buffer(T) & mutex buf ) with(buf) {2032 if ( count == 0 ) `waitfor( insert : buf )`;2033 // remove elm from buf2034 2035 return elm;2036 }2037 }2038 \end{cfa}2039 \end{lrbox}2040 2041 \subfloat[Internal scheduling]{\label{f:BBInt}\usebox\myboxA}2042 \hspace{1pt}2043 \vrule2044 \hspace{3pt}2045 \subfloat[External scheduling]{\label{f:BBExt}\usebox\myboxB}2046 2047 \caption{Generic bounded buffer}2048 \label{f:GenericBoundedBuffer}2049 \end{figure}2050 2051 The @signal_block@ provides the opposite unblocking order, where the signaller is moved to urgent and the signallee continues and a thread is implicitly unblocked from urgent when the signallee exits or waits (dashed line).2052 Signal block is used when the signallee is providing the cooperation needed by the signaller (\eg if the buffer is removed and a producer hands off an item to a consumer, as in Figure~\ref{f:DatingSignalBlock}) so the signaller must wait until the signallee unblocks, provides the cooperation, exits the monitor to run concurrently, and passes control of the monitor to the signaller, which can immediately take advantage of the state change.2053 Using @signal@ or @signal_block@ can be a dynamic decision based on whether the thread providing the cooperation arrives before or after the thread needing the cooperation.2054 2055 External scheduling in Figure~\ref{f:BBExt} simplifies internal scheduling by eliminating condition queues and @signal@/@wait@ (cases where it cannot are discussed shortly), and has existed in the programming language Ada for almost 40 years with variants in other languages~\cite{SR,ConcurrentC++,uC++}.2056 While prior languages use external scheduling solely for thread interaction, \CFA generalizes it to both monitors and threads.2057 External scheduling allows waiting for events from other threads while restricting unrelated events, that would otherwise have to wait on condition queues in the monitor.2058 Scheduling is controlled by the @waitfor@ statement, which atomically blocks the calling thread, releases the monitor lock, and restricts the function calls that can next acquire mutual exclusion.2059 Specifically, a thread calling the monitor is unblocked directly from the calling queue based on function names that can fulfill the cooperation required by the signaller.2060 (The linear search through the calling queue to locate a particular call can be reduced to $O(1)$.)2061 Hence, the @waitfor@ has the same semantics as @signal_block@, where the signallee thread from the calling queue executes before the signaller, which waits on urgent.2062 Now when a producer/consumer detects a full/empty buffer, the necessary cooperation for continuation is specified by indicating the next function call that can occur.2063 For example, a producer detecting a full buffer must have cooperation from a consumer to remove an item so function @remove@ is accepted, which prevents producers from entering the monitor, and after a consumer calls @remove@, the producer waiting on urgent is \emph{implicitly} unblocked because it can now continue its insert operation.2064 Hence, this mechanism is done in terms of control flow, next call, versus in terms of data, channels, as in Go/Rust @select@.2065 While both mechanisms have strengths and weaknesses, \CFA uses the control-flow mechanism to be consistent with other language features.2066 2067 Figure~\ref{f:ReadersWriterLock} shows internal/external scheduling for a readers/writer lock with no barging and threads are serviced in FIFO order to eliminate staleness/freshness among the reader/writer threads.2068 For internal scheduling in Figure~\ref{f:RWInt}, the readers and writers wait on the same condition queue in FIFO order, making it impossible to tell if a waiting thread is a reader or writer.2069 To clawback the kind of thread, a \CFA condition can store user data in the node for a blocking thread at the @wait@, \ie whether the thread is a @READER@ or @WRITER@.2070 An unblocked reader thread checks if the thread at the front of the queue is a reader and unblock it, \ie the readers daisy-chain signal the next group of readers demarcated by the next writer or end of the queue.2071 For external scheduling in Figure~\ref{f:RWExt}, a waiting reader checks if a writer is using the resource, and if so, restricts further calls until the writer exits by calling @EndWrite@.2072 The writer does a similar action for each reader or writer using the resource.2073 Note, no new calls to @StartRead@/@StartWrite@ may occur when waiting for the call to @EndRead@/@EndWrite@.2074 2075 \begin{figure}2076 \centering2077 \newbox\myboxA2078 \begin{lrbox}{\myboxA}2079 \begin{cfa}[aboveskip=0pt,belowskip=0pt]2080 enum RW { READER, WRITER };2081 1946 monitor ReadersWriter { 2082 int rcnt, wcnt; // readers/writer using resource 2083 `condition RWers;` 1947 int rcnt, wcnt; // readers/writer using resource 2084 1948 }; 2085 1949 void ?{}( ReadersWriter & rw ) with(rw) { … … 2088 1952 void EndRead( ReadersWriter & mutex rw ) with(rw) { 2089 1953 rcnt -= 1; 2090 if ( rcnt == 0 ) `signal( RWers )`;2091 1954 } 2092 1955 void EndWrite( ReadersWriter & mutex rw ) with(rw) { 2093 1956 wcnt = 0; 2094 `signal( RWers );`2095 1957 } 2096 1958 void StartRead( ReadersWriter & mutex rw ) with(rw) { 2097 if ( wcnt !=0 || ! empty( RWers ) ) 2098 `wait( RWers, READER )`; 1959 if ( wcnt > 0 ) `waitfor( EndWrite, rw );` 2099 1960 rcnt += 1; 2100 if ( ! empty(RWers) && `front(RWers) == READER` )2101 `signal( RWers )`; // daisy-chain signalling2102 1961 } 2103 1962 void StartWrite( ReadersWriter & mutex rw ) with(rw) { 2104 if ( wcnt != 0 || rcnt != 0 ) `wait( RWers, WRITER )`;2105 1963 if ( wcnt > 0 ) `waitfor( EndWrite, rw );` 1964 else while ( rcnt > 0 ) `waitfor( EndRead, rw );` 2106 1965 wcnt = 1; 2107 1966 } 1967 2108 1968 \end{cfa} 2109 1969 \end{lrbox} 2110 1970 2111 \newbox\myboxB 2112 \begin{lrbox}{\myboxB} 2113 \begin{cfa}[aboveskip=0pt,belowskip=0pt] 2114 2115 monitor ReadersWriter { 2116 int rcnt, wcnt; // readers/writer using resource 2117 2118 }; 2119 void ?{}( ReadersWriter & rw ) with(rw) { 2120 rcnt = wcnt = 0; 2121 } 2122 void EndRead( ReadersWriter & mutex rw ) with(rw) { 2123 rcnt -= 1; 2124 2125 } 2126 void EndWrite( ReadersWriter & mutex rw ) with(rw) { 2127 wcnt = 0; 2128 2129 } 2130 void StartRead( ReadersWriter & mutex rw ) with(rw) { 2131 if ( wcnt > 0 ) `waitfor( EndWrite : rw );` 2132 2133 rcnt += 1; 2134 2135 2136 } 2137 void StartWrite( ReadersWriter & mutex rw ) with(rw) { 2138 if ( wcnt > 0 ) `waitfor( EndWrite : rw );` 2139 else while ( rcnt > 0 ) `waitfor( EndRead : rw );` 2140 wcnt = 1; 2141 } 2142 \end{cfa} 2143 \end{lrbox} 2144 2145 \subfloat[Internal scheduling]{\label{f:RWInt}\usebox\myboxA} 2146 \hspace{1pt} 1971 \subfloat[Generic bounded buffer, internal scheduling]{\label{f:BBInt}\usebox\myboxA} 1972 \hspace{3pt} 2147 1973 \vrule 2148 1974 \hspace{3pt} 2149 \subfloat[ External scheduling]{\label{f:RWExt}\usebox\myboxB}2150 2151 \caption{ Readers / writer lock}2152 \label{f: ReadersWriterLock}1975 \subfloat[Readers / writer lock, external scheduling]{\label{f:RWExt}\usebox\myboxB} 1976 1977 \caption{Internal / external scheduling} 1978 \label{f:InternalExternalScheduling} 2153 1979 \end{figure} 2154 1980 2155 Finally, external scheduling requires urgent to be a stack, because the signaller expects to execute immediately after the specified monitor call has exited or waited. 2156 Internal schedulling performing multiple signalling results in unblocking from urgent in the reverse order from signalling. 2157 It is rare for the unblocking order to be important as an unblocked thread can be time-sliced immediately after leaving the monitor. 2158 If the unblocking order is important, multiple signalling can be restructured into daisy-chain signalling, where each thread signals the next thread. 2159 Hence, \CFA uses a single urgent stack to correctly handle @waitfor@ and adequately support both forms of signalling. 2160 (Advanced @waitfor@ features are discussed in Section~\ref{s:ExtendedWaitfor}.) 1981 Figure~\ref{f:BBInt} can be transformed into external scheduling by removing the condition variables and signals/waits, and adding the following lines at the locations of the current @wait@s in @insert@/@remove@, respectively. 1982 \begin{cfa}[aboveskip=2pt,belowskip=1pt] 1983 if ( count == 10 ) `waitfor( remove, buffer )`; | if ( count == 0 ) `waitfor( insert, buffer )`; 1984 \end{cfa} 1985 Here, the producers/consumers detects a full/\-empty buffer and prevents more producers/consumers from entering the monitor until there is a free/empty slot in the buffer. 1986 External scheduling is controlled by the @waitfor@ statement, which atomically blocks the calling thread, releases the monitor lock, and restricts the function calls that can next acquire mutual exclusion. 1987 If the buffer is full, only calls to @remove@ can acquire the buffer, and if the buffer is empty, only calls to @insert@ can acquire the buffer. 1988 Threads calling excluded functions block outside of (external to) the monitor on the calling queue, versus blocking on condition queues inside of (internal to) the monitor. 1989 Figure~\ref{f:RWExt} shows a readers/writer lock written using external scheduling, where a waiting reader detects a writer using the resource and restricts further calls until the writer exits by calling @EndWrite@. 1990 The writer does a similar action for each reader or writer using the resource. 1991 Note, no new calls to @StarRead@/@StartWrite@ may occur when waiting for the call to @EndRead@/@EndWrite@. 1992 External scheduling allows waiting for events from other threads while restricting unrelated events, that would otherwise have to wait on conditions in the monitor. 1993 The mechnaism can be done in terms of control flow, \eg Ada @accept@ or \uC @_Accept@, or in terms of data, \eg Go @select@ on channels. 1994 While both mechanisms have strengths and weaknesses, this project uses the control-flow mechanism to be consistent with other language features. 1995 % Two challenges specific to \CFA for external scheduling are loose object-definitions (see Section~\ref{s:LooseObjectDefinitions}) and multiple-monitor functions (see Section~\ref{s:Multi-MonitorScheduling}). 1996 1997 Figure~\ref{f:DatingService} shows a dating service demonstrating non-blocking and blocking signalling. 1998 The dating service matches girl and boy threads with matching compatibility codes so they can exchange phone numbers. 1999 A thread blocks until an appropriate partner arrives. 2000 The complexity is exchanging phone numbers in the monitor because of the mutual-exclusion property. 2001 For signal scheduling, the @exchange@ condition is necessary to block the thread finding the match, while the matcher unblocks to take the opposite number, post its phone number, and unblock the partner. 2002 For signal-block scheduling, the implicit urgent-queue replaces the explict @exchange@-condition and @signal_block@ puts the finding thread on the urgent condition and unblocks the matcher. 2003 The dating service is an example of a monitor that cannot be written using external scheduling because it requires knowledge of calling parameters to make scheduling decisions, and parameters of waiting threads are unavailable; 2004 as well, an arriving thread may not find a partner and must wait, which requires a condition variable, and condition variables imply internal scheduling. 2005 Furthermore, barging corrupts the dating service during an exchange because a barger may also match and change the phone numbers, invalidating the previous exchange phone number. 2006 Putting loops around the @wait@s does not correct the problem; 2007 the simple solution must be restructured to account for barging. 2161 2008 2162 2009 \begin{figure} … … 2172 2019 }; 2173 2020 int girl( DS & mutex ds, int phNo, int ccode ) { 2174 if ( empty( Boys[ccode] ) ) {2021 if ( is_empty( Boys[ccode] ) ) { 2175 2022 wait( Girls[ccode] ); 2176 2023 GirlPhNo = phNo; … … 2199 2046 }; 2200 2047 int girl( DS & mutex ds, int phNo, int ccode ) { 2201 if ( empty( Boys[ccode] ) ) { // no compatible2048 if ( is_empty( Boys[ccode] ) ) { // no compatible 2202 2049 wait( Girls[ccode] ); // wait for boy 2203 2050 GirlPhNo = phNo; // make phone number available … … 2219 2066 \qquad 2220 2067 \subfloat[\lstinline@signal_block@]{\label{f:DatingSignalBlock}\usebox\myboxB} 2221 \caption{Dating service Monitor}2222 \label{f:DatingService Monitor}2068 \caption{Dating service} 2069 \label{f:DatingService} 2223 2070 \end{figure} 2224 2071 2225 Figure~\ref{f:DatingServiceMonitor} shows a dating service demonstrating non-blocking and blocking signalling. 2226 The dating service matches girl and boy threads with matching compatibility codes so they can exchange phone numbers. 2227 A thread blocks until an appropriate partner arrives. 2228 The complexity is exchanging phone numbers in the monitor because of the mutual-exclusion property. 2229 For signal scheduling, the @exchange@ condition is necessary to block the thread finding the match, while the matcher unblocks to take the opposite number, post its phone number, and unblock the partner. 2230 For signal-block scheduling, the implicit urgent-queue replaces the explicit @exchange@-condition and @signal_block@ puts the finding thread on the urgent stack and unblocks the matcher. 2231 2232 The dating service is an important example of a monitor that cannot be written using external scheduling. 2233 First, because scheduling requires knowledge of calling parameters to make matching decisions, and parameters of calling threads are unavailable within the monitor. 2234 For example, a girl thread within the monitor cannot examine the @ccode@ of boy threads waiting on the calling queue to determine if there is a matching partner. 2235 Second, because a scheduling decision may be delayed when there is no immediate match, which requires a condition queue for waiting, and condition queues imply internal scheduling. 2236 For example, if a girl thread could determine there is no calling boy with the same @ccode@, it must wait until a matching boy arrives. 2237 Finally, barging corrupts the dating service during an exchange because a barger may also match and change the phone numbers, invalidating the previous exchange phone number. 2238 This situation shows rechecking the waiting condition and waiting again (signals-as-hints) fails, requiring significant restructured to account for barging. 2072 In summation, for internal scheduling, non-blocking signalling (as in the producer/consumer example) is used when the signaller is providing the cooperation for a waiting thread; 2073 the signaller enters the monitor and changes state, detects a waiting threads that can use the state, performs a non-blocking signal on the condition queue for the waiting thread, and exits the monitor to run concurrently. 2074 The waiter unblocks next from the urgent queue, uses/takes the state, and exits the monitor. 2075 Blocking signal is the reverse, where the waiter is providing the cooperation for the signalling thread; 2076 the signaller enters the monitor, detects a waiting thread providing the necessary state, performs a blocking signal to place it on the urgent queue and unblock the waiter. 2077 The waiter changes state and exits the monitor, and the signaller unblocks next from the urgent queue to use/take the state. 2239 2078 2240 2079 Both internal and external scheduling extend to multiple monitors in a natural way. 2241 2080 \begin{cquote} 2242 \begin{tabular}{@{}l@{\hspace{ 2\parindentlnth}}l@{}}2081 \begin{tabular}{@{}l@{\hspace{3\parindentlnth}}l@{}} 2243 2082 \begin{cfa} 2244 2083 monitor M { `condition e`; ... }; … … 2251 2090 & 2252 2091 \begin{cfa} 2253 void rtn$\(_1\)$( M & mutex m1, M & mutex m2 ); // overload rtn2092 void rtn$\(_1\)$( M & mutex m1, M & mutex m2 ); 2254 2093 void rtn$\(_2\)$( M & mutex m1 ); 2255 2094 void bar( M & mutex m1, M & mutex m2 ) { 2256 ... waitfor( `rtn` ${\color{red}\(_1\)}$ ); ... // $\LstCommentStyle{waitfor( rtn\(_1\) :m1, m2 )}$2257 ... waitfor( `rtn ${\color{red}\(_2\)}$ : m1` ); ...2095 ... waitfor( `rtn` ); ... // $\LstCommentStyle{waitfor( rtn\(_1\), m1, m2 )}$ 2096 ... waitfor( `rtn, m1` ); ... // $\LstCommentStyle{waitfor( rtn\(_2\), m1 )}$ 2258 2097 } 2259 2098 \end{cfa} … … 2262 2101 For @wait( e )@, the default semantics is to atomically block the signaller and release all acquired mutex parameters, \ie @wait( e, m1, m2 )@. 2263 2102 To override the implicit multi-monitor wait, specific mutex parameter(s) can be specified, \eg @wait( e, m1 )@. 2264 Wait cannot statically verif ythe released monitors are the acquired mutex-parameters without disallowing separately compiled helper functions calling @wait@.2265 While \CC supports bulk locking, @wait@ only accepts a single lock for a condition queue, so bulk locking with condition queues is asymmetric.2103 Wait cannot statically verifies the released monitors are the acquired mutex-parameters without disallowing separately compiled helper functions calling @wait@. 2104 While \CC supports bulk locking, @wait@ only accepts a single lock for a condition variable, so bulk locking with condition variables is asymmetric. 2266 2105 Finally, a signaller, 2267 2106 \begin{cfa} … … 2272 2111 must have acquired at least the same locks as the waiting thread signalled from a condition queue to allow the locks to be passed, and hence, prevent barging. 2273 2112 2274 Similarly, for @waitfor( rtn )@, the default semantics is to atomically block the acceptor and release all acquired mutex parameters, \ie @waitfor( rtn :m1, m2 )@.2275 To override the implicit multi-monitor wait, specific mutex parameter(s) can be specified, \eg @waitfor( rtn :m1 )@.2113 Similarly, for @waitfor( rtn )@, the default semantics is to atomically block the acceptor and release all acquired mutex parameters, \ie @waitfor( rtn, m1, m2 )@. 2114 To override the implicit multi-monitor wait, specific mutex parameter(s) can be specified, \eg @waitfor( rtn, m1 )@. 2276 2115 @waitfor@ does statically verify the monitor types passed are the same as the acquired mutex-parameters of the given function or function pointer, hence the function (pointer) prototype must be accessible. 2277 2116 % When an overloaded function appears in an @waitfor@ statement, calls to any function with that name are accepted. … … 2281 2120 void rtn( M & mutex m ); 2282 2121 `int` rtn( M & mutex m ); 2283 waitfor( (`int` (*)( M & mutex ))rtn : m ); 2284 \end{cfa} 2285 2286 The ability to release a subset of acquired monitors can result in a \newterm{nested monitor}~\cite{Lister77} deadlock (see Section~\ref{s:MutexAcquisition}). 2287 \newpage 2122 waitfor( (`int` (*)( M & mutex ))rtn, m ); 2123 \end{cfa} 2124 2125 The ability to release a subset of acquired monitors can result in a \newterm{nested monitor}~\cite{Lister77} deadlock. 2288 2126 \begin{cfa} 2289 2127 void foo( M & mutex m1, M & mutex m2 ) { 2290 ... wait( `e, m1` ); ... $\C{// release m1, keeping m2 acquired }$2291 void bar( M & mutex m1, M & mutex m2 ) { $\C{// must acquire m1 and m2 }$2128 ... wait( `e, m1` ); ... $\C{// release m1, keeping m2 acquired )}$ 2129 void bar( M & mutex m1, M & mutex m2 ) { $\C{// must acquire m1 and m2 )}$ 2292 2130 ... signal( `e` ); ... 2293 2131 \end{cfa} 2294 2132 The @wait@ only releases @m1@ so the signalling thread cannot acquire @m1@ and @m2@ to enter @bar@ and @signal@ the condition. 2295 While deadlock can occur with multiple/nesting acquisition, this is a consequence of locks, and by extension monitor locking is not perfectly composable. 2133 While deadlock can occur with multiple/nesting acquisition, this is a consequence of locks, and by extension monitors, not being perfectly composable. 2134 2296 2135 2297 2136 2298 2137 \subsection{\texorpdfstring{Extended \protect\lstinline@waitfor@}{Extended waitfor}} 2299 \label{s:ExtendedWaitfor}2300 2138 2301 2139 Figure~\ref{f:ExtendedWaitfor} shows the extended form of the @waitfor@ statement to conditionally accept one of a group of mutex functions, with an optional statement to be performed \emph{after} the mutex function finishes. … … 2308 2146 Hence, the terminating @else@ clause allows a conditional attempt to accept a call without blocking. 2309 2147 If both @timeout@ and @else@ clause are present, the @else@ must be conditional, or the @timeout@ is never triggered. 2310 There is also a traditional future wait queue (not shown) (\eg Microsoft @WaitForMultipleObjects@), to wait for a specified number of future elements in the queue. 2311 Finally, there is a shorthand for specifying multiple functions using the same set of monitors: @waitfor( f, g, h : m1, m2, m3 )@. 2148 There is also a traditional future wait queue (not shown) (\eg Microsoft (@WaitForMultipleObjects@)), to wait for a specified number of future elements in the queue. 2312 2149 2313 2150 \begin{figure} … … 2336 2173 The right example accepts either @mem1@ or @mem2@ if @C1@ and @C2@ are true. 2337 2174 2338 An interesting use of @waitfor@ is accepting the @mutex@ destructor to know when an object is deallocated, \eg assume the bounded buffer is restruct ured from a monitor to a thread with the following @main@.2175 An interesting use of @waitfor@ is accepting the @mutex@ destructor to know when an object is deallocated, \eg assume the bounded buffer is restructred from a monitor to a thread with the following @main@. 2339 2176 \begin{cfa} 2340 2177 void main( Buffer(T) & buffer ) with(buffer) { 2341 2178 for () { 2342 `waitfor( ^?{} :buffer )` break;2343 or when ( count != 20 ) waitfor( insert :buffer ) { ... }2344 or when ( count != 0 ) waitfor( remove :buffer ) { ... }2179 `waitfor( ^?{}, buffer )` break; 2180 or when ( count != 20 ) waitfor( insert, buffer ) { ... } 2181 or when ( count != 0 ) waitfor( remove, buffer ) { ... } 2345 2182 } 2346 2183 // clean up … … 2434 2271 To support this efficient semantics (and prevent barging), the implementation maintains a list of monitors acquired for each blocked thread. 2435 2272 When a signaller exits or waits in a monitor function/statement, the front waiter on urgent is unblocked if all its monitors are released. 2436 Implementing a fast subset check for the necessary released monitors is important and discussed in the following sections.2273 Implementing a fast subset check for the necessary released monitors is important. 2437 2274 % The benefit is encapsulating complexity into only two actions: passing monitors to the next owner when they should be released and conditionally waking threads if all conditions are met. 2438 2275 2439 2276 2440 \subsection{\texorpdfstring{\protect\lstinline@waitfor@ Implementation}{waitfor Implementation}} 2441 \label{s:waitforImplementation} 2442 2443 In a statically-typed object-oriented programming language, a class has an exhaustive list of members, even when members are added via static inheritance (see Figure~\ref{f:uCinheritance}). 2444 Knowing all members at compilation (even separate compilation) allows uniquely numbered them so the accept-statement implementation can use a fast/compact bit mask with $O(1)$ compare. 2445 2446 \begin{figure} 2447 \centering 2448 \begin{lrbox}{\myboxA} 2449 \begin{uC++}[aboveskip=0pt,belowskip=0pt] 2450 $\emph{translation unit 1}$ 2451 _Monitor B { // common type in .h file 2452 _Mutex virtual void `f`( ... ); 2453 _Mutex virtual void `g`( ... ); 2454 _Mutex virtual void w1( ... ) { ... _Accept(`f`, `g`); ... } 2455 }; 2456 $\emph{translation unit 2}$ 2457 // include B 2458 _Monitor D : public B { // inherit 2459 _Mutex void `h`( ... ); // add 2460 _Mutex void w2( ... ) { ... _Accept(`f`, `h`); ... } 2461 }; 2462 \end{uC++} 2463 \end{lrbox} 2464 2465 \begin{lrbox}{\myboxB} 2466 \begin{cfa}[aboveskip=0pt,belowskip=0pt] 2467 $\emph{translation unit 1}$ 2468 monitor M { ... }; // common type in .h file 2469 void `f`( M & mutex m, ... ); 2470 void `g`( M & mutex m, ... ); 2471 void w1( M & mutex m, ... ) { ... waitfor(`f`, `g` : m); ... } 2472 2473 $\emph{translation unit 2}$ 2474 // include M 2475 extern void `f`( M & mutex m, ... ); // import f but not g 2476 void `h`( M & mutex m ); // add 2477 void w2( M & mutex m, ... ) { ... waitfor(`f`, `h` : m); ... } 2478 2479 \end{cfa} 2480 \end{lrbox} 2481 2482 \subfloat[\uC]{\label{f:uCinheritance}\usebox\myboxA} 2483 \hspace{3pt} 2484 \vrule 2485 \hspace{3pt} 2486 \subfloat[\CFA]{\label{f:CFinheritance}\usebox\myboxB} 2487 \caption{Member / Function visibility} 2488 \label{f:MemberFunctionVisibility} 2489 \end{figure} 2490 2491 However, the @waitfor@ statement in translation unit 2 (see Figure~\ref{f:CFinheritance}) cannot see function @g@ in translation unit 1 precluding a unique numbering for a bit-mask because the monitor type only carries the protected shared-data. 2277 \subsection{Loose Object Definitions} 2278 \label{s:LooseObjectDefinitions} 2279 2280 In an object-oriented programming language, a class includes an exhaustive list of operations. 2281 A new class can add members via static inheritance but the subclass still has an exhaustive list of operations. 2282 (Dynamic member adding, \eg JavaScript~\cite{JavaScript}, is not considered.) 2283 In the object-oriented scenario, the type and all its operators are always present at compilation (even separate compilation), so it is possible to number the operations in a bit mask and use an $O(1)$ compare with a similar bit mask created for the operations specified in a @waitfor@. 2284 2285 However, in \CFA, monitor functions can be statically added/removed in translation units, making a fast subset check difficult. 2286 \begin{cfa} 2287 monitor M { ... }; // common type, included in .h file 2288 translation unit 1 2289 void `f`( M & mutex m ); 2290 void g( M & mutex m ) { waitfor( `f`, m ); } 2291 translation unit 2 2292 void `f`( M & mutex m ); $\C{// replacing f and g for type M in this translation unit}$ 2293 void `g`( M & mutex m ); 2294 void h( M & mutex m ) { waitfor( `f`, m ) or waitfor( `g`, m ); } $\C{// extending type M in this translation unit}$ 2295 \end{cfa} 2296 The @waitfor@ statements in each translation unit cannot form a unique bit-mask because the monitor type does not carry that information. 2297 Hence, function pointers are used to identify the functions listed in the @waitfor@ statement, stored in a variable-sized array. 2298 Then, the same implementation approach used for the urgent stack is used for the calling queue. 2299 Each caller has a list of monitors acquired, and the @waitfor@ statement performs a (usually short) linear search matching functions in the @waitfor@ list with called functions, and then verifying the associated mutex locks can be transfers. 2492 2300 (A possible way to construct a dense mapping is at link or load-time.) 2493 Hence, function pointers are used to identify the functions listed in the @waitfor@ statement, stored in a variable-sized array.2494 Then, the same implementation approach used for the urgent stack (see Section~\ref{s:Scheduling}) is used for the calling queue.2495 Each caller has a list of monitors acquired, and the @waitfor@ statement performs a (short) linear search matching functions in the @waitfor@ list with called functions, and then verifying the associated mutex locks can be transfers.2496 2301 2497 2302 … … 2508 2313 The solution is for the programmer to disambiguate: 2509 2314 \begin{cfa} 2510 waitfor( f :`m2` ); $\C{// wait for call to f with argument m2}$2315 waitfor( f, `m2` ); $\C{// wait for call to f with argument m2}$ 2511 2316 \end{cfa} 2512 2317 Both locks are acquired by function @g@, so when function @f@ is called, the lock for monitor @m2@ is passed from @g@ to @f@, while @g@ still holds lock @m1@. … … 2515 2320 monitor M { ... }; 2516 2321 void f( M & mutex m1, M & mutex m2 ); 2517 void g( M & mutex m1, M & mutex m2 ) { waitfor( f :`m1, m2` ); $\C{// wait for call to f with arguments m1 and m2}$2322 void g( M & mutex m1, M & mutex m2 ) { waitfor( f, `m1, m2` ); $\C{// wait for call to f with arguments m1 and m2}$ 2518 2323 \end{cfa} 2519 2324 Again, the set of monitors passed to the @waitfor@ statement must be entirely contained in the set of monitors already acquired by the accepting function. 2520 % Also, the order of the monitors in a @waitfor@ statement must match the order of the mutex parameters.2521 2522 Figure~\ref{f:UnmatchedMutexSets} shows internal and external scheduling with multiple monitors that must match exactly with a signalling or accepting thread, \ie partial matching results in waiting.2523 In both cases, the set of monitors is disjoint so unblocking is impossible.2325 Also, the order of the monitors in a @waitfor@ statement is unimportant. 2326 2327 Figure~\ref{f:UnmatchedMutexSets} shows an example where, for internal and external scheduling with multiple monitors, a signalling or accepting thread must match exactly, \ie partial matching results in waiting. 2328 For both examples, the set of monitors is disjoint so unblocking is impossible. 2524 2329 2525 2330 \begin{figure} … … 2550 2355 } 2551 2356 void g( M1 & mutex m1, M2 & mutex m2 ) { 2552 waitfor( f :m1, m2 );2357 waitfor( f, m1, m2 ); 2553 2358 } 2554 2359 g( `m11`, m2 ); // block on accept … … 2565 2370 \end{figure} 2566 2371 2372 2373 \subsection{\texorpdfstring{\protect\lstinline@mutex@ Threads}{mutex Threads}} 2374 2375 Threads in \CFA can also be monitors to allow \emph{direct communication} among threads, \ie threads can have mutex functions that are called by other threads. 2376 Hence, all monitor features are available when using threads. 2377 Figure~\ref{f:DirectCommunication} shows a comparison of direct call communication in \CFA with direct channel communication in Go. 2378 (Ada provides a similar mechanism to the \CFA direct communication.) 2379 The program main in both programs communicates directly with the other thread versus indirect communication where two threads interact through a passive monitor. 2380 Both direct and indirection thread communication are valuable tools in structuring concurrent programs. 2381 2567 2382 \begin{figure} 2568 2383 \centering … … 2571 2386 2572 2387 struct Msg { int i, j; }; 2573 monitorthread GoRtn { int i; float f; Msg m; };2388 thread GoRtn { int i; float f; Msg m; }; 2574 2389 void mem1( GoRtn & mutex gortn, int i ) { gortn.i = i; } 2575 2390 void mem2( GoRtn & mutex gortn, float f ) { gortn.f = f; } … … 2581 2396 for () { 2582 2397 2583 `waitfor( mem1 :gortn )` sout | i; // wait for calls2584 or `waitfor( mem2 :gortn )` sout | f;2585 or `waitfor( mem3 :gortn )` sout | m.i | m.j;2586 or `waitfor( ^?{} : gortn )` break; // low priority2398 `waitfor( mem1, gortn )` sout | i; // wait for calls 2399 or `waitfor( mem2, gortn )` sout | f; 2400 or `waitfor( mem3, gortn )` sout | m.i | m.j; 2401 or `waitfor( ^?{}, gortn )` break; 2587 2402 2588 2403 } … … 2638 2453 \hspace{3pt} 2639 2454 \subfloat[Go]{\label{f:Gochannel}\usebox\myboxB} 2640 \caption{Direct versus indirect communication} 2641 \label{f:DirectCommunicationComparison} 2642 2643 \medskip 2644 2645 \begin{cfa} 2646 monitor thread DatingService { 2647 condition Girls[CompCodes], Boys[CompCodes]; 2648 int girlPhoneNo, boyPhoneNo, ccode; 2649 }; 2650 int girl( DatingService & mutex ds, int phoneno, int code ) with( ds ) { 2651 girlPhoneNo = phoneno; ccode = code; 2652 `wait( Girls[ccode] );` $\C{// wait for boy}$ 2653 girlPhoneNo = phoneno; return boyPhoneNo; 2654 } 2655 int boy( DatingService & mutex ds, int phoneno, int code ) with( ds ) { 2656 boyPhoneNo = phoneno; ccode = code; 2657 `wait( Boys[ccode] );` $\C{// wait for girl}$ 2658 boyPhoneNo = phoneno; return girlPhoneNo; 2659 } 2660 void main( DatingService & ds ) with( ds ) { $\C{// thread starts, ds defaults to mutex}$ 2661 for () { 2662 waitfor( ^?{} ) break; $\C{// high priority}$ 2663 or waitfor( girl ) $\C{// girl called, compatible boy ? restart boy then girl}$ 2664 if ( ! is_empty( Boys[ccode] ) ) { `signal_block( Boys[ccode] ); signal_block( Girls[ccode] );` } 2665 or waitfor( boy ) { $\C{// boy called, compatible girl ? restart girl then boy}$ 2666 if ( ! is_empty( Girls[ccode] ) ) { `signal_block( Girls[ccode] ); signal_block( Boys[ccode] );` } 2667 } 2668 } 2669 \end{cfa} 2670 \caption{Direct communication dating service} 2671 \label{f:DirectCommunicationDatingService} 2455 \caption{Direct communication} 2456 \label{f:DirectCommunication} 2672 2457 \end{figure} 2673 2458 … … 2684 2469 void main( Ping & pi ) { 2685 2470 for ( 10 ) { 2686 `waitfor( ping :pi );`2471 `waitfor( ping, pi );` 2687 2472 `pong( po );` 2688 2473 } … … 2697 2482 for ( 10 ) { 2698 2483 `ping( pi );` 2699 `waitfor( pong :po );`2484 `waitfor( pong, po );` 2700 2485 } 2701 2486 } … … 2712 2497 2713 2498 2714 \subsection{\texorpdfstring{\protect\lstinline@monitor@ Generators / Coroutines / Threads}{monitor Generators / Coroutines / Threads}} 2715 2716 \CFA generators, coroutines, and threads can also be monitors (Table~\ref{t:ExecutionPropertyComposition} cases 4, 6, 12) allowing safe \emph{direct communication} with threads, \ie the custom types can have mutex functions that are called by other threads. 2717 All monitor features are available within these mutex functions. 2718 For example, if the formatter generator (or coroutine equivalent) in Figure~\ref{f:CFAFormatGen} is extended with the monitor property and this interface function is used to communicate with the formatter: 2719 \begin{cfa} 2720 void fmt( Fmt & mutex fmt, char ch ) { fmt.ch = ch; resume( fmt ) } 2721 \end{cfa} 2722 multiple threads can safely pass characters for formatting. 2723 2724 Figure~\ref{f:DirectCommunicationComparison} shows a comparison of direct call-communication in \CFA versus indirect channel-communication in Go. 2725 (Ada has a similar mechanism to \CFA direct communication.) 2726 The program thread in \CFA @main@ uses the call/return paradigm to directly communicate with the @GoRtn main@, whereas Go switches to the channel paradigm to indirectly communicate with the goroutine. 2727 Communication by multiple threads is safe for the @gortn@ thread via mutex calls in \CFA or channel assignment in Go. 2728 2729 Figure~\ref{f:DirectCommunicationDatingService} shows the dating-service problem in Figure~\ref{f:DatingServiceMonitor} extended from indirect monitor communication to direct thread communication. 2730 When converting a monitor to a thread (server), the coding pattern is to move as much code as possible from the accepted members into the thread main so it does an much work as possible. 2731 Notice, the dating server is postponing requests for an unspecified time while continuing to accept new requests. 2732 For complex servers (web-servers), there can be hundreds of lines of code in the thread main and safe interaction with clients can be complex. 2499 \subsection{Execution Properties} 2500 2501 Table~\ref{t:ObjectPropertyComposition} shows how the \CFA high-level constructs cover 3 fundamental execution properties: thread, stateful function, and mutual exclusion. 2502 Case 1 is a basic object, with none of the new execution properties. 2503 Case 2 allows @mutex@ calls to Case 1 to protect shared data. 2504 Case 3 allows stateful functions to suspend/resume but restricts operations because the state is stackless. 2505 Case 4 allows @mutex@ calls to Case 3 to protect shared data. 2506 Cases 5 and 6 are the same as 3 and 4 without restriction because the state is stackful. 2507 Cases 7 and 8 are rejected because a thread cannot execute without a stackful state in a preemptive environment when context switching from the signal handler. 2508 Cases 9 and 10 have a stackful thread without and with @mutex@ calls. 2509 For situations where threads do not require direct communication, case 9 provides faster creation/destruction by eliminating @mutex@ setup. 2510 2511 \begin{table} 2512 \caption{Object property composition} 2513 \centering 2514 \label{t:ObjectPropertyComposition} 2515 \renewcommand{\arraystretch}{1.25} 2516 %\setlength{\tabcolsep}{5pt} 2517 \begin{tabular}{c|c||l|l} 2518 \multicolumn{2}{c||}{object properties} & \multicolumn{2}{c}{mutual exclusion} \\ 2519 \hline 2520 thread & stateful & \multicolumn{1}{c|}{No} & \multicolumn{1}{c}{Yes} \\ 2521 \hline 2522 \hline 2523 No & No & \textbf{1}\ \ \ aggregate type & \textbf{2}\ \ \ @monitor@ aggregate type \\ 2524 \hline 2525 No & Yes (stackless) & \textbf{3}\ \ \ @generator@ & \textbf{4}\ \ \ @monitor@ @generator@ \\ 2526 \hline 2527 No & Yes (stackful) & \textbf{5}\ \ \ @coroutine@ & \textbf{6}\ \ \ @monitor@ @coroutine@ \\ 2528 \hline 2529 Yes & No / Yes (stackless) & \textbf{7}\ \ \ {\color{red}rejected} & \textbf{8}\ \ \ {\color{red}rejected} \\ 2530 \hline 2531 Yes & Yes (stackful) & \textbf{9}\ \ \ @thread@ & \textbf{10}\ \ @monitor@ @thread@ \\ 2532 \end{tabular} 2533 \end{table} 2733 2534 2734 2535 … … 2736 2537 2737 2538 For completeness and efficiency, \CFA provides a standard set of low-level locks: recursive mutex, condition, semaphore, barrier, \etc, and atomic instructions: @fetchAssign@, @fetchAdd@, @testSet@, @compareSet@, \etc. 2738 Some of these low-level mechanism are used to build the \CFA runtime, but we alwaysadvocate using high-level mechanisms whenever possible.2539 Some of these low-level mechanism are used in the \CFA runtime, but we strongly advocate using high-level mechanisms whenever possible. 2739 2540 2740 2541 … … 2779 2580 \begin{cfa} 2780 2581 struct Adder { 2781 2582 int * row, cols; 2782 2583 }; 2783 2584 int operator()() { … … 2838 2639 \label{s:RuntimeStructureCluster} 2839 2640 2840 A \newterm{cluster} is a collection of user and kernel threads, where the kernel threads run the user threads from the cluster's ready queue, and the operating system runs the kernel threads on the processors from its ready queue. 2841 The term \newterm{virtual processor} is introduced as a synonym for kernel thread to disambiguate between user and kernel thread. 2842 From the language perspective, a virtual processor is an actual processor (core). 2843 2641 A \newterm{cluster} is a collection of threads and virtual processors (abstract kernel-thread) that execute the (user) threads from its own ready queue (like an OS executing kernel threads). 2844 2642 The purpose of a cluster is to control the amount of parallelism that is possible among threads, plus scheduling and other execution defaults. 2845 2643 The default cluster-scheduler is single-queue multi-server, which provides automatic load-balancing of threads on processors. … … 2860 2658 Programs may use more virtual processors than hardware processors. 2861 2659 On a multiprocessor, kernel threads are distributed across the hardware processors resulting in virtual processors executing in parallel. 2862 (It is possible to use affinity to lock a virtual processor onto a particular hardware processor~\cite{affinityLinux, affinityWindows}, which is used when caching issues occur or for heterogeneous hardware processors.) %, affinityFreebsd, affinityNetbsd, affinityMacosx2660 (It is possible to use affinity to lock a virtual processor onto a particular hardware processor~\cite{affinityLinux, affinityWindows, affinityFreebsd, affinityNetbsd, affinityMacosx}, which is used when caching issues occur or for heterogeneous hardware processors.) 2863 2661 The \CFA runtime attempts to block unused processors and unblock processors as the system load increases; 2864 balancing the workload with processors is difficult because it requires future knowledge, \ie what will the applicat ion workload do next.2662 balancing the workload with processors is difficult because it requires future knowledge, \ie what will the applicaton workload do next. 2865 2663 Preemption occurs on virtual processors rather than user threads, via operating-system interrupts. 2866 2664 Thus virtual processors execute user threads, where preemption frequency applies to a virtual processor, so preemption occurs randomly across the executed user threads. … … 2897 2695 Nondeterministic preemption provides fairness from long-running threads, and forces concurrent programmers to write more robust programs, rather than relying on code between cooperative scheduling to be atomic. 2898 2696 This atomic reliance can fail on multi-core machines, because execution across cores is nondeterministic. 2899 A different reason for not supporting preemption is that it significantly complicates the runtime system, \eg Windowsruntime does not support interrupts and on Linux systems, interrupts are complex (see below).2697 A different reason for not supporting preemption is that it significantly complicates the runtime system, \eg Microsoft runtime does not support interrupts and on Linux systems, interrupts are complex (see below). 2900 2698 Preemption is normally handled by setting a countdown timer on each virtual processor. 2901 When the timer expires, an interrupt is delivered, and its signalhandler resets the countdown timer, and if the virtual processor is executing in user code, the signal handler performs a user-level context-switch, or if executing in the language runtime kernel, the preemption is ignored or rolled forward to the point where the runtime kernel context switches back to user code.2699 When the timer expires, an interrupt is delivered, and the interrupt handler resets the countdown timer, and if the virtual processor is executing in user code, the signal handler performs a user-level context-switch, or if executing in the language runtime kernel, the preemption is ignored or rolled forward to the point where the runtime kernel context switches back to user code. 2902 2700 Multiple signal handlers may be pending. 2903 2701 When control eventually switches back to the signal handler, it returns normally, and execution continues in the interrupted user thread, even though the return from the signal handler may be on a different kernel thread than the one where the signal is delivered. 2904 2702 The only issue with this approach is that signal masks from one kernel thread may be restored on another as part of returning from the signal handler; 2905 2703 therefore, the same signal mask is required for all virtual processors in a cluster. 2906 Because preemption interval is usually long (1 millisecond) performance cost is negligible. 2907 2908 Linux switched a decade ago from specific to arbitrary virtual-processor signal-delivery for applications with multiple kernel threads. 2909 In the new semantics, a virtual-processor directed signal may be delivered to any virtual processor created by the application that does not have the signal blocked. 2704 Because preemption frequency is usually long (1 millisecond) performance cost is negligible. 2705 2706 Linux switched a decade ago from specific to arbitrary process signal-delivery for applications with multiple kernel threads. 2707 \begin{cquote} 2708 A process-directed signal may be delivered to any one of the threads that does not currently have the signal blocked. 2709 If more than one of the threads has the signal unblocked, then the kernel chooses an arbitrary thread to which it will deliver the signal. 2710 SIGNAL(7) - Linux Programmer's Manual 2711 \end{cquote} 2910 2712 Hence, the timer-expiry signal, which is generated \emph{externally} by the Linux kernel to an application, is delivered to any of its Linux subprocesses (kernel threads). 2911 2713 To ensure each virtual processor receives a preemption signal, a discrete-event simulation is run on a special virtual processor, and only it sets and receives timer events. … … 2925 2727 \label{s:Performance} 2926 2728 2927 To test the performance of the \CFA runtime, a series of microbenchmarks are used to compare \CFA with pthreads, Java 11.0.6, Go 1.12.6, Rust 1.37.0, Python 3.7.6, Node.js 12.14.1,and \uC 7.0.0.2729 To verify the implementation of the \CFA runtime, a series of microbenchmarks are performed comparing \CFA with pthreads, Java OpenJDK-9, Go 1.12.6 and \uC 7.0.0. 2928 2730 For comparison, the package must be multi-processor (M:N), which excludes libdill/libmil~\cite{libdill} (M:1)), and use a shared-memory programming model, \eg not message passing. 2929 The benchmark computer is an AMD Opteron\texttrademark\ 6380 NUMA 64-core, 8 socket, 2.5 GHz processor, running Ubuntu 16.04.6 LTS, and pthreads/\CFA/\uC are compiled with gcc 9.2.1.2731 The benchmark computer is an AMD Opteron\texttrademark\ 6380 NUMA 64-core, 8 socket, 2.5 GHz processor, running Ubuntu 16.04.6 LTS, and \CFA/\uC are compiled with gcc 6.5. 2930 2732 2931 2733 All benchmarks are run using the following harness. (The Java harness is augmented to circumvent JIT issues.) 2932 2734 \begin{cfa} 2933 #define BENCH( `run` ) uint64_t start = cputime_ns(); `run;` double result = (double)(cputime_ns() - start) / N; 2934 \end{cfa} 2935 where CPU time in nanoseconds is from the appropriate language clock. 2936 Each benchmark is performed @N@ times, where @N@ is selected so the benchmark runs in the range of 2--20 seconds for the specific programming language. 2937 The total time is divided by @N@ to obtain the average time for a benchmark. 2938 Each benchmark experiment is run 13 times and the average appears in the table. 2735 unsigned int N = 10_000_000; 2736 #define BENCH( `run` ) Time before = getTimeNsec(); `run;` Duration result = (getTimeNsec() - before) / N; 2737 \end{cfa} 2738 The method used to get time is @clock_gettime( CLOCK_REALTIME )@. 2739 Each benchmark is performed @N@ times, where @N@ varies depending on the benchmark; 2740 the total time is divided by @N@ to obtain the average time for a benchmark. 2741 Each benchmark experiment is run 31 times. 2939 2742 All omitted tests for other languages are functionally identical to the \CFA tests and available online~\cite{CforallBenchMarks}. 2940 % tar --exclude-ignore=exclude -cvhf benchmark.tar benchmark 2941 2942 \paragraph{Context Switching} 2743 % tar --exclude=.deps --exclude=Makefile --exclude=Makefile.in --exclude=c.c --exclude=cxx.cpp --exclude=fetch_add.c -cvhf benchmark.tar benchmark 2744 2745 \paragraph{Object Creation} 2746 2747 Object creation is measured by creating/deleting the specific kind of concurrent object. 2748 Figure~\ref{f:creation} shows the code for \CFA, with results in Table~\ref{tab:creation}. 2749 The only note here is that the call stacks of \CFA coroutines are lazily created, therefore without priming the coroutine to force stack creation, the creation cost is artificially low. 2750 2751 \begin{multicols}{2} 2752 \lstset{language=CFA,moredelim=**[is][\color{red}]{@}{@},deletedelim=**[is][]{`}{`}} 2753 \begin{cfa} 2754 @thread@ MyThread {}; 2755 void @main@( MyThread & ) {} 2756 int main() { 2757 BENCH( for ( N ) { @MyThread m;@ } ) 2758 sout | result`ns; 2759 } 2760 \end{cfa} 2761 \captionof{figure}{\CFA object-creation benchmark} 2762 \label{f:creation} 2763 2764 \columnbreak 2765 2766 \vspace*{-16pt} 2767 \captionof{table}{Object creation comparison (nanoseconds)} 2768 \label{tab:creation} 2769 2770 \begin{tabular}[t]{@{}r*{3}{D{.}{.}{5.2}}@{}} 2771 \multicolumn{1}{@{}c}{} & \multicolumn{1}{c}{Median} & \multicolumn{1}{c}{Average} & \multicolumn{1}{c@{}}{Std Dev} \\ 2772 \CFA Coroutine Lazy & 13.2 & 13.1 & 0.44 \\ 2773 \CFA Coroutine Eager & 531.3 & 536.0 & 26.54 \\ 2774 \CFA Thread & 2074.9 & 2066.5 & 170.76 \\ 2775 \uC Coroutine & 89.6 & 90.5 & 1.83 \\ 2776 \uC Thread & 528.2 & 528.5 & 4.94 \\ 2777 Goroutine & 4068.0 & 4113.1 & 414.55 \\ 2778 Java Thread & 103848.5 & 104295.4 & 2637.57 \\ 2779 Pthreads & 33112.6 & 33127.1 & 165.90 2780 \end{tabular} 2781 \end{multicols} 2782 2783 2784 \paragraph{Context-Switching} 2943 2785 2944 2786 In procedural programming, the cost of a function call is important as modularization (refactoring) increases. 2945 (In many cases, a compiler inlines function calls to increase the size and number of basic blocks for optimizing.)2946 Similarly, when modularization extends to coroutines/t hreads, the time for a context switch becomes a relevant factor.2787 (In many cases, a compiler inlines function calls to eliminate this cost.) 2788 Similarly, when modularization extends to coroutines/tasks, the time for a context switch becomes a relevant factor. 2947 2789 The coroutine test is from resumer to suspender and from suspender to resumer, which is two context switches. 2948 %For async-await systems, the test is scheduling and fulfilling @N@ empty promises, where all promises are allocated before versus interleaved with fulfillment to avoid garbage collection.2949 For async-await systems, the test measures the cost of the @await@ expression entering the event engine by awaiting @N@ promises, where each created promise is resolved by an immediate event in the engine (using Node.js @setImmediate@).2950 2790 The thread test is using yield to enter and return from the runtime kernel, which is two context switches. 2951 2791 The difference in performance between coroutine and thread context-switch is the cost of scheduling for threads, whereas coroutines are self-scheduling. 2952 Figure~\ref{f:ctx-switch} shows the \CFA code for a coroutine/thread with results in Table~\ref{t:ctx-switch}. 2953 2954 % From: Gregor Richards <gregor.richards@uwaterloo.ca> 2955 % To: "Peter A. Buhr" <pabuhr@plg2.cs.uwaterloo.ca> 2956 % Date: Fri, 24 Jan 2020 13:49:18 -0500 2957 % 2958 % I can also verify that the previous version, which just tied a bunch of promises together, *does not* go back to the 2959 % event loop at all in the current version of Node. Presumably they're taking advantage of the fact that the ordering of 2960 % events is intentionally undefined to just jump right to the next 'then' in the chain, bypassing event queueing 2961 % entirely. That's perfectly correct behavior insofar as its difference from the specified behavior isn't observable, but 2962 % it isn't typical or representative of much anything useful, because most programs wouldn't have whole chains of eager 2963 % promises. Also, it's not representative of *anything* you can do with async/await, as there's no way to encode such an 2964 % eager chain that way. 2792 Figure~\ref{f:ctx-switch} only shows the \CFA code for coroutines/threads (other systems are similar) with all results in Table~\ref{tab:ctx-switch}. 2965 2793 2966 2794 \begin{multicols}{2} 2967 2795 \lstset{language=CFA,moredelim=**[is][\color{red}]{@}{@},deletedelim=**[is][]{`}{`}} 2968 2796 \begin{cfa}[aboveskip=0pt,belowskip=0pt] 2969 @coroutine@ C {} ;2970 void main( C & ) { for ( ) { @suspend;@ } }2797 @coroutine@ C {} c; 2798 void main( C & ) { for ( ;; ) { @suspend;@ } } 2971 2799 int main() { // coroutine test 2972 C c;2973 2800 BENCH( for ( N ) { @resume( c );@ } ) 2974 sout | result ;2975 } 2976 int main() { // t hreadtest2801 sout | result`ns; 2802 } 2803 int main() { // task test 2977 2804 BENCH( for ( N ) { @yield();@ } ) 2978 sout | result ;2805 sout | result`ns; 2979 2806 } 2980 2807 \end{cfa} … … 2986 2813 \vspace*{-16pt} 2987 2814 \captionof{table}{Context switch comparison (nanoseconds)} 2988 \label{t :ctx-switch}2815 \label{tab:ctx-switch} 2989 2816 \begin{tabular}{@{}r*{3}{D{.}{.}{3.2}}@{}} 2990 2817 \multicolumn{1}{@{}c}{} & \multicolumn{1}{c}{Median} &\multicolumn{1}{c}{Average} & \multicolumn{1}{c@{}}{Std Dev} \\ 2991 C function & 1.8 & 1.8 & 0.0 \\ 2992 \CFA generator & 1.8 & 2.0 & 0.3 \\ 2993 \CFA coroutine & 32.5 & 32.9 & 0.8 \\ 2994 \CFA thread & 93.8 & 93.6 & 2.2 \\ 2995 \uC coroutine & 50.3 & 50.3 & 0.2 \\ 2996 \uC thread & 97.3 & 97.4 & 1.0 \\ 2997 Python generator & 40.9 & 41.3 & 1.5 \\ 2998 Node.js generator & 32.6 & 32.2 & 1.0 \\ 2999 Node.js await & 1852.2 & 1854.7 & 16.4 \\ 3000 Goroutine thread & 143.0 & 143.3 & 1.1 \\ 3001 Rust thread & 332.0 & 331.4 & 2.4 \\ 3002 Java thread & 405.0 & 415.0 & 17.6 \\ 3003 Pthreads thread & 334.3 & 335.2 & 3.9 2818 C function & 1.8 & 1.8 & 0.01 \\ 2819 \CFA generator & 2.4 & 2.2 & 0.25 \\ 2820 \CFA Coroutine & 36.2 & 36.2 & 0.25 \\ 2821 \CFA Thread & 93.2 & 93.5 & 2.09 \\ 2822 \uC Coroutine & 52.0 & 52.1 & 0.51 \\ 2823 \uC Thread & 96.2 & 96.3 & 0.58 \\ 2824 Goroutine & 141.0 & 141.3 & 3.39 \\ 2825 Java Thread & 374.0 & 375.8 & 10.38 \\ 2826 Pthreads Thread & 361.0 & 365.3 & 13.19 3004 2827 \end{tabular} 3005 2828 \end{multicols} 3006 2829 3007 \paragraph{Internal Scheduling} 3008 3009 Internal scheduling is measured using a cycle of two threads signalling and waiting. 3010 Figure~\ref{f:schedint} shows the code for \CFA, with results in Table~\ref{t:schedint}. 2830 2831 \paragraph{Mutual-Exclusion} 2832 2833 Uncontented mutual exclusion, which frequently occurs, is measured by entering/leaving a critical section. 2834 For monitors, entering and leaving a monitor function is measured. 2835 To put the results in context, the cost of entering a non-inline function and the cost of acquiring and releasing a @pthread_mutex@ lock is also measured. 2836 Figure~\ref{f:mutex} shows the code for \CFA with all results in Table~\ref{tab:mutex}. 3011 2837 Note, the incremental cost of bulk acquire for \CFA, which is largely a fixed cost for small numbers of mutex objects. 3012 Java scheduling is significantly greater because the benchmark explicitly creates multiple thread in order to prevent the JIT from making the program sequential, \ie removing all locking.3013 2838 3014 2839 \begin{multicols}{2} 3015 2840 \lstset{language=CFA,moredelim=**[is][\color{red}]{@}{@},deletedelim=**[is][]{`}{`}} 3016 2841 \begin{cfa} 3017 volatile int go = 0;3018 @condition c;@3019 2842 @monitor@ M {} m1/*, m2, m3, m4*/; 3020 void call( M & @mutex p1/*, p2, p3, p4*/@ ) { 3021 @signal( c );@ 3022 } 3023 void wait( M & @mutex p1/*, p2, p3, p4*/@ ) { 3024 go = 1; // continue other thread 3025 for ( N ) { @wait( c );@ } ); 3026 } 3027 thread T {}; 3028 void main( T & ) { 3029 while ( go == 0 ) { yield(); } // waiter must start first 3030 BENCH( for ( N ) { call( m1/*, m2, m3, m4*/ ); } ) 3031 sout | result; 3032 } 2843 void __attribute__((noinline)) 2844 do_call( M & @mutex m/*, m2, m3, m4*/@ ) {} 3033 2845 int main() { 3034 T t; 3035 wait( m1/*, m2, m3, m4*/ ); 3036 } 3037 \end{cfa} 3038 \captionof{figure}{\CFA Internal-scheduling benchmark} 3039 \label{f:schedint} 2846 BENCH( 2847 for( N ) do_call( m1/*, m2, m3, m4*/ ); 2848 ) 2849 sout | result`ns; 2850 } 2851 \end{cfa} 2852 \captionof{figure}{\CFA acquire/release mutex benchmark} 2853 \label{f:mutex} 3040 2854 3041 2855 \columnbreak 3042 2856 3043 2857 \vspace*{-16pt} 3044 \captionof{table}{Internal-scheduling comparison (nanoseconds)} 3045 \label{t:schedint} 3046 \bigskip 3047 3048 \begin{tabular}{@{}r*{3}{D{.}{.}{5.2}}@{}} 3049 \multicolumn{1}{@{}c}{} & \multicolumn{1}{c}{Median} & \multicolumn{1}{c}{Average} & \multicolumn{1}{c@{}}{Std Dev} \\ 3050 \CFA @signal@, 1 monitor & 364.4 & 364.2 & 4.4 \\ 3051 \CFA @signal@, 2 monitor & 484.4 & 483.9 & 8.8 \\ 3052 \CFA @signal@, 4 monitor & 709.1 & 707.7 & 15.0 \\ 3053 \uC @signal@ monitor & 328.3 & 327.4 & 2.4 \\ 3054 Rust cond. variable & 7514.0 & 7437.4 & 397.2 \\ 3055 Java @notify@ monitor & 9623.0 & 9654.6 & 236.2 \\ 3056 Pthreads cond. variable & 5553.7 & 5576.1 & 345.6 2858 \captionof{table}{Mutex comparison (nanoseconds)} 2859 \label{tab:mutex} 2860 \begin{tabular}{@{}r*{3}{D{.}{.}{3.2}}@{}} 2861 \multicolumn{1}{@{}c}{} & \multicolumn{1}{c}{Median} &\multicolumn{1}{c}{Average} & \multicolumn{1}{c@{}}{Std Dev} \\ 2862 test and test-and-test lock & 19.1 & 18.9 & 0.40 \\ 2863 \CFA @mutex@ function, 1 arg. & 45.9 & 46.6 & 1.45 \\ 2864 \CFA @mutex@ function, 2 arg. & 105.0 & 104.7 & 3.08 \\ 2865 \CFA @mutex@ function, 4 arg. & 165.0 & 167.6 & 5.65 \\ 2866 \uC @monitor@ member rtn. & 54.0 & 53.7 & 0.82 \\ 2867 Java synchronized method & 31.0 & 31.1 & 0.50 \\ 2868 Pthreads Mutex Lock & 33.6 & 32.6 & 1.14 3057 2869 \end{tabular} 3058 2870 \end{multicols} … … 3062 2874 3063 2875 External scheduling is measured using a cycle of two threads calling and accepting the call using the @waitfor@ statement. 3064 Figure~\ref{f: schedext} shows the code for \CFA with results in Table~\ref{t:schedext}.2876 Figure~\ref{f:ext-sched} shows the code for \CFA, with results in Table~\ref{tab:ext-sched}. 3065 2877 Note, the incremental cost of bulk acquire for \CFA, which is largely a fixed cost for small numbers of mutex objects. 3066 2878 … … 3069 2881 \vspace*{-16pt} 3070 2882 \begin{cfa} 3071 @monitor@ M {} m1/*, m2, m3, m4*/; 3072 void call( M & @mutex p1/*, p2, p3, p4*/@ ) {} 3073 void wait( M & @mutex p1/*, p2, p3, p4*/@ ) { 3074 for ( N ) { @waitfor( call : p1/*, p2, p3, p4*/ );@ } 3075 } 2883 volatile int go = 0; 2884 @monitor@ M {} m; 3076 2885 thread T {}; 2886 void __attribute__((noinline)) 2887 do_call( M & @mutex@ ) {} 3077 2888 void main( T & ) { 3078 BENCH( for ( N ) { call( m1/*, m2, m3, m4*/ ); } ) 3079 sout | result; 2889 while ( go == 0 ) { yield(); } 2890 while ( go == 1 ) { do_call( m ); } 2891 } 2892 int __attribute__((noinline)) 2893 do_wait( M & @mutex@ m ) { 2894 go = 1; // continue other thread 2895 BENCH( for ( N ) { @waitfor( do_call, m );@ } ) 2896 go = 0; // stop other thread 2897 sout | result`ns; 3080 2898 } 3081 2899 int main() { 3082 2900 T t; 3083 wait( m1/*, m2, m3, m4*/);2901 do_wait( m ); 3084 2902 } 3085 2903 \end{cfa} 3086 2904 \captionof{figure}{\CFA external-scheduling benchmark} 3087 \label{f: schedext}2905 \label{f:ext-sched} 3088 2906 3089 2907 \columnbreak … … 3091 2909 \vspace*{-16pt} 3092 2910 \captionof{table}{External-scheduling comparison (nanoseconds)} 3093 \label{t :schedext}2911 \label{tab:ext-sched} 3094 2912 \begin{tabular}{@{}r*{3}{D{.}{.}{3.2}}@{}} 3095 2913 \multicolumn{1}{@{}c}{} & \multicolumn{1}{c}{Median} &\multicolumn{1}{c}{Average} & \multicolumn{1}{c@{}}{Std Dev} \\ 3096 \CFA @waitfor@, 1 monitor & 367.1 & 365.3 & 5.0 \\ 3097 \CFA @waitfor@, 2 monitor & 463.0 & 464.6 & 7.1 \\ 3098 \CFA @waitfor@, 4 monitor & 689.6 & 696.2 & 21.5 \\ 3099 \uC \lstinline[language=uC++]|_Accept| monitor & 328.2 & 329.1 & 3.4 \\ 3100 Go \lstinline[language=Golang]|select| channel & 365.0 & 365.5 & 1.2 2914 \CFA @waitfor@, 1 @monitor@ & 376.4 & 376.8 & 7.63 \\ 2915 \CFA @waitfor@, 2 @monitor@ & 491.4 & 492.0 & 13.31 \\ 2916 \CFA @waitfor@, 4 @monitor@ & 681.0 & 681.7 & 19.10 \\ 2917 \uC @_Accept@ & 331.1 & 331.4 & 2.66 3101 2918 \end{tabular} 3102 2919 \end{multicols} 3103 2920 3104 \paragraph{Mutual-Exclusion} 3105 3106 Uncontented mutual exclusion, which frequently occurs, is measured by entering/leaving a critical section. 3107 For monitors, entering and leaving a monitor function is measured, otherwise the language-appropriate mutex-lock is measured.3108 F or comparison, a spinning (versus blocking) test-and-test-set lock is presented.3109 Figure~\ref{f:mutex} shows the code for \CFA with results in Table~\ref{t:mutex}.3110 Note the incremental cost of bulk acquire for \CFA, which is largely a fixed cost for small numbers of mutex objects.2921 2922 \paragraph{Internal Scheduling} 2923 2924 Internal scheduling is measured using a cycle of two threads signalling and waiting. 2925 Figure~\ref{f:int-sched} shows the code for \CFA, with results in Table~\ref{tab:int-sched}. 2926 Note, the incremental cost of bulk acquire for \CFA, which is largely a fixed cost for small numbers of mutex objects. 2927 Java scheduling is significantly greater because the benchmark explicitly creates multiple thread in order to prevent the JIT from making the program sequential, \ie removing all locking. 3111 2928 3112 2929 \begin{multicols}{2} 3113 2930 \lstset{language=CFA,moredelim=**[is][\color{red}]{@}{@},deletedelim=**[is][]{`}{`}} 3114 2931 \begin{cfa} 3115 @monitor@ M {} m1/*, m2, m3, m4*/; 3116 call( M & @mutex p1/*, p2, p3, p4*/@ ) {} 2932 volatile int go = 0; 2933 @monitor@ M { @condition c;@ } m; 2934 void __attribute__((noinline)) 2935 do_call( M & @mutex@ a1 ) { @signal( c );@ } 2936 thread T {}; 2937 void main( T & this ) { 2938 while ( go == 0 ) { yield(); } 2939 while ( go == 1 ) { do_call( m ); } 2940 } 2941 int __attribute__((noinline)) 2942 do_wait( M & mutex m ) with(m) { 2943 go = 1; // continue other thread 2944 BENCH( for ( N ) { @wait( c );@ } ); 2945 go = 0; // stop other thread 2946 sout | result`ns; 2947 } 3117 2948 int main() { 3118 BENCH( for( N ) call( m1/*, m2, m3, m4*/ ); )3119 sout | result;3120 } 3121 \end{cfa} 3122 \captionof{figure}{\CFA acquire/release mutexbenchmark}3123 \label{f: mutex}2949 T t; 2950 do_wait( m ); 2951 } 2952 \end{cfa} 2953 \captionof{figure}{\CFA Internal-scheduling benchmark} 2954 \label{f:int-sched} 3124 2955 3125 2956 \columnbreak 3126 2957 3127 2958 \vspace*{-16pt} 3128 \captionof{table}{Mutex comparison (nanoseconds)} 3129 \label{t:mutex} 3130 \begin{tabular}{@{}r*{3}{D{.}{.}{3.2}}@{}} 3131 \multicolumn{1}{@{}c}{} & \multicolumn{1}{c}{Median} &\multicolumn{1}{c}{Average} & \multicolumn{1}{c@{}}{Std Dev} \\ 3132 test-and-test-set lock & 19.1 & 18.9 & 0.4 \\ 3133 \CFA @mutex@ function, 1 arg. & 48.3 & 47.8 & 0.9 \\ 3134 \CFA @mutex@ function, 2 arg. & 86.7 & 87.6 & 1.9 \\ 3135 \CFA @mutex@ function, 4 arg. & 173.4 & 169.4 & 5.9 \\ 3136 \uC @monitor@ member rtn. & 54.8 & 54.8 & 0.1 \\ 3137 Goroutine mutex lock & 34.0 & 34.0 & 0.0 \\ 3138 Rust mutex lock & 33.0 & 33.2 & 0.8 \\ 3139 Java synchronized method & 31.0 & 31.0 & 0.0 \\ 3140 Pthreads mutex Lock & 31.0 & 31.1 & 0.4 2959 \captionof{table}{Internal-scheduling comparison (nanoseconds)} 2960 \label{tab:int-sched} 2961 \bigskip 2962 2963 \begin{tabular}{@{}r*{3}{D{.}{.}{5.2}}@{}} 2964 \multicolumn{1}{@{}c}{} & \multicolumn{1}{c}{Median} & \multicolumn{1}{c}{Average} & \multicolumn{1}{c@{}}{Std Dev} \\ 2965 \CFA @signal@, 1 @monitor@ & 372.6 & 374.3 & 14.17 \\ 2966 \CFA @signal@, 2 @monitor@ & 492.7 & 494.1 & 12.99 \\ 2967 \CFA @signal@, 4 @monitor@ & 749.4 & 750.4 & 24.74 \\ 2968 \uC @signal@ & 320.5 & 321.0 & 3.36 \\ 2969 Java @notify@ & 10160.5 & 10169.4 & 267.71 \\ 2970 Pthreads Cond. Variable & 4949.6 & 5065.2 & 363 3141 2971 \end{tabular} 3142 2972 \end{multicols} 3143 2973 3144 \paragraph{Creation}3145 3146 Creation is measured by creating/deleting a specific kind of control-flow object.3147 Figure~\ref{f:creation} shows the code for \CFA with results in Table~\ref{t:creation}.3148 Note, the call stacks of \CFA coroutines are lazily created on the first resume, therefore the cost of creation with and without a stack are presented.3149 3150 \begin{multicols}{2}3151 \lstset{language=CFA,moredelim=**[is][\color{red}]{@}{@},deletedelim=**[is][]{`}{`}}3152 \begin{cfa}3153 @coroutine@ MyCoroutine {};3154 void ?{}( MyCoroutine & this ) {3155 #ifdef EAGER3156 resume( this );3157 #endif3158 }3159 void main( MyCoroutine & ) {}3160 int main() {3161 BENCH( for ( N ) { @MyCoroutine c;@ } )3162 sout | result;3163 }3164 \end{cfa}3165 \captionof{figure}{\CFA creation benchmark}3166 \label{f:creation}3167 3168 \columnbreak3169 3170 \vspace*{-16pt}3171 \captionof{table}{Creation comparison (nanoseconds)}3172 \label{t:creation}3173 3174 \begin{tabular}[t]{@{}r*{3}{D{.}{.}{5.2}}@{}}3175 \multicolumn{1}{@{}c}{} & \multicolumn{1}{c}{Median} & \multicolumn{1}{c}{Average} & \multicolumn{1}{c@{}}{Std Dev} \\3176 \CFA generator & 0.6 & 0.6 & 0.0 \\3177 \CFA coroutine lazy & 13.4 & 13.1 & 0.5 \\3178 \CFA coroutine eager & 144.7 & 143.9 & 1.5 \\3179 \CFA thread & 466.4 & 468.0 & 11.3 \\3180 \uC coroutine & 155.6 & 155.7 & 1.7 \\3181 \uC thread & 523.4 & 523.9 & 7.7 \\3182 Python generator & 123.2 & 124.3 & 4.1 \\3183 Node.js generator & 32.3 & 32.2 & 0.3 \\3184 Goroutine thread & 751.0 & 750.5 & 3.1 \\3185 Rust thread & 53801.0 & 53896.8 & 274.9 \\3186 Java thread & 120274.0 & 120722.9 & 2356.7 \\3187 Pthreads thread & 31465.5 & 31419.5 & 140.43188 \end{tabular}3189 \end{multicols}3190 3191 3192 \subsection{Discussion}3193 3194 Languages using 1:1 threading based on pthreads can at best meet or exceed (due to language overhead) the pthread results.3195 Note, pthreads has a fast zero-contention mutex lock checked in user space.3196 Languages with M:N threading have better performance than 1:1 because there is no operating-system interactions.3197 Languages with stackful coroutines have higher cost than stackless coroutines because of stack allocation and context switching;3198 however, stackful \uC and \CFA coroutines have approximately the same performance as stackless Python and Node.js generators.3199 The \CFA stackless generator is approximately 25 times faster for suspend/resume and 200 times faster for creation than stackless Python and Node.js generators.3200 3201 2974 3202 2975 \section{Conclusion} … … 3204 2977 Advanced control-flow will always be difficult, especially when there is temporal ordering and nondeterminism. 3205 2978 However, many systems exacerbate the difficulty through their presentation mechanisms. 3206 This paper shows it is possible to understand high-level control-flow using three properties: statefulness, thread, mutual-exclusion/synchronization. 3207 Combining these properties creates a number of high-level, efficient, and maintainable control-flow types: generator, coroutine, thread, each of which can be a monitor. 3208 Eliminated from \CFA are barging and spurious wakeup, which are nonintuitive and lead to errors, and having to work with a bewildering set of low-level locks and acquisition techniques. 3209 \CFA high-level race-free monitors and threads provide the core mechanisms for mutual exclusion and synchronization, without having to resort to magic qualifiers like @volatile@/@atomic@. 2979 This paper shows it is possible to present a hierarchy of control-flow features, generator, coroutine, thread, and monitor, providing an integrated set of high-level, efficient, and maintainable control-flow features. 2980 Eliminated from \CFA are spurious wakeup and barging, which are nonintuitive and lead to errors, and having to work with a bewildering set of low-level locks and acquisition techniques. 2981 \CFA high-level race-free monitors and tasks provide the core mechanisms for mutual exclusion and synchronization, without having to resort to magic qualifiers like @volatile@/@atomic@. 3210 2982 Extending these mechanisms to handle high-level deadlock-free bulk acquire across both mutual exclusion and synchronization is a unique contribution. 3211 2983 The \CFA runtime provides concurrency based on a preemptive M:N user-level threading-system, executing in clusters, which encapsulate scheduling of work on multiple kernel threads providing parallelism. 3212 2984 The M:N model is judged to be efficient and provide greater flexibility than a 1:1 threading model. 3213 2985 These concepts and the \CFA runtime-system are written in the \CFA language, extensively leveraging the \CFA type-system, which demonstrates the expressiveness of the \CFA language. 3214 Performance comparisons with other concurrent systems/languages show the \CFA approach is competitive across all basic operations, which translates directly into good performance in well-written applications with advanced control-flow.3215 C programmers should feel comfortable using these mechanisms for developing complex control-flow in applications, with the ability to obtain maximum available performance by selecting mechanisms at the appropriate level of need using only calling communication.2986 Performance comparisons with other concurrent systems/languages show the \CFA approach is competitive across all low-level operations, which translates directly into good performance in well-written concurrent applications. 2987 C programmers should feel comfortable using these mechanisms for developing complex control-flow in applications, with the ability to obtain maximum available performance by selecting mechanisms at the appropriate level of need. 3216 2988 3217 2989 … … 3233 3005 \label{futur:nbio} 3234 3006 3235 Many modern workloads are not bound by computation but IO operations, common casesbeing web servers and XaaS~\cite{XaaS} (anything as a service).3007 Many modern workloads are not bound by computation but IO operations, a common case being web servers and XaaS~\cite{XaaS} (anything as a service). 3236 3008 These types of workloads require significant engineering to amortizing costs of blocking IO-operations. 3237 3009 At its core, non-blocking I/O is an operating-system level feature queuing IO operations, \eg network operations, and registering for notifications instead of waiting for requests to complete. … … 3261 3033 \section{Acknowledgements} 3262 3034 3263 The authors recognize the design assistance of Aaron Moss, Rob Schluntz, Andrew Beach, and Michael Brooks; David Dice for commenting and helping with the Java benchmarks; and Gregor Richards for helping with the Node.js benchmarks.3264 This research is funded by a grant from Waterloo-Huawei (\url{http://www.huawei.com}) Joint Innovation Lab. %, and Peter Buhr is partially funded by the Natural Sciences and Engineering Research Council of Canada.3035 The authors would like to recognize the design assistance of Aaron Moss, Rob Schluntz, Andrew Beach and Michael Brooks on the features described in this paper. 3036 Funding for this project has been provided by Huawei Ltd.\ (\url{http://www.huawei.com}). %, and Peter Buhr is partially funded by the Natural Sciences and Engineering Research Council of Canada. 3265 3037 3266 3038 {% 3267 \fontsize{9bp}{1 1.5bp}\selectfont%3039 \fontsize{9bp}{12bp}\selectfont% 3268 3040 \bibliography{pl,local} 3269 3041 }% -
doc/papers/concurrency/examples/Fib.py
r7030dab r71d6bd8 4 4 while True: 5 5 fn = fn1 + fn2; fn2 = fn1; fn1 = fn; yield fn 6 7 6 8 7 9 f1 = Fib() … … 12 14 # Local Variables: # 13 15 # tab-width: 4 # 14 # compile-command: "python3. 7Fib.py" #16 # compile-command: "python3.5 Fib.py" # 15 17 # End: # -
doc/papers/concurrency/examples/Fib2.c
r7030dab r71d6bd8 1 1 #include <stdio.h> 2 2 3 void mary() { 4 printf( "MARY\n" ); 5 } 6 3 7 #define FIB_INIT { 0 } 4 typedef struct { int restart; int fn1, fn2; } Fib;8 typedef struct { int next; int fn1, fn2; } Fib; 5 9 int fib( Fib * f ) { 6 static void * states[] = { &&s0, &&s1, &&s2 }; 7 goto *states[f->restart]; 8 s0: 10 static void * states[] = { &&s1, &&s2, &&s3 }; 11 goto *states[f->next]; 12 s1: 13 mary(); 9 14 f->fn1 = 0; 10 f-> restart = 1;15 f->next = 1; 11 16 return f->fn1; 12 s1: 17 s2: 18 mary(); 13 19 f->fn2 = f->fn1; 14 20 f->fn1 = 1; 15 f-> restart = 2;21 f->next = 2; 16 22 return f->fn1; 17 s2:; 23 s3:; 24 mary(); 18 25 int fn = f->fn1 + f->fn2; 19 26 f->fn2 = f->fn1; -
doc/papers/concurrency/examples/Fib2.py
r7030dab r71d6bd8 1 1 def Fib(): 2 fn1, fn = 1, 02 fn1, fn = 0, 1 3 3 while True: 4 yield fn 4 yield fn1 5 5 fn1, fn = fn, fn1 + fn 6 6 … … 12 12 # Local Variables: # 13 13 # tab-width: 4 # 14 # compile-command: "python3. 7Fib2.py" #14 # compile-command: "python3.5 Fib2.py" # 15 15 # End: # -
doc/papers/concurrency/examples/Fib3.c
r7030dab r71d6bd8 2 2 3 3 typedef struct { 4 int restart, fn1, fn; 4 int fn1, fn; 5 void * next; 5 6 } Fib; 6 #define FibCtor { 0, 1, 0}7 #define FibCtor { 1, 0, NULL } 7 8 8 9 Fib * comain( Fib * f ) { 9 static void * states[] = {&&s0, &&s1}; 10 goto *states[f->restart]; 11 s0: f->restart = 1; 10 if ( __builtin_expect(f->next != 0, 1) ) goto *f->next; 11 f->next = &&s1; 12 12 for ( ;; ) { 13 13 return f; -
doc/papers/concurrency/examples/FibRefactor.py
r7030dab r71d6bd8 22 22 # Local Variables: # 23 23 # tab-width: 4 # 24 # compile-command: "python3. 7FibRefactor.py" #24 # compile-command: "python3.5 FibRefactor.py" # 25 25 # End: # -
doc/papers/concurrency/examples/Format.c
r7030dab r71d6bd8 2 2 3 3 typedef struct { 4 int restart, g, b;4 void * next; 5 5 char ch; 6 int g, b; 6 7 } Fmt; 7 8 8 9 void comain( Fmt * f ) { 9 static void * states[] = {&&s0, &&s1}; 10 goto *states[f->restart]; 11 s0: f->restart = 1; 10 if ( __builtin_expect(f->next != 0, 1) ) goto *f->next; 11 f->next = &&s1; 12 12 for ( ;; ) { 13 13 for ( f->g = 0; f->g < 5; f->g += 1 ) { // groups 14 14 for ( f->b = 0; f->b < 4; f->b += 1 ) { // blocks 15 do { 16 return; s1: ; 17 } while ( f->ch == '\n' ); // ignore 15 return; 16 s1:; while ( f->ch == '\n' ) return; // ignore 18 17 printf( "%c", f->ch ); // print character 19 18 } … … 25 24 26 25 int main() { 27 Fmt fmt = { 0};26 Fmt fmt = { NULL }; 28 27 comain( &fmt ); // prime 29 28 for ( ;; ) { -
doc/papers/concurrency/examples/Format.cc
r7030dab r71d6bd8 6 6 for ( g = 0; g < 5; g += 1 ) { // groups of 5 blocks 7 7 for ( b = 0; b < 4; b += 1 ) { // blocks of 4 characters 8 for ( ;; ) { // for newline characters8 // for ( ;; ) { // for newline characters 9 9 suspend(); 10 if ( ch != '\n' ) break; // ignore newline11 }10 // if ( ch != '\n' ) break; // ignore newline 11 // } 12 12 // cout << ch; // print character 13 13 } … … 31 31 // Local Variables: // 32 32 // tab-width: 4 // 33 // compile-command: "u++-work -O2 -nodebu g Format.cc" //33 // compile-command: "u++-work -O2 -nodebubg Format.cc" // 34 34 // End: // -
doc/papers/concurrency/examples/Format.cfa
r7030dab r71d6bd8 11 11 for ( g = 0; g < 5; g += 1 ) { // groups of 5 blocks 12 12 for ( b = 0; b < 4; b += 1 ) { // blocks of 4 characters 13 do {13 // do { 14 14 suspend(); 15 } while ( ch == '\n' || ch == '\t' );15 // } while ( ch == '\n' || ch == '\t' ); 16 16 sout | ch; // print character 17 17 } -
doc/papers/concurrency/examples/Format.data
r7030dab r71d6bd8 1 abcdefghijklmnop 2 qrstuvwxyzx 3 xxxxxxxxxxxxx 1 abcdefghijklmnopqrstuvwxyzxxxxxxxxxxxxxx -
doc/papers/concurrency/examples/Format.py
r7030dab r71d6bd8 4 4 for g in range( 5 ): # groups of 5 blocks 5 5 for b in range( 4 ): # blocks of 4 characters 6 while True: 7 ch = (yield) # receive from send 8 if '\n' not in ch: 9 break 10 print( ch, end='' ) # receive from send 6 print( (yield), end='' ) # receive from send 11 7 print( ' ', end='' ) # block separator 12 8 print() # group separator … … 15 11 print() 16 12 17 input = "abcdefghijklmnop\nqrstuvwx\nyzxxxxxxxxxxxxxx\n"18 19 13 fmt = Format() 20 14 next( fmt ) # prime generator 21 for i in input:22 fmt.send( i); # send to yield15 for i in range( 41 ): 16 fmt.send( 'a' ); # send to yield 23 17 24 18 # Local Variables: # 25 19 # tab-width: 4 # 26 # compile-command: "python3. 7Format.py" #20 # compile-command: "python3.5 Format.py" # 27 21 # End: # -
doc/papers/concurrency/examples/Format1.c
r7030dab r71d6bd8 2 2 3 3 typedef struct { 4 int restart, g, b;4 void * next; 5 5 char ch; 6 int g, b; 6 7 } Fmt; 7 8 8 9 void format( Fmt * f ) { 9 static void * states[] = {&&s0, &&s1}; 10 goto *states[f->restart]; 11 s0: f->restart = 1; 10 if ( __builtin_expect(f->next != 0, 1) ) goto *f->next; 11 f->next = &&s1; 12 12 for ( ;; ) { 13 13 for ( f->g = 0; f->g < 5; f->g += 1 ) { // groups 14 14 for ( f->b = 0; f->b < 4; f->b += 1 ) { // blocks 15 15 return; 16 s1: if ( f->ch == '\0' ) goto fini; // EOF ? 16 s1: ; 17 if ( f->ch == '\0' ) goto fini; // EOF ? 17 18 while ( f->ch == '\n' ) return; // ignore 18 //printf( "%c", f->ch ); // print character19 printf( "%c", f->ch ); // print character 19 20 } 20 //printf( " " ); // block separator21 printf( " " ); // block separator 21 22 } 22 //printf( "\n" ); // group separator23 printf( "\n" ); // group separator 23 24 } 24 fini: ;25 //if ( f->g != 0 || f->b != 0 ) printf( "\n" );25 fini: 26 if ( f->g != 0 || f->b != 0 ) printf( "\n" ); 26 27 } 27 28 28 29 int main() { 29 Fmt fmt = { 0};30 Fmt fmt = { NULL }; 30 31 format( &fmt ); // prime 31 fmt.ch = 'a'; 32 for ( long int i = 0; i < 1000000000; i += 1 ) { 33 // scanf( "%c", &fmt.ch ); // direct read into communication variable 34 // if ( feof( stdin ) ) break; 32 for ( ;; ) { 33 scanf( "%c", &fmt.ch ); // direct read into communication variable 34 if ( feof( stdin ) ) break; 35 35 format( &fmt ); 36 36 } 37 fmt.ch = '\0'; // sentential (EOF)37 fmt.ch = '\0'; 38 38 format( &fmt ); 39 39 } -
doc/papers/concurrency/examples/PingPong.c
r7030dab r71d6bd8 2 2 3 3 typedef struct PingPong { 4 int restart; // style 14 const char * name; 5 5 int N, i; 6 const char * name;7 6 struct PingPong * partner; 8 void * next; // style 27 void * next; 9 8 } PingPong; 10 #define PPCtor( name, N ) { 0, N, 0, name, NULL, NULL } 11 9 #define PPCtor( name, N ) { name, N, 0, NULL, NULL } 12 10 void comain( PingPong * pp ) __attribute__(( noinline )); 13 11 void comain( PingPong * pp ) { 12 if ( __builtin_expect(pp->next != 0, 1) ) goto *pp->next; 14 13 #if 0 15 if ( __builtin_expect(pp->next != 0, 1) ) goto *pp->next; 14 pp->next = &&here; 15 asm( "mov %0,%%rdi" : "=m" (pp) ); 16 asm( "mov %rdi,%rax" ); 17 #ifndef OPT 18 #ifdef PRINT 19 asm( "add $16, %rsp" ); 20 #endif // PRINT 21 asm( "popq %rbp" ); 22 #endif // ! OPT 23 24 #ifdef OPT 25 #ifdef PRINT 26 asm( "popq %rbx" ); 27 #endif // PRINT 28 #endif // OPT 29 asm( "jmp comain" ); 30 here: ; 31 #endif // 0 32 16 33 pp->next = &&cycle; 17 34 for ( ; pp->i < pp->N; pp->i += 1 ) { … … 36 53 cycle: ; 37 54 } // for 38 #endif // 039 40 #if 141 static void * states[] = {&&s0, &&s1};42 goto *states[pp->restart];43 s0: pp->restart = 1;44 for ( ; pp->i < pp->N; pp->i += 1 ) {45 #ifdef PRINT46 printf( "%s %d\n", pp->name, pp->i );47 #endif // PRINT48 asm( "mov %0,%%rdi" : "=m" (pp->partner) );49 asm( "mov %rdi,%rax" );50 #ifndef OPT51 #ifdef PRINT52 asm( "add $16, %rsp" );53 #endif // PRINT54 asm( "popq %rbp" );55 #endif // ! OPT56 57 #ifdef OPT58 #ifdef PRINT59 asm( "popq %rbx" );60 #endif // PRINT61 #endif // OPT62 asm( "jmp comain" );63 s1: ;64 } // for65 #endif // 066 55 } 67 56 … … 81 70 // Local Variables: // 82 71 // tab-width: 4 // 83 // compile-command: "gcc- 9-g -DPRINT PingPong.c" //72 // compile-command: "gcc-8 -g -DPRINT PingPong.c" // 84 73 // End: // -
doc/papers/concurrency/examples/Pingpong.py
r7030dab r71d6bd8 1 1 def PingPong( name, N ): 2 partner = yield# get partner3 yield 2 partner = (yield) # get partner 3 yield # resume scheduler 4 4 for i in range( N ): 5 5 print( name ) 6 yield partner 6 yield partner # execute next 7 7 print( "end", name ) 8 8 9 9 def Scheduler(): 10 n = yield # starting coroutine 11 try: 12 while True: 13 n = next( n ) # schedule coroutine 14 except StopIteration: 15 pass 10 n = (yield) # starting coroutine 11 while True: 12 n = next( n ) # schedule coroutine 16 13 17 14 pi = PingPong( "ping", 5 ) 18 15 po = PingPong( "pong", 5 ) 19 next( pi ) 20 pi.send( po ) 21 next( po ) 22 po.send( pi ) 16 next( pi ) # prime 17 pi.send( po ) # send partner 18 next( po ) # prime 19 po.send( pi ) # send partner 23 20 24 21 s = Scheduler(); 25 next( s ) 22 next( s ) # prime 26 23 try: 27 24 s.send( pi ) # start cycle 28 except StopIteration: # scheduler stopped29 p ass25 except StopIteration: 26 print( "scheduler stop" ) 30 27 print( "stop" ) 31 28 32 29 # Local Variables: # 33 30 # tab-width: 4 # 34 # compile-command: "python3. 7Pingpong.py" #31 # compile-command: "python3.5 Pingpong.py" # 35 32 # End: # -
doc/papers/concurrency/examples/ProdCons.py
r7030dab r71d6bd8 1 1 def Prod( N ): 2 cons = yield# get cons3 yield 2 cons = (yield) # get cons 3 yield # resume scheduler 4 4 for i in range( N ): 5 5 print( "prod" ) 6 yield cons 6 yield cons # execute next 7 7 print( "end", "prod" ) 8 8 9 9 def Cons( N ): 10 prod = yield# get prod11 yield 10 prod = (yield) # get prod 11 yield # resume scheduler 12 12 for i in range( N ): 13 13 print( "cons" ) 14 yield prod 14 yield prod # execute next 15 15 print( "end", "cons" ) 16 16 17 17 def Scheduler(): 18 n = yield # starting coroutine 19 try: 20 while True: 21 n = next( n ) # schedule coroutine 22 except StopIteration: 23 pass 18 n = (yield) # starting coroutine 19 while True: 20 n = next( n ) # schedule coroutine 24 21 25 22 prod = Prod( 5 ) 26 23 cons = Cons( 5 ) 27 next( prod ) 28 prod.send( cons ) 29 next( cons ) 30 cons.send( prod ) 24 next( prod ) # prime 25 prod.send( cons ) # send cons 26 next( cons ) # prime 27 cons.send( prod ) # send prod 31 28 32 29 s = Scheduler(); 33 next( s ) 30 next( s ) # prime 34 31 try: 35 32 s.send( prod ) # start cycle 36 except StopIteration: # scheduler stopped37 p ass33 except StopIteration: 34 print( "scheduler stop" ) 38 35 print( "stop" ) 39 36 40 37 # Local Variables: # 41 38 # tab-width: 4 # 42 # compile-command: "python3. 7ProdCons.py" #39 # compile-command: "python3.5 ProdCons.py" # 43 40 # End: # -
doc/papers/concurrency/examples/Refactor.py
r7030dab r71d6bd8 26 26 # Local Variables: # 27 27 # tab-width: 4 # 28 # compile-command: "python3. 7Refactor.py" #28 # compile-command: "python3.5 Refactor.py" # 29 29 # End: # -
doc/papers/concurrency/figures/FullCoroutinePhases.fig
r7030dab r71d6bd8 8 8 -2 9 9 1200 2 10 5 1 0 1 0 7 100 0 -1 0.000 0 0 1 0 5175.000 2437.500 4875 1875 5175 1800 5475 187510 5 1 0 1 0 7 100 0 -1 0.000 0 0 1 0 4575.000 2437.500 4275 1875 4575 1800 4875 1875 11 11 1 1 1.00 45.00 90.00 12 5 1 0 1 0 7 100 0 -1 0.000 0 0 1 0 5175.000 1537.500 5475 2100 5175 2175 4875 210012 5 1 0 1 0 7 100 0 -1 0.000 0 0 1 0 4575.000 1537.500 4875 2100 4575 2175 4275 2100 13 13 1 1 1.00 45.00 90.00 14 5 1 0 1 0 7 50 -1 -1 0.000 0 1 1 0 4 807.500 1642.500 4725 1425 4575 1650 4800 187514 5 1 0 1 0 7 50 -1 -1 0.000 0 1 1 0 4207.500 1642.500 4125 1425 3975 1650 4200 1875 15 15 1 1 1.00 45.00 90.00 16 6 1575 1575 2700 202517 16 2 1 0 1 0 7 100 0 -1 0.000 0 0 -1 1 0 2 18 17 1 1 1.00 45.00 90.00 … … 21 20 1 1 1.00 45.00 90.00 22 21 2175 1575 2400 1800 22 2 1 0 1 0 7 100 0 -1 0.000 0 0 -1 1 0 2 23 1 1 1.00 45.00 90.00 24 3300 1575 3300 1800 25 2 1 0 1 0 7 100 0 -1 0.000 0 0 -1 1 0 2 26 1 1 1.00 45.00 90.00 27 3300 2025 3300 2250 28 4 1 0 100 0 0 10 0.0000 2 105 555 2100 1200 creation\001 23 29 4 1 0 100 0 4 10 0.0000 2 165 300 1725 1950 ping\001 24 30 4 1 0 100 0 4 10 0.0000 2 135 360 2475 1950 pong\001 25 -6 26 6 3075 1575 4200 2025 27 6 3075 1575 4200 2025 28 2 1 0 1 0 7 100 0 -1 0.000 0 0 -1 1 0 2 29 1 1 1.00 45.00 90.00 30 3525 1575 3300 1800 31 2 1 0 1 0 7 100 0 -1 0.000 0 0 -1 1 0 2 32 1 1 1.00 45.00 90.00 33 3675 1575 3900 1800 34 4 1 0 100 0 4 10 0.0000 2 165 300 3225 1950 ping\001 35 4 1 0 100 0 4 10 0.0000 2 135 360 3975 1950 pong\001 36 -6 37 -6 31 4 1 0 100 0 4 10 0.0000 2 165 300 3300 1950 ping\001 32 4 1 0 100 0 4 10 0.0000 2 135 360 3300 2400 pong\001 33 4 1 0 100 0 0 10 0.0000 2 105 675 4575 1200 execution\001 34 4 1 0 100 0 4 10 0.0000 2 165 300 4275 2025 ping\001 35 4 1 0 100 0 4 10 0.0000 2 135 360 4875 2025 pong\001 36 4 1 0 100 0 0 10 0.0000 2 90 420 3300 1200 starter\001 38 37 4 1 0 100 0 4 10 0.0000 2 165 705 2100 1500 pgm main\001 39 4 1 0 100 0 4 10 0.0000 2 165 705 3600 1500 pgm main\001 40 4 1 0 100 0 4 10 0.0000 2 165 300 4875 2025 ping\001 41 4 1 0 100 0 4 10 0.0000 2 135 360 5475 2025 pong\001 42 4 1 0 100 0 4 10 0.0000 2 165 705 5100 1500 pgm main\001 43 4 1 0 100 0 2 10 0.0000 2 105 540 2100 1275 creator\001 44 4 1 0 100 0 2 10 0.0000 2 105 495 3600 1275 starter\001 45 4 1 0 100 0 2 10 0.0000 2 105 690 5175 1275 execution\001 38 4 1 0 100 0 4 10 0.0000 2 165 705 3300 1500 pgm main\001 39 4 1 0 100 0 4 10 0.0000 2 165 705 4500 1500 pgm main\001 -
doc/papers/concurrency/figures/RunTimeStructure.fig
r7030dab r71d6bd8 36 36 1 3 0 1 -1 -1 0 0 20 0.000 1 0.0000 4500 3600 15 15 4500 3600 4515 3615 37 37 -6 38 6 3225 4125 4650 4425 39 6 4350 4200 4650 4350 40 1 3 0 1 -1 -1 0 0 20 0.000 1 0.0000 4425 4275 15 15 4425 4275 4440 4290 41 1 3 0 1 -1 -1 0 0 20 0.000 1 0.0000 4500 4275 15 15 4500 4275 4515 4290 42 1 3 0 1 -1 -1 0 0 20 0.000 1 0.0000 4575 4275 15 15 4575 4275 4590 4290 38 6 2175 4650 7050 4950 39 1 3 0 1 0 0 0 0 0 0.000 1 0.0000 2250 4830 30 30 2250 4830 2280 4860 40 1 1 0 1 -1 -1 0 0 -1 0.000 1 0.0000 4200 4800 150 75 4200 4800 4350 4875 41 1 3 0 1 -1 -1 0 0 -1 0.000 1 0.0000 3275 4800 100 100 3275 4800 3375 4800 42 2 2 0 1 -1 -1 0 0 -1 0.000 0 0 0 0 0 5 43 5400 4950 5400 4725 5175 4725 5175 4950 5400 4950 44 2 2 1 1 -1 -1 0 0 -1 3.000 0 0 0 0 0 5 45 6525 4950 6300 4950 6300 4725 6525 4725 6525 4950 46 4 0 -1 0 0 0 10 0.0000 2 105 450 6600 4875 cluster\001 47 4 0 -1 0 0 0 10 0.0000 2 105 660 5475 4875 processor\001 48 4 0 -1 0 0 0 10 0.0000 2 105 555 4425 4875 monitor\001 49 4 0 -1 0 0 0 10 0.0000 2 120 270 3450 4875 task\001 50 4 0 -1 0 0 0 10 0.0000 2 105 660 2325 4875 coroutine\001 43 51 -6 44 1 1 0 1 -1 -1 0 0 -1 0.000 1 0.0000 3450 4275 225 150 3450 4275 3675 4425 45 1 1 0 1 -1 -1 0 0 -1 0.000 1 0.0000 4050 4275 225 150 4050 4275 4275 4425 52 6 3450 1275 3750 1425 53 1 3 0 1 -1 -1 0 0 20 0.000 1 0.0000 3525 1350 15 15 3525 1350 3540 1365 54 1 3 0 1 -1 -1 0 0 20 0.000 1 0.0000 3600 1350 15 15 3600 1350 3615 1365 55 1 3 0 1 -1 -1 0 0 20 0.000 1 0.0000 3675 1350 15 15 3675 1350 3690 1365 46 56 -6 47 6 6675 4125 7500 4425 48 6 7200 4200 7500 4350 49 1 3 0 1 -1 -1 0 0 20 0.000 1 0.0000 7275 4275 15 15 7275 4275 7290 4290 50 1 3 0 1 -1 -1 0 0 20 0.000 1 0.0000 7350 4275 15 15 7350 4275 7365 4290 51 1 3 0 1 -1 -1 0 0 20 0.000 1 0.0000 7425 4275 15 15 7425 4275 7440 4290 52 -6 53 1 1 0 1 -1 -1 0 0 -1 0.000 1 0.0000 6900 4275 225 150 6900 4275 7125 4425 54 -6 55 6 6675 3525 8025 3975 56 2 1 0 1 -1 -1 0 0 -1 0.000 0 0 -1 1 0 2 57 1 1 1.00 45.00 90.00 58 6675 3750 6975 3750 59 2 1 0 1 -1 -1 0 0 -1 0.000 0 0 -1 1 0 2 60 1 1 1.00 45.00 90.00 61 7125 3750 7350 3750 62 2 2 0 1 -1 -1 0 0 -1 0.000 0 0 0 0 0 5 63 7800 3975 7800 3525 7350 3525 7350 3975 7800 3975 64 2 1 0 1 -1 -1 0 0 -1 0.000 0 0 -1 1 0 2 65 1 1 1.00 45.00 90.00 66 7800 3750 8025 3750 57 6 5550 1275 5850 1425 58 1 3 0 1 -1 -1 0 0 20 0.000 1 0.0000 5625 1350 15 15 5625 1350 5640 1365 59 1 3 0 1 -1 -1 0 0 20 0.000 1 0.0000 5700 1350 15 15 5700 1350 5715 1365 60 1 3 0 1 -1 -1 0 0 20 0.000 1 0.0000 5775 1350 15 15 5775 1350 5790 1365 67 61 -6 68 62 1 3 0 1 -1 -1 0 0 -1 0.000 1 0.0000 5550 2625 150 150 5550 2625 5700 2625 … … 73 67 1 3 0 1 -1 -1 0 0 -1 0.000 1 0.0000 4425 2850 150 150 4425 2850 4575 2850 74 68 1 3 0 1 -1 -1 0 0 -1 0.000 1 0.0000 4650 2475 150 150 4650 2475 4800 2475 69 1 3 0 1 -1 -1 0 0 -1 0.000 1 0.0000 3525 3600 150 150 3525 3600 3675 3600 75 70 1 3 0 1 -1 -1 0 0 -1 0.000 1 0.0000 3975 3600 150 150 3975 3600 4125 3600 76 71 1 3 0 1 0 0 0 0 0 0.000 1 0.0000 3525 3600 30 30 3525 3600 3555 3630 … … 79 74 1 3 0 1 -1 -1 0 0 -1 0.000 1 0.0000 3975 2850 150 150 3975 2850 4125 2850 80 75 1 3 0 1 -1 -1 0 0 -1 0.000 1 0.0000 7200 2775 150 150 7200 2775 7350 2775 81 1 3 0 1 0 0 0 0 0 0.000 1 0.0000 2250 4830 30 30 2250 4830 2280 4860 82 1 3 0 1 0 0 0 0 0 0.000 1 0.0000 7200 2775 30 30 7200 2775 7230 2805 83 1 3 0 1 -1 -1 0 0 -1 0.000 1 0.0000 3525 3600 150 150 3525 3600 3675 3600 84 1 3 0 1 -1 -1 0 0 -1 0.000 1 0.0000 3875 4800 100 100 3875 4800 3975 4800 85 1 1 0 1 -1 -1 0 0 -1 0.000 1 0.0000 4650 4800 150 75 4650 4800 4800 4875 76 1 1 0 1 -1 -1 0 0 -1 0.000 1 0.0000 4650 1350 225 150 4650 1350 4875 1500 77 1 1 0 1 -1 -1 0 0 -1 0.000 1 0.0000 5250 1350 225 150 5250 1350 5475 1500 78 1 1 0 1 -1 -1 0 0 -1 0.000 1 0.0000 4050 1350 225 150 4050 1350 4275 1500 86 79 2 2 0 1 -1 -1 0 0 -1 0.000 0 0 0 0 0 5 87 80 2400 4200 2400 3750 1950 3750 1950 4200 2400 4200 … … 147 140 2 1 0 1 -1 -1 0 0 -1 0.000 0 0 -1 1 0 2 148 141 1 1 1.00 45.00 90.00 142 6675 3975 6975 3975 143 2 1 0 1 -1 -1 0 0 -1 0.000 0 0 -1 1 0 2 144 1 1 1.00 45.00 90.00 149 145 7050 2775 6825 2775 150 146 2 1 0 1 -1 -1 0 0 -1 0.000 0 0 -1 0 0 2 151 6825 2775 6825 3750 147 6825 2775 6825 3975 148 2 1 0 1 -1 -1 0 0 -1 0.000 0 0 -1 1 0 2 149 1 1 1.00 45.00 90.00 150 7125 3975 7350 3975 151 2 2 0 1 -1 -1 0 0 -1 0.000 0 0 0 0 0 5 152 7800 4200 7800 3750 7350 3750 7350 4200 7800 4200 153 2 1 0 1 -1 -1 0 0 -1 0.000 0 0 -1 1 0 2 154 1 1 1.00 45.00 90.00 155 7800 3975 8025 3975 152 156 2 1 0 1 -1 -1 0 0 -1 0.000 0 0 -1 1 0 4 153 157 1 1 1.00 45.00 90.00 154 7875 3750 7875 2325 7200 2325 7200 2550 155 2 2 0 1 -1 -1 0 0 -1 0.000 0 0 0 0 0 5 156 5850 4950 5850 4725 5625 4725 5625 4950 5850 4950 157 2 2 1 1 -1 -1 0 0 -1 3.000 0 0 0 0 0 5 158 6975 4950 6750 4950 6750 4725 6975 4725 6975 4950 158 7875 3975 7875 2325 7200 2325 7200 2550 159 159 4 1 -1 0 0 0 10 0.0000 2 105 720 5550 4425 Processors\001 160 160 4 1 -1 0 0 0 10 0.0000 2 120 1005 4200 3225 Blocked Tasks\001 … … 165 165 4 1 -1 0 0 0 10 0.0000 2 105 990 2175 3525 Discrete-event\001 166 166 4 1 -1 0 0 0 10 0.0000 2 135 795 2175 4350 preemption\001 167 4 0 -1 0 0 0 10 0.0000 2 150 1290 2325 4875 genrator/coroutine\001168 4 0 -1 0 0 0 10 0.0000 2 120 270 4050 4875 task\001169 4 0 -1 0 0 0 10 0.0000 2 105 450 7050 4875 cluster\001170 4 0 -1 0 0 0 10 0.0000 2 105 660 5925 4875 processor\001171 4 0 -1 0 0 0 10 0.0000 2 105 555 4875 4875 monitor\001 -
doc/papers/concurrency/mail2
r7030dab r71d6bd8 22 22 Software: Practice and Experience Editorial Office 23 23 24 25 26 Date: Tue, 12 Nov 2019 22:25:17 +000027 From: Richard Jones <onbehalfof@manuscriptcentral.com>28 Reply-To: R.E.Jones@kent.ac.uk29 To: tdelisle@uwaterloo.ca, pabuhr@uwaterloo.ca30 Subject: Software: Practice and Experience - Decision on Manuscript ID31 SPE-19-021932 33 12-Nov-201934 35 Dear Dr Buhr,36 37 Many thanks for submitting SPE-19-0219 entitled "Advanced Control-flow and Concurrency in Cforall" to Software: Practice and Experience. The paper has now been reviewed and the comments of the referees are included at the bottom of this letter.38 39 The decision on this paper is that it requires substantial further work is required. The referees have a number of substantial concerns. All the reviewers found the submission very hard to read; two of the reviewers state that it needs very substantial restructuring. These concerns must be addressed before your submission can be considered further.40 41 A revised version of your manuscript that takes into account the comments of the referees will be reconsidered for publication.42 43 Please note that submitting a revision of your manuscript does not guarantee eventual acceptance, and that your revision will be subject to re-review by the referees before a decision is rendered.44 45 You have 90 days from the date of this email to submit your revision. If you are unable to complete the revision within this time, please contact me to request an extension.46 47 You can upload your revised manuscript and submit it through your Author Center. Log into https://mc.manuscriptcentral.com/spe and enter your Author Center, where you will find your manuscript title listed under "Manuscripts with Decisions".48 49 When submitting your revised manuscript, you will be able to respond to the comments made by the referee(s) in the space provided. You can use this space to document any changes you make to the original manuscript.50 51 If you feel that your paper could benefit from English language polishing, you may wish to consider having your paper professionally edited for English language by a service such as Wiley's at http://wileyeditingservices.com. Please note that while this service will greatly improve the readability of your paper, it does not guarantee acceptance of your paper by the journal.52 53 Once again, thank you for submitting your manuscript to Software: Practice and Experience and I look forward to receiving your revision.54 55 56 Sincerely,57 58 Prof. Richard Jones59 Software: Practice and Experience60 R.E.Jones@kent.ac.uk61 62 63 Referee(s)' Comments to Author:64 65 Reviewing: 166 67 Comments to the Author68 This article presents the design and rationale behind the various69 threading and synchronization mechanisms of C-forall, a new low-level70 programming language. This paper is very similar to a companion paper71 which I have also received: as the papers are similar, so will these72 reviews be --- in particular any general comments from the other73 review apply to this paper also.74 75 As far as I can tell, the article contains three main ideas: an76 asynchronous execution / threading model; a model for monitors to77 provide mutual exclusion; and an implementation. The first two ideas78 are drawn together in Table 1: unfortunately this is on page 25 of 3079 pages of text. Implementation choices and descriptions are scattered80 throughout the paper - and the sectioning of the paper seems almost81 arbitrary.82 83 The article is about its contributions. Simply adding feature X to84 language Y isn't by itself a contribution, (when feature X isn't85 already a contribution). The contribution can be in the design: the86 motivation, the space of potential design options, the particular87 design chosen and the rationale for that choice, or the resulting88 performance. For example: why support two kinds of generators as well89 as user-level threads? Why support both low and high level90 synchronization constructs? Similarly I would have found the article91 easier to follow if it was written top down, presenting the design92 principles, present the space of language features, justify chosen93 language features (and rationale) and those excluded, and then present94 implementation, and performance.95 96 Then the writing of the article is often hard to follow, to say the97 least. Two examples: section 3 "stateful functions" - I've some idea98 what that is (a function with Algol's "own" or C's "static" variables?99 but in fact the paper has a rather more specific idea than that. The100 top of page 3 throws a whole lot of defintions at the reader101 "generator" "coroutine" "stackful" "stackless" "symmetric"102 "asymmetric" without every stopping to define each one --- but then in103 footnote "C" takes the time to explain what C's "main" function is? I104 cannot imagine a reader of this paper who doesn't know what "main" is105 in C; especially if they understand the other concepts already106 presented in the paper. The start of section 3 then does the same107 thing: putting up a whole lot of definitions, making distinctions and108 comparisons, even talking about some runtime details, but the critical109 definition of a monitor doesn't appear until three pages later, at the110 start of section 5 on p15, lines 29-34 are a good, clear, description111 of what a monitor actually is. That needs to come first, rather than112 being buried again after two sections of comparisons, discussions,113 implementations, and options that are ungrounded because they haven't114 told the reader what they are actually talking about. First tell the115 reader what something is, then how they might use it (as programmers:116 what are the rules and restrictions) and only then start comparison117 with other things, other approaches, other languages, or118 implementations.119 120 The description of the implementation is similarly lost in the trees121 without ever really seeing the wood. Figure 19 is crucial here, but122 it's pretty much at the end of the paper, and comments about123 implementations are threaded throughout the paper without the context124 (fig 19) to understand what's going on. The protocol for performance125 testing may just about suffice for C (although is N constantly ten126 million, or does it vary for each benchmark) but such evaluation isn't127 appropriate for garbage-collected or JITTed languages like Java or Go.128 129 other comments working through the paper - these are mostly low level130 and are certainly not comprehensive.131 132 p1 only a subset of C-forall extensions?133 134 p1 "has features often associated with object-oriented programming135 languages, such as constructors, destructors, virtuals and simple136 inheritance." There's no need to quibble about this. Once a language137 has inheritance, it's hard to claim it's not object-oriented.138 139 140 p2 barging? signals-as-hints?141 142 p3 start your discussion of generations with a simple example of a143 C-forall generator. Fig 1(b) might do: but put it inline instead of144 the python example - and explain the key rules and restrictions on the145 construct. Then don't even start to compare with coroutines until146 you've presented, described and explained your coroutines...147 p3 I'd probably leave out the various "C" versions unless there are148 key points to make you can't make in C-forall. All the alternatives149 are just confusing.150 151 152 p4 but what's that "with" in Fig 1(B)153 154 p5 start with the high level features of C-forall generators...155 156 p5 why is the paper explaining networking protocols?157 158 p7 lines 1-9 (transforming generator to coroutine - why would I do any159 of this? Why would I want one instead of the other (do not use "stack"160 in your answer!)161 162 p10 last para "A coroutine must retain its last resumer to suspend163 back because the resumer is on a different stack. These reverse164 pointers allow suspend to cycle backwards, " I've no idea what is165 going on here? why should I care? Shouldn't I just be using threads166 instead? why not?167 168 p16 for the same reasons - what reasons?169 170 p17 if the multiple-monitor entry procedure really is novel, write a171 paper about that, and only about that.172 173 p23 "Loose Object Definitions" - no idea what that means. in that174 section: you can't leave out JS-style dynamic properties. Even in175 OOLs that (one way or another) allow separate definitions of methods176 (like Objective-C, Swift, Ruby, C#) at any time a runtime class has a177 fixed definition. Quite why the detail about bit mask implementation178 is here anyway, I've no idea.179 180 p25 this cluster isn't a CLU cluster then?181 182 * conclusion should conclude the paper, not the related.183 184 185 Reviewing: 2186 187 Comments to the Author188 This paper describes the concurrency features of an extension of C (whose name I will write as "C\/" here, for convenience), including much design-level discussion of the coroutine- and monitor-based features and some microbenchmarks exploring the current implementation's performance. The key message of the latter is that the system's concurrency abstractions are much lighter-weight than the threading found in mainstream C or Java implementations.189 190 There is much description of the system and its details, but nothing about (non-artificial) uses of it. Although the microbenchmark data is encouraging, arguably not enough practical experience with the system has been reported here to say much about either its usability advantages or its performance.191 192 As such, the main contribution of the paper seem to be to document the existence of the described system and to provide a detailed design rationale and (partial) tutorial. I believe that could be of interest to some readers, so an acceptable manuscript is lurking in here somewhere.193 194 Unfortunately, at present the writing style is somewhere between unclear and infuriating. It omits to define terms; it uses needlessly many terms for what are apparently (but not clearly) the same things; it interrupts itself rather than deliver the natural consequent of whatever it has just said; and so on. Section 5 is particularly bad in these regards -- see my detailed comments below. Fairly major additional efforts will be needed to turn the present text into a digestible design-and-tutorial document. I suspect that a shorter paper could do this job better than the present manuscript, which is overwrought in parts.195 196 p2: lines 4--9 are a little sloppy. It is not the languages but their popular implementations which "adopt" the 1:1 kernel threading model.197 198 line 10: "medium work" -- "medium-sized work"?199 200 line 18: "is all sequential to the compiler" -- not true in modern compilers, and in 2004 H-J Boehm wrote a tech report describing exactly why ("Threads cannot be implemented as a library", HP Labs).201 202 line 20: "knows the optimization boundaries" -- I found this vague. What's an example?203 204 line 31: this paragraph has made a lot of claims. Perhaps forward-reference to the parts of the paper that discuss each one.205 206 line 33: "so the reader can judge if" -- this reads rather passive-aggressively. Perhaps better: "... to support our argument that..."207 208 line 41: "a dynamic partitioning mechanism" -- I couldn't tell what this meant209 210 p3. Presenting concept of a "stateful function" as a new language feature seems odd. In C, functions often have local state thanks to static local variables (or globals, indeed). Of course, that has several limitations. Can you perhaps present your contributions by enumerating these limitations? See also my suggestion below about a possible framing centred on a strawman.211 212 line 2: "an old idea that is new again" -- this is too oblique213 214 lines 2--15: I found this to be a word/concept soup. Stacks, closures, generators, stackless stackful, coroutine, symmetric, asymmetric, resume/suspend versus resume/resume... there needs to be a more gradual and structured way to introduce all this, and ideally one that minimises redundancy. Maybe present it as a series of "definitions" each with its own heading, e.g. "A closure is stackless if its local state has statically known fixed size"; "A generator simply means a stackless closure." And so on. Perhaps also strongly introduce the word "activate" as a direct contrast with resume and suspend. These are just a flavour of the sort of changes that might make this paragraph into something readable.215 216 Continuing the thought: I found it confusing that by these definitinos, a stackful closure is not a stack, even though logically the stack *is* a kind of closure (it is a representation of the current thread's continuation).217 218 lines 24--27: without explaining what the boost functor types mean, I don't think the point here comes across.219 220 line 34: "semantically coupled" -- I wasn't surew hat this meant221 222 p4: the point of Figure 1 (C) was not immediately clear. It seem to be showing how one might "compile down" Figure 1 (B). Or is that Figure 1 (A)?223 224 It's right that the incidental language features of the system are not front-and-centre, but I'd appreciate some brief glossing of non-C languages features as they appear. Examples are the square bracket notation, the pipe notation and the constructor syntax. These explanations could go in the caption of the figure which first uses them, perhaps. Overall I found the figure captions to be terse, and a missed opportunity to explain clearly what was going on.225 226 p5 line 23: "This restriction is removed..." -- give us some up-front summary of your contributions and the elements of the language design that will be talked about, so that this isn't an aside. This will reduce the "twisty passages" feeling that characterises much of the paper.227 228 line 40: "a killer asymmetric generator" -- this is stylistically odd, and the sentence about failures doesn't convincigly argue that C\/ will help with them. Have you any experience writing device drivers using C\/? Or any argument that the kinds of failures can be traced to the "stack-ripping" style that one is forced to use without coroutines? Also, a typo on line 41: "device drives". And saying "Windows/Linux" is sloppy... what does the cited paper actually say?229 230 p6 lines 13--23: this paragraph is difficult to understand. It seems to be talking about a control-flow pattern roughly equivalent to tail recursion. What is the high-level point, other than that this is possible?231 232 line 34: "which they call coroutines" -- a better way to make this point is presumably that the C++20 proposal only provides a specialised kind of coroutine, namely generators, despite its use of the more general word.233 234 line 47: "... due to dynamic stack allocation, execution..." -- this sentence doesn't scan. I suggest adding "and for" in the relevant places where currently there are only commas.235 236 p8 / Figure 5 (B) -- the GNU C extension of unary "&&" needs to be explained. The whole figure needs a better explanation, in fact.237 238 p9, lines 1--10: I wasn't sure this stepping-through really added much value. What are the truly important points to note about this code?239 240 p10: similarly, lines 3--27 again are somewhere between tedious and confusing. I'm sure the motivation and details of "starter semantics" can both be stated much more pithily.241 242 line 32: "a self-resume does not overwrite the last resumer" -- is this a hack or a defensible principled decision?243 244 p11: "a common source of errors" -- among beginners or among production code? Presumably the former.245 246 line 23: "with builtin and library" -- not sure what this means247 248 lines 31--36: these can be much briefer. The only important point here seems to be that coroutines cannot be copied.249 250 p12: line 1: what is a "task"? Does it matter?251 252 line 7: calling it "heap stack" seems to be a recipe for confusion. "Stack-and-heap" might be better, and contrast with "stack-and-VLS" perhaps. When "VLS" is glossed, suggest actually expanding its initials: say "length" not "size".253 254 line 21: are you saying "cooperative threading" is the same as "non-preemptive scheduling", or that one is a special case (kind) of the other? Both are defensible, but be clear.255 256 line 27: "mutual exclusion and synchronization" -- the former is a kind of the latter, so I suggest "and other forms of synchronization".257 258 line 30: "can either be a stackless or stackful" -- stray "a", but also, this seems to be switching from generic/background terminology to C\/-specific terminology.259 260 An expositional idea occurs: start the paper with a strawman naive/limited realisation of coroutines -- say, Simon Tatham's popular "Coroutines in C" web page -- and identify point by point what the limitations are and how C\/ overcomes them. Currently the presentation is often flat (lacking motivating contrasts) and backwards (stating solutions before problems). The foregoing approach might fix both of these.261 262 page 13: line 23: it seems a distraction to mention the Python feature here.263 264 p14 line 5: it seems odd to describe these as "stateless" just because they lack shared mutable state. It means the code itself is even more stateful. Maybe the "stack ripping" argument could usefully be given here.265 266 line 16: "too restrictive" -- would be good to have a reference to justify this, or at least give a sense of what the state-of-the-art performance in transactional memory systems is (both software and hardware)267 268 line 22: "simulate monitors" -- what about just *implementing* monitors? isn't that what these systems do? or is the point more about refining them somehow into something more specialised?269 270 p15: sections 4.1 and 4.2 seem adrift and misplaced. Split them into basic parts (which go earlier) and more advanced parts (e.g. barging, which can be explained later).271 272 line 31: "acquire/release" -- misses an opportunity to contrast the monitor's "enter/exit" abstraction with the less structured acquire/release of locks.273 274 p16 line 12: the "implicit" versus "explicit" point is unclear. Is it perhaps about the contract between an opt-in *discipline* and a language-enforced *guarantee*?275 276 line 28: no need to spend ages dithering about which one is default and which one is the explicit qualifier. Tell us what you decided, briefly justify it, and move on.277 278 p17: Figure 11: since the main point seems to be to highlight bulk acquire, include a comment which identifies the line where this is happening.279 280 line 2: "impossible to statically..." -- or dynamically. Doing it dynamically would be perfectly acceptable (locking is a dynamic operation after all)281 282 "guarantees acquisition order is consistent" -- assuming it's done in a single bulk acquire.283 284 p18: section 5.3: the text here is a mess. The explanations of "internal" versus "external" scheduling are unclear, and "signals as hints" is not explained. "... can cause thread starvation" -- means including a while loop, or not doing so? "There are three signalling mechanisms.." but the text does not follow that by telling us what they are. My own scribbled attempt at unpicking the internal/external thing: "threads already in the monitor, albeit waiting, have priority over those trying to enter".285 286 p19: line 3: "empty condition" -- explain that condition variables don't store anything. So being "empty" means that the queue of waiting threads (threads waiting to be signalled that the condition has become true) is empty.287 288 line 6: "... can be transformed into external scheduling..." -- OK, but give some motivation.289 290 p20: line 6: "mechnaism"291 292 lines 16--20: this is dense and can probably only be made clear with an example293 294 p21 line 21: clarify that nested monitor deadlock was describe earlier (in 5.2). (Is the repetition necessary?)295 296 line 27: "locks, and by extension monitors" -- this is true but the "by extension" argument is faulty. It is perfectly possible to use locks as a primitive and build a compositional mechanism out of them, e.g. transactions.297 298 p22 line 2: should say "restructured"299 300 line 33: "Implementing a fast subset check..." -- make clear that the following section explains how to do this. Restructuring the sections themselves could do this, or noting in the text.301 302 p23: line 3: "dynamic member adding, eg, JavaScript" -- needs to say "as permitted in JavaScript", and "dynamically adding members" is stylistically better303 304 p23: line 18: "urgent stack" -- back-reference to where this was explained before305 306 p24 line 7: I did not understand what was more "direct" about "direct communication". Also, what is a "passive monitor" -- just a monitor, given that monitors are passive by design?307 308 line 14 / section 5.9: this table was useful and it (or something like it) could be used much earlier on to set the structure of the rest of the paper. The explanation at present is too brief, e.g. I did not really understand the point about cases 7 and 8.309 310 p25 line 2: instead of casually dropping in a terse explanation for the newly intrdouced term "virtual processor", introduce it properly. Presumably the point is to give a less ambiguous meaning to "thread" by reserving it only for C\/'s green threads.311 312 Table 1: what does "No / Yes" mean?313 314 p26 line 15: "transforms user threads into fibres" -- a reference is needed to explain what "fibres" means... guessing it's in the sense of Adya et al.315 316 line 20: "Microsoft runtime" -- means Windows?317 318 lines 21--26: don't say "interrupt" to mean "signal", especially not without clear introduction. You can use "POSIX signal" to disambiguate from condition variables' "signal".319 320 p27 line 3: "frequency is usually long" -- that's a "time period" or "interval", not a frequency321 322 line 5: the lengthy quotation is not really necessary; just paraphrase the first sentence and move on.323 324 line 20: "to verify the implementation" -- I don't think that means what is intended325 326 Tables in section 7 -- too many significant figures. How many overall runs are described? What is N in each case?327 328 p29 line 2: "to eliminate this cost" -- arguably confusing since nowadays on commodity CPUs most of the benefits of inlining are not to do with call overheads, but from later optimizations enabled as a consequence of the inlining329 330 line 41: "a hierarchy" -- are they a hierarchy? If so, this could be explained earlier. Also, to say these make up "an integrated set... of control-flow features" verges on the tautologous.331 332 p30 line 15: "a common case being web servers and XaaS" -- that's two cases333 334 335 Reviewing: 3336 337 Comments to the Author338 # Cforall review339 340 Overall, I quite enjoyed reading the paper. Cforall has some very interesting ideas. I did have some suggestions that I think would be helpful before final publication. I also left notes on various parts of the paper that I find confusing when reading, in hopes that it may be useful to you.341 342 ## Summary343 344 * Expand on the motivations for including both generator and coroutines, vs trying to build one atop the other345 * Expand on the motivations for having Why both symmetric and asymettric coroutines?346 * Comparison to async-await model adopted by other languages347 * C#, JS348 * Rust and its async/await model349 * Consider performance comparisons against node.js and Rust frameworks350 * Discuss performance of monitors vs finer-grained memory models and atomic operations found in other languages351 * Why both internal/external scheduling for synchronization?352 353 ## Generator/coroutines354 355 In general, this section was clear, but I thought it would be useful to provide a somewhat deeper look into why Cforall opted for the particular combination of features that it offers. I see three main differences from other languages:356 357 * Generators are not exposed as a "function" that returns a generator object, but rather as a kind of struct, with communication happening via mutable state instead of "return values". That is, the generator must be manually resumed and (if I understood) it is expected to store values that can then later be read (perhaps via methods), instead of having a `yield <Expr>` statement that yields up a value explicitly.358 * Both "symmetric" and "asymmetric" generators are supported, instead of only asymmetric.359 * Coroutines (multi-frame generators) are an explicit mechanism.360 361 In most other languages, coroutines are rather built by layering single-frame generators atop one another (e.g., using a mechanism like async-await), and symmetric coroutines are basically not supported. I'd like to see a bit more justification for Cforall including all the above mechanisms -- it seemed like symmetric coroutines were a useful building block for some of the user-space threading and custom scheduler mechanisms that were briefly mentioned later in the paper.362 363 In the discussion of coroutines, I would have expected a bit more of a comparison to the async-await mechanism offered in other languages. Certainly the semantics of async-await in JavaScript implies significantly more overhead (because each async fn is a distinct heap object). [Rust's approach avoids this overhead][zc], however, and might be worthy of a comparison (see the Performance section).364 365 ## Locks and threading366 367 ### Comparison to atomics overlooks performance368 369 There are several sections in the paper that compare against atomics -- for example, on page 15, the paper shows a simple monitor that encapsulates an integer and compares that to C++ atomics. Later, the paper compares the simplicity of monitors against the `volatile` quantifier from Java. The conclusion in section 8 also revisits this point.370 371 While I agree that monitors are simpler, they are obviously also significantly different from a performance perspective -- the paper doesn't seem to address this at all. It's plausible that (e.g.) the `Aint` monitor type described in the paper can be compiled and mapped to the specialized instructions offered by hardware, but I didn't see any mention of how this would be done. There is also no mention of the more nuanced memory ordering relations offered by C++11 and how one might achieve similar performance characteristics in Cforall (perhaps the answer is that one simply doesn't need to; I think that's defensible, but worth stating explicitly).372 373 ### Justification for external scheduling feels lacking374 375 Cforall includes both internal and external scheduling; I found the explanation for the external scheduling mechanism to be lacking in justification. Why include both mechanisms when most languages seem to make do with only internal scheduling? It would be useful to show some scenarios where external scheduling is truly more powerful.376 377 I would have liked to see some more discussion of external scheduling and how it interacts with software engineering best practices. It seems somewhat similar to AOP in certain regards. It seems to add a bit of "extra semantics" to monitor methods, in that any method may now also become a kind of synchronization point. The "open-ended" nature of this feels like it could easily lead to subtle bugs, particularly when code refactoring occurs (which may e.g. split an existing method into two). This seems particularly true if external scheduling can occur across compilation units -- the paper suggested that this is true, but I wasn't entirely clear.378 379 I would have also appreciated a few more details on how external scheduling is implemented. It seems to me that there must be some sort of "hooks" on mutex methods so that they can detect whether some other function is waiting on them and awaken those blocked threads. I'm not sure how such hooks are inserted, particularly across compilation units. The material in Section 5.6 didn't quite clarify the matter for me. For example, it left me somewhat confused about whether the `f` and `g` functions declared were meant to be local to a translation unit, or shared with other unit.380 381 ### Presentation of monitors is somewhat confusing382 383 I found myself confused fairly often in the section on monitors. I'm just going to leave some notes here on places that I got confused in how that it could be useful to you as feedback on writing that might want to be clarified.384 385 To start, I did not realize that the `mutex_opt` notation was a keyword, I thought it was a type annotation. I think this could be called out more explicitly.386 387 Later, in section 5.2, the paper discusses `nomutex` annotations, which initially threw me, as they had not been introduced (now I realize that this paragraph is there to justify why there is no such keyword). The paragraph might be rearranged to make that clearer, perhaps by leading with the choice that Cforall made.388 389 On page 17, the paper states that "acquiring multiple monitors is safe from deadlock", but this could be stated a bit more precisely: acquiring multiple monitors in a bulk-acquire is safe from deadlock (deadlock can still result from nested acquires).390 391 On page 18, the paper states that wait states do not have to be enclosed in loops, as there is no concern of barging. This seems true but there are also other reasons to use loops (e.g., if there are multiple reasons to notify on the same condition). Thus the statement initially surprised me, as barging is only one of many reasons that I typically employ loops around waits.392 393 I did not understand the diagram in Figure 12 for some time. Initially, I thought that it was generic to all monitors, and I could not understand the state space. It was only later that I realized it was specific to your example. Updating the caption from "Monitor scheduling to "Monitor scheduling in the example from Fig 13" might have helped me quite a bit.394 395 I spent quite some time reading the boy/girl dating example (\*) and I admit I found it somewhat confusing. For example, I couldn't tell whether there were supposed to be many "girl" threads executing at once, or if there was only supposed to be one girl and one boy thread executing in a loop. Are the girl/boy threads supposed to invoke the girl/boy methods or vice versa? Surely there is some easier way to set this up? I believe that when reading the paper I convinced myself of how it was supposed to be working, but I'm writing this review some days later, and I find myself confused all over again and not able to easily figure it out.396 397 (\*) as an aside, I would consider modifying the example to some other form of matching, like customers and support personnel.398 399 ## Related work400 401 The paper offered a number of comparisons to Go, C#, Scala, and so forth, but seems to have overlooked another recent language, Rust. In many ways, Rust seems to be closest in philosophy to Cforall, so it seems like an odd omission. I already mentioned above that Rust is in the process of shipping [async-await syntax][aa], which is definitely an alternative to the generator/coroutine approach in Cforall (though one with clear pros/cons).402 403 ## Performance404 405 In the performance section in particular, you might consider comparing against some of the Rust web servers and threading systems. For example, actix is top of the [single query TechEmpower Framework benchmarks], and tokio is near the top of the [plainthreading benchmarks][pt] (hyper, the top, is more of an HTTP framework, though it is also written in Rust). It would seem worth trying to compare their "context switching" costs as well -- I believe both actix and tokio have a notion of threads that could be readily compared.406 407 Another addition that might be worth considering is to compare against node.js promises, although I think the comparison to process creation is not as clean.408 409 That said, I think that the performance comparison is not a big focus of the paper, so it may not be necessary to add anything to it.410 411 ## Authorship of this review412 413 I'm going to sign this review. This review was authored by Nicholas D. Matsakis. In the intrerest of full disclosure, I'm heavily involved in the Rust project, although I dont' think that influenced this review in particular. Feel free to reach out to me for clarifying questions.414 415 ## Links416 417 [aa]: https://blog.rust-lang.org/2019/09/30/Async-await-hits-beta.html418 [zc]: https://aturon.github.io/blog/2016/08/11/futures/419 [sq]: https://www.techempower.com/benchmarks/#section=data-r18&hw=ph&test=db420 [pt]: https://www.techempower.com/benchmarks/#section=data-r18&hw=ph&test=plaintext421 422 423 424 Subject: Re: manuscript SPE-19-0219425 To: "Peter A. Buhr" <pabuhr@uwaterloo.ca>426 From: Richard Jones <R.E.Jones@kent.ac.uk>427 Date: Tue, 12 Nov 2019 22:43:55 +0000428 429 Dear Dr Buhr430 431 Your should have received a decision letter on this today. I am sorry that this432 has taken so long. Unfortunately SP&E receives a lot of submissions and getting433 reviewers is a perennial problem.434 435 Regards436 Richard437 438 Peter A. Buhr wrote on 11/11/2019 13:10:439 > 26-Jun-2019440 > Your manuscript entitled "Advanced Control-flow and Concurrency in Cforall"441 > has been received by Software: Practice and Experience. It will be given442 > full consideration for publication in the journal.443 >444 > Hi, it has been over 4 months since submission of our manuscript SPE-19-0219445 > with no response.446 >447 > Currently, I am refereeing a paper for IEEE that already cites our prior SP&E448 > paper and the Master's thesis forming the bases of the SP&E paper under449 > review. Hence our work is apropos and we want to get it disseminates as soon as450 > possible.451 >452 > [3] A. Moss, R. Schluntz, and P. A. Buhr, "Cforall: Adding modern programming453 > language features to C," Software - Practice and Experience, vol. 48,454 > no. 12, pp. 2111-2146, 2018.455 >456 > [4] T. Delisle, "Concurrency in C for all," Master's thesis, University of457 > Waterloo, 2018. [Online]. Available:458 > https://uwspace.uwaterloo.ca/bitstream/handle/10012/12888459 460 461 462 Date: Mon, 13 Jan 2020 05:33:15 +0000463 From: Richard Jones <onbehalfof@manuscriptcentral.com>464 Reply-To: R.E.Jones@kent.ac.uk465 To: pabuhr@uwaterloo.ca466 Subject: Revision reminder - SPE-19-0219467 468 13-Jan-2020469 Dear Dr Buhr470 SPE-19-0219471 472 This is a reminder that your opportunity to revise and re-submit your473 manuscript will expire 28 days from now. If you require more time please474 contact me directly and I may grant an extension to this deadline, otherwise475 the option to submit a revision online, will not be available.476 477 I look forward to receiving your revision.478 479 Sincerely,480 481 Prof. Richard Jones482 Editor, Software: Practice and Experience483 https://mc.manuscriptcentral.com/spe484 485 486 487 Date: Wed, 5 Feb 2020 04:22:18 +0000488 From: Aaron Thomas <onbehalfof@manuscriptcentral.com>489 Reply-To: speoffice@wiley.com490 To: tdelisle@uwaterloo.ca, pabuhr@uwaterloo.ca491 Subject: SPE-19-0219.R1 successfully submitted492 493 04-Feb-2020494 495 Dear Dr Buhr,496 497 Your manuscript entitled "Advanced Control-flow and Concurrency in Cforall" has498 been successfully submitted online and is presently being given full499 consideration for publication in Software: Practice and Experience.500 501 Your manuscript number is SPE-19-0219.R1. Please mention this number in all502 future correspondence regarding this submission.503 504 You can view the status of your manuscript at any time by checking your Author505 Center after logging into https://mc.manuscriptcentral.com/spe. If you have506 difficulty using this site, please click the 'Get Help Now' link at the top507 right corner of the site.508 509 Thank you for submitting your manuscript to Software: Practice and Experience.510 511 Sincerely,512 Software: Practice and Experience Editorial Office513 -
doc/theses/thierry_delisle_PhD/code/relaxed_list.cpp
r7030dab r71d6bd8 9 9 #include <vector> 10 10 11 #include <getopt.h>12 11 #include <unistd.h> 13 12 #include <sys/sysinfo.h> … … 22 21 23 22 int value; 24 int id; 25 26 Node() { creates++; } 27 Node(int value): value(value) { creates++; } 28 ~Node() { destroys++; } 23 Node(int value): value(value) { 24 creates++; 25 } 26 27 ~Node() { 28 destroys++; 29 } 29 30 }; 30 31 … … 32 33 std::atomic_size_t Node::destroys = { 0 }; 33 34 35 static const constexpr int nodes_per_threads = 128; 36 struct NodeArray { 37 __attribute__((aligned(64))) Node * array[nodes_per_threads]; 38 __attribute__((aligned(64))) char pad; 39 }; 40 34 41 bool enable_stats = false; 35 36 template<>37 thread_local relaxed_list<Node>::TLS relaxed_list<Node>::tls = {};38 39 template<>40 relaxed_list<Node> * relaxed_list<Node>::head = nullptr;41 42 #ifndef NO_STATS43 template<>44 relaxed_list<Node>::GlobalStats relaxed_list<Node>::global_stats = {};45 #endif46 47 // ================================================================================================48 // UTILS49 // ================================================================================================50 42 51 43 struct local_stat_t { … … 55 47 size_t crc_in = 0; 56 48 size_t crc_out = 0; 57 size_t valmax = 0;58 size_t valmin = 100000000ul;59 49 }; 60 50 61 struct global_stat_t { 62 std::atomic_size_t in = { 0 }; 63 std::atomic_size_t out = { 0 }; 64 std::atomic_size_t empty = { 0 }; 65 std::atomic_size_t crc_in = { 0 }; 66 std::atomic_size_t crc_out = { 0 }; 67 std::atomic_size_t valmax = { 0 }; 68 std::atomic_size_t valmin = { 100000000ul }; 69 }; 70 71 void atomic_max(std::atomic_size_t & target, size_t value) { 72 for(;;) { 73 size_t expect = target.load(std::memory_order_relaxed); 74 if(value <= expect) return; 75 bool success = target.compare_exchange_strong(expect, value); 76 if(success) return; 77 } 78 } 79 80 void atomic_min(std::atomic_size_t & target, size_t value) { 81 for(;;) { 82 size_t expect = target.load(std::memory_order_relaxed); 83 if(value >= expect) return; 84 bool success = target.compare_exchange_strong(expect, value); 85 if(success) return; 86 } 87 } 88 89 void tally_stats(global_stat_t & global, local_stat_t & local) { 90 91 global.in += local.in; 92 global.out += local.out; 93 global.empty += local.empty; 94 95 global.crc_in += local.crc_in; 96 global.crc_out += local.crc_out; 97 98 atomic_max(global.valmax, local.valmax); 99 atomic_min(global.valmin, local.valmin); 100 101 relaxed_list<Node>::stats_tls_tally(); 102 } 103 104 void waitfor(double & duration, barrier_t & barrier, std::atomic_bool & done) { 51 __attribute__((noinline)) void run_body( 52 std::atomic<bool>& done, 53 Random & rand, 54 Node * (&my_nodes)[128], 55 local_stat_t & local, 56 relaxed_list<Node> & list 57 ) { 58 while(__builtin_expect(!done.load(std::memory_order_relaxed), true)) { 59 int idx = rand.next() % nodes_per_threads; 60 if (auto node = my_nodes[idx]) { 61 local.crc_in += node->value; 62 list.push(node); 63 my_nodes[idx] = nullptr; 64 local.in++; 65 } 66 else if(auto node = list.pop()) { 67 local.crc_out += node->value; 68 my_nodes[idx] = node; 69 local.out++; 70 } 71 else { 72 local.empty++; 73 } 74 } 75 } 76 77 void run(unsigned nthread, unsigned nqueues, unsigned fill, double duration) { 78 // List being tested 79 relaxed_list<Node> list = { nthread * nqueues }; 80 81 // Barrier for synchronization 82 barrier_t barrier(nthread + 1); 83 84 // Data to check everything is OK 85 struct { 86 std::atomic_size_t in = { 0 }; 87 std::atomic_size_t out = { 0 }; 88 std::atomic_size_t empty = { 0 }; 89 std::atomic_size_t crc_in = { 0 }; 90 std::atomic_size_t crc_out = { 0 }; 91 struct { 92 struct { 93 std::atomic_size_t attempt = { 0 }; 94 std::atomic_size_t success = { 0 }; 95 } push; 96 struct { 97 std::atomic_size_t attempt = { 0 }; 98 std::atomic_size_t success = { 0 }; 99 } pop; 100 } pick; 101 } global; 102 103 // Flag to signal termination 104 std::atomic_bool done = { false }; 105 106 // Prep nodes 107 std::cout << "Initializing "; 108 size_t nnodes = 0; 109 size_t npushed = 0; 110 NodeArray all_nodes[nthread]; 111 for(auto & nodes : all_nodes) { 112 Random rand(rdtscl()); 113 for(auto & node : nodes.array) { 114 auto r = rand.next() % 100; 115 if(r < fill) { 116 node = new Node(rand.next() % 100); 117 nnodes++; 118 } else { 119 node = nullptr; 120 } 121 } 122 123 for(int i = 0; i < 10; i++) { 124 int idx = rand.next() % nodes_per_threads; 125 if (auto node = nodes.array[idx]) { 126 global.crc_in += node->value; 127 list.push(node); 128 npushed++; 129 nodes.array[idx] = nullptr; 130 } 131 } 132 } 133 134 std::cout << nnodes << " nodes " << fill << "% (" << npushed << " pushed)" << std::endl; 135 136 enable_stats = true; 137 138 std::thread * threads[nthread]; 139 unsigned i = 1; 140 for(auto & t : threads) { 141 auto & my_nodes = all_nodes[i - 1].array; 142 t = new std::thread([&done, &list, &barrier, &global, &my_nodes](unsigned tid) { 143 Random rand(tid + rdtscl()); 144 145 local_stat_t local; 146 147 // affinity(tid); 148 149 barrier.wait(tid); 150 151 // EXPERIMENT START 152 153 run_body(done, rand, my_nodes, local, list); 154 155 // EXPERIMENT END 156 157 barrier.wait(tid); 158 159 global.in += local.in; 160 global.out += local.out; 161 global.empty += local.empty; 162 163 for(auto node : my_nodes) { 164 delete node; 165 } 166 167 global.crc_in += local.crc_in; 168 global.crc_out += local.crc_out; 169 170 global.pick.push.attempt += relaxed_list<Node>::tls.pick.push.attempt; 171 global.pick.push.success += relaxed_list<Node>::tls.pick.push.success; 172 global.pick.pop .attempt += relaxed_list<Node>::tls.pick.pop.attempt; 173 global.pick.pop .success += relaxed_list<Node>::tls.pick.pop.success; 174 }, i++); 175 } 176 105 177 std::cout << "Starting" << std::endl; 106 178 auto before = Clock::now(); … … 124 196 duration = durr.count(); 125 197 std::cout << "\rClosing down" << std::endl; 126 } 127 128 void waitfor(double & duration, barrier_t & barrier, const std::atomic_size_t & count) { 129 std::cout << "Starting" << std::endl; 130 auto before = Clock::now(); 131 barrier.wait(0); 132 133 while(true) { 134 usleep(100000); 135 size_t c = count.load(); 136 if( c == 0 ) { 137 break; 138 } 139 std::cout << "\r" << c; 140 std::cout.flush(); 141 } 142 143 barrier.wait(0); 144 auto after = Clock::now(); 145 duration_t durr = after - before; 146 duration = durr.count(); 147 std::cout << "\rClosing down" << std::endl; 148 } 149 150 void print_stats(double duration, unsigned nthread, global_stat_t & global) { 198 199 for(auto t : threads) { 200 t->join(); 201 delete t; 202 } 203 204 enable_stats = false; 205 206 while(auto node = list.pop()) { 207 global.crc_out += node->value; 208 delete node; 209 } 210 151 211 assert(Node::creates == Node::destroys); 152 212 assert(global.crc_in == global.crc_out); … … 164 224 std::cout << "Ops/sec : " << ops_sec << "\n"; 165 225 std::cout << "Total ops : " << ops << "(" << global.in << "i, " << global.out << "o, " << global.empty << "e)\n"; 166 if(global.valmax != 0) {167 std::cout << "Max runs : " << global.valmax << "\n";168 std::cout << "Min runs : " << global.valmin << "\n";169 }170 226 #ifndef NO_STATS 171 relaxed_list<Node>::stats_print(std::cout); 227 double push_sur = (100.0 * double(global.pick.push.success) / global.pick.push.attempt); 228 double pop_sur = (100.0 * double(global.pick.pop .success) / global.pick.pop .attempt); 229 std::cout << "Push Pick % : " << push_sur << "(" << global.pick.push.success << " / " << global.pick.push.attempt << ")\n"; 230 std::cout << "Pop Pick % : " << pop_sur << "(" << global.pick.pop .success << " / " << global.pick.pop .attempt << ")\n"; 172 231 #endif 173 232 } 174 233 175 void save_fairness(const int data[], int factor, unsigned nthreads, size_t columns, size_t rows, const std::string & output); 176 177 // ================================================================================================ 178 // EXPERIMENTS 179 // ================================================================================================ 180 181 // ================================================================================================ 182 __attribute__((noinline)) void runChurn_body( 183 std::atomic<bool>& done, 184 Random & rand, 185 Node * my_nodes[], 186 unsigned nslots, 187 local_stat_t & local, 188 relaxed_list<Node> & list 189 ) { 190 while(__builtin_expect(!done.load(std::memory_order_relaxed), true)) { 191 int idx = rand.next() % nslots; 192 if (auto node = my_nodes[idx]) { 193 local.crc_in += node->value; 194 list.push(node); 195 my_nodes[idx] = nullptr; 196 local.in++; 197 } 198 else if(auto node = list.pop()) { 199 local.crc_out += node->value; 200 my_nodes[idx] = node; 201 local.out++; 202 } 203 else { 204 local.empty++; 205 } 206 } 207 } 208 209 void runChurn(unsigned nthread, unsigned nqueues, double duration, unsigned nnodes, const unsigned nslots) { 210 std::cout << "Churn Benchmark" << std::endl; 211 assert(nnodes <= nslots); 212 // List being tested 213 214 // Barrier for synchronization 215 barrier_t barrier(nthread + 1); 216 217 // Data to check everything is OK 218 global_stat_t global; 219 220 // Flag to signal termination 221 std::atomic_bool done = { false }; 222 223 // Prep nodes 224 std::cout << "Initializing "; 225 size_t npushed = 0; 226 relaxed_list<Node> list = { nthread * nqueues }; 227 { 228 Node** all_nodes[nthread]; 229 for(auto & nodes : all_nodes) { 230 nodes = new __attribute__((aligned(64))) Node*[nslots + 8]; 231 Random rand(rdtscl()); 232 for(unsigned i = 0; i < nnodes; i++) { 233 nodes[i] = new Node(rand.next() % 100); 234 } 235 236 for(unsigned i = nnodes; i < nslots; i++) { 237 nodes[i] = nullptr; 238 } 239 240 for(int i = 0; i < 10 && i < (int)nslots; i++) { 241 int idx = rand.next() % nslots; 242 if (auto node = nodes[idx]) { 243 global.crc_in += node->value; 244 list.push(node); 245 npushed++; 246 nodes[idx] = nullptr; 247 } 248 } 249 } 250 251 std::cout << nnodes << " nodes (" << nslots << " slots)" << std::endl; 252 253 enable_stats = true; 254 255 std::thread * threads[nthread]; 256 unsigned i = 1; 257 for(auto & t : threads) { 258 auto & my_nodes = all_nodes[i - 1]; 259 t = new std::thread([&done, &list, &barrier, &global, &my_nodes, nslots](unsigned tid) { 260 Random rand(tid + rdtscl()); 261 262 local_stat_t local; 263 264 // affinity(tid); 265 266 barrier.wait(tid); 267 268 // EXPERIMENT START 269 270 runChurn_body(done, rand, my_nodes, nslots, local, list); 271 272 // EXPERIMENT END 273 274 barrier.wait(tid); 275 276 tally_stats(global, local); 277 278 for(unsigned i = 0; i < nslots; i++) { 279 delete my_nodes[i]; 280 } 281 }, i++); 282 } 283 284 waitfor(duration, barrier, done); 285 286 for(auto t : threads) { 287 t->join(); 288 delete t; 289 } 290 291 enable_stats = false; 292 293 while(auto node = list.pop()) { 294 global.crc_out += node->value; 295 delete node; 296 } 297 298 for(auto nodes : all_nodes) { 299 delete[] nodes; 300 } 301 } 302 303 print_stats(duration, nthread, global); 304 } 305 306 // ================================================================================================ 307 __attribute__((noinline)) void runPingPong_body( 308 std::atomic<bool>& done, 309 Node initial_nodes[], 310 unsigned nnodes, 311 local_stat_t & local, 312 relaxed_list<Node> & list 313 ) { 314 Node * nodes[nnodes]; 315 { 316 unsigned i = 0; 317 for(auto & n : nodes) { 318 n = &initial_nodes[i++]; 319 } 320 } 321 322 while(__builtin_expect(!done.load(std::memory_order_relaxed), true)) { 323 324 for(Node * & node : nodes) { 325 local.crc_in += node->value; 326 list.push(node); 327 local.in++; 328 } 329 330 // ----- 331 332 for(Node * & node : nodes) { 333 node = list.pop(); 334 assert(node); 335 local.crc_out += node->value; 336 local.out++; 337 } 338 } 339 } 340 341 void runPingPong(unsigned nthread, unsigned nqueues, double duration, unsigned nnodes) { 342 std::cout << "PingPong Benchmark" << std::endl; 343 344 345 // Barrier for synchronization 346 barrier_t barrier(nthread + 1); 347 348 // Data to check everything is OK 349 global_stat_t global; 350 351 // Flag to signal termination 352 std::atomic_bool done = { false }; 353 354 std::cout << "Initializing "; 355 // List being tested 356 relaxed_list<Node> list = { nthread * nqueues }; 357 { 358 enable_stats = true; 359 360 std::thread * threads[nthread]; 361 unsigned i = 1; 362 for(auto & t : threads) { 363 t = new std::thread([&done, &list, &barrier, &global, nnodes](unsigned tid) { 364 Random rand(tid + rdtscl()); 365 366 Node nodes[nnodes]; 367 for(auto & n : nodes) { 368 n.value = (int)rand.next() % 100; 369 } 370 371 local_stat_t local; 372 373 // affinity(tid); 374 375 barrier.wait(tid); 376 377 // EXPERIMENT START 378 379 runPingPong_body(done, nodes, nnodes, local, list); 380 381 // EXPERIMENT END 382 383 barrier.wait(tid); 384 385 tally_stats(global, local); 386 }, i++); 387 } 388 389 waitfor(duration, barrier, done); 390 391 for(auto t : threads) { 392 t->join(); 393 delete t; 394 } 395 396 enable_stats = false; 397 } 398 399 print_stats(duration, nthread, global); 400 } 401 402 // ================================================================================================ 403 __attribute__((noinline)) void runFairness_body( 404 unsigned tid, 405 size_t width, 406 size_t length, 407 int output[], 408 std::atomic_size_t & count, 409 Node initial_nodes[], 410 unsigned nnodes, 411 local_stat_t & local, 412 relaxed_list<Node> & list 413 ) { 414 Node * nodes[nnodes]; 415 { 416 unsigned i = 0; 417 for(auto & n : nodes) { 418 n = &initial_nodes[i++]; 419 } 420 } 421 422 while(__builtin_expect(0 != count.load(std::memory_order_relaxed), true)) { 423 424 for(Node * & node : nodes) { 425 local.crc_in += node->id; 426 list.push(node); 427 local.in++; 428 } 429 430 // ----- 431 432 for(Node * & node : nodes) { 433 node = list.pop(); 434 assert(node); 435 436 if (unsigned(node->value) < length) { 437 size_t idx = (node->value * width) + node->id; 438 assert(idx < (width * length)); 439 output[idx] = tid; 440 } 441 442 node->value++; 443 if(unsigned(node->value) == length) count--; 444 445 local.crc_out += node->id; 446 local.out++; 447 } 448 } 449 } 450 451 void runFairness(unsigned nthread, unsigned nqueues, double duration, unsigned nnodes, const std::string & output) { 452 std::cout << "Fairness Benchmark, outputing to : " << output << std::endl; 453 454 // Barrier for synchronization 455 barrier_t barrier(nthread + 1); 456 457 // Data to check everything is OK 458 global_stat_t global; 459 460 std::cout << "Initializing "; 461 462 // Check fairness by creating a png of where the threads ran 463 size_t width = nthread * nnodes; 464 size_t length = 100000; 465 466 std::unique_ptr<int[]> data_out { new int[width * length] }; 467 468 // Flag to signal termination 469 std::atomic_size_t count = width; 470 471 // List being tested 472 relaxed_list<Node> list = { nthread * nqueues }; 473 { 474 enable_stats = true; 475 476 std::thread * threads[nthread]; 477 unsigned i = 1; 478 for(auto & t : threads) { 479 t = new std::thread([&count, &list, &barrier, &global, nnodes, width, length, data_out = data_out.get()](unsigned tid) { 480 unsigned int start = (tid - 1) * nnodes; 481 Node nodes[nnodes]; 482 for(auto & n : nodes) { 483 n.id = start; 484 n.value = 0; 485 start++; 486 } 487 488 local_stat_t local; 489 490 // affinity(tid); 491 492 barrier.wait(tid); 493 494 // EXPERIMENT START 495 496 runFairness_body(tid, width, length, data_out, count, nodes, nnodes, local, list); 497 498 // EXPERIMENT END 499 500 barrier.wait(tid); 501 502 for(const auto & n : nodes) { 503 local.valmax = max(local.valmax, size_t(n.value)); 504 local.valmin = min(local.valmin, size_t(n.value)); 505 } 506 507 tally_stats(global, local); 508 }, i++); 509 } 510 511 waitfor(duration, barrier, count); 512 513 for(auto t : threads) { 514 t->join(); 515 delete t; 516 } 517 518 enable_stats = false; 519 } 520 521 print_stats(duration, nthread, global); 522 523 save_fairness(data_out.get(), 100, nthread, width, length, output); 524 } 525 526 // ================================================================================================ 527 528 bool iequals(const std::string& a, const std::string& b) 529 { 530 return std::equal(a.begin(), a.end(), 531 b.begin(), b.end(), 532 [](char a, char b) { 533 return std::tolower(a) == std::tolower(b); 534 }); 234 void usage(char * argv[]) { 235 std::cerr << argv[0] << ": [DURATION (FLOAT:SEC)] [NTHREADS] [NQUEUES] [FILL]" << std::endl;; 236 std::exit(1); 535 237 } 536 238 … … 539 241 double duration = 5.0; 540 242 unsigned nthreads = 2; 541 unsigned nqueues = 4; 542 unsigned nnodes = 100; 543 unsigned nslots = 100; 544 std::string out = "fairness.png"; 545 546 enum { 547 Churn, 548 PingPong, 549 Fairness, 550 NONE 551 } benchmark = NONE; 243 unsigned nqueues = 2; 244 unsigned fill = 100; 552 245 553 246 std::cout.imbue(std::locale("")); 554 247 555 for(;;) { 556 static struct option options[] = { 557 {"duration", required_argument, 0, 'd'}, 558 {"nthreads", required_argument, 0, 't'}, 559 {"nqueues", required_argument, 0, 'q'}, 560 {"benchmark", required_argument, 0, 'b'}, 561 {0, 0, 0, 0} 562 }; 563 564 int idx = 0; 565 int opt = getopt_long(argc, argv, "d:t:q:b:", options, &idx); 566 567 std::string arg = optarg ? optarg : ""; 568 size_t len = 0; 569 switch(opt) { 570 // Exit Case 571 case -1: 572 /* paranoid */ assert(optind <= argc); 573 switch(benchmark) { 574 case NONE: 575 std::cerr << "Must specify a benchmark" << std::endl; 576 goto usage; 577 case PingPong: 578 nnodes = 1; 579 nslots = 1; 580 switch(argc - optind) { 581 case 0: break; 582 case 1: 583 try { 584 arg = optarg = argv[optind]; 585 nnodes = stoul(optarg, &len); 586 if(len != arg.size()) { throw std::invalid_argument(""); } 587 } catch(std::invalid_argument &) { 588 std::cerr << "Number of nodes must be a positive integer, was " << arg << std::endl; 589 goto usage; 590 } 591 break; 592 default: 593 std::cerr << "'PingPong' benchmark doesn't accept more than 2 extra arguments" << std::endl; 594 goto usage; 595 } 596 break; 597 case Churn: 598 nnodes = 100; 599 nslots = 100; 600 switch(argc - optind) { 601 case 0: break; 602 case 1: 603 try { 604 arg = optarg = argv[optind]; 605 nnodes = stoul(optarg, &len); 606 if(len != arg.size()) { throw std::invalid_argument(""); } 607 nslots = nnodes; 608 } catch(std::invalid_argument &) { 609 std::cerr << "Number of nodes must be a positive integer, was " << arg << std::endl; 610 goto usage; 611 } 612 break; 613 case 2: 614 try { 615 arg = optarg = argv[optind]; 616 nnodes = stoul(optarg, &len); 617 if(len != arg.size()) { throw std::invalid_argument(""); } 618 } catch(std::invalid_argument &) { 619 std::cerr << "Number of nodes must be a positive integer, was " << arg << std::endl; 620 goto usage; 621 } 622 try { 623 arg = optarg = argv[optind + 1]; 624 nslots = stoul(optarg, &len); 625 if(len != arg.size()) { throw std::invalid_argument(""); } 626 } catch(std::invalid_argument &) { 627 std::cerr << "Number of slots must be a positive integer, was " << arg << std::endl; 628 goto usage; 629 } 630 break; 631 default: 632 std::cerr << "'Churn' benchmark doesn't accept more than 2 extra arguments" << std::endl; 633 goto usage; 634 } 635 break; 636 case Fairness: 637 nnodes = 1; 638 switch(argc - optind) { 639 case 0: break; 640 case 1: 641 arg = optarg = argv[optind]; 642 out = arg; 643 break; 644 default: 645 std::cerr << "'Churn' benchmark doesn't accept more than 2 extra arguments" << std::endl; 646 goto usage; 647 } 648 } 649 goto run; 650 // Benchmarks 651 case 'b': 652 if(benchmark != NONE) { 653 std::cerr << "Only when benchmark can be run" << std::endl; 654 goto usage; 655 } 656 if(iequals(arg, "churn")) { 657 benchmark = Churn; 658 break; 659 } 660 if(iequals(arg, "pingpong")) { 661 benchmark = PingPong; 662 break; 663 } 664 if(iequals(arg, "fairness")) { 665 benchmark = Fairness; 666 break; 667 } 668 std::cerr << "Unkown benchmark " << arg << std::endl; 669 goto usage; 670 // Numeric Arguments 671 case 'd': 672 try { 673 duration = stod(optarg, &len); 674 if(len != arg.size()) { throw std::invalid_argument(""); } 675 } catch(std::invalid_argument &) { 676 std::cerr << "Duration must be a valid double, was " << arg << std::endl; 677 goto usage; 678 } 679 break; 680 case 't': 681 try { 682 nthreads = stoul(optarg, &len); 683 if(len != arg.size()) { throw std::invalid_argument(""); } 684 } catch(std::invalid_argument &) { 685 std::cerr << "Number of threads must be a positive integer, was " << arg << std::endl; 686 goto usage; 687 } 688 break; 689 case 'q': 690 try { 691 nqueues = stoul(optarg, &len); 692 if(len != arg.size()) { throw std::invalid_argument(""); } 693 } catch(std::invalid_argument &) { 694 std::cerr << "Number of queues must be a positive integer, was " << arg << std::endl; 695 goto usage; 696 } 697 break; 698 // Other cases 699 default: /* ? */ 700 std::cerr << opt << std::endl; 701 usage: 702 std::cerr << "Usage: " << argv[0] << ": [options] -b churn [NNODES] [NSLOTS = NNODES]" << std::endl; 703 std::cerr << " or: " << argv[0] << ": [options] -b pingpong [NNODES]" << std::endl; 704 std::cerr << std::endl; 705 std::cerr << " -d, --duration=DURATION Duration of the experiment, in seconds" << std::endl; 706 std::cerr << " -t, --nthreads=NTHREADS Number of kernel threads" << std::endl; 707 std::cerr << " -q, --nqueues=NQUEUES Number of queues per threads" << std::endl; 708 std::exit(1); 709 } 710 } 711 run: 248 switch (argc) 249 { 250 case 5: 251 fill = std::stoul(argv[4]); 252 [[fallthrough]]; 253 case 4: 254 nqueues = std::stoul(argv[3]); 255 [[fallthrough]]; 256 case 3: 257 nthreads = std::stoul(argv[2]); 258 [[fallthrough]]; 259 case 2: 260 duration = std::stod(argv[1]); 261 if( duration <= 0.0 ) { 262 std::cerr << "Duration must be positive, was " << argv[1] << "(" << duration << ")" << std::endl; 263 usage(argv); 264 } 265 [[fallthrough]]; 266 case 1: 267 break; 268 default: 269 usage(argv); 270 break; 271 } 712 272 713 273 check_cache_line_size(); 714 274 715 275 std::cout << "Running " << nthreads << " threads (" << (nthreads * nqueues) << " queues) for " << duration << " seconds" << std::endl; 716 switch(benchmark) { 717 case Churn: 718 runChurn(nthreads, nqueues, duration, nnodes, nslots); 719 break; 720 case PingPong: 721 runPingPong(nthreads, nqueues, duration, nnodes); 722 break; 723 case Fairness: 724 runFairness(nthreads, nqueues, duration, nnodes, out); 725 break; 726 default: 727 abort(); 728 } 276 run(nthreads, nqueues, fill, duration); 277 729 278 return 0; 730 279 } 731 280 281 template<> 282 thread_local relaxed_list<Node>::TLS relaxed_list<Node>::tls = {}; 283 284 template<> 285 relaxed_list<Node>::intrusive_queue_t::stat::Dif relaxed_list<Node>::intrusive_queue_t::stat::dif = {}; 286 732 287 const char * __my_progname = "Relaxed List"; 733 734 struct rgb_t {735 double r; // a fraction between 0 and 1736 double g; // a fraction between 0 and 1737 double b; // a fraction between 0 and 1738 };739 740 struct hsv_t {741 double h; // angle in degrees742 double s; // a fraction between 0 and 1743 double v; // a fraction between 0 and 1744 };745 746 rgb_t hsv2rgb(hsv_t in) {747 double hh, p, q, t, ff;748 long i;749 rgb_t out;750 751 if(in.s <= 0.0) { // < is bogus, just shuts up warnings752 out.r = in.v;753 out.g = in.v;754 out.b = in.v;755 return out;756 }757 hh = in.h;758 if(hh >= 360.0) hh = 0.0;759 hh /= 60.0;760 i = (long)hh;761 ff = hh - i;762 p = in.v * (1.0 - in.s);763 q = in.v * (1.0 - (in.s * ff));764 t = in.v * (1.0 - (in.s * (1.0 - ff)));765 766 switch(i) {767 case 0:768 out.r = in.v;769 out.g = t;770 out.b = p;771 break;772 case 1:773 out.r = q;774 out.g = in.v;775 out.b = p;776 break;777 case 2:778 out.r = p;779 out.g = in.v;780 out.b = t;781 break;782 783 case 3:784 out.r = p;785 out.g = q;786 out.b = in.v;787 break;788 case 4:789 out.r = t;790 out.g = p;791 out.b = in.v;792 break;793 case 5:794 default:795 out.r = in.v;796 out.g = p;797 out.b = q;798 break;799 }800 return out;801 }802 803 void save_fairness(const int data[], int factor, unsigned nthreads, size_t columns, size_t rows, const std::string & output) {804 std::ofstream os(output);805 os << "<html>\n";806 os << "<head>\n";807 os << "<style>\n";808 os << "</style>\n";809 os << "</head>\n";810 os << "<body>\n";811 os << "<table style=\"width=100%\">\n";812 813 size_t idx = 0;814 for(size_t r = 0ul; r < rows; r++) {815 os << "<tr>\n";816 for(size_t c = 0ul; c < columns; c++) {817 os << "<td class=\"custom custom" << data[idx] << "\"></td>\n";818 idx++;819 }820 os << "</tr>\n";821 }822 823 os << "</table>\n";824 os << "</body>\n";825 os << "</html>\n";826 os << std::endl;827 }828 829 #include <png.h>830 #include <setjmp.h>831 832 /*833 void save_fairness(const int data[], int factor, unsigned nthreads, size_t columns, size_t rows, const std::string & output) {834 int width = columns * factor;835 int height = rows / factor;836 837 int code = 0;838 int idx = 0;839 FILE *fp = NULL;840 png_structp png_ptr = NULL;841 png_infop info_ptr = NULL;842 png_bytep row = NULL;843 844 // Open file for writing (binary mode)845 fp = fopen(output.c_str(), "wb");846 if (fp == NULL) {847 fprintf(stderr, "Could not open file %s for writing\n", output.c_str());848 code = 1;849 goto finalise;850 }851 852 // Initialize write structure853 png_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING, NULL, NULL, NULL);854 if (png_ptr == NULL) {855 fprintf(stderr, "Could not allocate write struct\n");856 code = 1;857 goto finalise;858 }859 860 // Initialize info structure861 info_ptr = png_create_info_struct(png_ptr);862 if (info_ptr == NULL) {863 fprintf(stderr, "Could not allocate info struct\n");864 code = 1;865 goto finalise;866 }867 868 // Setup Exception handling869 if (setjmp(png_jmpbuf(png_ptr))) {870 fprintf(stderr, "Error during png creation\n");871 code = 1;872 goto finalise;873 }874 875 png_init_io(png_ptr, fp);876 877 // Write header (8 bit colour depth)878 png_set_IHDR(png_ptr, info_ptr, width, height,879 8, PNG_COLOR_TYPE_RGB, PNG_INTERLACE_NONE,880 PNG_COMPRESSION_TYPE_BASE, PNG_FILTER_TYPE_BASE);881 882 png_write_info(png_ptr, info_ptr);883 884 // Allocate memory for one row (3 bytes per pixel - RGB)885 row = (png_bytep) malloc(3 * width * sizeof(png_byte));886 887 // Write image data888 int x, y;889 for (y=0 ; y<height ; y++) {890 for (x=0 ; x<width ; x++) {891 auto & r = row[(x * 3) + 0];892 auto & g = row[(x * 3) + 1];893 auto & b = row[(x * 3) + 2];894 assert(idx < (rows * columns));895 int color = data[idx] - 1;896 assert(color < nthreads);897 assert(color >= 0);898 idx++;899 900 double angle = double(color) / double(nthreads);901 902 auto c = hsv2rgb({ 360.0 * angle, 0.8, 0.8 });903 904 r = char(c.r * 255.0);905 g = char(c.g * 255.0);906 b = char(c.b * 255.0);907 908 }909 png_write_row(png_ptr, row);910 }911 912 assert(idx == (rows * columns));913 914 // End write915 png_write_end(png_ptr, NULL);916 917 finalise:918 if (fp != NULL) fclose(fp);919 if (info_ptr != NULL) png_free_data(png_ptr, info_ptr, PNG_FREE_ALL, -1);920 if (png_ptr != NULL) png_destroy_write_struct(&png_ptr, (png_infopp)NULL);921 if (row != NULL) free(row);922 }923 */ -
doc/theses/thierry_delisle_PhD/code/relaxed_list.hpp
r7030dab r71d6bd8 37 37 }; 38 38 39 static inline bool bts(std::atomic_size_t & target, size_t bit ) {40 //*41 int result = 0;42 asm volatile(43 "LOCK btsq %[bit], %[target]\n\t"44 :"=@ccc" (result)45 : [target] "m" (target), [bit] "r" (bit)46 );47 return result != 0;48 /*/49 size_t mask = 1ul << bit;50 size_t ret = target.fetch_or(mask, std::memory_order_relaxed);51 return (ret & mask) != 0;52 //*/53 }54 55 static inline bool btr(std::atomic_size_t & target, size_t bit ) {56 //*57 int result = 0;58 asm volatile(59 "LOCK btrq %[bit], %[target]\n\t"60 :"=@ccc" (result)61 : [target] "m" (target), [bit] "r" (bit)62 );63 return result != 0;64 /*/65 size_t mask = 1ul << bit;66 size_t ret = target.fetch_and(~mask, std::memory_order_relaxed);67 return (ret & mask) != 0;68 //*/69 }70 39 71 40 extern bool enable_stats; … … 79 48 size_t attempt = 0; 80 49 size_t success = 0; 81 size_t mask_attempt = 0;82 } pop;83 };84 85 struct empty_stat {86 struct {87 size_t value = 0;88 size_t count = 0;89 } push;90 struct {91 size_t value = 0;92 size_t count = 0;93 50 } pop; 94 51 }; … … 105 62 static_assert(std::is_same<decltype(node_t::_links), _LinksFields_t<node_t>>::value, "Node must have a links field"); 106 63 64 107 65 public: 108 66 relaxed_list(unsigned numLists) 109 : lists(new intrusive_queue_t[numLists]) 67 : numNonEmpty{0} 68 , lists(new intrusive_queue_t[numLists]) 110 69 , numLists(numLists) 111 { 112 assertf(7 * 8 * 8 >= numLists, "List currently only supports 448 sublists"); 113 // assert(sizeof(*this) == 128); 114 std::cout << "Constructing Relaxed List with " << numLists << std::endl; 115 70 {} 71 72 ~relaxed_list() { 73 lists.reset(); 116 74 #ifndef NO_STATS 117 if(head) this->next = head; 118 head = this; 75 std::cout << "Difference : " 76 << ssize_t(double(intrusive_queue_t::stat::dif.value) / intrusive_queue_t::stat::dif.num ) << " avg\t" 77 << intrusive_queue_t::stat::dif.max << "max" << std::endl; 119 78 #endif 120 }121 122 ~relaxed_list() {123 std::cout << "Destroying Relaxed List" << std::endl;124 lists.reset();125 79 } 126 80 … … 130 84 while(true) { 131 85 // Pick a random list 132 unsignedi = tls.rng.next() % numLists;86 int i = tls.rng.next() % numLists; 133 87 134 88 #ifndef NO_STATS … … 139 93 if( !lists[i].lock.try_lock() ) continue; 140 94 141 __attribute__((unused)) int num = numNonEmpty;142 143 95 // Actually push it 144 if(lists[i].push(node)) { 145 numNonEmpty++; 146 size_t qword = i >> 6ull; 147 size_t bit = i & 63ull; 148 assertf((list_mask[qword] & (1ul << bit)) == 0, "Before set %zu:%zu (%u), %zx & %zx", qword, bit, i, list_mask[qword].load(), (1ul << bit)); 149 __attribute__((unused)) bool ret = bts(list_mask[qword], bit); 150 assert(!ret); 151 assertf((list_mask[qword] & (1ul << bit)) != 0, "After set %zu:%zu (%u), %zx & %zx", qword, bit, i, list_mask[qword].load(), (1ul << bit)); 152 } 96 lists[i].push(node, numNonEmpty); 153 97 assert(numNonEmpty <= (int)numLists); 154 98 … … 158 102 #ifndef NO_STATS 159 103 tls.pick.push.success++; 160 tls.empty.push.value += num;161 tls.empty.push.count += 1;162 104 #endif 163 105 return; … … 166 108 167 109 __attribute__((noinline, hot)) node_t * pop() { 168 #if !defined(NO_BITMASK) 169 // for(int r = 0; r < 10 && numNonEmpty != 0; r++) { 170 // // Pick two lists at random 171 // unsigned i = tls.rng.next() % numLists; 172 // unsigned j = tls.rng.next() % numLists; 173 174 // if(auto node = try_pop(i, j)) return node; 175 // } 176 int nnempty; 177 while(0 != (nnempty = numNonEmpty)) { 178 tls.pick.pop.mask_attempt++; 179 unsigned i, j; 180 // if( numLists < 4 || (numLists / nnempty) < 4 ) { 181 // // Pick two lists at random 182 // i = tls.rng.next() % numLists; 183 // j = tls.rng.next() % numLists; 184 // } else 185 { 186 #ifndef NO_STATS 187 // tls.pick.push.mask_attempt++; 188 #endif 189 190 // Pick two lists at random 191 unsigned num = ((numLists - 1) >> 6) + 1; 192 193 unsigned ri = tls.rng.next(); 194 unsigned rj = tls.rng.next(); 195 196 unsigned wdxi = (ri >> 6u) % num; 197 unsigned wdxj = (rj >> 6u) % num; 198 199 size_t maski = list_mask[wdxi].load(std::memory_order_relaxed); 200 size_t maskj = list_mask[wdxj].load(std::memory_order_relaxed); 201 202 if(maski == 0 && maskj == 0) continue; 203 204 unsigned bi = rand_bit(ri, maski); 205 unsigned bj = rand_bit(rj, maskj); 206 207 assertf(bi < 64, "%zu %u", maski, bi); 208 assertf(bj < 64, "%zu %u", maskj, bj); 209 210 i = bi | (wdxi << 6); 211 j = bj | (wdxj << 6); 212 213 assertf(i < numLists, "%u", wdxi << 6); 214 assertf(j < numLists, "%u", wdxj << 6); 215 } 216 217 if(auto node = try_pop(i, j)) return node; 218 } 219 #else 220 while(numNonEmpty != 0) { 221 // Pick two lists at random 222 int i = tls.rng.next() % numLists; 223 int j = tls.rng.next() % numLists; 224 225 if(auto node = try_pop(i, j)) return node; 226 } 227 #endif 110 while(numNonEmpty != 0) { 111 // Pick two lists at random 112 int i = tls.rng.next() % numLists; 113 int j = tls.rng.next() % numLists; 114 115 #ifndef NO_STATS 116 tls.pick.pop.attempt++; 117 #endif 118 119 // Pick the bet list 120 int w = i; 121 if( __builtin_expect(lists[j].ts() != 0, true) ) { 122 w = (lists[i].ts() < lists[j].ts()) ? i : j; 123 } 124 125 auto & list = lists[w]; 126 // If list looks empty retry 127 if( list.ts() == 0 ) continue; 128 129 // If we can't get the lock retry 130 if( !list.lock.try_lock() ) continue; 131 132 // If list is empty, unlock and retry 133 if( list.ts() == 0 ) { 134 list.lock.unlock(); 135 continue; 136 } 137 138 // Actually pop the list 139 auto node = list.pop(numNonEmpty); 140 assert(node); 141 142 // Unlock and return 143 list.lock.unlock(); 144 assert(numNonEmpty >= 0); 145 #ifndef NO_STATS 146 tls.pick.pop.success++; 147 #endif 148 return node; 149 } 228 150 229 151 return nullptr; 230 152 } 231 232 private:233 node_t * try_pop(unsigned i, unsigned j) {234 #ifndef NO_STATS235 tls.pick.pop.attempt++;236 #endif237 238 // Pick the bet list239 int w = i;240 if( __builtin_expect(lists[j].ts() != 0, true) ) {241 w = (lists[i].ts() < lists[j].ts()) ? i : j;242 }243 244 auto & list = lists[w];245 // If list looks empty retry246 if( list.ts() == 0 ) return nullptr;247 248 // If we can't get the lock retry249 if( !list.lock.try_lock() ) return nullptr;250 251 __attribute__((unused)) int num = numNonEmpty;252 253 // If list is empty, unlock and retry254 if( list.ts() == 0 ) {255 list.lock.unlock();256 return nullptr;257 }258 259 // Actually pop the list260 node_t * node;261 bool emptied;262 std::tie(node, emptied) = list.pop();263 assert(node);264 265 if(emptied) {266 numNonEmpty--;267 size_t qword = w >> 6ull;268 size_t bit = w & 63ull;269 assert((list_mask[qword] & (1ul << bit)) != 0);270 __attribute__((unused)) bool ret = btr(list_mask[qword], bit);271 assert(ret);272 assert((list_mask[qword] & (1ul << bit)) == 0);273 }274 275 // Unlock and return276 list.lock.unlock();277 assert(numNonEmpty >= 0);278 #ifndef NO_STATS279 tls.pick.pop.success++;280 tls.empty.pop.value += num;281 tls.empty.pop.count += 1;282 #endif283 return node;284 }285 153 286 154 private: … … 294 162 struct stat { 295 163 ssize_t diff = 0; 296 size_t push = 0; 297 size_t pop = 0; 298 // size_t value = 0; 299 // size_t count = 0; 164 165 static struct Dif { 166 ssize_t value = 0; 167 size_t num = 0; 168 ssize_t max = 0; 169 } dif; 300 170 }; 301 171 … … 308 178 sentinel_t before; 309 179 sentinel_t after; 310 #ifndef NO_STATS 311 stat s; 312 #endif 313 314 #pragma GCC diagnostic push 315 #pragma GCC diagnostic ignored "-Winvalid-offsetof" 180 stat s; 181 316 182 static constexpr auto fields_offset = offsetof( node_t, _links ); 317 #pragma GCC diagnostic pop318 183 public: 319 184 intrusive_queue_t() … … 321 186 , after {{ head(), nullptr }} 322 187 { 323 /* paranoid */ assert((reinterpret_cast<uintptr_t>( head() ) + fields_offset) == reinterpret_cast<uintptr_t>(&before)); 324 /* paranoid */ assert((reinterpret_cast<uintptr_t>( tail() ) + fields_offset) == reinterpret_cast<uintptr_t>(&after )); 325 /* paranoid */ assert(head()->_links.prev == nullptr); 326 /* paranoid */ assert(head()->_links.next == tail() ); 327 /* paranoid */ assert(tail()->_links.next == nullptr); 328 /* paranoid */ assert(tail()->_links.prev == head() ); 329 /* paranoid */ assert(sizeof(*this) == 128); 330 /* paranoid */ assert((intptr_t(this) % 128) == 0); 331 } 332 333 ~intrusive_queue_t() = default; 188 assert((reinterpret_cast<uintptr_t>( head() ) + fields_offset) == reinterpret_cast<uintptr_t>(&before)); 189 assert((reinterpret_cast<uintptr_t>( tail() ) + fields_offset) == reinterpret_cast<uintptr_t>(&after )); 190 assert(head()->_links.prev == nullptr); 191 assert(head()->_links.next == tail() ); 192 assert(tail()->_links.next == nullptr); 193 assert(tail()->_links.prev == head() ); 194 assert(sizeof(*this) == 128); 195 assert((intptr_t(this) % 128) == 0); 196 } 197 198 ~intrusive_queue_t() { 199 #ifndef NO_STATS 200 stat::dif.value+= s.diff; 201 stat::dif.num ++; 202 stat::dif.max = std::abs(stat::dif.max) > std::abs(s.diff) ? stat::dif.max : s.diff; 203 #endif 204 } 334 205 335 206 inline node_t * head() const { … … 349 220 } 350 221 351 inline bool push(node_t * node) {222 inline void push(node_t * node, std::atomic_int & nonEmpty) { 352 223 assert(lock); 353 224 assert(node->_links.ts != 0); … … 361 232 prev->_links.next = node; 362 233 tail->_links.prev = node; 363 #ifndef NO_STATS364 if(enable_stats) {365 s.diff++;366 s.push++;367 }368 #endif369 234 if(before._links.ts == 0l) { 235 nonEmpty += 1; 370 236 before._links.ts = node->_links.ts; 371 assert(node->_links.prev == this->head());372 return true;373 }374 return false;375 } 376 377 inline std::pair<node_t *, bool> pop() {237 } 238 #ifndef NO_STATS 239 if(enable_stats) s.diff++; 240 #endif 241 } 242 243 inline node_t * pop(std::atomic_int & nonEmpty) { 378 244 assert(lock); 379 245 node_t * head = this->head(); … … 382 248 node_t * node = head->_links.next; 383 249 node_t * next = node->_links.next; 384 if(node == tail) return {nullptr, false};250 if(node == tail) return nullptr; 385 251 386 252 head->_links.next = next; 387 253 next->_links.prev = head; 388 254 389 #ifndef NO_STATS390 if(enable_stats) {391 s.diff--;392 s.pop ++;393 }394 #endif395 255 if(next == tail) { 396 256 before._links.ts = 0l; 397 return {node, true};257 nonEmpty -= 1; 398 258 } 399 259 else { … … 401 261 before._links.ts = next->_links.ts; 402 262 assert(before._links.ts != 0); 403 return {node, false}; 404 } 263 } 264 #ifndef NO_STATS 265 if(enable_stats) s.diff--; 266 #endif 267 return node; 405 268 } 406 269 … … 414 277 415 278 static __attribute__((aligned(128))) thread_local struct TLS { 416 Random rng = { int(rdtscl()) }; 417 pick_stat pick; 418 empty_stat empty; 279 Random rng = { int(rdtscl()) }; 280 pick_stat pick; 419 281 } tls; 420 282 421 public:422 std::atomic_int numNonEmpty = { 0 }; // number of non-empty lists423 std::atomic_size_t list_mask[7] = { {0}, {0}, {0}, {0}, {0}, {0}, {0} }; // which queues are empty424 283 private: 284 std::atomic_int numNonEmpty; // number of non-empty lists 425 285 __attribute__((aligned(64))) std::unique_ptr<intrusive_queue_t []> lists; 426 286 const unsigned numLists; … … 428 288 public: 429 289 static const constexpr size_t sizeof_queue = sizeof(intrusive_queue_t); 430 431 #ifndef NO_STATS 432 static void stats_print(std::ostream & os) { 433 auto it = head; 434 while(it) { 435 it->stats_print_local(os); 436 it = it->next; 437 } 438 } 439 440 static void stats_tls_tally() { 441 global_stats.pick.push.attempt += tls.pick.push.attempt; 442 global_stats.pick.push.success += tls.pick.push.success; 443 global_stats.pick.pop .attempt += tls.pick.pop.attempt; 444 global_stats.pick.pop .success += tls.pick.pop.success; 445 global_stats.pick.pop .mask_attempt += tls.pick.pop.mask_attempt; 446 447 global_stats.qstat.push.value += tls.empty.push.value; 448 global_stats.qstat.push.count += tls.empty.push.count; 449 global_stats.qstat.pop .value += tls.empty.pop .value; 450 global_stats.qstat.pop .count += tls.empty.pop .count; 451 } 452 453 private: 454 static struct GlobalStats { 455 struct { 456 struct { 457 std::atomic_size_t attempt = { 0 }; 458 std::atomic_size_t success = { 0 }; 459 } push; 460 struct { 461 std::atomic_size_t attempt = { 0 }; 462 std::atomic_size_t success = { 0 }; 463 std::atomic_size_t mask_attempt = { 0 }; 464 } pop; 465 } pick; 466 struct { 467 struct { 468 std::atomic_size_t value = { 0 }; 469 std::atomic_size_t count = { 0 }; 470 } push; 471 struct { 472 std::atomic_size_t value = { 0 }; 473 std::atomic_size_t count = { 0 }; 474 } pop; 475 } qstat; 476 } global_stats; 477 478 // Link list of all lists for stats 479 __attribute__((aligned(64))) relaxed_list<node_t> * next = nullptr; 480 481 static relaxed_list<node_t> * head; 482 483 void stats_print_local(std::ostream & os ) { 484 std::cout << "----- Relaxed List Stats -----" << std::endl; 485 { 486 ssize_t diff = 0; 487 size_t num = 0; 488 ssize_t max = 0; 489 490 for(size_t i = 0; i < numLists; i++) { 491 const auto & list = lists[i]; 492 diff+= list.s.diff; 493 num ++; 494 max = std::abs(max) > std::abs(list.s.diff) ? max : list.s.diff; 495 os << "Local Q ops : " << (list.s.push + list.s.pop) << "(" << list.s.push << "i, " << list.s.pop << "o)\n"; 496 } 497 498 os << "Difference : " << ssize_t(double(diff) / num ) << " avg\t" << max << "max" << std::endl; 499 } 500 501 const auto & global = global_stats; 502 503 double push_sur = (100.0 * double(global.pick.push.success) / global.pick.push.attempt); 504 double pop_sur = (100.0 * double(global.pick.pop .success) / global.pick.pop .attempt); 505 double mpop_sur = (100.0 * double(global.pick.pop .success) / global.pick.pop .mask_attempt); 506 507 os << "Push Pick % : " << push_sur << "(" << global.pick.push.success << " / " << global.pick.push.attempt << ")\n"; 508 os << "Pop Pick % : " << pop_sur << "(" << global.pick.pop .success << " / " << global.pick.pop .attempt << ")\n"; 509 os << "TryPop Pick % : " << mpop_sur << "(" << global.pick.pop .success << " / " << global.pick.pop .mask_attempt << ")\n"; 510 511 double avgQ_push = double(global.qstat.push.value) / global.qstat.push.count; 512 double avgQ_pop = double(global.qstat.pop .value) / global.qstat.pop .count; 513 double avgQ = double(global.qstat.push.value + global.qstat.pop .value) / (global.qstat.push.count + global.qstat.pop .count); 514 os << "Push Avg Qs : " << avgQ_push << " (" << global.qstat.push.count << "ops)\n"; 515 os << "Pop Avg Qs : " << avgQ_pop << " (" << global.qstat.pop .count << "ops)\n"; 516 os << "Global Avg Qs : " << avgQ << " (" << (global.qstat.push.count + global.qstat.pop .count) << "ops)\n"; 517 } 518 #endif 519 }; 290 }; -
doc/theses/thierry_delisle_PhD/code/utils.hpp
r7030dab r71d6bd8 10 10 #include <unistd.h> 11 11 #include <sys/sysinfo.h> 12 13 #include <x86intrin.h>14 12 15 13 // Barrier from … … 58 56 } 59 57 60 static inlinevoid affinity(int tid) {58 void affinity(int tid) { 61 59 static int cpus = get_nprocs(); 62 60 … … 72 70 73 71 static const constexpr std::size_t cache_line_size = 64; 74 static inlinevoid check_cache_line_size() {72 void check_cache_line_size() { 75 73 std::cout << "Checking cache line size" << std::endl; 76 74 const std::string cache_file = "/sys/devices/system/cpu/cpu0/cache/index0/coherency_line_size"; … … 105 103 return std::chrono::duration_cast<std::chrono::duration<T, Ratio>>(std::chrono::duration<T>(seconds)).count(); 106 104 } 107 108 static inline unsigned rand_bit(unsigned rnum, size_t mask) {109 unsigned bit = mask ? rnum % __builtin_popcountl(mask) : 0;110 #if !defined(__BMI2__)111 uint64_t v = mask; // Input value to find position with rank r.112 unsigned int r = bit + 1;// Input: bit's desired rank [1-64].113 unsigned int s; // Output: Resulting position of bit with rank r [1-64]114 uint64_t a, b, c, d; // Intermediate temporaries for bit count.115 unsigned int t; // Bit count temporary.116 117 // Do a normal parallel bit count for a 64-bit integer,118 // but store all intermediate steps.119 a = v - ((v >> 1) & ~0UL/3);120 b = (a & ~0UL/5) + ((a >> 2) & ~0UL/5);121 c = (b + (b >> 4)) & ~0UL/0x11;122 d = (c + (c >> 8)) & ~0UL/0x101;123 124 125 t = (d >> 32) + (d >> 48);126 // Now do branchless select!127 s = 64;128 s -= ((t - r) & 256) >> 3; r -= (t & ((t - r) >> 8));129 t = (d >> (s - 16)) & 0xff;130 s -= ((t - r) & 256) >> 4; r -= (t & ((t - r) >> 8));131 t = (c >> (s - 8)) & 0xf;132 s -= ((t - r) & 256) >> 5; r -= (t & ((t - r) >> 8));133 t = (b >> (s - 4)) & 0x7;134 s -= ((t - r) & 256) >> 6; r -= (t & ((t - r) >> 8));135 t = (a >> (s - 2)) & 0x3;136 s -= ((t - r) & 256) >> 7; r -= (t & ((t - r) >> 8));137 t = (v >> (s - 1)) & 0x1;138 s -= ((t - r) & 256) >> 8;139 return s - 1;140 #else141 uint64_t picked = _pdep_u64(1ul << bit, mask);142 return picked ? __builtin_ctzl(picked) : 0;143 #endif144 } -
doc/user/user.tex
r7030dab r71d6bd8 11 11 %% Created On : Wed Apr 6 14:53:29 2016 12 12 %% Last Modified By : Peter A. Buhr 13 %% Last Modified On : Fri Mar 6 13:34:52 202014 %% Update Count : 3 92413 %% Last Modified On : Sat Jul 13 18:36:18 2019 14 %% Update Count : 3876 15 15 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 16 16 … … 211 211 Even with all its problems, C continues to be popular because it allows writing software at virtually any level in a computer system without restriction. 212 212 For system programming, where direct access to hardware, storage management, and real-time issues are a requirement, C is usually the only language of choice. 213 The TIOBE index~\cite{TIOBE} for February 2020 ranks the top six most \emph{popular} programming languages as \Index*{Java} 17.4\%, C 16.8\%, Python 9.3\%, \Index*[C++]{\CC{}} 6.2\%, \Csharp 5.9\%, Visual Basic 5.9\% = 61.5\%, where the next 50 languages are less than 2\% each, with a long tail.214 The top 4 rankings over the past 35years are:213 The TIOBE index~\cite{TIOBE} for July 2018 ranks the top five most \emph{popular} programming languages as \Index*{Java} 16\%, C 14\%, \Index*[C++]{\CC{}} 7.5\%, Python 6\%, Visual Basic 4\% = 47.5\%, where the next 50 languages are less than 4\% each, with a long tail. 214 The top 3 rankings over the past 30 years are: 215 215 \begin{center} 216 216 \setlength{\tabcolsep}{10pt} 217 \begin{tabular}{@{}rcccccccc@{}} 218 & 2020 & 2015 & 2010 & 2005 & 2000 & 1995 & 1990 & 1985 \\ \hline 219 Java & 1 & 2 & 1 & 2 & 3 & - & - & - \\ 220 \R{C} & \R{2} & \R{1} & \R{2} & \R{1} & \R{1} & \R{2} & \R{1} & \R{1} \\ 221 Python & 3 & 7 & 6 & 6 & 22 & 21 & - & - \\ 222 \CC & 4 & 4 & 4 & 3 & 2 & 1 & 2 & 12 \\ 217 \begin{tabular}{@{}rccccccc@{}} 218 & 2018 & 2013 & 2008 & 2003 & 1998 & 1993 & 1988 \\ \hline 219 Java & 1 & 2 & 1 & 1 & 16 & - & - \\ 220 \R{C} & \R{2} & \R{1} & \R{2} & \R{2} & \R{1} & \R{1} & \R{1} \\ 221 \CC & 3 & 4 & 3 & 3 & 2 & 2 & 5 \\ 223 222 \end{tabular} 224 223 \end{center} … … 513 512 Keyword clashes are accommodated by syntactic transformations using the \CFA backquote escape-mechanism: 514 513 \begin{cfa} 515 int Ā®` `Ā®otype= 3; §\C{// make keyword an identifier}§516 double Ā®` `Ā®forall= 3.5;514 int Ā®`Ā®otypeĀ®`Ā® = 3; §\C{// make keyword an identifier}§ 515 double Ā®`Ā®forallĀ®`Ā® = 3.5; 517 516 \end{cfa} 518 517 … … 525 524 // include file uses the CFA keyword "with". 526 525 #if ! defined( with ) §\C{// nesting ?}§ 527 #define with Ā®` `Ā®with§\C{// make keyword an identifier}§526 #define with Ā®`Ā®withĀ®`Ā® §\C{// make keyword an identifier}§ 528 527 #define __CFA_BFD_H__ 529 528 #endif 530 §{\color{red}\#\textbf{include\_next} <bfdlink.h>}§ §\C{// must have internal check for multiple expansion}§ 529 530 Ā®#include_next <bfdlink.h> §\C{// must have internal check for multiple expansion}§ 531 Ā® 531 532 #if defined( with ) && defined( __CFA_BFD_H__ ) §\C{// reset only if set}§ 532 533 #undef with … … 575 576 \section{Exponentiation Operator} 576 577 577 C, \CC, and Java (and many other programming languages) have no exponentiation operator\index{exponentiation!operator}\index{operator!exponentiation}, \ie $x^y$, and instead use a routine, like \Indexc{pow (x,y)}, to perform the exponentiation operation.578 \CFA extends the basic operators with the exponentiation operator Ā©? Ā®\Ā®?Ā©\index{?\\?@Ā©?Ā®\Ā®?Ā©} and Ā©?\=?Ā©\index{?\\=?@©®\Ā®=?Ā©}, as in, Ā©x Ā®\Ā® yĀ© and Ā©x Ā®\Ā®= yĀ©, which means $x^y$ and $x \leftarrow x^y$.578 C, \CC, and Java (and many other programming languages) have no exponentiation operator\index{exponentiation!operator}\index{operator!exponentiation}, \ie $x^y$, and instead use a routine, like \Indexc{pow}, to perform the exponentiation operation. 579 \CFA extends the basic operators with the exponentiation operator Ā©?\?Ā©\index{?\\?@Ā©?\?Ā©} and Ā©?\=?Ā©\index{?\\=?@Ā©\=?Ā©}, as in, Ā©x \ yĀ© and Ā©x \= yĀ©, which means $x^y$ and $x \leftarrow x^y$. 579 580 The priority of the exponentiation operator is between the cast and multiplicative operators, so that Ā©w * (int)x \ (int)y * zĀ© is parenthesized as Ā©((w * (((int)x) \ ((int)y))) * z)Ā©. 580 581 581 There are exponentiation operators for integral and floating types, including the builtin \Index{complex} types.582 As for \Index{division}, there are exponentiation operators for integral and floating types, including the builtin \Index{complex} types. 582 583 Integral exponentiation\index{exponentiation!unsigned integral} is performed with repeated multiplication\footnote{The multiplication computation is $O(\log y)$.} (or shifting if the exponent is 2). 583 Overflow f or a large exponent or negative exponent returnszero.584 Overflow from large exponents or negative exponents return zero. 584 585 Floating exponentiation\index{exponentiation!floating} is performed using \Index{logarithm}s\index{exponentiation!logarithm}, so the exponent cannot be negative. 585 586 \begin{cfa} … … 588 589 1 1 256 -64 125 Ā®0Ā® 3273344365508751233 Ā®0Ā® Ā®0Ā® -0.015625 18.3791736799526 0.264715-1.1922i 589 590 \end{cfa} 590 Note, Ā©5 \ 32Ā© and Ā©5L \ 64Ā© overflow, and Ā©-4 \-3Ā© is a fraction but stored in an integer so all three computations generate an integral zero.591 Note, Ā©5 Ā®\Ā® 32Ā© and Ā©5L Ā®\Ā® 64Ā© overflow, and Ā©-4 Ā®\Ā® -3Ā© is a fraction but stored in an integer so all three computations generate an integral zero. 591 592 Parenthesis are necessary for complex constants or the expression is parsed as Ā©1.0f+Ā®(Ā®2.0fi \ 3.0fĀ®)Ā®+2.0fiĀ©. 592 593 The exponentiation operator is available for all the basic types, but for user-defined types, only the integral-computation version is available. … … 597 598 OT ?Ā®\Ā®?( OT ep, unsigned long int y ); 598 599 \end{cfa} 599 The user type Ā©TĀ© must define multiplication, one (Ā©1Ā©), andĀ©*Ā©.600 The user type Ā©TĀ© must define multiplication, one, Ā©1Ā©, and, Ā©*Ā©. 600 601 601 602 … … 625 626 626 627 627 %\section{\texorpdfstring{\protect\lstinline@case@ Clause}{case Clause}} 628 \subsection{\texorpdfstring{\LstKeywordStyle{case} Clause}{case Clause}} 629 630 C restricts the Ā©caseĀ© clause of a Ā©switchĀ© statement to a single value. 631 For multiple Ā©caseĀ© clauses associated with the same statement, it is necessary to have multiple Ā©caseĀ© clauses rather than multiple values. 632 Requiring a Ā©caseĀ© clause for each value does not seem to be in the spirit of brevity normally associated with C. 633 Therefore, the Ā©caseĀ© clause is extended with a list of values, as in: 628 \subsection{Loop Control} 629 630 The Ā©forĀ©/Ā©whileĀ©/Ā©do-whileĀ© loop-control allows empty or simplified ranges (see Figure~\ref{f:LoopControlExamples}). 631 \begin{itemize} 632 \item 633 An empty conditional implies Ā©1Ā©. 634 \item 635 The up-to range Ā©~Ā©\index{~@Ā©~Ā©} means exclusive range [M,N). 636 \item 637 The up-to range Ā©~=Ā©\index{~=@Ā©~=Ā©} means inclusive range [M,N]. 638 \item 639 The down-to range Ā©-~Ā©\index{-~@Ā©-~Ā©} means exclusive range [N,M). 640 \item 641 The down-to range Ā©-~=Ā©\index{-~=@Ā©-~=Ā©} means inclusive range [N,M]. 642 \item 643 Ā©@Ā© means put nothing in this field. 644 \item 645 Ā©0Ā© is the implicit start value; 646 \item 647 Ā©1Ā© is the implicit increment value. 648 \item 649 The up-to range uses Ā©+=Ā© for increment; 650 \item 651 The down-to range uses Ā©-=Ā© for decrement. 652 \item 653 The loop index is polymorphic in the type of the start value or comparison value when start is implicitly Ā©0Ā©. 654 \end{itemize} 655 656 \begin{figure} 634 657 \begin{cquote} 635 \begin{tabular}{@{}l@{\hspace{3em}}l@{\hspace{2em}}l@{}} 636 \multicolumn{1}{c@{\hspace{3em}}}{\textbf{\CFA}} & \multicolumn{1}{c@{\hspace{2em}}}{\textbf{C}} \\ 637 \begin{cfa} 638 switch ( i ) { 639 case Ā®1, 3, 5Ā®: 640 ... 641 case Ā®2, 4, 6Ā®: 642 ... 643 } 658 \begin{tabular}{@{}l|l@{}} 659 \multicolumn{1}{c|}{loop control} & \multicolumn{1}{c}{output} \\ 660 \hline 661 \begin{cfa} 662 sout | nlOff; 663 while Ā®()Ā® { sout | "empty"; break; } sout | nl; 664 do { sout | "empty"; break; } while Ā®()Ā®; sout | nl; 665 for Ā®()Ā® { sout | "empty"; break; } sout | nl; 666 for ( Ā®0Ā® ) { sout | "A"; } sout | "zero" | nl; 667 for ( Ā®1Ā® ) { sout | "A"; } sout | nl; 668 for ( Ā®10Ā® ) { sout | "A"; } sout | nl; 669 for ( Ā®1 ~= 10 ~ 2Ā® ) { sout | "B"; } sout | nl; 670 for ( Ā®10 -~= 1 ~ 2Ā® ) { sout | "C"; } sout | nl; 671 for ( Ā®0.5 ~ 5.5Ā® ) { sout | "D"; } sout | nl; 672 for ( Ā®5.5 -~ 0.5Ā® ) { sout | "E"; } sout | nl; 673 for ( Ā®i; 10Ā® ) { sout | i; } sout | nl; 674 for ( Ā®i; 1 ~= 10 ~ 2Ā® ) { sout | i; } sout | nl; 675 for ( Ā®i; 10 -~= 1 ~ 2Ā® ) { sout | i; } sout | nl; 676 for ( Ā®i; 0.5 ~ 5.5Ā® ) { sout | i; } sout | nl; 677 for ( Ā®i; 5.5 -~ 0.5Ā® ) { sout | i; } sout | nl; 678 for ( Ā®ui; 2u ~= 10u ~ 2uĀ® ) { sout | ui; } sout | nl; 679 for ( Ā®ui; 10u -~= 2u ~ 2uĀ® ) { sout | ui; } sout | nl; 680 enum { N = 10 }; 681 for ( Ā®NĀ® ) { sout | "N"; } sout | nl; 682 for ( Ā®i; NĀ® ) { sout | i; } sout | nl; 683 for ( Ā®i; N -~ 0Ā® ) { sout | i; } sout | nl; 684 const int start = 3, comp = 10, inc = 2; 685 for ( Ā®i; start ~ comp ~ inc + 1Ā® ) { sout | i; } sout | nl; 686 for ( Ā®i; 1 ~ @Ā® ) { if ( i > 10 ) break; 687 sout | i; } sout | nl; 688 for ( Ā®i; 10 -~ @Ā® ) { if ( i < 0 ) break; 689 sout | i; } sout | nl; 690 for ( Ā®i; 2 ~ @ ~ 2Ā® ) { if ( i > 10 ) break; 691 sout | i; } sout | nl; 692 for ( Ā®i; 2.1 ~ @ ~ @Ā® ) { if ( i > 10.5 ) break; 693 sout | i; i += 1.7; } sout | nl; 694 for ( Ā®i; 10 -~ @ ~ 2Ā® ) { if ( i < 0 ) break; 695 sout | i; } sout | nl; 696 for ( Ā®i; 12.1 ~ @ ~ @Ā® ) { if ( i < 2.5 ) break; 697 sout | i; i -= 1.7; } sout | nl; 698 for ( Ā®i; 5 : j; -5 ~ @Ā® ) { sout | i | j; } sout | nl; 699 for ( Ā®i; 5 : j; -5 -~ @Ā® ) { sout | i | j; } sout | nl; 700 for ( Ā®i; 5 : j; -5 ~ @ ~ 2Ā® ) { sout | i | j; } sout | nl; 701 for ( Ā®i; 5 : j; -5 -~ @ ~ 2Ā® ) { sout | i | j; } sout | nl; 702 for ( Ā®j; -5 ~ @ : i; 5Ā® ) { sout | i | j; } sout | nl; 703 for ( Ā®j; -5 -~ @ : i; 5Ā® ) { sout | i | j; } sout | nl; 704 for ( Ā®j; -5 ~ @ ~ 2 : i; 5Ā® ) { sout | i | j; } sout | nl; 705 for ( Ā®j; -5 -~ @ ~ 2 : i; 5Ā® ) { sout | i | j; } sout | nl; 706 for ( Ā®j; -5 -~ @ ~ 2 : i; 5 : k; 1.5 ~ @Ā® ) { 707 sout | i | j | k; } sout | nl; 708 for ( Ā®j; -5 -~ @ ~ 2 : k; 1.5 ~ @ : i; 5Ā® ) { 709 sout | i | j | k; } sout | nl; 710 for ( Ā®k; 1.5 ~ @ : j; -5 -~ @ ~ 2 : i; 5Ā® ) { 711 sout | i | j | k; } sout | nl; 644 712 \end{cfa} 645 713 & 646 714 \begin{cfa} 647 switch ( i ) { 648 case 1: case 3 : case 5: 649 ... 650 case 2: case 4 : case 6: 651 ... 652 } 653 \end{cfa} 654 & 655 \begin{cfa} 656 657 // odd values 658 659 // even values 660 661 715 716 empty 717 empty 718 empty 719 zero 720 A 721 A A A A A A A A A A 722 B B B B B 723 C C C C C 724 D D D D D 725 E E E E E 726 0 1 2 3 4 5 6 7 8 9 727 1 3 5 7 9 728 10 8 6 4 2 729 0.5 1.5 2.5 3.5 4.5 730 5.5 4.5 3.5 2.5 1.5 731 2 4 6 8 10 732 10 8 6 4 2 733 734 N N N N N N N N N N 735 0 1 2 3 4 5 6 7 8 9 736 10 9 8 7 6 5 4 3 2 1 737 738 3 6 9 739 740 1 2 3 4 5 6 7 8 9 10 741 742 10 9 8 7 6 5 4 3 2 1 0 743 744 2 4 6 8 10 745 746 2.1 3.8 5.5 7.2 8.9 747 748 10 8 6 4 2 0 749 750 12.1 10.4 8.7 7 5.3 3.6 751 0 -5 1 -4 2 -3 3 -2 4 -1 752 0 -5 1 -6 2 -7 3 -8 4 -9 753 0 -5 1 -3 2 -1 3 1 4 3 754 0 -5 1 -7 2 -9 3 -11 4 -13 755 0 -5 1 -4 2 -3 3 -2 4 -1 756 0 -5 1 -6 2 -7 3 -8 4 -9 757 0 -5 1 -3 2 -1 3 1 4 3 758 0 -5 1 -7 2 -9 3 -11 4 -13 759 760 0 -5 1.5 1 -7 2.5 2 -9 3.5 3 -11 4.5 4 -13 5.5 761 762 0 -5 1.5 1 -7 2.5 2 -9 3.5 3 -11 4.5 4 -13 5.5 763 764 0 -5 1.5 1 -7 2.5 2 -9 3.5 3 -11 4.5 4 -13 5.5 662 765 \end{cfa} 663 766 \end{tabular} 664 767 \end{cquote} 665 In addition, subranges are allowed to specify case values.\footnote{ 666 gcc has the same mechanism but awkward syntax, \lstinline@2 ...42@, because a space is required after a number, otherwise the period is a decimal point.} 667 \begin{cfa} 668 switch ( i ) { 669 case Ā®1~5:Ā® §\C{// 1, 2, 3, 4, 5}§ 670 ... 671 case Ā®10~15:Ā® §\C{// 10, 11, 12, 13, 14, 15}§ 672 ... 673 } 674 \end{cfa} 675 Lists of subranges are also allowed. 676 \begin{cfa} 677 case Ā®1~5, 12~21, 35~42Ā®: 678 \end{cfa} 768 \caption{Loop Control Examples} 769 \label{f:LoopControlExamples} 770 \end{figure} 679 771 680 772 … … 885 977 886 978 887 \subsection{Non-terminating and Labelled \texorpdfstring{\LstKeywordStyle{fallthrough}}{Non-terminating and Labelled fallthrough}} 888 889 The Ā©fallthroughĀ© clause may be non-terminating within a Ā©caseĀ© clause or have a target label to common code from multiple case clauses. 890 \begin{center} 891 \begin{tabular}{@{}lll@{}} 892 \begin{cfa} 893 choose ( ... ) { 894 case 3: 895 if ( ... ) { 896 ... Ā®fallthru;Ā® // goto case 4 897 } else { 898 ... 899 } 900 // implicit break 901 case 4: 902 903 904 905 979 %\section{\texorpdfstring{\protect\lstinline@case@ Clause}{case Clause}} 980 \subsection{\texorpdfstring{\LstKeywordStyle{case} Statement}{case Statement}} 981 982 C restricts the Ā©caseĀ© clause of a Ā©switchĀ© statement to a single value. 983 For multiple Ā©caseĀ© clauses associated with the same statement, it is necessary to have multiple Ā©caseĀ© clauses rather than multiple values. 984 Requiring a Ā©caseĀ© clause for each value does not seem to be in the spirit of brevity normally associated with C. 985 Therefore, the Ā©caseĀ© clause is extended with a list of values, as in: 986 \begin{cquote} 987 \begin{tabular}{@{}l@{\hspace{3em}}l@{\hspace{2em}}l@{}} 988 \multicolumn{1}{c@{\hspace{3em}}}{\textbf{\CFA}} & \multicolumn{1}{c@{\hspace{2em}}}{\textbf{C}} \\ 989 \begin{cfa} 990 switch ( i ) { 991 case Ā®1, 3, 5Ā®: 992 ... 993 case Ā®2, 4, 6Ā®: 994 ... 995 } 906 996 \end{cfa} 907 997 & 908 998 \begin{cfa} 909 choose ( ... ) { 910 case 3: 911 ... Ā®fallthrough common;Ā® 912 case 4: 913 ... Ā®fallthrough common;Ā® 914 915 Ā®common:Ā® // below fallthrough 916 // at case-clause level 917 ... // common code for cases 3/4 918 // implicit break 919 case 4: 920 921 999 switch ( i ) { 1000 case 1: case 3 : case 5: 1001 ... 1002 case 2: case 4 : case 6: 1003 ... 1004 } 922 1005 \end{cfa} 923 1006 & 924 1007 \begin{cfa} 925 choose ( ... ) { 926 case 3: 927 choose ( ... ) { 928 case 4: 929 for ( ... ) { 930 // multi-level transfer 931 ... Ā®fallthru common;Ā® 932 } 933 ... 934 } 1008 1009 // odd values 1010 1011 // even values 1012 1013 1014 \end{cfa} 1015 \end{tabular} 1016 \end{cquote} 1017 In addition, subranges are allowed to specify case values.\footnote{ 1018 gcc has the same mechanism but awkward syntax, \lstinline@2 ...42@, because a space is required after a number, otherwise the period is a decimal point.} 1019 \begin{cfa} 1020 switch ( i ) { 1021 case Ā®1~5:Ā® §\C{// 1, 2, 3, 4, 5}§ 935 1022 ... 936 Ā®common:Ā® // below fallthrough 937 // at case-clause level 938 \end{cfa} 939 \end{tabular} 940 \end{center} 941 The target label must be below the Ā©fallthroughĀ© and may not be nested in a control structure, and 942 the target label must be at the same or higher level as the containing Ā©caseĀ© clause and located at 943 the same level as a Ā©caseĀ© clause; the target label may be case Ā©defaultĀ©, but only associated 944 with the current Ā©switchĀ©/Ā©chooseĀ© statement. 945 946 947 \subsection{Loop Control} 948 949 The Ā©forĀ©/Ā©whileĀ©/Ā©do-whileĀ© loop-control allows empty or simplified ranges (see Figure~\ref{f:LoopControlExamples}). 950 \begin{itemize} 951 \item 952 The loop index is polymorphic in the type of the comparison value N (when the start value is implicit) or the start value M. 953 \item 954 An empty conditional implies comparison value of Ā©1Ā© (true). 955 \item 956 A comparison N is implicit up-to exclusive range [0,N©®)®©. 957 \item 958 A comparison Ā©=Ā© N is implicit up-to inclusive range [0,N©®]®©. 959 \item 960 The up-to range M Ā©~Ā©\index{~@Ā©~Ā©} N means exclusive range [M,N©®)®©. 961 \item 962 The up-to range M Ā©~=Ā©\index{~=@Ā©~=Ā©} N means inclusive range [M,N©®]®©. 963 \item 964 The down-to range M Ā©-~Ā©\index{-~@Ā©-~Ā©} N means exclusive range [N,M©®)®©. 965 \item 966 The down-to range M Ā©-~=Ā©\index{-~=@Ā©-~=Ā©} N means inclusive range [N,M©®]®©. 967 \item 968 Ā©0Ā© is the implicit start value; 969 \item 970 Ā©1Ā© is the implicit increment value. 971 \item 972 The up-to range uses operator Ā©+=Ā© for increment; 973 \item 974 The down-to range uses operator Ā©-=Ā© for decrement. 975 \item 976 Ā©@Ā© means put nothing in this field. 977 \item 978 Ā©:Ā© means start another index. 979 \end{itemize} 980 981 \begin{figure} 982 \begin{tabular}{@{}l|l@{}} 983 \multicolumn{1}{c|}{loop control} & \multicolumn{1}{c}{output} \\ 984 \hline 985 \begin{cfa}[xleftmargin=0pt] 986 while Ā®()Ā® { sout | "empty"; break; } 987 do { sout | "empty"; break; } while Ā®()Ā®; 988 for Ā®()Ā® { sout | "empty"; break; } 989 for ( Ā®0Ā® ) { sout | "A"; } sout | "zero"; 990 for ( Ā®1Ā® ) { sout | "A"; } 991 for ( Ā®10Ā® ) { sout | "A"; } 992 for ( Ā®= 10Ā® ) { sout | "A"; } 993 for ( Ā®1 ~= 10 ~ 2Ā® ) { sout | "B"; } 994 for ( Ā®10 -~= 1 ~ 2Ā® ) { sout | "C"; } 995 for ( Ā®0.5 ~ 5.5Ā® ) { sout | "D"; } 996 for ( Ā®5.5 -~ 0.5Ā® ) { sout | "E"; } 997 for ( Ā®i; 10Ā® ) { sout | i; } 998 for ( Ā®i; = 10Ā® ) { sout | i; } 999 for ( Ā®i; 1 ~= 10 ~ 2Ā® ) { sout | i; } 1000 for ( Ā®i; 10 -~= 1 ~ 2Ā® ) { sout | i; } 1001 for ( Ā®i; 0.5 ~ 5.5Ā® ) { sout | i; } 1002 for ( Ā®i; 5.5 -~ 0.5Ā® ) { sout | i; } 1003 for ( Ā®ui; 2u ~= 10u ~ 2uĀ® ) { sout | ui; } 1004 for ( Ā®ui; 10u -~= 2u ~ 2uĀ® ) { sout | ui; } 1005 enum { N = 10 }; 1006 for ( Ā®NĀ® ) { sout | "N"; } 1007 for ( Ā®i; NĀ® ) { sout | i; } 1008 for ( Ā®i; N -~ 0Ā® ) { sout | i; } 1009 const int start = 3, comp = 10, inc = 2; 1010 for ( Ā®i; start ~ comp ~ inc + 1Ā® ) { sout | i; } 1011 for ( i; 1 ~ Ā®@Ā® ) { if ( i > 10 ) break; sout | i; } 1012 for ( i; 10 -~ Ā®@Ā® ) { if ( i < 0 ) break; sout | i; } 1013 for ( i; 2 ~ Ā®@Ā® ~ 2 ) { if ( i > 10 ) break; sout | i; } 1014 for ( i; 2.1 ~ Ā®@Ā® ~ Ā®@Ā® ) { if ( i > 10.5 ) break; sout | i; i += 1.7; } 1015 for ( i; 10 -~ Ā®@Ā® ~ 2 ) { if ( i < 0 ) break; sout | i; } 1016 for ( i; 12.1 ~ Ā®@Ā® ~ Ā®@Ā® ) { if ( i < 2.5 ) break; sout | i; i -= 1.7; } 1017 for ( i; 5 Ā®:Ā® j; -5 ~ @ ) { sout | i | j; } 1018 for ( i; 5 Ā®:Ā® j; -5 -~ @ ) { sout | i | j; } 1019 for ( i; 5 Ā®:Ā® j; -5 ~ @ ~ 2 ) { sout | i | j; } 1020 for ( i; 5 Ā®:Ā® j; -5 -~ @ ~ 2 ) { sout | i | j; } 1021 for ( i; 5 Ā®:Ā® j; -5 ~ @ ) { sout | i | j; } 1022 for ( i; 5 Ā®:Ā® j; -5 -~ @ ) { sout | i | j; } 1023 for ( i; 5 Ā®:Ā® j; -5 ~ @ ~ 2 ) { sout | i | j; } 1024 for ( i; 5 Ā®:Ā® j; -5 -~ @ ~ 2 ) { sout | i | j; } 1025 for ( i; 5 Ā®:Ā® j; -5 -~ @ ~ 2 Ā®:Ā® k; 1.5 ~ @ ) { sout | i | j | k; } 1026 for ( i; 5 Ā®:Ā® j; -5 -~ @ ~ 2 Ā®:Ā® k; 1.5 ~ @ ) { sout | i | j | k; } 1027 for ( i; 5 Ā®:Ā® k; 1.5 ~ @ Ā®:Ā® j; -5 -~ @ ~ 2 ) { sout | i | j | k; } 1028 \end{cfa} 1029 & 1030 \begin{cfa} 1031 empty 1032 empty 1033 empty 1034 zero 1035 A 1036 A A A A A A A A A A 1037 A A A A A A A A A A A 1038 B B B B B 1039 C C C C C 1040 D D D D D 1041 E E E E E 1042 0 1 2 3 4 5 6 7 8 9 1043 0 1 2 3 4 5 6 7 8 9 10 1044 1 3 5 7 9 1045 10 8 6 4 2 1046 0.5 1.5 2.5 3.5 4.5 1047 5.5 4.5 3.5 2.5 1.5 1048 2 4 6 8 10 1049 10 8 6 4 2 1050 1051 N N N N N N N N N N 1052 0 1 2 3 4 5 6 7 8 9 1053 10 9 8 7 6 5 4 3 2 1 1054 1055 3 6 9 1056 1 2 3 4 5 6 7 8 9 10 1057 10 9 8 7 6 5 4 3 2 1 0 1058 2 4 6 8 10 1059 2.1 3.8 5.5 7.2 8.9 1060 10 8 6 4 2 0 1061 12.1 10.4 8.7 7. 5.3 3.6 1062 0 -5 1 -4 2 -3 3 -2 4 -1 1063 0 -5 1 -6 2 -7 3 -8 4 -9 1064 0 -5 1 -3 2 -1 3 1 4 3 1065 0 -5 1 -7 2 -9 3 -11 4 -13 1066 0 -5 1 -4 2 -3 3 -2 4 -1 1067 0 -5 1 -6 2 -7 3 -8 4 -9 1068 0 -5 1 -3 2 -1 3 1 4 3 1069 0 -5 1 -7 2 -9 3 -11 4 -13 1070 0 -5 1.5 1 -7 2.5 2 -9 3.5 3 -11 4.5 4 -13 5.5 1071 0 -5 1.5 1 -7 2.5 2 -9 3.5 3 -11 4.5 4 -13 5.5 1072 0 -5 1.5 1 -7 2.5 2 -9 3.5 3 -11 4.5 4 -13 5.5 1073 \end{cfa} 1074 \end{tabular} 1075 \caption{Loop Control Examples} 1076 \label{f:LoopControlExamples} 1077 \end{figure} 1023 case Ā®10~15:Ā® §\C{// 10, 11, 12, 13, 14, 15}§ 1024 ... 1025 } 1026 \end{cfa} 1027 Lists of subranges are also allowed. 1028 \begin{cfa} 1029 case Ā®1~5, 12~21, 35~42Ā®: 1030 \end{cfa} 1031 1078 1032 1079 1033 % for () => for ( ;; ) … … 6593 6547 hence, names in these include files are not mangled\index{mangling!name} (see~\VRef{s:Interoperability}). 6594 6548 All other C header files must be explicitly wrapped in Ā©extern "C"Ā© to prevent name mangling. 6595 This approach is different from \Index*[C++]{\CC{}} where the name-mangling issue is handled internally inC header-files through checks for preprocessor variable Ā©__cplusplusĀ©, which adds appropriate Ā©extern "C"Ā© qualifiers.6549 For \Index*[C++]{\CC{}}, the name-mangling issue is often handled internally in many C header-files through checks for preprocessor variable Ā©__cplusplusĀ©, which adds appropriate Ā©extern "C"Ā© qualifiers. 6596 6550 6597 6551 … … 6607 6561 The storage-management routines extend their C equivalents by overloading, alternate names, providing shallow type-safety, and removing the need to specify the allocation size for non-array types. 6608 6562 6609 C storage management provides the following capabilities:6563 Storage management provides the following capabilities: 6610 6564 \begin{description} 6611 \item[fill ed]6612 after allocation with a specified character or value.6565 \item[fill] 6566 after allocation the storage is filled with a specified character. 6613 6567 \item[resize] 6614 an existing allocation to decreased or increased itssize.6615 In either case, new storage may or may not be allocated and, if there is a new allocation, as much data from the existing allocation is copied into the new allocation.6568 an existing allocation is decreased or increased in size. 6569 In either case, new storage may or may not be allocated and, if there is a new allocation, as much data from the existing allocation is copied. 6616 6570 For an increase in storage size, new storage after the copied data may be filled. 6617 \item[align ]6618 an allocation on a specified memory boundary, \eg, an address multiple of 64 or 128 for cache-line purposes.6571 \item[alignment] 6572 an allocation starts on a specified memory boundary, \eg, an address multiple of 64 or 128 for cache-line purposes. 6619 6573 \item[array] 6620 6574 the allocation size is scaled to the specified number of array elements. 6621 6575 An array may be filled, resized, or aligned. 6622 6576 \end{description} 6623 \VRef[Table]{t:AllocationVersusCapabilities} shows allocation routines supporting different combinations of storage-management capabilities. 6624 \begin{table} 6625 \centering 6626 \begin{minipage}{0.75\textwidth} 6627 \begin{tabular}{@{}r|l|l|l|l|l@{}} 6577 The table shows allocation routines supporting different combinations of storage-management capabilities: 6578 \begin{center} 6579 \begin{tabular}{@{}r|r|l|l|l|l@{}} 6628 6580 \multicolumn{1}{c}{}& & \multicolumn{1}{c|}{fill} & resize & alignment & array \\ 6629 6581 \hline 6630 6582 C & Ā©mallocĀ© & no & no & no & no \\ 6631 6583 & Ā©callocĀ© & yes (0 only) & no & no & yes \\ 6632 & Ā©reallocĀ© & copy& yes & no & no \\6584 & Ā©reallocĀ© & no/copy & yes & no & no \\ 6633 6585 & Ā©memalignĀ© & no & no & yes & no \\ 6634 & Ā©aligned_allocĀ©\footnote{Same as Ā©memalignĀ© but size is an integral multiple of alignment, which is universally ignored.}6635 & no & no & yes & no \\6636 6586 & Ā©posix_memalignĀ© & no & no & yes & no \\ 6637 & Ā©vallocĀ© & no & no & yes (page size)& no \\6638 & Ā©pvallocĀ©\footnote{Same as Ā©vallocĀ© but rounds size to multiple of page size.}6639 & no & no & yes (page size)& no \\6640 6587 \hline 6641 \CFA & Ā©cmemalignĀ© & yes (0 only) & no & yes & yes \\ 6642 & Ā©reallocĀ© & copy & yes & yes & no \\ 6643 & Ā©allocĀ© & no & yes & no & yes \\ 6644 & Ā©alloc_setĀ© & yes & yes & no & yes \\ 6645 & Ā©alloc_alignĀ© & no & yes & yes & yes \\ 6646 & Ā©alloc_align_setĀ© & yes & yes & yes & yes \\ 6588 C11 & Ā©aligned_allocĀ© & no & no & yes & no \\ 6589 \hline 6590 \CFA & Ā©allocĀ© & no/copy/yes & no/yes & no & yes \\ 6591 & Ā©align_allocĀ© & no/yes & no & yes & yes \\ 6647 6592 \end{tabular} 6648 \end{minipage} 6649 \caption{Allocation Routines versus Storage-Management Capabilities} 6650 \label{t:AllocationVersusCapabilities} 6651 \end{table} 6652 6653 \CFA memory management extends the type safety of all allocations by using the type of the left-hand-side type to determine the allocation size and return a matching type for the new storage. 6654 Type-safe allocation is provided for all C allocation routines and new \CFA allocation routines, \eg in 6655 \begin{cfa} 6656 int * ip = (int *)malloc( sizeof(int) ); §\C{// C}§ 6657 int * ip = malloc(); §\C{// \CFA type-safe version of C malloc}§ 6658 int * ip = alloc(); §\C{// \CFA type-safe uniform alloc}§ 6659 \end{cfa} 6660 the latter two allocations determine the allocation size from the type of Ā©pĀ© (Ā©intĀ©) and cast the pointer to the allocated storage to Ā©int *Ā©. 6661 6662 \CFA memory management extends allocation safety by implicitly honouring all alignment requirements, \eg in 6663 \begin{cfa} 6664 struct S { int i; } __attribute__(( aligned( 128 ) )); // cache-line alignment 6665 S * sp = malloc(); §\C{// honour type alignment}§ 6666 \end{cfa} 6667 the storage allocation is implicitly aligned to 128 rather than the default 16. 6668 The alignment check is performed at compile time so there is no runtime cost. 6669 6670 \CFA memory management extends the resize capability with the notion of \newterm{sticky properties}. 6671 Hence, initial allocation capabilities are remembered and maintained when resize requires copying. 6672 For example, an initial alignment and fill capability are preserved during a resize copy so the copy has the same alignment and extended storage is filled. 6673 Without sticky properties it is dangerous to use Ā©reallocĀ©, resulting in an idiom of manually performing the reallocation to maintain correctness. 6674 6675 \CFA memory management extends allocation to support constructors for initialization of allocated storage, \eg in 6676 \begin{cfa} 6677 struct S { int i; }; §\C{// cache-line aglinment}§ 6678 void ?{}( S & s, int i ) { s.i = i; } 6679 // assume ?|? operator for printing an S 6680 6681 S & sp = *Ā®newĀ®( 3 ); §\C{// call constructor after allocation}§ 6682 sout | sp.i; 6683 Ā®deleteĀ®( &sp ); 6684 6685 S * spa = Ā®anewĀ®( 10, 5 ); §\C{// allocate array and initialize each array element}§ 6686 for ( i; 10 ) sout | spa[i] | nonl; 6687 sout | nl; 6688 Ā®adeleteĀ®( 10, spa ); 6689 \end{cfa} 6690 Allocation routines Ā©newĀ©/Ā©anewĀ© allocate a variable/array and initialize storage using the allocated type's constructor. 6691 Note, the matching deallocation routines Ā©deleteĀ©/Ā©adeleteĀ©. 6593 \end{center} 6594 It is impossible to resize with alignment because the underlying Ā©reallocĀ© allocates storage if more space is needed, and it does not honour alignment from the original allocation. 6692 6595 6693 6596 \leavevmode 6694 6597 \begin{cfa}[aboveskip=0pt,belowskip=0pt] 6598 // C unsafe allocation 6695 6599 extern "C" { 6696 // C unsafe allocation 6697 void * malloc( size_t size );§\indexc{malloc}§ 6698 void * calloc( size_t dim, size_t size );§\indexc{calloc}§ 6699 void * realloc( void * ptr, size_t size );§\indexc{realloc}§ 6700 void * memalign( size_t align, size_t size );§\indexc{memalign}§ 6701 void * aligned_alloc( size_t align, size_t size );§\indexc{aligned_alloc}§ 6702 int posix_memalign( void ** ptr, size_t align, size_t size );§\indexc{posix_memalign}§ 6703 void * cmemalign( size_t alignment, size_t noOfElems, size_t elemSize );§\indexc{cmemalign}§ // CFA 6704 6705 // C unsafe initialization/copy 6706 void * memset( void * dest, int c, size_t size );§\indexc{memset}§ 6707 void * memcpy( void * dest, const void * src, size_t size );§\indexc{memcpy}§ 6708 } 6709 6710 void * realloc( void * oaddr, size_t nalign, size_t size ); // CFA heap 6600 void * malloc( size_t size );§\indexc{memset}§ 6601 void * calloc( size_t dim, size_t size );§\indexc{calloc}§ 6602 void * realloc( void * ptr, size_t size );§\indexc{realloc}§ 6603 void * memalign( size_t align, size_t size );§\indexc{memalign}§ 6604 int posix_memalign( void ** ptr, size_t align, size_t size );§\indexc{posix_memalign}§ 6605 6606 // C unsafe initialization/copy 6607 void * memset( void * dest, int c, size_t size ); 6608 void * memcpy( void * dest, const void * src, size_t size ); 6609 } 6711 6610 6712 6611 forall( dtype T | sized(T) ) { 6713 6612 // §\CFA§ safe equivalents, i.e., implicit size specification 6714 6613 T * malloc( void ); 6715 6614 T * calloc( size_t dim ); 6716 6615 T * realloc( T * ptr, size_t size ); 6717 6616 T * memalign( size_t align ); 6718 T * cmemalign( size_t align, size_t dim );6719 6617 T * aligned_alloc( size_t align ); 6720 6618 int posix_memalign( T ** ptr, size_t align ); 6721 6619 6722 // §\CFA§ safe general allocation, fill, resize, alignment, array6620 // §\CFA§ safe general allocation, fill, resize, array 6723 6621 T * alloc( void );§\indexc{alloc}§ 6622 T * alloc( char fill ); 6724 6623 T * alloc( size_t dim ); 6624 T * alloc( size_t dim, char fill ); 6725 6625 T * alloc( T ptr[], size_t dim ); 6726 T * alloc_set( char fill );§\indexc{alloc_set}§ 6727 T * alloc_set( T fill ); 6728 T * alloc_set( size_t dim, char fill ); 6729 T * alloc_set( size_t dim, T fill ); 6730 T * alloc_set( size_t dim, const T fill[] ); 6731 T * alloc_set( T ptr[], size_t dim, char fill ); 6732 6733 T * alloc_align( size_t align ); 6734 T * alloc_align( size_t align, size_t dim ); 6735 T * alloc_align( T ptr[], size_t align ); // aligned realloc array 6736 T * alloc_align( T ptr[], size_t align, size_t dim ); // aligned realloc array 6737 T * alloc_align_set( size_t align, char fill ); 6738 T * alloc_align_set( size_t align, T fill ); 6739 T * alloc_align_set( size_t align, size_t dim, char fill ); 6740 T * alloc_align_set( size_t align, size_t dim, T fill ); 6741 T * alloc_align_set( size_t align, size_t dim, const T fill[] ); 6742 T * alloc_align_set( T ptr[], size_t align, size_t dim, char fill ); 6743 6744 // §\CFA§ safe initialization/copy, i.e., implicit size specification 6745 T * memset( T * dest, char fill );§\indexc{memset}§ 6626 T * alloc( T ptr[], size_t dim, char fill ); 6627 6628 // §\CFA§ safe general allocation, align, fill, array 6629 T * align_alloc( size_t align ); 6630 T * align_alloc( size_t align, char fill ); 6631 T * align_alloc( size_t align, size_t dim ); 6632 T * align_alloc( size_t align, size_t dim, char fill ); 6633 6634 // §\CFA§ safe initialization/copy, i.e., implicit size specification 6635 T * memset( T * dest, char c );§\indexc{memset}§ 6746 6636 T * memcpy( T * dest, const T * src );§\indexc{memcpy}§ 6747 6637 6748 // §\CFA§ safe initialization/copy, i.e., implicit size specification, array types 6749 T * amemset( T dest[], char fill, size_t dim );6638 // §\CFA§ safe initialization/copy array 6639 T * amemset( T dest[], char c, size_t dim ); 6750 6640 T * amemcpy( T dest[], const T src[], size_t dim ); 6751 6641 } 6752 6642 6753 // §\CFA§ allocation/deallocation and constructor/destructor , non-array types6754 forall( dtype T | sized(T), ttype Params | { void ?{}( T &, Params ); } ) T * new( Params p );§\indexc{new}§6755 forall( dtype T | sized(T) | { void ^?{}( T &); } ) void delete( T * ptr );§\indexc{delete}§6756 forall( dtype T, ttype Params | sized(T) | { void ^?{}( T &); void delete( Params ); } )6643 // §\CFA§ allocation/deallocation and constructor/destructor 6644 forall( dtype T | sized(T), ttype Params | { void ?{}( T *, Params ); } ) T * new( Params p );§\indexc{new}§ 6645 forall( dtype T | { void ^?{}( T * ); } ) void delete( T * ptr );§\indexc{delete}§ 6646 forall( dtype T, ttype Params | { void ^?{}( T * ); void delete( Params ); } ) 6757 6647 void delete( T * ptr, Params rest ); 6758 6648 6759 // §\CFA§ allocation/deallocation and constructor/destructor, array types6760 forall( dtype T | sized(T), ttype Params | { void ?{}( T &, Params ); } ) T * anew( size_t dim, Params p );§\indexc{anew}§6761 forall( dtype T | sized(T) | { void ^?{}( T &); } ) void adelete( size_t dim, T arr[] );§\indexc{adelete}§6762 forall( dtype T | sized(T) | { void ^?{}( T &); }, ttype Params | { void adelete( Params ); } )6649 // §\CFA§ allocation/deallocation and constructor/destructor, array 6650 forall( dtype T | sized(T), ttype Params | { void ?{}( T *, Params ); } ) T * anew( size_t dim, Params p );§\indexc{anew}§ 6651 forall( dtype T | sized(T) | { void ^?{}( T * ); } ) void adelete( size_t dim, T arr[] );§\indexc{adelete}§ 6652 forall( dtype T | sized(T) | { void ^?{}( T * ); }, ttype Params | { void adelete( Params ); } ) 6763 6653 void adelete( size_t dim, T arr[], Params rest ); 6764 6654 \end{cfa} -
driver/cc1.cc
r7030dab r71d6bd8 335 335 #endif // __DEBUG_H__ 336 336 337 enum {338 Color_Auto = 0,339 Color_Always = 1,340 Color_Never = 2,341 } color_arg = Color_Auto;342 343 const char * color_names[3] = { "--colors=auto", "--colors=always", "--colors=never" };344 345 337 // process all the arguments 346 338 … … 349 341 if ( prefix( arg, "-" ) ) { 350 342 // strip inappropriate flags 351 352 if ( prefix( arg, "-fdiagnostics-color=" ) ) {353 string choice = arg.substr(20);354 if(choice == "always") color_arg = Color_Always;355 else if(choice == "never" ) color_arg = Color_Never;356 else if(choice == "auto" ) color_arg = Color_Auto;357 } else if ( arg == "-fno-diagnostics-color" ) {358 color_arg = Color_Auto;359 }360 343 361 344 if ( arg == "-quiet" || arg == "-version" || arg == "-fpreprocessed" || … … 457 440 cargs[ncargs++] = cfa_cpp_out.c_str(); 458 441 } // if 459 460 cargs[ncargs++] = color_names[color_arg];461 462 442 cargs[ncargs] = nullptr; // terminate argument list 463 443 -
driver/cfa.cc
r7030dab r71d6bd8 10 10 // Created On : Tue Aug 20 13:44:49 2002 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Fri Jan 31 16:48:03 202013 // Update Count : 42 112 // Last Modified On : Tue Sep 10 17:00:15 2019 13 // Update Count : 420 14 14 // 15 15 … … 187 187 } else if ( arg == "-XCFA" ) { // CFA pass through 188 188 i += 1; 189 if ( i == argc ) continue; // next argument available ?190 189 Putenv( argv, argv[i] ); 191 190 … … 402 401 args[nargs++] = "-Xlinker"; 403 402 args[nargs++] = "--undefined=__cfaabi_appready_startup"; 404 args[nargs++] = "-z";405 args[nargs++] = "execstack";406 403 407 404 // include the cfa library in case it is needed … … 411 408 args[nargs++] = "-lcfathread"; 412 409 args[nargs++] = "-Wl,--pop-state"; 413 args[nargs++] = "-Wl,--push-state,--no-as-needed";414 410 args[nargs++] = "-lcfa"; 415 args[nargs++] = "-Wl,--pop-state"; 416 args[nargs++] = "-pthread"; 411 args[nargs++] = "-lpthread"; 417 412 args[nargs++] = "-ldl"; 418 413 args[nargs++] = "-lrt"; -
libcfa/configure
r7030dab r71d6bd8 3000 3000 case $CONFIGURATION in 3001 3001 "debug" ) 3002 CONFIG_CFLAGS="-O 0-g"3002 CONFIG_CFLAGS="-Og -g" 3003 3003 CONFIG_CFAFLAGS="-debug" 3004 3004 CONFIG_BUILDLIB="yes" -
libcfa/configure.ac
r7030dab r71d6bd8 68 68 case $CONFIGURATION in 69 69 "debug" ) 70 CONFIG_CFLAGS="-O 0-g"70 CONFIG_CFLAGS="-Og -g" 71 71 CONFIG_CFAFLAGS="-debug" 72 72 CONFIG_BUILDLIB="yes" -
libcfa/prelude/Makefile.am
r7030dab r71d6bd8 11 11 ## Created On : Sun May 31 08:54:01 2015 12 12 ## Last Modified By : Peter A. Buhr 13 ## Last Modified On : Mon Feb 3 21:27:18 202014 ## Update Count : 20 813 ## Last Modified On : Wed Dec 14 15:00:35 2016 14 ## Update Count : 205 15 15 ############################################################################### 16 16 … … 36 36 extras.cf : ${srcdir}/extras.regx ${srcdir}/extras.c 37 37 ${AM_V_GEN}gcc ${AM_CFLAGS} -E ${srcdir}/extras.c | grep -f ${srcdir}/extras.regx > extras.cf 38 ${AM_V_GEN}gcc ${AM_CFLAGS} -E ${srcdir}/extras.c | grep -zo -f ${srcdir}/extras.regx2 | tr '\0' '\n' >> extras.cf39 38 40 39 # create forward declarations for gcc builtins -
libcfa/prelude/Makefile.in
r7030dab r71d6bd8 1 # Makefile.in generated by automake 1.1 6.1from Makefile.am.1 # Makefile.in generated by automake 1.15 from Makefile.am. 2 2 # @configure_input@ 3 3 4 # Copyright (C) 1994-201 8Free Software Foundation, Inc.4 # Copyright (C) 1994-2014 Free Software Foundation, Inc. 5 5 6 6 # This Makefile.in is free software; the Free Software Foundation … … 331 331 cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ 332 332 *) \ 333 echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__ maybe_remake_depfiles)'; \334 cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__ maybe_remake_depfiles);; \333 echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ 334 cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ 335 335 esac; 336 336 … … 377 377 378 378 379 distdir: $(BUILT_SOURCES) 380 $(MAKE) $(AM_MAKEFLAGS) distdir-am 381 382 distdir-am: $(DISTFILES) 379 distdir: $(DISTFILES) 383 380 @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ 384 381 topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ … … 543 540 extras.cf : ${srcdir}/extras.regx ${srcdir}/extras.c 544 541 ${AM_V_GEN}gcc ${AM_CFLAGS} -E ${srcdir}/extras.c | grep -f ${srcdir}/extras.regx > extras.cf 545 ${AM_V_GEN}gcc ${AM_CFLAGS} -E ${srcdir}/extras.c | grep -zo -f ${srcdir}/extras.regx2 | tr '\0' '\n' >> extras.cf546 542 547 543 # create forward declarations for gcc builtins -
libcfa/prelude/builtins.c
r7030dab r71d6bd8 10 10 // Created On : Fri Jul 21 16:21:03 2017 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : T hu Nov 21 16:31:39201913 // Update Count : 10112 // Last Modified On : Tue Jun 25 18:06:52 2019 13 // Update Count : 97 14 14 // 15 15 … … 49 49 void abort( const char fmt[], ... ) __attribute__ (( format(printf, 1, 2), __nothrow__, __leaf__, __noreturn__ )); 50 50 51 forall(dtype T)52 static inline T & identity(T & i) {53 return i;54 }55 56 // generator support57 struct $generator {58 inline int;59 };60 61 static inline void ?{}($generator & this) { ((int&)this) = 0; }62 static inline void ^?{}($generator &) {}63 64 trait is_generator(dtype T) {65 void main(T & this);66 $generator * get_generator(T & this);67 };68 69 forall(dtype T | is_generator(T))70 static inline T & resume(T & gen) {71 main(gen);72 return gen;73 }74 75 51 // implicit increment, decrement if += defined, and implicit not if != defined 76 52 … … 93 69 94 70 // universal typed pointer constant 95 static inline forall( dtype DT ) DT * intptr( uintptr_t addr ) { return (DT *)addr; } 71 // Compiler issue: there is a problem with anonymous types that do not have a size. 72 static inline forall( dtype DT | sized(DT) ) DT * intptr( uintptr_t addr ) { return (DT *)addr; } 96 73 97 74 // exponentiation operator implementation -
libcfa/prelude/extras.regx
r7030dab r71d6bd8 24 24 typedef.* char32_t; 25 25 typedef.* wchar_t; 26 extern.*\*malloc\(.*\).* 27 extern.* free\(.*\).* 28 extern.* exit\(.*\).* 29 extern.* atexit\(.*\).* 30 extern.* abort\(.*\).* 31 extern.* printf\(.*\).* -
libcfa/prelude/prototypes.awk
r7030dab r71d6bd8 10 10 # Created On : Sat May 16 07:57:37 2015 11 11 # Last Modified By : Peter A. Buhr 12 # Last Modified On : Sat Feb 8 09:46:58 202013 # Update Count : 3 612 # Last Modified On : Thu Jun 6 20:46:28 2019 13 # Update Count : 34 14 14 # 15 15 … … 17 17 18 18 BEGIN { 19 19 FS = "[( )]" 20 20 # order so string search is longest string 21 21 i=-1 … … 84 84 85 85 /BT_FN/ { 86 for (i = 1; i <= NF; i += 1) {87 if( match($i, "BT_FN") != 0 ) {88 89 86 for (i = 1; i <= NF; i++) { 87 if( match($i, "BT_FN") != 0 ) { 88 prototypes[$i] = $i 89 } 90 90 } 91 }91 } 92 92 93 93 END { … … 103 103 104 104 for ( prototype in prototypes ) { 105 # printf( "//\"%s\"\n", prototype ) 106 if ( index( "BT_LAST", prototype ) == 1 ) { 107 continue 105 # printf( "//\"%s\"\n", prototype ) 106 if ( index( "BT_LAST", prototype ) == 1 ) { 107 continue 108 } # if 109 110 printf( "#define %s(NAME) FUNC_SIMPLE(", prototype ) 111 112 if ( sub( "BT_FN_", "", prototype ) == 0 ) { 113 printf( "\n********** BAD MACRO NAME \"%s\" **********\n", prototype ) 114 exit 0 115 } # if 116 117 # generate function return type as macro 118 for ( t = 0; t < N; t += 1 ) { # find longest match 119 type = types[t]; 120 if ( index( prototype, type ) == 1 ) { # found match 121 printf( "BT_%s, NAME", type ) 122 sub( type, "", prototype ) 123 break; 108 124 } # if 125 } # for 109 126 110 printf( "#define %s(NAME) FUNC_SIMPLE(", prototype ) 111 112 if ( sub( "BT_FN_", "", prototype ) == 0 ) { 113 printf( "\n********** BAD MACRO NAME \"%s\" **********\n", prototype ) 127 # generate function parameter types as macro 128 if ( index( prototype, "VAR" ) != 2 ) { # C-style empty parameters ? 129 for ( p = 0; length( prototype ) > 0; p += 1 ) { # until all parameters types are removed 130 sub( "_", "", prototype) # remove "_" 131 printf( ", ", type ) 132 temp = prototype 133 for ( t = 0; t < N; t += 1 ) { # find longest match 134 type = types[t]; 135 if ( index( prototype, type ) == 1 ) { # found match 136 printf( "BT_%s", type ) 137 sub( type, "", prototype ) 138 break; 139 } # if 140 } # for 141 if ( temp == prototype ) { # no match found for parameter in macro table 142 printf( "\n********** MISSING TYPE \"%s\" **********\n", prototype ) 114 143 exit 0 115 } # if 116 117 # generate function return type as macro 118 for ( t = 0; t < N; t += 1 ) { # find longest match 119 type = types[t]; 120 if ( index( prototype, type ) == 1 ) { # found match 121 printf( "BT_%s, NAME", type ) 122 sub( type, "", prototype ) 123 break; 124 } # if 144 } # if 125 145 } # for 126 127 # generate function parameter types as macro 128 if ( index( prototype, "VAR" ) != 2 ) { # C-style empty parameters ? 129 for ( p = 0; length( prototype ) > 0; p += 1 ) { # until all parameters types are removed 130 sub( "_", "", prototype) # remove "_" 131 printf( ", ", type ) 132 temp = prototype 133 for ( t = 0; t < N; t += 1 ) { # find longest match 134 type = types[t]; 135 if ( index( prototype, type ) == 1 ) { # found match 136 printf( "BT_%s", type ) 137 sub( type, "", prototype ) 138 break; 139 } # if 140 } # for 141 if ( temp == prototype ) { # no match found for parameter in macro table 142 printf( "\n********** MISSING TYPE \"%s\" **********\n", prototype ) 143 exit 0 144 } # if 145 } # for 146 } # if 147 printf( ")\n" ) 146 } # if 147 printf( ")\n" ) 148 148 } # for 149 149 -
libcfa/prelude/sync-builtins.cf
r7030dab r71d6bd8 1 1 char __sync_fetch_and_add(volatile char *, char,...); 2 char __sync_fetch_and_add_1(volatile char *, char,...); 2 3 signed char __sync_fetch_and_add(volatile signed char *, signed char,...); 4 signed char __sync_fetch_and_add_1(volatile signed char *, signed char,...); 3 5 unsigned char __sync_fetch_and_add(volatile unsigned char *, unsigned char,...); 6 unsigned char __sync_fetch_and_add_1(volatile unsigned char *, unsigned char,...); 4 7 signed short __sync_fetch_and_add(volatile signed short *, signed short,...); 8 signed short __sync_fetch_and_add_2(volatile signed short *, signed short,...); 5 9 unsigned short __sync_fetch_and_add(volatile unsigned short *, unsigned short,...); 10 unsigned short __sync_fetch_and_add_2(volatile unsigned short *, unsigned short,...); 6 11 signed int __sync_fetch_and_add(volatile signed int *, signed int,...); 12 signed int __sync_fetch_and_add_4(volatile signed int *, signed int,...); 7 13 unsigned int __sync_fetch_and_add(volatile unsigned int *, unsigned int,...); 8 signed long int __sync_fetch_and_add(volatile signed long int *, signed long int,...); 9 unsigned long int __sync_fetch_and_add(volatile unsigned long int *, unsigned long int,...); 14 unsigned int __sync_fetch_and_add_4(volatile unsigned int *, unsigned int,...); 10 15 signed long long int __sync_fetch_and_add(volatile signed long long int *, signed long long int,...); 16 signed long long int __sync_fetch_and_add_8(volatile signed long long int *, signed long long int,...); 11 17 unsigned long long int __sync_fetch_and_add(volatile unsigned long long int *, unsigned long long int,...); 18 unsigned long long int __sync_fetch_and_add_8(volatile unsigned long long int *, unsigned long long int,...); 12 19 #if defined(__SIZEOF_INT128__) 13 20 signed __int128 __sync_fetch_and_add(volatile signed __int128 *, signed __int128,...); 21 signed __int128 __sync_fetch_and_add_16(volatile signed __int128 *, signed __int128,...); 14 22 unsigned __int128 __sync_fetch_and_add(volatile unsigned __int128 *, unsigned __int128,...); 23 unsigned __int128 __sync_fetch_and_add_16(volatile unsigned __int128 *, unsigned __int128,...); 15 24 #endif 16 25 17 26 char __sync_fetch_and_sub(volatile char *, char,...); 27 char __sync_fetch_and_sub_1(volatile char *, char,...); 18 28 signed char __sync_fetch_and_sub(volatile signed char *, signed char,...); 29 signed char __sync_fetch_and_sub_1(volatile signed char *, signed char,...); 19 30 unsigned char __sync_fetch_and_sub(volatile unsigned char *, unsigned char,...); 31 unsigned char __sync_fetch_and_sub_1(volatile unsigned char *, unsigned char,...); 20 32 signed short __sync_fetch_and_sub(volatile signed short *, signed short,...); 33 signed short __sync_fetch_and_sub_2(volatile signed short *, signed short,...); 21 34 unsigned short __sync_fetch_and_sub(volatile unsigned short *, unsigned short,...); 35 unsigned short __sync_fetch_and_sub_2(volatile unsigned short *, unsigned short,...); 22 36 signed int __sync_fetch_and_sub(volatile signed int *, signed int,...); 37 signed int __sync_fetch_and_sub_4(volatile signed int *, signed int,...); 23 38 unsigned int __sync_fetch_and_sub(volatile unsigned int *, unsigned int,...); 24 signed long int __sync_fetch_and_sub(volatile signed long int *, signed long int,...); 25 unsigned long int __sync_fetch_and_sub(volatile unsigned long int *, unsigned long int,...); 39 unsigned int __sync_fetch_and_sub_4(volatile unsigned int *, unsigned int,...); 26 40 signed long long int __sync_fetch_and_sub(volatile signed long long int *, signed long long int,...); 41 signed long long int __sync_fetch_and_sub_8(volatile signed long long int *, signed long long int,...); 27 42 unsigned long long int __sync_fetch_and_sub(volatile unsigned long long int *, unsigned long long int,...); 43 unsigned long long int __sync_fetch_and_sub_8(volatile unsigned long long int *, unsigned long long int,...); 28 44 #if defined(__SIZEOF_INT128__) 29 45 signed __int128 __sync_fetch_and_sub(volatile signed __int128 *, signed __int128,...); 46 signed __int128 __sync_fetch_and_sub_16(volatile signed __int128 *, signed __int128,...); 30 47 unsigned __int128 __sync_fetch_and_sub(volatile unsigned __int128 *, unsigned __int128,...); 48 unsigned __int128 __sync_fetch_and_sub_16(volatile unsigned __int128 *, unsigned __int128,...); 31 49 #endif 32 50 33 51 char __sync_fetch_and_or(volatile char *, char,...); 52 char __sync_fetch_and_or_1(volatile char *, char,...); 34 53 signed char __sync_fetch_and_or(volatile signed char *, signed char,...); 54 signed char __sync_fetch_and_or_1(volatile signed char *, signed char,...); 35 55 unsigned char __sync_fetch_and_or(volatile unsigned char *, unsigned char,...); 56 unsigned char __sync_fetch_and_or_1(volatile unsigned char *, unsigned char,...); 36 57 signed short __sync_fetch_and_or(volatile signed short *, signed short,...); 58 signed short __sync_fetch_and_or_2(volatile signed short *, signed short,...); 37 59 unsigned short __sync_fetch_and_or(volatile unsigned short *, unsigned short,...); 60 unsigned short __sync_fetch_and_or_2(volatile unsigned short *, unsigned short,...); 38 61 signed int __sync_fetch_and_or(volatile signed int *, signed int,...); 62 signed int __sync_fetch_and_or_4(volatile signed int *, signed int,...); 39 63 unsigned int __sync_fetch_and_or(volatile unsigned int *, unsigned int,...); 40 signed long int __sync_fetch_and_or(volatile signed long int *, signed long int,...); 41 unsigned long int __sync_fetch_and_or(volatile unsigned long int *, unsigned long int,...); 64 unsigned int __sync_fetch_and_or_4(volatile unsigned int *, unsigned int,...); 42 65 signed long long int __sync_fetch_and_or(volatile signed long long int *, signed long long int,...); 66 signed long long int __sync_fetch_and_or_8(volatile signed long long int *, signed long long int,...); 43 67 unsigned long long int __sync_fetch_and_or(volatile unsigned long long int *, unsigned long long int,...); 68 unsigned long long int __sync_fetch_and_or_8(volatile unsigned long long int *, unsigned long long int,...); 44 69 #if defined(__SIZEOF_INT128__) 45 70 signed __int128 __sync_fetch_and_or(volatile signed __int128 *, signed __int128,...); 71 signed __int128 __sync_fetch_and_or_16(volatile signed __int128 *, signed __int128,...); 46 72 unsigned __int128 __sync_fetch_and_or(volatile unsigned __int128 *, unsigned __int128,...); 73 unsigned __int128 __sync_fetch_and_or_16(volatile unsigned __int128 *, unsigned __int128,...); 47 74 #endif 48 75 49 76 char __sync_fetch_and_and(volatile char *, char,...); 77 char __sync_fetch_and_and_1(volatile char *, char,...); 50 78 signed char __sync_fetch_and_and(volatile signed char *, signed char,...); 79 signed char __sync_fetch_and_and_1(volatile signed char *, signed char,...); 51 80 unsigned char __sync_fetch_and_and(volatile unsigned char *, unsigned char,...); 81 unsigned char __sync_fetch_and_and_1(volatile unsigned char *, unsigned char,...); 52 82 signed short __sync_fetch_and_and(volatile signed short *, signed short,...); 83 signed short __sync_fetch_and_and_2(volatile signed short *, signed short,...); 53 84 unsigned short __sync_fetch_and_and(volatile unsigned short *, unsigned short,...); 85 unsigned short __sync_fetch_and_and_2(volatile unsigned short *, unsigned short,...); 54 86 signed int __sync_fetch_and_and(volatile signed int *, signed int,...); 87 signed int __sync_fetch_and_and_4(volatile signed int *, signed int,...); 55 88 unsigned int __sync_fetch_and_and(volatile unsigned int *, unsigned int,...); 56 signed long int __sync_fetch_and_and(volatile signed long int *, signed long int,...); 57 unsigned long int __sync_fetch_and_and(volatile unsigned long int *, unsigned long int,...); 89 unsigned int __sync_fetch_and_and_4(volatile unsigned int *, unsigned int,...); 58 90 signed long long int __sync_fetch_and_and(volatile signed long long int *, signed long long int,...); 91 signed long long int __sync_fetch_and_and_8(volatile signed long long int *, signed long long int,...); 59 92 unsigned long long int __sync_fetch_and_and(volatile unsigned long long int *, unsigned long long int,...); 93 unsigned long long int __sync_fetch_and_and_8(volatile unsigned long long int *, unsigned long long int,...); 60 94 #if defined(__SIZEOF_INT128__) 61 95 signed __int128 __sync_fetch_and_and(volatile signed __int128 *, signed __int128,...); 96 signed __int128 __sync_fetch_and_and_16(volatile signed __int128 *, signed __int128,...); 62 97 unsigned __int128 __sync_fetch_and_and(volatile unsigned __int128 *, unsigned __int128,...); 98 unsigned __int128 __sync_fetch_and_and_16(volatile unsigned __int128 *, unsigned __int128,...); 63 99 #endif 64 100 65 101 char __sync_fetch_and_xor(volatile char *, char,...); 102 char __sync_fetch_and_xor_1(volatile char *, char,...); 66 103 signed char __sync_fetch_and_xor(volatile signed char *, signed char,...); 104 signed char __sync_fetch_and_xor_1(volatile signed char *, signed char,...); 67 105 unsigned char __sync_fetch_and_xor(volatile unsigned char *, unsigned char,...); 106 unsigned char __sync_fetch_and_xor_1(volatile unsigned char *, unsigned char,...); 68 107 signed short __sync_fetch_and_xor(volatile signed short *, signed short,...); 108 signed short __sync_fetch_and_xor_2(volatile signed short *, signed short,...); 69 109 unsigned short __sync_fetch_and_xor(volatile unsigned short *, unsigned short,...); 110 unsigned short __sync_fetch_and_xor_2(volatile unsigned short *, unsigned short,...); 70 111 signed int __sync_fetch_and_xor(volatile signed int *, signed int,...); 112 signed int __sync_fetch_and_xor_4(volatile signed int *, signed int,...); 71 113 unsigned int __sync_fetch_and_xor(volatile unsigned int *, unsigned int,...); 72 signed long int __sync_fetch_and_xor(volatile signed long int *, signed long int,...); 73 unsigned long int __sync_fetch_and_xor(volatile unsigned long int *, unsigned long int,...); 114 unsigned int __sync_fetch_and_xor_4(volatile unsigned int *, unsigned int,...); 74 115 signed long long int __sync_fetch_and_xor(volatile signed long long int *, signed long long int,...); 116 signed long long int __sync_fetch_and_xor_8(volatile signed long long int *, signed long long int,...); 75 117 unsigned long long int __sync_fetch_and_xor(volatile unsigned long long int *, unsigned long long int,...); 118 unsigned long long int __sync_fetch_and_xor_8(volatile unsigned long long int *, unsigned long long int,...); 76 119 #if defined(__SIZEOF_INT128__) 77 120 signed __int128 __sync_fetch_and_xor(volatile signed __int128 *, signed __int128,...); 121 signed __int128 __sync_fetch_and_xor_16(volatile signed __int128 *, signed __int128,...); 78 122 unsigned __int128 __sync_fetch_and_xor(volatile unsigned __int128 *, unsigned __int128,...); 123 unsigned __int128 __sync_fetch_and_xor_16(volatile unsigned __int128 *, unsigned __int128,...); 79 124 #endif 80 125 81 126 char __sync_fetch_and_nand(volatile char *, char,...); 127 char __sync_fetch_and_nand_1(volatile char *, char,...); 82 128 signed char __sync_fetch_and_nand(volatile signed char *, signed char,...); 129 signed char __sync_fetch_and_nand_1(volatile signed char *, signed char,...); 83 130 unsigned char __sync_fetch_and_nand(volatile unsigned char *, unsigned char,...); 131 unsigned char __sync_fetch_and_nand_1(volatile unsigned char *, unsigned char,...); 84 132 signed short __sync_fetch_and_nand(volatile signed short *, signed short,...); 133 signed short __sync_fetch_and_nand_2(volatile signed short *, signed short,...); 85 134 unsigned short __sync_fetch_and_nand(volatile unsigned short *, unsigned short,...); 135 unsigned short __sync_fetch_and_nand_2(volatile unsigned short *, unsigned short,...); 86 136 signed int __sync_fetch_and_nand(volatile signed int *, signed int,...); 137 signed int __sync_fetch_and_nand_4(volatile signed int *, signed int,...); 87 138 unsigned int __sync_fetch_and_nand(volatile unsigned int *, unsigned int,...); 88 signed long int __sync_fetch_and_nand(volatile signed long int *, signed long int,...); 89 unsigned long int __sync_fetch_and_nand(volatile unsigned long int *, unsigned long int,...); 139 unsigned int __sync_fetch_and_nand_4(volatile unsigned int *, unsigned int,...); 90 140 signed long long int __sync_fetch_and_nand(volatile signed long long int *, signed long long int,...); 141 signed long long int __sync_fetch_and_nand_8(volatile signed long long int *, signed long long int,...); 91 142 unsigned long long int __sync_fetch_and_nand(volatile unsigned long long int *, unsigned long long int,...); 143 unsigned long long int __sync_fetch_and_nand_8(volatile unsigned long long int *, unsigned long long int,...); 92 144 #if defined(__SIZEOF_INT128__) 93 145 signed __int128 __sync_fetch_and_nand(volatile signed __int128 *, signed __int128,...); 146 signed __int128 __sync_fetch_and_nand_16(volatile signed __int128 *, signed __int128,...); 94 147 unsigned __int128 __sync_fetch_and_nand(volatile unsigned __int128 *, unsigned __int128,...); 148 unsigned __int128 __sync_fetch_and_nand_16(volatile unsigned __int128 *, unsigned __int128,...); 95 149 #endif 96 150 97 151 char __sync_add_and_fetch(volatile char *, char,...); 152 char __sync_add_and_fetch_1(volatile char *, char,...); 98 153 signed char __sync_add_and_fetch(volatile signed char *, signed char,...); 154 signed char __sync_add_and_fetch_1(volatile signed char *, signed char,...); 99 155 unsigned char __sync_add_and_fetch(volatile unsigned char *, unsigned char,...); 156 unsigned char __sync_add_and_fetch_1(volatile unsigned char *, unsigned char,...); 100 157 signed short __sync_add_and_fetch(volatile signed short *, signed short,...); 158 signed short __sync_add_and_fetch_2(volatile signed short *, signed short,...); 101 159 unsigned short __sync_add_and_fetch(volatile unsigned short *, unsigned short,...); 160 unsigned short __sync_add_and_fetch_2(volatile unsigned short *, unsigned short,...); 102 161 signed int __sync_add_and_fetch(volatile signed int *, signed int,...); 162 signed int __sync_add_and_fetch_4(volatile signed int *, signed int,...); 103 163 signed int __sync_add_and_fetch(volatile signed int *, signed int,...); 104 signed long int __sync_add_and_fetch(volatile signed long int *, signed long int,...); 105 unsigned long int __sync_add_and_fetch(volatile unsigned long int *, unsigned long int,...); 164 signed int __sync_add_and_fetch_4(volatile signed int *, signed int,...); 106 165 signed long long int __sync_add_and_fetch(volatile signed long long int *, signed long long int,...); 166 signed long long int __sync_add_and_fetch_8(volatile signed long long int *, signed long long int,...); 107 167 unsigned long long int __sync_add_and_fetch(volatile unsigned long long int *, unsigned long long int,...); 168 unsigned long long int __sync_add_and_fetch_8(volatile unsigned long long int *, unsigned long long int,...); 108 169 #if defined(__SIZEOF_INT128__) 109 170 signed __int128 __sync_add_and_fetch(volatile signed __int128 *, signed __int128,...); 171 signed __int128 __sync_add_and_fetch_16(volatile signed __int128 *, signed __int128,...); 110 172 unsigned __int128 __sync_add_and_fetch(volatile unsigned __int128 *, unsigned __int128,...); 173 unsigned __int128 __sync_add_and_fetch_16(volatile unsigned __int128 *, unsigned __int128,...); 111 174 #endif 112 175 113 176 char __sync_sub_and_fetch(volatile char *, char,...); 177 char __sync_sub_and_fetch_1(volatile char *, char,...); 114 178 signed char __sync_sub_and_fetch(volatile signed char *, signed char,...); 179 signed char __sync_sub_and_fetch_1(volatile signed char *, signed char,...); 115 180 unsigned char __sync_sub_and_fetch(volatile unsigned char *, unsigned char,...); 181 unsigned char __sync_sub_and_fetch_1(volatile unsigned char *, unsigned char,...); 116 182 signed short __sync_sub_and_fetch(volatile signed short *, signed short,...); 183 signed short __sync_sub_and_fetch_2(volatile signed short *, signed short,...); 117 184 unsigned short __sync_sub_and_fetch(volatile unsigned short *, unsigned short,...); 185 unsigned short __sync_sub_and_fetch_2(volatile unsigned short *, unsigned short,...); 118 186 signed int __sync_sub_and_fetch(volatile signed int *, signed int,...); 187 signed int __sync_sub_and_fetch_4(volatile signed int *, signed int,...); 119 188 unsigned int __sync_sub_and_fetch(volatile unsigned int *, unsigned int,...); 120 signed long int __sync_sub_and_fetch(volatile signed long int *, signed long int,...); 121 unsigned long int __sync_sub_and_fetch(volatile unsigned long int *, unsigned long int,...); 189 unsigned int __sync_sub_and_fetch_4(volatile unsigned int *, unsigned int,...); 122 190 signed long long int __sync_sub_and_fetch(volatile signed long long int *, signed long long int,...); 191 signed long long int __sync_sub_and_fetch_8(volatile signed long long int *, signed long long int,...); 123 192 unsigned long long int __sync_sub_and_fetch(volatile unsigned long long int *, unsigned long long int,...); 193 unsigned long long int __sync_sub_and_fetch_8(volatile unsigned long long int *, unsigned long long int,...); 124 194 #if defined(__SIZEOF_INT128__) 125 195 signed __int128 __sync_sub_and_fetch(volatile signed __int128 *, signed __int128,...); 196 signed __int128 __sync_sub_and_fetch_16(volatile signed __int128 *, signed __int128,...); 126 197 unsigned __int128 __sync_sub_and_fetch(volatile unsigned __int128 *, unsigned __int128,...); 198 unsigned __int128 __sync_sub_and_fetch_16(volatile unsigned __int128 *, unsigned __int128,...); 127 199 #endif 128 200 129 201 char __sync_or_and_fetch(volatile char *, char,...); 202 char __sync_or_and_fetch_1(volatile char *, char,...); 130 203 signed char __sync_or_and_fetch(volatile signed char *, signed char,...); 204 signed char __sync_or_and_fetch_1(volatile signed char *, signed char,...); 131 205 unsigned char __sync_or_and_fetch(volatile unsigned char *, unsigned char,...); 206 unsigned char __sync_or_and_fetch_1(volatile unsigned char *, unsigned char,...); 132 207 signed short __sync_or_and_fetch(volatile signed short *, signed short,...); 208 signed short __sync_or_and_fetch_2(volatile signed short *, signed short,...); 133 209 unsigned short __sync_or_and_fetch(volatile unsigned short *, unsigned short,...); 210 unsigned short __sync_or_and_fetch_2(volatile unsigned short *, unsigned short,...); 134 211 signed int __sync_or_and_fetch(volatile signed int *, signed int,...); 212 signed int __sync_or_and_fetch_4(volatile signed int *, signed int,...); 135 213 unsigned int __sync_or_and_fetch(volatile unsigned int *, unsigned int,...); 136 signed long int __sync_or_and_fetch(volatile signed long int *, signed long int,...); 137 unsigned long int __sync_or_and_fetch(volatile unsigned long int *, unsigned long int,...); 214 unsigned int __sync_or_and_fetch_4(volatile unsigned int *, unsigned int,...); 138 215 signed long long int __sync_or_and_fetch(volatile signed long long int *, signed long long int,...); 216 signed long long int __sync_or_and_fetch_8(volatile signed long long int *, signed long long int,...); 139 217 unsigned long long int __sync_or_and_fetch(volatile unsigned long long int *, unsigned long long int,...); 218 unsigned long long int __sync_or_and_fetch_8(volatile unsigned long long int *, unsigned long long int,...); 140 219 #if defined(__SIZEOF_INT128__) 141 220 signed __int128 __sync_or_and_fetch(volatile signed __int128 *, signed __int128,...); 221 signed __int128 __sync_or_and_fetch_16(volatile signed __int128 *, signed __int128,...); 142 222 unsigned __int128 __sync_or_and_fetch(volatile unsigned __int128 *, unsigned __int128,...); 223 unsigned __int128 __sync_or_and_fetch_16(volatile unsigned __int128 *, unsigned __int128,...); 143 224 #endif 144 225 145 226 char __sync_and_and_fetch(volatile char *, char,...); 227 char __sync_and_and_fetch_1(volatile char *, char,...); 146 228 signed char __sync_and_and_fetch(volatile signed char *, signed char,...); 229 signed char __sync_and_and_fetch_1(volatile signed char *, signed char,...); 147 230 unsigned char __sync_and_and_fetch(volatile unsigned char *, unsigned char,...); 231 unsigned char __sync_and_and_fetch_1(volatile unsigned char *, unsigned char,...); 148 232 signed short __sync_and_and_fetch(volatile signed short *, signed short,...); 233 signed short __sync_and_and_fetch_2(volatile signed short *, signed short,...); 149 234 unsigned short __sync_and_and_fetch(volatile unsigned short *, unsigned short,...); 235 unsigned short __sync_and_and_fetch_2(volatile unsigned short *, unsigned short,...); 150 236 signed int __sync_and_and_fetch(volatile signed int *, signed int,...); 237 signed int __sync_and_and_fetch_4(volatile signed int *, signed int,...); 151 238 unsigned int __sync_and_and_fetch(volatile unsigned int *, unsigned int,...); 152 signed long int __sync_and_and_fetch(volatile signed long int *, signed long int,...); 153 unsigned long int __sync_and_and_fetch(volatile unsigned long int *, unsigned long int,...); 239 unsigned int __sync_and_and_fetch_4(volatile unsigned int *, unsigned int,...); 154 240 signed long long int __sync_and_and_fetch(volatile signed long long int *, signed long long int,...); 241 signed long long int __sync_and_and_fetch_8(volatile signed long long int *, signed long long int,...); 155 242 unsigned long long int __sync_and_and_fetch(volatile unsigned long long int *, unsigned long long int,...); 243 unsigned long long int __sync_and_and_fetch_8(volatile unsigned long long int *, unsigned long long int,...); 156 244 #if defined(__SIZEOF_INT128__) 157 245 signed __int128 __sync_and_and_fetch(volatile signed __int128 *, signed __int128,...); 246 signed __int128 __sync_and_and_fetch_16(volatile signed __int128 *, signed __int128,...); 158 247 unsigned __int128 __sync_and_and_fetch(volatile unsigned __int128 *, unsigned __int128,...); 248 unsigned __int128 __sync_and_and_fetch_16(volatile unsigned __int128 *, unsigned __int128,...); 159 249 #endif 160 250 161 251 char __sync_xor_and_fetch(volatile char *, char,...); 252 char __sync_xor_and_fetch_1(volatile char *, char,...); 162 253 signed char __sync_xor_and_fetch(volatile signed char *, signed char,...); 254 signed char __sync_xor_and_fetch_1(volatile signed char *, signed char,...); 163 255 unsigned char __sync_xor_and_fetch(volatile unsigned char *, unsigned char,...); 256 unsigned char __sync_xor_and_fetch_1(volatile unsigned char *, unsigned char,...); 164 257 signed short __sync_xor_and_fetch(volatile signed short *, signed short,...); 258 signed short __sync_xor_and_fetch_2(volatile signed short *, signed short,...); 165 259 unsigned short __sync_xor_and_fetch(volatile unsigned short *, unsigned short,...); 260 unsigned short __sync_xor_and_fetch_2(volatile unsigned short *, unsigned short,...); 166 261 signed int __sync_xor_and_fetch(volatile signed int *, signed int,...); 262 signed int __sync_xor_and_fetch_4(volatile signed int *, signed int,...); 167 263 unsigned int __sync_xor_and_fetch(volatile unsigned int *, unsigned int,...); 168 signed long int __sync_xor_and_fetch(volatile signed long int *, signed long int,...); 169 unsigned long int __sync_xor_and_fetch(volatile unsigned long int *, unsigned long int,...); 264 unsigned int __sync_xor_and_fetch_4(volatile unsigned int *, unsigned int,...); 170 265 signed long long int __sync_xor_and_fetch(volatile signed long long int *, signed long long int,...); 266 signed long long int __sync_xor_and_fetch_8(volatile signed long long int *, signed long long int,...); 171 267 unsigned long long int __sync_xor_and_fetch(volatile unsigned long long int *, unsigned long long int,...); 268 unsigned long long int __sync_xor_and_fetch_8(volatile unsigned long long int *, unsigned long long int,...); 172 269 #if defined(__SIZEOF_INT128__) 173 270 signed __int128 __sync_xor_and_fetch(volatile signed __int128 *, signed __int128,...); 271 signed __int128 __sync_xor_and_fetch_16(volatile signed __int128 *, signed __int128,...); 174 272 unsigned __int128 __sync_xor_and_fetch(volatile unsigned __int128 *, unsigned __int128,...); 273 unsigned __int128 __sync_xor_and_fetch_16(volatile unsigned __int128 *, unsigned __int128,...); 175 274 #endif 176 275 177 276 char __sync_nand_and_fetch(volatile char *, char,...); 277 char __sync_nand_and_fetch_1(volatile char *, char,...); 178 278 signed char __sync_nand_and_fetch(volatile signed char *, signed char,...); 279 signed char __sync_nand_and_fetch_1(volatile signed char *, signed char,...); 179 280 unsigned char __sync_nand_and_fetch(volatile unsigned char *, unsigned char,...); 281 unsigned char __sync_nand_and_fetch_1(volatile unsigned char *, unsigned char,...); 180 282 signed short __sync_nand_and_fetch(volatile signed short *, signed short,...); 283 signed short __sync_nand_and_fetch_2(volatile signed short *, signed short,...); 181 284 unsigned short __sync_nand_and_fetch(volatile unsigned short *, unsigned short,...); 285 unsigned short __sync_nand_and_fetch_2(volatile unsigned short *, unsigned short,...); 182 286 signed int __sync_nand_and_fetch(volatile signed int *, signed int,...); 287 signed int __sync_nand_and_fetch_4(volatile signed int *, signed int,...); 183 288 unsigned int __sync_nand_and_fetch(volatile unsigned int *, unsigned int,...); 184 signed long int __sync_nand_and_fetch(volatile signed long int *, signed long int,...); 185 unsigned long int __sync_nand_and_fetch(volatile unsigned long int *, unsigned long int,...); 289 unsigned int __sync_nand_and_fetch_4(volatile unsigned int *, unsigned int,...); 186 290 signed long long int __sync_nand_and_fetch(volatile signed long long int *, signed long long int,...); 291 signed long long int __sync_nand_and_fetch_8(volatile signed long long int *, signed long long int,...); 187 292 unsigned long long int __sync_nand_and_fetch(volatile unsigned long long int *, unsigned long long int,...); 293 unsigned long long int __sync_nand_and_fetch_8(volatile unsigned long long int *, unsigned long long int,...); 188 294 #if defined(__SIZEOF_INT128__) 189 295 signed __int128 __sync_nand_and_fetch(volatile signed __int128 *, signed __int128,...); 296 signed __int128 __sync_nand_and_fetch_16(volatile signed __int128 *, signed __int128,...); 190 297 unsigned __int128 __sync_nand_and_fetch(volatile unsigned __int128 *, unsigned __int128,...); 298 unsigned __int128 __sync_nand_and_fetch_16(volatile unsigned __int128 *, unsigned __int128,...); 191 299 #endif 192 300 193 301 _Bool __sync_bool_compare_and_swap(volatile char *, char, char,...); 302 _Bool __sync_bool_compare_and_swap_1(volatile char *, char, char,...); 194 303 _Bool __sync_bool_compare_and_swap(volatile signed char *, signed char, signed char,...); 304 _Bool __sync_bool_compare_and_swap_1(volatile signed char *, signed char, signed char,...); 195 305 _Bool __sync_bool_compare_and_swap(volatile unsigned char *, unsigned char, unsigned char,...); 306 _Bool __sync_bool_compare_and_swap_1(volatile unsigned char *, unsigned char, unsigned char,...); 196 307 _Bool __sync_bool_compare_and_swap(volatile short *, signed short, signed short,...); 308 _Bool __sync_bool_compare_and_swap_2(volatile short *, signed short, signed short,...); 197 309 _Bool __sync_bool_compare_and_swap(volatile short *, unsigned short, unsigned short,...); 310 _Bool __sync_bool_compare_and_swap_2(volatile short *, unsigned short, unsigned short,...); 198 311 _Bool __sync_bool_compare_and_swap(volatile signed int *, signed int, signed int,...); 312 _Bool __sync_bool_compare_and_swap_4(volatile signed int *, signed int, signed int,...); 199 313 _Bool __sync_bool_compare_and_swap(volatile unsigned int *, unsigned int, unsigned int,...); 200 _Bool __sync_bool_compare_and_swap(volatile signed long int *, signed long int, signed long int,...); 201 _Bool __sync_bool_compare_and_swap(volatile unsigned long int *, unsigned long int, unsigned long int,...); 314 _Bool __sync_bool_compare_and_swap_4(volatile unsigned int *, unsigned int, unsigned int,...); 202 315 _Bool __sync_bool_compare_and_swap(volatile signed long long int *, signed long long int, signed long long int,...); 316 _Bool __sync_bool_compare_and_swap_8(volatile signed long long int *, signed long long int, signed long long int,...); 203 317 _Bool __sync_bool_compare_and_swap(volatile unsigned long long int *, unsigned long long int, unsigned long long int,...); 318 _Bool __sync_bool_compare_and_swap_8(volatile unsigned long long int *, unsigned long long int, unsigned long long int,...); 204 319 #if defined(__SIZEOF_INT128__) 205 320 _Bool __sync_bool_compare_and_swap(volatile signed __int128 *, signed __int128, signed __int128,...); 321 _Bool __sync_bool_compare_and_swap_16(volatile signed __int128 *, signed __int128, signed __int128,...); 206 322 _Bool __sync_bool_compare_and_swap(volatile unsigned __int128 *, unsigned __int128, unsigned __int128,...); 323 _Bool __sync_bool_compare_and_swap_16(volatile unsigned __int128 *, unsigned __int128, unsigned __int128,...); 207 324 #endif 208 325 forall(dtype T) _Bool __sync_bool_compare_and_swap(T * volatile *, T *, T*, ...); 209 326 210 327 char __sync_val_compare_and_swap(volatile char *, char, char,...); 328 char __sync_val_compare_and_swap_1(volatile char *, char, char,...); 211 329 signed char __sync_val_compare_and_swap(volatile signed char *, signed char, signed char,...); 330 signed char __sync_val_compare_and_swap_1(volatile signed char *, signed char, signed char,...); 212 331 unsigned char __sync_val_compare_and_swap(volatile unsigned char *, unsigned char, unsigned char,...); 332 unsigned char __sync_val_compare_and_swap_1(volatile unsigned char *, unsigned char, unsigned char,...); 213 333 signed short __sync_val_compare_and_swap(volatile signed short *, signed short, signed short,...); 334 signed short __sync_val_compare_and_swap_2(volatile signed short *, signed short, signed short,...); 214 335 unsigned short __sync_val_compare_and_swap(volatile unsigned short *, unsigned short, unsigned short,...); 336 unsigned short __sync_val_compare_and_swap_2(volatile unsigned short *, unsigned short, unsigned short,...); 215 337 signed int __sync_val_compare_and_swap(volatile signed int *, signed int, signed int,...); 338 signed int __sync_val_compare_and_swap_4(volatile signed int *, signed int, signed int,...); 216 339 unsigned int __sync_val_compare_and_swap(volatile unsigned int *, unsigned int, unsigned int,...); 217 signed long int __sync_val_compare_and_swap(volatile signed long int *, signed long int, signed long int,...); 218 unsigned long int __sync_val_compare_and_swap(volatile unsigned long int *, unsigned long int, unsigned long int,...); 340 unsigned int __sync_val_compare_and_swap_4(volatile unsigned int *, unsigned int, unsigned int,...); 219 341 signed long long int __sync_val_compare_and_swap(volatile signed long long int *, signed long long int, signed long long int,...); 342 signed long long int __sync_val_compare_and_swap_8(volatile signed long long int *, signed long long int, signed long long int,...); 220 343 unsigned long long int __sync_val_compare_and_swap(volatile unsigned long long int *, unsigned long long int, unsigned long long int,...); 344 unsigned long long int __sync_val_compare_and_swap_8(volatile unsigned long long int *, unsigned long long int, unsigned long long int,...); 221 345 #if defined(__SIZEOF_INT128__) 222 346 signed __int128 __sync_val_compare_and_swap(volatile signed __int128 *, signed __int128, signed __int128,...); 347 signed __int128 __sync_val_compare_and_swap_16(volatile signed __int128 *, signed __int128, signed __int128,...); 223 348 unsigned __int128 __sync_val_compare_and_swap(volatile unsigned __int128 *, unsigned __int128, unsigned __int128,...); 349 unsigned __int128 __sync_val_compare_and_swap_16(volatile unsigned __int128 *, unsigned __int128, unsigned __int128,...); 224 350 #endif 225 351 forall(dtype T) T * __sync_val_compare_and_swap(T * volatile *, T *, T*,...); 226 352 227 353 char __sync_lock_test_and_set(volatile char *, char,...); 354 char __sync_lock_test_and_set_1(volatile char *, char,...); 228 355 signed char __sync_lock_test_and_set(volatile signed char *, signed char,...); 356 signed char __sync_lock_test_and_set_1(volatile signed char *, signed char,...); 229 357 unsigned char __sync_lock_test_and_set(volatile unsigned char *, unsigned char,...); 358 unsigned char __sync_lock_test_and_set_1(volatile unsigned char *, unsigned char,...); 230 359 signed short __sync_lock_test_and_set(volatile signed short *, signed short,...); 360 signed short __sync_lock_test_and_set_2(volatile signed short *, signed short,...); 231 361 unsigned short __sync_lock_test_and_set(volatile unsigned short *, unsigned short,...); 362 unsigned short __sync_lock_test_and_set_2(volatile unsigned short *, unsigned short,...); 232 363 signed int __sync_lock_test_and_set(volatile signed int *, signed int,...); 364 signed int __sync_lock_test_and_set_4(volatile signed int *, signed int,...); 233 365 unsigned int __sync_lock_test_and_set(volatile unsigned int *, unsigned int,...); 234 signed long int __sync_lock_test_and_set(volatile signed long int *, signed long int,...); 235 unsigned long int __sync_lock_test_and_set(volatile unsigned long int *, unsigned long int,...); 366 unsigned int __sync_lock_test_and_set_4(volatile unsigned int *, unsigned int,...); 236 367 signed long long int __sync_lock_test_and_set(volatile signed long long int *, signed long long int,...); 368 signed long long int __sync_lock_test_and_set_8(volatile signed long long int *, signed long long int,...); 237 369 unsigned long long int __sync_lock_test_and_set(volatile unsigned long long int *, unsigned long long int,...); 370 unsigned long long int __sync_lock_test_and_set_8(volatile unsigned long long int *, unsigned long long int,...); 238 371 #if defined(__SIZEOF_INT128__) 239 372 signed __int128 __sync_lock_test_and_set(volatile signed __int128 *, signed __int128,...); 373 signed __int128 __sync_lock_test_and_set_16(volatile signed __int128 *, signed __int128,...); 240 374 unsigned __int128 __sync_lock_test_and_set(volatile unsigned __int128 *, unsigned __int128,...); 375 unsigned __int128 __sync_lock_test_and_set_16(volatile unsigned __int128 *, unsigned __int128,...); 241 376 #endif 242 377 243 378 void __sync_lock_release(volatile char *,...); 379 void __sync_lock_release_1(volatile char *,...); 244 380 void __sync_lock_release(volatile signed char *,...); 381 void __sync_lock_release_1(volatile signed char *,...); 245 382 void __sync_lock_release(volatile unsigned char *,...); 383 void __sync_lock_release_1(volatile unsigned char *,...); 246 384 void __sync_lock_release(volatile signed short *,...); 385 void __sync_lock_release_2(volatile signed short *,...); 247 386 void __sync_lock_release(volatile unsigned short *,...); 387 void __sync_lock_release_2(volatile unsigned short *,...); 248 388 void __sync_lock_release(volatile signed int *,...); 389 void __sync_lock_release_4(volatile signed int *,...); 249 390 void __sync_lock_release(volatile unsigned int *,...); 250 void __sync_lock_release(volatile signed long int *,...); 251 void __sync_lock_release(volatile unsigned long int *,...); 391 void __sync_lock_release_4(volatile unsigned int *,...); 252 392 void __sync_lock_release(volatile signed long long int *,...); 393 void __sync_lock_release_8(volatile signed long long int *,...); 253 394 void __sync_lock_release(volatile unsigned long long int *,...); 395 void __sync_lock_release_8(volatile unsigned long long int *,...); 254 396 #if defined(__SIZEOF_INT128__) 255 397 void __sync_lock_release(volatile signed __int128 *,...); 398 void __sync_lock_release_16(volatile signed __int128 *,...); 256 399 void __sync_lock_release(volatile unsigned __int128 *,...); 400 void __sync_lock_release_16(volatile unsigned __int128 *,...); 257 401 #endif 258 402 … … 270 414 _Bool __atomic_test_and_set(volatile signed int *, int); 271 415 _Bool __atomic_test_and_set(volatile unsigned int *, int); 272 _Bool __atomic_test_and_set(volatile signed long int *, int);273 _Bool __atomic_test_and_set(volatile unsigned long int *, int);274 416 _Bool __atomic_test_and_set(volatile signed long long int *, int); 275 417 _Bool __atomic_test_and_set(volatile unsigned long long int *, int); … … 287 429 void __atomic_clear(volatile signed int *, int); 288 430 void __atomic_clear(volatile unsigned int *, int); 289 void __atomic_clear(volatile signed long int *, int);290 void __atomic_clear(volatile unsigned long int *, int);291 431 void __atomic_clear(volatile signed long long int *, int); 292 432 void __atomic_clear(volatile unsigned long long int *, int); … … 296 436 #endif 297 437 298 _Bool __atomic_exchange_n(volatile _Bool *, _Bool, int);299 void __atomic_exchange(volatile _Bool *, volatile _Bool *, volatile _Bool *, int);300 438 char __atomic_exchange_n(volatile char *, char, int); 439 char __atomic_exchange_1(volatile char *, char, int); 301 440 void __atomic_exchange(volatile char *, volatile char *, volatile char *, int); 302 441 signed char __atomic_exchange_n(volatile signed char *, signed char, int); 442 signed char __atomic_exchange_1(volatile signed char *, signed char, int); 303 443 void __atomic_exchange(volatile signed char *, volatile signed char *, volatile signed char *, int); 304 444 unsigned char __atomic_exchange_n(volatile unsigned char *, unsigned char, int); 445 unsigned char __atomic_exchange_1(volatile unsigned char *, unsigned char, int); 305 446 void __atomic_exchange(volatile unsigned char *, volatile unsigned char *, volatile unsigned char *, int); 306 447 signed short __atomic_exchange_n(volatile signed short *, signed short, int); 448 signed short __atomic_exchange_2(volatile signed short *, signed short, int); 307 449 void __atomic_exchange(volatile signed short *, volatile signed short *, volatile signed short *, int); 308 450 unsigned short __atomic_exchange_n(volatile unsigned short *, unsigned short, int); 451 unsigned short __atomic_exchange_2(volatile unsigned short *, unsigned short, int); 309 452 void __atomic_exchange(volatile unsigned short *, volatile unsigned short *, volatile unsigned short *, int); 310 453 signed int __atomic_exchange_n(volatile signed int *, signed int, int); 454 signed int __atomic_exchange_4(volatile signed int *, signed int, int); 311 455 void __atomic_exchange(volatile signed int *, volatile signed int *, volatile signed int *, int); 312 456 unsigned int __atomic_exchange_n(volatile unsigned int *, unsigned int, int); 457 unsigned int __atomic_exchange_4(volatile unsigned int *, unsigned int, int); 313 458 void __atomic_exchange(volatile unsigned int *, volatile unsigned int *, volatile unsigned int *, int); 314 signed long int __atomic_exchange_n(volatile signed long int *, signed long int, int);315 void __atomic_exchange(volatile signed long int *, volatile signed long int *, volatile signed long int *, int);316 unsigned long int __atomic_exchange_n(volatile unsigned long int *, unsigned long int, int);317 void __atomic_exchange(volatile unsigned long int *, volatile unsigned long int *, volatile unsigned long int *, int);318 459 signed long long int __atomic_exchange_n(volatile signed long long int *, signed long long int, int); 460 signed long long int __atomic_exchange_8(volatile signed long long int *, signed long long int, int); 319 461 void __atomic_exchange(volatile signed long long int *, volatile signed long long int *, volatile signed long long int *, int); 320 462 unsigned long long int __atomic_exchange_n(volatile unsigned long long int *, unsigned long long int, int); 463 unsigned long long int __atomic_exchange_8(volatile unsigned long long int *, unsigned long long int, int); 321 464 void __atomic_exchange(volatile unsigned long long int *, volatile unsigned long long int *, volatile unsigned long long int *, int); 322 465 #if defined(__SIZEOF_INT128__) 323 466 signed __int128 __atomic_exchange_n(volatile signed __int128 *, signed __int128, int); 467 signed __int128 __atomic_exchange_16(volatile signed __int128 *, signed __int128, int); 324 468 void __atomic_exchange(volatile signed __int128 *, volatile signed __int128 *, volatile signed __int128 *, int); 325 469 unsigned __int128 __atomic_exchange_n(volatile unsigned __int128 *, unsigned __int128, int); 470 unsigned __int128 __atomic_exchange_16(volatile unsigned __int128 *, unsigned __int128, int); 326 471 void __atomic_exchange(volatile unsigned __int128 *, volatile unsigned __int128 *, volatile unsigned __int128 *, int); 327 472 #endif … … 332 477 void __atomic_load(const volatile _Bool *, volatile _Bool *, int); 333 478 char __atomic_load_n(const volatile char *, int); 479 char __atomic_load_1(const volatile char *, int); 334 480 void __atomic_load(const volatile char *, volatile char *, int); 335 481 signed char __atomic_load_n(const volatile signed char *, int); 482 signed char __atomic_load_1(const volatile signed char *, int); 336 483 void __atomic_load(const volatile signed char *, volatile signed char *, int); 337 484 unsigned char __atomic_load_n(const volatile unsigned char *, int); 485 unsigned char __atomic_load_1(const volatile unsigned char *, int); 338 486 void __atomic_load(const volatile unsigned char *, volatile unsigned char *, int); 339 487 signed short __atomic_load_n(const volatile signed short *, int); 488 signed short __atomic_load_2(const volatile signed short *, int); 340 489 void __atomic_load(const volatile signed short *, volatile signed short *, int); 341 490 unsigned short __atomic_load_n(const volatile unsigned short *, int); 491 unsigned short __atomic_load_2(const volatile unsigned short *, int); 342 492 void __atomic_load(const volatile unsigned short *, volatile unsigned short *, int); 343 493 signed int __atomic_load_n(const volatile signed int *, int); 494 signed int __atomic_load_4(const volatile signed int *, int); 344 495 void __atomic_load(const volatile signed int *, volatile signed int *, int); 345 496 unsigned int __atomic_load_n(const volatile unsigned int *, int); 497 unsigned int __atomic_load_4(const volatile unsigned int *, int); 346 498 void __atomic_load(const volatile unsigned int *, volatile unsigned int *, int); 347 signed long int __atomic_load_n(const volatile signed long int *, int);348 void __atomic_load(const volatile signed long int *, volatile signed long int *, int);349 unsigned long int __atomic_load_n(const volatile unsigned long int *, int);350 void __atomic_load(const volatile unsigned long int *, volatile unsigned long int *, int);351 499 signed long long int __atomic_load_n(const volatile signed long long int *, int); 500 signed long long int __atomic_load_8(const volatile signed long long int *, int); 352 501 void __atomic_load(const volatile signed long long int *, volatile signed long long int *, int); 353 502 unsigned long long int __atomic_load_n(const volatile unsigned long long int *, int); 503 unsigned long long int __atomic_load_8(const volatile unsigned long long int *, int); 354 504 void __atomic_load(const volatile unsigned long long int *, volatile unsigned long long int *, int); 355 505 #if defined(__SIZEOF_INT128__) 356 506 signed __int128 __atomic_load_n(const volatile signed __int128 *, int); 507 signed __int128 __atomic_load_16(const volatile signed __int128 *, int); 357 508 void __atomic_load(const volatile signed __int128 *, volatile signed __int128 *, int); 358 509 unsigned __int128 __atomic_load_n(const volatile unsigned __int128 *, int); 510 unsigned __int128 __atomic_load_16(const volatile unsigned __int128 *, int); 359 511 void __atomic_load(const volatile unsigned __int128 *, volatile unsigned __int128 *, int); 360 512 #endif … … 363 515 364 516 _Bool __atomic_compare_exchange_n(volatile char *, char *, char, _Bool, int, int); 517 _Bool __atomic_compare_exchange_1(volatile char *, char *, char, _Bool, int, int); 365 518 _Bool __atomic_compare_exchange (volatile char *, char *, char *, _Bool, int, int); 366 519 _Bool __atomic_compare_exchange_n(volatile signed char *, signed char *, signed char, _Bool, int, int); 520 _Bool __atomic_compare_exchange_1(volatile signed char *, signed char *, signed char, _Bool, int, int); 367 521 _Bool __atomic_compare_exchange (volatile signed char *, signed char *, signed char *, _Bool, int, int); 368 522 _Bool __atomic_compare_exchange_n(volatile unsigned char *, unsigned char *, unsigned char, _Bool, int, int); 523 _Bool __atomic_compare_exchange_1(volatile unsigned char *, unsigned char *, unsigned char, _Bool, int, int); 369 524 _Bool __atomic_compare_exchange (volatile unsigned char *, unsigned char *, unsigned char *, _Bool, int, int); 370 525 _Bool __atomic_compare_exchange_n(volatile signed short *, signed short *, signed short, _Bool, int, int); 526 _Bool __atomic_compare_exchange_2(volatile signed short *, signed short *, signed short, _Bool, int, int); 371 527 _Bool __atomic_compare_exchange (volatile signed short *, signed short *, signed short *, _Bool, int, int); 372 528 _Bool __atomic_compare_exchange_n(volatile unsigned short *, unsigned short *, unsigned short, _Bool, int, int); 529 _Bool __atomic_compare_exchange_2(volatile unsigned short *, unsigned short *, unsigned short, _Bool, int, int); 373 530 _Bool __atomic_compare_exchange (volatile unsigned short *, unsigned short *, unsigned short *, _Bool, int, int); 374 531 _Bool __atomic_compare_exchange_n(volatile signed int *, signed int *, signed int, _Bool, int, int); 532 _Bool __atomic_compare_exchange_4(volatile signed int *, signed int *, signed int, _Bool, int, int); 375 533 _Bool __atomic_compare_exchange (volatile signed int *, signed int *, signed int *, _Bool, int, int); 376 534 _Bool __atomic_compare_exchange_n(volatile unsigned int *, unsigned int *, unsigned int, _Bool, int, int); 535 _Bool __atomic_compare_exchange_4(volatile unsigned int *, unsigned int *, unsigned int, _Bool, int, int); 377 536 _Bool __atomic_compare_exchange (volatile unsigned int *, unsigned int *, unsigned int *, _Bool, int, int); 378 _Bool __atomic_compare_exchange_n(volatile signed long int *, signed long int *, signed long int, _Bool, int, int);379 _Bool __atomic_compare_exchange (volatile signed long int *, signed long int *, signed long int *, _Bool, int, int);380 _Bool __atomic_compare_exchange_n(volatile unsigned long int *, unsigned long int *, unsigned long int, _Bool, int, int);381 _Bool __atomic_compare_exchange (volatile unsigned long int *, unsigned long int *, unsigned long int *, _Bool, int, int);382 537 _Bool __atomic_compare_exchange_n(volatile signed long long int *, signed long long int *, signed long long int, _Bool, int, int); 538 _Bool __atomic_compare_exchange_8(volatile signed long long int *, signed long long int *, signed long long int, _Bool, int, int); 383 539 _Bool __atomic_compare_exchange (volatile signed long long int *, signed long long int *, signed long long int *, _Bool, int, int); 384 540 _Bool __atomic_compare_exchange_n(volatile unsigned long long int *, unsigned long long int *, unsigned long long int, _Bool, int, int); 541 _Bool __atomic_compare_exchange_8(volatile unsigned long long int *, unsigned long long int *, unsigned long long int, _Bool, int, int); 385 542 _Bool __atomic_compare_exchange (volatile unsigned long long int *, unsigned long long int *, unsigned long long int *, _Bool, int, int); 386 543 #if defined(__SIZEOF_INT128__) 387 544 _Bool __atomic_compare_exchange_n (volatile signed __int128 *, signed __int128 *, signed __int128, _Bool, int, int); 545 _Bool __atomic_compare_exchange_16(volatile signed __int128 *, signed __int128 *, signed __int128, _Bool, int, int); 388 546 _Bool __atomic_compare_exchange (volatile signed __int128 *, signed __int128 *, signed __int128 *, _Bool, int, int); 389 547 _Bool __atomic_compare_exchange_n (volatile unsigned __int128 *, unsigned __int128 *, unsigned __int128, _Bool, int, int); 548 _Bool __atomic_compare_exchange_16(volatile unsigned __int128 *, unsigned __int128 *, unsigned __int128, _Bool, int, int); 390 549 _Bool __atomic_compare_exchange (volatile unsigned __int128 *, unsigned __int128 *, unsigned __int128 *, _Bool, int, int); 391 550 #endif … … 396 555 void __atomic_store(volatile _Bool *, _Bool *, int); 397 556 void __atomic_store_n(volatile char *, char, int); 557 void __atomic_store_1(volatile char *, char, int); 398 558 void __atomic_store(volatile char *, char *, int); 399 559 void __atomic_store_n(volatile signed char *, signed char, int); 560 void __atomic_store_1(volatile signed char *, signed char, int); 400 561 void __atomic_store(volatile signed char *, signed char *, int); 401 562 void __atomic_store_n(volatile unsigned char *, unsigned char, int); 563 void __atomic_store_1(volatile unsigned char *, unsigned char, int); 402 564 void __atomic_store(volatile unsigned char *, unsigned char *, int); 403 565 void __atomic_store_n(volatile signed short *, signed short, int); 566 void __atomic_store_2(volatile signed short *, signed short, int); 404 567 void __atomic_store(volatile signed short *, signed short *, int); 405 568 void __atomic_store_n(volatile unsigned short *, unsigned short, int); 569 void __atomic_store_2(volatile unsigned short *, unsigned short, int); 406 570 void __atomic_store(volatile unsigned short *, unsigned short *, int); 407 571 void __atomic_store_n(volatile signed int *, signed int, int); 572 void __atomic_store_4(volatile signed int *, signed int, int); 408 573 void __atomic_store(volatile signed int *, signed int *, int); 409 574 void __atomic_store_n(volatile unsigned int *, unsigned int, int); 575 void __atomic_store_4(volatile unsigned int *, unsigned int, int); 410 576 void __atomic_store(volatile unsigned int *, unsigned int *, int); 411 void __atomic_store_n(volatile signed long int *, signed long int, int);412 void __atomic_store(volatile signed long int *, signed long int *, int);413 void __atomic_store_n(volatile unsigned long int *, unsigned long int, int);414 void __atomic_store(volatile unsigned long int *, unsigned long int *, int);415 577 void __atomic_store_n(volatile signed long long int *, signed long long int, int); 578 void __atomic_store_8(volatile signed long long int *, signed long long int, int); 416 579 void __atomic_store(volatile signed long long int *, signed long long int *, int); 417 580 void __atomic_store_n(volatile unsigned long long int *, unsigned long long int, int); 581 void __atomic_store_8(volatile unsigned long long int *, unsigned long long int, int); 418 582 void __atomic_store(volatile unsigned long long int *, unsigned long long int *, int); 419 583 #if defined(__SIZEOF_INT128__) 420 584 void __atomic_store_n(volatile signed __int128 *, signed __int128, int); 585 void __atomic_store_16(volatile signed __int128 *, signed __int128, int); 421 586 void __atomic_store(volatile signed __int128 *, signed __int128 *, int); 422 587 void __atomic_store_n(volatile unsigned __int128 *, unsigned __int128, int); 588 void __atomic_store_16(volatile unsigned __int128 *, unsigned __int128, int); 423 589 void __atomic_store(volatile unsigned __int128 *, unsigned __int128 *, int); 424 590 #endif … … 427 593 428 594 char __atomic_add_fetch (volatile char *, char, int); 595 char __atomic_add_fetch_1(volatile char *, char, int); 429 596 signed char __atomic_add_fetch (volatile signed char *, signed char, int); 597 signed char __atomic_add_fetch_1(volatile signed char *, signed char, int); 430 598 unsigned char __atomic_add_fetch (volatile unsigned char *, unsigned char, int); 599 unsigned char __atomic_add_fetch_1(volatile unsigned char *, unsigned char, int); 431 600 signed short __atomic_add_fetch (volatile signed short *, signed short, int); 601 signed short __atomic_add_fetch_2(volatile signed short *, signed short, int); 432 602 unsigned short __atomic_add_fetch (volatile unsigned short *, unsigned short, int); 603 unsigned short __atomic_add_fetch_2(volatile unsigned short *, unsigned short, int); 433 604 signed int __atomic_add_fetch (volatile signed int *, signed int, int); 605 signed int __atomic_add_fetch_4(volatile signed int *, signed int, int); 434 606 unsigned int __atomic_add_fetch (volatile unsigned int *, unsigned int, int); 435 signed long int __atomic_add_fetch (volatile signed long int *, signed long int, int); 436 unsigned long int __atomic_add_fetch (volatile unsigned long int *, unsigned long int, int); 607 unsigned int __atomic_add_fetch_4(volatile unsigned int *, unsigned int, int); 437 608 signed long long int __atomic_add_fetch (volatile signed long long int *, signed long long int, int); 609 signed long long int __atomic_add_fetch_8(volatile signed long long int *, signed long long int, int); 438 610 unsigned long long int __atomic_add_fetch (volatile unsigned long long int *, unsigned long long int, int); 611 unsigned long long int __atomic_add_fetch_8(volatile unsigned long long int *, unsigned long long int, int); 439 612 #if defined(__SIZEOF_INT128__) 440 613 signed __int128 __atomic_add_fetch (volatile signed __int128 *, signed __int128, int); 614 signed __int128 __atomic_add_fetch_16(volatile signed __int128 *, signed __int128, int); 441 615 unsigned __int128 __atomic_add_fetch (volatile unsigned __int128 *, unsigned __int128, int); 616 unsigned __int128 __atomic_add_fetch_16(volatile unsigned __int128 *, unsigned __int128, int); 442 617 #endif 443 618 444 619 char __atomic_sub_fetch (volatile char *, char, int); 620 char __atomic_sub_fetch_1(volatile char *, char, int); 445 621 signed char __atomic_sub_fetch (volatile signed char *, signed char, int); 622 signed char __atomic_sub_fetch_1(volatile signed char *, signed char, int); 446 623 unsigned char __atomic_sub_fetch (volatile unsigned char *, unsigned char, int); 624 unsigned char __atomic_sub_fetch_1(volatile unsigned char *, unsigned char, int); 447 625 signed short __atomic_sub_fetch (volatile signed short *, signed short, int); 626 signed short __atomic_sub_fetch_2(volatile signed short *, signed short, int); 448 627 unsigned short __atomic_sub_fetch (volatile unsigned short *, unsigned short, int); 628 unsigned short __atomic_sub_fetch_2(volatile unsigned short *, unsigned short, int); 449 629 signed int __atomic_sub_fetch (volatile signed int *, signed int, int); 630 signed int __atomic_sub_fetch_4(volatile signed int *, signed int, int); 450 631 unsigned int __atomic_sub_fetch (volatile unsigned int *, unsigned int, int); 451 signed long long int __atomic_sub_fetch (volatile signed long int *, signed long int, int); 452 unsigned long long int __atomic_sub_fetch (volatile unsigned long int *, unsigned long int, int); 632 unsigned int __atomic_sub_fetch_4(volatile unsigned int *, unsigned int, int); 453 633 signed long long int __atomic_sub_fetch (volatile signed long long int *, signed long long int, int); 634 signed long long int __atomic_sub_fetch_8(volatile signed long long int *, signed long long int, int); 454 635 unsigned long long int __atomic_sub_fetch (volatile unsigned long long int *, unsigned long long int, int); 636 unsigned long long int __atomic_sub_fetch_8(volatile unsigned long long int *, unsigned long long int, int); 455 637 #if defined(__SIZEOF_INT128__) 456 638 signed __int128 __atomic_sub_fetch (volatile signed __int128 *, signed __int128, int); 639 signed __int128 __atomic_sub_fetch_16(volatile signed __int128 *, signed __int128, int); 457 640 unsigned __int128 __atomic_sub_fetch (volatile unsigned __int128 *, unsigned __int128, int); 641 unsigned __int128 __atomic_sub_fetch_16(volatile unsigned __int128 *, unsigned __int128, int); 458 642 #endif 459 643 460 644 char __atomic_and_fetch (volatile char *, char, int); 645 char __atomic_and_fetch_1(volatile char *, char, int); 461 646 signed char __atomic_and_fetch (volatile signed char *, signed char, int); 647 signed char __atomic_and_fetch_1(volatile signed char *, signed char, int); 462 648 unsigned char __atomic_and_fetch (volatile unsigned char *, unsigned char, int); 649 unsigned char __atomic_and_fetch_1(volatile unsigned char *, unsigned char, int); 463 650 signed short __atomic_and_fetch (volatile signed short *, signed short, int); 651 signed short __atomic_and_fetch_2(volatile signed short *, signed short, int); 464 652 unsigned short __atomic_and_fetch (volatile unsigned short *, unsigned short, int); 653 unsigned short __atomic_and_fetch_2(volatile unsigned short *, unsigned short, int); 465 654 signed int __atomic_and_fetch (volatile signed int *, signed int, int); 655 signed int __atomic_and_fetch_4(volatile signed int *, signed int, int); 466 656 unsigned int __atomic_and_fetch (volatile unsigned int *, unsigned int, int); 467 signed long int __atomic_and_fetch (volatile signed long int *, signed long int, int); 468 unsigned long int __atomic_and_fetch (volatile unsigned long int *, unsigned long int, int); 657 unsigned int __atomic_and_fetch_4(volatile unsigned int *, unsigned int, int); 469 658 signed long long int __atomic_and_fetch (volatile signed long long int *, signed long long int, int); 659 signed long long int __atomic_and_fetch_8(volatile signed long long int *, signed long long int, int); 470 660 unsigned long long int __atomic_and_fetch (volatile unsigned long long int *, unsigned long long int, int); 661 unsigned long long int __atomic_and_fetch_8(volatile unsigned long long int *, unsigned long long int, int); 471 662 #if defined(__SIZEOF_INT128__) 472 663 signed __int128 __atomic_and_fetch (volatile signed __int128 *, signed __int128, int); 664 signed __int128 __atomic_and_fetch_16(volatile signed __int128 *, signed __int128, int); 473 665 unsigned __int128 __atomic_and_fetch (volatile unsigned __int128 *, unsigned __int128, int); 666 unsigned __int128 __atomic_and_fetch_16(volatile unsigned __int128 *, unsigned __int128, int); 474 667 #endif 475 668 476 669 char __atomic_nand_fetch (volatile char *, char, int); 670 char __atomic_nand_fetch_1(volatile char *, char, int); 477 671 signed char __atomic_nand_fetch (volatile signed char *, signed char, int); 672 signed char __atomic_nand_fetch_1(volatile signed char *, signed char, int); 478 673 unsigned char __atomic_nand_fetch (volatile unsigned char *, unsigned char, int); 674 unsigned char __atomic_nand_fetch_1(volatile unsigned char *, unsigned char, int); 479 675 signed short __atomic_nand_fetch (volatile signed short *, signed short, int); 676 signed short __atomic_nand_fetch_2(volatile signed short *, signed short, int); 480 677 unsigned short __atomic_nand_fetch (volatile unsigned short *, unsigned short, int); 678 unsigned short __atomic_nand_fetch_2(volatile unsigned short *, unsigned short, int); 481 679 signed int __atomic_nand_fetch (volatile signed int *, signed int, int); 680 signed int __atomic_nand_fetch_4(volatile signed int *, signed int, int); 482 681 unsigned int __atomic_nand_fetch (volatile unsigned int *, unsigned int, int); 483 signed long int __atomic_nand_fetch (volatile signed long int *, signed long int, int); 484 unsigned long int __atomic_nand_fetch (volatile unsigned long int *, unsigned long int, int); 682 unsigned int __atomic_nand_fetch_4(volatile unsigned int *, unsigned int, int); 485 683 signed long long int __atomic_nand_fetch (volatile signed long long int *, signed long long int, int); 684 signed long long int __atomic_nand_fetch_8(volatile signed long long int *, signed long long int, int); 486 685 unsigned long long int __atomic_nand_fetch (volatile unsigned long long int *, unsigned long long int, int); 686 unsigned long long int __atomic_nand_fetch_8(volatile unsigned long long int *, unsigned long long int, int); 487 687 #if defined(__SIZEOF_INT128__) 488 688 signed __int128 __atomic_nand_fetch (volatile signed __int128 *, signed __int128, int); 689 signed __int128 __atomic_nand_fetch_16(volatile signed __int128 *, signed __int128, int); 489 690 unsigned __int128 __atomic_nand_fetch (volatile unsigned __int128 *, unsigned __int128, int); 691 unsigned __int128 __atomic_nand_fetch_16(volatile unsigned __int128 *, unsigned __int128, int); 490 692 #endif 491 693 492 694 char __atomic_xor_fetch (volatile char *, char, int); 695 char __atomic_xor_fetch_1(volatile char *, char, int); 493 696 signed char __atomic_xor_fetch (volatile signed char *, signed char, int); 697 signed char __atomic_xor_fetch_1(volatile signed char *, signed char, int); 494 698 unsigned char __atomic_xor_fetch (volatile unsigned char *, unsigned char, int); 699 unsigned char __atomic_xor_fetch_1(volatile unsigned char *, unsigned char, int); 495 700 signed short __atomic_xor_fetch (volatile signed short *, signed short, int); 701 signed short __atomic_xor_fetch_2(volatile signed short *, signed short, int); 496 702 unsigned short __atomic_xor_fetch (volatile unsigned short *, unsigned short, int); 703 unsigned short __atomic_xor_fetch_2(volatile unsigned short *, unsigned short, int); 497 704 signed int __atomic_xor_fetch (volatile signed int *, signed int, int); 705 signed int __atomic_xor_fetch_4(volatile signed int *, signed int, int); 498 706 unsigned int __atomic_xor_fetch (volatile unsigned int *, unsigned int, int); 499 signed long int __atomic_xor_fetch (volatile signed long int *, signed long int, int); 500 unsigned long int __atomic_xor_fetch (volatile unsigned long int *, unsigned long int, int); 707 unsigned int __atomic_xor_fetch_4(volatile unsigned int *, unsigned int, int); 501 708 signed long long int __atomic_xor_fetch (volatile signed long long int *, signed long long int, int); 709 signed long long int __atomic_xor_fetch_8(volatile signed long long int *, signed long long int, int); 502 710 unsigned long long int __atomic_xor_fetch (volatile unsigned long long int *, unsigned long long int, int); 711 unsigned long long int __atomic_xor_fetch_8(volatile unsigned long long int *, unsigned long long int, int); 503 712 #if defined(__SIZEOF_INT128__) 504 713 signed __int128 __atomic_xor_fetch (volatile signed __int128 *, signed __int128, int); 714 signed __int128 __atomic_xor_fetch_16(volatile signed __int128 *, signed __int128, int); 505 715 unsigned __int128 __atomic_xor_fetch (volatile unsigned __int128 *, unsigned __int128, int); 716 unsigned __int128 __atomic_xor_fetch_16(volatile unsigned __int128 *, unsigned __int128, int); 506 717 #endif 507 718 508 719 char __atomic_or_fetch (volatile char *, char, int); 720 char __atomic_or_fetch_1(volatile char *, char, int); 509 721 signed char __atomic_or_fetch (volatile signed char *, signed char, int); 722 signed char __atomic_or_fetch_1(volatile signed char *, signed char, int); 510 723 unsigned char __atomic_or_fetch (volatile unsigned char *, unsigned char, int); 724 unsigned char __atomic_or_fetch_1(volatile unsigned char *, unsigned char, int); 511 725 signed short __atomic_or_fetch (volatile signed short *, signed short, int); 726 signed short __atomic_or_fetch_2(volatile signed short *, signed short, int); 512 727 unsigned short __atomic_or_fetch (volatile unsigned short *, unsigned short, int); 728 unsigned short __atomic_or_fetch_2(volatile unsigned short *, unsigned short, int); 513 729 signed int __atomic_or_fetch (volatile signed int *, signed int, int); 730 signed int __atomic_or_fetch_4(volatile signed int *, signed int, int); 514 731 unsigned int __atomic_or_fetch (volatile unsigned int *, unsigned int, int); 515 signed long int __atomic_or_fetch (volatile signed long int *, signed long int, int); 516 unsigned long int __atomic_or_fetch (volatile unsigned long int *, unsigned long int, int); 732 unsigned int __atomic_or_fetch_4(volatile unsigned int *, unsigned int, int); 517 733 signed long long int __atomic_or_fetch (volatile signed long long int *, signed long long int, int); 734 signed long long int __atomic_or_fetch_8(volatile signed long long int *, signed long long int, int); 518 735 unsigned long long int __atomic_or_fetch (volatile unsigned long long int *, unsigned long long int, int); 736 unsigned long long int __atomic_or_fetch_8(volatile unsigned long long int *, unsigned long long int, int); 519 737 #if defined(__SIZEOF_INT128__) 520 738 signed __int128 __atomic_or_fetch (volatile signed __int128 *, signed __int128, int); 739 signed __int128 __atomic_or_fetch_16(volatile signed __int128 *, signed __int128, int); 521 740 unsigned __int128 __atomic_or_fetch (volatile unsigned __int128 *, unsigned __int128, int); 741 unsigned __int128 __atomic_or_fetch_16(volatile unsigned __int128 *, unsigned __int128, int); 522 742 #endif 523 743 524 744 char __atomic_fetch_add (volatile char *, char, int); 745 char __atomic_fetch_add_1(volatile char *, char, int); 525 746 signed char __atomic_fetch_add (volatile signed char *, signed char, int); 747 signed char __atomic_fetch_add_1(volatile signed char *, signed char, int); 526 748 unsigned char __atomic_fetch_add (volatile unsigned char *, unsigned char, int); 749 unsigned char __atomic_fetch_add_1(volatile unsigned char *, unsigned char, int); 527 750 signed short __atomic_fetch_add (volatile signed short *, signed short, int); 751 signed short __atomic_fetch_add_2(volatile signed short *, signed short, int); 528 752 unsigned short __atomic_fetch_add (volatile unsigned short *, unsigned short, int); 753 unsigned short __atomic_fetch_add_2(volatile unsigned short *, unsigned short, int); 529 754 signed int __atomic_fetch_add (volatile signed int *, signed int, int); 755 signed int __atomic_fetch_add_4(volatile signed int *, signed int, int); 530 756 unsigned int __atomic_fetch_add (volatile unsigned int *, unsigned int, int); 531 signed long int __atomic_fetch_add (volatile signed long int *, signed long int, int); 532 unsigned long int __atomic_fetch_add (volatile unsigned long int *, unsigned long int, int); 757 unsigned int __atomic_fetch_add_4(volatile unsigned int *, unsigned int, int); 533 758 signed long long int __atomic_fetch_add (volatile signed long long int *, signed long long int, int); 759 signed long long int __atomic_fetch_add_8(volatile signed long long int *, signed long long int, int); 534 760 unsigned long long int __atomic_fetch_add (volatile unsigned long long int *, unsigned long long int, int); 761 unsigned long long int __atomic_fetch_add_8(volatile unsigned long long int *, unsigned long long int, int); 535 762 #if defined(__SIZEOF_INT128__) 536 763 signed __int128 __atomic_fetch_add (volatile signed __int128 *, signed __int128, int); 764 signed __int128 __atomic_fetch_add_16(volatile signed __int128 *, signed __int128, int); 537 765 unsigned __int128 __atomic_fetch_add (volatile unsigned __int128 *, unsigned __int128, int); 766 unsigned __int128 __atomic_fetch_add_16(volatile unsigned __int128 *, unsigned __int128, int); 538 767 #endif 539 768 540 769 char __atomic_fetch_sub (volatile char *, char, int); 770 char __atomic_fetch_sub_1(volatile char *, char, int); 541 771 signed char __atomic_fetch_sub (volatile signed char *, signed char, int); 772 signed char __atomic_fetch_sub_1(volatile signed char *, signed char, int); 542 773 unsigned char __atomic_fetch_sub (volatile unsigned char *, unsigned char, int); 774 unsigned char __atomic_fetch_sub_1(volatile unsigned char *, unsigned char, int); 543 775 signed short __atomic_fetch_sub (volatile signed short *, signed short, int); 776 signed short __atomic_fetch_sub_2(volatile signed short *, signed short, int); 544 777 unsigned short __atomic_fetch_sub (volatile unsigned short *, unsigned short, int); 778 unsigned short __atomic_fetch_sub_2(volatile unsigned short *, unsigned short, int); 545 779 signed int __atomic_fetch_sub (volatile signed int *, signed int, int); 780 signed int __atomic_fetch_sub_4(volatile signed int *, signed int, int); 546 781 unsigned int __atomic_fetch_sub (volatile unsigned int *, unsigned int, int); 547 signed long int __atomic_fetch_sub (volatile signed long int *, signed long int, int); 548 unsigned long int __atomic_fetch_sub (volatile unsigned long int *, unsigned long int, int); 782 unsigned int __atomic_fetch_sub_4(volatile unsigned int *, unsigned int, int); 549 783 signed long long int __atomic_fetch_sub (volatile signed long long int *, signed long long int, int); 784 signed long long int __atomic_fetch_sub_8(volatile signed long long int *, signed long long int, int); 550 785 unsigned long long int __atomic_fetch_sub (volatile unsigned long long int *, unsigned long long int, int); 786 unsigned long long int __atomic_fetch_sub_8(volatile unsigned long long int *, unsigned long long int, int); 551 787 #if defined(__SIZEOF_INT128__) 552 788 signed __int128 __atomic_fetch_sub (volatile signed __int128 *, signed __int128, int); 789 signed __int128 __atomic_fetch_sub_16(volatile signed __int128 *, signed __int128, int); 553 790 unsigned __int128 __atomic_fetch_sub (volatile unsigned __int128 *, unsigned __int128, int); 791 unsigned __int128 __atomic_fetch_sub_16(volatile unsigned __int128 *, unsigned __int128, int); 554 792 #endif 555 793 556 794 char __atomic_fetch_and (volatile char *, char, int); 795 char __atomic_fetch_and_1(volatile char *, char, int); 557 796 signed char __atomic_fetch_and (volatile signed char *, signed char, int); 797 signed char __atomic_fetch_and_1(volatile signed char *, signed char, int); 558 798 unsigned char __atomic_fetch_and (volatile unsigned char *, unsigned char, int); 799 unsigned char __atomic_fetch_and_1(volatile unsigned char *, unsigned char, int); 559 800 signed short __atomic_fetch_and (volatile signed short *, signed short, int); 801 signed short __atomic_fetch_and_2(volatile signed short *, signed short, int); 560 802 unsigned short __atomic_fetch_and (volatile unsigned short *, unsigned short, int); 803 unsigned short __atomic_fetch_and_2(volatile unsigned short *, unsigned short, int); 561 804 signed int __atomic_fetch_and (volatile signed int *, signed int, int); 805 signed int __atomic_fetch_and_4(volatile signed int *, signed int, int); 562 806 unsigned int __atomic_fetch_and (volatile unsigned int *, unsigned int, int); 563 signed long int __atomic_fetch_and (volatile signed long int *, signed long int, int); 564 unsigned long int __atomic_fetch_and (volatile unsigned long int *, unsigned long int, int); 807 unsigned int __atomic_fetch_and_4(volatile unsigned int *, unsigned int, int); 565 808 signed long long int __atomic_fetch_and (volatile signed long long int *, signed long long int, int); 809 signed long long int __atomic_fetch_and_8(volatile signed long long int *, signed long long int, int); 566 810 unsigned long long int __atomic_fetch_and (volatile unsigned long long int *, unsigned long long int, int); 811 unsigned long long int __atomic_fetch_and_8(volatile unsigned long long int *, unsigned long long int, int); 567 812 #if defined(__SIZEOF_INT128__) 568 813 signed __int128 __atomic_fetch_and (volatile signed __int128 *, signed __int128, int); 814 signed __int128 __atomic_fetch_and_16(volatile signed __int128 *, signed __int128, int); 569 815 unsigned __int128 __atomic_fetch_and (volatile unsigned __int128 *, unsigned __int128, int); 816 unsigned __int128 __atomic_fetch_and_16(volatile unsigned __int128 *, unsigned __int128, int); 570 817 #endif 571 818 572 819 char __atomic_fetch_nand (volatile char *, char, int); 820 char __atomic_fetch_nand_1(volatile char *, char, int); 573 821 signed char __atomic_fetch_nand (volatile signed char *, signed char, int); 822 signed char __atomic_fetch_nand_1(volatile signed char *, signed char, int); 574 823 unsigned char __atomic_fetch_nand (volatile unsigned char *, unsigned char, int); 824 unsigned char __atomic_fetch_nand_1(volatile unsigned char *, unsigned char, int); 575 825 signed short __atomic_fetch_nand (volatile signed short *, signed short, int); 826 signed short __atomic_fetch_nand_2(volatile signed short *, signed short, int); 576 827 unsigned short __atomic_fetch_nand (volatile unsigned short *, unsigned short, int); 828 unsigned short __atomic_fetch_nand_2(volatile unsigned short *, unsigned short, int); 577 829 signed int __atomic_fetch_nand (volatile signed int *, signed int, int); 830 signed int __atomic_fetch_nand_4(volatile signed int *, signed int, int); 578 831 unsigned int __atomic_fetch_nand (volatile unsigned int *, unsigned int, int); 579 signed long int __atomic_fetch_nand (volatile signed long int *, signed long int, int); 580 unsigned long int __atomic_fetch_nand (volatile unsigned long int *, unsigned long int, int); 832 unsigned int __atomic_fetch_nand_4(volatile unsigned int *, unsigned int, int); 581 833 signed long long int __atomic_fetch_nand (volatile signed long long int *, signed long long int, int); 834 signed long long int __atomic_fetch_nand_8(volatile signed long long int *, signed long long int, int); 582 835 unsigned long long int __atomic_fetch_nand (volatile unsigned long long int *, unsigned long long int, int); 836 unsigned long long int __atomic_fetch_nand_8(volatile unsigned long long int *, unsigned long long int, int); 583 837 #if defined(__SIZEOF_INT128__) 584 838 signed __int128 __atomic_fetch_nand (volatile signed __int128 *, signed __int128, int); 839 signed __int128 __atomic_fetch_nand_16(volatile signed __int128 *, signed __int128, int); 585 840 unsigned __int128 __atomic_fetch_nand (volatile unsigned __int128 *, unsigned __int128, int); 841 unsigned __int128 __atomic_fetch_nand_16(volatile unsigned __int128 *, unsigned __int128, int); 586 842 #endif 587 843 588 844 char __atomic_fetch_xor (volatile char *, char, int); 845 char __atomic_fetch_xor_1(volatile char *, char, int); 589 846 signed char __atomic_fetch_xor (volatile signed char *, signed char, int); 847 signed char __atomic_fetch_xor_1(volatile signed char *, signed char, int); 590 848 unsigned char __atomic_fetch_xor (volatile unsigned char *, unsigned char, int); 849 unsigned char __atomic_fetch_xor_1(volatile unsigned char *, unsigned char, int); 591 850 signed short __atomic_fetch_xor (volatile signed short *, signed short, int); 851 signed short __atomic_fetch_xor_2(volatile signed short *, signed short, int); 592 852 unsigned short __atomic_fetch_xor (volatile unsigned short *, unsigned short, int); 853 unsigned short __atomic_fetch_xor_2(volatile unsigned short *, unsigned short, int); 593 854 signed int __atomic_fetch_xor (volatile signed int *, signed int, int); 855 signed int __atomic_fetch_xor_4(volatile signed int *, signed int, int); 594 856 unsigned int __atomic_fetch_xor (volatile unsigned int *, unsigned int, int); 595 signed long int __atomic_fetch_xor (volatile signed long int *, signed long int, int); 596 unsigned long int __atomic_fetch_xor (volatile unsigned long int *, unsigned long int, int); 857 unsigned int __atomic_fetch_xor_4(volatile unsigned int *, unsigned int, int); 597 858 signed long long int __atomic_fetch_xor (volatile signed long long int *, signed long long int, int); 859 signed long long int __atomic_fetch_xor_8(volatile signed long long int *, signed long long int, int); 598 860 unsigned long long int __atomic_fetch_xor (volatile unsigned long long int *, unsigned long long int, int); 861 unsigned long long int __atomic_fetch_xor_8(volatile unsigned long long int *, unsigned long long int, int); 599 862 #if defined(__SIZEOF_INT128__) 600 863 signed __int128 __atomic_fetch_xor (volatile signed __int128 *, signed __int128, int); 864 signed __int128 __atomic_fetch_xor_16(volatile signed __int128 *, signed __int128, int); 601 865 unsigned __int128 __atomic_fetch_xor (volatile unsigned __int128 *, unsigned __int128, int); 866 unsigned __int128 __atomic_fetch_xor_16(volatile unsigned __int128 *, unsigned __int128, int); 602 867 #endif 603 868 604 869 char __atomic_fetch_or (volatile char *, char, int); 870 char __atomic_fetch_or_1(volatile char *, char, int); 605 871 signed char __atomic_fetch_or (volatile signed char *, signed char, int); 872 signed char __atomic_fetch_or_1(volatile signed char *, signed char, int); 606 873 unsigned char __atomic_fetch_or (volatile unsigned char *, unsigned char, int); 874 unsigned char __atomic_fetch_or_1(volatile unsigned char *, unsigned char, int); 607 875 signed short __atomic_fetch_or (volatile signed short *, signed short, int); 876 signed short __atomic_fetch_or_2(volatile signed short *, signed short, int); 608 877 unsigned short __atomic_fetch_or (volatile unsigned short *, unsigned short, int); 878 unsigned short __atomic_fetch_or_2(volatile unsigned short *, unsigned short, int); 609 879 signed int __atomic_fetch_or (volatile signed int *, signed int, int); 880 signed int __atomic_fetch_or_4(volatile signed int *, signed int, int); 610 881 unsigned int __atomic_fetch_or (volatile unsigned int *, unsigned int, int); 611 signed long int __atomic_fetch_or (volatile signed long int *, signed long int, int); 612 unsigned long int __atomic_fetch_or (volatile unsigned long int *, unsigned long int, int); 882 unsigned int __atomic_fetch_or_4(volatile unsigned int *, unsigned int, int); 613 883 signed long long int __atomic_fetch_or (volatile signed long long int *, signed long long int, int); 884 signed long long int __atomic_fetch_or_8(volatile signed long long int *, signed long long int, int); 614 885 unsigned long long int __atomic_fetch_or (volatile unsigned long long int *, unsigned long long int, int); 886 unsigned long long int __atomic_fetch_or_8(volatile unsigned long long int *, unsigned long long int, int); 615 887 #if defined(__SIZEOF_INT128__) 616 888 signed __int128 __atomic_fetch_or (volatile signed __int128 *, signed __int128, int); 889 signed __int128 __atomic_fetch_or_16(volatile signed __int128 *, signed __int128, int); 617 890 unsigned __int128 __atomic_fetch_or (volatile unsigned __int128 *, unsigned __int128, int); 891 unsigned __int128 __atomic_fetch_or_16(volatile unsigned __int128 *, unsigned __int128, int); 618 892 #endif 619 893 -
libcfa/src/Makefile.am
r7030dab r71d6bd8 11 11 ## Created On : Sun May 31 08:54:01 2015 12 12 ## Last Modified By : Peter A. Buhr 13 ## Last Modified On : Mon Mar 16 18:07:59 202014 ## Update Count : 24 213 ## Last Modified On : Mon Jul 15 22:43:27 2019 14 ## Update Count : 241 15 15 ############################################################################### 16 16 … … 33 33 # The built sources must not depend on the installed headers 34 34 AM_CFAFLAGS = -quiet -cfalib -I$(srcdir)/stdhdr $(if $(findstring ${gdbwaittarget}, ${@}), -XCFA --gdb) @CONFIG_CFAFLAGS@ 35 AM_CFLAGS = -g -Wall -Wno-unused-function -fPIC -pthread@ARCH_FLAGS@ @CONFIG_CFLAGS@35 AM_CFLAGS = -g -Wall -Wno-unused-function -fPIC @ARCH_FLAGS@ @CONFIG_CFLAGS@ 36 36 AM_CCASFLAGS = -g -Wall -Wno-unused-function @ARCH_FLAGS@ @CONFIG_CFLAGS@ 37 37 CFACC = @CFACC@ … … 39 39 #---------------------------------------------------------------------------------------------------------------- 40 40 if BUILDLIB 41 headers_nosrc = bitmanip.hfamath.hfa gmp.hfa time_t.hfa bits/align.hfa bits/containers.hfa bits/defs.hfa bits/debug.hfa bits/locks.hfa41 headers_nosrc = math.hfa gmp.hfa time_t.hfa bits/align.hfa bits/containers.hfa bits/defs.hfa bits/debug.hfa bits/locks.hfa 42 42 headers = fstream.hfa iostream.hfa iterator.hfa limits.hfa rational.hfa time.hfa stdlib.hfa common.hfa \ 43 43 containers/maybe.hfa containers/pair.hfa containers/result.hfa containers/vector.hfa -
libcfa/src/Makefile.in
r7030dab r71d6bd8 237 237 limits.hfa rational.hfa time.hfa stdlib.hfa common.hfa \ 238 238 containers/maybe.hfa containers/pair.hfa containers/result.hfa \ 239 containers/vector.hfa bitmanip.hfamath.hfa gmp.hfa time_t.hfa \239 containers/vector.hfa math.hfa gmp.hfa time_t.hfa \ 240 240 bits/align.hfa bits/containers.hfa bits/defs.hfa \ 241 241 bits/debug.hfa bits/locks.hfa concurrency/coroutine.hfa \ … … 416 416 LTCFACOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ 417 417 $(LIBTOOLFLAGS) --mode=compile $(CFACC) $(DEFS) \ 418 $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CFAFLAGS) $(AM_CFLAGS) $(CFAFLAGS) $(CFLAGS) 418 $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CFAFLAGS) $(CFAFLAGS) \ 419 $(AM_CFLAGS) $(CFLAGS) 419 420 420 421 AM_V_CFA = $(am__v_CFA_@AM_V@) … … 422 423 am__v_CFA_0 = @echo " CFA " $@; 423 424 am__v_CFA_1 = 425 AM_V_JAVAC = $(am__v_JAVAC_@AM_V@) 426 am__v_JAVAC_ = $(am__v_JAVAC_@AM_DEFAULT_V@) 427 am__v_JAVAC_0 = @echo " JAVAC " $@; 428 am__v_JAVAC_1 = 429 AM_V_GOC = $(am__v_GOC_@AM_V@) 430 am__v_GOC_ = $(am__v_GOC_@AM_DEFAULT_V@) 431 am__v_GOC_0 = @echo " GOC " $@; 432 am__v_GOC_1 = 424 433 UPPCC = u++ 425 434 UPPCOMPILE = $(UPPCC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_UPPFLAGS) $(UPPFLAGS) $(AM_CXXFLAGS) $(CXXFLAGS) $(AM_CFLAGS) $(CFLAGS) … … 428 437 am__v_UPP_0 = @echo " UPP " $@; 429 438 am__v_UPP_1 = 430 AM_V_GOC = $(am__v_GOC_@AM_V@)431 am__v_GOC_ = $(am__v_GOC_@AM_DEFAULT_V@)432 am__v_GOC_0 = @echo " GOC " $@;433 am__v_GOC_1 =434 AM_V_PY = $(am__v_PY_@AM_V@)435 am__v_PY_ = $(am__v_PY_@AM_DEFAULT_V@)436 am__v_PY_0 = @echo " PYTHON " $@;437 am__v_PY_1 =438 AM_V_RUST = $(am__v_RUST_@AM_V@)439 am__v_RUST_ = $(am__v_RUST_@AM_DEFAULT_V@)440 am__v_RUST_0 = @echo " RUST " $@;441 am__v_RUST_1 =442 AM_V_NODEJS = $(am__v_NODEJS_@AM_V@)443 am__v_NODEJS_ = $(am__v_NODEJS_@AM_DEFAULT_V@)444 am__v_NODEJS_0 = @echo " NODEJS " $@;445 am__v_NODEJS_1 =446 AM_V_JAVAC = $(am__v_JAVAC_@AM_V@)447 am__v_JAVAC_ = $(am__v_JAVAC_@AM_DEFAULT_V@)448 am__v_JAVAC_0 = @echo " JAVAC " $@;449 am__v_JAVAC_1 =450 439 lib_LTLIBRARIES = libcfa.la libcfathread.la 451 440 gdbwaittarget = "" … … 456 445 # The built sources must not depend on the installed headers 457 446 AM_CFAFLAGS = -quiet -cfalib -I$(srcdir)/stdhdr $(if $(findstring ${gdbwaittarget}, ${@}), -XCFA --gdb) @CONFIG_CFAFLAGS@ 458 AM_CFLAGS = -g -Wall -Wno-unused-function -fPIC -pthread@ARCH_FLAGS@ @CONFIG_CFLAGS@447 AM_CFLAGS = -g -Wall -Wno-unused-function -fPIC @ARCH_FLAGS@ @CONFIG_CFLAGS@ 459 448 AM_CCASFLAGS = -g -Wall -Wno-unused-function @ARCH_FLAGS@ @CONFIG_CFLAGS@ 460 449 @BUILDLIB_FALSE@headers_nosrc = 461 450 462 451 #---------------------------------------------------------------------------------------------------------------- 463 @BUILDLIB_TRUE@headers_nosrc = bitmanip.hfamath.hfa gmp.hfa time_t.hfa bits/align.hfa bits/containers.hfa bits/defs.hfa bits/debug.hfa bits/locks.hfa452 @BUILDLIB_TRUE@headers_nosrc = math.hfa gmp.hfa time_t.hfa bits/align.hfa bits/containers.hfa bits/defs.hfa bits/debug.hfa bits/locks.hfa 464 453 @BUILDLIB_FALSE@headers = 465 454 @BUILDLIB_TRUE@headers = fstream.hfa iostream.hfa iterator.hfa limits.hfa rational.hfa time.hfa stdlib.hfa common.hfa \ -
libcfa/src/assert.cfa
r7030dab r71d6bd8 10 10 // Created On : Mon Nov 28 12:27:26 2016 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : T ue Feb 4 13:00:18 202013 // Update Count : 612 // Last Modified On : Thu Jul 20 15:10:26 2017 13 // Update Count : 2 14 14 // 15 15 … … 17 17 #include <stdarg.h> // varargs 18 18 #include <stdio.h> // fprintf 19 #include <unistd.h> // STDERR_FILENO20 19 #include "bits/debug.hfa" 21 20 … … 26 25 27 26 // called by macro assert in assert.h 28 void __assert_fail( const char assertion[], const char file[], unsigned int line, const char function[]) {29 __cfaabi_ bits_print_safe( STDERR_FILENO,CFA_ASSERT_FMT ".\n", assertion, __progname, function, line, file );27 void __assert_fail( const char *assertion, const char *file, unsigned int line, const char *function ) { 28 __cfaabi_dbg_bits_print_safe( CFA_ASSERT_FMT ".\n", assertion, __progname, function, line, file ); 30 29 abort(); 31 30 } 32 31 33 32 // called by macro assertf 34 void __assert_fail_f( const char assertion[], const char file[], unsigned int line, const char function[], const char fmt[], ... ) {35 __cfaabi_ bits_acquire();36 __cfaabi_ bits_print_nolock( STDERR_FILENO,CFA_ASSERT_FMT ": ", assertion, __progname, function, line, file );33 void __assert_fail_f( const char *assertion, const char *file, unsigned int line, const char *function, const char *fmt, ... ) { 34 __cfaabi_dbg_bits_acquire(); 35 __cfaabi_dbg_bits_print_nolock( CFA_ASSERT_FMT ": ", assertion, __progname, function, line, file ); 37 36 38 37 va_list args; 39 38 va_start( args, fmt ); 40 __cfaabi_ bits_print_vararg( STDERR_FILENO,fmt, args );39 __cfaabi_dbg_bits_print_vararg( fmt, args ); 41 40 va_end( args ); 42 41 43 __cfaabi_ bits_print_nolock( STDERR_FILENO,"\n" );44 __cfaabi_ bits_release();42 __cfaabi_dbg_bits_print_nolock( "\n" ); 43 __cfaabi_dbg_bits_release(); 45 44 abort(); 46 45 } -
libcfa/src/bits/align.hfa
r7030dab r71d6bd8 10 10 // Created On : Mon Nov 28 12:27:26 2016 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Sat Nov 16 18:58:22 201913 // Update Count : 312 // Last Modified On : Fri Jul 21 23:05:35 2017 13 // Update Count : 2 14 14 // 15 15 // This library is free software; you can redistribute it and/or modify it … … 33 33 34 34 // Minimum size used to align memory boundaries for memory allocations. 35 //#define libAlign() (sizeof(double)) 36 // gcc-7 uses xmms instructions, which require 16 byte alignment. 37 #define libAlign() (16) 35 #define libAlign() (sizeof(double)) 38 36 39 37 // Check for power of 2 -
libcfa/src/bits/containers.hfa
r7030dab r71d6bd8 10 10 // Created On : Tue Oct 31 16:38:50 2017 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Wed J an 15 07:42:35 202013 // Update Count : 2812 // Last Modified On : Wed Jun 26 08:52:20 2019 13 // Update Count : 4 14 14 15 15 #pragma once … … 44 44 45 45 forall(dtype T | sized(T)) 46 static inline T & ?[?]( __small_array(T) & this, __lock_size_t idx) {46 static inline T& ?[?]( __small_array(T) & this, __lock_size_t idx) { 47 47 return ((typeof(this.data))this.data)[idx]; 48 48 } 49 49 50 50 forall(dtype T | sized(T)) 51 static inline T & ?[?]( const __small_array(T) & this, __lock_size_t idx) {51 static inline T& ?[?]( const __small_array(T) & this, __lock_size_t idx) { 52 52 return ((typeof(this.data))this.data)[idx]; 53 53 } 54 54 55 forall(dtype T )56 static inline T 55 forall(dtype T | sized(T)) 56 static inline T* begin( const __small_array(T) & this ) { 57 57 return ((typeof(this.data))this.data); 58 58 } 59 59 60 60 forall(dtype T | sized(T)) 61 static inline T 61 static inline T* end( const __small_array(T) & this ) { 62 62 return ((typeof(this.data))this.data) + this.size; 63 63 } … … 70 70 #ifdef __cforall 71 71 trait is_node(dtype T) { 72 T *& get_next( T& );72 T*& get_next( T& ); 73 73 }; 74 74 #endif … … 97 97 forall(dtype T) 98 98 static inline void ?{}( __stack(T) & this ) { 99 (this.top){ 0p }; 100 } 101 102 static inline forall( dtype T | is_node(T) ) { 103 void push( __stack(T) & this, T * val ) { 104 verify( !get_next( *val ) ); 105 get_next( *val ) = this.top; 106 this.top = val; 107 } 108 109 T * pop( __stack(T) & this ) { 110 T * top = this.top; 111 if( top ) { 112 this.top = get_next( *top ); 113 get_next( *top ) = 0p; 114 } 115 return top; 116 } 117 118 int ?!=?( const __stack(T) & this, __attribute__((unused)) zero_t zero ) { 119 return this.top != 0; 120 } 99 (this.top){ NULL }; 100 } 101 102 forall(dtype T | is_node(T) | sized(T)) 103 static inline void push( __stack(T) & this, T * val ) { 104 verify( !get_next( *val ) ); 105 get_next( *val ) = this.top; 106 this.top = val; 107 } 108 109 forall(dtype T | is_node(T) | sized(T)) 110 static inline T * pop( __stack(T) & this ) { 111 T * top = this.top; 112 if( top ) { 113 this.top = get_next( *top ); 114 get_next( *top ) = NULL; 115 } 116 return top; 117 } 118 119 forall(dtype T | is_node(T)) 120 static inline int ?!=?( const __stack(T) & this, __attribute__((unused)) zero_t zero ) { 121 return this.top != 0; 121 122 } 122 123 #endif … … 144 145 145 146 #ifdef __cforall 146 static inline forall( dtype T | is_node(T) ) { 147 void ?{}( __queue(T) & this ) with( this ) { 148 head{ 1p }; 149 tail{ &head }; 150 verify(*tail == 1p); 151 } 152 153 void append( __queue(T) & this, T * val ) with( this ) { 154 verify(tail != 0p); 155 verify(*tail == 1p); 156 *tail = val; 157 tail = &get_next( *val ); 158 *tail = 1p; 159 } 160 161 T * pop_head( __queue(T) & this ) { 162 verify(*this.tail == 1p); 163 T * head = this.head; 164 if( head != 1p ) { 165 this.head = get_next( *head ); 166 if( get_next( *head ) == 1p ) { 167 this.tail = &this.head; 168 } 169 get_next( *head ) = 0p; 170 verify(*this.tail == 1p); 171 verify( get_next(*head) == 0p ); 172 return head; 147 148 forall(dtype T) 149 static inline void ?{}( __queue(T) & this ) with( this ) { 150 head{ NULL }; 151 tail{ &head }; 152 } 153 154 forall(dtype T | is_node(T) | sized(T)) 155 static inline void append( __queue(T) & this, T * val ) with( this ) { 156 verify(tail != NULL); 157 *tail = val; 158 tail = &get_next( *val ); 159 } 160 161 forall(dtype T | is_node(T) | sized(T)) 162 static inline T * pop_head( __queue(T) & this ) { 163 T * head = this.head; 164 if( head ) { 165 this.head = get_next( *head ); 166 if( !get_next( *head ) ) { 167 this.tail = &this.head; 173 168 } 174 verify(*this.tail == 1p); 175 return 0p; 176 } 177 178 T * remove( __queue(T) & this, T ** it ) with( this ) { 179 T * val = *it; 180 verify( val ); 181 182 (*it) = get_next( *val ); 183 184 if( tail == &get_next( *val ) ) { 185 tail = it; 186 } 187 188 get_next( *val ) = 0p; 189 190 verify( (head == 1p) == (&head == tail) ); 191 verify( *tail == 1p ); 192 return val; 193 } 194 195 int ?!=?( const __queue(T) & this, __attribute__((unused)) zero_t zero ) { 196 return this.head != 0; 197 } 169 get_next( *head ) = NULL; 170 } 171 return head; 172 } 173 174 forall(dtype T | is_node(T) | sized(T)) 175 static inline T * remove( __queue(T) & this, T ** it ) with( this ) { 176 T * val = *it; 177 verify( val ); 178 179 (*it) = get_next( *val ); 180 181 if( tail == &get_next( *val ) ) { 182 tail = it; 183 } 184 185 get_next( *val ) = NULL; 186 187 verify( (head == NULL) == (&head == tail) ); 188 verify( *tail == NULL ); 189 return val; 190 } 191 192 forall(dtype T | is_node(T)) 193 static inline int ?!=?( const __queue(T) & this, __attribute__((unused)) zero_t zero ) { 194 return this.head != 0; 198 195 } 199 196 #endif … … 226 223 227 224 #ifdef __cforall 228 forall(dtype T ) 225 226 forall(dtype T | sized(T)) 229 227 static inline [void] ?{}( __dllist(T) & this, * [T * & next, T * & prev] ( T & ) __get ) { 230 this.head{ 0p};228 this.head{ NULL }; 231 229 this.__get = __get; 232 230 } … … 234 232 #define next 0 235 233 #define prev 1 236 static inline forall(dtype T) { 237 void push_front( __dllist(T) & this, T & node ) with( this ) { 238 verify(__get); 239 if ( head ) { 240 __get( node ).next = head; 241 __get( node ).prev = __get( *head ).prev; 242 // inserted node must be consistent before it is seen 243 // prevent code movement across barrier 244 asm( "" : : : "memory" ); 245 __get( *head ).prev = &node; 246 T & _prev = *__get( node ).prev; 247 __get( _prev ).next = &node; 248 } else { 249 __get( node ).next = &node; 250 __get( node ).prev = &node; 251 } 252 234 forall(dtype T | sized(T)) 235 static inline void push_front( __dllist(T) & this, T & node ) with( this ) { 236 verify(__get); 237 if ( head ) { 238 __get( node ).next = head; 239 __get( node ).prev = __get( *head ).prev; 240 // inserted node must be consistent before it is seen 253 241 // prevent code movement across barrier 254 242 asm( "" : : : "memory" ); 255 head = &node; 256 } 257 258 void remove( __dllist(T) & this, T & node ) with( this ) { 259 verify(__get); 260 if ( &node == head ) { 261 if ( __get( *head ).next == head ) { 262 head = 0p; 263 } else { 264 head = __get( *head ).next; 265 } 243 __get( *head ).prev = &node; 244 T & _prev = *__get( node ).prev; 245 __get( _prev ).next = &node; 246 } 247 else { 248 __get( node ).next = &node; 249 __get( node ).prev = &node; 250 } 251 252 // prevent code movement across barrier 253 asm( "" : : : "memory" ); 254 head = &node; 255 } 256 257 forall(dtype T | sized(T)) 258 static inline void remove( __dllist(T) & this, T & node ) with( this ) { 259 verify(__get); 260 if ( &node == head ) { 261 if ( __get( *head ).next == head ) { 262 head = NULL; 266 263 } 267 __get( *__get( node ).next ).prev = __get( node ).prev; 268 __get( *__get( node ).prev ).next = __get( node ).next; 269 __get( node ).next = 0p; 270 __get( node ).prev = 0p; 271 } 272 273 int ?!=?( const __dllist(T) & this, __attribute__((unused)) zero_t zero ) { 274 return this.head != 0; 275 } 276 277 void move_to_front( __dllist(T) & src, __dllist(T) & dst, T & node ) { 278 remove (src, node); 279 push_front(dst, node); 280 } 264 else { 265 head = __get( *head ).next; 266 } 267 } 268 __get( *__get( node ).next ).prev = __get( node ).prev; 269 __get( *__get( node ).prev ).next = __get( node ).next; 270 __get( node ).next = NULL; 271 __get( node ).prev = NULL; 272 } 273 274 forall(dtype T | sized(T)) 275 static inline int ?!=?( const __dllist(T) & this, __attribute__((unused)) zero_t zero ) { 276 return this.head != 0; 281 277 } 282 278 #undef next … … 290 286 291 287 #endif 292 293 // Local Variables: //294 // tab-width: 4 //295 // End: // -
libcfa/src/bits/debug.cfa
r7030dab r71d6bd8 10 10 // Created On : Thu Mar 30 12:30:01 2017 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Tue Feb 4 13:03:16 202013 // Update Count : 1112 // Last Modified On : Sun Jul 14 22:17:35 2019 13 // Update Count : 4 14 14 // 15 15 … … 27 27 28 28 extern "C" { 29 void __cfaabi_bits_write( int fd, const char in_buffer[], int len ) { 29 30 void __cfaabi_dbg_bits_write( const char *in_buffer, int len ) { 30 31 // ensure all data is written 31 32 for ( int count = 0, retcode; count < len; count += retcode ) { … … 33 34 34 35 for ( ;; ) { 35 retcode = write( fd, in_buffer, len - count );36 retcode = write( STDERR_FILENO, in_buffer, len - count ); 36 37 37 38 // not a timer interrupt ? … … 43 44 } 44 45 45 void __cfaabi_ bits_acquire() __attribute__((__weak__)) {}46 void __cfaabi_ bits_release() __attribute__((__weak__)) {}46 void __cfaabi_dbg_bits_acquire() __attribute__((__weak__)) {} 47 void __cfaabi_dbg_bits_release() __attribute__((__weak__)) {} 47 48 48 void __cfaabi_ bits_print_safe ( int fd, const char fmt[], ... ) __attribute__(( format(printf, 2, 3) )) {49 void __cfaabi_dbg_bits_print_safe ( const char fmt[], ... ) __attribute__(( format(printf, 1, 2) )) { 49 50 va_list args; 50 51 51 52 va_start( args, fmt ); 52 __cfaabi_ bits_acquire();53 __cfaabi_dbg_bits_acquire(); 53 54 54 55 int len = vsnprintf( buffer, buffer_size, fmt, args ); 55 __cfaabi_ bits_write( fd,buffer, len );56 __cfaabi_dbg_bits_write( buffer, len ); 56 57 57 __cfaabi_ bits_release();58 __cfaabi_dbg_bits_release(); 58 59 va_end( args ); 59 60 } 60 61 61 void __cfaabi_ bits_print_nolock( int fd, const char fmt[], ... ) __attribute__(( format(printf, 2, 3) )) {62 void __cfaabi_dbg_bits_print_nolock( const char fmt[], ... ) __attribute__(( format(printf, 1, 2) )) { 62 63 va_list args; 63 64 … … 65 66 66 67 int len = vsnprintf( buffer, buffer_size, fmt, args ); 67 __cfaabi_ bits_write( fd,buffer, len );68 __cfaabi_dbg_bits_write( buffer, len ); 68 69 69 70 va_end( args ); 70 71 } 71 72 72 void __cfaabi_ bits_print_vararg( int fd,const char fmt[], va_list args ) {73 void __cfaabi_dbg_bits_print_vararg( const char fmt[], va_list args ) { 73 74 int len = vsnprintf( buffer, buffer_size, fmt, args ); 74 __cfaabi_ bits_write( fd,buffer, len );75 __cfaabi_dbg_bits_write( buffer, len ); 75 76 } 76 77 77 void __cfaabi_ bits_print_buffer( int fd, char in_buffer[], int in_buffer_size, const char fmt[], ... ) __attribute__(( format(printf, 4, 5) )) {78 void __cfaabi_dbg_bits_print_buffer( char in_buffer[], int in_buffer_size, const char fmt[], ... ) __attribute__(( format(printf, 3, 4) )) { 78 79 va_list args; 79 80 … … 81 82 82 83 int len = vsnprintf( in_buffer, in_buffer_size, fmt, args ); 83 __cfaabi_ bits_write( fd,in_buffer, len );84 __cfaabi_dbg_bits_write( in_buffer, len ); 84 85 85 86 va_end( args ); -
libcfa/src/bits/debug.hfa
r7030dab r71d6bd8 10 10 // Created On : Mon Nov 28 12:27:26 2016 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : T ue Feb 4 12:29:21 202013 // Update Count : 912 // Last Modified On : Thu Feb 8 12:35:19 2018 13 // Update Count : 2 14 14 // 15 15 … … 21 21 #define __cfaabi_dbg_ctx __PRETTY_FUNCTION__ 22 22 #define __cfaabi_dbg_ctx2 , __PRETTY_FUNCTION__ 23 #define __cfaabi_dbg_ctx_param const char caller[] 24 #define __cfaabi_dbg_ctx_param2 , const char caller[] 25 #define __cfaabi_dbg_ctx_fwd caller 26 #define __cfaabi_dbg_ctx_fwd2 , caller 23 #define __cfaabi_dbg_ctx_param const char * caller 24 #define __cfaabi_dbg_ctx_param2 , const char * caller 27 25 #else 28 26 #define __cfaabi_dbg_debug_do(...) … … 32 30 #define __cfaabi_dbg_ctx_param 33 31 #define __cfaabi_dbg_ctx_param2 34 #define __cfaabi_dbg_ctx_fwd35 #define __cfaabi_dbg_ctx_fwd236 32 #endif 37 33 … … 42 38 #include <stdio.h> 43 39 44 extern void __cfaabi_bits_write( int fd, const char buffer[], int len );45 extern void __cfaabi_bits_acquire();46 extern void __cfaabi_bits_release();47 extern void __cfaabi_bits_print_safe ( int fd, const char fmt[], ... ) __attribute__(( format(printf, 2, 3) ));48 extern void __cfaabi_bits_print_nolock( int fd, const char fmt[], ... ) __attribute__(( format(printf, 2, 3) ));49 extern void __cfaabi_bits_print_vararg( int fd,const char fmt[], va_list arg );50 extern void __cfaabi_bits_print_buffer( int fd, char buffer[], int buffer_size, const char fmt[], ... ) __attribute__(( format(printf, 4, 5) ));40 extern void __cfaabi_dbg_bits_write( const char *buffer, int len ); 41 extern void __cfaabi_dbg_bits_acquire(); 42 extern void __cfaabi_dbg_bits_release(); 43 extern void __cfaabi_dbg_bits_print_safe ( const char fmt[], ... ) __attribute__(( format(printf, 1, 2) )); 44 extern void __cfaabi_dbg_bits_print_nolock( const char fmt[], ... ) __attribute__(( format(printf, 1, 2) )); 45 extern void __cfaabi_dbg_bits_print_vararg( const char fmt[], va_list arg ); 46 extern void __cfaabi_dbg_bits_print_buffer( char buffer[], int buffer_size, const char fmt[], ... ) __attribute__(( format(printf, 3, 4) )); 51 47 #ifdef __cforall 52 48 } … … 54 50 55 51 #ifdef __CFA_DEBUG_PRINT__ 56 #define __cfaabi_dbg_write( buffer, len ) __cfaabi_ bits_write( STDERR_FILENO,buffer, len )57 #define __cfaabi_dbg_acquire() __cfaabi_ bits_acquire()58 #define __cfaabi_dbg_release() __cfaabi_ bits_release()59 #define __cfaabi_dbg_print_safe(...) __cfaabi_ bits_print_safe (__VA_ARGS__)60 #define __cfaabi_dbg_print_nolock(...) __cfaabi_ bits_print_nolock (__VA_ARGS__)61 #define __cfaabi_dbg_print_buffer(...) __cfaabi_ bits_print_buffer (__VA_ARGS__)62 #define __cfaabi_dbg_print_buffer_decl(...) char __dbg_text[256]; int __dbg_len = snprintf( __dbg_text, 256, __VA_ARGS__ ); __cfaabi_ bits_write( __dbg_text, __dbg_len );63 #define __cfaabi_dbg_print_buffer_local(...) __dbg_len = snprintf( __dbg_text, 256, __VA_ARGS__ ); __cfaabi_dbg_ write( __dbg_text, __dbg_len );52 #define __cfaabi_dbg_write( buffer, len ) __cfaabi_dbg_bits_write( buffer, len ) 53 #define __cfaabi_dbg_acquire() __cfaabi_dbg_bits_acquire() 54 #define __cfaabi_dbg_release() __cfaabi_dbg_bits_release() 55 #define __cfaabi_dbg_print_safe(...) __cfaabi_dbg_bits_print_safe (__VA_ARGS__) 56 #define __cfaabi_dbg_print_nolock(...) __cfaabi_dbg_bits_print_nolock (__VA_ARGS__) 57 #define __cfaabi_dbg_print_buffer(...) __cfaabi_dbg_bits_print_buffer (__VA_ARGS__) 58 #define __cfaabi_dbg_print_buffer_decl(...) char __dbg_text[256]; int __dbg_len = snprintf( __dbg_text, 256, __VA_ARGS__ ); __cfaabi_dbg_bits_write( __dbg_text, __dbg_len ); 59 #define __cfaabi_dbg_print_buffer_local(...) __dbg_len = snprintf( __dbg_text, 256, __VA_ARGS__ ); __cfaabi_dbg_bits_write( __dbg_text, __dbg_len ); 64 60 #else 65 61 #define __cfaabi_dbg_write(...) ((void)0) -
libcfa/src/bits/defs.hfa
r7030dab r71d6bd8 10 10 // Created On : Thu Nov 9 13:24:10 2017 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : T ue Jan 28 22:38:27 202013 // Update Count : 912 // Last Modified On : Thu Feb 8 16:22:41 2018 13 // Update Count : 8 14 14 // 15 15 … … 34 34 35 35 #ifdef __cforall 36 void abort( const char fmt[], ... ) __attribute__ (( format(printf, 1, 2), __nothrow__, __leaf__, __noreturn__ )); 37 void abort( bool signalAbort, const char fmt[], ... ) __attribute__ (( format(printf, 2, 3), __nothrow__, __leaf__, __noreturn__ )); 36 void abort ( const char fmt[], ... ) __attribute__ (( format(printf, 1, 2), __nothrow__, __leaf__, __noreturn__ )); 38 37 extern "C" { 39 38 #endif -
libcfa/src/bits/locks.hfa
r7030dab r71d6bd8 10 10 // Created On : Tue Oct 31 15:14:38 2017 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Tue Feb 4 13:03:19 202013 // Update Count : 1 112 // Last Modified On : Sat Aug 11 15:42:24 2018 13 // Update Count : 10 14 14 // 15 15 … … 54 54 55 55 #ifdef __CFA_DEBUG__ 56 void __cfaabi_dbg_record _lock(__spinlock_t & this, const char prev_name[]);56 void __cfaabi_dbg_record(__spinlock_t & this, const char * prev_name); 57 57 #else 58 #define __cfaabi_dbg_record _lock(x, y)58 #define __cfaabi_dbg_record(x, y) 59 59 #endif 60 60 } 61 62 extern void yield( unsigned int ); 61 63 62 64 static inline void ?{}( __spinlock_t & this ) { … … 66 68 // Lock the spinlock, return false if already acquired 67 69 static inline bool try_lock ( __spinlock_t & this __cfaabi_dbg_ctx_param2 ) { 68 disable_interrupts();69 70 bool result = (this.lock == 0) && (__atomic_test_and_set( &this.lock, __ATOMIC_ACQUIRE ) == 0); 70 71 if( result ) { 71 __cfaabi_dbg_record_lock( this, caller ); 72 } else { 73 enable_interrupts_noPoll(); 72 disable_interrupts(); 73 __cfaabi_dbg_record( this, caller ); 74 74 } 75 75 return result; … … 83 83 #endif 84 84 85 disable_interrupts();86 85 for ( unsigned int i = 1;; i += 1 ) { 87 86 if ( (this.lock == 0) && (__atomic_test_and_set( &this.lock, __ATOMIC_ACQUIRE ) == 0) ) break; … … 99 98 #endif 100 99 } 101 __cfaabi_dbg_record_lock( this, caller ); 100 disable_interrupts(); 101 __cfaabi_dbg_record( this, caller ); 102 102 } 103 103 104 104 static inline void unlock( __spinlock_t & this ) { 105 enable_interrupts_noPoll(); 105 106 __atomic_clear( &this.lock, __ATOMIC_RELEASE ); 106 enable_interrupts_noPoll();107 107 } 108 108 … … 139 139 } 140 140 141 static inline bool post(__bin_sem_t & this) with( this ) { 141 static inline void post(__bin_sem_t & this) with( this ) { 142 verify(__cfaabi_dbg_in_kernel()); 143 142 144 pthread_mutex_lock(&lock); 143 145 bool needs_signal = !signaled; … … 145 147 pthread_mutex_unlock(&lock); 146 148 147 if (needs_signal) pthread_cond_signal(&cond); 148 149 return needs_signal; 149 if (needs_signal) 150 pthread_cond_signal(&cond); 150 151 } 151 152 #endif -
libcfa/src/bits/signal.hfa
r7030dab r71d6bd8 37 37 38 38 act.sa_sigaction = (void (*)(int, siginfo_t *, void *))handler; 39 sigemptyset( &act.sa_mask );40 sigaddset( &act.sa_mask, SIGALRM ); // disabled during signal handler41 sigaddset( &act.sa_mask, SIGUSR1 );42 sigaddset( &act.sa_mask, SIGSEGV );43 sigaddset( &act.sa_mask, SIGBUS );44 sigaddset( &act.sa_mask, SIGILL );45 sigaddset( &act.sa_mask, SIGFPE );46 sigaddset( &act.sa_mask, SIGHUP ); // revert to default on second delivery47 sigaddset( &act.sa_mask, SIGTERM );48 sigaddset( &act.sa_mask, SIGINT );49 39 act.sa_flags = flags; 50 40 51 if ( sigaction( sig, &act, 0p) == -1 ) {41 if ( sigaction( sig, &act, NULL ) == -1 ) { 52 42 __cfaabi_dbg_print_buffer_decl( 53 43 " __cfaabi_sigaction( sig:%d, handler:%p, flags:%d ), problem installing signal handler, error(%d) %s.\n", … … 55 45 ); 56 46 _exit( EXIT_FAILURE ); 57 } // if47 } 58 48 } 49 50 // Sigaction wrapper : restore default handler 51 static void __cfaabi_sigdefault( int sig ) { 52 struct sigaction act; 53 54 act.sa_handler = SIG_DFL; 55 act.sa_flags = 0; 56 sigemptyset( &act.sa_mask ); 57 58 if ( sigaction( sig, &act, NULL ) == -1 ) { 59 __cfaabi_dbg_print_buffer_decl( 60 " __cfaabi_sigdefault( sig:%d ), problem reseting signal handler, error(%d) %s.\n", 61 sig, errno, strerror( errno ) 62 ); 63 _exit( EXIT_FAILURE ); 64 } 65 } -
libcfa/src/clock.hfa
r7030dab r71d6bd8 10 10 // Created On : Thu Apr 12 14:36:06 2018 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Mon Jan 6 12:49:58 202013 // Update Count : 912 // Last Modified On : Thu Jun 13 21:21:13 2019 13 // Update Count : 8 14 14 // 15 15 16 16 #include <time.hfa> 17 17 18 18 19 //######################### C time ######################### … … 25 26 static inline tm * localtime_r( time_t tp, tm * result ) { return localtime_r( &tp, result ); } 26 27 28 27 29 //######################### Clock ######################### 28 30 29 31 struct Clock { // private 30 32 Duration offset; // for virtual clock: contains offset from real-time 33 int clocktype; // implementation only -1 (virtual), CLOCK_REALTIME 31 34 }; 32 35 33 36 static inline { 37 void resetClock( Clock & clk ) with( clk ) { 38 clocktype = CLOCK_REALTIME_COARSE; 39 } // Clock::resetClock 40 34 41 void resetClock( Clock & clk, Duration adj ) with( clk ) { 42 clocktype = -1; 35 43 offset = adj + __timezone`s; // timezone (global) is (UTC - local time) in seconds 36 44 } // resetClock 37 45 46 void ?{}( Clock & clk ) { resetClock( clk ); } 38 47 void ?{}( Clock & clk, Duration adj ) { resetClock( clk, adj ); } 39 48 … … 80 89 return ret; 81 90 } // getTime 82 83 Time getCPUTime() {84 timespec ts;85 clock_gettime( CLOCK_THREAD_CPUTIME_ID, &ts );86 return (Time){ ts };87 } // getCPUTime88 91 } // distribution 89 92 -
libcfa/src/concurrency/CtxSwitch-arm.S
r7030dab r71d6bd8 13 13 .text 14 14 .align 2 15 .global __cfactx_switch16 .type __cfactx_switch, %function15 .global CtxSwitch 16 .type CtxSwitch, %function 17 17 18 __cfactx_switch:18 CtxSwitch: 19 19 @ save callee-saved registers: r4-r8, r10, r11, r13(sp) (plus r9 depending on platform specification) 20 20 @ I've seen reference to 31 registers on 64-bit, if this is the case, more need to be saved … … 52 52 mov r15, r14 53 53 #endif // R9_SPECIAL 54 54 55 55 .text 56 56 .align 2 57 .global __cfactx_invoke_stub58 .type __cfactx_invoke_stub, %function57 .global CtxInvokeStub 58 .type CtxInvokeStub, %function 59 59 60 __cfactx_invoke_stub:60 CtxInvokeStub: 61 61 ldmfd r13!, {r0-r1} 62 62 mov r15, r1 -
libcfa/src/concurrency/CtxSwitch-i386.S
r7030dab r71d6bd8 43 43 .text 44 44 .align 2 45 .globl __cfactx_switch46 .type __cfactx_switch, @function47 __cfactx_switch:45 .globl CtxSwitch 46 .type CtxSwitch, @function 47 CtxSwitch: 48 48 49 49 // Copy the "from" context argument from the stack to register eax … … 83 83 84 84 ret 85 .size __cfactx_switch, .-__cfactx_switch85 .size CtxSwitch, .-CtxSwitch 86 86 87 87 // Local Variables: // -
libcfa/src/concurrency/CtxSwitch-x86_64.S
r7030dab r71d6bd8 44 44 .text 45 45 .align 2 46 .globl __cfactx_switch47 .type __cfactx_switch, @function48 __cfactx_switch:46 .globl CtxSwitch 47 .type CtxSwitch, @function 48 CtxSwitch: 49 49 50 50 // Save volatile registers on the stack. … … 77 77 78 78 ret 79 .size __cfactx_switch, .-__cfactx_switch79 .size CtxSwitch, .-CtxSwitch 80 80 81 81 //----------------------------------------------------------------------------- … … 83 83 .text 84 84 .align 2 85 .globl __cfactx_invoke_stub86 .type __cfactx_invoke_stub, @function87 __cfactx_invoke_stub:85 .globl CtxInvokeStub 86 .type CtxInvokeStub, @function 87 CtxInvokeStub: 88 88 movq %rbx, %rdi 89 movq %r12, %rsi 90 jmp *%r13 91 .size __cfactx_invoke_stub, .-__cfactx_invoke_stub 89 jmp *%r12 90 .size CtxInvokeStub, .-CtxInvokeStub 92 91 93 92 // Local Variables: // -
libcfa/src/concurrency/alarm.cfa
r7030dab r71d6bd8 10 10 // Created On : Fri Jun 2 11:31:25 2017 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Sun Jan 5 08:41:36 202013 // Update Count : 6 912 // Last Modified On : Fri May 25 06:25:47 2018 13 // Update Count : 67 14 14 // 15 15 … … 39 39 40 40 void __kernel_set_timer( Duration alarm ) { 41 verifyf(alarm >= 1`us || alarm == 0, "Setting timer to < 1us (%jins)", alarm `ns);42 setitimer( ITIMER_REAL, &(itimerval){ alarm }, 0p);41 verifyf(alarm >= 1`us || alarm == 0, "Setting timer to < 1us (%jins)", alarm.tv); 42 setitimer( ITIMER_REAL, &(itimerval){ alarm }, NULL ); 43 43 } 44 44 … … 47 47 //============================================================================================= 48 48 49 void ?{}( alarm_node_t & this, $thread* thrd, Time alarm, Duration period ) with( this ) {49 void ?{}( alarm_node_t & this, thread_desc * thrd, Time alarm, Duration period ) with( this ) { 50 50 this.thrd = thrd; 51 51 this.alarm = alarm; … … 113 113 this->tail = &this->head; 114 114 } 115 head->next = 0p;115 head->next = NULL; 116 116 } 117 117 verify( validate( this ) ); … … 127 127 this->tail = it; 128 128 } 129 n->next = 0p;129 n->next = NULL; 130 130 131 131 verify( validate( this ) ); -
libcfa/src/concurrency/alarm.hfa
r7030dab r71d6bd8 23 23 #include "time.hfa" 24 24 25 struct $thread;25 struct thread_desc; 26 26 struct processor; 27 27 … … 43 43 44 44 union { 45 $thread* thrd; // thrd who created event45 thread_desc * thrd; // thrd who created event 46 46 processor * proc; // proc who created event 47 47 }; … … 53 53 typedef alarm_node_t ** __alarm_it_t; 54 54 55 void ?{}( alarm_node_t & this, $thread* thrd, Time alarm, Duration period );55 void ?{}( alarm_node_t & this, thread_desc * thrd, Time alarm, Duration period ); 56 56 void ?{}( alarm_node_t & this, processor * proc, Time alarm, Duration period ); 57 57 void ^?{}( alarm_node_t & this ); -
libcfa/src/concurrency/coroutine.cfa
r7030dab r71d6bd8 10 10 // Created On : Mon Nov 28 12:27:26 2016 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Tue Feb 4 12:29:25 202013 // Update Count : 1612 // Last Modified On : Fri Mar 30 17:20:57 2018 13 // Update Count : 9 14 14 // 15 15 … … 37 37 38 38 extern "C" { 39 void _CtxCoroutine_Unwind(struct _Unwind_Exception * storage, struct $coroutine*) __attribute__ ((__noreturn__));39 void _CtxCoroutine_Unwind(struct _Unwind_Exception * storage, struct coroutine_desc *) __attribute__ ((__noreturn__)); 40 40 static void _CtxCoroutine_UnwindCleanup(_Unwind_Reason_Code, struct _Unwind_Exception *) __attribute__ ((__noreturn__)); 41 41 static void _CtxCoroutine_UnwindCleanup(_Unwind_Reason_Code, struct _Unwind_Exception *) { … … 89 89 } 90 90 91 void ?{}( $coroutine & this, const char name[], void * storage, size_t storageSize ) with( this ) {92 (this.context){ 0p, 0p};91 void ?{}( coroutine_desc & this, const char * name, void * storage, size_t storageSize ) with( this ) { 92 (this.context){NULL, NULL}; 93 93 (this.stack){storage, storageSize}; 94 94 this.name = name; 95 95 state = Start; 96 starter = 0p;97 last = 0p;98 cancellation = 0p;99 } 100 101 void ^?{}( $coroutine& this) {96 starter = NULL; 97 last = NULL; 98 cancellation = NULL; 99 } 100 101 void ^?{}(coroutine_desc& this) { 102 102 if(this.state != Halted && this.state != Start && this.state != Primed) { 103 $coroutine* src = TL_GET( this_thread )->curr_cor;104 $coroutine* dst = &this;103 coroutine_desc * src = TL_GET( this_thread )->curr_cor; 104 coroutine_desc * dst = &this; 105 105 106 106 struct _Unwind_Exception storage; … … 115 115 } 116 116 117 $ctx_switch( src, dst );117 CoroutineCtxSwitch( src, dst ); 118 118 } 119 119 } … … 123 123 forall(dtype T | is_coroutine(T)) 124 124 void prime(T& cor) { 125 $coroutine* this = get_coroutine(cor);125 coroutine_desc* this = get_coroutine(cor); 126 126 assert(this->state == Start); 127 127 … … 131 131 132 132 [void *, size_t] __stack_alloc( size_t storageSize ) { 133 const size_t stack_data_size = libCeiling( sizeof(__stack_t), 16 ); // minimum alignment133 static const size_t stack_data_size = libCeiling( sizeof(__stack_t), 16 ); // minimum alignment 134 134 assert(__page_size != 0l); 135 135 size_t size = libCeiling( storageSize, 16 ) + stack_data_size; … … 157 157 158 158 void __stack_prepare( __stack_info_t * this, size_t create_size ) { 159 const size_t stack_data_size = libCeiling( sizeof(__stack_t), 16 ); // minimum alignment159 static const size_t stack_data_size = libCeiling( sizeof(__stack_t), 16 ); // minimum alignment 160 160 bool userStack; 161 161 void * storage; … … 187 187 // is not inline (We can't inline Cforall in C) 188 188 extern "C" { 189 void __cfactx_cor_leave( struct $coroutine * src ) { 190 $coroutine * starter = src->cancellation != 0 ? src->last : src->starter; 189 void __suspend_internal(void) { 190 suspend(); 191 } 192 193 void __leave_coroutine( coroutine_desc * src ) { 194 coroutine_desc * starter = src->cancellation != 0 ? src->last : src->starter; 191 195 192 196 src->state = Halted; … … 201 205 src->name, src, starter->name, starter ); 202 206 203 $ctx_switch( src, starter ); 204 } 205 206 struct $coroutine * __cfactx_cor_finish(void) { 207 struct $coroutine * cor = kernelTLS.this_thread->curr_cor; 208 209 if(cor->state == Primed) { 210 __cfactx_suspend(); 211 } 212 213 cor->state = Active; 214 215 return cor; 207 CoroutineCtxSwitch( src, starter ); 216 208 } 217 209 } -
libcfa/src/concurrency/coroutine.hfa
r7030dab r71d6bd8 10 10 // Created On : Mon Nov 28 12:27:26 2016 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Tue Feb 4 12:29:26 202013 // Update Count : 1112 // Last Modified On : Fri Jun 21 17:49:39 2019 13 // Update Count : 9 14 14 // 15 15 … … 25 25 trait is_coroutine(dtype T) { 26 26 void main(T & this); 27 $coroutine* get_coroutine(T & this);27 coroutine_desc * get_coroutine(T & this); 28 28 }; 29 29 30 #define DECL_COROUTINE(X) static inline $coroutine* get_coroutine(X& this) { return &this.__cor; } void main(X& this)30 #define DECL_COROUTINE(X) static inline coroutine_desc* get_coroutine(X& this) { return &this.__cor; } void main(X& this) 31 31 32 32 //----------------------------------------------------------------------------- … … 35 35 // void ^?{}( coStack_t & this ); 36 36 37 void ?{}( $coroutine & this, const char name[], void * storage, size_t storageSize );38 void ^?{}( $coroutine& this );37 void ?{}( coroutine_desc & this, const char * name, void * storage, size_t storageSize ); 38 void ^?{}( coroutine_desc & this ); 39 39 40 static inline void ?{}( $coroutine & this) { this{ "Anonymous Coroutine", 0p, 0 }; }41 static inline void ?{}( $coroutine & this, size_t stackSize) { this{ "Anonymous Coroutine", 0p, stackSize }; }42 static inline void ?{}( $coroutine& this, void * storage, size_t storageSize ) { this{ "Anonymous Coroutine", storage, storageSize }; }43 static inline void ?{}( $coroutine & this, const char name[]) { this{ name, 0p, 0 }; }44 static inline void ?{}( $coroutine & this, const char name[], size_t stackSize ) { this{ name, 0p, stackSize }; }40 static inline void ?{}( coroutine_desc & this) { this{ "Anonymous Coroutine", NULL, 0 }; } 41 static inline void ?{}( coroutine_desc & this, size_t stackSize) { this{ "Anonymous Coroutine", NULL, stackSize }; } 42 static inline void ?{}( coroutine_desc & this, void * storage, size_t storageSize ) { this{ "Anonymous Coroutine", storage, storageSize }; } 43 static inline void ?{}( coroutine_desc & this, const char * name) { this{ name, NULL, 0 }; } 44 static inline void ?{}( coroutine_desc & this, const char * name, size_t stackSize ) { this{ name, NULL, stackSize }; } 45 45 46 46 //----------------------------------------------------------------------------- 47 47 // Public coroutine API 48 static inline void suspend(void); 49 50 forall(dtype T | is_coroutine(T)) 51 static inline T & resume(T & cor); 52 48 53 forall(dtype T | is_coroutine(T)) 49 54 void prime(T & cor); 50 55 51 static inline struct $coroutine* active_coroutine() { return TL_GET( this_thread )->curr_cor; }56 static inline struct coroutine_desc * active_coroutine() { return TL_GET( this_thread )->curr_cor; } 52 57 53 58 //----------------------------------------------------------------------------- … … 56 61 // Start coroutine routines 57 62 extern "C" { 58 void __cfactx_invoke_coroutine(void (*main)(void *), void * this); 63 forall(dtype T | is_coroutine(T)) 64 void CtxInvokeCoroutine(T * this); 59 65 60 forall(dtype T)61 void __cfactx_start(void (*main)(T &), struct $coroutine * cor, T & this, void (*invoke)(void (*main)(void *), void*));66 forall(dtype T | is_coroutine(T)) 67 void CtxStart(T * this, void ( *invoke)(T *)); 62 68 63 extern void _ _cfactx_coroutine_unwind(struct _Unwind_Exception * storage, struct $coroutine*) __attribute__ ((__noreturn__));69 extern void _CtxCoroutine_Unwind(struct _Unwind_Exception * storage, struct coroutine_desc *) __attribute__ ((__noreturn__)); 64 70 65 extern void __cfactx_switch( struct __stack_context_t * from, struct __stack_context_t * to ) asm ("__cfactx_switch");71 extern void CtxSwitch( struct __stack_context_t * from, struct __stack_context_t * to ) asm ("CtxSwitch"); 66 72 } 67 73 68 74 // Private wrappers for context switch and stack creation 69 75 // Wrapper for co 70 static inline void $ctx_switch( $coroutine * src, $coroutine * dst ) __attribute__((nonnull (1, 2))) {76 static inline void CoroutineCtxSwitch(coroutine_desc* src, coroutine_desc* dst) { 71 77 // set state of current coroutine to inactive 72 src->state = src->state == Halted ? Halted : Blocked;78 src->state = src->state == Halted ? Halted : Inactive; 73 79 74 80 // set new coroutine that task is executing … … 77 83 // context switch to specified coroutine 78 84 verify( dst->context.SP ); 79 __cfactx_switch( &src->context, &dst->context );80 // when __cfactx_switch returns we are back in the src coroutine85 CtxSwitch( &src->context, &dst->context ); 86 // when CtxSwitch returns we are back in the src coroutine 81 87 82 88 // set state of new coroutine to active 83 89 src->state = Active; 84 90 85 if( unlikely(src->cancellation != 0p) ) {86 _ _cfactx_coroutine_unwind(src->cancellation, src);91 if( unlikely(src->cancellation != NULL) ) { 92 _CtxCoroutine_Unwind(src->cancellation, src); 87 93 } 88 94 } … … 91 97 92 98 // Suspend implementation inlined for performance 93 extern "C" { 94 static inline void __cfactx_suspend(void) { 95 // optimization : read TLS once and reuse it 96 // Safety note: this is preemption safe since if 97 // preemption occurs after this line, the pointer 98 // will also migrate which means this value will 99 // stay in syn with the TLS 100 $coroutine * src = TL_GET( this_thread )->curr_cor; 99 static inline void suspend(void) { 100 // optimization : read TLS once and reuse it 101 // Safety note: this is preemption safe since if 102 // preemption occurs after this line, the pointer 103 // will also migrate which means this value will 104 // stay in syn with the TLS 105 coroutine_desc * src = TL_GET( this_thread )->curr_cor; 101 106 102 103 104 105 106 107 108 109 107 assertf( src->last != 0, 108 "Attempt to suspend coroutine \"%.256s\" (%p) that has never been resumed.\n" 109 "Possible cause is a suspend executed in a member called by a coroutine user rather than by the coroutine main.", 110 src->name, src ); 111 assertf( src->last->state != Halted, 112 "Attempt by coroutine \"%.256s\" (%p) to suspend back to terminated coroutine \"%.256s\" (%p).\n" 113 "Possible cause is terminated coroutine's main routine has already returned.", 114 src->name, src, src->last->name, src->last ); 110 115 111 $ctx_switch( src, src->last ); 112 } 116 CoroutineCtxSwitch( src, src->last ); 113 117 } 114 118 … … 121 125 // will also migrate which means this value will 122 126 // stay in syn with the TLS 123 $coroutine* src = TL_GET( this_thread )->curr_cor;124 $coroutine* dst = get_coroutine(cor);127 coroutine_desc * src = TL_GET( this_thread )->curr_cor; 128 coroutine_desc * dst = get_coroutine(cor); 125 129 126 if( unlikely(dst->context.SP == 0p) ) { 127 TL_GET( this_thread )->curr_cor = dst; 130 if( unlikely(dst->context.SP == NULL) ) { 128 131 __stack_prepare(&dst->stack, 65000); 129 __cfactx_start(main, dst, cor, __cfactx_invoke_coroutine); 130 TL_GET( this_thread )->curr_cor = src; 132 CtxStart(&cor, CtxInvokeCoroutine); 131 133 } 132 134 … … 144 146 145 147 // always done for performance testing 146 $ctx_switch( src, dst );148 CoroutineCtxSwitch( src, dst ); 147 149 148 150 return cor; 149 151 } 150 152 151 static inline void resume( $coroutine * dst ) __attribute__((nonnull (1))) {153 static inline void resume(coroutine_desc * dst) { 152 154 // optimization : read TLS once and reuse it 153 155 // Safety note: this is preemption safe since if … … 155 157 // will also migrate which means this value will 156 158 // stay in syn with the TLS 157 $coroutine* src = TL_GET( this_thread )->curr_cor;159 coroutine_desc * src = TL_GET( this_thread )->curr_cor; 158 160 159 161 // not resuming self ? … … 169 171 170 172 // always done for performance testing 171 $ctx_switch( src, dst );173 CoroutineCtxSwitch( src, dst ); 172 174 } 173 175 -
libcfa/src/concurrency/invoke.c
r7030dab r71d6bd8 29 29 // Called from the kernel when starting a coroutine or task so must switch back to user mode. 30 30 31 extern struct $coroutine * __cfactx_cor_finish(void);32 extern void __ cfactx_cor_leave ( struct $coroutine* );33 extern void __ cfactx_thrd_leave();34 31 extern void __suspend_internal(void); 32 extern void __leave_coroutine( struct coroutine_desc * ); 33 extern void __finish_creation( struct thread_desc * ); 34 extern void __leave_thread_monitor( struct thread_desc * this ); 35 35 extern void disable_interrupts() OPTIONAL_THREAD; 36 36 extern void enable_interrupts( __cfaabi_dbg_ctx_param ); 37 37 38 void __cfactx_invoke_coroutine(38 void CtxInvokeCoroutine( 39 39 void (*main)(void *), 40 struct coroutine_desc *(*get_coroutine)(void *), 40 41 void *this 41 42 ) { 42 // Finish setting up the coroutine by setting its state 43 struct $coroutine * cor = __cfactx_cor_finish(); 43 struct coroutine_desc* cor = get_coroutine( this ); 44 44 45 // Call the main of the coroutine 45 if(cor->state == Primed) { 46 __suspend_internal(); 47 } 48 49 cor->state = Active; 50 46 51 main( this ); 47 52 48 53 //Final suspend, should never return 49 __ cfactx_cor_leave( cor );54 __leave_coroutine( cor ); 50 55 __cabi_abort( "Resumed dead coroutine" ); 51 56 } 52 57 53 static _Unwind_Reason_Code _ _cfactx_coroutine_unwindstop(58 static _Unwind_Reason_Code _CtxCoroutine_UnwindStop( 54 59 __attribute((__unused__)) int version, 55 60 _Unwind_Action actions, … … 62 67 // We finished unwinding the coroutine, 63 68 // leave it 64 __ cfactx_cor_leave( param );69 __leave_coroutine( param ); 65 70 __cabi_abort( "Resumed dead coroutine" ); 66 71 } … … 70 75 } 71 76 72 void _ _cfactx_coroutine_unwind(struct _Unwind_Exception * storage, struct $coroutine* cor) __attribute__ ((__noreturn__));73 void _ _cfactx_coroutine_unwind(struct _Unwind_Exception * storage, struct $coroutine* cor) {74 _Unwind_Reason_Code ret = _Unwind_ForcedUnwind( storage, _ _cfactx_coroutine_unwindstop, cor );77 void _CtxCoroutine_Unwind(struct _Unwind_Exception * storage, struct coroutine_desc * cor) __attribute__ ((__noreturn__)); 78 void _CtxCoroutine_Unwind(struct _Unwind_Exception * storage, struct coroutine_desc * cor) { 79 _Unwind_Reason_Code ret = _Unwind_ForcedUnwind( storage, _CtxCoroutine_UnwindStop, cor ); 75 80 printf("UNWIND ERROR %d after force unwind\n", ret); 76 81 abort(); 77 82 } 78 83 79 void __cfactx_invoke_thread( 84 void CtxInvokeThread( 85 void (*dtor)(void *), 80 86 void (*main)(void *), 87 struct thread_desc *(*get_thread)(void *), 81 88 void *this 82 89 ) { 90 // Fetch the thread handle from the user defined thread structure 91 struct thread_desc* thrd = get_thread( this ); 92 93 // First suspend, once the thread arrives here, 94 // the function pointer to main can be invalidated without risk 95 __finish_creation( thrd ); 96 83 97 // Officially start the thread by enabling preemption 84 98 enable_interrupts( __cfaabi_dbg_ctx ); … … 94 108 // The order of these 4 operations is very important 95 109 //Final suspend, should never return 96 __ cfactx_thrd_leave();110 __leave_thread_monitor( thrd ); 97 111 __cabi_abort( "Resumed dead thread" ); 98 112 } 99 113 100 void __cfactx_start( 114 115 void CtxStart( 101 116 void (*main)(void *), 102 struct $coroutine * cor,117 struct coroutine_desc *(*get_coroutine)(void *), 103 118 void *this, 104 119 void (*invoke)(void *) 105 120 ) { 121 struct coroutine_desc * cor = get_coroutine( this ); 106 122 struct __stack_t * stack = cor->stack.storage; 107 123 … … 122 138 123 139 fs->dummyReturn = NULL; 124 fs->argument[0] = main; // argument to invoke 125 fs->argument[1] = this; // argument to invoke 140 fs->argument[0] = this; // argument to invoke 126 141 fs->rturn = invoke; 127 142 … … 140 155 141 156 fs->dummyReturn = NULL; 142 fs->rturn = __cfactx_invoke_stub; 143 fs->fixedRegisters[0] = main; 144 fs->fixedRegisters[1] = this; 145 fs->fixedRegisters[2] = invoke; 157 fs->rturn = CtxInvokeStub; 158 fs->fixedRegisters[0] = this; 159 fs->fixedRegisters[1] = invoke; 146 160 147 161 #elif defined( __ARM_ARCH ) 148 #error ARM needs to be upgrade to use to parameters like X86/X64 (A.K.A. : I broke this and do not know how to fix it) 162 149 163 struct FakeStack { 150 164 float fpRegs[16]; // floating point registers … … 158 172 struct FakeStack *fs = (struct FakeStack *)cor->context.SP; 159 173 160 fs->intRegs[8] = __cfactx_invoke_stub;174 fs->intRegs[8] = CtxInvokeStub; 161 175 fs->arg[0] = this; 162 176 fs->arg[1] = invoke; -
libcfa/src/concurrency/invoke.h
r7030dab r71d6bd8 10 10 // Created On : Tue Jan 17 12:27:26 2016 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Thu Dec 5 16:26:03 201913 // Update Count : 4 412 // Last Modified On : Sat Jun 22 18:19:13 2019 13 // Update Count : 40 14 14 // 15 15 … … 47 47 extern "Cforall" { 48 48 extern __attribute__((aligned(128))) thread_local struct KernelThreadData { 49 struct $thread* volatile this_thread;49 struct thread_desc * volatile this_thread; 50 50 struct processor * volatile this_processor; 51 51 … … 92 92 }; 93 93 94 enum coroutine_state { Halted, Start, Primed, Blocked, Ready, Active, Rerun }; 95 enum __Preemption_Reason { __NO_PREEMPTION, __ALARM_PREEMPTION, __POLL_PREEMPTION, __MANUAL_PREEMPTION }; 96 97 struct $coroutine { 98 // context that is switch during a __cfactx_switch 94 enum coroutine_state { Halted, Start, Inactive, Active, Primed }; 95 96 struct coroutine_desc { 97 // context that is switch during a CtxSwitch 99 98 struct __stack_context_t context; 100 99 … … 109 108 110 109 // first coroutine to resume this one 111 struct $coroutine* starter;110 struct coroutine_desc * starter; 112 111 113 112 // last coroutine to resume this one 114 struct $coroutine* last;113 struct coroutine_desc * last; 115 114 116 115 // If non-null stack must be unwound with this exception … … 118 117 119 118 }; 120 121 static inline struct __stack_t * __get_stack( struct $coroutine * cor ) { return (struct __stack_t*)(((uintptr_t)cor->stack.storage) & ((uintptr_t)-2)); }122 119 123 120 // struct which calls the monitor is accepting … … 130 127 }; 131 128 132 struct $monitor{129 struct monitor_desc { 133 130 // spinlock to protect internal data 134 131 struct __spinlock_t lock; 135 132 136 133 // current owner of the monitor 137 struct $thread* owner;134 struct thread_desc * owner; 138 135 139 136 // queue of threads that are blocked waiting for the monitor 140 __queue_t(struct $thread) entry_queue;137 __queue_t(struct thread_desc) entry_queue; 141 138 142 139 // stack of conditions to run next once we exit the monitor … … 155 152 struct __monitor_group_t { 156 153 // currently held monitors 157 __cfa_anonymous_object( __small_array_t( $monitor*) );154 __cfa_anonymous_object( __small_array_t(monitor_desc*) ); 158 155 159 156 // last function that acquired monitors … … 161 158 }; 162 159 163 struct $thread{160 struct thread_desc { 164 161 // Core threading fields 165 // context that is switch during a __cfactx_switch162 // context that is switch during a CtxSwitch 166 163 struct __stack_context_t context; 167 164 168 165 // current execution status for coroutine 169 volatile int state; 170 enum __Preemption_Reason preempted; 166 enum coroutine_state state; 171 167 172 168 //SKULLDUGGERY errno is not save in the thread data structure because returnToKernel appears to be the only function to require saving and restoring it 173 169 174 170 // coroutine body used to store context 175 struct $coroutineself_cor;171 struct coroutine_desc self_cor; 176 172 177 173 // current active context 178 struct $coroutine* curr_cor;174 struct coroutine_desc * curr_cor; 179 175 180 176 // monitor body used for mutual exclusion 181 struct $monitorself_mon;177 struct monitor_desc self_mon; 182 178 183 179 // pointer to monitor with sufficient lifetime for current monitors 184 struct $monitor* self_mon_p;180 struct monitor_desc * self_mon_p; 185 181 186 182 // pointer to the cluster on which the thread is running … … 192 188 // Link lists fields 193 189 // instrusive link field for threads 194 struct $thread* next;190 struct thread_desc * next; 195 191 196 192 struct { 197 struct $thread* next;198 struct $thread* prev;193 struct thread_desc * next; 194 struct thread_desc * prev; 199 195 } node; 200 201 #ifdef __CFA_DEBUG__ 202 // previous function to park/unpark the thread 203 const char * park_caller; 204 enum coroutine_state park_result; 205 bool park_stale; 206 const char * unpark_caller; 207 enum coroutine_state unpark_result; 208 bool unpark_stale; 209 #endif 210 }; 211 212 #ifdef __CFA_DEBUG__ 213 void __cfaabi_dbg_record_thrd($thread & this, bool park, const char prev_name[]); 214 #else 215 #define __cfaabi_dbg_record_thrd(x, y, z) 216 #endif 196 }; 217 197 218 198 #ifdef __cforall 219 199 extern "Cforall" { 220 static inline $thread *& get_next( $thread & this ) __attribute__((const)) {200 static inline thread_desc *& get_next( thread_desc & this ) { 221 201 return this.next; 222 202 } 223 203 224 static inline [ $thread *&, $thread *& ] __get( $thread & this ) __attribute__((const)) {204 static inline [thread_desc *&, thread_desc *& ] __get( thread_desc & this ) { 225 205 return this.node.[next, prev]; 226 206 } 227 207 228 208 static inline void ?{}(__monitor_group_t & this) { 229 (this.data){ 0p};209 (this.data){NULL}; 230 210 (this.size){0}; 231 211 (this.func){NULL}; 232 212 } 233 213 234 static inline void ?{}(__monitor_group_t & this, struct $monitor** data, __lock_size_t size, fptr_t func) {214 static inline void ?{}(__monitor_group_t & this, struct monitor_desc ** data, __lock_size_t size, fptr_t func) { 235 215 (this.data){data}; 236 216 (this.size){size}; … … 238 218 } 239 219 240 static inline bool ?==?( const __monitor_group_t & lhs, const __monitor_group_t & rhs ) __attribute__((const)){220 static inline bool ?==?( const __monitor_group_t & lhs, const __monitor_group_t & rhs ) { 241 221 if( (lhs.data != 0) != (rhs.data != 0) ) return false; 242 222 if( lhs.size != rhs.size ) return false; … … 272 252 273 253 // assembler routines that performs the context switch 274 extern void __cfactx_invoke_stub( void );275 extern void __cfactx_switch( struct __stack_context_t * from, struct __stack_context_t * to ) asm ("__cfactx_switch");254 extern void CtxInvokeStub( void ); 255 extern void CtxSwitch( struct __stack_context_t * from, struct __stack_context_t * to ) asm ("CtxSwitch"); 276 256 // void CtxStore ( void * this ) asm ("CtxStore"); 277 257 // void CtxRet ( void * dst ) asm ("CtxRet"); -
libcfa/src/concurrency/kernel.cfa
r7030dab r71d6bd8 10 10 // Created On : Tue Jan 17 12:27:26 2017 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : T ue Feb 4 13:03:15 202013 // Update Count : 5812 // Last Modified On : Thu Jun 20 17:21:23 2019 13 // Update Count : 25 14 14 // 15 15 … … 26 26 #include <signal.h> 27 27 #include <unistd.h> 28 #include <limits.h> // PTHREAD_STACK_MIN29 #include <sys/mman.h> // mprotect30 28 } 31 29 … … 42 40 //----------------------------------------------------------------------------- 43 41 // Some assembly required 44 #if defined( __i386 )42 #if defined( __i386 ) 45 43 #define CtxGet( ctx ) \ 46 44 __asm__ volatile ( \ … … 110 108 //----------------------------------------------------------------------------- 111 109 //Start and stop routine for the kernel, declared first to make sure they run first 112 static void __kernel_startup (void) __attribute__(( constructor( STARTUP_PRIORITY_KERNEL ) )); 113 static void __kernel_shutdown(void) __attribute__(( destructor ( STARTUP_PRIORITY_KERNEL ) )); 114 115 //----------------------------------------------------------------------------- 116 // Kernel Scheduling logic 117 static $thread * __next_thread(cluster * this); 118 static void __run_thread(processor * this, $thread * dst); 119 static $thread * __halt(processor * this); 120 static bool __wake_one(cluster * cltr, bool was_empty); 121 static bool __wake_proc(processor *); 110 static void kernel_startup(void) __attribute__(( constructor( STARTUP_PRIORITY_KERNEL ) )); 111 static void kernel_shutdown(void) __attribute__(( destructor ( STARTUP_PRIORITY_KERNEL ) )); 122 112 123 113 //----------------------------------------------------------------------------- … … 125 115 KERNEL_STORAGE(cluster, mainCluster); 126 116 KERNEL_STORAGE(processor, mainProcessor); 127 KERNEL_STORAGE( $thread, mainThread);117 KERNEL_STORAGE(thread_desc, mainThread); 128 118 KERNEL_STORAGE(__stack_t, mainThreadCtx); 129 119 130 120 cluster * mainCluster; 131 121 processor * mainProcessor; 132 $thread* mainThread;122 thread_desc * mainThread; 133 123 134 124 extern "C" { 135 125 struct { __dllist_t(cluster) list; __spinlock_t lock; } __cfa_dbg_global_clusters; 136 126 } 137 127 … … 141 131 // Global state 142 132 thread_local struct KernelThreadData kernelTLS __attribute__ ((tls_model ( "initial-exec" ))) = { 143 NULL, // cannot use 0p133 NULL, 144 134 NULL, 145 135 { 1, false, false }, … … 150 140 // Struct to steal stack 151 141 struct current_stack_info_t { 152 __stack_t * storage; 153 void * base;// base of stack154 void * limit;// stack grows towards stack limit155 void * context;// address of cfa_context_t142 __stack_t * storage; // pointer to stack object 143 void *base; // base of stack 144 void *limit; // stack grows towards stack limit 145 void *context; // address of cfa_context_t 156 146 }; 157 147 … … 172 162 // Main thread construction 173 163 174 void ?{}( $coroutine& this, current_stack_info_t * info) with( this ) {164 void ?{}( coroutine_desc & this, current_stack_info_t * info) with( this ) { 175 165 stack.storage = info->storage; 176 166 with(*stack.storage) { … … 182 172 name = "Main Thread"; 183 173 state = Start; 184 starter = 0p;185 last = 0p;186 cancellation = 0p;187 } 188 189 void ?{}( $thread& this, current_stack_info_t * info) with( this ) {174 starter = NULL; 175 last = NULL; 176 cancellation = NULL; 177 } 178 179 void ?{}( thread_desc & this, current_stack_info_t * info) with( this ) { 190 180 state = Start; 191 181 self_cor{ info }; … … 195 185 self_mon.recursion = 1; 196 186 self_mon_p = &self_mon; 197 next = 0p;198 199 node.next = 0p;200 node.prev = 0p;187 next = NULL; 188 189 node.next = NULL; 190 node.prev = NULL; 201 191 doregister(curr_cluster, this); 202 192 … … 216 206 } 217 207 218 static void * __invoke_processor(void * arg); 219 220 void ?{}(processor & this, const char name[], cluster & cltr) with( this ) { 208 static void start(processor * this); 209 void ?{}(processor & this, const char * name, cluster & cltr) with( this ) { 221 210 this.name = name; 222 211 this.cltr = &cltr; 223 212 terminated{ 0 }; 224 destroyer = 0p;225 213 do_terminate = false; 226 preemption_alarm = 0p;214 preemption_alarm = NULL; 227 215 pending_preemption = false; 228 216 runner.proc = &this; 229 217 230 idle{}; 231 232 __cfaabi_dbg_print_safe("Kernel : Starting core %p\n", &this); 233 234 this.stack = __create_pthread( &this.kernel_thread, __invoke_processor, (void *)&this ); 235 236 __cfaabi_dbg_print_safe("Kernel : core %p started\n", &this); 218 idleLock{}; 219 220 start( &this ); 237 221 } 238 222 … … 242 226 243 227 __atomic_store_n(&do_terminate, true, __ATOMIC_RELAXED); 244 __wake_proc( &this );228 wake( &this ); 245 229 246 230 P( terminated ); … … 248 232 } 249 233 250 pthread_join( kernel_thread, 0p ); 251 free( this.stack ); 252 } 253 254 void ?{}(cluster & this, const char name[], Duration preemption_rate) with( this ) { 234 pthread_join( kernel_thread, NULL ); 235 } 236 237 void ?{}(cluster & this, const char * name, Duration preemption_rate) with( this ) { 255 238 this.name = name; 256 239 this.preemption_rate = preemption_rate; … … 272 255 // Kernel Scheduling logic 273 256 //============================================================================================= 257 static void runThread(processor * this, thread_desc * dst); 258 static void finishRunning(processor * this); 259 static void halt(processor * this); 260 274 261 //Main of the processor contexts 275 262 void main(processorCtx_t & runner) { … … 291 278 __cfaabi_dbg_print_safe("Kernel : core %p started\n", this); 292 279 293 $thread * readyThread = 0p; 294 for( unsigned int spin_count = 0; ! __atomic_load_n(&this->do_terminate, __ATOMIC_SEQ_CST); spin_count++ ) { 295 // Try to get the next thread 296 readyThread = __next_thread( this->cltr ); 297 298 // If no ready thread 299 if( readyThread == 0p ) { 300 // Block until a thread is ready 301 readyThread = __halt(this); 280 thread_desc * readyThread = NULL; 281 for( unsigned int spin_count = 0; ! __atomic_load_n(&this->do_terminate, __ATOMIC_SEQ_CST); spin_count++ ) 282 { 283 readyThread = nextThread( this->cltr ); 284 285 if(readyThread) 286 { 287 verify( ! kernelTLS.preemption_state.enabled ); 288 289 runThread(this, readyThread); 290 291 verify( ! kernelTLS.preemption_state.enabled ); 292 293 //Some actions need to be taken from the kernel 294 finishRunning(this); 295 296 spin_count = 0; 302 297 } 303 304 // Check if we actually found a thread 305 if( readyThread ) { 306 /* paranoid */ verify( ! kernelTLS.preemption_state.enabled ); 307 /* paranoid */ verifyf( readyThread->state == Ready || readyThread->preempted != __NO_PREEMPTION, "state : %d, preempted %d\n", readyThread->state, readyThread->preempted); 308 /* paranoid */ verifyf( readyThread->next == 0p, "Expected null got %p", readyThread->next ); 309 310 // We found a thread run it 311 __run_thread(this, readyThread); 312 313 /* paranoid */ verify( ! kernelTLS.preemption_state.enabled ); 298 else 299 { 300 // spin(this, &spin_count); 301 halt(this); 314 302 } 315 303 } … … 323 311 324 312 __cfaabi_dbg_print_safe("Kernel : core %p terminated\n", this); 325 326 // HACK : the coroutine context switch expects this_thread to be set327 // and it make sense for it to be set in all other cases except here328 // fake it329 if( this == mainProcessor ) kernelTLS.this_thread = mainThread;330 313 } 331 314 … … 336 319 // runThread runs a thread by context switching 337 320 // from the processor coroutine to the target thread 338 static void __run_thread(processor * this, $thread * thrd_dst) { 339 $coroutine * proc_cor = get_coroutine(this->runner); 321 static void runThread(processor * this, thread_desc * thrd_dst) { 322 coroutine_desc * proc_cor = get_coroutine(this->runner); 323 324 // Reset the terminating actions here 325 this->finish.action_code = No_Action; 340 326 341 327 // Update global state 342 328 kernelTLS.this_thread = thrd_dst; 343 329 344 // set state of processor coroutine to inactive 345 verify(proc_cor->state == Active); 346 proc_cor->state = Blocked; 347 348 // Actually run the thread 349 RUNNING: while(true) { 350 if(unlikely(thrd_dst->preempted)) { 351 thrd_dst->preempted = __NO_PREEMPTION; 352 verify(thrd_dst->state == Active || thrd_dst->state == Rerun); 353 } else { 354 verify(thrd_dst->state == Blocked || thrd_dst->state == Ready); // Ready means scheduled normally, blocked means rerun 355 thrd_dst->state = Active; 330 // set state of processor coroutine to inactive and the thread to active 331 proc_cor->state = proc_cor->state == Halted ? Halted : Inactive; 332 thrd_dst->state = Active; 333 334 // set context switch to the thread that the processor is executing 335 verify( thrd_dst->context.SP ); 336 CtxSwitch( &proc_cor->context, &thrd_dst->context ); 337 // when CtxSwitch returns we are back in the processor coroutine 338 339 // set state of processor coroutine to active and the thread to inactive 340 thrd_dst->state = thrd_dst->state == Halted ? Halted : Inactive; 341 proc_cor->state = Active; 342 } 343 344 // KERNEL_ONLY 345 static void returnToKernel() { 346 coroutine_desc * proc_cor = get_coroutine(kernelTLS.this_processor->runner); 347 thread_desc * thrd_src = kernelTLS.this_thread; 348 349 // set state of current coroutine to inactive 350 thrd_src->state = thrd_src->state == Halted ? Halted : Inactive; 351 proc_cor->state = Active; 352 int local_errno = *__volatile_errno(); 353 #if defined( __i386 ) || defined( __x86_64 ) 354 __x87_store; 355 #endif 356 357 // set new coroutine that the processor is executing 358 // and context switch to it 359 verify( proc_cor->context.SP ); 360 CtxSwitch( &thrd_src->context, &proc_cor->context ); 361 362 // set state of new coroutine to active 363 proc_cor->state = proc_cor->state == Halted ? Halted : Inactive; 364 thrd_src->state = Active; 365 366 #if defined( __i386 ) || defined( __x86_64 ) 367 __x87_load; 368 #endif 369 *__volatile_errno() = local_errno; 370 } 371 372 // KERNEL_ONLY 373 // Once a thread has finished running, some of 374 // its final actions must be executed from the kernel 375 static void finishRunning(processor * this) with( this->finish ) { 376 verify( ! kernelTLS.preemption_state.enabled ); 377 choose( action_code ) { 378 case No_Action: 379 break; 380 case Release: 381 unlock( *lock ); 382 case Schedule: 383 ScheduleThread( thrd ); 384 case Release_Schedule: 385 unlock( *lock ); 386 ScheduleThread( thrd ); 387 case Release_Multi: 388 for(int i = 0; i < lock_count; i++) { 389 unlock( *locks[i] ); 356 390 } 357 358 __cfaabi_dbg_debug_do( 359 thrd_dst->park_stale = true; 360 thrd_dst->unpark_stale = true; 361 ) 362 363 /* paranoid */ verify( ! kernelTLS.preemption_state.enabled ); 364 /* paranoid */ verifyf( ((uintptr_t)thrd_dst->context.SP) < ((uintptr_t)__get_stack(thrd_dst->curr_cor)->base ) || thrd_dst->curr_cor == proc_cor, "ERROR : Destination $thread %p has been corrupted.\n StackPointer too small.\n", thrd_dst ); // add escape condition if we are setting up the processor 365 /* paranoid */ verifyf( ((uintptr_t)thrd_dst->context.SP) > ((uintptr_t)__get_stack(thrd_dst->curr_cor)->limit) || thrd_dst->curr_cor == proc_cor, "ERROR : Destination $thread %p has been corrupted.\n StackPointer too large.\n", thrd_dst ); // add escape condition if we are setting up the processor 366 367 // set context switch to the thread that the processor is executing 368 verify( thrd_dst->context.SP ); 369 __cfactx_switch( &proc_cor->context, &thrd_dst->context ); 370 // when __cfactx_switch returns we are back in the processor coroutine 371 372 /* paranoid */ verifyf( ((uintptr_t)thrd_dst->context.SP) > ((uintptr_t)__get_stack(thrd_dst->curr_cor)->limit), "ERROR : Destination $thread %p has been corrupted.\n StackPointer too large.\n", thrd_dst ); 373 /* paranoid */ verifyf( ((uintptr_t)thrd_dst->context.SP) < ((uintptr_t)__get_stack(thrd_dst->curr_cor)->base ), "ERROR : Destination $thread %p has been corrupted.\n StackPointer too small.\n", thrd_dst ); 374 /* paranoid */ verify( ! kernelTLS.preemption_state.enabled ); 375 376 377 // We just finished running a thread, there are a few things that could have happened. 378 // 1 - Regular case : the thread has blocked and now one has scheduled it yet. 379 // 2 - Racy case : the thread has blocked but someone has already tried to schedule it. 380 // 4 - Preempted 381 // In case 1, we may have won a race so we can't write to the state again. 382 // In case 2, we lost the race so we now own the thread. 383 384 if(unlikely(thrd_dst->preempted != __NO_PREEMPTION)) { 385 // The thread was preempted, reschedule it and reset the flag 386 __schedule_thread( thrd_dst ); 387 break RUNNING; 391 case Release_Multi_Schedule: 392 for(int i = 0; i < lock_count; i++) { 393 unlock( *locks[i] ); 388 394 } 389 390 // set state of processor coroutine to active and the thread to inactive 391 static_assert(sizeof(thrd_dst->state) == sizeof(int)); 392 enum coroutine_state old_state = __atomic_exchange_n(&thrd_dst->state, Blocked, __ATOMIC_SEQ_CST); 393 __cfaabi_dbg_debug_do( thrd_dst->park_result = old_state; ) 394 switch(old_state) { 395 case Halted: 396 // The thread has halted, it should never be scheduled/run again, leave it back to Halted and move on 397 thrd_dst->state = Halted; 398 399 // We may need to wake someone up here since 400 unpark( this->destroyer __cfaabi_dbg_ctx2 ); 401 this->destroyer = 0p; 402 break RUNNING; 403 case Active: 404 // This is case 1, the regular case, nothing more is needed 405 break RUNNING; 406 case Rerun: 407 // This is case 2, the racy case, someone tried to run this thread before it finished blocking 408 // In this case, just run it again. 409 continue RUNNING; 410 default: 411 // This makes no sense, something is wrong abort 412 abort("Finished running a thread that was Blocked/Start/Primed %d\n", old_state); 395 for(int i = 0; i < thrd_count; i++) { 396 ScheduleThread( thrds[i] ); 413 397 } 414 } 415 416 // Just before returning to the processor, set the processor coroutine to active 417 proc_cor->state = Active; 418 kernelTLS.this_thread = 0p; 419 } 420 421 // KERNEL_ONLY 422 void returnToKernel() { 423 /* paranoid */ verify( ! kernelTLS.preemption_state.enabled ); 424 $coroutine * proc_cor = get_coroutine(kernelTLS.this_processor->runner); 425 $thread * thrd_src = kernelTLS.this_thread; 426 427 // Run the thread on this processor 428 { 429 int local_errno = *__volatile_errno(); 430 #if defined( __i386 ) || defined( __x86_64 ) 431 __x87_store; 432 #endif 433 verify( proc_cor->context.SP ); 434 __cfactx_switch( &thrd_src->context, &proc_cor->context ); 435 #if defined( __i386 ) || defined( __x86_64 ) 436 __x87_load; 437 #endif 438 *__volatile_errno() = local_errno; 439 } 440 441 /* paranoid */ verify( ! kernelTLS.preemption_state.enabled ); 442 /* paranoid */ verifyf( ((uintptr_t)thrd_src->context.SP) < ((uintptr_t)__get_stack(thrd_src->curr_cor)->base ), "ERROR : Returning $thread %p has been corrupted.\n StackPointer too small.\n", thrd_src ); 443 /* paranoid */ verifyf( ((uintptr_t)thrd_src->context.SP) > ((uintptr_t)__get_stack(thrd_src->curr_cor)->limit), "ERROR : Returning $thread %p has been corrupted.\n StackPointer too large.\n", thrd_src ); 398 case Callback: 399 callback(); 400 default: 401 abort("KERNEL ERROR: Unexpected action to run after thread"); 402 } 444 403 } 445 404 … … 448 407 // This is the entry point for processors (kernel threads) 449 408 // It effectively constructs a coroutine by stealing the pthread stack 450 static void * __invoke_processor(void * arg) {409 static void * CtxInvokeProcessor(void * arg) { 451 410 processor * proc = (processor *) arg; 452 411 kernelTLS.this_processor = proc; 453 kernelTLS.this_thread = 0p;412 kernelTLS.this_thread = NULL; 454 413 kernelTLS.preemption_state.[enabled, disable_count] = [false, 1]; 455 414 // SKULLDUGGERY: We want to create a context for the processor coroutine … … 464 423 465 424 //Set global state 466 kernelTLS.this_thread = 0p;425 kernelTLS.this_thread = NULL; 467 426 468 427 //We now have a proper context from which to schedule threads … … 480 439 __cfaabi_dbg_print_safe("Kernel : core %p main ended (%p)\n", proc, &proc->runner); 481 440 482 return 0p; 483 } 484 485 static void Abort( int ret, const char func[] ) { 486 if ( ret ) { // pthread routines return errno values 487 abort( "%s : internal error, error(%d) %s.", func, ret, strerror( ret ) ); 488 } // if 489 } // Abort 490 491 void * __create_pthread( pthread_t * pthread, void * (*start)(void *), void * arg ) { 492 pthread_attr_t attr; 493 494 Abort( pthread_attr_init( &attr ), "pthread_attr_init" ); // initialize attribute 495 496 size_t stacksize; 497 // default stack size, normally defined by shell limit 498 Abort( pthread_attr_getstacksize( &attr, &stacksize ), "pthread_attr_getstacksize" ); 499 assert( stacksize >= PTHREAD_STACK_MIN ); 500 501 void * stack; 502 __cfaabi_dbg_debug_do( 503 stack = memalign( __page_size, stacksize + __page_size ); 504 // pthread has no mechanism to create the guard page in user supplied stack. 505 if ( mprotect( stack, __page_size, PROT_NONE ) == -1 ) { 506 abort( "mprotect : internal error, mprotect failure, error(%d) %s.", errno, strerror( errno ) ); 507 } // if 508 ); 509 __cfaabi_dbg_no_debug_do( 510 stack = malloc( stacksize ); 511 ); 512 513 Abort( pthread_attr_setstack( &attr, stack, stacksize ), "pthread_attr_setstack" ); 514 515 Abort( pthread_create( pthread, &attr, start, arg ), "pthread_create" ); 516 return stack; 441 return NULL; 442 } 443 444 static void start(processor * this) { 445 __cfaabi_dbg_print_safe("Kernel : Starting core %p\n", this); 446 447 pthread_create( &this->kernel_thread, NULL, CtxInvokeProcessor, (void*)this ); 448 449 __cfaabi_dbg_print_safe("Kernel : core %p started\n", this); 517 450 } 518 451 519 452 // KERNEL_ONLY 520 static void __kernel_first_resume( processor * this ) { 521 $thread * src = mainThread; 522 $coroutine * dst = get_coroutine(this->runner); 523 524 verify( ! kernelTLS.preemption_state.enabled ); 525 526 kernelTLS.this_thread->curr_cor = dst; 453 void kernel_first_resume( processor * this ) { 454 thread_desc * src = mainThread; 455 coroutine_desc * dst = get_coroutine(this->runner); 456 457 verify( ! kernelTLS.preemption_state.enabled ); 458 527 459 __stack_prepare( &dst->stack, 65000 ); 528 __cfactx_start(main, dst, this->runner, __cfactx_invoke_coroutine);460 CtxStart(&this->runner, CtxInvokeCoroutine); 529 461 530 462 verify( ! kernelTLS.preemption_state.enabled ); … … 533 465 dst->starter = dst->starter ? dst->starter : &src->self_cor; 534 466 535 // make sure the current state is still correct536 /* paranoid */ verify(src->state == Ready);467 // set state of current coroutine to inactive 468 src->state = src->state == Halted ? Halted : Inactive; 537 469 538 470 // context switch to specified coroutine 539 471 verify( dst->context.SP ); 540 __cfactx_switch( &src->context, &dst->context ); 541 // when __cfactx_switch returns we are back in the src coroutine 542 543 mainThread->curr_cor = &mainThread->self_cor; 544 545 // make sure the current state has been update 546 /* paranoid */ verify(src->state == Active); 472 CtxSwitch( &src->context, &dst->context ); 473 // when CtxSwitch returns we are back in the src coroutine 474 475 // set state of new coroutine to active 476 src->state = Active; 547 477 548 478 verify( ! kernelTLS.preemption_state.enabled ); … … 550 480 551 481 // KERNEL_ONLY 552 static void __kernel_last_resume( processor * this ) {553 $coroutine* src = &mainThread->self_cor;554 $coroutine* dst = get_coroutine(this->runner);482 void kernel_last_resume( processor * this ) { 483 coroutine_desc * src = &mainThread->self_cor; 484 coroutine_desc * dst = get_coroutine(this->runner); 555 485 556 486 verify( ! kernelTLS.preemption_state.enabled ); … … 558 488 verify( dst->context.SP ); 559 489 560 // SKULLDUGGERY in debug the processors check that the561 // stack is still within the limit of the stack limits after running a thread.562 // that check doesn't make sense if we context switch to the processor using the563 // coroutine semantics. Since this is a special case, use the current context564 // info to populate these fields.565 __cfaabi_dbg_debug_do(566 __stack_context_t ctx;567 CtxGet( ctx );568 mainThread->context.SP = ctx.SP;569 mainThread->context.FP = ctx.FP;570 )571 572 490 // context switch to the processor 573 __cfactx_switch( &src->context, &dst->context );491 CtxSwitch( &src->context, &dst->context ); 574 492 } 575 493 576 494 //----------------------------------------------------------------------------- 577 495 // Scheduler routines 496 578 497 // KERNEL ONLY 579 void __schedule_thread( $thread * thrd ) with( *thrd->curr_cluster ) { 580 /* paranoid */ verify( ! kernelTLS.preemption_state.enabled ); 581 /* paranoid */ #if defined( __CFA_WITH_VERIFY__ ) 582 /* paranoid */ if( thrd->state == Blocked || thrd->state == Start ) assertf( thrd->preempted == __NO_PREEMPTION, 583 "Error inactive thread marked as preempted, state %d, preemption %d\n", thrd->state, thrd->preempted ); 584 /* paranoid */ if( thrd->preempted != __NO_PREEMPTION ) assertf(thrd->state == Active || thrd->state == Rerun, 585 "Error preempted thread marked as not currently running, state %d, preemption %d\n", thrd->state, thrd->preempted ); 586 /* paranoid */ #endif 587 /* paranoid */ verifyf( thrd->next == 0p, "Expected null got %p", thrd->next ); 588 589 if (thrd->preempted == __NO_PREEMPTION) thrd->state = Ready; 590 591 lock ( ready_queue_lock __cfaabi_dbg_ctx2 ); 592 bool was_empty = !(ready_queue != 0); 593 append( ready_queue, thrd ); 498 void ScheduleThread( thread_desc * thrd ) { 499 verify( thrd ); 500 verify( thrd->state != Halted ); 501 502 verify( ! kernelTLS.preemption_state.enabled ); 503 504 verifyf( thrd->next == NULL, "Expected null got %p", thrd->next ); 505 506 with( *thrd->curr_cluster ) { 507 lock ( ready_queue_lock __cfaabi_dbg_ctx2 ); 508 bool was_empty = !(ready_queue != 0); 509 append( ready_queue, thrd ); 510 unlock( ready_queue_lock ); 511 512 if(was_empty) { 513 lock (proc_list_lock __cfaabi_dbg_ctx2); 514 if(idles) { 515 wake_fast(idles.head); 516 } 517 unlock (proc_list_lock); 518 } 519 else if( struct processor * idle = idles.head ) { 520 wake_fast(idle); 521 } 522 523 } 524 525 verify( ! kernelTLS.preemption_state.enabled ); 526 } 527 528 // KERNEL ONLY 529 thread_desc * nextThread(cluster * this) with( *this ) { 530 verify( ! kernelTLS.preemption_state.enabled ); 531 lock( ready_queue_lock __cfaabi_dbg_ctx2 ); 532 thread_desc * head = pop_head( ready_queue ); 594 533 unlock( ready_queue_lock ); 595 596 __wake_one(thrd->curr_cluster, was_empty); 597 598 /* paranoid */ verify( ! kernelTLS.preemption_state.enabled ); 534 verify( ! kernelTLS.preemption_state.enabled ); 535 return head; 536 } 537 538 void BlockInternal() { 539 disable_interrupts(); 540 verify( ! kernelTLS.preemption_state.enabled ); 541 returnToKernel(); 542 verify( ! kernelTLS.preemption_state.enabled ); 543 enable_interrupts( __cfaabi_dbg_ctx ); 544 } 545 546 void BlockInternal( __spinlock_t * lock ) { 547 disable_interrupts(); 548 with( *kernelTLS.this_processor ) { 549 finish.action_code = Release; 550 finish.lock = lock; 551 } 552 553 verify( ! kernelTLS.preemption_state.enabled ); 554 returnToKernel(); 555 verify( ! kernelTLS.preemption_state.enabled ); 556 557 enable_interrupts( __cfaabi_dbg_ctx ); 558 } 559 560 void BlockInternal( thread_desc * thrd ) { 561 disable_interrupts(); 562 with( * kernelTLS.this_processor ) { 563 finish.action_code = Schedule; 564 finish.thrd = thrd; 565 } 566 567 verify( ! kernelTLS.preemption_state.enabled ); 568 returnToKernel(); 569 verify( ! kernelTLS.preemption_state.enabled ); 570 571 enable_interrupts( __cfaabi_dbg_ctx ); 572 } 573 574 void BlockInternal( __spinlock_t * lock, thread_desc * thrd ) { 575 assert(thrd); 576 disable_interrupts(); 577 with( * kernelTLS.this_processor ) { 578 finish.action_code = Release_Schedule; 579 finish.lock = lock; 580 finish.thrd = thrd; 581 } 582 583 verify( ! kernelTLS.preemption_state.enabled ); 584 returnToKernel(); 585 verify( ! kernelTLS.preemption_state.enabled ); 586 587 enable_interrupts( __cfaabi_dbg_ctx ); 588 } 589 590 void BlockInternal(__spinlock_t * locks [], unsigned short count) { 591 disable_interrupts(); 592 with( * kernelTLS.this_processor ) { 593 finish.action_code = Release_Multi; 594 finish.locks = locks; 595 finish.lock_count = count; 596 } 597 598 verify( ! kernelTLS.preemption_state.enabled ); 599 returnToKernel(); 600 verify( ! kernelTLS.preemption_state.enabled ); 601 602 enable_interrupts( __cfaabi_dbg_ctx ); 603 } 604 605 void BlockInternal(__spinlock_t * locks [], unsigned short lock_count, thread_desc * thrds [], unsigned short thrd_count) { 606 disable_interrupts(); 607 with( *kernelTLS.this_processor ) { 608 finish.action_code = Release_Multi_Schedule; 609 finish.locks = locks; 610 finish.lock_count = lock_count; 611 finish.thrds = thrds; 612 finish.thrd_count = thrd_count; 613 } 614 615 verify( ! kernelTLS.preemption_state.enabled ); 616 returnToKernel(); 617 verify( ! kernelTLS.preemption_state.enabled ); 618 619 enable_interrupts( __cfaabi_dbg_ctx ); 620 } 621 622 void BlockInternal(__finish_callback_fptr_t callback) { 623 disable_interrupts(); 624 with( *kernelTLS.this_processor ) { 625 finish.action_code = Callback; 626 finish.callback = callback; 627 } 628 629 verify( ! kernelTLS.preemption_state.enabled ); 630 returnToKernel(); 631 verify( ! kernelTLS.preemption_state.enabled ); 632 633 enable_interrupts( __cfaabi_dbg_ctx ); 599 634 } 600 635 601 636 // KERNEL ONLY 602 static $thread * __next_thread(cluster * this) with( *this ) { 603 /* paranoid */ verify( ! kernelTLS.preemption_state.enabled ); 604 605 lock( ready_queue_lock __cfaabi_dbg_ctx2 ); 606 $thread * head = pop_head( ready_queue ); 607 unlock( ready_queue_lock ); 608 609 /* paranoid */ verify( ! kernelTLS.preemption_state.enabled ); 610 return head; 611 } 612 613 void unpark( $thread * thrd __cfaabi_dbg_ctx_param2 ) { 614 if( !thrd ) return; 615 616 disable_interrupts(); 617 static_assert(sizeof(thrd->state) == sizeof(int)); 618 619 // record activity 620 __cfaabi_dbg_record_thrd( *thrd, false, caller ); 621 622 enum coroutine_state old_state = __atomic_exchange_n(&thrd->state, Rerun, __ATOMIC_SEQ_CST); 623 __cfaabi_dbg_debug_do( thrd->unpark_result = old_state; ) 624 switch(old_state) { 625 case Active: 626 // Wake won the race, the thread will reschedule/rerun itself 627 break; 628 case Blocked: 629 /* paranoid */ verify( ! thrd->preempted != __NO_PREEMPTION ); 630 631 // Wake lost the race, 632 thrd->state = Blocked; 633 __schedule_thread( thrd ); 634 break; 635 case Rerun: 636 abort("More than one thread attempted to schedule thread %p\n", thrd); 637 break; 638 case Halted: 639 case Start: 640 case Primed: 641 default: 642 // This makes no sense, something is wrong abort 643 abort(); 644 } 645 enable_interrupts( __cfaabi_dbg_ctx ); 646 } 647 648 void park( __cfaabi_dbg_ctx_param ) { 649 /* paranoid */ verify( kernelTLS.preemption_state.enabled ); 650 disable_interrupts(); 651 /* paranoid */ verify( ! kernelTLS.preemption_state.enabled ); 652 /* paranoid */ verify( kernelTLS.this_thread->preempted == __NO_PREEMPTION ); 653 654 // record activity 655 __cfaabi_dbg_record_thrd( *kernelTLS.this_thread, true, caller ); 637 void LeaveThread(__spinlock_t * lock, thread_desc * thrd) { 638 verify( ! kernelTLS.preemption_state.enabled ); 639 with( * kernelTLS.this_processor ) { 640 finish.action_code = thrd ? Release_Schedule : Release; 641 finish.lock = lock; 642 finish.thrd = thrd; 643 } 656 644 657 645 returnToKernel(); 658 659 /* paranoid */ verify( ! kernelTLS.preemption_state.enabled );660 enable_interrupts( __cfaabi_dbg_ctx );661 /* paranoid */ verify( kernelTLS.preemption_state.enabled );662 663 }664 665 // KERNEL ONLY666 void __leave_thread() {667 /* paranoid */ verify( ! kernelTLS.preemption_state.enabled );668 returnToKernel();669 abort();670 }671 672 // KERNEL ONLY673 bool force_yield( __Preemption_Reason reason ) {674 /* paranoid */ verify( kernelTLS.preemption_state.enabled );675 disable_interrupts();676 /* paranoid */ verify( ! kernelTLS.preemption_state.enabled );677 678 $thread * thrd = kernelTLS.this_thread;679 /* paranoid */ verify(thrd->state == Active || thrd->state == Rerun);680 681 // SKULLDUGGERY: It is possible that we are preempting this thread just before682 // it was going to park itself. If that is the case and it is already using the683 // intrusive fields then we can't use them to preempt the thread684 // If that is the case, abandon the preemption.685 bool preempted = false;686 if(thrd->next == 0p) {687 preempted = true;688 thrd->preempted = reason;689 returnToKernel();690 }691 692 /* paranoid */ verify( ! kernelTLS.preemption_state.enabled );693 enable_interrupts_noPoll();694 /* paranoid */ verify( kernelTLS.preemption_state.enabled );695 696 return preempted;697 646 } 698 647 … … 702 651 //----------------------------------------------------------------------------- 703 652 // Kernel boot procedures 704 static void __kernel_startup(void) {653 static void kernel_startup(void) { 705 654 verify( ! kernelTLS.preemption_state.enabled ); 706 655 __cfaabi_dbg_print_safe("Kernel : Starting\n"); … … 720 669 // SKULLDUGGERY: the mainThread steals the process main thread 721 670 // which will then be scheduled by the mainProcessor normally 722 mainThread = ( $thread*)&storage_mainThread;671 mainThread = (thread_desc *)&storage_mainThread; 723 672 current_stack_info_t info; 724 673 info.storage = (__stack_t*)&storage_mainThreadCtx; … … 732 681 void ?{}(processorCtx_t & this, processor * proc) { 733 682 (this.__cor){ "Processor" }; 734 this.__cor.starter = 0p;683 this.__cor.starter = NULL; 735 684 this.proc = proc; 736 685 } … … 741 690 terminated{ 0 }; 742 691 do_terminate = false; 743 preemption_alarm = 0p;692 preemption_alarm = NULL; 744 693 pending_preemption = false; 745 694 kernel_thread = pthread_self(); … … 763 712 // Add the main thread to the ready queue 764 713 // once resume is called on mainProcessor->runner the mainThread needs to be scheduled like any normal thread 765 __schedule_thread(mainThread);714 ScheduleThread(mainThread); 766 715 767 716 // SKULLDUGGERY: Force a context switch to the main processor to set the main thread's context to the current UNIX 768 // context. Hence, the main thread does not begin through __cfactx_invoke_thread, like all other threads. The trick here is that717 // context. Hence, the main thread does not begin through CtxInvokeThread, like all other threads. The trick here is that 769 718 // mainThread is on the ready queue when this call is made. 770 __kernel_first_resume( kernelTLS.this_processor );719 kernel_first_resume( kernelTLS.this_processor ); 771 720 772 721 … … 780 729 } 781 730 782 static void __kernel_shutdown(void) {731 static void kernel_shutdown(void) { 783 732 __cfaabi_dbg_print_safe("\n--------------------------------------------------\nKernel : Shutting down\n"); 784 733 785 /* paranoid */verify( TL_GET( preemption_state.enabled ) );734 verify( TL_GET( preemption_state.enabled ) ); 786 735 disable_interrupts(); 787 /* paranoid */verify( ! kernelTLS.preemption_state.enabled );736 verify( ! kernelTLS.preemption_state.enabled ); 788 737 789 738 // SKULLDUGGERY: Notify the mainProcessor it needs to terminates. … … 791 740 // which is currently here 792 741 __atomic_store_n(&mainProcessor->do_terminate, true, __ATOMIC_RELEASE); 793 __kernel_last_resume( kernelTLS.this_processor );742 kernel_last_resume( kernelTLS.this_processor ); 794 743 mainThread->self_cor.state = Halted; 795 744 … … 801 750 // Destroy the main processor and its context in reverse order of construction 802 751 // These were manually constructed so we need manually destroy them 803 ^(*mainProcessor){}; 752 ^(mainProcessor->runner){}; 753 ^(mainProcessor){}; 804 754 805 755 // Final step, destroy the main thread since it is no longer needed 806 756 // Since we provided a stack to this taxk it will not destroy anything 807 /* paranoid */ verify(mainThread->self_cor.stack.storage == (__stack_t*)(((uintptr_t)&storage_mainThreadCtx)| 0x1)); 808 ^(*mainThread){}; 757 ^(mainThread){}; 809 758 810 759 ^(__cfa_dbg_global_clusters.list){}; … … 815 764 816 765 //============================================================================================= 817 // Kernel Idle Sleep766 // Kernel Quiescing 818 767 //============================================================================================= 819 static $thread * __halt(processor * this) with( *this ) { 820 if( do_terminate ) return 0p; 821 822 // First, lock the cluster idle 823 lock( cltr->idle_lock __cfaabi_dbg_ctx2 ); 824 825 // Check if we can find a thread 826 if( $thread * found = __next_thread( cltr ) ) { 827 unlock( cltr->idle_lock ); 828 return found; 829 } 830 831 // Move this processor from the active list to the idle list 832 move_to_front(cltr->procs, cltr->idles, *this); 833 834 // Unlock the idle lock so we don't go to sleep with a lock 835 unlock (cltr->idle_lock); 836 837 // We are ready to sleep 768 static void halt(processor * this) with( *this ) { 769 // verify( ! __atomic_load_n(&do_terminate, __ATOMIC_SEQ_CST) ); 770 771 with( *cltr ) { 772 lock (proc_list_lock __cfaabi_dbg_ctx2); 773 remove (procs, *this); 774 push_front(idles, *this); 775 unlock (proc_list_lock); 776 } 777 838 778 __cfaabi_dbg_print_safe("Kernel : Processor %p ready to sleep\n", this); 839 wait( idle ); 840 841 // We have woken up 779 780 wait( idleLock ); 781 842 782 __cfaabi_dbg_print_safe("Kernel : Processor %p woke up and ready to run\n", this); 843 783 844 // Get ourself off the idle list845 784 with( *cltr ) { 846 lock (idle_lock __cfaabi_dbg_ctx2); 847 move_to_front(idles, procs, *this); 848 unlock(idle_lock); 849 } 850 851 // Don't check the ready queue again, we may not be in a position to run a thread 852 return 0p; 853 } 854 855 // Wake a thread from the front if there are any 856 static bool __wake_one(cluster * this, __attribute__((unused)) bool force) { 857 // if we don't want to force check if we know it's false 858 if( !this->idles.head && !force ) return false; 859 860 // First, lock the cluster idle 861 lock( this->idle_lock __cfaabi_dbg_ctx2 ); 862 863 // Check if there is someone to wake up 864 if( !this->idles.head ) { 865 // Nope unlock and return false 866 unlock( this->idle_lock ); 867 return false; 868 } 869 870 // Wake them up 871 post( this->idles.head->idle ); 872 873 // Unlock and return true 874 unlock( this->idle_lock ); 875 return true; 876 } 877 878 // Unconditionnaly wake a thread 879 static bool __wake_proc(processor * this) { 880 return post( this->idle ); 785 lock (proc_list_lock __cfaabi_dbg_ctx2); 786 remove (idles, *this); 787 push_front(procs, *this); 788 unlock (proc_list_lock); 789 } 881 790 } 882 791 … … 899 808 sigemptyset( &mask ); 900 809 sigaddset( &mask, SIGALRM ); // block SIGALRM signals 901 sigaddset( &mask, SIGUSR1 ); // block SIGALRM signals 902 sigsuspend( &mask ); // block the processor to prevent further damage during abort 903 _exit( EXIT_FAILURE ); // if processor unblocks before it is killed, terminate it 810 sigsuspend( &mask ); // block the processor to prevent further damage during abort 811 _exit( EXIT_FAILURE ); // if processor unblocks before it is killed, terminate it 904 812 } 905 813 else { … … 912 820 913 821 void kernel_abort_msg( void * kernel_data, char * abort_text, int abort_text_size ) { 914 $thread* thrd = kernel_data;822 thread_desc * thrd = kernel_data; 915 823 916 824 if(thrd) { 917 825 int len = snprintf( abort_text, abort_text_size, "Error occurred while executing thread %.256s (%p)", thrd->self_cor.name, thrd ); 918 __cfaabi_ bits_write( STDERR_FILENO,abort_text, len );826 __cfaabi_dbg_bits_write( abort_text, len ); 919 827 920 828 if ( &thrd->self_cor != thrd->curr_cor ) { 921 829 len = snprintf( abort_text, abort_text_size, " in coroutine %.256s (%p).\n", thrd->curr_cor->name, thrd->curr_cor ); 922 __cfaabi_ bits_write( STDERR_FILENO,abort_text, len );830 __cfaabi_dbg_bits_write( abort_text, len ); 923 831 } 924 832 else { 925 __cfaabi_ bits_write( STDERR_FILENO,".\n", 2 );833 __cfaabi_dbg_bits_write( ".\n", 2 ); 926 834 } 927 835 } 928 836 else { 929 837 int len = snprintf( abort_text, abort_text_size, "Error occurred outside of any thread.\n" ); 930 __cfaabi_ bits_write( STDERR_FILENO,abort_text, len );838 __cfaabi_dbg_bits_write( abort_text, len ); 931 839 } 932 840 } … … 939 847 940 848 extern "C" { 941 void __cfaabi_ bits_acquire() {849 void __cfaabi_dbg_bits_acquire() { 942 850 lock( kernel_debug_lock __cfaabi_dbg_ctx2 ); 943 851 } 944 852 945 void __cfaabi_ bits_release() {853 void __cfaabi_dbg_bits_release() { 946 854 unlock( kernel_debug_lock ); 947 855 } … … 968 876 969 877 // atomically release spin lock and block 970 unlock( lock ); 971 park( __cfaabi_dbg_ctx ); 878 BlockInternal( &lock ); 972 879 } 973 880 else { … … 976 883 } 977 884 978 boolV(semaphore & this) with( this ) {979 $thread * thrd = 0p;885 void V(semaphore & this) with( this ) { 886 thread_desc * thrd = NULL; 980 887 lock( lock __cfaabi_dbg_ctx2 ); 981 888 count += 1; … … 988 895 989 896 // make new owner 990 unpark( thrd __cfaabi_dbg_ctx2 ); 991 992 return thrd != 0p; 897 WakeThread( thrd ); 993 898 } 994 899 … … 1007 912 } 1008 913 1009 void doregister( cluster * cltr, $thread& thrd ) {914 void doregister( cluster * cltr, thread_desc & thrd ) { 1010 915 lock (cltr->thread_list_lock __cfaabi_dbg_ctx2); 1011 916 cltr->nthreads += 1; … … 1014 919 } 1015 920 1016 void unregister( cluster * cltr, $thread& thrd ) {921 void unregister( cluster * cltr, thread_desc & thrd ) { 1017 922 lock (cltr->thread_list_lock __cfaabi_dbg_ctx2); 1018 923 remove(cltr->threads, thrd ); … … 1022 927 1023 928 void doregister( cluster * cltr, processor * proc ) { 1024 lock (cltr-> idle_lock __cfaabi_dbg_ctx2);929 lock (cltr->proc_list_lock __cfaabi_dbg_ctx2); 1025 930 cltr->nprocessors += 1; 1026 931 push_front(cltr->procs, *proc); 1027 unlock (cltr-> idle_lock);932 unlock (cltr->proc_list_lock); 1028 933 } 1029 934 1030 935 void unregister( cluster * cltr, processor * proc ) { 1031 lock (cltr-> idle_lock __cfaabi_dbg_ctx2);936 lock (cltr->proc_list_lock __cfaabi_dbg_ctx2); 1032 937 remove(cltr->procs, *proc ); 1033 938 cltr->nprocessors -= 1; 1034 unlock(cltr-> idle_lock);939 unlock(cltr->proc_list_lock); 1035 940 } 1036 941 … … 1039 944 __cfaabi_dbg_debug_do( 1040 945 extern "C" { 1041 void __cfaabi_dbg_record _lock(__spinlock_t & this, const char prev_name[]) {946 void __cfaabi_dbg_record(__spinlock_t & this, const char * prev_name) { 1042 947 this.prev_name = prev_name; 1043 948 this.prev_thrd = kernelTLS.this_thread; 1044 949 } 1045 1046 void __cfaabi_dbg_record_thrd($thread & this, bool park, const char prev_name[]) {1047 if(park) {1048 this.park_caller = prev_name;1049 this.park_stale = false;1050 }1051 else {1052 this.unpark_caller = prev_name;1053 this.unpark_stale = false;1054 }1055 }1056 950 } 1057 951 ) … … 1059 953 //----------------------------------------------------------------------------- 1060 954 // Debug 1061 bool threading_enabled(void) __attribute__((const)){955 bool threading_enabled(void) { 1062 956 return true; 1063 957 } -
libcfa/src/concurrency/kernel.hfa
r7030dab r71d6bd8 10 10 // Created On : Tue Jan 17 12:27:26 2017 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Tue Feb 4 12:29:26 202013 // Update Count : 2212 // Last Modified On : Sat Jun 22 11:39:17 2019 13 // Update Count : 16 14 14 // 15 15 … … 20 20 #include "invoke.h" 21 21 #include "time_t.hfa" 22 #include "coroutine.hfa"23 22 24 23 extern "C" { … … 32 31 __spinlock_t lock; 33 32 int count; 34 __queue_t( $thread) waiting;33 __queue_t(thread_desc) waiting; 35 34 }; 36 35 … … 38 37 void ^?{}(semaphore & this); 39 38 void P (semaphore & this); 40 boolV (semaphore & this);39 void V (semaphore & this); 41 40 42 41 … … 44 43 // Processor 45 44 extern struct cluster * mainCluster; 45 46 enum FinishOpCode { No_Action, Release, Schedule, Release_Schedule, Release_Multi, Release_Multi_Schedule, Callback }; 47 48 typedef void (*__finish_callback_fptr_t)(void); 49 50 //TODO use union, many of these fields are mutually exclusive (i.e. MULTI vs NOMULTI) 51 struct FinishAction { 52 FinishOpCode action_code; 53 /* 54 // Union of possible actions 55 union { 56 // Option 1 : locks and threads 57 struct { 58 // 1 thread or N thread 59 union { 60 thread_desc * thrd; 61 struct { 62 thread_desc ** thrds; 63 unsigned short thrd_count; 64 }; 65 }; 66 // 1 lock or N lock 67 union { 68 __spinlock_t * lock; 69 struct { 70 __spinlock_t ** locks; 71 unsigned short lock_count; 72 }; 73 }; 74 }; 75 // Option 2 : action pointer 76 __finish_callback_fptr_t callback; 77 }; 78 /*/ 79 thread_desc * thrd; 80 thread_desc ** thrds; 81 unsigned short thrd_count; 82 __spinlock_t * lock; 83 __spinlock_t ** locks; 84 unsigned short lock_count; 85 __finish_callback_fptr_t callback; 86 //*/ 87 }; 88 static inline void ?{}(FinishAction & this) { 89 this.action_code = No_Action; 90 this.thrd = NULL; 91 this.lock = NULL; 92 } 93 static inline void ^?{}(FinishAction &) {} 46 94 47 95 // Processor … … 67 115 // RunThread data 68 116 // Action to do after a thread is ran 69 $thread * destroyer;117 struct FinishAction finish; 70 118 71 119 // Preemption data … … 76 124 bool pending_preemption; 77 125 78 // Idle lock (kernel semaphore)79 __bin_sem_t idle ;126 // Idle lock 127 __bin_sem_t idleLock; 80 128 81 129 // Termination … … 83 131 volatile bool do_terminate; 84 132 85 // Termination synchronisation (user semaphore)133 // Termination synchronisation 86 134 semaphore terminated; 87 88 // pthread Stack89 void * stack;90 135 91 136 // Link lists fields … … 101 146 }; 102 147 103 void ?{}(processor & this, const char name[], struct cluster & cltr);148 void ?{}(processor & this, const char * name, struct cluster & cltr); 104 149 void ^?{}(processor & this); 105 150 106 151 static inline void ?{}(processor & this) { this{ "Anonymous Processor", *mainCluster}; } 107 152 static inline void ?{}(processor & this, struct cluster & cltr) { this{ "Anonymous Processor", cltr}; } 108 static inline void ?{}(processor & this, const char name[]) { this{name, *mainCluster }; } 109 110 static inline [processor *&, processor *& ] __get( processor & this ) __attribute__((const)) { return this.node.[next, prev]; } 153 static inline void ?{}(processor & this, const char * name) { this{name, *mainCluster }; } 154 155 static inline [processor *&, processor *& ] __get( processor & this ) { 156 return this.node.[next, prev]; 157 } 111 158 112 159 //----------------------------------------------------------------------------- … … 117 164 118 165 // Ready queue for threads 119 __queue_t( $thread) ready_queue;166 __queue_t(thread_desc) ready_queue; 120 167 121 168 // Name of the cluster … … 126 173 127 174 // List of processors 128 __spinlock_t idle_lock;175 __spinlock_t proc_list_lock; 129 176 __dllist_t(struct processor) procs; 130 177 __dllist_t(struct processor) idles; … … 133 180 // List of threads 134 181 __spinlock_t thread_list_lock; 135 __dllist_t(struct $thread) threads;182 __dllist_t(struct thread_desc) threads; 136 183 unsigned int nthreads; 137 184 … … 144 191 extern Duration default_preemption(); 145 192 146 void ?{} (cluster & this, const char name[], Duration preemption_rate);193 void ?{} (cluster & this, const char * name, Duration preemption_rate); 147 194 void ^?{}(cluster & this); 148 195 149 196 static inline void ?{} (cluster & this) { this{"Anonymous Cluster", default_preemption()}; } 150 197 static inline void ?{} (cluster & this, Duration preemption_rate) { this{"Anonymous Cluster", preemption_rate}; } 151 static inline void ?{} (cluster & this, const char name[]) { this{name, default_preemption()}; } 152 153 static inline [cluster *&, cluster *& ] __get( cluster & this ) __attribute__((const)) { return this.node.[next, prev]; } 198 static inline void ?{} (cluster & this, const char * name) { this{name, default_preemption()}; } 199 200 static inline [cluster *&, cluster *& ] __get( cluster & this ) { 201 return this.node.[next, prev]; 202 } 154 203 155 204 static inline struct processor * active_processor() { return TL_GET( this_processor ); } // UNSAFE -
libcfa/src/concurrency/kernel_private.hfa
r7030dab r71d6bd8 10 10 // Created On : Mon Feb 13 12:27:26 2017 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Sat Nov 30 19:25:02 201913 // Update Count : 812 // Last Modified On : Thu Mar 29 14:06:40 2018 13 // Update Count : 3 14 14 // 15 15 … … 31 31 } 32 32 33 void __schedule_thread( $thread * ) __attribute__((nonnull (1))); 33 void ScheduleThread( thread_desc * ); 34 static inline void WakeThread( thread_desc * thrd ) { 35 if( !thrd ) return; 36 37 verify(thrd->state == Inactive); 38 39 disable_interrupts(); 40 ScheduleThread( thrd ); 41 enable_interrupts( __cfaabi_dbg_ctx ); 42 } 43 thread_desc * nextThread(cluster * this); 34 44 35 45 //Block current thread and release/wake-up the following resources 36 void __leave_thread() __attribute__((noreturn)); 46 void BlockInternal(void); 47 void BlockInternal(__spinlock_t * lock); 48 void BlockInternal(thread_desc * thrd); 49 void BlockInternal(__spinlock_t * lock, thread_desc * thrd); 50 void BlockInternal(__spinlock_t * locks [], unsigned short count); 51 void BlockInternal(__spinlock_t * locks [], unsigned short count, thread_desc * thrds [], unsigned short thrd_count); 52 void BlockInternal(__finish_callback_fptr_t callback); 53 void LeaveThread(__spinlock_t * lock, thread_desc * thrd); 37 54 38 55 //----------------------------------------------------------------------------- … … 40 57 void main(processorCtx_t *); 41 58 42 void * __create_pthread( pthread_t *, void * (*)(void *), void * ); 59 static inline void wake_fast(processor * this) { 60 __cfaabi_dbg_print_safe("Kernel : Waking up processor %p\n", this); 61 post( this->idleLock ); 62 } 43 63 44 64 static inline void wake(processor * this) { 65 disable_interrupts(); 66 wake_fast(this); 67 enable_interrupts( __cfaabi_dbg_ctx ); 68 } 45 69 46 70 struct event_kernel_t { … … 62 86 // Threads 63 87 extern "C" { 64 void __cfactx_invoke_thread(void (*main)(void *), void * this); 88 forall(dtype T | is_thread(T)) 89 void CtxInvokeThread(T * this); 65 90 } 66 91 92 extern void ThreadCtxSwitch(coroutine_desc * src, coroutine_desc * dst); 93 67 94 __cfaabi_dbg_debug_do( 68 extern void __cfaabi_dbg_thread_register ( $thread* thrd );69 extern void __cfaabi_dbg_thread_unregister( $thread* thrd );95 extern void __cfaabi_dbg_thread_register ( thread_desc * thrd ); 96 extern void __cfaabi_dbg_thread_unregister( thread_desc * thrd ); 70 97 ) 71 98 … … 74 101 #define KERNEL_STORAGE(T,X) static char storage_##X[sizeof(T)] 75 102 76 static inline uint32_t __tls_rand() {103 static inline uint32_t tls_rand() { 77 104 kernelTLS.rand_seed ^= kernelTLS.rand_seed << 6; 78 105 kernelTLS.rand_seed ^= kernelTLS.rand_seed >> 21; … … 85 112 void unregister( struct cluster & cltr ); 86 113 87 void doregister( struct cluster * cltr, struct $thread& thrd );88 void unregister( struct cluster * cltr, struct $thread& thrd );114 void doregister( struct cluster * cltr, struct thread_desc & thrd ); 115 void unregister( struct cluster * cltr, struct thread_desc & thrd ); 89 116 90 117 void doregister( struct cluster * cltr, struct processor * proc ); -
libcfa/src/concurrency/monitor.cfa
r7030dab r71d6bd8 5 5 // file "LICENCE" distributed with Cforall. 6 6 // 7 // $monitor.c --7 // monitor_desc.c -- 8 8 // 9 9 // Author : Thierry Delisle 10 10 // Created On : Thd Feb 23 12:27:26 2017 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Wed Dec 4 07:55:14 201913 // Update Count : 1012 // Last Modified On : Fri Mar 30 14:30:26 2018 13 // Update Count : 9 14 14 // 15 15 … … 27 27 //----------------------------------------------------------------------------- 28 28 // Forward declarations 29 static inline void __set_owner ( $monitor * this, $thread* owner );30 static inline void __set_owner ( $monitor * storage [], __lock_size_t count, $thread* owner );31 static inline void set_mask ( $monitor* storage [], __lock_size_t count, const __waitfor_mask_t & mask );32 static inline void reset_mask( $monitor* this );33 34 static inline $thread * next_thread( $monitor* this );35 static inline bool is_accepted( $monitor* this, const __monitor_group_t & monitors );29 static inline void set_owner ( monitor_desc * this, thread_desc * owner ); 30 static inline void set_owner ( monitor_desc * storage [], __lock_size_t count, thread_desc * owner ); 31 static inline void set_mask ( monitor_desc * storage [], __lock_size_t count, const __waitfor_mask_t & mask ); 32 static inline void reset_mask( monitor_desc * this ); 33 34 static inline thread_desc * next_thread( monitor_desc * this ); 35 static inline bool is_accepted( monitor_desc * this, const __monitor_group_t & monitors ); 36 36 37 37 static inline void lock_all ( __spinlock_t * locks [], __lock_size_t count ); 38 static inline void lock_all ( $monitor* source [], __spinlock_t * /*out*/ locks [], __lock_size_t count );38 static inline void lock_all ( monitor_desc * source [], __spinlock_t * /*out*/ locks [], __lock_size_t count ); 39 39 static inline void unlock_all( __spinlock_t * locks [], __lock_size_t count ); 40 static inline void unlock_all( $monitor* locks [], __lock_size_t count );41 42 static inline void save ( $monitor* ctx [], __lock_size_t count, __spinlock_t * locks [], unsigned int /*out*/ recursions [], __waitfor_mask_t /*out*/ masks [] );43 static inline void restore( $monitor* ctx [], __lock_size_t count, __spinlock_t * locks [], unsigned int /*in */ recursions [], __waitfor_mask_t /*in */ masks [] );44 45 static inline void init ( __lock_size_t count, $monitor* monitors [], __condition_node_t & waiter, __condition_criterion_t criteria [] );46 static inline void init_push( __lock_size_t count, $monitor* monitors [], __condition_node_t & waiter, __condition_criterion_t criteria [] );47 48 static inline $thread* check_condition ( __condition_criterion_t * );40 static inline void unlock_all( monitor_desc * locks [], __lock_size_t count ); 41 42 static inline void save ( monitor_desc * ctx [], __lock_size_t count, __spinlock_t * locks [], unsigned int /*out*/ recursions [], __waitfor_mask_t /*out*/ masks [] ); 43 static inline void restore( monitor_desc * ctx [], __lock_size_t count, __spinlock_t * locks [], unsigned int /*in */ recursions [], __waitfor_mask_t /*in */ masks [] ); 44 45 static inline void init ( __lock_size_t count, monitor_desc * monitors [], __condition_node_t & waiter, __condition_criterion_t criteria [] ); 46 static inline void init_push( __lock_size_t count, monitor_desc * monitors [], __condition_node_t & waiter, __condition_criterion_t criteria [] ); 47 48 static inline thread_desc * check_condition ( __condition_criterion_t * ); 49 49 static inline void brand_condition ( condition & ); 50 static inline [ $thread *, int] search_entry_queue( const __waitfor_mask_t &, $monitor* monitors [], __lock_size_t count );50 static inline [thread_desc *, int] search_entry_queue( const __waitfor_mask_t &, monitor_desc * monitors [], __lock_size_t count ); 51 51 52 52 forall(dtype T | sized( T )) 53 53 static inline __lock_size_t insert_unique( T * array [], __lock_size_t & size, T * val ); 54 54 static inline __lock_size_t count_max ( const __waitfor_mask_t & mask ); 55 static inline __lock_size_t aggregate ( $monitor* storage [], const __waitfor_mask_t & mask );55 static inline __lock_size_t aggregate ( monitor_desc * storage [], const __waitfor_mask_t & mask ); 56 56 57 57 //----------------------------------------------------------------------------- … … 68 68 69 69 #define monitor_ctx( mons, cnt ) /* Define that create the necessary struct for internal/external scheduling operations */ \ 70 $monitor** monitors = mons; /* Save the targeted monitors */ \70 monitor_desc ** monitors = mons; /* Save the targeted monitors */ \ 71 71 __lock_size_t count = cnt; /* Save the count to a local variable */ \ 72 72 unsigned int recursions[ count ]; /* Save the current recursion levels to restore them later */ \ … … 80 80 //----------------------------------------------------------------------------- 81 81 // Enter/Leave routines 82 // Enter single monitor 83 static void __enter( $monitor * this, const __monitor_group_t & group ) { 84 // Lock the monitor spinlock 85 lock( this->lock __cfaabi_dbg_ctx2 ); 86 // Interrupts disable inside critical section 87 $thread * thrd = kernelTLS.this_thread; 88 89 __cfaabi_dbg_print_safe( "Kernel : %10p Entering mon %p (%p)\n", thrd, this, this->owner); 90 91 if( !this->owner ) { 92 // No one has the monitor, just take it 93 __set_owner( this, thrd ); 94 95 __cfaabi_dbg_print_safe( "Kernel : mon is free \n" ); 96 } 97 else if( this->owner == thrd) { 98 // We already have the monitor, just note how many times we took it 99 this->recursion += 1; 100 101 __cfaabi_dbg_print_safe( "Kernel : mon already owned \n" ); 102 } 103 else if( is_accepted( this, group) ) { 104 // Some one was waiting for us, enter 105 __set_owner( this, thrd ); 106 107 // Reset mask 108 reset_mask( this ); 109 110 __cfaabi_dbg_print_safe( "Kernel : mon accepts \n" ); 111 } 112 else { 113 __cfaabi_dbg_print_safe( "Kernel : blocking \n" ); 114 115 // Some one else has the monitor, wait in line for it 116 /* paranoid */ verify( thrd->next == 0p ); 117 append( this->entry_queue, thrd ); 118 /* paranoid */ verify( thrd->next == 1p ); 119 120 unlock( this->lock ); 121 park( __cfaabi_dbg_ctx ); 82 83 84 extern "C" { 85 // Enter single monitor 86 static void __enter_monitor_desc( monitor_desc * this, const __monitor_group_t & group ) { 87 // Lock the monitor spinlock 88 lock( this->lock __cfaabi_dbg_ctx2 ); 89 // Interrupts disable inside critical section 90 thread_desc * thrd = kernelTLS.this_thread; 91 92 __cfaabi_dbg_print_safe( "Kernel : %10p Entering mon %p (%p)\n", thrd, this, this->owner); 93 94 if( !this->owner ) { 95 // No one has the monitor, just take it 96 set_owner( this, thrd ); 97 98 __cfaabi_dbg_print_safe( "Kernel : mon is free \n" ); 99 } 100 else if( this->owner == thrd) { 101 // We already have the monitor, just note how many times we took it 102 this->recursion += 1; 103 104 __cfaabi_dbg_print_safe( "Kernel : mon already owned \n" ); 105 } 106 else if( is_accepted( this, group) ) { 107 // Some one was waiting for us, enter 108 set_owner( this, thrd ); 109 110 // Reset mask 111 reset_mask( this ); 112 113 __cfaabi_dbg_print_safe( "Kernel : mon accepts \n" ); 114 } 115 else { 116 __cfaabi_dbg_print_safe( "Kernel : blocking \n" ); 117 118 // Some one else has the monitor, wait in line for it 119 append( this->entry_queue, thrd ); 120 121 BlockInternal( &this->lock ); 122 123 __cfaabi_dbg_print_safe( "Kernel : %10p Entered mon %p\n", thrd, this); 124 125 // BlockInternal will unlock spinlock, no need to unlock ourselves 126 return; 127 } 122 128 123 129 __cfaabi_dbg_print_safe( "Kernel : %10p Entered mon %p\n", thrd, this); 124 130 125 /* paranoid */ verifyf( kernelTLS.this_thread == this->owner, "Expected owner to be %p, got %p (r: %i, m: %p)", kernelTLS.this_thread, this->owner, this->recursion, this ); 126 return; 127 } 128 129 __cfaabi_dbg_print_safe( "Kernel : %10p Entered mon %p\n", thrd, this); 130 131 /* paranoid */ verifyf( kernelTLS.this_thread == this->owner, "Expected owner to be %p, got %p (r: %i, m: %p)", kernelTLS.this_thread, this->owner, this->recursion, this ); 132 /* paranoid */ verify( this->lock.lock ); 133 134 // Release the lock and leave 135 unlock( this->lock ); 136 return; 137 } 138 139 static void __dtor_enter( $monitor * this, fptr_t func ) { 140 // Lock the monitor spinlock 141 lock( this->lock __cfaabi_dbg_ctx2 ); 142 // Interrupts disable inside critical section 143 $thread * thrd = kernelTLS.this_thread; 144 145 __cfaabi_dbg_print_safe( "Kernel : %10p Entering dtor for mon %p (%p)\n", thrd, this, this->owner); 146 147 148 if( !this->owner ) { 149 __cfaabi_dbg_print_safe( "Kernel : Destroying free mon %p\n", this); 150 151 // No one has the monitor, just take it 152 __set_owner( this, thrd ); 153 154 verifyf( kernelTLS.this_thread == this->owner, "Expected owner to be %p, got %p (r: %i, m: %p)", kernelTLS.this_thread, this->owner, this->recursion, this ); 155 131 // Release the lock and leave 156 132 unlock( this->lock ); 157 133 return; 158 134 } 159 else if( this->owner == thrd) { 160 // We already have the monitor... but where about to destroy it so the nesting will fail 161 // Abort! 162 abort( "Attempt to destroy monitor %p by thread \"%.256s\" (%p) in nested mutex.", this, thrd->self_cor.name, thrd ); 163 } 164 165 __lock_size_t count = 1; 166 $monitor ** monitors = &this; 167 __monitor_group_t group = { &this, 1, func }; 168 if( is_accepted( this, group) ) { 169 __cfaabi_dbg_print_safe( "Kernel : mon accepts dtor, block and signal it \n" ); 170 171 // Wake the thread that is waiting for this 172 __condition_criterion_t * urgent = pop( this->signal_stack ); 173 /* paranoid */ verify( urgent ); 174 175 // Reset mask 176 reset_mask( this ); 177 178 // Create the node specific to this wait operation 179 wait_ctx_primed( thrd, 0 ) 180 181 // Some one else has the monitor, wait for him to finish and then run 135 136 static void __enter_monitor_dtor( monitor_desc * this, fptr_t func ) { 137 // Lock the monitor spinlock 138 lock( this->lock __cfaabi_dbg_ctx2 ); 139 // Interrupts disable inside critical section 140 thread_desc * thrd = kernelTLS.this_thread; 141 142 __cfaabi_dbg_print_safe( "Kernel : %10p Entering dtor for mon %p (%p)\n", thrd, this, this->owner); 143 144 145 if( !this->owner ) { 146 __cfaabi_dbg_print_safe( "Kernel : Destroying free mon %p\n", this); 147 148 // No one has the monitor, just take it 149 set_owner( this, thrd ); 150 151 unlock( this->lock ); 152 return; 153 } 154 else if( this->owner == thrd) { 155 // We already have the monitor... but where about to destroy it so the nesting will fail 156 // Abort! 157 abort( "Attempt to destroy monitor %p by thread \"%.256s\" (%p) in nested mutex.", this, thrd->self_cor.name, thrd ); 158 } 159 160 __lock_size_t count = 1; 161 monitor_desc ** monitors = &this; 162 __monitor_group_t group = { &this, 1, func }; 163 if( is_accepted( this, group) ) { 164 __cfaabi_dbg_print_safe( "Kernel : mon accepts dtor, block and signal it \n" ); 165 166 // Wake the thread that is waiting for this 167 __condition_criterion_t * urgent = pop( this->signal_stack ); 168 verify( urgent ); 169 170 // Reset mask 171 reset_mask( this ); 172 173 // Create the node specific to this wait operation 174 wait_ctx_primed( thrd, 0 ) 175 176 // Some one else has the monitor, wait for him to finish and then run 177 BlockInternal( &this->lock, urgent->owner->waiting_thread ); 178 179 // Some one was waiting for us, enter 180 set_owner( this, thrd ); 181 } 182 else { 183 __cfaabi_dbg_print_safe( "Kernel : blocking \n" ); 184 185 wait_ctx( thrd, 0 ) 186 this->dtor_node = &waiter; 187 188 // Some one else has the monitor, wait in line for it 189 append( this->entry_queue, thrd ); 190 BlockInternal( &this->lock ); 191 192 // BlockInternal will unlock spinlock, no need to unlock ourselves 193 return; 194 } 195 196 __cfaabi_dbg_print_safe( "Kernel : Destroying %p\n", this); 197 198 } 199 200 // Leave single monitor 201 void __leave_monitor_desc( monitor_desc * this ) { 202 // Lock the monitor spinlock 203 lock( this->lock __cfaabi_dbg_ctx2 ); 204 205 __cfaabi_dbg_print_safe( "Kernel : %10p Leaving mon %p (%p)\n", kernelTLS.this_thread, this, this->owner); 206 207 verifyf( kernelTLS.this_thread == this->owner, "Expected owner to be %p, got %p (r: %i, m: %p)", kernelTLS.this_thread, this->owner, this->recursion, this ); 208 209 // Leaving a recursion level, decrement the counter 210 this->recursion -= 1; 211 212 // If we haven't left the last level of recursion 213 // it means we don't need to do anything 214 if( this->recursion != 0) { 215 __cfaabi_dbg_print_safe( "Kernel : recursion still %d\n", this->recursion); 216 unlock( this->lock ); 217 return; 218 } 219 220 // Get the next thread, will be null on low contention monitor 221 thread_desc * new_owner = next_thread( this ); 222 223 // We can now let other threads in safely 182 224 unlock( this->lock ); 183 225 184 // Release the next thread 185 /* paranoid */ verifyf( urgent->owner->waiting_thread == this->owner, "Expected owner to be %p, got %p (r: %i, m: %p)", kernelTLS.this_thread, this->owner, this->recursion, this ); 186 unpark( urgent->owner->waiting_thread __cfaabi_dbg_ctx2 ); 187 188 // Park current thread waiting 189 park( __cfaabi_dbg_ctx ); 190 191 // Some one was waiting for us, enter 192 /* paranoid */ verifyf( kernelTLS.this_thread == this->owner, "Expected owner to be %p, got %p (r: %i, m: %p)", kernelTLS.this_thread, this->owner, this->recursion, this ); 193 } 194 else { 195 __cfaabi_dbg_print_safe( "Kernel : blocking \n" ); 196 197 wait_ctx( thrd, 0 ) 198 this->dtor_node = &waiter; 199 200 // Some one else has the monitor, wait in line for it 201 /* paranoid */ verify( thrd->next == 0p ); 202 append( this->entry_queue, thrd ); 203 /* paranoid */ verify( thrd->next == 1p ); 204 unlock( this->lock ); 205 206 // Park current thread waiting 207 park( __cfaabi_dbg_ctx ); 208 209 /* paranoid */ verifyf( kernelTLS.this_thread == this->owner, "Expected owner to be %p, got %p (r: %i, m: %p)", kernelTLS.this_thread, this->owner, this->recursion, this ); 210 return; 211 } 212 213 __cfaabi_dbg_print_safe( "Kernel : Destroying %p\n", this); 214 215 } 216 217 // Leave single monitor 218 void __leave( $monitor * this ) { 219 // Lock the monitor spinlock 220 lock( this->lock __cfaabi_dbg_ctx2 ); 221 222 __cfaabi_dbg_print_safe( "Kernel : %10p Leaving mon %p (%p)\n", kernelTLS.this_thread, this, this->owner); 223 224 /* paranoid */ verifyf( kernelTLS.this_thread == this->owner, "Expected owner to be %p, got %p (r: %i, m: %p)", kernelTLS.this_thread, this->owner, this->recursion, this ); 225 226 // Leaving a recursion level, decrement the counter 227 this->recursion -= 1; 228 229 // If we haven't left the last level of recursion 230 // it means we don't need to do anything 231 if( this->recursion != 0) { 232 __cfaabi_dbg_print_safe( "Kernel : recursion still %d\n", this->recursion); 233 unlock( this->lock ); 234 return; 235 } 236 237 // Get the next thread, will be null on low contention monitor 238 $thread * new_owner = next_thread( this ); 239 240 // Check the new owner is consistent with who we wake-up 241 // new_owner might be null even if someone owns the monitor when the owner is still waiting for another monitor 242 /* paranoid */ verifyf( !new_owner || new_owner == this->owner, "Expected owner to be %p, got %p (m: %p)", new_owner, this->owner, this ); 243 244 // We can now let other threads in safely 245 unlock( this->lock ); 246 247 //We need to wake-up the thread 248 /* paranoid */ verifyf( !new_owner || new_owner == this->owner, "Expected owner to be %p, got %p (m: %p)", new_owner, this->owner, this ); 249 unpark( new_owner __cfaabi_dbg_ctx2 ); 250 } 251 252 // Leave single monitor for the last time 253 void __dtor_leave( $monitor * this ) { 254 __cfaabi_dbg_debug_do( 255 if( TL_GET( this_thread ) != this->owner ) { 256 abort( "Destroyed monitor %p has inconsistent owner, expected %p got %p.\n", this, TL_GET( this_thread ), this->owner); 257 } 258 if( this->recursion != 1 ) { 259 abort( "Destroyed monitor %p has %d outstanding nested calls.\n", this, this->recursion - 1); 260 } 261 ) 262 } 263 264 extern "C" { 226 //We need to wake-up the thread 227 WakeThread( new_owner ); 228 } 229 230 // Leave single monitor for the last time 231 void __leave_dtor_monitor_desc( monitor_desc * this ) { 232 __cfaabi_dbg_debug_do( 233 if( TL_GET( this_thread ) != this->owner ) { 234 abort( "Destroyed monitor %p has inconsistent owner, expected %p got %p.\n", this, TL_GET( this_thread ), this->owner); 235 } 236 if( this->recursion != 1 ) { 237 abort( "Destroyed monitor %p has %d outstanding nested calls.\n", this, this->recursion - 1); 238 } 239 ) 240 } 241 265 242 // Leave the thread monitor 266 243 // last routine called by a thread. 267 244 // Should never return 268 void __cfactx_thrd_leave() { 269 $thread * thrd = TL_GET( this_thread ); 270 $monitor * this = &thrd->self_mon; 245 void __leave_thread_monitor( thread_desc * thrd ) { 246 monitor_desc * this = &thrd->self_mon; 271 247 272 248 // Lock the monitor now … … 275 251 disable_interrupts(); 276 252 277 thrd->s tate = Halted;278 279 /* paranoid */verifyf( thrd == this->owner, "Expected owner to be %p, got %p (r: %i, m: %p)", thrd, this->owner, this->recursion, this );253 thrd->self_cor.state = Halted; 254 255 verifyf( thrd == this->owner, "Expected owner to be %p, got %p (r: %i, m: %p)", thrd, this->owner, this->recursion, this ); 280 256 281 257 // Leaving a recursion level, decrement the counter … … 287 263 288 264 // Fetch the next thread, can be null 289 $thread * new_owner = next_thread( this ); 290 291 // Release the monitor lock 292 unlock( this->lock ); 293 294 // Unpark the next owner if needed 295 /* paranoid */ verifyf( !new_owner || new_owner == this->owner, "Expected owner to be %p, got %p (m: %p)", new_owner, this->owner, this ); 296 /* paranoid */ verify( ! kernelTLS.preemption_state.enabled ); 297 /* paranoid */ verify( ! kernelTLS.this_processor->destroyer ); 298 /* paranoid */ verify( thrd->state == Halted ); 299 300 kernelTLS.this_processor->destroyer = new_owner; 301 302 // Leave the thread 303 __leave_thread(); 265 thread_desc * new_owner = next_thread( this ); 266 267 // Leave the thread, this will unlock the spinlock 268 // Use leave thread instead of BlockInternal which is 269 // specialized for this case and supports null new_owner 270 LeaveThread( &this->lock, new_owner ); 304 271 305 272 // Control flow should never reach here! … … 311 278 static inline void enter( __monitor_group_t monitors ) { 312 279 for( __lock_size_t i = 0; i < monitors.size; i++) { 313 __enter ( monitors[i], monitors );280 __enter_monitor_desc( monitors[i], monitors ); 314 281 } 315 282 } … … 317 284 // Leave multiple monitor 318 285 // relies on the monitor array being sorted 319 static inline void leave( $monitor* monitors [], __lock_size_t count) {286 static inline void leave(monitor_desc * monitors [], __lock_size_t count) { 320 287 for( __lock_size_t i = count - 1; i >= 0; i--) { 321 __leave ( monitors[i] );288 __leave_monitor_desc( monitors[i] ); 322 289 } 323 290 } … … 325 292 // Ctor for monitor guard 326 293 // Sorts monitors before entering 327 void ?{}( monitor_guard_t & this, $monitor* m [], __lock_size_t count, fptr_t func ) {328 $thread* thrd = TL_GET( this_thread );294 void ?{}( monitor_guard_t & this, monitor_desc * m [], __lock_size_t count, fptr_t func ) { 295 thread_desc * thrd = TL_GET( this_thread ); 329 296 330 297 // Store current array … … 366 333 // Ctor for monitor guard 367 334 // Sorts monitors before entering 368 void ?{}( monitor_dtor_guard_t & this, $monitor* m [], fptr_t func ) {335 void ?{}( monitor_dtor_guard_t & this, monitor_desc * m [], fptr_t func ) { 369 336 // optimization 370 $thread* thrd = TL_GET( this_thread );337 thread_desc * thrd = TL_GET( this_thread ); 371 338 372 339 // Store current array … … 379 346 (thrd->monitors){m, 1, func}; 380 347 381 __ dtor_enter( this.m, func );348 __enter_monitor_dtor( this.m, func ); 382 349 } 383 350 … … 385 352 void ^?{}( monitor_dtor_guard_t & this ) { 386 353 // Leave the monitors in order 387 __ dtor_leave( this.m );354 __leave_dtor_monitor_desc( this.m ); 388 355 389 356 // Restore thread context … … 393 360 //----------------------------------------------------------------------------- 394 361 // Internal scheduling types 395 void ?{}(__condition_node_t & this, $thread* waiting_thread, __lock_size_t count, uintptr_t user_info ) {362 void ?{}(__condition_node_t & this, thread_desc * waiting_thread, __lock_size_t count, uintptr_t user_info ) { 396 363 this.waiting_thread = waiting_thread; 397 364 this.count = count; 398 this.next = 0p;365 this.next = NULL; 399 366 this.user_info = user_info; 400 367 } … … 402 369 void ?{}(__condition_criterion_t & this ) with( this ) { 403 370 ready = false; 404 target = 0p;405 owner = 0p;406 next = 0p;407 } 408 409 void ?{}(__condition_criterion_t & this, $monitor* target, __condition_node_t & owner ) {371 target = NULL; 372 owner = NULL; 373 next = NULL; 374 } 375 376 void ?{}(__condition_criterion_t & this, monitor_desc * target, __condition_node_t & owner ) { 410 377 this.ready = false; 411 378 this.target = target; 412 379 this.owner = &owner; 413 this.next = 0p;380 this.next = NULL; 414 381 } 415 382 … … 420 387 421 388 // Check that everything is as expected 422 assertf( this.monitors != 0p, "Waiting with no monitors (%p)", this.monitors );389 assertf( this.monitors != NULL, "Waiting with no monitors (%p)", this.monitors ); 423 390 verifyf( this.monitor_count != 0, "Waiting with 0 monitors (%"PRIiFAST16")", this.monitor_count ); 424 391 verifyf( this.monitor_count < 32u, "Excessive monitor count (%"PRIiFAST16")", this.monitor_count ); … … 432 399 // Append the current wait operation to the ones already queued on the condition 433 400 // We don't need locks for that since conditions must always be waited on inside monitor mutual exclusion 434 /* paranoid */ verify( waiter.next == 0p );435 401 append( this.blocked, &waiter ); 436 /* paranoid */ verify( waiter.next == 1p );437 402 438 403 // Lock all monitors (aggregates the locks as well) … … 441 406 // Find the next thread(s) to run 442 407 __lock_size_t thread_count = 0; 443 $thread* threads[ count ];408 thread_desc * threads[ count ]; 444 409 __builtin_memset( threads, 0, sizeof( threads ) ); 445 410 … … 449 414 // Remove any duplicate threads 450 415 for( __lock_size_t i = 0; i < count; i++) { 451 $thread* new_owner = next_thread( monitors[i] );416 thread_desc * new_owner = next_thread( monitors[i] ); 452 417 insert_unique( threads, thread_count, new_owner ); 453 418 } 454 419 455 // Unlock the locks, we don't need them anymore456 for(int i = 0; i < count; i++) {457 unlock( *locks[i] );458 }459 460 // Wake the threads461 for(int i = 0; i < thread_count; i++) {462 unpark( threads[i] __cfaabi_dbg_ctx2 );463 }464 465 420 // Everything is ready to go to sleep 466 park( __cfaabi_dbg_ctx);421 BlockInternal( locks, count, threads, thread_count ); 467 422 468 423 // We are back, restore the owners and recursions … … 479 434 //Some more checking in debug 480 435 __cfaabi_dbg_debug_do( 481 $thread* this_thrd = TL_GET( this_thread );436 thread_desc * this_thrd = TL_GET( this_thread ); 482 437 if ( this.monitor_count != this_thrd->monitors.size ) { 483 438 abort( "Signal on condition %p made with different number of monitor(s), expected %zi got %zi", &this, this.monitor_count, this_thrd->monitors.size ); … … 494 449 495 450 // Lock all monitors 496 lock_all( this.monitors, 0p, count );451 lock_all( this.monitors, NULL, count ); 497 452 498 453 //Pop the head of the waiting queue … … 516 471 517 472 //Check that everything is as expected 518 verifyf( this.monitors != 0p, "Waiting with no monitors (%p)", this.monitors );473 verifyf( this.monitors != NULL, "Waiting with no monitors (%p)", this.monitors ); 519 474 verifyf( this.monitor_count != 0, "Waiting with 0 monitors (%"PRIiFAST16")", this.monitor_count ); 520 475 … … 533 488 534 489 //Find the thread to run 535 $thread* signallee = pop_head( this.blocked )->waiting_thread;536 __set_owner( monitors, count, signallee );490 thread_desc * signallee = pop_head( this.blocked )->waiting_thread; 491 set_owner( monitors, count, signallee ); 537 492 538 493 __cfaabi_dbg_print_buffer_decl( "Kernel : signal_block condition %p (s: %p)\n", &this, signallee ); 539 494 540 // unlock all the monitors541 unlock_all( locks, count );542 543 // unpark the thread we signalled544 unpark( signallee __cfaabi_dbg_ctx2 );545 546 495 //Everything is ready to go to sleep 547 park( __cfaabi_dbg_ctx);496 BlockInternal( locks, count, &signallee, 1 ); 548 497 549 498 … … 586 535 // Create one! 587 536 __lock_size_t max = count_max( mask ); 588 $monitor* mon_storage[max];537 monitor_desc * mon_storage[max]; 589 538 __builtin_memset( mon_storage, 0, sizeof( mon_storage ) ); 590 539 __lock_size_t actual_count = aggregate( mon_storage, mask ); … … 604 553 { 605 554 // Check if the entry queue 606 $thread* next; int index;555 thread_desc * next; int index; 607 556 [next, index] = search_entry_queue( mask, monitors, count ); 608 557 … … 614 563 verifyf( accepted.size == 1, "ERROR: Accepted dtor has more than 1 mutex parameter." ); 615 564 616 $monitor* mon2dtor = accepted[0];565 monitor_desc * mon2dtor = accepted[0]; 617 566 verifyf( mon2dtor->dtor_node, "ERROR: Accepted monitor has no dtor_node." ); 618 567 … … 640 589 641 590 // Set the owners to be the next thread 642 __set_owner( monitors, count, next ); 643 644 // unlock all the monitors 645 unlock_all( locks, count ); 646 647 // unpark the thread we signalled 648 unpark( next __cfaabi_dbg_ctx2 ); 649 650 //Everything is ready to go to sleep 651 park( __cfaabi_dbg_ctx ); 591 set_owner( monitors, count, next ); 592 593 // Everything is ready to go to sleep 594 BlockInternal( locks, count, &next, 1 ); 652 595 653 596 // We are back, restore the owners and recursions … … 687 630 } 688 631 689 // unlock all the monitors690 unlock_all( locks, count );691 692 632 //Everything is ready to go to sleep 693 park( __cfaabi_dbg_ctx);633 BlockInternal( locks, count ); 694 634 695 635 … … 708 648 // Utilities 709 649 710 static inline void __set_owner( $monitor * this, $thread* owner ) {711 / * paranoid */ verify( this->lock.lock);650 static inline void set_owner( monitor_desc * this, thread_desc * owner ) { 651 // __cfaabi_dbg_print_safe( "Kernal : Setting owner of %p to %p ( was %p)\n", this, owner, this->owner ); 712 652 713 653 //Pass the monitor appropriately … … 718 658 } 719 659 720 static inline void __set_owner( $monitor * monitors [], __lock_size_t count, $thread * owner ) { 721 /* paranoid */ verify ( monitors[0]->lock.lock ); 722 /* paranoid */ verifyf( monitors[0]->owner == kernelTLS.this_thread, "Expected owner to be %p, got %p (r: %i, m: %p)", kernelTLS.this_thread, monitors[0]->owner, monitors[0]->recursion, monitors[0] ); 723 monitors[0]->owner = owner; 724 monitors[0]->recursion = 1; 660 static inline void set_owner( monitor_desc * monitors [], __lock_size_t count, thread_desc * owner ) { 661 monitors[0]->owner = owner; 662 monitors[0]->recursion = 1; 725 663 for( __lock_size_t i = 1; i < count; i++ ) { 726 /* paranoid */ verify ( monitors[i]->lock.lock ); 727 /* paranoid */ verifyf( monitors[i]->owner == kernelTLS.this_thread, "Expected owner to be %p, got %p (r: %i, m: %p)", kernelTLS.this_thread, monitors[i]->owner, monitors[i]->recursion, monitors[i] ); 728 monitors[i]->owner = owner; 729 monitors[i]->recursion = 0; 730 } 731 } 732 733 static inline void set_mask( $monitor * storage [], __lock_size_t count, const __waitfor_mask_t & mask ) { 664 monitors[i]->owner = owner; 665 monitors[i]->recursion = 0; 666 } 667 } 668 669 static inline void set_mask( monitor_desc * storage [], __lock_size_t count, const __waitfor_mask_t & mask ) { 734 670 for( __lock_size_t i = 0; i < count; i++) { 735 671 storage[i]->mask = mask; … … 737 673 } 738 674 739 static inline void reset_mask( $monitor* this ) {740 this->mask.accepted = 0p;741 this->mask.data = 0p;675 static inline void reset_mask( monitor_desc * this ) { 676 this->mask.accepted = NULL; 677 this->mask.data = NULL; 742 678 this->mask.size = 0; 743 679 } 744 680 745 static inline $thread * next_thread( $monitor* this ) {681 static inline thread_desc * next_thread( monitor_desc * this ) { 746 682 //Check the signaller stack 747 683 __cfaabi_dbg_print_safe( "Kernel : mon %p AS-stack top %p\n", this, this->signal_stack.top); … … 751 687 //regardless of if we are ready to baton pass, 752 688 //we need to set the monitor as in use 753 /* paranoid */ verifyf( !this->owner || kernelTLS.this_thread == this->owner, "Expected owner to be %p, got %p (r: %i, m: %p)", kernelTLS.this_thread, this->owner, this->recursion, this ); 754 __set_owner( this, urgent->owner->waiting_thread ); 689 set_owner( this, urgent->owner->waiting_thread ); 755 690 756 691 return check_condition( urgent ); … … 759 694 // No signaller thread 760 695 // Get the next thread in the entry_queue 761 $thread * new_owner = pop_head( this->entry_queue ); 762 /* paranoid */ verifyf( !this->owner || kernelTLS.this_thread == this->owner, "Expected owner to be %p, got %p (r: %i, m: %p)", kernelTLS.this_thread, this->owner, this->recursion, this ); 763 /* paranoid */ verify( !new_owner || new_owner->next == 0p ); 764 __set_owner( this, new_owner ); 696 thread_desc * new_owner = pop_head( this->entry_queue ); 697 set_owner( this, new_owner ); 765 698 766 699 return new_owner; 767 700 } 768 701 769 static inline bool is_accepted( $monitor* this, const __monitor_group_t & group ) {702 static inline bool is_accepted( monitor_desc * this, const __monitor_group_t & group ) { 770 703 __acceptable_t * it = this->mask.data; // Optim 771 704 __lock_size_t count = this->mask.size; … … 789 722 } 790 723 791 static inline void init( __lock_size_t count, $monitor* monitors [], __condition_node_t & waiter, __condition_criterion_t criteria [] ) {724 static inline void init( __lock_size_t count, monitor_desc * monitors [], __condition_node_t & waiter, __condition_criterion_t criteria [] ) { 792 725 for( __lock_size_t i = 0; i < count; i++) { 793 726 (criteria[i]){ monitors[i], waiter }; … … 797 730 } 798 731 799 static inline void init_push( __lock_size_t count, $monitor* monitors [], __condition_node_t & waiter, __condition_criterion_t criteria [] ) {732 static inline void init_push( __lock_size_t count, monitor_desc * monitors [], __condition_node_t & waiter, __condition_criterion_t criteria [] ) { 800 733 for( __lock_size_t i = 0; i < count; i++) { 801 734 (criteria[i]){ monitors[i], waiter }; … … 813 746 } 814 747 815 static inline void lock_all( $monitor* source [], __spinlock_t * /*out*/ locks [], __lock_size_t count ) {748 static inline void lock_all( monitor_desc * source [], __spinlock_t * /*out*/ locks [], __lock_size_t count ) { 816 749 for( __lock_size_t i = 0; i < count; i++ ) { 817 750 __spinlock_t * l = &source[i]->lock; … … 827 760 } 828 761 829 static inline void unlock_all( $monitor* locks [], __lock_size_t count ) {762 static inline void unlock_all( monitor_desc * locks [], __lock_size_t count ) { 830 763 for( __lock_size_t i = 0; i < count; i++ ) { 831 764 unlock( locks[i]->lock ); … … 834 767 835 768 static inline void save( 836 $monitor* ctx [],769 monitor_desc * ctx [], 837 770 __lock_size_t count, 838 771 __attribute((unused)) __spinlock_t * locks [], … … 847 780 848 781 static inline void restore( 849 $monitor* ctx [],782 monitor_desc * ctx [], 850 783 __lock_size_t count, 851 784 __spinlock_t * locks [], … … 865 798 // 2 - Checks if all the monitors are ready to run 866 799 // if so return the thread to run 867 static inline $thread* check_condition( __condition_criterion_t * target ) {800 static inline thread_desc * check_condition( __condition_criterion_t * target ) { 868 801 __condition_node_t * node = target->owner; 869 802 unsigned short count = node->count; … … 883 816 } 884 817 885 __cfaabi_dbg_print_safe( "Kernel : Runing %i (%p)\n", ready2run, ready2run ? node->waiting_thread : 0p);886 return ready2run ? node->waiting_thread : 0p;818 __cfaabi_dbg_print_safe( "Kernel : Runing %i (%p)\n", ready2run, ready2run ? node->waiting_thread : NULL ); 819 return ready2run ? node->waiting_thread : NULL; 887 820 } 888 821 889 822 static inline void brand_condition( condition & this ) { 890 $thread* thrd = TL_GET( this_thread );823 thread_desc * thrd = TL_GET( this_thread ); 891 824 if( !this.monitors ) { 892 825 // __cfaabi_dbg_print_safe( "Branding\n" ); 893 assertf( thrd->monitors.data != 0p, "No current monitor to brand condition %p", thrd->monitors.data );826 assertf( thrd->monitors.data != NULL, "No current monitor to brand condition %p", thrd->monitors.data ); 894 827 this.monitor_count = thrd->monitors.size; 895 828 896 this.monitors = ( $monitor**)malloc( this.monitor_count * sizeof( *this.monitors ) );829 this.monitors = (monitor_desc **)malloc( this.monitor_count * sizeof( *this.monitors ) ); 897 830 for( int i = 0; i < this.monitor_count; i++ ) { 898 831 this.monitors[i] = thrd->monitors[i]; … … 901 834 } 902 835 903 static inline [ $thread *, int] search_entry_queue( const __waitfor_mask_t & mask, $monitor* monitors [], __lock_size_t count ) {904 905 __queue_t( $thread) & entry_queue = monitors[0]->entry_queue;836 static inline [thread_desc *, int] search_entry_queue( const __waitfor_mask_t & mask, monitor_desc * monitors [], __lock_size_t count ) { 837 838 __queue_t(thread_desc) & entry_queue = monitors[0]->entry_queue; 906 839 907 840 // For each thread in the entry-queue 908 for( $thread** thrd_it = &entry_queue.head;909 *thrd_it != 1p;841 for( thread_desc ** thrd_it = &entry_queue.head; 842 *thrd_it; 910 843 thrd_it = &(*thrd_it)->next 911 844 ) { … … 950 883 } 951 884 952 static inline __lock_size_t aggregate( $monitor* storage [], const __waitfor_mask_t & mask ) {885 static inline __lock_size_t aggregate( monitor_desc * storage [], const __waitfor_mask_t & mask ) { 953 886 __lock_size_t size = 0; 954 887 for( __lock_size_t i = 0; i < mask.size; i++ ) { -
libcfa/src/concurrency/monitor.hfa
r7030dab r71d6bd8 10 10 // Created On : Thd Feb 23 12:27:26 2017 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Wed Dec 4 07:55:32 201913 // Update Count : 1 112 // Last Modified On : Sat Oct 7 18:06:45 2017 13 // Update Count : 10 14 14 // 15 15 … … 23 23 24 24 trait is_monitor(dtype T) { 25 $monitor* get_monitor( T & );25 monitor_desc * get_monitor( T & ); 26 26 void ^?{}( T & mutex ); 27 27 }; 28 28 29 static inline void ?{}( $monitor& this) with( this ) {29 static inline void ?{}(monitor_desc & this) with( this ) { 30 30 lock{}; 31 31 entry_queue{}; 32 32 signal_stack{}; 33 owner = 0p;33 owner = NULL; 34 34 recursion = 0; 35 mask.accepted = 0p;36 mask.data = 0p;35 mask.accepted = NULL; 36 mask.data = NULL; 37 37 mask.size = 0; 38 dtor_node = 0p;38 dtor_node = NULL; 39 39 } 40 40 41 static inline void ^?{}($monitor & ) {}42 43 41 struct monitor_guard_t { 44 $monitor** m;42 monitor_desc ** m; 45 43 __lock_size_t count; 46 44 __monitor_group_t prev; 47 45 }; 48 46 49 void ?{}( monitor_guard_t & this, $monitor** m, __lock_size_t count, void (*func)() );47 void ?{}( monitor_guard_t & this, monitor_desc ** m, __lock_size_t count, void (*func)() ); 50 48 void ^?{}( monitor_guard_t & this ); 51 49 52 50 struct monitor_dtor_guard_t { 53 $monitor* m;51 monitor_desc * m; 54 52 __monitor_group_t prev; 55 53 }; 56 54 57 void ?{}( monitor_dtor_guard_t & this, $monitor** m, void (*func)() );55 void ?{}( monitor_dtor_guard_t & this, monitor_desc ** m, void (*func)() ); 58 56 void ^?{}( monitor_dtor_guard_t & this ); 59 57 … … 72 70 73 71 // The monitor this criterion concerns 74 $monitor* target;72 monitor_desc * target; 75 73 76 74 // The parent node to which this criterion belongs … … 87 85 struct __condition_node_t { 88 86 // Thread that needs to be woken when all criteria are met 89 $thread* waiting_thread;87 thread_desc * waiting_thread; 90 88 91 89 // Array of criteria (Criterions are contiguous in memory) … … 106 104 } 107 105 108 void ?{}(__condition_node_t & this, $thread* waiting_thread, __lock_size_t count, uintptr_t user_info );106 void ?{}(__condition_node_t & this, thread_desc * waiting_thread, __lock_size_t count, uintptr_t user_info ); 109 107 void ?{}(__condition_criterion_t & this ); 110 void ?{}(__condition_criterion_t & this, $monitor* target, __condition_node_t * owner );108 void ?{}(__condition_criterion_t & this, monitor_desc * target, __condition_node_t * owner ); 111 109 112 110 struct condition { … … 115 113 116 114 // Array of monitor pointers (Monitors are NOT contiguous in memory) 117 $monitor** monitors;115 monitor_desc ** monitors; 118 116 119 117 // Number of monitors in the array … … 122 120 123 121 static inline void ?{}( condition & this ) { 124 this.monitors = 0p;122 this.monitors = NULL; 125 123 this.monitor_count = 0; 126 124 } … … 133 131 bool signal ( condition & this ); 134 132 bool signal_block( condition & this ); 135 static inline bool is_empty ( condition & this ) { return this.blocked.head == 1p; }133 static inline bool is_empty ( condition & this ) { return !this.blocked.head; } 136 134 uintptr_t front ( condition & this ); 137 135 -
libcfa/src/concurrency/mutex.cfa
r7030dab r71d6bd8 11 11 // Author : Thierry Delisle 12 12 // Created On : Fri May 25 01:37:11 2018 13 // Last Modified By : Peter A. Buhr14 // Last Modified On : Wed Dec 4 09:16:39 201915 // Update Count : 113 // Last Modified By : Thierry Delisle 14 // Last Modified On : Fri May 25 01:37:51 2018 15 // Update Count : 0 16 16 // 17 17 … … 40 40 if( is_locked ) { 41 41 append( blocked_threads, kernelTLS.this_thread ); 42 unlock( lock ); 43 park( __cfaabi_dbg_ctx ); 42 BlockInternal( &lock ); 44 43 } 45 44 else { … … 63 62 lock( this.lock __cfaabi_dbg_ctx2 ); 64 63 this.is_locked = (this.blocked_threads != 0); 65 unpark(66 pop_head( this.blocked_threads ) __cfaabi_dbg_ctx264 WakeThread( 65 pop_head( this.blocked_threads ) 67 66 ); 68 67 unlock( this.lock ); … … 74 73 this.lock{}; 75 74 this.blocked_threads{}; 76 this.owner = 0p;75 this.owner = NULL; 77 76 this.recursion_count = 0; 78 77 } … … 84 83 void lock(recursive_mutex_lock & this) with(this) { 85 84 lock( lock __cfaabi_dbg_ctx2 ); 86 if( owner == 0p) {85 if( owner == NULL ) { 87 86 owner = kernelTLS.this_thread; 88 87 recursion_count = 1; … … 95 94 else { 96 95 append( blocked_threads, kernelTLS.this_thread ); 97 unlock( lock ); 98 park( __cfaabi_dbg_ctx ); 96 BlockInternal( &lock ); 99 97 } 100 98 } … … 103 101 bool ret = false; 104 102 lock( lock __cfaabi_dbg_ctx2 ); 105 if( owner == 0p) {103 if( owner == NULL ) { 106 104 owner = kernelTLS.this_thread; 107 105 recursion_count = 1; … … 120 118 recursion_count--; 121 119 if( recursion_count == 0 ) { 122 $thread* thrd = pop_head( blocked_threads );120 thread_desc * thrd = pop_head( blocked_threads ); 123 121 owner = thrd; 124 122 recursion_count = (thrd ? 1 : 0); 125 unpark( thrd __cfaabi_dbg_ctx2);123 WakeThread( thrd ); 126 124 } 127 125 unlock( lock ); … … 140 138 void notify_one(condition_variable & this) with(this) { 141 139 lock( lock __cfaabi_dbg_ctx2 ); 142 unpark(143 pop_head( this.blocked_threads ) __cfaabi_dbg_ctx2140 WakeThread( 141 pop_head( this.blocked_threads ) 144 142 ); 145 143 unlock( lock ); … … 149 147 lock( lock __cfaabi_dbg_ctx2 ); 150 148 while(this.blocked_threads) { 151 unpark(152 pop_head( this.blocked_threads ) __cfaabi_dbg_ctx2149 WakeThread( 150 pop_head( this.blocked_threads ) 153 151 ); 154 152 } … … 159 157 lock( this.lock __cfaabi_dbg_ctx2 ); 160 158 append( this.blocked_threads, kernelTLS.this_thread ); 161 unlock( this.lock ); 162 park( __cfaabi_dbg_ctx ); 159 BlockInternal( &this.lock ); 163 160 } 164 161 … … 167 164 lock( this.lock __cfaabi_dbg_ctx2 ); 168 165 append( this.blocked_threads, kernelTLS.this_thread ); 169 unlock(l); 170 unlock(this.lock); 171 park( __cfaabi_dbg_ctx ); 166 void __unlock(void) { 167 unlock(l); 168 unlock(this.lock); 169 } 170 BlockInternal( __unlock ); 172 171 lock(l); 173 172 } -
libcfa/src/concurrency/mutex.hfa
r7030dab r71d6bd8 11 11 // Author : Thierry Delisle 12 12 // Created On : Fri May 25 01:24:09 2018 13 // Last Modified By : Peter A. Buhr14 // Last Modified On : Wed Dec 4 09:16:53 201915 // Update Count : 113 // Last Modified By : Thierry Delisle 14 // Last Modified On : Fri May 25 01:24:12 2018 15 // Update Count : 0 16 16 // 17 17 … … 36 36 37 37 // List of blocked threads 38 __queue_t(struct $thread) blocked_threads;38 __queue_t(struct thread_desc) blocked_threads; 39 39 40 40 // Locked flag … … 55 55 56 56 // List of blocked threads 57 __queue_t(struct $thread) blocked_threads;57 __queue_t(struct thread_desc) blocked_threads; 58 58 59 59 // Current thread owning the lock 60 struct $thread* owner;60 struct thread_desc * owner; 61 61 62 62 // Number of recursion level … … 83 83 84 84 // List of blocked threads 85 __queue_t(struct $thread) blocked_threads;85 __queue_t(struct thread_desc) blocked_threads; 86 86 }; 87 87 … … 110 110 111 111 static inline void ?{}(lock_scope(L) & this) { 112 this.locks = 0p;112 this.locks = NULL; 113 113 this.count = 0; 114 114 } -
libcfa/src/concurrency/preemption.cfa
r7030dab r71d6bd8 10 10 // Created On : Mon Jun 5 14:20:42 2017 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : T hu Dec 5 16:34:05 201913 // Update Count : 4312 // Last Modified On : Tue Jun 5 17:35:49 2018 13 // Update Count : 37 14 14 // 15 15 … … 24 24 #include <string.h> 25 25 #include <unistd.h> 26 #include <limits.h> // PTHREAD_STACK_MIN27 26 } 28 27 … … 39 38 // FwdDeclarations : timeout handlers 40 39 static void preempt( processor * this ); 41 static void timeout( $thread* this );40 static void timeout( thread_desc * this ); 42 41 43 42 // FwdDeclarations : Signal handlers … … 65 64 event_kernel_t * event_kernel; // kernel public handle to even kernel 66 65 static pthread_t alarm_thread; // pthread handle to alarm thread 67 static void * alarm_stack; // pthread stack for alarm thread68 66 69 67 static void ?{}(event_kernel_t & this) with( this ) { … … 83 81 // Get next expired node 84 82 static inline alarm_node_t * get_expired( alarm_list_t * alarms, Time currtime ) { 85 if( !alarms->head ) return 0p;// If no alarms return null86 if( alarms->head->alarm >= currtime ) return 0p;// If alarms head not expired return null87 return pop(alarms); 83 if( !alarms->head ) return NULL; // If no alarms return null 84 if( alarms->head->alarm >= currtime ) return NULL; // If alarms head not expired return null 85 return pop(alarms); // Otherwise just pop head 88 86 } 89 87 90 88 // Tick one frame of the Discrete Event Simulation for alarms 91 89 static void tick_preemption() { 92 alarm_node_t * node = 0p;// Used in the while loop but cannot be declared in the while condition93 alarm_list_t * alarms = &event_kernel->alarms; 94 Time currtime = __kernel_get_time(); // Check current time once soeverything "happens at once"90 alarm_node_t * node = NULL; // Used in the while loop but cannot be declared in the while condition 91 alarm_list_t * alarms = &event_kernel->alarms; // Local copy for ease of reading 92 Time currtime = __kernel_get_time(); // Check current time once so we everything "happens at once" 95 93 96 94 //Loop throught every thing expired … … 184 182 185 183 // Enable interrupts by decrementing the counter 186 // If counter reaches 0, execute any pending __cfactx_switch184 // If counter reaches 0, execute any pending CtxSwitch 187 185 void enable_interrupts( __cfaabi_dbg_ctx_param ) { 188 186 processor * proc = kernelTLS.this_processor; // Cache the processor now since interrupts can start happening after the atomic store 187 thread_desc * thrd = kernelTLS.this_thread; // Cache the thread now since interrupts can start happening after the atomic store 189 188 190 189 with( kernelTLS.preemption_state ){ … … 208 207 if( proc->pending_preemption ) { 209 208 proc->pending_preemption = false; 210 force_yield( __POLL_PREEMPTION);209 BlockInternal( thrd ); 211 210 } 212 211 } … … 218 217 219 218 // Disable interrupts by incrementint the counter 220 // Don't execute any pending __cfactx_switch even if counter reaches 0219 // Don't execute any pending CtxSwitch even if counter reaches 0 221 220 void enable_interrupts_noPoll() { 222 221 unsigned short prev = kernelTLS.preemption_state.disable_count; … … 244 243 sigaddset( &mask, sig ); 245 244 246 if ( pthread_sigmask( SIG_UNBLOCK, &mask, 0p) == -1 ) {245 if ( pthread_sigmask( SIG_UNBLOCK, &mask, NULL ) == -1 ) { 247 246 abort( "internal error, pthread_sigmask" ); 248 247 } … … 255 254 sigaddset( &mask, sig ); 256 255 257 if ( pthread_sigmask( SIG_BLOCK, &mask, 0p) == -1 ) {256 if ( pthread_sigmask( SIG_BLOCK, &mask, NULL ) == -1 ) { 258 257 abort( "internal error, pthread_sigmask" ); 259 258 } … … 267 266 268 267 // reserved for future use 269 static void timeout( $thread* this ) {268 static void timeout( thread_desc * this ) { 270 269 //TODO : implement waking threads 271 270 } 272 271 273 272 // KERNEL ONLY 274 // Check if a __cfactx_switch signal handler shoud defer273 // Check if a CtxSwitch signal handler shoud defer 275 274 // If true : preemption is safe 276 275 // If false : preemption is unsafe and marked as pending … … 302 301 303 302 // Setup proper signal handlers 304 __cfaabi_sigaction( SIGUSR1, sigHandler_ctxSwitch, SA_SIGINFO | SA_RESTART ); // __cfactx_switch handler303 __cfaabi_sigaction( SIGUSR1, sigHandler_ctxSwitch, SA_SIGINFO | SA_RESTART ); // CtxSwitch handler 305 304 306 305 signal_block( SIGALRM ); 307 306 308 alarm_stack = __create_pthread( &alarm_thread, alarm_loop, 0p);307 pthread_create( &alarm_thread, NULL, alarm_loop, NULL ); 309 308 } 310 309 … … 317 316 sigset_t mask; 318 317 sigfillset( &mask ); 319 sigprocmask( SIG_BLOCK, &mask, 0p);318 sigprocmask( SIG_BLOCK, &mask, NULL ); 320 319 321 320 // Notify the alarm thread of the shutdown … … 324 323 325 324 // Wait for the preemption thread to finish 326 327 pthread_join( alarm_thread, 0p ); 328 free( alarm_stack ); 325 pthread_join( alarm_thread, NULL ); 329 326 330 327 // Preemption is now fully stopped … … 383 380 static_assert( sizeof( sigset_t ) == sizeof( cxt->uc_sigmask ), "Expected cxt->uc_sigmask to be of sigset_t" ); 384 381 #endif 385 if ( pthread_sigmask( SIG_SETMASK, (sigset_t *)&(cxt->uc_sigmask), 0p) == -1 ) {382 if ( pthread_sigmask( SIG_SETMASK, (sigset_t *)&(cxt->uc_sigmask), NULL ) == -1 ) { 386 383 abort( "internal error, sigprocmask" ); 387 384 } … … 393 390 // Preemption can occur here 394 391 395 force_yield( __ALARM_PREEMPTION ); // Do the actual __cfactx_switch392 BlockInternal( kernelTLS.this_thread ); // Do the actual CtxSwitch 396 393 } 397 394 … … 402 399 sigset_t mask; 403 400 sigfillset(&mask); 404 if ( pthread_sigmask( SIG_BLOCK, &mask, 0p) == -1 ) {401 if ( pthread_sigmask( SIG_BLOCK, &mask, NULL ) == -1 ) { 405 402 abort( "internal error, pthread_sigmask" ); 406 403 } … … 423 420 {__cfaabi_dbg_print_buffer_decl( " KERNEL: Spurious wakeup %d.\n", err );} 424 421 continue; 425 422 case EINVAL : 426 423 abort( "Timeout was invalid." ); 427 424 default: … … 456 453 EXIT: 457 454 __cfaabi_dbg_print_safe( "Kernel : Preemption thread stopping\n" ); 458 return 0p;455 return NULL; 459 456 } 460 457 … … 469 466 sigset_t oldset; 470 467 int ret; 471 ret = pthread_sigmask(0, 0p, &oldset);468 ret = pthread_sigmask(0, NULL, &oldset); 472 469 if(ret != 0) { abort("ERROR sigprocmask returned %d", ret); } 473 470 -
libcfa/src/concurrency/thread.cfa
r7030dab r71d6bd8 10 10 // Created On : Tue Jan 17 12:27:26 2017 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Wed Dec 4 09:17:49 201913 // Update Count : 912 // Last Modified On : Fri Mar 30 17:19:52 2018 13 // Update Count : 8 14 14 // 15 15 … … 23 23 #include "invoke.h" 24 24 25 extern "C" { 26 #include <fenv.h> 27 #include <stddef.h> 28 } 29 30 //extern volatile thread_local processor * this_processor; 31 25 32 //----------------------------------------------------------------------------- 26 33 // Thread ctors and dtors 27 void ?{}( $thread& this, const char * const name, cluster & cl, void * storage, size_t storageSize ) with( this ) {28 context{ 0p, 0p};34 void ?{}(thread_desc & this, const char * const name, cluster & cl, void * storage, size_t storageSize ) with( this ) { 35 context{ NULL, NULL }; 29 36 self_cor{ name, storage, storageSize }; 30 37 state = Start; 31 preempted = __NO_PREEMPTION;32 38 curr_cor = &self_cor; 33 39 self_mon.owner = &this; … … 35 41 self_mon_p = &self_mon; 36 42 curr_cluster = &cl; 37 next = 0p;43 next = NULL; 38 44 39 node.next = 0p;40 node.prev = 0p;45 node.next = NULL; 46 node.prev = NULL; 41 47 doregister(curr_cluster, this); 42 48 … … 44 50 } 45 51 46 void ^?{}( $thread& this) with( this ) {52 void ^?{}(thread_desc& this) with( this ) { 47 53 unregister(curr_cluster, this); 48 54 ^self_cor{}; 49 55 } 50 56 51 //-----------------------------------------------------------------------------52 // Starting and stopping threads53 forall( dtype T | is_thread(T) )54 void __thrd_start( T & this, void (*main_p)(T &) ) {55 $thread * this_thrd = get_thread(this);56 57 disable_interrupts();58 __cfactx_start(main_p, get_coroutine(this), this, __cfactx_invoke_thread);59 60 this_thrd->context.[SP, FP] = this_thrd->self_cor.context.[SP, FP];61 verify( this_thrd->context.SP );62 63 __schedule_thread(this_thrd);64 enable_interrupts( __cfaabi_dbg_ctx );65 }66 67 //-----------------------------------------------------------------------------68 // Support for threads that don't ues the thread keyword69 57 forall( dtype T | sized(T) | is_thread(T) | { void ?{}(T&); } ) 70 58 void ?{}( scoped(T)& this ) with( this ) { 71 59 handle{}; 72 __thrd_start(handle , main);60 __thrd_start(handle); 73 61 } 74 62 … … 76 64 void ?{}( scoped(T)& this, P params ) with( this ) { 77 65 handle{ params }; 78 __thrd_start(handle , main);66 __thrd_start(handle); 79 67 } 80 68 … … 84 72 } 85 73 74 //----------------------------------------------------------------------------- 75 // Starting and stopping threads 76 forall( dtype T | is_thread(T) ) 77 void __thrd_start( T& this ) { 78 thread_desc * this_thrd = get_thread(this); 79 thread_desc * curr_thrd = TL_GET( this_thread ); 80 81 disable_interrupts(); 82 CtxStart(&this, CtxInvokeThread); 83 this_thrd->context.[SP, FP] = this_thrd->self_cor.context.[SP, FP]; 84 verify( this_thrd->context.SP ); 85 CtxSwitch( &curr_thrd->context, &this_thrd->context ); 86 87 ScheduleThread(this_thrd); 88 enable_interrupts( __cfaabi_dbg_ctx ); 89 } 90 91 extern "C" { 92 // KERNEL ONLY 93 void __finish_creation(thread_desc * this) { 94 // set new coroutine that the processor is executing 95 // and context switch to it 96 verify( kernelTLS.this_thread != this ); 97 verify( kernelTLS.this_thread->context.SP ); 98 CtxSwitch( &this->context, &kernelTLS.this_thread->context ); 99 } 100 } 101 102 void yield( void ) { 103 // Safety note : This could cause some false positives due to preemption 104 verify( TL_GET( preemption_state.enabled ) ); 105 BlockInternal( TL_GET( this_thread ) ); 106 // Safety note : This could cause some false positives due to preemption 107 verify( TL_GET( preemption_state.enabled ) ); 108 } 109 110 void yield( unsigned times ) { 111 for( unsigned i = 0; i < times; i++ ) { 112 yield(); 113 } 114 } 115 86 116 // Local Variables: // 87 117 // mode: c // -
libcfa/src/concurrency/thread.hfa
r7030dab r71d6bd8 10 10 // Created On : Tue Jan 17 12:27:26 2017 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Wed Dec 4 09:18:14201913 // Update Count : 612 // Last Modified On : Fri Jun 21 17:51:33 2019 13 // Update Count : 5 14 14 // 15 15 … … 28 28 void ^?{}(T& mutex this); 29 29 void main(T& this); 30 $thread* get_thread(T& this);30 thread_desc* get_thread(T& this); 31 31 }; 32 32 33 // define that satisfies the trait without using the thread keyword 34 #define DECL_THREAD(X) $thread* get_thread(X& this) __attribute__((const)) { return &this.__thrd; } void main(X& this) 35 36 // Inline getters for threads/coroutines/monitors 37 forall( dtype T | is_thread(T) ) 38 static inline $coroutine* get_coroutine(T & this) __attribute__((const)) { return &get_thread(this)->self_cor; } 33 #define DECL_THREAD(X) thread_desc* get_thread(X& this) { return &this.__thrd; } void main(X& this) 39 34 40 35 forall( dtype T | is_thread(T) ) 41 static inline $monitor * get_monitor (T & this) __attribute__((const)) { return &get_thread(this)->self_mon; } 36 static inline coroutine_desc* get_coroutine(T & this) { 37 return &get_thread(this)->self_cor; 38 } 42 39 43 static inline $coroutine* get_coroutine($thread * this) __attribute__((const)) { return &this->self_cor; } 44 static inline $monitor * get_monitor ($thread * this) __attribute__((const)) { return &this->self_mon; } 40 forall( dtype T | is_thread(T) ) 41 static inline monitor_desc* get_monitor(T & this) { 42 return &get_thread(this)->self_mon; 43 } 45 44 46 //----------------------------------------------------------------------------- 47 // forward declarations needed for threads 45 static inline coroutine_desc* get_coroutine(thread_desc * this) { 46 return &this->self_cor; 47 } 48 49 static inline monitor_desc* get_monitor(thread_desc * this) { 50 return &this->self_mon; 51 } 52 48 53 extern struct cluster * mainCluster; 49 54 50 55 forall( dtype T | is_thread(T) ) 51 void __thrd_start( T & this , void (*)(T &));56 void __thrd_start( T & this ); 52 57 53 58 //----------------------------------------------------------------------------- 54 59 // Ctors and dtors 55 void ?{}( $thread& this, const char * const name, struct cluster & cl, void * storage, size_t storageSize );56 void ^?{}( $thread& this);60 void ?{}(thread_desc & this, const char * const name, struct cluster & cl, void * storage, size_t storageSize ); 61 void ^?{}(thread_desc & this); 57 62 58 static inline void ?{}( $thread & this) { this{ "Anonymous Thread", *mainCluster, 0p, 65000 }; }59 static inline void ?{}( $thread & this, size_t stackSize ) { this{ "Anonymous Thread", *mainCluster, 0p, stackSize }; }60 static inline void ?{}( $thread& this, void * storage, size_t storageSize ) { this{ "Anonymous Thread", *mainCluster, storage, storageSize }; }61 static inline void ?{}( $thread & this, struct cluster & cl ) { this{ "Anonymous Thread", cl, 0p, 65000 }; }62 static inline void ?{}( $thread & this, struct cluster & cl, size_t stackSize ) { this{ "Anonymous Thread", cl, 0p, stackSize }; }63 static inline void ?{}( $thread& this, struct cluster & cl, void * storage, size_t storageSize ) { this{ "Anonymous Thread", cl, storage, storageSize }; }64 static inline void ?{}( $thread & this, const char * const name) { this{ name, *mainCluster, 0p, 65000 }; }65 static inline void ?{}( $thread & this, const char * const name, struct cluster & cl ) { this{ name, cl, 0p, 65000 }; }66 static inline void ?{}( $thread & this, const char * const name, struct cluster & cl, size_t stackSize ) { this{ name, cl, 0p, stackSize }; }63 static inline void ?{}(thread_desc & this) { this{ "Anonymous Thread", *mainCluster, NULL, 65000 }; } 64 static inline void ?{}(thread_desc & this, size_t stackSize ) { this{ "Anonymous Thread", *mainCluster, NULL, stackSize }; } 65 static inline void ?{}(thread_desc & this, void * storage, size_t storageSize ) { this{ "Anonymous Thread", *mainCluster, storage, storageSize }; } 66 static inline void ?{}(thread_desc & this, struct cluster & cl ) { this{ "Anonymous Thread", cl, NULL, 65000 }; } 67 static inline void ?{}(thread_desc & this, struct cluster & cl, size_t stackSize ) { this{ "Anonymous Thread", cl, NULL, stackSize }; } 68 static inline void ?{}(thread_desc & this, struct cluster & cl, void * storage, size_t storageSize ) { this{ "Anonymous Thread", cl, storage, storageSize }; } 69 static inline void ?{}(thread_desc & this, const char * const name) { this{ name, *mainCluster, NULL, 65000 }; } 70 static inline void ?{}(thread_desc & this, const char * const name, struct cluster & cl ) { this{ name, cl, NULL, 65000 }; } 71 static inline void ?{}(thread_desc & this, const char * const name, struct cluster & cl, size_t stackSize ) { this{ name, cl, NULL, stackSize }; } 67 72 68 73 //----------------------------------------------------------------------------- … … 83 88 void ^?{}( scoped(T)& this ); 84 89 85 //----------------------------------------------------------------------------- 86 // Thread getters 87 static inline struct $thread * active_thread () { return TL_GET( this_thread ); } 90 void yield(); 91 void yield( unsigned times ); 88 92 89 //----------------------------------------------------------------------------- 90 // Scheduler API 91 92 //---------- 93 // Park thread: block until corresponding call to unpark, won't block if unpark is already called 94 void park( __cfaabi_dbg_ctx_param ); 95 96 //---------- 97 // Unpark a thread, if the thread is already blocked, schedule it 98 // if the thread is not yet block, signal that it should rerun immediately 99 void unpark( $thread * this __cfaabi_dbg_ctx_param2 ); 100 101 forall( dtype T | is_thread(T) ) 102 static inline void unpark( T & this __cfaabi_dbg_ctx_param2 ) { if(!&this) return; unpark( get_thread( this ) __cfaabi_dbg_ctx_fwd2 );} 103 104 //---------- 105 // Yield: force thread to block and be rescheduled 106 bool force_yield( enum __Preemption_Reason ); 107 108 static inline void yield() { 109 force_yield(__MANUAL_PREEMPTION); 110 } 111 112 // Yield: yield N times 113 static inline void yield( unsigned times ) { 114 for( times ) { 115 yield(); 116 } 117 } 93 static inline struct thread_desc * active_thread () { return TL_GET( this_thread ); } 118 94 119 95 // Local Variables: // -
libcfa/src/exception.c
r7030dab r71d6bd8 9 9 // Author : Andrew Beach 10 10 // Created On : Mon Jun 26 15:13:00 2017 11 // Last Modified By : Andrew Beach12 // Last Modified On : Fri Apr 03 11:57:00 202013 // Update Count : 1 411 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Thu Feb 22 18:17:34 2018 13 // Update Count : 11 14 14 // 15 15 16 // Normally we would get this from the CFA prelude.17 16 #include <stddef.h> // for size_t 18 17 19 18 #include "exception.h" 20 19 21 // Implementation of the secret header is hardware dependent. 22 #if !( defined( __x86_64 ) || defined( __i386 ) ) 23 #error Exception Handling: No known architecture detected. 24 #endif 20 // Implementation of the secret header. 25 21 26 22 #include <stdlib.h> … … 31 27 // FIX ME: temporary hack to keep ARM build working 32 28 #ifndef _URC_FATAL_PHASE1_ERROR 33 #define _URC_FATAL_PHASE1_ERROR 329 #define _URC_FATAL_PHASE1_ERROR 2 34 30 #endif // ! _URC_FATAL_PHASE1_ERROR 35 31 #ifndef _URC_FATAL_PHASE2_ERROR … … 39 35 #include "lsda.h" 40 36 41 /* The exception class for our exceptions. Because of the vendor component42 * its value would not be standard.43 * Vendor: UWPL44 * Language: CFA\045 */46 const _Unwind_Exception_Class __cfaehm_exception_class = 0x4c50575500414643;47 37 48 38 // Base exception vtable is abstract, you should not have base exceptions. 49 struct __cfa ehm_base_exception_t_vtable50 ___cfa ehm_base_exception_t_vtable_instance = {39 struct __cfaabi_ehm__base_exception_t_vtable 40 ___cfaabi_ehm__base_exception_t_vtable_instance = { 51 41 .parent = NULL, 52 42 .size = 0, … … 59 49 // Temperary global exception context. Does not work with concurency. 60 50 struct exception_context_t { 61 struct __cfaehm_try_resume_node * top_resume; 62 63 exception_t * current_exception; 64 int current_handler_index; 65 } static shared_stack = {NULL, NULL, 0}; 51 struct __cfaabi_ehm__try_resume_node * top_resume; 52 struct __cfaabi_ehm__try_resume_node * current_resume; 53 54 exception_t * current_exception; 55 int current_handler_index; 56 } shared_stack = {NULL, NULL, 0, 0}; 66 57 67 58 // Get the current exception context. … … 71 62 return &shared_stack; 72 63 } 64 //#define SAVE_EXCEPTION_CONTEXT(to_name) 65 //struct exception_context_t * to_name = this_exception_context(); 66 //exception * this_exception() { 67 // return this_exception_context()->current_exception; 68 //} 69 70 71 // This macro should be the only thing that needs to change across machines. Used in the personality function, way down 72 // in termination. 73 // struct _Unwind_Context * -> _Unwind_Reason_Code(*)(exception_t *) 74 #define MATCHER_FROM_CONTEXT(ptr_to_context) \ 75 (*(_Unwind_Reason_Code(**)(exception_t *))(_Unwind_GetCFA(ptr_to_context) + 8)) 73 76 74 77 75 78 // RESUMPTION ================================================================ 76 79 77 void __cfaehm_throw_resume(exception_t * except) { 78 struct exception_context_t * context = this_exception_context(); 80 void __cfaabi_ehm__throw_resume(exception_t * except) { 79 81 80 82 __cfaabi_dbg_print_safe("Throwing resumption exception\n"); 81 83 82 struct __cfaehm_try_resume_node * original_head = context->top_resume; 83 struct __cfaehm_try_resume_node * current = context->top_resume; 84 struct __cfaabi_ehm__try_resume_node * original_head = shared_stack.current_resume; 85 struct __cfaabi_ehm__try_resume_node * current = 86 (original_head) ? original_head->next : shared_stack.top_resume; 84 87 85 88 for ( ; current ; current = current->next) { 86 context->top_resume = current->next;89 shared_stack.current_resume = current; 87 90 if (current->handler(except)) { 88 context->top_resume = original_head;91 shared_stack.current_resume = original_head; 89 92 return; 90 93 } … … 92 95 93 96 __cfaabi_dbg_print_safe("Unhandled exception\n"); 94 context->top_resume = original_head;97 shared_stack.current_resume = original_head; 95 98 96 99 // Fall back to termination: 97 __cfa ehm_throw_terminate(except);100 __cfaabi_ehm__throw_terminate(except); 98 101 // TODO: Default handler for resumption. 99 102 } 100 103 101 // Do we control where exceptions get thrown even with concurency? 102 // If not these are not quite thread safe, the cleanup hook has to 103 // be added after the node is built but before it is made the top node. 104 105 void __cfaehm_try_resume_setup(struct __cfaehm_try_resume_node * node, 104 // Do we control where exceptions get thrown even with concurency? If not these are not quite thread safe, the cleanup 105 // hook has to be added after the node is built but before it is made the top node. 106 107 void __cfaabi_ehm__try_resume_setup(struct __cfaabi_ehm__try_resume_node * node, 106 108 _Bool (*handler)(exception_t * except)) { 107 struct exception_context_t * context = this_exception_context(); 108 node->next = context->top_resume; 109 node->next = shared_stack.top_resume; 109 110 node->handler = handler; 110 context->top_resume = node; 111 } 112 113 void __cfaehm_try_resume_cleanup(struct __cfaehm_try_resume_node * node) { 114 struct exception_context_t * context = this_exception_context(); 115 context->top_resume = node->next; 111 shared_stack.top_resume = node; 112 } 113 114 void __cfaabi_ehm__try_resume_cleanup(struct __cfaabi_ehm__try_resume_node * node) { 115 shared_stack.top_resume = node->next; 116 116 } 117 117 … … 122 122 // May have to move to cfa for constructors and destructors (references). 123 123 124 // How to clean up an exception in various situations. 125 static void __cfaehm_exception_cleanup( 126 _Unwind_Reason_Code reason, 127 struct _Unwind_Exception * exception) { 128 switch (reason) { 129 case _URC_FOREIGN_EXCEPTION_CAUGHT: 130 // This one we could clean-up to allow cross-language exceptions. 131 case _URC_FATAL_PHASE1_ERROR: 132 case _URC_FATAL_PHASE2_ERROR: 133 default: 134 abort(); 135 } 136 } 137 138 // We need a piece of storage to raise the exception, for now its a single 139 // piece. 140 static struct _Unwind_Exception this_exception_storage; 141 142 struct __cfaehm_node { 143 struct __cfaehm_node * next; 124 struct __cfaabi_ehm__node { 125 struct __cfaabi_ehm__node * next; 144 126 }; 145 127 146 128 #define NODE_TO_EXCEPT(node) ((exception_t *)(1 + (node))) 147 #define EXCEPT_TO_NODE(except) ((struct __cfa ehm_node *)(except) - 1)129 #define EXCEPT_TO_NODE(except) ((struct __cfaabi_ehm__node *)(except) - 1) 148 130 149 131 // Creates a copy of the indicated exception and sets current_exception to it. 150 static void __cfa ehm_allocate_exception( exception_t * except ) {132 static void __cfaabi_ehm__allocate_exception( exception_t * except ) { 151 133 struct exception_context_t * context = this_exception_context(); 152 134 153 135 // Allocate memory for the exception. 154 struct __cfa ehm_node * store = malloc(155 sizeof( struct __cfa ehm_node ) + except->virtual_table->size );136 struct __cfaabi_ehm__node * store = malloc( 137 sizeof( struct __cfaabi_ehm__node ) + except->virtual_table->size ); 156 138 157 139 if ( ! store ) { … … 166 148 // Copy the exception to storage. 167 149 except->virtual_table->copy( context->current_exception, except ); 168 169 // Set up the exception storage.170 this_exception_storage.exception_class = __cfaehm_exception_class;171 this_exception_storage.exception_cleanup = __cfaehm_exception_cleanup;172 150 } 173 151 174 152 // Delete the provided exception, unsetting current_exception if relivant. 175 static void __cfa ehm_delete_exception( exception_t * except ) {153 static void __cfaabi_ehm__delete_exception( exception_t * except ) { 176 154 struct exception_context_t * context = this_exception_context(); 177 155 … … 179 157 180 158 // Remove the exception from the list. 181 struct __cfa ehm_node * to_free = EXCEPT_TO_NODE(except);182 struct __cfa ehm_node * node;159 struct __cfaabi_ehm__node * to_free = EXCEPT_TO_NODE(except); 160 struct __cfaabi_ehm__node * node; 183 161 184 162 if ( context->current_exception == except ) { … … 188 166 node = EXCEPT_TO_NODE(context->current_exception); 189 167 // It may always be in the first or second position. 190 while 168 while( to_free != node->next ) { 191 169 node = node->next; 192 170 } … … 200 178 201 179 // If this isn't a rethrow (*except==0), delete the provided exception. 202 void __cfaehm_cleanup_terminate( void * except ) { 203 if ( *(void**)except ) __cfaehm_delete_exception( *(exception_t **)except ); 204 } 180 void __cfaabi_ehm__cleanup_terminate( void * except ) { 181 if ( *(void**)except ) __cfaabi_ehm__delete_exception( *(exception_t **)except ); 182 } 183 184 185 // We need a piece of storage to raise the exception 186 struct _Unwind_Exception this_exception_storage; 205 187 206 188 // Function needed by force unwind … … 209 191 int version, 210 192 _Unwind_Action actions, 211 _Unwind_Exception_Class exception _class,193 _Unwind_Exception_Class exceptionClass, 212 194 struct _Unwind_Exception * unwind_exception, 213 struct _Unwind_Context * unwind_context,214 void * s top_param) {215 if 216 if 195 struct _Unwind_Context * context, 196 void * some_param) { 197 if( actions & _UA_END_OF_STACK ) exit(1); 198 if( actions & _UA_CLEANUP_PHASE ) return _URC_NO_REASON; 217 199 218 200 return _URC_FATAL_PHASE2_ERROR; … … 220 202 221 203 // The exception that is being thrown must already be stored. 222 static __attribute__((noreturn)) void __cfaehm_begin_unwind(void) {204 __attribute__((noreturn)) void __cfaabi_ehm__begin_unwind(void) { 223 205 if ( ! this_exception_context()->current_exception ) { 224 206 printf("UNWIND ERROR missing exception in begin unwind\n"); … … 226 208 } 227 209 210 228 211 // Call stdlibc to raise the exception 229 212 _Unwind_Reason_Code ret = _Unwind_RaiseException( &this_exception_storage ); 230 213 231 // If we reach here it means something happened. For resumption to work we need to find a way 232 // to return back to here. Most of them will probably boil down to setting a global flag and 233 // making the phase 1 either stop or fail. Causing an error on purpose may help avoiding 234 // unnecessary work but it might have some weird side effects. If we just pretend no handler 235 // was found that would work but may be expensive for no reason since we will always search 236 // the whole stack. 237 238 if ( ret == _URC_END_OF_STACK ) { 239 // No proper handler was found. This can be handled in many ways, C++ calls std::terminate. 240 // Here we force unwind the stack, basically raising a cancellation. 214 // If we reach here it means something happened. For resumption to work we need to find a way to return back to 215 // here. Most of them will probably boil down to setting a global flag and making the phase 1 either stop or 216 // fail. Causing an error on purpose may help avoiding unnecessary work but it might have some weird side 217 // effects. If we just pretend no handler was found that would work but may be expensive for no reason since we 218 // will always search the whole stack. 219 220 if( ret == _URC_END_OF_STACK ) { 221 // No proper handler was found. This can be handled in several way. C++ calls std::terminate Here we 222 // force unwind the stack, basically raising a cancellation. 241 223 printf("Uncaught exception %p\n", &this_exception_storage); 242 224 … … 246 228 } 247 229 248 // We did not simply reach the end of the stack without finding a handler. This is an error.230 // We did not simply reach the end of the stack without finding a handler. Something wen't wrong 249 231 printf("UNWIND ERROR %d after raise exception\n", ret); 250 232 abort(); 251 233 } 252 234 253 void __cfa ehm_throw_terminate( exception_t * val ) {235 void __cfaabi_ehm__throw_terminate( exception_t * val ) { 254 236 __cfaabi_dbg_print_safe("Throwing termination exception\n"); 255 237 256 __cfa ehm_allocate_exception( val );257 __cfa ehm_begin_unwind();258 } 259 260 void __cfa ehm_rethrow_terminate(void) {238 __cfaabi_ehm__allocate_exception( val ); 239 __cfaabi_ehm__begin_unwind(); 240 } 241 242 void __cfaabi_ehm__rethrow_terminate(void) { 261 243 __cfaabi_dbg_print_safe("Rethrowing termination exception\n"); 262 244 263 __cfaehm_begin_unwind(); 264 } 265 266 // This is our personality routine. For every stack frame annotated with 267 // ".cfi_personality 0x3,__gcfa_personality_v0" this function will be called twice when unwinding. 268 // Once in the search phase and once in the cleanup phase. 269 _Unwind_Reason_Code __gcfa_personality_v0( 270 int version, 271 _Unwind_Action actions, 272 unsigned long long exception_class, 273 struct _Unwind_Exception * unwind_exception, 274 struct _Unwind_Context * unwind_context) 245 __cfaabi_ehm__begin_unwind(); 246 } 247 248 #if defined(PIC) 249 #warning Exceptions not yet supported when using Position-Independent Code 250 __attribute__((noinline)) 251 void __cfaabi_ehm__try_terminate(void (*try_block)(), 252 void (*catch_block)(int index, exception_t * except), 253 __attribute__((unused)) int (*match_block)(exception_t * except)) { 254 abort(); 255 } 256 #else 257 // This is our personality routine. For every stack frame anotated with ".cfi_personality 0x3,__gcfa_personality_v0". 258 // This function will be called twice when unwinding. Once in the search phased and once in the cleanup phase. 259 _Unwind_Reason_Code __gcfa_personality_v0 ( 260 int version, _Unwind_Action actions, unsigned long long exceptionClass, 261 struct _Unwind_Exception* unwind_exception, 262 struct _Unwind_Context* context) 275 263 { 276 264 277 265 //__cfaabi_dbg_print_safe("CFA: 0x%lx\n", _Unwind_GetCFA(context)); 278 __cfaabi_dbg_print_safe("Personality function (%d, %x, %llu, %p, %p):", 279 version, actions, exception_class, unwind_exception, unwind_context); 266 __cfaabi_dbg_print_safe("Personality function (%d, %x, %llu, %p, %p):", version, actions, exceptionClass, unwind_exception, context); 280 267 281 268 // If we've reached the end of the stack then there is nothing much we can do... 282 if (actions & _UA_END_OF_STACK) return _URC_END_OF_STACK;269 if( actions & _UA_END_OF_STACK ) return _URC_END_OF_STACK; 283 270 284 271 if (actions & _UA_SEARCH_PHASE) { … … 295 282 296 283 // Get a pointer to the language specific data from which we will read what we need 297 const unsigned char * lsd = _Unwind_GetLanguageSpecificData( unwind_context );298 299 if 284 const unsigned char * lsd = (const unsigned char*) _Unwind_GetLanguageSpecificData( context ); 285 286 if( !lsd ) { //Nothing to do, keep unwinding 300 287 printf(" no LSD"); 301 288 goto UNWIND; … … 304 291 // Get the instuction pointer and a reading pointer into the exception table 305 292 lsda_header_info lsd_info; 306 const unsigned char * cur_ptr = parse_lsda_header(unwind_context, lsd, &lsd_info); 307 _Unwind_Ptr instruction_ptr = _Unwind_GetIP(unwind_context); 308 309 struct exception_context_t * context = this_exception_context(); 293 const unsigned char * cur_ptr = parse_lsda_header( context, lsd, &lsd_info); 294 _Unwind_Ptr instruction_ptr = _Unwind_GetIP( context ); 310 295 311 296 // Linearly search the table for stuff to do 312 while 297 while( cur_ptr < lsd_info.action_table ) { 313 298 _Unwind_Ptr callsite_start; 314 299 _Unwind_Ptr callsite_len; … … 317 302 318 303 // Decode the common stuff we have in here 319 cur_ptr = read_encoded_value (0, lsd_info.call_site_encoding, cur_ptr, &callsite_start);320 cur_ptr = read_encoded_value (0, lsd_info.call_site_encoding, cur_ptr, &callsite_len);321 cur_ptr = read_encoded_value (0, lsd_info.call_site_encoding, cur_ptr, &callsite_landing_pad);322 cur_ptr = read_uleb128 (cur_ptr, &callsite_action);304 cur_ptr = read_encoded_value (0, lsd_info.call_site_encoding, cur_ptr, &callsite_start); 305 cur_ptr = read_encoded_value (0, lsd_info.call_site_encoding, cur_ptr, &callsite_len); 306 cur_ptr = read_encoded_value (0, lsd_info.call_site_encoding, cur_ptr, &callsite_landing_pad); 307 cur_ptr = read_uleb128 (cur_ptr, &callsite_action); 323 308 324 309 // Have we reach the correct frame info yet? 325 if 310 if( lsd_info.Start + callsite_start + callsite_len < instruction_ptr ) { 326 311 #ifdef __CFA_DEBUG_PRINT__ 327 312 void * ls = (void*)lsd_info.Start; … … 331 316 void * ep = (void*)lsd_info.Start + callsite_start + callsite_len; 332 317 void * ip = (void*)instruction_ptr; 333 __cfaabi_dbg_print_safe("\nfound %p - %p (%p, %p, %p), looking for %p\n", 334 bp, ep, ls, cs, cl, ip); 318 __cfaabi_dbg_print_safe("\nfound %p - %p (%p, %p, %p), looking for %p\n", bp, ep, ls, cs, cl, ip); 335 319 #endif // __CFA_DEBUG_PRINT__ 336 320 continue; 337 321 } 338 322 339 // Have we gone too far ?340 if 323 // Have we gone too far 324 if( lsd_info.Start + callsite_start > instruction_ptr ) { 341 325 printf(" gone too far"); 342 326 break; 343 327 } 344 328 345 // Check for what we must do:346 if ( 0 ==callsite_landing_pad ) {347 // Nothing to do, move along348 __cfaabi_dbg_print_safe(" no landing pad");349 } else if (actions & _UA_SEARCH_PHASE) {350 // In search phase, these means we found a potential handler we must check. 351 352 // We have arbitrarily decided that 0 means nothing to do and 1 means there is353 // a potential handler. This doesn't seem to conflict the gcc default behavior.354 if (callsite_action != 0) {355 // Now we want to run some code to see if the handler matches356 // This is the tricky part where we want to the power to run arbitrary code357 // However, generating a new exception table entry and try routine every time358 // is way more expansive than we might like359 // The information we have is :360 // - The GR (Series of registers)361 // GR1=GP Global Pointer of frame ref by context362 // - The instruction pointer363 // - The instruction pointer info (???)364 // - The CFA (Canonical Frame Address)365 // - The BSP (Probably the base stack pointer) 366 367 // The current apprach uses one exception table entry per try block368 _uleb128_t imatcher;369 // Get the relative offset to the {...}?370 cur_ptr = read_uleb128(cur_ptr, &imatcher);371 372 # if defined( __x86_64 ) 373 _Unwind_Word match_pos = _Unwind_GetCFA(unwind_context) + 8;374 # elif defined( __i386 ) 375 _Unwind_Word match_pos = _Unwind_GetCFA(unwind_context) + 24;376 # endif 377 int (*matcher)(exception_t *) = *(int(**)(exception_t *))match_pos;378 379 int index = matcher(context->current_exception);380 _Unwind_Reason_Code ret = (0 == index)381 ? _URC_CONTINUE_UNWIND : _URC_HANDLER_FOUND; 382 context->current_handler_index = index;383 384 // Based on the return value, check if we matched the exception385 if (ret == _URC_HANDLER_FOUND){386 __cfaabi_dbg_print_safe(" handler found\n");387 } else {388 __cfaabi_dbg_print_safe(" no handler\n");329 // Something to do? 330 if( callsite_landing_pad ) { 331 // Which phase are we in 332 if (actions & _UA_SEARCH_PHASE) { 333 // Search phase, this means we probably found a potential handler and must check if it is a match 334 335 // If we have arbitrarily decided that 0 means nothing to do and 1 means there is a potential handler 336 // This doesn't seem to conflict the gcc default behavior 337 if (callsite_action != 0) { 338 // Now we want to run some code to see if the handler matches 339 // This is the tricky part where we want to the power to run arbitrary code 340 // However, generating a new exception table entry and try routine every time 341 // is way more expansive than we might like 342 // The information we have is : 343 // - The GR (Series of registers) 344 // GR1=GP Global Pointer of frame ref by context 345 // - The instruction pointer 346 // - The instruction pointer info (???) 347 // - The CFA (Canonical Frame Address) 348 // - The BSP (Probably the base stack pointer) 349 350 351 // The current apprach uses one exception table entry per try block 352 _uleb128_t imatcher; 353 // Get the relative offset to the 354 cur_ptr = read_uleb128 (cur_ptr, &imatcher); 355 356 // Get a function pointer from the relative offset and call it 357 // _Unwind_Reason_Code (*matcher)() = (_Unwind_Reason_Code (*)())lsd_info.LPStart + imatcher; 358 359 _Unwind_Reason_Code (*matcher)(exception_t *) = 360 MATCHER_FROM_CONTEXT(context); 361 int index = matcher(shared_stack.current_exception); 362 _Unwind_Reason_Code ret = (0 == index) 363 ? _URC_CONTINUE_UNWIND : _URC_HANDLER_FOUND; 364 shared_stack.current_handler_index = index; 365 366 // Based on the return value, check if we matched the exception 367 if( ret == _URC_HANDLER_FOUND) { 368 __cfaabi_dbg_print_safe(" handler found\n"); 369 } else { 370 __cfaabi_dbg_print_safe(" no handler\n"); 371 } 372 return ret; 389 373 } 390 return ret; 374 375 // This is only a cleanup handler, ignore it 376 __cfaabi_dbg_print_safe(" no action"); 391 377 } 392 393 // This is only a cleanup handler, ignore it 394 __cfaabi_dbg_print_safe(" no action"); 395 } else if (actions & _UA_CLEANUP_PHASE) { 396 // In clean-up phase, no destructors here but this could be the handler. 397 398 if ( (callsite_action != 0) && !(actions & _UA_HANDLER_FRAME) ){ 399 // If this is a potential exception handler 400 // but not the one that matched the exception in the seach phase, 401 // just ignore it 402 goto UNWIND; 378 else if (actions & _UA_CLEANUP_PHASE) { 379 380 if( (callsite_action != 0) && !(actions & _UA_HANDLER_FRAME) ){ 381 // If this is a potential exception handler 382 // but not the one that matched the exception in the seach phase, 383 // just ignore it 384 goto UNWIND; 385 } 386 387 // We need to run some clean-up or a handler 388 // These statment do the right thing but I don't know any specifics at all 389 _Unwind_SetGR( context, __builtin_eh_return_data_regno(0), (_Unwind_Ptr) unwind_exception ); 390 _Unwind_SetGR( context, __builtin_eh_return_data_regno(1), 0 ); 391 392 // I assume this sets the instruction pointer to the adress of the landing pad 393 // It doesn't actually set it, it only state the value that needs to be set once we return _URC_INSTALL_CONTEXT 394 _Unwind_SetIP( context, ((lsd_info.LPStart) + (callsite_landing_pad)) ); 395 396 __cfaabi_dbg_print_safe(" action\n"); 397 398 // Return have some action to run 399 return _URC_INSTALL_CONTEXT; 403 400 } 404 405 // We need to run some clean-up or a handler406 // These statment do the right thing but I don't know any specifics at all407 _Unwind_SetGR( unwind_context, __builtin_eh_return_data_regno(0),408 (_Unwind_Ptr)unwind_exception );409 _Unwind_SetGR( unwind_context, __builtin_eh_return_data_regno(1), 0 );410 411 // I assume this sets the instruction pointer to the adress of the landing pad412 // It doesn't actually set it, it only state the value that needs to be set once we413 // return _URC_INSTALL_CONTEXT414 _Unwind_SetIP( unwind_context, ((lsd_info.LPStart) + (callsite_landing_pad)) );415 416 __cfaabi_dbg_print_safe(" action\n");417 418 // Return have some action to run419 return _URC_INSTALL_CONTEXT;420 401 } 402 403 // Nothing to do, move along 404 __cfaabi_dbg_print_safe(" no landing pad"); 421 405 } 422 406 // No handling found … … 430 414 } 431 415 432 #pragma GCC push_options 433 #pragma GCC optimize("O0") 434 435 // Try statements are hoisted out see comments for details. While this could probably be unique 436 // and simply linked from libcfa but there is one problem left, see the exception table for details 416 // Try statements are hoisted out see comments for details. With this could probably be unique and simply linked from 417 // libcfa but there is one problem left, see the exception table for details 437 418 __attribute__((noinline)) 438 void __cfa ehm_try_terminate(void (*try_block)(),419 void __cfaabi_ehm__try_terminate(void (*try_block)(), 439 420 void (*catch_block)(int index, exception_t * except), 440 421 __attribute__((unused)) int (*match_block)(exception_t * except)) { … … 442 423 //! printf("%p %p %p %p\n", &try_block, &catch_block, &match_block, &xy); 443 424 444 // Setup the personality routine and exception table. 445 // Unforturnately these clobber gcc cancellation support which means we can't get access to 446 // the attribute cleanup tables at the same time. We would have to inspect the assembly to 447 // create a new set ourselves. 448 #ifdef __PIC__ 449 asm volatile (".cfi_personality 0x9b,CFA.ref.__gcfa_personality_v0"); 450 asm volatile (".cfi_lsda 0x1b, .LLSDACFA2"); 451 #else 425 // Setup statments: These 2 statments won't actually result in any code, they only setup global tables. 426 // However, they clobber gcc cancellation support from gcc. We can replace the personality routine but 427 // replacing the exception table gcc generates is not really doable, it generates labels based on how the 428 // assembly works. 429 430 // Setup the personality routine 452 431 asm volatile (".cfi_personality 0x3,__gcfa_personality_v0"); 432 // Setup the exception table 453 433 asm volatile (".cfi_lsda 0x3, .LLSDACFA2"); 454 #endif455 434 456 435 // Label which defines the start of the area for which the handler is setup. … … 463 442 asm volatile goto ("" : : : : CATCH ); 464 443 465 // Normal return for when there is no throw.444 // Normal return 466 445 return; 467 446 … … 470 449 // Label which defines the end of the area for which the handler is setup. 471 450 asm volatile (".TRYEND:"); 472 // Label which defines the start of the exception landing pad. Basically what is called when473 // the exception is caught. Note, if multiple handlers are given, the multiplexing should be474 // done by the generated code, not theexception runtime.451 // Label which defines the start of the exception landing pad. Basically what is called when the exception is 452 // caught. Note, if multiple handlers are given, the multiplexing should be done by the generated code, not the 453 // exception runtime. 475 454 asm volatile (".CATCH:"); 476 455 477 456 // Exception handler 478 // Note: Saving the exception context on the stack breaks termination exceptions. 479 catch_block( this_exception_context()->current_handler_index, 480 this_exception_context()->current_exception ); 481 } 482 483 // Exception table data we need to generate. While this is almost generic, the custom data refers 484 // to {*}try_terminate, which is no way generic. Some more works need to be done if we want to 485 // have a single call to the try routine. 486 487 #ifdef __PIC__ 457 catch_block( shared_stack.current_handler_index, 458 shared_stack.current_exception ); 459 } 460 461 // Exception table data we need to generate. While this is almost generic, the custom data refers to foo_try_match try 462 // match, which is no way generic. Some more works need to be done if we want to have a single call to the try routine. 463 464 #if defined( __i386 ) || defined( __x86_64 ) 488 465 asm ( 489 // 466 //HEADER 490 467 ".LFECFA1:\n" 491 468 " .globl __gcfa_personality_v0\n" 492 469 " .section .gcc_except_table,\"a\",@progbits\n" 493 // TABLE HEADER (important field is the BODY length at the end) 494 ".LLSDACFA2:\n" 470 ".LLSDACFA2:\n" //TABLE header 495 471 " .byte 0xff\n" 496 472 " .byte 0xff\n" 497 473 " .byte 0x1\n" 498 " .uleb128 .LLSDACSECFA2-.LLSDACSBCFA2\n" 499 // BODY (language specific data) 500 // This uses language specific data and can be modified arbitrarily 501 // We use handled area offset, handled area length, 502 // handler landing pad offset and 1 (action code, gcc seems to use 0). 503 ".LLSDACSBCFA2:\n" 504 " .uleb128 .TRYSTART-__cfaehm_try_terminate\n" 505 " .uleb128 .TRYEND-.TRYSTART\n" 506 " .uleb128 .CATCH-__cfaehm_try_terminate\n" 507 " .uleb128 1\n" 508 ".LLSDACSECFA2:\n" 509 // TABLE FOOTER 510 " .text\n" 511 " .size __cfaehm_try_terminate, .-__cfaehm_try_terminate\n" 474 " .uleb128 .LLSDACSECFA2-.LLSDACSBCFA2\n" // BODY length 475 // Body uses language specific data and therefore could be modified arbitrarily 476 ".LLSDACSBCFA2:\n" // BODY start 477 " .uleb128 .TRYSTART-__cfaabi_ehm__try_terminate\n" // Handled area start (relative to start of function) 478 " .uleb128 .TRYEND-.TRYSTART\n" // Handled area length 479 " .uleb128 .CATCH-__cfaabi_ehm__try_terminate\n" // Hanlder landing pad adress (relative to start of function) 480 " .uleb128 1\n" // Action code, gcc seems to use always 0 481 ".LLSDACSECFA2:\n" // BODY end 482 " .text\n" // TABLE footer 483 " .size __cfaabi_ehm__try_terminate, .-__cfaabi_ehm__try_terminate\n" 484 " .ident \"GCC: (Ubuntu 6.2.0-3ubuntu11~16.04) 6.2.0 20160901\"\n" 485 // " .section .note.GNU-stack,\"x\",@progbits\n" 512 486 ); 513 514 // Somehow this piece of helps with the resolution of debug symbols. 515 __attribute__((unused)) static const int dummy = 0; 516 517 asm ( 518 // Add a hidden symbol which points at the function. 519 " .hidden CFA.ref.__gcfa_personality_v0\n" 520 " .weak CFA.ref.__gcfa_personality_v0\n" 521 // No clue what this does specifically 522 " .section .data.rel.local.CFA.ref.__gcfa_personality_v0,\"awG\",@progbits,CFA.ref.__gcfa_personality_v0,comdat\n" 523 " .align 8\n" 524 " .type CFA.ref.__gcfa_personality_v0, @object\n" 525 " .size CFA.ref.__gcfa_personality_v0, 8\n" 526 "CFA.ref.__gcfa_personality_v0:\n" 527 #if defined( __x86_64 ) 528 " .quad __gcfa_personality_v0\n" 529 #else // then __i386 530 " .long __gcfa_personality_v0\n" 531 #endif 532 ); 533 #else // __PIC__ 534 asm ( 535 // HEADER 536 ".LFECFA1:\n" 537 " .globl __gcfa_personality_v0\n" 538 " .section .gcc_except_table,\"a\",@progbits\n" 539 // TABLE HEADER (important field is the BODY length at the end) 540 ".LLSDACFA2:\n" 541 " .byte 0xff\n" 542 " .byte 0xff\n" 543 " .byte 0x1\n" 544 " .uleb128 .LLSDACSECFA2-.LLSDACSBCFA2\n" 545 // BODY (language specific data) 546 ".LLSDACSBCFA2:\n" 547 // Handled area start (relative to start of function) 548 " .uleb128 .TRYSTART-__cfaehm_try_terminate\n" 549 // Handled area length 550 " .uleb128 .TRYEND-.TRYSTART\n" 551 // Handler landing pad address (relative to start of function) 552 " .uleb128 .CATCH-__cfaehm_try_terminate\n" 553 // Action code, gcc seems to always use 0. 554 " .uleb128 1\n" 555 // TABLE FOOTER 556 ".LLSDACSECFA2:\n" 557 " .text\n" 558 " .size __cfaehm_try_terminate, .-__cfaehm_try_terminate\n" 559 " .ident \"GCC: (Ubuntu 6.2.0-3ubuntu11~16.04) 6.2.0 20160901\"\n" 560 " .section .note.GNU-stack,\"x\",@progbits\n" 561 ); 562 #endif // __PIC__ 563 564 #pragma GCC pop_options 487 #endif // __i386 || __x86_64 488 #endif //PIC -
libcfa/src/exception.h
r7030dab r71d6bd8 9 9 // Author : Andrew Beach 10 10 // Created On : Mon Jun 26 15:11:00 2017 11 // Last Modified By : Andrew Beach12 // Last Modified On : Fri Mar 27 10:16:00 202013 // Update Count : 911 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Thu Feb 22 18:11:15 2018 13 // Update Count : 8 14 14 // 15 15 … … 21 21 #endif 22 22 23 struct __cfa ehm_base_exception_t;24 typedef struct __cfa ehm_base_exception_t exception_t;25 struct __cfa ehm_base_exception_t_vtable {26 const struct __cfa ehm_base_exception_t_vtable * parent;23 struct __cfaabi_ehm__base_exception_t; 24 typedef struct __cfaabi_ehm__base_exception_t exception_t; 25 struct __cfaabi_ehm__base_exception_t_vtable { 26 const struct __cfaabi_ehm__base_exception_t_vtable * parent; 27 27 size_t size; 28 void (*copy)(struct __cfa ehm_base_exception_t *this,29 struct __cfa ehm_base_exception_t * other);30 void (*free)(struct __cfa ehm_base_exception_t *this);31 const char * (*msg)(struct __cfa ehm_base_exception_t *this);28 void (*copy)(struct __cfaabi_ehm__base_exception_t *this, 29 struct __cfaabi_ehm__base_exception_t * other); 30 void (*free)(struct __cfaabi_ehm__base_exception_t *this); 31 const char * (*msg)(struct __cfaabi_ehm__base_exception_t *this); 32 32 }; 33 struct __cfa ehm_base_exception_t {34 struct __cfa ehm_base_exception_t_vtable const * virtual_table;33 struct __cfaabi_ehm__base_exception_t { 34 struct __cfaabi_ehm__base_exception_t_vtable const * virtual_table; 35 35 }; 36 extern struct __cfa ehm_base_exception_t_vtable37 ___cfa ehm_base_exception_t_vtable_instance;36 extern struct __cfaabi_ehm__base_exception_t_vtable 37 ___cfaabi_ehm__base_exception_t_vtable_instance; 38 38 39 39 40 40 // Used in throw statement translation. 41 void __cfa ehm_throw_terminate(exception_t * except) __attribute__((noreturn));42 void __cfa ehm_rethrow_terminate() __attribute__((noreturn));43 void __cfa ehm_throw_resume(exception_t * except);41 void __cfaabi_ehm__throw_terminate(exception_t * except) __attribute__((noreturn)); 42 void __cfaabi_ehm__rethrow_terminate() __attribute__((noreturn)); 43 void __cfaabi_ehm__throw_resume(exception_t * except); 44 44 45 45 // Function catches termination exceptions. 46 void __cfa ehm_try_terminate(46 void __cfaabi_ehm__try_terminate( 47 47 void (*try_block)(), 48 48 void (*catch_block)(int index, exception_t * except), … … 50 50 51 51 // Clean-up the exception in catch blocks. 52 void __cfa ehm_cleanup_terminate(void * except);52 void __cfaabi_ehm__cleanup_terminate(void * except); 53 53 54 54 // Data structure creates a list of resume handlers. 55 struct __cfa ehm_try_resume_node {56 struct __cfa ehm_try_resume_node * next;55 struct __cfaabi_ehm__try_resume_node { 56 struct __cfaabi_ehm__try_resume_node * next; 57 57 _Bool (*handler)(exception_t * except); 58 58 }; 59 59 60 60 // These act as constructor and destructor for the resume node. 61 void __cfa ehm_try_resume_setup(62 struct __cfa ehm_try_resume_node * node,61 void __cfaabi_ehm__try_resume_setup( 62 struct __cfaabi_ehm__try_resume_node * node, 63 63 _Bool (*handler)(exception_t * except)); 64 void __cfa ehm_try_resume_cleanup(65 struct __cfa ehm_try_resume_node * node);64 void __cfaabi_ehm__try_resume_cleanup( 65 struct __cfaabi_ehm__try_resume_node * node); 66 66 67 67 // Check for a standard way to call fake deconstructors. 68 struct __cfa ehm_cleanup_hook {};68 struct __cfaabi_ehm__cleanup_hook {}; 69 69 70 70 #ifdef __cforall -
libcfa/src/executor.cfa
r7030dab r71d6bd8 8 8 #include <stdio.h> 9 9 10 forall( dtype T )11 monitor Buffer { // unbounded buffer12 13 14 }; // Buffer15 forall( dtype T | is_node(T) ) { 10 forall( otype T | is_node(T) | is_monitor(T) ) { 11 monitor Buffer { // unbounded buffer 12 __queue_t( T ) queue; // unbounded list of work requests 13 condition delay; 14 }; // Buffer 15 16 16 void insert( Buffer( T ) & mutex buf, T * elem ) with(buf) { 17 17 append( queue, elem ); // insert element into buffer … … 20 20 21 21 T * remove( Buffer( T ) & mutex buf ) with(buf) { 22 if ( queue.head != 0) wait( delay ); // no request to process ? => wait23 //return pop_head( queue );22 if ( ! queue ) wait( delay ); // no request to process ? => wait 23 return pop_head( queue ); 24 24 } // remove 25 25 } // distribution -
libcfa/src/fstream.cfa
r7030dab r71d6bd8 10 10 // Created On : Wed May 27 17:56:53 2015 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Fri Feb 7 19:01:01 202013 // Update Count : 3 6312 // Last Modified On : Tue Sep 10 22:19:56 2019 13 // Update Count : 354 14 14 // 15 15 … … 32 32 33 33 void ?{}( ofstream & os, void * file ) { 34 os.$file = file; 35 os.$sepDefault = true; 36 os.$sepOnOff = false; 37 os.$nlOnOff = true; 38 os.$prt = false; 39 os.$sawNL = false; 40 $sepSetCur( os, sepGet( os ) ); 34 os.file = file; 35 os.sepDefault = true; 36 os.sepOnOff = false; 37 os.nlOnOff = true; 38 os.prt = false; 39 os.sawNL = false; 41 40 sepSet( os, " " ); 41 sepSetCur( os, sepGet( os ) ); 42 42 sepSetTuple( os, ", " ); 43 43 } // ?{} 44 44 45 45 // private 46 bool $sepPrt( ofstream & os ) { $setNL( os, false ); return os.$sepOnOff; }47 void $sepReset( ofstream & os ) { os.$sepOnOff = os.$sepDefault; }48 void $sepReset( ofstream & os, bool reset ) { os.$sepDefault = reset; os.$sepOnOff = os.$sepDefault; }49 const char * $sepGetCur( ofstream & os ) { return os.$sepCur; }50 void $sepSetCur( ofstream & os, const char sepCur[] ) { os.$sepCur = sepCur; }51 bool $getNL( ofstream & os ) { return os.$sawNL; }52 void $setNL( ofstream & os, bool state ) { os.$sawNL = state; }53 bool $getANL( ofstream & os ) { return os.$nlOnOff; }54 bool $getPrt( ofstream & os ) { return os.$prt; }55 void $setPrt( ofstream & os, bool state ) { os.$prt = state; }46 bool sepPrt( ofstream & os ) { setNL( os, false ); return os.sepOnOff; } 47 void sepReset( ofstream & os ) { os.sepOnOff = os.sepDefault; } 48 void sepReset( ofstream & os, bool reset ) { os.sepDefault = reset; os.sepOnOff = os.sepDefault; } 49 const char * sepGetCur( ofstream & os ) { return os.sepCur; } 50 void sepSetCur( ofstream & os, const char * sepCur ) { os.sepCur = sepCur; } 51 bool getNL( ofstream & os ) { return os.sawNL; } 52 void setNL( ofstream & os, bool state ) { os.sawNL = state; } 53 bool getANL( ofstream & os ) { return os.nlOnOff; } 54 bool getPrt( ofstream & os ) { return os.prt; } 55 void setPrt( ofstream & os, bool state ) { os.prt = state; } 56 56 57 57 // public 58 void ?{}( ofstream & os ) { os. $file = 0p; }59 60 void ?{}( ofstream & os, const char name[], const char mode[]) {58 void ?{}( ofstream & os ) { os.file = 0; } 59 60 void ?{}( ofstream & os, const char * name, const char * mode ) { 61 61 open( os, name, mode ); 62 62 } // ?{} 63 63 64 void ?{}( ofstream & os, const char name[]) {64 void ?{}( ofstream & os, const char * name ) { 65 65 open( os, name, "w" ); 66 66 } // ?{} 67 67 68 void ^?{}( ofstream & os ) { 69 close( os ); 70 } // ^?{} 71 72 void sepOn( ofstream & os ) { os.$sepOnOff = ! $getNL( os ); } 73 void sepOff( ofstream & os ) { os.$sepOnOff = false; } 68 void sepOn( ofstream & os ) { os.sepOnOff = ! getNL( os ); } 69 void sepOff( ofstream & os ) { os.sepOnOff = false; } 74 70 75 71 bool sepDisable( ofstream & os ) { 76 bool temp = os. $sepDefault;77 os. $sepDefault = false;78 $sepReset( os );72 bool temp = os.sepDefault; 73 os.sepDefault = false; 74 sepReset( os ); 79 75 return temp; 80 76 } // sepDisable 81 77 82 78 bool sepEnable( ofstream & os ) { 83 bool temp = os. $sepDefault;84 os. $sepDefault = true;85 if ( os. $sepOnOff ) $sepReset( os );// start of line ?79 bool temp = os.sepDefault; 80 os.sepDefault = true; 81 if ( os.sepOnOff ) sepReset( os ); // start of line ? 86 82 return temp; 87 83 } // sepEnable 88 84 89 void nlOn( ofstream & os ) { os. $nlOnOff = true; }90 void nlOff( ofstream & os ) { os. $nlOnOff = false; }91 92 const char * sepGet( ofstream & os ) { return os. $separator; }93 void sepSet( ofstream & os, const char s[]) {85 void nlOn( ofstream & os ) { os.nlOnOff = true; } 86 void nlOff( ofstream & os ) { os.nlOnOff = false; } 87 88 const char * sepGet( ofstream & os ) { return os.separator; } 89 void sepSet( ofstream & os, const char * s ) { 94 90 assert( s ); 95 strncpy( os. $separator, s, sepSize - 1 );96 os. $separator[sepSize - 1] = '\0';91 strncpy( os.separator, s, sepSize - 1 ); 92 os.separator[sepSize - 1] = '\0'; 97 93 } // sepSet 98 94 99 const char * sepGetTuple( ofstream & os ) { return os. $tupleSeparator; }100 void sepSetTuple( ofstream & os, const char s[]) {95 const char * sepGetTuple( ofstream & os ) { return os.tupleSeparator; } 96 void sepSetTuple( ofstream & os, const char * s ) { 101 97 assert( s ); 102 strncpy( os. $tupleSeparator, s, sepSize - 1 );103 os. $tupleSeparator[sepSize - 1] = '\0';98 strncpy( os.tupleSeparator, s, sepSize - 1 ); 99 os.tupleSeparator[sepSize - 1] = '\0'; 104 100 } // sepSet 105 101 106 102 void ends( ofstream & os ) { 107 if ( $getANL( os ) ) nl( os );108 else $setPrt( os, false ); // turn off103 if ( getANL( os ) ) nl( os ); 104 else setPrt( os, false ); // turn off 109 105 if ( &os == &exit ) exit( EXIT_FAILURE ); 110 106 if ( &os == &abort ) abort(); … … 112 108 113 109 int fail( ofstream & os ) { 114 return os. $file == 0 || ferror( (FILE *)(os.$file) );110 return os.file == 0 || ferror( (FILE *)(os.file) ); 115 111 } // fail 116 112 117 113 int flush( ofstream & os ) { 118 return fflush( (FILE *)(os. $file) );114 return fflush( (FILE *)(os.file) ); 119 115 } // flush 120 116 121 void open( ofstream & os, const char name[], const char mode[]) {117 void open( ofstream & os, const char * name, const char * mode ) { 122 118 FILE * file = fopen( name, mode ); 123 119 #ifdef __CFA_DEBUG__ 124 if ( file == 0 p) {120 if ( file == 0 ) { 125 121 abort | IO_MSG "open output file \"" | name | "\"" | nl | strerror( errno ); 126 122 } // if … … 129 125 } // open 130 126 131 void open( ofstream & os, const char name[]) {127 void open( ofstream & os, const char * name ) { 132 128 open( os, name, "w" ); 133 129 } // open 134 130 135 131 void close( ofstream & os ) { 136 if ( (FILE *)(os. $file) == stdout || (FILE *)(os.$file) == stderr ) return;137 138 if ( fclose( (FILE *)(os. $file) ) == EOF ) {132 if ( (FILE *)(os.file) == stdout || (FILE *)(os.file) == stderr ) return; 133 134 if ( fclose( (FILE *)(os.file) ) == EOF ) { 139 135 abort | IO_MSG "close output" | nl | strerror( errno ); 140 136 } // if 141 137 } // close 142 138 143 ofstream & write( ofstream & os, const char data[], size_t size ) {139 ofstream & write( ofstream & os, const char * data, size_t size ) { 144 140 if ( fail( os ) ) { 145 141 abort | IO_MSG "attempt write I/O on failed stream"; 146 142 } // if 147 143 148 if ( fwrite( data, 1, size, (FILE *)(os. $file) ) != size ) {144 if ( fwrite( data, 1, size, (FILE *)(os.file) ) != size ) { 149 145 abort | IO_MSG "write" | nl | strerror( errno ); 150 146 } // if … … 155 151 va_list args; 156 152 va_start( args, format ); 157 int len = vfprintf( (FILE *)(os. $file), format, args );153 int len = vfprintf( (FILE *)(os.file), format, args ); 158 154 if ( len == EOF ) { 159 if ( ferror( (FILE *)(os. $file) ) ) {155 if ( ferror( (FILE *)(os.file) ) ) { 160 156 abort | IO_MSG "invalid write"; 161 157 } // if … … 163 159 va_end( args ); 164 160 165 $setPrt( os, true );// called in output cascade166 $sepReset( os );// reset separator161 setPrt( os, true ); // called in output cascade 162 sepReset( os ); // reset separator 167 163 return len; 168 164 } // fmt … … 184 180 // private 185 181 void ?{}( ifstream & is, void * file ) { 186 is. $file = file;187 is. $nlOnOff = false;182 is.file = file; 183 is.nlOnOff = false; 188 184 } // ?{} 189 185 190 186 // public 191 void ?{}( ifstream & is ) { is.$file = 0p; }192 193 void ?{}( ifstream & is, const char name[], const char mode[]) {187 void ?{}( ifstream & is ) { is.file = 0; } 188 189 void ?{}( ifstream & is, const char * name, const char * mode ) { 194 190 open( is, name, mode ); 195 191 } // ?{} 196 192 197 void ?{}( ifstream & is, const char name[]) {193 void ?{}( ifstream & is, const char * name ) { 198 194 open( is, name, "r" ); 199 195 } // ?{} 200 196 201 void ^?{}( ifstream & is ) { 202 close( is ); 203 } // ^?{} 204 205 void nlOn( ifstream & os ) { os.$nlOnOff = true; } 206 void nlOff( ifstream & os ) { os.$nlOnOff = false; } 207 bool getANL( ifstream & os ) { return os.$nlOnOff; } 197 void nlOn( ifstream & os ) { os.nlOnOff = true; } 198 void nlOff( ifstream & os ) { os.nlOnOff = false; } 199 bool getANL( ifstream & os ) { return os.nlOnOff; } 208 200 209 201 int fail( ifstream & is ) { 210 return is. $file == 0p || ferror( (FILE *)(is.$file) );202 return is.file == 0 || ferror( (FILE *)(is.file) ); 211 203 } // fail 212 204 213 205 int eof( ifstream & is ) { 214 return feof( (FILE *)(is. $file) );206 return feof( (FILE *)(is.file) ); 215 207 } // eof 216 208 217 void open( ifstream & is, const char name[], const char mode[]) {209 void open( ifstream & is, const char * name, const char * mode ) { 218 210 FILE * file = fopen( name, mode ); 219 211 #ifdef __CFA_DEBUG__ 220 if ( file == 0 p) {212 if ( file == 0 ) { 221 213 abort | IO_MSG "open input file \"" | name | "\"" | nl | strerror( errno ); 222 214 } // if 223 215 #endif // __CFA_DEBUG__ 224 is. $file = file;225 } // open 226 227 void open( ifstream & is, const char name[]) {216 is.file = file; 217 } // open 218 219 void open( ifstream & is, const char * name ) { 228 220 open( is, name, "r" ); 229 221 } // open 230 222 231 223 void close( ifstream & is ) { 232 if ( (FILE *)(is. $file) == stdin ) return;233 234 if ( fclose( (FILE *)(is. $file) ) == EOF ) {224 if ( (FILE *)(is.file) == stdin ) return; 225 226 if ( fclose( (FILE *)(is.file) ) == EOF ) { 235 227 abort | IO_MSG "close input" | nl | strerror( errno ); 236 228 } // if … … 242 234 } // if 243 235 244 if ( fread( data, size, 1, (FILE *)(is. $file) ) == 0 ) {236 if ( fread( data, size, 1, (FILE *)(is.file) ) == 0 ) { 245 237 abort | IO_MSG "read" | nl | strerror( errno ); 246 238 } // if … … 253 245 } // if 254 246 255 if ( ungetc( c, (FILE *)(is. $file) ) == EOF ) {247 if ( ungetc( c, (FILE *)(is.file) ) == EOF ) { 256 248 abort | IO_MSG "ungetc" | nl | strerror( errno ); 257 249 } // if … … 263 255 264 256 va_start( args, format ); 265 int len = vfscanf( (FILE *)(is. $file), format, args );257 int len = vfscanf( (FILE *)(is.file), format, args ); 266 258 if ( len == EOF ) { 267 if ( ferror( (FILE *)(is. $file) ) ) {259 if ( ferror( (FILE *)(is.file) ) ) { 268 260 abort | IO_MSG "invalid read"; 269 261 } // if -
libcfa/src/fstream.hfa
r7030dab r71d6bd8 10 10 // Created On : Wed May 27 17:56:53 2015 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Mon Feb 17 08:29:23 202013 // Update Count : 1 7512 // Last Modified On : Mon Jul 15 18:10:23 2019 13 // Update Count : 167 14 14 // 15 15 … … 24 24 enum { sepSize = 16 }; 25 25 struct ofstream { 26 void * $file;27 bool $sepDefault;28 bool $sepOnOff;29 bool $nlOnOff;30 bool $prt; // print text31 bool $sawNL;32 const char * $sepCur;33 char $separator[sepSize];34 char $tupleSeparator[sepSize];26 void * file; 27 bool sepDefault; 28 bool sepOnOff; 29 bool nlOnOff; 30 bool prt; // print text 31 bool sawNL; 32 const char * sepCur; 33 char separator[sepSize]; 34 char tupleSeparator[sepSize]; 35 35 }; // ofstream 36 36 37 37 // private 38 bool $sepPrt( ofstream & );39 void $sepReset( ofstream & );40 void $sepReset( ofstream &, bool );41 const char * $sepGetCur( ofstream & );42 void $sepSetCur( ofstream &, const char []);43 bool $getNL( ofstream & );44 void $setNL( ofstream &, bool );45 bool $getANL( ofstream & );46 bool $getPrt( ofstream & );47 void $setPrt( ofstream &, bool );38 bool sepPrt( ofstream & ); 39 void sepReset( ofstream & ); 40 void sepReset( ofstream &, bool ); 41 const char * sepGetCur( ofstream & ); 42 void sepSetCur( ofstream &, const char * ); 43 bool getNL( ofstream & ); 44 void setNL( ofstream &, bool ); 45 bool getANL( ofstream & ); 46 bool getPrt( ofstream & ); 47 void setPrt( ofstream &, bool ); 48 48 49 49 // public … … 56 56 57 57 const char * sepGet( ofstream & ); 58 void sepSet( ofstream &, const char []);58 void sepSet( ofstream &, const char * ); 59 59 const char * sepGetTuple( ofstream & ); 60 void sepSetTuple( ofstream &, const char []);60 void sepSetTuple( ofstream &, const char * ); 61 61 62 62 void ends( ofstream & os ); 63 63 int fail( ofstream & ); 64 64 int flush( ofstream & ); 65 void open( ofstream &, const char name[], const char mode[]);66 void open( ofstream &, const char name[]);65 void open( ofstream &, const char * name, const char * mode ); 66 void open( ofstream &, const char * name ); 67 67 void close( ofstream & ); 68 ofstream & write( ofstream &, const char data[], size_t size );69 int fmt( ofstream &, const char format[], ... ) __attribute__(( format(printf, 2, 3) ));68 ofstream & write( ofstream &, const char * data, size_t size ); 69 int fmt( ofstream &, const char format[], ... ); 70 70 71 71 void ?{}( ofstream & os ); 72 void ?{}( ofstream & os, const char name[], const char mode[] ); 73 void ?{}( ofstream & os, const char name[] ); 74 void ^?{}( ofstream & os ); 72 void ?{}( ofstream & os, const char * name, const char * mode ); 73 void ?{}( ofstream & os, const char * name ); 75 74 76 75 extern ofstream & sout, & stdout, & serr, & stderr; // aliases … … 82 81 83 82 struct ifstream { 84 void * $file;85 bool $nlOnOff;83 void * file; 84 bool nlOnOff; 86 85 }; // ifstream 87 86 … … 92 91 int fail( ifstream & is ); 93 92 int eof( ifstream & is ); 94 void open( ifstream & is, const char name[], const char mode[]);95 void open( ifstream & is, const char name[]);93 void open( ifstream & is, const char * name, const char * mode ); 94 void open( ifstream & is, const char * name ); 96 95 void close( ifstream & is ); 97 96 ifstream & read( ifstream & is, char * data, size_t size ); 98 97 ifstream & ungetc( ifstream & is, char c ); 99 int fmt( ifstream &, const char format[], ... ) __attribute__(( format(scanf, 2, 3) ));98 int fmt( ifstream &, const char format[], ... ); 100 99 101 100 void ?{}( ifstream & is ); 102 void ?{}( ifstream & is, const char name[], const char mode[] ); 103 void ?{}( ifstream & is, const char name[] ); 104 void ^?{}( ifstream & is ); 101 void ?{}( ifstream & is, const char * name, const char * mode ); 102 void ?{}( ifstream & is, const char * name ); 105 103 106 104 extern ifstream & sin, & stdin; // aliases -
libcfa/src/gmp.hfa
r7030dab r71d6bd8 10 10 // Created On : Tue Apr 19 08:43:43 2016 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : S un Feb 9 09:56:54 202013 // Update Count : 3112 // Last Modified On : Sat Jul 13 15:25:05 2019 13 // Update Count : 27 14 14 // 15 15 … … 24 24 25 25 static inline { 26 // constructor , zero_t/one_t are unnecessary because of relationship with signed/unsigned int26 // constructor 27 27 void ?{}( Int & this ) { mpz_init( this.mpz ); } 28 28 void ?{}( Int & this, Int init ) { mpz_init_set( this.mpz, init.mpz ); } 29 void ?{}( Int & this, zero_t ) { mpz_init_set_si( this.mpz, 0 ); } 30 void ?{}( Int & this, one_t ) { mpz_init_set_si( this.mpz, 1 ); } 29 31 void ?{}( Int & this, signed long int init ) { mpz_init_set_si( this.mpz, init ); } 30 32 void ?{}( Int & this, unsigned long int init ) { mpz_init_set_ui( this.mpz, init ); } 31 void ?{}( Int & this, const char val[]) { if ( mpz_init_set_str( this.mpz, val, 0 ) ) abort(); }33 void ?{}( Int & this, const char * val ) { if ( mpz_init_set_str( this.mpz, val, 0 ) ) abort(); } 32 34 void ^?{}( Int & this ) { mpz_clear( this.mpz ); } 33 35 … … 35 37 Int ?`mp( signed long int init ) { return (Int){ init }; } 36 38 Int ?`mp( unsigned long int init ) { return (Int){ init }; } 37 Int ?`mp( const char init[]) { return (Int){ init }; }39 Int ?`mp( const char * init ) { return (Int){ init }; } 38 40 39 41 // assignment … … 41 43 Int ?=?( Int & lhs, long int rhs ) { mpz_set_si( lhs.mpz, rhs ); return lhs; } 42 44 Int ?=?( Int & lhs, unsigned long int rhs ) { mpz_set_ui( lhs.mpz, rhs ); return lhs; } 43 Int ?=?( Int & lhs, const char rhs[]) { if ( mpz_set_str( lhs.mpz, rhs, 0 ) ) { abort | "invalid string conversion"; } return lhs; }45 Int ?=?( Int & lhs, const char * rhs ) { if ( mpz_set_str( lhs.mpz, rhs, 0 ) ) { abort | "invalid string conversion"; } return lhs; } 44 46 45 47 char ?=?( char & lhs, Int rhs ) { char val = mpz_get_si( rhs.mpz ); lhs = val; return lhs; } … … 263 265 forall( dtype ostype | ostream( ostype ) ) { 264 266 ostype & ?|?( ostype & os, Int mp ) { 265 if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) );267 if ( sepPrt( os ) ) fmt( os, "%s", sepGetCur( os ) ); 266 268 gmp_printf( "%Zd", mp.mpz ); 267 269 sepOn( os ); -
libcfa/src/heap.cfa
r7030dab r71d6bd8 10 10 // Created On : Tue Dec 19 21:58:35 2017 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Wed Apr 1 15:59:53 202013 // Update Count : 69212 // Last Modified On : Fri Oct 18 07:42:09 2019 13 // Update Count : 556 14 14 // 15 15 … … 18 18 #include <stdio.h> // snprintf, fileno 19 19 #include <errno.h> // errno 20 #include <string.h> // memset, memcpy21 20 extern "C" { 22 21 #include <sys/mman.h> // mmap, munmap … … 28 27 #include "bits/locks.hfa" // __spinlock_t 29 28 #include "startup.hfa" // STARTUP_PRIORITY_MEMORY 30 //#include "stdlib.hfa" // bsearchl29 #include "stdlib.hfa" // bsearchl 31 30 #include "malloc.h" 32 31 33 #define MIN(x, y) (y > x ? x : y)34 32 35 33 static bool traceHeap = false; 36 34 37 inline bool traceHeap() { return traceHeap; } 35 inline bool traceHeap() { 36 return traceHeap; 37 } // traceHeap 38 38 39 39 bool traceHeapOn() { … … 49 49 } // traceHeapOff 50 50 51 bool traceHeapTerm() { return false; } 52 53 54 static bool prtFree = false; 55 56 inline bool prtFree() { 57 return prtFree; 58 } // prtFree 59 60 bool prtFreeOn() { 61 bool temp = prtFree; 62 prtFree = true; 51 52 static bool checkFree = false; 53 54 inline bool checkFree() { 55 return checkFree; 56 } // checkFree 57 58 bool checkFreeOn() { 59 bool temp = checkFree; 60 checkFree = true; 63 61 return temp; 64 } // prtFreeOn65 66 bool prtFreeOff() {67 bool temp = prtFree;68 prtFree = false;62 } // checkFreeOn 63 64 bool checkFreeOff() { 65 bool temp = checkFree; 66 checkFree = false; 69 67 return temp; 70 } // prtFreeOff 68 } // checkFreeOff 69 70 71 // static bool traceHeapTerm = false; 72 73 // inline bool traceHeapTerm() { 74 // return traceHeapTerm; 75 // } // traceHeapTerm 76 77 // bool traceHeapTermOn() { 78 // bool temp = traceHeapTerm; 79 // traceHeapTerm = true; 80 // return temp; 81 // } // traceHeapTermOn 82 83 // bool traceHeapTermOff() { 84 // bool temp = traceHeapTerm; 85 // traceHeapTerm = false; 86 // return temp; 87 // } // traceHeapTermOff 71 88 72 89 73 90 enum { 74 // Define the default extension heap amount in units of bytes. When the uC++ supplied heap reaches the brk address, 75 // the brk address is extended by the extension amount. 91 __CFA_DEFAULT_MMAP_START__ = (512 * 1024 + 1), 76 92 __CFA_DEFAULT_HEAP_EXPANSION__ = (1 * 1024 * 1024), 77 78 // Define the mmap crossover point during allocation. Allocations less than this amount are allocated from buckets;79 // values greater than or equal to this value are mmap from the operating system.80 __CFA_DEFAULT_MMAP_START__ = (512 * 1024 + 1),81 93 }; 82 94 … … 93 105 static unsigned int allocFree; // running total of allocations minus frees 94 106 95 static void prtUnfreed() {107 static void checkUnfreed() { 96 108 if ( allocFree != 0 ) { 97 109 // DO NOT USE STREAMS AS THEY MAY BE UNAVAILABLE AT THIS POINT. 98 char helpText[512];99 int len = snprintf( helpText, sizeof(helpText), "CFA warning (UNIX pid:%ld) : program terminating with %u(0x%x) bytes of storage allocated but not freed.\n"100 "Possible cause is unfreed storage allocated by the program or system/library routines called from the program.\n",101 (long int)getpid(), allocFree, allocFree ); // always print the UNIX pid102 __cfaabi_bits_write( STDERR_FILENO, helpText, len ); // print debug/nodebug103 } // if 104 } // prtUnfreed110 // char helpText[512]; 111 // int len = snprintf( helpText, sizeof(helpText), "CFA warning (UNIX pid:%ld) : program terminating with %u(0x%x) bytes of storage allocated but not freed.\n" 112 // "Possible cause is unfreed storage allocated by the program or system/library routines called from the program.\n", 113 // (long int)getpid(), allocFree, allocFree ); // always print the UNIX pid 114 // __cfaabi_dbg_bits_write( helpText, len ); 115 } // if 116 } // checkUnfreed 105 117 106 118 extern "C" { … … 111 123 void heapAppStop() { // called by __cfaabi_appready_startdown 112 124 fclose( stdin ); fclose( stdout ); 113 prtUnfreed();125 checkUnfreed(); 114 126 } // heapAppStop 115 127 } // extern "C" 116 128 #endif // __CFA_DEBUG__ 117 118 129 119 130 // statically allocated variables => zero filled. … … 123 134 static unsigned int maxBucketsUsed; // maximum number of buckets in use 124 135 136 137 // #comment TD : This defined is significantly different from the __ALIGN__ define from locks.hfa 138 #define ALIGN 16 125 139 126 140 #define SPINLOCK 0 … … 133 147 // Recursive definitions: HeapManager needs size of bucket array and bucket area needs sizeof HeapManager storage. 134 148 // Break recusion by hardcoding number of buckets and statically checking number is correct after bucket array defined. 135 enum { NoBucketSizes = 9 1}; // number of buckets sizes149 enum { NoBucketSizes = 93 }; // number of buckets sizes 136 150 137 151 struct HeapManager { … … 150 164 union { 151 165 // FreeHeader * home; // allocated block points back to home locations (must overlay alignment) 152 // 2nd low-order bit => zero filled153 166 void * home; // allocated block points back to home locations (must overlay alignment) 154 167 size_t blockSize; // size for munmap (must overlay alignment) … … 170 183 struct FakeHeader { 171 184 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 172 // 1st low-order bit => fake header & alignment 173 uint32_t alignment; 185 uint32_t alignment; // low-order bits of home/blockSize used for tricks 174 186 #endif // __ORDER_LITTLE_ENDIAN__ 175 187 … … 181 193 } fake; // FakeHeader 182 194 } kind; // Kind 183 uint32_t dimension; // used by calloc-like to remember number of array elements184 195 } header; // Header 185 char pad[ libAlign()- sizeof( Header )];196 char pad[ALIGN - sizeof( Header )]; 186 197 char data[0]; // storage 187 198 }; // Storage 188 199 189 static_assert( libAlign() >= sizeof( Storage ), "libAlign()< sizeof( Storage )" );200 static_assert( ALIGN >= sizeof( Storage ), "ALIGN < sizeof( Storage )" ); 190 201 191 202 struct FreeHeader { … … 217 228 #define __STATISTICS__ 218 229 219 // Bucket size must be multiple of 16.220 230 // Powers of 2 are common allocation sizes, so make powers of 2 generate the minimum required size. 221 231 static const unsigned int bucketSizes[] @= { // different bucket sizes 222 16, 32, 48, 64 + sizeof(HeapManager.Storage), // 4 223 96, 112, 128 + sizeof(HeapManager.Storage), // 3 224 160, 192, 224, 256 + sizeof(HeapManager.Storage), // 4 225 320, 384, 448, 512 + sizeof(HeapManager.Storage), // 4 226 640, 768, 896, 1_024 + sizeof(HeapManager.Storage), // 4 227 1_536, 2_048 + sizeof(HeapManager.Storage), // 2 228 2_560, 3_072, 3_584, 4_096 + sizeof(HeapManager.Storage), // 4 229 6_144, 8_192 + sizeof(HeapManager.Storage), // 2 230 9_216, 10_240, 11_264, 12_288, 13_312, 14_336, 15_360, 16_384 + sizeof(HeapManager.Storage), // 8 231 18_432, 20_480, 22_528, 24_576, 26_624, 28_672, 30_720, 32_768 + sizeof(HeapManager.Storage), // 8 232 36_864, 40_960, 45_056, 49_152, 53_248, 57_344, 61_440, 65_536 + sizeof(HeapManager.Storage), // 8 233 73_728, 81_920, 90_112, 98_304, 106_496, 114_688, 122_880, 131_072 + sizeof(HeapManager.Storage), // 8 234 147_456, 163_840, 180_224, 196_608, 212_992, 229_376, 245_760, 262_144 + sizeof(HeapManager.Storage), // 8 235 294_912, 327_680, 360_448, 393_216, 425_984, 458_752, 491_520, 524_288 + sizeof(HeapManager.Storage), // 8 236 655_360, 786_432, 917_504, 1_048_576 + sizeof(HeapManager.Storage), // 4 237 1_179_648, 1_310_720, 1_441_792, 1_572_864, 1_703_936, 1_835_008, 1_966_080, 2_097_152 + sizeof(HeapManager.Storage), // 8 238 2_621_440, 3_145_728, 3_670_016, 4_194_304 + sizeof(HeapManager.Storage), // 4 232 16, 32, 48, 64, 233 64 + sizeof(HeapManager.Storage), 96, 112, 128, 128 + sizeof(HeapManager.Storage), 160, 192, 224, 234 256 + sizeof(HeapManager.Storage), 320, 384, 448, 512 + sizeof(HeapManager.Storage), 640, 768, 896, 235 1_024 + sizeof(HeapManager.Storage), 1_536, 2_048 + sizeof(HeapManager.Storage), 2_560, 3_072, 3_584, 4_096 + sizeof(HeapManager.Storage), 6_144, 236 8_192 + sizeof(HeapManager.Storage), 9_216, 10_240, 11_264, 12_288, 13_312, 14_336, 15_360, 237 16_384 + sizeof(HeapManager.Storage), 18_432, 20_480, 22_528, 24_576, 26_624, 28_672, 30_720, 238 32_768 + sizeof(HeapManager.Storage), 36_864, 40_960, 45_056, 49_152, 53_248, 57_344, 61_440, 239 65_536 + sizeof(HeapManager.Storage), 73_728, 81_920, 90_112, 98_304, 106_496, 114_688, 122_880, 240 131_072 + sizeof(HeapManager.Storage), 147_456, 163_840, 180_224, 196_608, 212_992, 229_376, 245_760, 241 262_144 + sizeof(HeapManager.Storage), 294_912, 327_680, 360_448, 393_216, 425_984, 458_752, 491_520, 242 524_288 + sizeof(HeapManager.Storage), 655_360, 786_432, 917_504, 1_048_576 + sizeof(HeapManager.Storage), 1_179_648, 1_310_720, 1_441_792, 243 1_572_864, 1_703_936, 1_835_008, 1_966_080, 2_097_152 + sizeof(HeapManager.Storage), 2_621_440, 3_145_728, 3_670_016, 244 4_194_304 + sizeof(HeapManager.Storage) 239 245 }; 240 246 … … 245 251 static unsigned char lookup[LookupSizes]; // O(1) lookup for small sizes 246 252 #endif // FASTLOOKUP 247 248 253 static int mmapFd = -1; // fake or actual fd for anonymous file 254 255 249 256 #ifdef __CFA_DEBUG__ 250 257 static bool heapBoot = 0; // detect recursion during boot … … 252 259 static HeapManager heapManager __attribute__(( aligned (128) )) @= {}; // size of cache line to prevent false sharing 253 260 261 // #comment TD : The return type of this function should be commented 262 static inline bool setMmapStart( size_t value ) { 263 if ( value < pageSize || bucketSizes[NoBucketSizes - 1] < value ) return true; 264 mmapStart = value; // set global 265 266 // find the closest bucket size less than or equal to the mmapStart size 267 maxBucketsUsed = bsearchl( (unsigned int)mmapStart, bucketSizes, NoBucketSizes ); // binary search 268 assert( maxBucketsUsed < NoBucketSizes ); // subscript failure ? 269 assert( mmapStart <= bucketSizes[maxBucketsUsed] ); // search failure ? 270 return false; 271 } // setMmapStart 272 273 274 static void ?{}( HeapManager & manager ) with ( manager ) { 275 pageSize = sysconf( _SC_PAGESIZE ); 276 277 for ( unsigned int i = 0; i < NoBucketSizes; i += 1 ) { // initialize the free lists 278 freeLists[i].blockSize = bucketSizes[i]; 279 } // for 280 281 #ifdef FASTLOOKUP 282 unsigned int idx = 0; 283 for ( unsigned int i = 0; i < LookupSizes; i += 1 ) { 284 if ( i > bucketSizes[idx] ) idx += 1; 285 lookup[i] = idx; 286 } // for 287 #endif // FASTLOOKUP 288 289 if ( setMmapStart( default_mmap_start() ) ) { 290 abort( "HeapManager : internal error, mmap start initialization failure." ); 291 } // if 292 heapExpand = default_heap_expansion(); 293 294 char * End = (char *)sbrk( 0 ); 295 sbrk( (char *)libCeiling( (long unsigned int)End, libAlign() ) - End ); // move start of heap to multiple of alignment 296 heapBegin = heapEnd = sbrk( 0 ); // get new start point 297 } // HeapManager 298 299 300 static void ^?{}( HeapManager & ) { 301 #ifdef __STATISTICS__ 302 // if ( traceHeapTerm() ) { 303 // printStats(); 304 // if ( checkfree() ) checkFree( heapManager, true ); 305 // } // if 306 #endif // __STATISTICS__ 307 } // ~HeapManager 308 309 310 static void memory_startup( void ) __attribute__(( constructor( STARTUP_PRIORITY_MEMORY ) )); 311 void memory_startup( void ) { 312 #ifdef __CFA_DEBUG__ 313 if ( unlikely( heapBoot ) ) { // check for recursion during system boot 314 // DO NOT USE STREAMS AS THEY MAY BE UNAVAILABLE AT THIS POINT. 315 abort( "boot() : internal error, recursively invoked during system boot." ); 316 } // if 317 heapBoot = true; 318 #endif // __CFA_DEBUG__ 319 320 //assert( heapManager.heapBegin != 0 ); 321 //heapManager{}; 322 if ( heapManager.heapBegin == 0 ) heapManager{}; 323 } // memory_startup 324 325 static void memory_shutdown( void ) __attribute__(( destructor( STARTUP_PRIORITY_MEMORY ) )); 326 void memory_shutdown( void ) { 327 ^heapManager{}; 328 } // memory_shutdown 329 254 330 255 331 #ifdef __STATISTICS__ 256 // Heap statistics counters. 257 static unsigned long long int mmap_storage; 332 static unsigned long long int mmap_storage; // heap statistics counters 258 333 static unsigned int mmap_calls; 259 334 static unsigned long long int munmap_storage; … … 271 346 static unsigned long long int cmemalign_storage; 272 347 static unsigned int cmemalign_calls; 273 static unsigned long long int resize_storage;274 static unsigned int resize_calls;275 348 static unsigned long long int realloc_storage; 276 349 static unsigned int realloc_calls; 277 // Statistics file descriptor (changed by malloc_stats_fd). 278 static int statfd = STDERR_FILENO; // default stderr 350 351 static int statfd; // statistics file descriptor (changed by malloc_stats_fd) 352 279 353 280 354 // Use "write" because streams may be shutdown when calls are made. 281 355 static void printStats() { 282 356 char helpText[512]; 283 __cfaabi_ bits_print_buffer( STDERR_FILENO,helpText, sizeof(helpText),357 __cfaabi_dbg_bits_print_buffer( helpText, sizeof(helpText), 284 358 "\nHeap statistics:\n" 285 359 " malloc: calls %u / storage %llu\n" … … 287 361 " memalign: calls %u / storage %llu\n" 288 362 " cmemalign: calls %u / storage %llu\n" 289 " resize: calls %u / storage %llu\n"290 363 " realloc: calls %u / storage %llu\n" 291 364 " free: calls %u / storage %llu\n" … … 297 370 memalign_calls, memalign_storage, 298 371 cmemalign_calls, cmemalign_storage, 299 resize_calls, resize_storage,300 372 realloc_calls, realloc_storage, 301 373 free_calls, free_storage, … … 317 389 "<total type=\"memalign\" count=\"%u\" size=\"%llu\"/>\n" 318 390 "<total type=\"cmemalign\" count=\"%u\" size=\"%llu\"/>\n" 319 "<total type=\"resize\" count=\"%u\" size=\"%llu\"/>\n"320 391 "<total type=\"realloc\" count=\"%u\" size=\"%llu\"/>\n" 321 392 "<total type=\"free\" count=\"%u\" size=\"%llu\"/>\n" … … 328 399 memalign_calls, memalign_storage, 329 400 cmemalign_calls, cmemalign_storage, 330 resize_calls, resize_storage,331 401 realloc_calls, realloc_storage, 332 402 free_calls, free_storage, … … 335 405 sbrk_calls, sbrk_storage 336 406 ); 337 __cfaabi_bits_write( fileno( stream ), helpText, len ); // ensures all bytes written or exit 338 return len; 407 return write( fileno( stream ), helpText, len ); // -1 => error 339 408 } // printStatsXML 340 409 #endif // __STATISTICS__ 341 410 342 343 // static inline void noMemory() { 344 // abort( "Heap memory exhausted at %zu bytes.\n" 345 // "Possible cause is very large memory allocation and/or large amount of unfreed storage allocated by the program or system/library routines.", 346 // ((char *)(sbrk( 0 )) - (char *)(heapManager.heapBegin)) ); 347 // } // noMemory 411 // #comment TD : Is this the samething as Out-of-Memory? 412 static inline void noMemory() { 413 abort( "Heap memory exhausted at %zu bytes.\n" 414 "Possible cause is very large memory allocation and/or large amount of unfreed storage allocated by the program or system/library routines.", 415 ((char *)(sbrk( 0 )) - (char *)(heapManager.heapBegin)) ); 416 } // noMemory 417 418 419 static inline void checkAlign( size_t alignment ) { 420 if ( alignment < sizeof(void *) || ! libPow2( alignment ) ) { 421 abort( "Alignment %zu for memory allocation is less than sizeof(void *) and/or not a power of 2.", alignment ); 422 } // if 423 } // checkAlign 348 424 349 425 … … 355 431 356 432 357 // thunk problem 433 static inline void checkHeader( bool check, const char * name, void * addr ) { 434 if ( unlikely( check ) ) { // bad address ? 435 abort( "Attempt to %s storage %p with address outside the heap.\n" 436 "Possible cause is duplicate free on same block or overwriting of memory.", 437 name, addr ); 438 } // if 439 } // checkHeader 440 441 // #comment TD : function should be commented and/or have a more evocative name 442 // this isn't either a check or a constructor which is what I would expect this function to be 443 static inline void fakeHeader( HeapManager.Storage.Header *& header, size_t & size, size_t & alignment ) { 444 if ( unlikely( (header->kind.fake.alignment & 1) == 1 ) ) { // fake header ? 445 size_t offset = header->kind.fake.offset; 446 alignment = header->kind.fake.alignment & -2; // remove flag from value 447 #ifdef __CFA_DEBUG__ 448 checkAlign( alignment ); // check alignment 449 #endif // __CFA_DEBUG__ 450 header = (HeapManager.Storage.Header *)((char *)header - offset); 451 } // if 452 } // fakeHeader 453 454 // #comment TD : Why is this a define 455 #define headerAddr( addr ) ((HeapManager.Storage.Header *)( (char *)addr - sizeof(HeapManager.Storage) )) 456 457 static inline bool headers( const char * name, void * addr, HeapManager.Storage.Header *& header, HeapManager.FreeHeader *& freeElem, size_t & size, size_t & alignment ) with ( heapManager ) { 458 header = headerAddr( addr ); 459 460 if ( unlikely( heapEnd < addr ) ) { // mmapped ? 461 fakeHeader( header, size, alignment ); 462 size = header->kind.real.blockSize & -3; // mmap size 463 return true; 464 } // if 465 466 #ifdef __CFA_DEBUG__ 467 checkHeader( addr < heapBegin || header < (HeapManager.Storage.Header *)heapBegin, name, addr ); // bad low address ? 468 #endif // __CFA_DEBUG__ 469 470 // #comment TD : This code looks weird... 471 // It's called as the first statement of both branches of the last if, with the same parameters in all cases 472 473 // header may be safe to dereference 474 fakeHeader( header, size, alignment ); 475 #ifdef __CFA_DEBUG__ 476 checkHeader( header < (HeapManager.Storage.Header *)heapBegin || (HeapManager.Storage.Header *)heapEnd < header, name, addr ); // bad address ? (offset could be + or -) 477 #endif // __CFA_DEBUG__ 478 479 freeElem = (HeapManager.FreeHeader *)((size_t)header->kind.real.home & -3); 480 #ifdef __CFA_DEBUG__ 481 if ( freeElem < &freeLists[0] || &freeLists[NoBucketSizes] <= freeElem ) { 482 abort( "Attempt to %s storage %p with corrupted header.\n" 483 "Possible cause is duplicate free on same block or overwriting of header information.", 484 name, addr ); 485 } // if 486 #endif // __CFA_DEBUG__ 487 size = freeElem->blockSize; 488 return false; 489 } // headers 490 491 492 static inline void * extend( size_t size ) with ( heapManager ) { 493 lock( extlock __cfaabi_dbg_ctx2 ); 494 ptrdiff_t rem = heapRemaining - size; 495 if ( rem < 0 ) { 496 // If the size requested is bigger than the current remaining storage, increase the size of the heap. 497 498 size_t increase = libCeiling( size > heapExpand ? size : heapExpand, libAlign() ); 499 if ( sbrk( increase ) == (void *)-1 ) { 500 unlock( extlock ); 501 errno = ENOMEM; 502 return 0; 503 } // if 504 #ifdef __STATISTICS__ 505 sbrk_calls += 1; 506 sbrk_storage += increase; 507 #endif // __STATISTICS__ 508 #ifdef __CFA_DEBUG__ 509 // Set new memory to garbage so subsequent uninitialized usages might fail. 510 memset( (char *)heapEnd + heapRemaining, '\377', increase ); 511 #endif // __CFA_DEBUG__ 512 rem = heapRemaining + increase - size; 513 } // if 514 515 HeapManager.Storage * block = (HeapManager.Storage *)heapEnd; 516 heapRemaining = rem; 517 heapEnd = (char *)heapEnd + size; 518 unlock( extlock ); 519 return block; 520 } // extend 521 522 358 523 size_t Bsearchl( unsigned int key, const unsigned int * vals, size_t dim ) { 359 524 size_t l = 0, m, h = dim; … … 370 535 371 536 372 static inline bool setMmapStart( size_t value ) { // true => mmapped, false => sbrk373 if ( value < pageSize || bucketSizes[NoBucketSizes - 1] < value ) return true;374 mmapStart = value; // set global375 376 // find the closest bucket size less than or equal to the mmapStart size377 maxBucketsUsed = Bsearchl( (unsigned int)mmapStart, bucketSizes, NoBucketSizes ); // binary search378 assert( maxBucketsUsed < NoBucketSizes ); // subscript failure ?379 assert( mmapStart <= bucketSizes[maxBucketsUsed] ); // search failure ?380 return false;381 } // setMmapStart382 383 384 // <-------+----------------------------------------------------> bsize (bucket size)385 // |header |addr386 //==================================================================================387 // align/offset |388 // <-----------------<------------+-----------------------------> bsize (bucket size)389 // |fake-header | addr390 #define headerAddr( addr ) ((HeapManager.Storage.Header *)( (char *)addr - sizeof(HeapManager.Storage) ))391 #define realHeader( header ) ((HeapManager.Storage.Header *)((char *)header - header->kind.fake.offset))392 393 // <-------<<--------------------- dsize ---------------------->> bsize (bucket size)394 // |header |addr395 //==================================================================================396 // align/offset |397 // <------------------------------<<---------- dsize --------->>> bsize (bucket size)398 // |fake-header |addr399 #define dataStorage( bsize, addr, header ) (bsize - ( (char *)addr - (char *)header ))400 401 402 static inline void checkAlign( size_t alignment ) {403 if ( alignment < libAlign() || ! libPow2( alignment ) ) {404 abort( "Alignment %zu for memory allocation is less than %d and/or not a power of 2.", alignment, libAlign() );405 } // if406 } // checkAlign407 408 409 static inline void checkHeader( bool check, const char name[], void * addr ) {410 if ( unlikely( check ) ) { // bad address ?411 abort( "Attempt to %s storage %p with address outside the heap.\n"412 "Possible cause is duplicate free on same block or overwriting of memory.",413 name, addr );414 } // if415 } // checkHeader416 417 418 static inline void fakeHeader( HeapManager.Storage.Header *& header, size_t & alignment ) {419 if ( unlikely( (header->kind.fake.alignment & 1) == 1 ) ) { // fake header ?420 alignment = header->kind.fake.alignment & -2; // remove flag from value421 #ifdef __CFA_DEBUG__422 checkAlign( alignment ); // check alignment423 #endif // __CFA_DEBUG__424 header = realHeader( header ); // backup from fake to real header425 } // if426 } // fakeHeader427 428 429 static inline bool headers( const char name[] __attribute__(( unused )), void * addr, HeapManager.Storage.Header *& header, HeapManager.FreeHeader *& freeElem, size_t & size, size_t & alignment ) with ( heapManager ) {430 header = headerAddr( addr );431 432 if ( unlikely( heapEnd < addr ) ) { // mmapped ?433 fakeHeader( header, alignment );434 size = header->kind.real.blockSize & -3; // mmap size435 return true;436 } // if437 438 #ifdef __CFA_DEBUG__439 checkHeader( addr < heapBegin || header < (HeapManager.Storage.Header *)heapBegin, name, addr ); // bad low address ?440 #endif // __CFA_DEBUG__441 442 // header may be safe to dereference443 fakeHeader( header, alignment );444 #ifdef __CFA_DEBUG__445 checkHeader( header < (HeapManager.Storage.Header *)heapBegin || (HeapManager.Storage.Header *)heapEnd < header, name, addr ); // bad address ? (offset could be + or -)446 #endif // __CFA_DEBUG__447 448 freeElem = (HeapManager.FreeHeader *)((size_t)header->kind.real.home & -3);449 #ifdef __CFA_DEBUG__450 if ( freeElem < &freeLists[0] || &freeLists[NoBucketSizes] <= freeElem ) {451 abort( "Attempt to %s storage %p with corrupted header.\n"452 "Possible cause is duplicate free on same block or overwriting of header information.",453 name, addr );454 } // if455 #endif // __CFA_DEBUG__456 size = freeElem->blockSize;457 return false;458 } // headers459 460 461 static inline void * extend( size_t size ) with ( heapManager ) {462 lock( extlock __cfaabi_dbg_ctx2 );463 ptrdiff_t rem = heapRemaining - size;464 if ( rem < 0 ) {465 // If the size requested is bigger than the current remaining storage, increase the size of the heap.466 467 size_t increase = libCeiling( size > heapExpand ? size : heapExpand, libAlign() );468 if ( sbrk( increase ) == (void *)-1 ) {469 unlock( extlock );470 errno = ENOMEM;471 return 0p;472 } // if473 #ifdef __STATISTICS__474 sbrk_calls += 1;475 sbrk_storage += increase;476 #endif // __STATISTICS__477 #ifdef __CFA_DEBUG__478 // Set new memory to garbage so subsequent uninitialized usages might fail.479 memset( (char *)heapEnd + heapRemaining, '\377', increase );480 #endif // __CFA_DEBUG__481 rem = heapRemaining + increase - size;482 } // if483 484 HeapManager.Storage * block = (HeapManager.Storage *)heapEnd;485 heapRemaining = rem;486 heapEnd = (char *)heapEnd + size;487 unlock( extlock );488 return block;489 } // extend490 491 492 537 static inline void * doMalloc( size_t size ) with ( heapManager ) { 493 538 HeapManager.Storage * block; // pointer to new block of storage … … 496 541 // along with the block and is a multiple of the alignment size. 497 542 498 if ( unlikely( size > ~0ul - sizeof(HeapManager.Storage) ) ) return 0 p;543 if ( unlikely( size > ~0ul - sizeof(HeapManager.Storage) ) ) return 0; 499 544 size_t tsize = size + sizeof(HeapManager.Storage); 500 545 if ( likely( tsize < mmapStart ) ) { // small size => sbrk … … 529 574 block = freeElem->freeList.pop(); 530 575 #endif // SPINLOCK 531 if ( unlikely( block == 0 p ) ) {// no free block ?576 if ( unlikely( block == 0 ) ) { // no free block ? 532 577 #if defined( SPINLOCK ) 533 578 unlock( freeElem->lock ); … … 538 583 539 584 block = (HeapManager.Storage *)extend( tsize ); // mutual exclusion on call 540 if ( unlikely( block == 0 p ) ) return 0p;541 #if defined( SPINLOCK )585 if ( unlikely( block == 0 ) ) return 0; 586 #if defined( SPINLOCK ) 542 587 } else { 543 588 freeElem->freeList = block->header.kind.real.next; 544 589 unlock( freeElem->lock ); 545 #endif // SPINLOCK590 #endif // SPINLOCK 546 591 } // if 547 592 548 593 block->header.kind.real.home = freeElem; // pointer back to free list of apropriate size 549 594 } else { // large size => mmap 550 if ( unlikely( size > ~0ul - pageSize ) ) return 0 p;595 if ( unlikely( size > ~0ul - pageSize ) ) return 0; 551 596 tsize = libCeiling( tsize, pageSize ); // must be multiple of page size 552 597 #ifdef __STATISTICS__ … … 566 611 } // if 567 612 568 void * a ddr= &(block->data); // adjust off header to user bytes613 void * area = &(block->data); // adjust off header to user bytes 569 614 570 615 #ifdef __CFA_DEBUG__ 571 assert( ((uintptr_t)a ddr& (libAlign() - 1)) == 0 ); // minimum alignment ?616 assert( ((uintptr_t)area & (libAlign() - 1)) == 0 ); // minimum alignment ? 572 617 __atomic_add_fetch( &allocFree, tsize, __ATOMIC_SEQ_CST ); 573 618 if ( traceHeap() ) { 574 619 enum { BufferSize = 64 }; 575 620 char helpText[BufferSize]; 576 int len = snprintf( helpText, BufferSize, "%p = Malloc( %zu ) (allocated %zu)\n", a ddr, size, tsize );577 // int len = snprintf( helpText, BufferSize, "Malloc %p %zu\n", a ddr, size );578 __cfaabi_ bits_write( STDERR_FILENO, helpText, len ); // print debug/nodebug621 int len = snprintf( helpText, BufferSize, "%p = Malloc( %zu ) (allocated %zu)\n", area, size, tsize ); 622 // int len = snprintf( helpText, BufferSize, "Malloc %p %zu\n", area, size ); 623 __cfaabi_dbg_bits_write( helpText, len ); 579 624 } // if 580 625 #endif // __CFA_DEBUG__ 581 626 582 return a ddr;627 return area; 583 628 } // doMalloc 584 629 … … 586 631 static inline void doFree( void * addr ) with ( heapManager ) { 587 632 #ifdef __CFA_DEBUG__ 588 if ( unlikely( heapManager.heapBegin == 0 p) ) {633 if ( unlikely( heapManager.heapBegin == 0 ) ) { 589 634 abort( "doFree( %p ) : internal error, called before heap is initialized.", addr ); 590 635 } // if … … 632 677 char helpText[BufferSize]; 633 678 int len = snprintf( helpText, sizeof(helpText), "Free( %p ) size:%zu\n", addr, size ); 634 __cfaabi_ bits_write( STDERR_FILENO, helpText, len ); // print debug/nodebug679 __cfaabi_dbg_bits_write( helpText, len ); 635 680 } // if 636 681 #endif // __CFA_DEBUG__ … … 638 683 639 684 640 size_t prtFree( HeapManager & manager ) with ( manager ) {685 size_t checkFree( HeapManager & manager ) with ( manager ) { 641 686 size_t total = 0; 642 687 #ifdef __STATISTICS__ 643 __cfaabi_ bits_acquire();644 __cfaabi_ bits_print_nolock( STDERR_FILENO,"\nBin lists (bin size : free blocks on list)\n" );688 __cfaabi_dbg_bits_acquire(); 689 __cfaabi_dbg_bits_print_nolock( "\nBin lists (bin size : free blocks on list)\n" ); 645 690 #endif // __STATISTICS__ 646 691 for ( unsigned int i = 0; i < maxBucketsUsed; i += 1 ) { … … 651 696 652 697 #if defined( SPINLOCK ) 653 for ( HeapManager.Storage * p = freeLists[i].freeList; p != 0 p; p = p->header.kind.real.next ) {698 for ( HeapManager.Storage * p = freeLists[i].freeList; p != 0; p = p->header.kind.real.next ) { 654 699 #else 655 for ( HeapManager.Storage * p = freeLists[i].freeList.top(); p != 0 p; p = p->header.kind.real.next.top ) {700 for ( HeapManager.Storage * p = freeLists[i].freeList.top(); p != 0; p = p->header.kind.real.next.top ) { 656 701 #endif // SPINLOCK 657 702 total += size; … … 662 707 663 708 #ifdef __STATISTICS__ 664 __cfaabi_ bits_print_nolock( STDERR_FILENO,"%7zu, %-7u ", size, N );665 if ( (i + 1) % 8 == 0 ) __cfaabi_ bits_print_nolock( STDERR_FILENO,"\n" );709 __cfaabi_dbg_bits_print_nolock( "%7zu, %-7u ", size, N ); 710 if ( (i + 1) % 8 == 0 ) __cfaabi_dbg_bits_print_nolock( "\n" ); 666 711 #endif // __STATISTICS__ 667 712 } // for 668 713 #ifdef __STATISTICS__ 669 __cfaabi_ bits_print_nolock( STDERR_FILENO,"\ntotal free blocks:%zu\n", total );670 __cfaabi_ bits_release();714 __cfaabi_dbg_bits_print_nolock( "\ntotal free blocks:%zu\n", total ); 715 __cfaabi_dbg_bits_release(); 671 716 #endif // __STATISTICS__ 672 717 return (char *)heapEnd - (char *)heapBegin - total; 673 } // prtFree 674 675 676 static void ?{}( HeapManager & manager ) with ( manager ) { 677 pageSize = sysconf( _SC_PAGESIZE ); 678 679 for ( unsigned int i = 0; i < NoBucketSizes; i += 1 ) { // initialize the free lists 680 freeLists[i].blockSize = bucketSizes[i]; 681 } // for 682 683 #ifdef FASTLOOKUP 684 unsigned int idx = 0; 685 for ( unsigned int i = 0; i < LookupSizes; i += 1 ) { 686 if ( i > bucketSizes[idx] ) idx += 1; 687 lookup[i] = idx; 688 } // for 689 #endif // FASTLOOKUP 690 691 if ( setMmapStart( default_mmap_start() ) ) { 692 abort( "HeapManager : internal error, mmap start initialization failure." ); 693 } // if 694 heapExpand = default_heap_expansion(); 695 696 char * end = (char *)sbrk( 0 ); 697 sbrk( (char *)libCeiling( (long unsigned int)end, libAlign() ) - end ); // move start of heap to multiple of alignment 698 heapBegin = heapEnd = sbrk( 0 ); // get new start point 699 } // HeapManager 700 701 702 static void ^?{}( HeapManager & ) { 703 #ifdef __STATISTICS__ 704 if ( traceHeapTerm() ) { 705 printStats(); 706 // if ( prtfree() ) prtFree( heapManager, true ); 707 } // if 708 #endif // __STATISTICS__ 709 } // ~HeapManager 710 711 712 static void memory_startup( void ) __attribute__(( constructor( STARTUP_PRIORITY_MEMORY ) )); 713 void memory_startup( void ) { 714 #ifdef __CFA_DEBUG__ 715 if ( unlikely( heapBoot ) ) { // check for recursion during system boot 716 // DO NOT USE STREAMS AS THEY MAY BE UNAVAILABLE AT THIS POINT. 717 abort( "boot() : internal error, recursively invoked during system boot." ); 718 } // if 719 heapBoot = true; 720 #endif // __CFA_DEBUG__ 721 722 //assert( heapManager.heapBegin != 0 ); 723 //heapManager{}; 724 if ( heapManager.heapBegin == 0p ) heapManager{}; 725 } // memory_startup 726 727 static void memory_shutdown( void ) __attribute__(( destructor( STARTUP_PRIORITY_MEMORY ) )); 728 void memory_shutdown( void ) { 729 ^heapManager{}; 730 } // memory_shutdown 718 } // checkFree 731 719 732 720 733 721 static inline void * mallocNoStats( size_t size ) { // necessary for malloc statistics 734 722 //assert( heapManager.heapBegin != 0 ); 735 if ( unlikely( heapManager.heapBegin == 0 p) ) heapManager{}; // called before memory_startup ?736 void * a ddr= doMalloc( size );737 if ( unlikely( a ddr == 0p) ) errno = ENOMEM; // POSIX738 return a ddr;723 if ( unlikely( heapManager.heapBegin == 0 ) ) heapManager{}; // called before memory_startup ? 724 void * area = doMalloc( size ); 725 if ( unlikely( area == 0 ) ) errno = ENOMEM; // POSIX 726 return area; 739 727 } // mallocNoStats 740 741 742 static inline void * callocNoStats( size_t noOfElems, size_t elemSize ) {743 size_t size = noOfElems * elemSize;744 char * addr = (char *)mallocNoStats( size );745 if ( unlikely( addr == 0p ) ) return 0p;746 747 HeapManager.Storage.Header * header;748 HeapManager.FreeHeader * freeElem;749 size_t bsize, alignment;750 bool mapped __attribute__(( unused )) = headers( "calloc", addr, header, freeElem, bsize, alignment );751 #ifndef __CFA_DEBUG__752 // Mapped storage is zero filled, but in debug mode mapped memory is scrubbed in doMalloc, so it has to be reset to zero.753 if ( ! mapped )754 #endif // __CFA_DEBUG__755 // Zero entire data space even when > than size => realloc without a new allocation and zero fill works.756 // <-------00000000000000000000000000000000000000000000000000000> bsize (bucket size)757 // `-header`-addr `-size758 memset( addr, '\0', bsize - sizeof(HeapManager.Storage) ); // set to zeros759 760 assert( noOfElems <= UINT32_MAX );761 header->dimension = noOfElems; // store number of array elements762 header->kind.real.blockSize |= 2; // mark as zero filled763 return addr;764 } // callocNoStats765 728 766 729 … … 782 745 // subtract libAlign() because it is already the minimum alignment 783 746 // add sizeof(Storage) for fake header 784 char * addr = (char *)mallocNoStats( size + alignment - libAlign() + sizeof(HeapManager.Storage) ); 785 if ( unlikely( addr == 0p ) ) return addr; 747 // #comment TD : this is the only place that calls doMalloc without calling mallocNoStats, why ? 748 char * area = (char *)doMalloc( size + alignment - libAlign() + sizeof(HeapManager.Storage) ); 749 if ( unlikely( area == 0 ) ) return area; 786 750 787 751 // address in the block of the "next" alignment address 788 char * user = (char *)libCeiling( (uintptr_t)(a ddr+ sizeof(HeapManager.Storage)), alignment );752 char * user = (char *)libCeiling( (uintptr_t)(area + sizeof(HeapManager.Storage)), alignment ); 789 753 790 754 // address of header from malloc 791 HeapManager.Storage.Header * realHeader = headerAddr( a ddr);755 HeapManager.Storage.Header * realHeader = headerAddr( area ); 792 756 // address of fake header * before* the alignment location 793 757 HeapManager.Storage.Header * fakeHeader = headerAddr( user ); … … 799 763 return user; 800 764 } // memalignNoStats 801 802 803 static inline void * cmemalignNoStats( size_t alignment, size_t noOfElems, size_t elemSize ) {804 size_t size = noOfElems * elemSize;805 char * addr = (char *)memalignNoStats( alignment, size );806 if ( unlikely( addr == 0p ) ) return 0p;807 HeapManager.Storage.Header * header;808 HeapManager.FreeHeader * freeElem;809 size_t bsize;810 bool mapped __attribute__(( unused )) = headers( "cmemalign", addr, header, freeElem, bsize, alignment );811 #ifndef __CFA_DEBUG__812 // Mapped storage is zero filled, but in debug mode mapped memory is scrubbed in doMalloc, so it has to be reset to zero.813 if ( ! mapped )814 #endif // __CFA_DEBUG__815 memset( addr, '\0', dataStorage( bsize, addr, header ) ); // set to zeros816 817 assert( noOfElems <= UINT32_MAX );818 header->dimension = noOfElems; // store initial array size819 header->kind.real.blockSize |= 2; // mark as zero filled820 return addr;821 } // cmemalignNoStats822 765 823 766 … … 832 775 833 776 extern "C" { 834 // Allocates size bytes and returns a pointer to the allocated memory. The memory is not initialized. If size is 0, 835 // then malloc() returns either 0p, or a unique pointer value that can later be successfully passed to free(). 777 // The malloc() function allocates size bytes and returns a pointer to the allocated memory. The memory is not 778 // initialized. If size is 0, then malloc() returns either NULL, or a unique pointer value that can later be 779 // successfully passed to free(). 836 780 void * malloc( size_t size ) { 837 781 #ifdef __STATISTICS__ … … 843 787 } // malloc 844 788 845 // Allocate memory for an array of nmemb elements of size bytes each and returns a pointer to the allocated846 // memory. The memory is set to zero. If nmemb or size is 0, then calloc() returns either 0p, or a unique pointer847 // value that can later be successfully passed to free().789 // The calloc() function allocates memory for an array of nmemb elements of size bytes each and returns a pointer to 790 // the allocated memory. The memory is set to zero. If nmemb or size is 0, then calloc() returns either NULL, or a 791 // unique pointer value that can later be successfully passed to free(). 848 792 void * calloc( size_t noOfElems, size_t elemSize ) { 793 size_t size = noOfElems * elemSize; 849 794 #ifdef __STATISTICS__ 850 795 __atomic_add_fetch( &calloc_calls, 1, __ATOMIC_SEQ_CST ); 851 __atomic_add_fetch( &calloc_storage, noOfElems * elemSize, __ATOMIC_SEQ_CST ); 852 #endif // __STATISTICS__ 853 854 return callocNoStats( noOfElems, elemSize ); 855 } // calloc 856 857 // Change the size of the memory block pointed to by ptr to size bytes. The contents are undefined. If ptr is 0p, 858 // then the call is equivalent to malloc(size), for all values of size; if size is equal to zero, and ptr is not 0p, 859 // then the call is equivalent to free(ptr). Unless ptr is 0p, it must have been returned by an earlier call to 860 // malloc(), calloc() or realloc(). If the area pointed to was moved, a free(ptr) is done. 861 862 void * resize( void * oaddr, size_t size ) { 863 #ifdef __STATISTICS__ 864 __atomic_add_fetch( &resize_calls, 1, __ATOMIC_SEQ_CST ); 865 __atomic_add_fetch( &resize_storage, size, __ATOMIC_SEQ_CST ); 866 #endif // __STATISTICS__ 867 868 // If size is equal to 0, either NULL or a pointer suitable to be passed to free() is returned. 869 if ( unlikely( size == 0 ) ) { free( oaddr ); return mallocNoStats( size ); } // special cases 870 if ( unlikely( oaddr == 0p ) ) return mallocNoStats( size ); 796 __atomic_add_fetch( &calloc_storage, size, __ATOMIC_SEQ_CST ); 797 #endif // __STATISTICS__ 798 799 char * area = (char *)mallocNoStats( size ); 800 if ( unlikely( area == 0 ) ) return 0; 871 801 872 802 HeapManager.Storage.Header * header; 873 803 HeapManager.FreeHeader * freeElem; 874 size_t bsize, oalign = 0; 875 headers( "resize", oaddr, header, freeElem, bsize, oalign ); 876 size_t odsize = dataStorage( bsize, oaddr, header ); // data storage available in bucket 877 878 // same size, DO NOT preserve STICKY PROPERTIES. 879 if ( oalign == 0 && size <= odsize && odsize <= size * 2 ) { // allow 50% wasted storage for smaller size 880 header->kind.real.blockSize &= -2; // no alignment and turn off 0 fill 881 return oaddr; 882 } // if 883 884 // change size, DO NOT preserve STICKY PROPERTIES. 885 void * naddr = mallocNoStats( size ); // create new area 886 free( oaddr ); 887 return naddr; 888 } // resize 889 890 891 // Same as resize but the contents shall be unchanged in the range from the start of the region up to the minimum of 892 // the old and new sizes. 893 void * realloc( void * oaddr, size_t size ) { 894 #ifdef __STATISTICS__ 895 __atomic_add_fetch( &realloc_calls, 1, __ATOMIC_SEQ_CST ); 896 __atomic_add_fetch( &realloc_storage, size, __ATOMIC_SEQ_CST ); 897 #endif // __STATISTICS__ 898 899 // If size is equal to 0, either NULL or a pointer suitable to be passed to free() is returned. 900 if ( unlikely( size == 0 ) ) { free( oaddr ); return mallocNoStats( size ); } // special cases 901 if ( unlikely( oaddr == 0p ) ) return mallocNoStats( size ); 902 804 size_t asize, alignment; 805 bool mapped __attribute__(( unused )) = headers( "calloc", area, header, freeElem, asize, alignment ); 806 #ifndef __CFA_DEBUG__ 807 // Mapped storage is zero filled, but in debug mode mapped memory is scrubbed in doMalloc, so it has to be reset to zero. 808 if ( ! mapped ) 809 #endif // __CFA_DEBUG__ 810 memset( area, '\0', asize - sizeof(HeapManager.Storage) ); // set to zeros 811 812 header->kind.real.blockSize |= 2; // mark as zero filled 813 return area; 814 } // calloc 815 816 // #comment TD : Document this function 817 void * cmemalign( size_t alignment, size_t noOfElems, size_t elemSize ) { 818 size_t size = noOfElems * elemSize; 819 #ifdef __STATISTICS__ 820 __atomic_add_fetch( &cmemalign_calls, 1, __ATOMIC_SEQ_CST ); 821 __atomic_add_fetch( &cmemalign_storage, size, __ATOMIC_SEQ_CST ); 822 #endif // __STATISTICS__ 823 824 char * area = (char *)memalignNoStats( alignment, size ); 825 if ( unlikely( area == 0 ) ) return 0; 903 826 HeapManager.Storage.Header * header; 904 827 HeapManager.FreeHeader * freeElem; 905 size_t bsize, oalign = 0; 906 headers( "realloc", oaddr, header, freeElem, bsize, oalign ); 907 908 size_t odsize = dataStorage( bsize, oaddr, header ); // data storage available in bucket 909 if ( size <= odsize && odsize <= size * 2 ) { // allow up to 50% wasted storage in smaller size 910 // Do not know size of original allocation => cannot do 0 fill for any additional space because do not know 911 // where to start filling, i.e., do not overwrite existing values in space. 912 return oaddr; 828 size_t asize; 829 bool mapped __attribute__(( unused )) = headers( "cmemalign", area, header, freeElem, asize, alignment ); 830 #ifndef __CFA_DEBUG__ 831 // Mapped storage is zero filled, but in debug mode mapped memory is scrubbed in doMalloc, so it has to be reset to zero. 832 if ( ! mapped ) 833 #endif // __CFA_DEBUG__ 834 memset( area, '\0', asize - ( (char *)area - (char *)header ) ); // set to zeros 835 header->kind.real.blockSize |= 2; // mark as zero filled 836 837 return area; 838 } // cmemalign 839 840 // The realloc() function changes the size of the memory block pointed to by ptr to size bytes. The contents will be 841 // unchanged in the range from the start of the region up to the minimum of the old and new sizes. If the new size 842 // is larger than the old size, the added memory will not be initialized. If ptr is NULL, then the call is 843 // equivalent to malloc(size), for all values of size; if size is equal to zero, and ptr is not NULL, then the call 844 // is equivalent to free(ptr). Unless ptr is NULL, it must have been returned by an earlier call to malloc(), 845 // calloc() or realloc(). If the area pointed to was moved, a free(ptr) is done. 846 void * realloc( void * addr, size_t size ) { 847 #ifdef __STATISTICS__ 848 __atomic_add_fetch( &realloc_calls, 1, __ATOMIC_SEQ_CST ); 849 #endif // __STATISTICS__ 850 851 if ( unlikely( addr == 0 ) ) return mallocNoStats( size ); // special cases 852 if ( unlikely( size == 0 ) ) { free( addr ); return 0; } 853 854 HeapManager.Storage.Header * header; 855 HeapManager.FreeHeader * freeElem; 856 size_t asize, alignment = 0; 857 headers( "realloc", addr, header, freeElem, asize, alignment ); 858 859 size_t usize = asize - ( (char *)addr - (char *)header ); // compute the amount of user storage in the block 860 if ( usize >= size ) { // already sufficient storage 861 // This case does not result in a new profiler entry because the previous one still exists and it must match with 862 // the free for this memory. Hence, this realloc does not appear in the profiler output. 863 return addr; 913 864 } // if 914 865 915 // change size and copy old content to new storage 916 917 void * naddr; 918 if ( unlikely( oalign != 0 ) ) { // previous request memalign? 919 if ( unlikely( header->kind.real.blockSize & 2 ) ) { // previous request zero fill 920 naddr = cmemalignNoStats( oalign, 1, size ); // create new aligned area 921 } else { 922 naddr = memalignNoStats( oalign, size ); // create new aligned area 923 } // if 866 #ifdef __STATISTICS__ 867 __atomic_add_fetch( &realloc_storage, size, __ATOMIC_SEQ_CST ); 868 #endif // __STATISTICS__ 869 870 void * area; 871 if ( unlikely( alignment != 0 ) ) { // previous request memalign? 872 area = memalign( alignment, size ); // create new aligned area 924 873 } else { 925 if ( unlikely( header->kind.real.blockSize & 2 ) ) { // previous request zero fill 926 naddr = callocNoStats( 1, size ); // create new area 927 } else { 928 naddr = mallocNoStats( size ); // create new area 929 } // if 874 area = mallocNoStats( size ); // create new area 930 875 } // if 931 if ( unlikely( naddr == 0p ) ) return 0p; 932 933 headers( "realloc", naddr, header, freeElem, bsize, oalign ); 934 size_t ndsize = dataStorage( bsize, naddr, header ); // data storage avilable in bucket 935 // To preserve prior fill, the entire bucket must be copied versus the size. 936 memcpy( naddr, oaddr, MIN( odsize, ndsize ) ); // copy bytes 937 free( oaddr ); 938 return naddr; 876 if ( unlikely( area == 0 ) ) return 0; 877 if ( unlikely( header->kind.real.blockSize & 2 ) ) { // previous request zero fill (calloc/cmemalign) ? 878 assert( (header->kind.real.blockSize & 1) == 0 ); 879 bool mapped __attribute__(( unused )) = headers( "realloc", area, header, freeElem, asize, alignment ); 880 #ifndef __CFA_DEBUG__ 881 // Mapped storage is zero filled, but in debug mode mapped memory is scrubbed in doMalloc, so it has to be reset to zero. 882 if ( ! mapped ) 883 #endif // __CFA_DEBUG__ 884 memset( (char *)area + usize, '\0', asize - ( (char *)area - (char *)header ) - usize ); // zero-fill back part 885 header->kind.real.blockSize |= 2; // mark new request as zero fill 886 } // if 887 memcpy( area, addr, usize ); // copy bytes 888 free( addr ); 889 return area; 939 890 } // realloc 940 891 941 // Allocates size bytes and returns a pointer to the allocated memory. The memory address shall be a multiple of942 // a lignment, which must be a power of two. (obsolete)892 // The obsolete function memalign() allocates size bytes and returns a pointer to the allocated memory. The memory 893 // address will be a multiple of alignment, which must be a power of two. 943 894 void * memalign( size_t alignment, size_t size ) { 944 895 #ifdef __STATISTICS__ … … 947 898 #endif // __STATISTICS__ 948 899 949 return memalignNoStats( alignment, size ); 900 void * area = memalignNoStats( alignment, size ); 901 902 return area; 950 903 } // memalign 951 904 952 953 // Same as calloc() with memory alignment. 954 void * cmemalign( size_t alignment, size_t noOfElems, size_t elemSize ) { 955 #ifdef __STATISTICS__ 956 __atomic_add_fetch( &cmemalign_calls, 1, __ATOMIC_SEQ_CST ); 957 __atomic_add_fetch( &cmemalign_storage, noOfElems * elemSize, __ATOMIC_SEQ_CST ); 958 #endif // __STATISTICS__ 959 960 return cmemalignNoStats( alignment, noOfElems, elemSize ); 961 } // cmemalign 962 963 // Same as memalign(), but ISO/IEC 2011 C11 Section 7.22.2 states: the value of size shall be an integral multiple 964 // of alignment. This requirement is universally ignored. 905 // The function aligned_alloc() is the same as memalign(), except for the added restriction that size should be a 906 // multiple of alignment. 965 907 void * aligned_alloc( size_t alignment, size_t size ) { 966 908 return memalign( alignment, size ); … … 968 910 969 911 970 // Allocates size bytes and places the address of the allocated memory in *memptr. The address of the allocated971 // memory shall be a multiple of alignment, which must be a power of two and a multiple of sizeof(void *). If size972 // is 0, then posix_memalign() returns either 0p, or a unique pointer value that can later be successfully passed to973 // free(3).912 // The function posix_memalign() allocates size bytes and places the address of the allocated memory in *memptr. The 913 // address of the allocated memory will be a multiple of alignment, which must be a power of two and a multiple of 914 // sizeof(void *). If size is 0, then posix_memalign() returns either NULL, or a unique pointer value that can later 915 // be successfully passed to free(3). 974 916 int posix_memalign( void ** memptr, size_t alignment, size_t size ) { 975 917 if ( alignment < sizeof(void *) || ! libPow2( alignment ) ) return EINVAL; // check alignment 976 918 * memptr = memalign( alignment, size ); 977 if ( unlikely( * memptr == 0 p) ) return ENOMEM;919 if ( unlikely( * memptr == 0 ) ) return ENOMEM; 978 920 return 0; 979 921 } // posix_memalign 980 922 981 // Allocates size bytes and returns a pointer to the allocated memory. The memory address shall be a multiple of the982 // page size. It is equivalent to memalign(sysconf(_SC_PAGESIZE),size).923 // The obsolete function valloc() allocates size bytes and returns a pointer to the allocated memory. The memory 924 // address will be a multiple of the page size. It is equivalent to memalign(sysconf(_SC_PAGESIZE),size). 983 925 void * valloc( size_t size ) { 984 926 return memalign( pageSize, size ); … … 986 928 987 929 988 // Same as valloc but rounds size to multiple of page size. 989 void * pvalloc( size_t size ) { 990 return memalign( pageSize, libCeiling( size, pageSize ) ); 991 } // pvalloc 992 993 994 // Frees the memory space pointed to by ptr, which must have been returned by a previous call to malloc(), calloc() 995 // or realloc(). Otherwise, or if free(ptr) has already been called before, undefined behavior occurs. If ptr is 996 // 0p, no operation is performed. 930 // The free() function frees the memory space pointed to by ptr, which must have been returned by a previous call to 931 // malloc(), calloc() or realloc(). Otherwise, or if free(ptr) has already been called before, undefined behavior 932 // occurs. If ptr is NULL, no operation is performed. 997 933 void free( void * addr ) { 998 934 #ifdef __STATISTICS__ … … 1000 936 #endif // __STATISTICS__ 1001 937 1002 if ( unlikely( addr == 0p ) ) { // special case 1003 // #ifdef __CFA_DEBUG__ 1004 // if ( traceHeap() ) { 1005 // #define nullmsg "Free( 0x0 ) size:0\n" 1006 // // Do not debug print free( 0p ), as it can cause recursive entry from sprintf. 1007 // __cfaabi_dbg_write( nullmsg, sizeof(nullmsg) - 1 ); 1008 // } // if 1009 // #endif // __CFA_DEBUG__ 938 // #comment TD : To decrease nesting I would but the special case in the 939 // else instead, plus it reads more naturally to have the 940 // short / normal case instead 941 if ( unlikely( addr == 0 ) ) { // special case 942 #ifdef __CFA_DEBUG__ 943 if ( traceHeap() ) { 944 #define nullmsg "Free( 0x0 ) size:0\n" 945 // Do not debug print free( 0 ), as it can cause recursive entry from sprintf. 946 __cfaabi_dbg_bits_write( nullmsg, sizeof(nullmsg) - 1 ); 947 } // if 948 #endif // __CFA_DEBUG__ 1010 949 return; 1011 950 } // exit … … 1014 953 } // free 1015 954 1016 1017 // Returns the alignment of the allocation. 955 // The mallopt() function adjusts parameters that control the behavior of the memory-allocation functions (see 956 // malloc(3)). The param argument specifies the parameter to be modified, and value specifies the new value for that 957 // parameter. 958 int mallopt( int option, int value ) { 959 choose( option ) { 960 case M_TOP_PAD: 961 if ( setHeapExpand( value ) ) fallthru default; 962 case M_MMAP_THRESHOLD: 963 if ( setMmapStart( value ) ) fallthru default; 964 default: 965 // #comment TD : 1 for unsopported feels wrong 966 return 1; // success, or unsupported 967 } // switch 968 return 0; // error 969 } // mallopt 970 971 // The malloc_trim() function attempts to release free memory at the top of the heap (by calling sbrk(2) with a 972 // suitable argument). 973 int malloc_trim( size_t ) { 974 return 0; // => impossible to release memory 975 } // malloc_trim 976 977 // The malloc_usable_size() function returns the number of usable bytes in the block pointed to by ptr, a pointer to 978 // a block of memory allocated by malloc(3) or a related function. 979 size_t malloc_usable_size( void * addr ) { 980 if ( unlikely( addr == 0 ) ) return 0; // null allocation has 0 size 981 982 HeapManager.Storage.Header * header; 983 HeapManager.FreeHeader * freeElem; 984 size_t size, alignment; 985 986 headers( "malloc_usable_size", addr, header, freeElem, size, alignment ); 987 size_t usize = size - ( (char *)addr - (char *)header ); // compute the amount of user storage in the block 988 return usize; 989 } // malloc_usable_size 990 991 992 // The malloc_alignment() function returns the alignment of the allocation. 1018 993 size_t malloc_alignment( void * addr ) { 1019 if ( unlikely( addr == 0 p) ) return libAlign(); // minimum alignment994 if ( unlikely( addr == 0 ) ) return libAlign(); // minimum alignment 1020 995 HeapManager.Storage.Header * header = headerAddr( addr ); 1021 996 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ? 1022 997 return header->kind.fake.alignment & -2; // remove flag from value 1023 998 } else { 1024 return libAlign (); // minimum alignment999 return libAlign (); // minimum alignment 1025 1000 } // if 1026 1001 } // malloc_alignment 1027 1002 1028 1003 1029 // Returns true if the allocation is zero filled, i.e., initially allocated by calloc().1004 // The malloc_zero_fill() function returns true if the allocation is zero filled, i.e., initially allocated by calloc(). 1030 1005 bool malloc_zero_fill( void * addr ) { 1031 if ( unlikely( addr == 0 p) ) return false; // null allocation is not zero fill1006 if ( unlikely( addr == 0 ) ) return false; // null allocation is not zero fill 1032 1007 HeapManager.Storage.Header * header = headerAddr( addr ); 1033 1008 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ? 1034 header = realHeader( header ); // backup from fake to real header1009 header = (HeapManager.Storage.Header *)((char *)header - header->kind.fake.offset); 1035 1010 } // if 1036 1011 return (header->kind.real.blockSize & 2) != 0; // zero filled (calloc/cmemalign) ? … … 1038 1013 1039 1014 1040 // Returns number of elements if the allocation is for an array, i.e., by calloc(). 1041 size_t malloc_dimension( void * addr ) { 1042 if ( unlikely( addr == 0p ) ) return false; // null allocation is not zero fill 1043 HeapManager.Storage.Header * header = headerAddr( addr ); 1044 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ? 1045 header = realHeader( header ); // backup from fake to real header 1046 } // if 1047 return header->dimension; // array (calloc/cmemalign) 1048 } // malloc_zero_fill 1049 1050 1051 // Returns the number of usable bytes in the block pointed to by ptr, a pointer to a block of memory allocated by 1052 // malloc or a related function. 1053 size_t malloc_usable_size( void * addr ) { 1054 if ( unlikely( addr == 0p ) ) return 0; // null allocation has 0 size 1055 HeapManager.Storage.Header * header; 1056 HeapManager.FreeHeader * freeElem; 1057 size_t bsize, alignment; 1058 1059 headers( "malloc_usable_size", addr, header, freeElem, bsize, alignment ); 1060 return dataStorage( bsize, addr, header ); // data storage in bucket 1061 } // malloc_usable_size 1062 1063 1064 // Prints (on default standard error) statistics about memory allocated by malloc and related functions. 1015 // The malloc_stats() function prints (on default standard error) statistics about memory allocated by malloc(3) and 1016 // related functions. 1065 1017 void malloc_stats( void ) { 1066 1018 #ifdef __STATISTICS__ 1067 1019 printStats(); 1068 if ( prtFree() ) prtFree( heapManager );1020 if ( checkFree() ) checkFree( heapManager ); 1069 1021 #endif // __STATISTICS__ 1070 1022 } // malloc_stats 1071 1023 1072 // Changes the file descripter where malloc_stats() writesstatistics.1073 int malloc_stats_fd( int fd __attribute__(( unused ))) {1024 // The malloc_stats_fd() function changes the file descripter where malloc_stats() writes the statistics. 1025 int malloc_stats_fd( int fd ) { 1074 1026 #ifdef __STATISTICS__ 1075 1027 int temp = statfd; … … 1081 1033 } // malloc_stats_fd 1082 1034 1083 1084 // Adjusts parameters that control the behavior of the memory-allocation functions (see malloc). The param argument 1085 // specifies the parameter to be modified, and value specifies the new value for that parameter. 1086 int mallopt( int option, int value ) { 1087 choose( option ) { 1088 case M_TOP_PAD: 1089 if ( setHeapExpand( value ) ) return 1; 1090 case M_MMAP_THRESHOLD: 1091 if ( setMmapStart( value ) ) return 1; 1092 } // switch 1093 return 0; // error, unsupported 1094 } // mallopt 1095 1096 // Attempt to release free memory at the top of the heap (by calling sbrk with a suitable argument). 1097 int malloc_trim( size_t ) { 1098 return 0; // => impossible to release memory 1099 } // malloc_trim 1100 1101 1102 // Exports an XML string that describes the current state of the memory-allocation implementation in the caller. 1103 // The string is printed on the file stream stream. The exported string includes information about all arenas (see 1104 // malloc). 1035 // The malloc_info() function exports an XML string that describes the current state of the memory-allocation 1036 // implementation in the caller. The string is printed on the file stream stream. The exported string includes 1037 // information about all arenas (see malloc(3)). 1105 1038 int malloc_info( int options, FILE * stream ) { 1106 if ( options != 0 ) { errno = EINVAL; return -1; }1107 1039 return printStatsXML( stream ); 1108 1040 } // malloc_info 1109 1041 1110 1042 1111 // Records the current state of all malloc internal bookkeeping variables (but not the actual contents of the heap1112 // or the state of malloc_hook functions pointers). The state is recorded in a system-dependent opaque data1113 // structure dynamically allocated via malloc, and a pointer to that data structure is returned as the function1114 // result. (The caller must freethis memory.)1043 // The malloc_get_state() function records the current state of all malloc(3) internal bookkeeping variables (but 1044 // not the actual contents of the heap or the state of malloc_hook(3) functions pointers). The state is recorded in 1045 // a system-dependent opaque data structure dynamically allocated via malloc(3), and a pointer to that data 1046 // structure is returned as the function result. (It is the caller's responsibility to free(3) this memory.) 1115 1047 void * malloc_get_state( void ) { 1116 return 0 p; // unsupported1048 return 0; // unsupported 1117 1049 } // malloc_get_state 1118 1050 1119 1051 1120 // Restores the state of all malloc internal bookkeeping variables to the values recorded in the opaque data1121 // structure pointed to by state.1052 // The malloc_set_state() function restores the state of all malloc(3) internal bookkeeping variables to the values 1053 // recorded in the opaque data structure pointed to by state. 1122 1054 int malloc_set_state( void * ptr ) { 1123 1055 return 0; // unsupported … … 1126 1058 1127 1059 1128 // Must have CFA linkage to overload with C linkage realloc.1129 void * resize( void * oaddr, size_t nalign, size_t size ) {1130 #ifdef __STATISTICS__1131 __atomic_add_fetch( &resize_calls, 1, __ATOMIC_SEQ_CST );1132 __atomic_add_fetch( &resize_storage, size, __ATOMIC_SEQ_CST );1133 #endif // __STATISTICS__1134 1135 // If size is equal to 0, either NULL or a pointer suitable to be passed to free() is returned.1136 if ( unlikely( size == 0 ) ) { free( oaddr ); return memalignNoStats( nalign, size ); } // special cases1137 if ( unlikely( oaddr == 0p ) ) return memalignNoStats( nalign, size );1138 1139 1140 if ( unlikely( nalign == 0 ) ) nalign = libAlign(); // reset alignment to minimum1141 #ifdef __CFA_DEBUG__1142 else1143 checkAlign( nalign ); // check alignment1144 #endif // __CFA_DEBUG__1145 1146 HeapManager.Storage.Header * header;1147 HeapManager.FreeHeader * freeElem;1148 size_t bsize, oalign = 0;1149 headers( "resize", oaddr, header, freeElem, bsize, oalign );1150 size_t odsize = dataStorage( bsize, oaddr, header ); // data storage available in bucket1151 1152 if ( oalign <= nalign && (uintptr_t)oaddr % nalign == 0 ) { // <= alignment and new alignment happens to match1153 if ( oalign >= libAlign() ) { // fake header ?1154 headerAddr( oaddr )->kind.fake.alignment = nalign | 1; // update alignment (could be the same)1155 } // if1156 if ( size <= odsize && odsize <= size * 2 ) { // allow 50% wasted storage for smaller size1157 header->kind.real.blockSize &= -2; // turn off 0 fill1158 return oaddr;1159 } // if1160 } // if1161 1162 // change size1163 1164 void * naddr;1165 if ( unlikely( header->kind.real.blockSize & 2 ) ) { // previous request zero fill1166 naddr = cmemalignNoStats( nalign, 1, size ); // create new aligned area1167 } else {1168 naddr = memalignNoStats( nalign, size ); // create new aligned area1169 } // if1170 1171 free( oaddr );1172 return naddr;1173 } // resize1174 1175 1176 void * realloc( void * oaddr, size_t nalign, size_t size ) {1177 if ( unlikely( nalign == 0 ) ) nalign = libAlign(); // reset alignment to minimum1178 #ifdef __CFA_DEBUG__1179 else1180 checkAlign( nalign ); // check alignment1181 #endif // __CFA_DEBUG__1182 1183 HeapManager.Storage.Header * header;1184 HeapManager.FreeHeader * freeElem;1185 size_t bsize, oalign = 0;1186 headers( "realloc", oaddr, header, freeElem, bsize, oalign );1187 size_t odsize = dataStorage( bsize, oaddr, header ); // data storage available in bucket1188 1189 if ( oalign <= nalign && (uintptr_t)oaddr % nalign == 0 ) { // <= alignment and new alignment happens to match1190 if ( oalign >= libAlign() ) { // fake header ?1191 headerAddr( oaddr )->kind.fake.alignment = nalign | 1; // update alignment (could be the same)1192 } // if1193 return realloc( oaddr, size );1194 } // if1195 1196 // change size and copy old content to new storage1197 1198 #ifdef __STATISTICS__1199 __atomic_add_fetch( &realloc_calls, 1, __ATOMIC_SEQ_CST );1200 __atomic_add_fetch( &realloc_storage, size, __ATOMIC_SEQ_CST );1201 #endif // __STATISTICS__1202 1203 // If size is equal to 0, either NULL or a pointer suitable to be passed to free() is returned.1204 if ( unlikely( size == 0 ) ) { free( oaddr ); return memalignNoStats( nalign, size ); } // special cases1205 if ( unlikely( oaddr == 0p ) ) return memalignNoStats( nalign, size );1206 1207 void * naddr;1208 if ( unlikely( header->kind.real.blockSize & 2 ) ) { // previous request zero fill1209 naddr = cmemalignNoStats( nalign, 1, size ); // create new aligned area1210 } else {1211 naddr = memalignNoStats( nalign, size ); // create new aligned area1212 } // if1213 1214 headers( "realloc", naddr, header, freeElem, bsize, oalign );1215 size_t ndsize = dataStorage( bsize, naddr, header ); // data storage available in bucket1216 // To preserve prior fill, the entire bucket must be copied versus the size.1217 memcpy( naddr, oaddr, MIN( odsize, ndsize ) ); // copy bytes1218 free( oaddr );1219 return naddr;1220 } // realloc1221 1222 1223 1060 // Local Variables: // 1224 1061 // tab-width: 4 // -
libcfa/src/interpose.cfa
r7030dab r71d6bd8 10 10 // Created On : Wed Mar 29 16:10:31 2017 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Fri Mar 13 17:35:37 202013 // Update Count : 1 7812 // Last Modified On : Sun Jul 14 22:57:16 2019 13 // Update Count : 116 14 14 // 15 15 … … 29 29 #include "bits/signal.hfa" // sigHandler_? 30 30 #include "startup.hfa" // STARTUP_PRIORITY_CORE 31 #include <assert.h>32 31 33 32 //============================================================================================= … … 41 40 42 41 typedef void (* generic_fptr_t)(void); 43 generic_fptr_t interpose_symbol( const char symbol[], const char version[]) {42 generic_fptr_t interpose_symbol( const char * symbol, const char * version ) { 44 43 const char * error; 45 44 … … 96 95 void __cfaabi_interpose_startup(void) __attribute__(( constructor( STARTUP_PRIORITY_CORE ) )); 97 96 void __cfaabi_interpose_startup( void ) { 98 const char *version = 0p;97 const char *version = NULL; 99 98 100 99 preload_libgcc(); … … 106 105 #pragma GCC diagnostic pop 107 106 108 // As a precaution (and necessity), errors that result in termination are delivered on a separate stack because109 // task stacks might be very small (4K) and the signal delivery corrupts memory to the point that a clean110 // shutdown is impossible. Also, when a stack overflow encounters the non-accessible sentinel page (debug only)111 // and generates a segment fault, the signal cannot be delivered on the sentinel page. Finally, calls to abort112 // print a stack trace that uses substantial stack space.113 114 #define MINSTKSZ SIGSTKSZ * 8115 static char stack[MINSTKSZ] __attribute__(( aligned (16) ));116 static stack_t ss;117 118 ss.ss_sp = stack;119 ss.ss_size = MINSTKSZ;120 ss.ss_flags = 0;121 if ( sigaltstack( &ss, 0p ) == -1 ) {122 abort( "__cfaabi_interpose_startup : internal error, sigaltstack error(%d) %s.", errno, strerror( errno ) );123 } // if124 125 107 // Failure handler 126 __cfaabi_sigaction( SIGSEGV, sigHandler_segv, SA_SIGINFO | SA_ONSTACK ); 127 __cfaabi_sigaction( SIGBUS , sigHandler_segv, SA_SIGINFO | SA_ONSTACK ); 128 __cfaabi_sigaction( SIGILL , sigHandler_ill , SA_SIGINFO | SA_ONSTACK ); 129 __cfaabi_sigaction( SIGFPE , sigHandler_fpe , SA_SIGINFO | SA_ONSTACK ); 130 __cfaabi_sigaction( SIGTERM, sigHandler_term, SA_SIGINFO | SA_ONSTACK | SA_RESETHAND ); // one shot handler, return to default 131 __cfaabi_sigaction( SIGINT , sigHandler_term, SA_SIGINFO | SA_ONSTACK | SA_RESETHAND ); 132 __cfaabi_sigaction( SIGABRT, sigHandler_term, SA_SIGINFO | SA_ONSTACK | SA_RESETHAND ); 133 __cfaabi_sigaction( SIGHUP , sigHandler_term, SA_SIGINFO | SA_ONSTACK | SA_RESETHAND ); // terminal hangup 108 __cfaabi_sigaction( SIGSEGV, sigHandler_segv , SA_SIGINFO ); 109 __cfaabi_sigaction( SIGBUS , sigHandler_segv , SA_SIGINFO ); 110 __cfaabi_sigaction( SIGILL , sigHandler_ill , SA_SIGINFO ); 111 __cfaabi_sigaction( SIGFPE , sigHandler_fpe , SA_SIGINFO ); 112 __cfaabi_sigaction( SIGABRT, sigHandler_abrt, SA_SIGINFO | SA_RESETHAND); 113 __cfaabi_sigaction( SIGTERM, sigHandler_term , SA_SIGINFO ); 114 __cfaabi_sigaction( SIGINT , sigHandler_term , SA_SIGINFO ); 134 115 } 135 116 } … … 142 123 void exit( int status, const char fmt[], ... ) __attribute__(( format(printf, 2, 3), __nothrow__, __leaf__, __noreturn__ )); 143 124 void abort( const char fmt[], ... ) __attribute__(( format(printf, 1, 2), __nothrow__, __leaf__, __noreturn__ )); 144 void abort( bool signalAbort, const char fmt[], ... ) __attribute__(( format(printf, 2, 3), __nothrow__, __leaf__, __noreturn__ ));145 void __abort( bool signalAbort, const char fmt[], va_list args ) __attribute__(( __nothrow__, __leaf__, __noreturn__ ));146 125 147 126 extern "C" { 148 127 void abort( void ) __attribute__(( __nothrow__, __leaf__, __noreturn__ )) { 149 abort( false, "%s", "");128 abort( NULL ); 150 129 } 151 130 … … 153 132 va_list argp; 154 133 va_start( argp, fmt ); 155 __abort( false,fmt, argp );134 abort( fmt, argp ); 156 135 va_end( argp ); 157 136 } … … 162 141 } 163 142 164 void * kernel_abort( void ) __attribute__(( __nothrow__, __leaf__, __weak__ )) { return 0p; } 165 void kernel_abort_msg( void * data, char buffer[], int size ) __attribute__(( __nothrow__, __leaf__, __weak__ )) {} 166 // See concurrency/kernel.cfa for strong definition used in multi-processor mode. 143 void * kernel_abort ( void ) __attribute__(( __nothrow__, __leaf__, __weak__ )) { return NULL; } 144 void kernel_abort_msg( void * data, char * buffer, int size ) __attribute__(( __nothrow__, __leaf__, __weak__ )) {} 167 145 int kernel_abort_lastframe( void ) __attribute__(( __nothrow__, __leaf__, __weak__ )) { return 4; } 168 146 169 147 enum { abort_text_size = 1024 }; 170 148 static char abort_text[ abort_text_size ]; 171 172 static void __cfaabi_backtrace( int start ) { 173 enum { Frames = 50, }; // maximum number of stack frames 174 int last = kernel_abort_lastframe(); // skip last N stack frames 149 static int abort_lastframe; 150 151 void exit( int status, const char fmt[], ... ) __attribute__(( format(printf, 2, 3), __nothrow__, __leaf__, __noreturn__ )) { 152 va_list args; 153 va_start( args, fmt ); 154 vfprintf( stderr, fmt, args ); 155 va_end( args ); 156 __cabi_libc.exit( status ); 157 } 158 159 void abort( const char fmt[], ... ) __attribute__(( format(printf, 1, 2), __nothrow__, __leaf__, __noreturn__ )) { 160 void * kernel_data = kernel_abort(); // must be done here to lock down kernel 161 int len; 162 163 abort_lastframe = kernel_abort_lastframe(); 164 len = snprintf( abort_text, abort_text_size, "Cforall Runtime error (UNIX pid:%ld) ", (long int)getpid() ); // use UNIX pid (versus getPid) 165 __cfaabi_dbg_bits_write( abort_text, len ); 166 167 if ( fmt ) { 168 va_list args; 169 va_start( args, fmt ); 170 171 len = vsnprintf( abort_text, abort_text_size, fmt, args ); 172 va_end( args ); 173 __cfaabi_dbg_bits_write( abort_text, len ); 174 175 if ( fmt[strlen( fmt ) - 1] != '\n' ) { // add optional newline if missing at the end of the format text 176 __cfaabi_dbg_bits_write( "\n", 1 ); 177 } 178 } 179 180 kernel_abort_msg( kernel_data, abort_text, abort_text_size ); 181 __cabi_libc.abort(); 182 } 183 184 static void __cfaabi_backtrace() { 185 enum { 186 Frames = 50, // maximum number of stack frames 187 Start = 8, // skip first N stack frames 188 }; 175 189 176 190 void * array[Frames]; 177 191 size_t size = backtrace( array, Frames ); 178 char ** messages = backtrace_symbols( array, size ); // does not demangle names 179 180 *index( messages[0], '(' ) = '\0'; // find executable name 181 __cfaabi_bits_print_nolock( STDERR_FILENO, "Stack back trace for: %s\n", messages[0]); 182 183 for ( unsigned int i = start; i < size - last && messages != 0p; i += 1 ) { 184 char * name = 0p, * offset_begin = 0p, * offset_end = 0p; 185 186 for ( char * p = messages[i]; *p; p += 1 ) { // find parantheses and +offset 187 //__cfaabi_bits_print_nolock( "X %s\n", p); 192 char ** messages = backtrace_symbols( array, size ); 193 194 // find executable name 195 *index( messages[0], '(' ) = '\0'; 196 __cfaabi_dbg_bits_print_nolock( "Stack back trace for: %s\n", messages[0]); 197 198 for ( int i = Start; i < size - abort_lastframe && messages != NULL; i += 1 ) { 199 char * name = NULL, * offset_begin = NULL, * offset_end = NULL; 200 201 for ( char * p = messages[i]; *p; ++p ) { 202 //__cfaabi_dbg_bits_print_nolock( "X %s\n", p); 203 // find parantheses and +offset 188 204 if ( *p == '(' ) { 189 205 name = p; … … 196 212 } 197 213 198 // if line contains symbol ,print it199 int frameNo = i - start;214 // if line contains symbol print it 215 int frameNo = i - Start; 200 216 if ( name && offset_begin && offset_end && name < offset_begin ) { 201 *name++ = '\0'; // delimit strings 217 // delimit strings 218 *name++ = '\0'; 202 219 *offset_begin++ = '\0'; 203 220 *offset_end++ = '\0'; 204 221 205 __cfaabi_ bits_print_nolock( STDERR_FILENO,"(%i) %s : %s + %s %s\n", frameNo, messages[i], name, offset_begin, offset_end);222 __cfaabi_dbg_bits_print_nolock( "(%i) %s : %s + %s %s\n", frameNo, messages[i], name, offset_begin, offset_end); 206 223 } else { // otherwise, print the whole line 207 __cfaabi_ bits_print_nolock( STDERR_FILENO,"(%i) %s\n", frameNo, messages[i] );224 __cfaabi_dbg_bits_print_nolock( "(%i) %s\n", frameNo, messages[i] ); 208 225 } 209 226 } … … 211 228 } 212 229 213 void exit( int status, const char fmt[], ... ) {214 va_list args;215 va_start( args, fmt );216 vfprintf( stderr, fmt, args );217 va_end( args );218 __cabi_libc.exit( status );219 }220 221 // Cannot forward va_list.222 void __abort( bool signalAbort, const char fmt[], va_list args ) {223 void * kernel_data = kernel_abort(); // must be done here to lock down kernel224 int len;225 226 signal( SIGABRT, SIG_DFL ); // prevent final "real" abort from recursing to handler227 228 len = snprintf( abort_text, abort_text_size, "Cforall Runtime error (UNIX pid:%ld) ", (long int)getpid() ); // use UNIX pid (versus getPid)229 __cfaabi_bits_write( STDERR_FILENO, abort_text, len );230 231 assert( fmt );232 len = vsnprintf( abort_text, abort_text_size, fmt, args );233 __cfaabi_bits_write( STDERR_FILENO, abort_text, len );234 235 if ( fmt[strlen( fmt ) - 1] != '\n' ) { // add optional newline if missing at the end of the format text236 __cfaabi_bits_write( STDERR_FILENO, "\n", 1 );237 } // if238 kernel_abort_msg( kernel_data, abort_text, abort_text_size );239 240 __cfaabi_backtrace( signalAbort ? 4 : 2 );241 242 __cabi_libc.abort(); // print stack trace in handler243 }244 245 void abort( const char fmt[], ... ) {246 va_list args;247 va_start( args, fmt );248 __abort( false, fmt, args );249 // CONTROL NEVER REACHES HERE!250 va_end( args );251 }252 253 void abort( bool signalAbort, const char fmt[], ... ) {254 va_list args;255 va_start( args, fmt );256 __abort( signalAbort, fmt, args );257 // CONTROL NEVER REACHES HERE!258 va_end( args );259 }260 261 230 void sigHandler_segv( __CFA_SIGPARMS__ ) { 262 if ( sfp->si_addr == 0p ) { 263 abort( true, "Null pointer (0p) dereference.\n" ); 264 } else { 265 abort( true, "%s at memory location %p.\n" 266 "Possible cause is reading outside the address space or writing to a protected area within the address space with an invalid pointer or subscript.\n", 267 (sig == SIGSEGV ? "Segment fault" : "Bus error"), sfp->si_addr ); 268 } 231 abort( "Addressing invalid memory at location %p\n" 232 "Possible cause is reading outside the address space or writing to a protected area within the address space with an invalid pointer or subscript.\n", 233 sfp->si_addr ); 269 234 } 270 235 271 236 void sigHandler_ill( __CFA_SIGPARMS__ ) { 272 abort( true,"Executing illegal instruction at location %p.\n"237 abort( "Executing illegal instruction at location %p.\n" 273 238 "Possible cause is stack corruption.\n", 274 239 sfp->si_addr ); … … 286 251 default: msg = "unknown"; 287 252 } // choose 288 abort( true, "Computation error %s at location %p.\n", msg, sfp->si_addr ); 253 abort( "Computation error %s at location %p.\n", msg, sfp->si_addr ); 254 } 255 256 void sigHandler_abrt( __CFA_SIGPARMS__ ) { 257 __cfaabi_backtrace(); 258 259 // reset default signal handler 260 __cfaabi_sigdefault( SIGABRT ); 261 262 raise( SIGABRT ); 289 263 } 290 264 291 265 void sigHandler_term( __CFA_SIGPARMS__ ) { 292 abort( true, "Application interrupted by signal: %s.\n", strsignal( sig ));266 abort( "Application stopped by %s signal.", sig == SIGINT ? "an interrupt (SIGINT)" : "a terminate (SIGTERM)" ); 293 267 } 294 268 -
libcfa/src/iostream.cfa
r7030dab r71d6bd8 10 10 // Created On : Wed May 27 17:56:53 2015 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Wed Mar 11 14:35:35 202013 // Update Count : 8 6012 // Last Modified On : Sat Jul 13 08:07:59 2019 13 // Update Count : 821 14 14 // 15 15 … … 19 19 #include <stdio.h> 20 20 #include <stdbool.h> // true/false 21 #include <stdint.h> // UINT64_MAX22 21 //#include <string.h> // strlen, strcmp 23 22 extern size_t strlen (const char *__s) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__pure__)) __attribute__ ((__nonnull__ (1))); … … 36 35 forall( dtype ostype | ostream( ostype ) ) { 37 36 ostype & ?|?( ostype & os, zero_t ) { 38 if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) );37 if ( sepPrt( os ) ) fmt( os, "%s", sepGetCur( os ) ); 39 38 fmt( os, "%d", 0n ); 40 39 return os; … … 45 44 46 45 ostype & ?|?( ostype & os, one_t ) { 47 if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) );46 if ( sepPrt( os ) ) fmt( os, "%s", sepGetCur( os ) ); 48 47 fmt( os, "%d", 1n ); 49 48 return os; … … 54 53 55 54 ostype & ?|?( ostype & os, bool b ) { 56 if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) );55 if ( sepPrt( os ) ) fmt( os, "%s", sepGetCur( os ) ); 57 56 fmt( os, "%s", b ? "true" : "false" ); 58 57 return os; … … 64 63 ostype & ?|?( ostype & os, char c ) { 65 64 fmt( os, "%c", c ); 66 if ( c == '\n' ) $setNL( os, true );65 if ( c == '\n' ) setNL( os, true ); 67 66 return sepOff( os ); 68 67 } // ?|? … … 72 71 73 72 ostype & ?|?( ostype & os, signed char sc ) { 74 if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) );73 if ( sepPrt( os ) ) fmt( os, "%s", sepGetCur( os ) ); 75 74 fmt( os, "%hhd", sc ); 76 75 return os; … … 81 80 82 81 ostype & ?|?( ostype & os, unsigned char usc ) { 83 if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) );82 if ( sepPrt( os ) ) fmt( os, "%s", sepGetCur( os ) ); 84 83 fmt( os, "%hhu", usc ); 85 84 return os; … … 90 89 91 90 ostype & ?|?( ostype & os, short int si ) { 92 if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) );91 if ( sepPrt( os ) ) fmt( os, "%s", sepGetCur( os ) ); 93 92 fmt( os, "%hd", si ); 94 93 return os; … … 99 98 100 99 ostype & ?|?( ostype & os, unsigned short int usi ) { 101 if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) );100 if ( sepPrt( os ) ) fmt( os, "%s", sepGetCur( os ) ); 102 101 fmt( os, "%hu", usi ); 103 102 return os; … … 108 107 109 108 ostype & ?|?( ostype & os, int i ) { 110 if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) );109 if ( sepPrt( os ) ) fmt( os, "%s", sepGetCur( os ) ); 111 110 fmt( os, "%d", i ); 112 111 return os; … … 117 116 118 117 ostype & ?|?( ostype & os, unsigned int ui ) { 119 if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) );118 if ( sepPrt( os ) ) fmt( os, "%s", sepGetCur( os ) ); 120 119 fmt( os, "%u", ui ); 121 120 return os; … … 126 125 127 126 ostype & ?|?( ostype & os, long int li ) { 128 if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) );127 if ( sepPrt( os ) ) fmt( os, "%s", sepGetCur( os ) ); 129 128 fmt( os, "%ld", li ); 130 129 return os; … … 135 134 136 135 ostype & ?|?( ostype & os, unsigned long int uli ) { 137 if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) );136 if ( sepPrt( os ) ) fmt( os, "%s", sepGetCur( os ) ); 138 137 fmt( os, "%lu", uli ); 139 138 return os; … … 144 143 145 144 ostype & ?|?( ostype & os, long long int lli ) { 146 if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) );145 if ( sepPrt( os ) ) fmt( os, "%s", sepGetCur( os ) ); 147 146 fmt( os, "%lld", lli ); 148 147 return os; … … 153 152 154 153 ostype & ?|?( ostype & os, unsigned long long int ulli ) { 155 if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) );154 if ( sepPrt( os ) ) fmt( os, "%s", sepGetCur( os ) ); 156 155 fmt( os, "%llu", ulli ); 157 156 return os; … … 160 159 (ostype &)(os | ulli); ends( os ); 161 160 } // ?|? 162 163 #if defined( __SIZEOF_INT128__ )164 // UINT64_MAX 18_446_744_073_709_551_615_ULL165 #define P10_UINT64 10_000_000_000_000_000_000_ULL // 19 zeroes166 167 static void base10_128( ostype & os, unsigned int128 val ) {168 if ( val > UINT64_MAX ) {169 base10_128( os, val / P10_UINT64 ); // recursive170 fmt( os, "%.19lu", (uint64_t)(val % P10_UINT64) );171 } else {172 fmt( os, "%lu", (uint64_t)val );173 } // if174 } // base10_128175 176 static void base10_128( ostype & os, int128 val ) {177 if ( val < 0 ) {178 fmt( os, "-" ); // leading negative sign179 val = -val;180 } // if181 base10_128( os, (unsigned int128)val ); // print zero/positive value182 } // base10_128183 184 ostype & ?|?( ostype & os, int128 llli ) {185 if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) );186 base10_128( os, llli );187 return os;188 } // ?|?189 void & ?|?( ostype & os, int128 llli ) {190 (ostype &)(os | llli); ends( os );191 } // ?|?192 193 ostype & ?|?( ostype & os, unsigned int128 ullli ) {194 if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) );195 base10_128( os, ullli );196 return os;197 } // ?|?198 void & ?|?( ostype & os, unsigned int128 ullli ) {199 (ostype &)(os | ullli); ends( os );200 } // ?|?201 #endif // __SIZEOF_INT128__202 161 203 162 #define PrintWithDP( os, format, val, ... ) \ … … 216 175 217 176 ostype & ?|?( ostype & os, float f ) { 218 if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) );177 if ( sepPrt( os ) ) fmt( os, "%s", sepGetCur( os ) ); 219 178 PrintWithDP( os, "%g", f ); 220 179 return os; … … 225 184 226 185 ostype & ?|?( ostype & os, double d ) { 227 if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) );186 if ( sepPrt( os ) ) fmt( os, "%s", sepGetCur( os ) ); 228 187 PrintWithDP( os, "%.*lg", d, DBL_DIG ); 229 188 return os; … … 234 193 235 194 ostype & ?|?( ostype & os, long double ld ) { 236 if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) );195 if ( sepPrt( os ) ) fmt( os, "%s", sepGetCur( os ) ); 237 196 PrintWithDP( os, "%.*Lg", ld, LDBL_DIG ); 238 197 return os; … … 243 202 244 203 ostype & ?|?( ostype & os, float _Complex fc ) { 245 if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) );204 if ( sepPrt( os ) ) fmt( os, "%s", sepGetCur( os ) ); 246 205 // os | crealf( fc ) | nonl; 247 206 PrintWithDP( os, "%g", crealf( fc ) ); … … 255 214 256 215 ostype & ?|?( ostype & os, double _Complex dc ) { 257 if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) );216 if ( sepPrt( os ) ) fmt( os, "%s", sepGetCur( os ) ); 258 217 // os | creal( dc ) | nonl; 259 218 PrintWithDP( os, "%.*lg", creal( dc ), DBL_DIG ); … … 267 226 268 227 ostype & ?|?( ostype & os, long double _Complex ldc ) { 269 if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) );228 if ( sepPrt( os ) ) fmt( os, "%s", sepGetCur( os ) ); 270 229 // os | creall( ldc ) || nonl; 271 230 PrintWithDP( os, "%.*Lg", creall( ldc ), LDBL_DIG ); … … 278 237 } // ?|? 279 238 280 ostype & ?|?( ostype & os, const char str[]) {239 ostype & ?|?( ostype & os, const char * str ) { 281 240 enum { Open = 1, Close, OpenClose }; 282 241 static const unsigned char mask[256] @= { … … 298 257 // first character IS NOT spacing or closing punctuation => add left separator 299 258 unsigned char ch = str[0]; // must make unsigned 300 if ( $sepPrt( os ) && mask[ ch ] != Close && mask[ ch ] != OpenClose ) {301 fmt( os, "%s", $sepGetCur( os ) );259 if ( sepPrt( os ) && mask[ ch ] != Close && mask[ ch ] != OpenClose ) { 260 fmt( os, "%s", sepGetCur( os ) ); 302 261 } // if 303 262 304 263 // if string starts line, must reset to determine open state because separator is off 305 $sepReset( os );// reset separator264 sepReset( os ); // reset separator 306 265 307 266 // last character IS spacing or opening punctuation => turn off separator for next item 308 267 size_t len = strlen( str ); 309 268 ch = str[len - 1]; // must make unsigned 310 if ( $sepPrt( os ) && mask[ ch ] != Open && mask[ ch ] != OpenClose ) {269 if ( sepPrt( os ) && mask[ ch ] != Open && mask[ ch ] != OpenClose ) { 311 270 sepOn( os ); 312 271 } else { 313 272 sepOff( os ); 314 273 } // if 315 if ( ch == '\n' ) $setNL( os, true ); // check *AFTER* $sepPrt call above as it resets NL flag274 if ( ch == '\n' ) setNL( os, true ); // check *AFTER* sepPrt call above as it resets NL flag 316 275 return write( os, str, len ); 317 276 } // ?|? 318 319 void ?|?( ostype & os, const char str[] ) { 277 void ?|?( ostype & os, const char * str ) { 320 278 (ostype &)(os | str); ends( os ); 321 279 } // ?|? 322 280 323 281 // ostype & ?|?( ostype & os, const char16_t * str ) { 324 // if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) );282 // if ( sepPrt( os ) ) fmt( os, "%s", sepGetCur( os ) ); 325 283 // fmt( os, "%ls", str ); 326 284 // return os; … … 329 287 // #if ! ( __ARM_ARCH_ISA_ARM == 1 && __ARM_32BIT_STATE == 1 ) // char32_t == wchar_t => ambiguous 330 288 // ostype & ?|?( ostype & os, const char32_t * str ) { 331 // if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) );289 // if ( sepPrt( os ) ) fmt( os, "%s", sepGetCur( os ) ); 332 290 // fmt( os, "%ls", str ); 333 291 // return os; … … 336 294 337 295 // ostype & ?|?( ostype & os, const wchar_t * str ) { 338 // if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) );296 // if ( sepPrt( os ) ) fmt( os, "%s", sepGetCur( os ) ); 339 297 // fmt( os, "%ls", str ); 340 298 // return os; … … 342 300 343 301 ostype & ?|?( ostype & os, const void * p ) { 344 if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) );302 if ( sepPrt( os ) ) fmt( os, "%s", sepGetCur( os ) ); 345 303 fmt( os, "%p", p ); 346 304 return os; … … 357 315 void ?|?( ostype & os, ostype & (* manip)( ostype & ) ) { 358 316 (ostype &)(manip( os )); 359 if ( $getPrt( os ) ) ends( os );// something printed ?360 $setPrt( os, false ); // turn off317 if ( getPrt( os ) ) ends( os ); // something printed ? 318 setPrt( os, false ); // turn off 361 319 } // ?|? 362 320 … … 371 329 ostype & nl( ostype & os ) { 372 330 (ostype &)(os | '\n'); 373 $setPrt( os, false ); // turn off374 $setNL( os, true );331 setPrt( os, false ); // turn off 332 setNL( os, true ); 375 333 flush( os ); 376 334 return sepOff( os ); // prepare for next line … … 378 336 379 337 ostype & nonl( ostype & os ) { 380 $setPrt( os, false ); // turn off338 setPrt( os, false ); // turn off 381 339 return os; 382 340 } // nonl … … 417 375 ostype & ?|?( ostype & os, T arg, Params rest ) { 418 376 (ostype &)(os | arg); // print first argument 419 $sepSetCur( os, sepGetTuple( os ) );// switch to tuple separator377 sepSetCur( os, sepGetTuple( os ) ); // switch to tuple separator 420 378 (ostype &)(os | rest); // print remaining arguments 421 $sepSetCur( os, sepGet( os ) ); // switch to regular separator379 sepSetCur( os, sepGet( os ) ); // switch to regular separator 422 380 return os; 423 381 } // ?|? … … 425 383 // (ostype &)(?|?( os, arg, rest )); ends( os ); 426 384 (ostype &)(os | arg); // print first argument 427 $sepSetCur( os, sepGetTuple( os ) );// switch to tuple separator385 sepSetCur( os, sepGetTuple( os ) ); // switch to tuple separator 428 386 (ostype &)(os | rest); // print remaining arguments 429 $sepSetCur( os, sepGet( os ) ); // switch to regular separator387 sepSetCur( os, sepGet( os ) ); // switch to regular separator 430 388 ends( os ); 431 389 } // ?|? … … 456 414 forall( dtype ostype | ostream( ostype ) ) { \ 457 415 ostype & ?|?( ostype & os, _Ostream_Manip(T) f ) { \ 458 if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) ); \416 if ( sepPrt( os ) ) fmt( os, "%s", sepGetCur( os ) ); \ 459 417 \ 460 418 if ( f.base == 'b' || f.base == 'B' ) { /* bespoke binary format */ \ … … 505 463 \ 506 464 if ( ! f.flags.pc ) { /* no precision */ \ 465 /* printf( "%s\n", &fmtstr[star] ); */ \ 507 466 fmtstr[sizeof(IFMTNP)-2] = f.base; /* sizeof includes '\0' */ \ 508 /* printf( "%s %c %c\n", &fmtstr[star], f.base, CODE ); */ \509 467 fmt( os, &fmtstr[star], f.wd, f.val ); \ 510 468 } else { /* precision */ \ 511 469 fmtstr[sizeof(IFMTP)-2] = f.base; /* sizeof includes '\0' */ \ 512 /* printf( "%s %c %c\n", &fmtstr[star], f.base, CODE); */ \470 /* printf( "%s\n", &fmtstr[star] ); */ \ 513 471 fmt( os, &fmtstr[star], f.wd, f.pc, f.val ); \ 514 472 } /* if */ \ … … 528 486 IntegralFMTImpl( signed long long int, 'd', "% *ll ", "% *.*ll " ) 529 487 IntegralFMTImpl( unsigned long long int, 'u', "% *ll ", "% *.*ll " ) 530 531 532 #if defined( __SIZEOF_INT128__ )533 // Default prefix for non-decimal prints is 0b, 0, 0x.534 #define IntegralFMTImpl128( T, SIGNED, CODE, IFMTNP, IFMTP ) \535 forall( dtype ostype | ostream( ostype ) ) \536 static void base10_128( ostype & os, _Ostream_Manip(T) f ) { \537 if ( f.val > UINT64_MAX ) { \538 unsigned long long int lsig = f.val % P10_UINT64; \539 f.val /= P10_UINT64; /* msig */ \540 base10_128( os, f ); /* recursion */ \541 _Ostream_Manip(unsigned long long int) fmt @= { lsig, 0, 19, 'u', { .all : 0 } }; \542 fmt.flags.nobsdp = true; \543 /* printf( "fmt1 %c %lld %d\n", fmt.base, fmt.val, fmt.all ); */ \544 sepOff( os ); \545 (ostype &)(os | fmt); \546 } else { \547 /* printf( "fmt2 %c %lld %d\n", f.base, (unsigned long long int)f.val, f.all ); */ \548 _Ostream_Manip(SIGNED long long int) fmt @= { (SIGNED long long int)f.val, f.wd, f.pc, f.base, { .all : f.all } }; \549 (ostype &)(os | fmt); \550 } /* if */ \551 } /* base10_128 */ \552 forall( dtype ostype | ostream( ostype ) ) { \553 ostype & ?|?( ostype & os, _Ostream_Manip(T) f ) { \554 if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) ); \555 \556 if ( f.base == 'b' | f.base == 'B' | f.base == 'o' | f.base == 'x' | f.base == 'X' ) { \557 unsigned long long int msig = (unsigned long long int)(f.val >> 64); \558 unsigned long long int lsig = (unsigned long long int)(f.val); \559 _Ostream_Manip(SIGNED long long int) fmt @= { msig, f.wd, f.pc, f.base, { .all : f.all } }; \560 _Ostream_Manip(unsigned long long int) fmt2 @= { lsig, 0, 0, f.base, { .all : 0 } }; \561 if ( msig == 0 ) { \562 fmt.val = lsig; \563 (ostype &)(os | fmt); \564 } else { \565 fmt2.flags.pad0 = fmt2.flags.nobsdp = true; \566 if ( f.base == 'b' | f.base == 'B' ) { \567 if ( f.wd > 64 ) fmt.wd = f.wd - 64; \568 if ( f.flags.pc && f.pc > 64 ) fmt.pc = f.pc - 64; \569 fmt2.wd = 64; \570 (ostype &)(os | fmt | "" | fmt2); \571 } else if ( f.base == 'o' ) { \572 fmt.val = (unsigned long long int)fmt.val >> 2; \573 if ( f.wd > 21 ) fmt.wd = f.wd - 21; \574 if ( f.flags.pc && f.pc > 21 ) fmt.pc = f.pc - 21; \575 fmt2.wd = 1; \576 fmt2.val = ((msig & 0x3) << 1) + 1; \577 (ostype &)(os | fmt | "" | fmt2); \578 sepOff( os ); \579 fmt2.wd = 21; \580 fmt2.val = lsig & 0x7fffffffffffffff; \581 (ostype &)(os | fmt2); \582 } else { \583 if ( f.flags.left ) { \584 if ( f.wd > 16 ) fmt2.wd = f.wd - 16; \585 fmt.wd = 16; \586 } else { \587 if ( f.wd > 16 ) fmt.wd = f.wd - 16; \588 if ( f.flags.pc && f.pc > 16 ) fmt.pc = f.pc - 16; \589 fmt2.wd = 16; \590 } /* if */ \591 (ostype &)(os | fmt | "" | fmt2); \592 } /* if */ \593 } /* if */ \594 } else { \595 if ( CODE == 'd' ) { \596 if ( f.val < 0 ) { fmt( os, "-" ); sepOff( os ); f.val = -f.val; f.flags.sign = false; } \597 } /* if */ \598 base10_128( os, f ); \599 } /* if */ \600 return os; \601 } /* ?|? */ \602 void ?|?( ostype & os, _Ostream_Manip(T) f ) { (ostype &)(os | f); ends( os ); } \603 } // distribution604 605 IntegralFMTImpl128( int128, signed, 'd', "% *ll ", "% *.*ll " )606 IntegralFMTImpl128( unsigned int128, unsigned, 'u', "% *ll ", "% *.*ll " )607 #endif // __SIZEOF_INT128__608 488 609 489 //*********************************** floating point *********************************** … … 633 513 forall( dtype ostype | ostream( ostype ) ) { \ 634 514 ostype & ?|?( ostype & os, _Ostream_Manip(T) f ) { \ 635 if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) ); \515 if ( sepPrt( os ) ) fmt( os, "%s", sepGetCur( os ) ); \ 636 516 char fmtstr[sizeof(DFMTP)]; /* sizeof includes '\0' */ \ 637 517 if ( ! f.flags.pc ) memcpy( &fmtstr, DFMTNP, sizeof(DFMTNP) ); \ … … 656 536 return os; \ 657 537 } /* ?|? */ \ 658 \659 538 void ?|?( ostype & os, _Ostream_Manip(T) f ) { (ostype &)(os | f); ends( os ); } \ 660 539 } // distribution … … 676 555 } // if 677 556 678 if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) );557 if ( sepPrt( os ) ) fmt( os, "%s", sepGetCur( os ) ); 679 558 680 559 #define CFMTNP "% * " … … 692 571 return os; 693 572 } // ?|? 694 695 573 void ?|?( ostype & os, _Ostream_Manip(char) f ) { (ostype &)(os | f); ends( os ); } 696 574 } // distribution … … 714 592 } // if 715 593 716 if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) );594 if ( sepPrt( os ) ) fmt( os, "%s", sepGetCur( os ) ); 717 595 718 596 #define SFMTNP "% * " … … 738 616 return os; 739 617 } // ?|? 740 741 618 void ?|?( ostype & os, _Ostream_Manip(const char *) f ) { (ostype &)(os | f); ends( os ); } 742 619 } // distribution … … 858 735 } // ?|? 859 736 860 // istype & ?|?( istype & is, const char fmt[]) {737 // istype & ?|?( istype & is, const char * fmt ) { 861 738 // fmt( is, fmt, "" ); 862 739 // return is; -
libcfa/src/iostream.hfa
r7030dab r71d6bd8 10 10 // Created On : Wed May 27 17:56:53 2015 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Thu Feb 20 15:30:56 202013 // Update Count : 33 712 // Last Modified On : Fri Jul 12 12:08:38 2019 13 // Update Count : 334 14 14 // 15 15 … … 24 24 trait ostream( dtype ostype ) { 25 25 // private 26 bool $sepPrt( ostype & ); // get separator state (on/off)27 void $sepReset( ostype & ); // set separator state to default state28 void $sepReset( ostype &, bool ); // set separator and default state29 const char * $sepGetCur( ostype & );// get current separator string30 void $sepSetCur( ostype &, const char []); // set current separator string31 bool $getNL( ostype & );// check newline32 void $setNL( ostype &, bool ); // saw newline33 bool $getANL( ostype & ); // get auto newline (on/off)34 bool $getPrt( ostype & ); // get fmt called in output cascade35 void $setPrt( ostype &, bool ); // set fmt called in output cascade26 bool sepPrt( ostype & ); // get separator state (on/off) 27 void sepReset( ostype & ); // set separator state to default state 28 void sepReset( ostype &, bool ); // set separator and default state 29 const char * sepGetCur( ostype & ); // get current separator string 30 void sepSetCur( ostype &, const char * ); // set current separator string 31 bool getNL( ostype & ); // check newline 32 void setNL( ostype &, bool ); // saw newline 33 bool getANL( ostype & ); // get auto newline (on/off) 34 bool getPrt( ostype & ); // get fmt called in output cascade 35 void setPrt( ostype &, bool ); // set fmt called in output cascade 36 36 // public 37 37 void sepOn( ostype & ); // turn separator state on … … 43 43 44 44 const char * sepGet( ostype & ); // get separator string 45 void sepSet( ostype &, const char []); // set separator to string (15 character maximum)45 void sepSet( ostype &, const char * ); // set separator to string (15 character maximum) 46 46 const char * sepGetTuple( ostype & ); // get tuple separator string 47 void sepSetTuple( ostype &, const char [] );// set tuple separator to string (15 character maximum)47 void sepSetTuple( ostype &, const char * ); // set tuple separator to string (15 character maximum) 48 48 49 49 void ends( ostype & os ); // end of output statement 50 50 int fail( ostype & ); 51 51 int flush( ostype & ); 52 void open( ostype & os, const char name[], const char mode[]);52 void open( ostype & os, const char * name, const char * mode ); 53 53 void close( ostype & os ); 54 ostype & write( ostype &, const char [], size_t );54 ostype & write( ostype &, const char *, size_t ); 55 55 int fmt( ostype &, const char format[], ... ) __attribute__(( format(printf, 2, 3) )); 56 56 }; // ostream … … 98 98 ostype & ?|?( ostype &, unsigned long long int ); 99 99 void ?|?( ostype &, unsigned long long int ); 100 #if defined( __SIZEOF_INT128__ )101 ostype & ?|?( ostype &, int128 );102 void ?|?( ostype &, int128 );103 ostype & ?|?( ostype &, unsigned int128 );104 void ?|?( ostype &, unsigned int128 );105 #endif // __SIZEOF_INT128__106 100 107 101 ostype & ?|?( ostype &, float ); … … 119 113 void ?|?( ostype &, long double _Complex ); 120 114 121 ostype & ?|?( ostype &, const char []);122 void ?|?( ostype &, const char []);115 ostype & ?|?( ostype &, const char * ); 116 void ?|?( ostype &, const char * ); 123 117 // ostype & ?|?( ostype &, const char16_t * ); 124 118 #if ! ( __ARM_ARCH_ISA_ARM == 1 && __ARM_32BIT_STATE == 1 ) // char32_t == wchar_t => ambiguous … … 212 206 IntegralFMTDecl( signed long long int, 'd' ) 213 207 IntegralFMTDecl( unsigned long long int, 'u' ) 214 #if defined( __SIZEOF_INT128__ )215 IntegralFMTDecl( int128, 'd' )216 IntegralFMTDecl( unsigned int128, 'u' )217 #endif218 208 219 209 //*********************************** floating point *********************************** … … 266 256 267 257 static inline { 268 _Ostream_Manip(const char *) bin( const char s[]) { return (_Ostream_Manip(const char *))@{ s, 1, 0, 'b', { .all : 0 } }; }269 _Ostream_Manip(const char *) oct( const char s[]) { return (_Ostream_Manip(const char *))@{ s, 1, 0, 'o', { .all : 0 } }; }270 _Ostream_Manip(const char *) hex( const char s[]) { return (_Ostream_Manip(const char *))@{ s, 1, 0, 'x', { .all : 0 } }; }271 _Ostream_Manip(const char *) wd( unsigned int w, const char s[]) { return (_Ostream_Manip(const char *))@{ s, w, 0, 's', { .all : 0 } }; }272 _Ostream_Manip(const char *) wd( unsigned int w, unsigned char pc, const char s[]) { return (_Ostream_Manip(const char *))@{ s, w, pc, 's', { .flags.pc : true } }; }258 _Ostream_Manip(const char *) bin( const char * s ) { return (_Ostream_Manip(const char *))@{ s, 1, 0, 'b', { .all : 0 } }; } 259 _Ostream_Manip(const char *) oct( const char * s ) { return (_Ostream_Manip(const char *))@{ s, 1, 0, 'o', { .all : 0 } }; } 260 _Ostream_Manip(const char *) hex( const char * s ) { return (_Ostream_Manip(const char *))@{ s, 1, 0, 'x', { .all : 0 } }; } 261 _Ostream_Manip(const char *) wd( unsigned int w, const char * s ) { return (_Ostream_Manip(const char *))@{ s, w, 0, 's', { .all : 0 } }; } 262 _Ostream_Manip(const char *) wd( unsigned int w, unsigned char pc, const char * s ) { return (_Ostream_Manip(const char *))@{ s, w, pc, 's', { .flags.pc : true } }; } 273 263 _Ostream_Manip(const char *) & wd( unsigned int w, _Ostream_Manip(const char *) & fmt ) { fmt.wd = w; return fmt; } 274 264 _Ostream_Manip(const char *) & wd( unsigned int w, unsigned char pc, _Ostream_Manip(const char *) & fmt ) { fmt.wd = w; fmt.pc = pc; fmt.flags.pc = true; return fmt; } … … 291 281 int fail( istype & ); 292 282 int eof( istype & ); 293 void open( istype & is, const char name[]);283 void open( istype & is, const char * name ); 294 284 void close( istype & is ); 295 285 istype & read( istype &, char *, size_t ); … … 326 316 istype & ?|?( istype &, long double _Complex & ); 327 317 328 // istype & ?|?( istype &, const char []);318 // istype & ?|?( istype &, const char * ); 329 319 istype & ?|?( istype &, char * ); 330 320 … … 353 343 static inline { 354 344 _Istream_Cstr skip( unsigned int n ) { return (_Istream_Cstr){ 0p, 0p, n, { .all : 0 } }; } 355 _Istream_Cstr skip( const char scanset[]) { return (_Istream_Cstr){ 0p, scanset, -1, { .all : 0 } }; }356 _Istream_Cstr incl( const char scanset[], char * s ) { return (_Istream_Cstr){ s, scanset, -1, { .flags.inex : false } }; }357 _Istream_Cstr & incl( const char scanset[], _Istream_Cstr & fmt ) { fmt.scanset = scanset; fmt.flags.inex = false; return fmt; }358 _Istream_Cstr excl( const char scanset[], char * s ) { return (_Istream_Cstr){ s, scanset, -1, { .flags.inex : true } }; }359 _Istream_Cstr & excl( const char scanset[], _Istream_Cstr & fmt ) { fmt.scanset = scanset; fmt.flags.inex = true; return fmt; }360 _Istream_Cstr ignore( const char s[]) { return (_Istream_Cstr)@{ s, 0p, -1, { .flags.ignore : true } }; }345 _Istream_Cstr skip( const char * scanset ) { return (_Istream_Cstr){ 0p, scanset, -1, { .all : 0 } }; } 346 _Istream_Cstr incl( const char * scanset, char * s ) { return (_Istream_Cstr){ s, scanset, -1, { .flags.inex : false } }; } 347 _Istream_Cstr & incl( const char * scanset, _Istream_Cstr & fmt ) { fmt.scanset = scanset; fmt.flags.inex = false; return fmt; } 348 _Istream_Cstr excl( const char * scanset, char * s ) { return (_Istream_Cstr){ s, scanset, -1, { .flags.inex : true } }; } 349 _Istream_Cstr & excl( const char * scanset, _Istream_Cstr & fmt ) { fmt.scanset = scanset; fmt.flags.inex = true; return fmt; } 350 _Istream_Cstr ignore( const char * s ) { return (_Istream_Cstr)@{ s, 0p, -1, { .flags.ignore : true } }; } 361 351 _Istream_Cstr & ignore( _Istream_Cstr & fmt ) { fmt.flags.ignore = true; return fmt; } 362 _Istream_Cstr wdi( unsigned int w, char s[]) { return (_Istream_Cstr)@{ s, 0p, w, { .all : 0 } }; }352 _Istream_Cstr wdi( unsigned int w, char * s ) { return (_Istream_Cstr)@{ s, 0p, w, { .all : 0 } }; } 363 353 _Istream_Cstr & wdi( unsigned int w, _Istream_Cstr & fmt ) { fmt.wd = w; return fmt; } 364 354 } // distribution -
libcfa/src/math.hfa
r7030dab r71d6bd8 10 10 // Created On : Mon Apr 18 23:37:04 2016 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Tue Feb 4 10:27:11 202013 // Update Count : 11 712 // Last Modified On : Fri Jul 13 11:02:15 2018 13 // Update Count : 116 14 14 // 15 15 … … 51 51 static inline long double fdim( long double x, long double y ) { return fdiml( x, y ); } 52 52 53 static inline float nan( const char tag[]) { return nanf( tag ); }54 // extern "C" { double nan( const char []); }55 static inline long double nan( const char tag[]) { return nanl( tag ); }53 static inline float nan( const char * tag ) { return nanf( tag ); } 54 // extern "C" { double nan( const char * ); } 55 static inline long double nan( const char * tag ) { return nanl( tag ); } 56 56 57 57 //---------------------- Exponential ---------------------- -
libcfa/src/rational.cfa
r7030dab r71d6bd8 10 10 // Created On : Wed Apr 6 17:54:28 2016 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Sat Feb 8 17:56:36 202013 // Update Count : 18 712 // Last Modified On : Fri Jul 12 18:12:08 2019 13 // Update Count : 184 14 14 // 15 15 … … 56 56 } // rational 57 57 58 void ?{}( Rational(RationalImpl) & r, zero_t ) {59 r{ (RationalImpl){0}, (RationalImpl){1} };60 } // rational61 62 void ?{}( Rational(RationalImpl) & r, one_t ) {63 r{ (RationalImpl){1}, (RationalImpl){1} };64 } // rational65 58 66 59 // getter for numerator/denominator -
libcfa/src/startup.cfa
r7030dab r71d6bd8 10 10 // Created On : Tue Jul 24 16:21:57 2018 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Tue Feb 4 13:03:18 202013 // Update Count : 3012 // Last Modified On : Wed Jul 25 16:42:01 2018 13 // Update Count : 11 14 14 // 15 15 16 #include <time.h> // tzset17 16 #include "startup.hfa" 17 #include <unistd.h> 18 18 19 19 20 extern "C" { 20 void __cfaabi_appready_startup( void ) __attribute__(( constructor( STARTUP_PRIORITY_APPREADY ) ));21 static void __cfaabi_appready_startup( void ) __attribute__(( constructor( STARTUP_PRIORITY_APPREADY ) )); 21 22 void __cfaabi_appready_startup( void ) { 22 tzset(); // initialize time global variables23 23 #ifdef __CFA_DEBUG__ 24 24 extern void heapAppStart(); … … 27 27 } // __cfaabi_appready_startup 28 28 29 void __cfaabi_appready_shutdown( void ) __attribute__(( destructor( STARTUP_PRIORITY_APPREADY ) ));29 static void __cfaabi_appready_shutdown( void ) __attribute__(( destructor( STARTUP_PRIORITY_APPREADY ) )); 30 30 void __cfaabi_appready_shutdown( void ) { 31 31 #ifdef __CFA_DEBUG__ … … 41 41 struct __spinlock_t; 42 42 extern "C" { 43 void __cfaabi_dbg_record _lock(struct __spinlock_t & this, const char prev_name[]) __attribute__(( weak )) {}43 void __cfaabi_dbg_record(struct __spinlock_t & this, const char * prev_name) __attribute__(( weak )) {} 44 44 } 45 45 -
libcfa/src/stdhdr/assert.h
r7030dab r71d6bd8 10 10 // Created On : Mon Jul 4 23:25:26 2016 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Tue Feb 4 12:58:49 202013 // Update Count : 1 512 // Last Modified On : Mon Jul 31 23:09:32 2017 13 // Update Count : 13 14 14 // 15 15 … … 27 27 #define assertf( expr, fmt, ... ) ((expr) ? ((void)0) : __assert_fail_f(__VSTRINGIFY__(expr), __FILE__, __LINE__, __PRETTY_FUNCTION__, fmt, ## __VA_ARGS__ )) 28 28 29 void __assert_fail_f( const char assertion[], const char file[], unsigned int line, const char function[], const char fmt[], ... ) __attribute__((noreturn, format( printf, 5, 6) ));29 void __assert_fail_f( const char *assertion, const char *file, unsigned int line, const char *function, const char *fmt, ... ) __attribute__((noreturn, format( printf, 5, 6) )); 30 30 #endif 31 31 -
libcfa/src/stdhdr/bfdlink.h
r7030dab r71d6bd8 10 10 // Created On : Tue Jul 18 07:26:04 2017 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Fri Feb 7 19:05:08 202013 // Update Count : 612 // Last Modified On : Sun Jul 22 13:49:30 2018 13 // Update Count : 4 14 14 // 15 15 16 16 // include file uses the CFA keyword "with". 17 17 #if ! defined( with ) // nesting ? 18 #define with ` `with// make keyword an identifier18 #define with `with` // make keyword an identifier 19 19 #define __CFA_BFDLINK_H__ 20 20 #endif -
libcfa/src/stdhdr/hwloc.h
r7030dab r71d6bd8 10 10 // Created On : Tue Jul 18 07:45:00 2017 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Fri Feb 7 19:05:18 202013 // Update Count : 612 // Last Modified On : Sun Jul 22 13:49:58 2018 13 // Update Count : 4 14 14 // 15 15 16 16 // include file uses the CFA keyword "thread". 17 17 #if ! defined( thread ) // nesting ? 18 #define thread ` `thread// make keyword an identifier18 #define thread `thread` // make keyword an identifier 19 19 #define __CFA_HWLOC_H__ 20 20 #endif -
libcfa/src/stdhdr/krb5.h
r7030dab r71d6bd8 10 10 // Created On : Tue Jul 18 07:55:44 2017 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Fri Feb 7 19:05:35 202013 // Update Count : 612 // Last Modified On : Sun Jul 22 13:50:24 2018 13 // Update Count : 4 14 14 // 15 15 16 16 // include file uses the CFA keyword "enable". 17 17 #if ! defined( enable ) // nesting ? 18 #define enable ` `enable// make keyword an identifier18 #define enable `enable` // make keyword an identifier 19 19 #define __CFA_KRB5_H__ 20 20 #endif -
libcfa/src/stdhdr/malloc.h
r7030dab r71d6bd8 10 10 // Created On : Thu Jul 20 15:58:16 2017 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : S un Mar 8 10:01:20 202013 // Update Count : 1 112 // Last Modified On : Sat Aug 11 09:06:31 2018 13 // Update Count : 10 14 14 // 15 15 … … 31 31 32 32 extern "C" { 33 void * cmemalign( size_t alignment, size_t noOfElems, size_t elemSize );34 33 size_t malloc_alignment( void * ); 35 34 bool malloc_zero_fill( void * ); 36 size_t malloc_dimension( void * );37 35 int malloc_stats_fd( int fd ); 36 void * cmemalign( size_t alignment, size_t noOfElems, size_t elemSize ); 38 37 } // extern "C" 39 38 -
libcfa/src/stdhdr/math.h
r7030dab r71d6bd8 10 10 // Created On : Mon Jul 4 23:25:26 2016 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Fri Feb 7 19:05:27 202013 // Update Count : 1 512 // Last Modified On : Thu Feb 22 18:16:07 2018 13 // Update Count : 13 14 14 // 15 15 16 16 extern "C" { 17 17 #if ! defined( exception ) // nesting ? 18 #define exception ` `exception// make keyword an identifier18 #define exception `exception` // make keyword an identifier 19 19 #define __CFA_MATH_H__ 20 20 #endif -
libcfa/src/stdhdr/sys/ucontext.h
r7030dab r71d6bd8 10 10 // Created On : Thu Feb 8 23:48:16 2018 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Fri Feb 7 19:05:41 202013 // Update Count : 612 // Last Modified On : Thu Feb 8 23:50:44 2018 13 // Update Count : 4 14 14 // 15 15 16 16 #if ! defined( ftype ) // nesting ? 17 #define ftype ` `ftype// make keyword an identifier17 #define ftype `ftype` // make keyword an identifier 18 18 #define __CFA_UCONTEXT_H__ 19 19 #endif -
libcfa/src/stdlib.cfa
r7030dab r71d6bd8 10 10 // Created On : Thu Jan 28 17:10:29 2016 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Tue Mar 31 13:26:46 202013 // Update Count : 4 9512 // Last Modified On : Tue Oct 22 08:57:52 2019 13 // Update Count : 478 14 14 // 15 15 … … 20 20 #define _XOPEN_SOURCE 600 // posix_memalign, *rand48 21 21 #include <string.h> // memcpy, memset 22 #include <malloc.h> // malloc_usable_size 22 23 //#include <math.h> // fabsf, fabs, fabsl 23 24 #include <complex.h> // _Complex_I … … 29 30 T * alloc_set( T ptr[], size_t dim, char fill ) { // realloc array with fill 30 31 size_t olen = malloc_usable_size( ptr ); // current allocation 31 void * nptr = (void*)realloc( (void *)ptr, dim * sizeof(T) ); // C realloc32 char * nptr = (char *)realloc( (void *)ptr, dim * sizeof(T) ); // C realloc 32 33 size_t nlen = malloc_usable_size( nptr ); // new allocation 33 34 if ( nlen > olen ) { // larger ? 34 memset( (char *)nptr + olen, (int)fill, nlen - olen ); // initialize added storage35 memset( nptr + olen, (int)fill, nlen - olen ); // initialize added storage 35 36 } // if 36 37 return (T *)nptr; 37 38 } // alloc_set 38 39 39 T * alloc_set( T ptr[], size_t dim, T fill ) { // realloc array with fill 40 T * alloc_align( T ptr[], size_t align ) { // aligned realloc array 41 char * nptr; 42 size_t alignment = malloc_alignment( ptr ); 43 if ( align != alignment && (uintptr_t)ptr % align != 0 ) { 44 size_t olen = malloc_usable_size( ptr ); // current allocation 45 nptr = (char *)memalign( align, olen ); 46 size_t nlen = malloc_usable_size( nptr ); // new allocation 47 size_t lnth = olen < nlen ? olen : nlen; // min 48 memcpy( nptr, ptr, lnth ); // initialize storage 49 free( ptr ); 50 } else { 51 nptr = (char *)ptr; 52 } // if 53 return (T *)nptr; 54 } // alloc_align 55 56 T * alloc_align( T ptr[], size_t align, size_t dim ) { // aligned realloc array 57 char * nptr; 58 size_t alignment = malloc_alignment( ptr ); 59 if ( align != alignment ) { 60 size_t olen = malloc_usable_size( ptr ); // current allocation 61 nptr = (char *)memalign( align, dim * sizeof(T) ); 62 size_t nlen = malloc_usable_size( nptr ); // new allocation 63 size_t lnth = olen < nlen ? olen : nlen; // min 64 memcpy( nptr, ptr, lnth ); // initialize storage 65 free( ptr ); 66 } else { 67 nptr = (char *)realloc( (void *)ptr, dim * sizeof(T) ); // C realloc 68 } // if 69 return (T *)nptr; 70 } // alloc_align 71 72 T * alloc_align_set( T ptr[], size_t align, char fill ) { // aligned realloc with fill 40 73 size_t olen = malloc_usable_size( ptr ); // current allocation 41 void * nptr = (void *)realloc( (void *)ptr, dim * sizeof(T) ); // C realloc74 char * nptr = alloc_align( ptr, align ); 42 75 size_t nlen = malloc_usable_size( nptr ); // new allocation 43 76 if ( nlen > olen ) { // larger ? 44 for ( i; dim ) { memcpy( &ptr[i], &fill, sizeof(T) ); } // initialize with fill value 45 } // if 46 return (T *)nptr; 47 } // alloc_align_set 48 49 T * alloc_align_set( T ptr[], size_t align, char fill ) { // aligned realloc with fill 50 size_t olen = malloc_usable_size( ptr ); // current allocation 51 void * nptr = (void *)realloc( (void *)ptr, align, sizeof(T) ); // CFA realloc 52 // char * nptr = alloc_align( ptr, align ); 53 size_t nlen = malloc_usable_size( nptr ); // new allocation 54 if ( nlen > olen ) { // larger ? 55 memset( (char *)nptr + olen, (int)fill, nlen - olen ); // initialize added storage 56 } // if 57 return (T *)nptr; 58 } // alloc_align_set 59 60 T * alloc_align_set( T ptr[], size_t align, size_t dim, T fill ) { // aligned realloc with fill 61 size_t olen = malloc_usable_size( ptr ); // current allocation 62 void * nptr = (void *)realloc( (void *)ptr, align, sizeof(T) ); // CFA realloc 63 // char * nptr = alloc_align( ptr, align ); 64 size_t nlen = malloc_usable_size( nptr ); // new allocation 65 if ( nlen > olen ) { // larger ? 66 for ( i; dim ) { memcpy( &ptr[i], &fill, sizeof(T) ); } // initialize with fill value 77 memset( nptr + olen, (int)fill, nlen - olen ); // initialize added storage 67 78 } // if 68 79 return (T *)nptr; … … 127 138 //--------------------------------------- 128 139 129 float _Complex strto( const char sptr[], char ** eptr ) {140 float _Complex strto( const char * sptr, char ** eptr ) { 130 141 float re, im; 131 142 char * eeptr; … … 138 149 } // strto 139 150 140 double _Complex strto( const char sptr[], char ** eptr ) {151 double _Complex strto( const char * sptr, char ** eptr ) { 141 152 double re, im; 142 153 char * eeptr; … … 149 160 } // strto 150 161 151 long double _Complex strto( const char sptr[], char ** eptr ) {162 long double _Complex strto( const char * sptr, char ** eptr ) { 152 163 long double re, im; 153 164 char * eeptr; -
libcfa/src/stdlib.hfa
r7030dab r71d6bd8 10 10 // Created On : Thu Jan 28 17:12:35 2016 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Wed Apr 1 18:38:41 202013 // Update Count : 42912 // Last Modified On : Sun Oct 20 22:57:33 2019 13 // Update Count : 390 14 14 // 15 15 … … 21 21 #include <stdlib.h> // *alloc, strto*, ato* 22 22 23 // Reduce includes by explicitly defining these routines.24 23 extern "C" { 25 24 void * memalign( size_t align, size_t size ); // malloc.h 26 size_t malloc_usable_size( void * ptr ); // malloc.h27 void * cmemalign( size_t alignment, size_t noOfElems, size_t elemSize ); // CFA heap28 25 void * memset( void * dest, int fill, size_t size ); // string.h 29 26 void * memcpy( void * dest, const void * src, size_t size ); // string.h 30 void * resize( void * oaddr, size_t size );// CFA heap27 void * cmemalign( size_t alignment, size_t noOfElems, size_t elemSize ); // CFA heap 31 28 } // extern "C" 32 33 void * resize( void * oaddr, size_t nalign, size_t size ); // CFA heap34 void * realloc( void * oaddr, size_t nalign, size_t size ); // CFA heap35 29 36 30 //--------------------------------------- … … 44 38 45 39 static inline forall( dtype T | sized(T) ) { 46 // C forall safe equivalents, i.e., implicit size specification40 // C dynamic allocation 47 41 48 42 T * malloc( void ) { … … 56 50 } // calloc 57 51 58 T * realloc( T * ptr, size_t size ) { // CFA realloc, eliminate return-type cast 52 T * realloc( T * ptr, size_t size ) { 53 if ( unlikely( ptr == 0 ) ) return malloc(); 59 54 return (T *)(void *)realloc( (void *)ptr, size ); // C realloc 60 55 } // realloc … … 64 59 } // memalign 65 60 66 T * cmemalign( size_t align, size_t dim ) {67 return (T *)cmemalign( align, dim, sizeof(T) ); // CFA cmemalign68 } // cmemalign69 70 61 T * aligned_alloc( size_t align ) { 71 62 return (T *)aligned_alloc( align, sizeof(T) ); // C aligned_alloc … … 75 66 return posix_memalign( (void **)ptr, align, sizeof(T) ); // C posix_memalign 76 67 } // posix_memalign 77 } // distribution 78 79 static inline forall( dtype T | sized(T) ) { 80 // Cforall safe general allocation, fill, resize, array 68 69 // Cforall dynamic allocation 81 70 82 71 T * alloc( void ) { … … 89 78 } // alloc 90 79 91 forall( dtype S | sized(S) ) 92 T * alloc( S ptr[], size_t dim = 1 ) { // singleton/array resize 93 size_t len = malloc_usable_size( ptr ); // current bucket size 94 if ( sizeof(T) * dim > len ) { // not enough space ? 95 T * temp = alloc( dim ); // new storage 96 free( ptr ); // free old storage 97 return temp; 98 } else { 99 return (T *)ptr; 100 } // if 101 } // alloc 102 103 T * alloc( T ptr[], size_t dim, bool copy = true ) { 104 if ( copy ) { // realloc 105 return (T *)(void *)realloc( (void *)ptr, dim * sizeof(T) ); // C realloc 106 } else { 107 struct __Unknown {}; 108 return alloc( (__Unknown *)ptr, dim ); // reuse, cheat making T/S different types 109 } // if 80 T * alloc( T ptr[], size_t dim ) { // realloc 81 return realloc( ptr, dim * sizeof(T) ); 110 82 } // alloc 111 83 … … 135 107 forall( dtype T | sized(T) ) { 136 108 T * alloc_set( T ptr[], size_t dim, char fill ); // realloc array with fill 137 T * alloc_set( T ptr[], size_t dim, T fill ); // realloc array with fill138 109 } // distribution 139 110 … … 145 116 T * alloc_align( size_t align, size_t dim ) { 146 117 return (T *)memalign( align, dim * sizeof(T) ); 147 } // alloc_align148 149 T * alloc_align( T ptr[], size_t align ) { // aligned realloc array150 return (T *)(void *)realloc( (void *)ptr, align, sizeof(T) ); // CFA realloc151 } // alloc_align152 153 forall( dtype S | sized(S) )154 T * alloc_align( S ptr[], size_t align ) { // aligned reuse array155 return (T *)(void *)resize( (void *)ptr, align, sizeof(T) ); // CFA realloc156 } // alloc_align157 158 T * alloc_align( T ptr[], size_t align, size_t dim ) { // aligned realloc array159 return (T *)(void *)realloc( (void *)ptr, align, dim * sizeof(T) ); // CFA realloc160 118 } // alloc_align 161 119 … … 184 142 185 143 forall( dtype T | sized(T) ) { 186 T * alloc_align _set( T ptr[], size_t align, char fill ); // aligned realloc with fill187 T * alloc_align _set( T ptr[], size_t align, T fill ); // aligned realloc with fill144 T * alloc_align( T ptr[], size_t align ); // realign 145 T * alloc_align( T ptr[], size_t align, size_t dim ); // aligned realloc array 188 146 T * alloc_align_set( T ptr[], size_t align, size_t dim, char fill ); // aligned realloc array with fill 189 T * alloc_align_set( T ptr[], size_t align, size_t dim, T fill ); // aligned realloc array with fill 190 } // distribution 191 192 static inline forall( dtype T | sized(T) ) { 193 // Cforall safe initialization/copy, i.e., implicit size specification, non-array types 147 } // distribution 148 149 static inline forall( dtype T | sized(T) ) { 150 // data, non-array types 194 151 T * memset( T * dest, char fill ) { 195 152 return (T *)memset( dest, fill, sizeof(T) ); … … 202 159 203 160 static inline forall( dtype T | sized(T) ) { 204 // Cforall safe initialization/copy, i.e., implicit size specification, array types161 // data, array types 205 162 T * amemset( T dest[], char fill, size_t dim ) { 206 163 return (T *)(void *)memset( dest, fill, dim * sizeof(T) ); // C memset … … 212 169 } // distribution 213 170 214 // Cforallallocation/deallocation and constructor/destructor, non-array types171 // allocation/deallocation and constructor/destructor, non-array types 215 172 forall( dtype T | sized(T), ttype Params | { void ?{}( T &, Params ); } ) T * new( Params p ); 216 173 forall( dtype T | sized(T) | { void ^?{}( T & ); } ) void delete( T * ptr ); 217 174 forall( dtype T, ttype Params | sized(T) | { void ^?{}( T & ); void delete( Params ); } ) void delete( T * ptr, Params rest ); 218 175 219 // Cforallallocation/deallocation and constructor/destructor, array types176 // allocation/deallocation and constructor/destructor, array types 220 177 forall( dtype T | sized(T), ttype Params | { void ?{}( T &, Params ); } ) T * anew( size_t dim, Params p ); 221 178 forall( dtype T | sized(T) | { void ^?{}( T & ); } ) void adelete( size_t dim, T arr[] ); … … 225 182 226 183 static inline { 227 int strto( const char sptr[], char ** eptr, int base ) { return (int)strtol( sptr, eptr, base ); }228 unsigned int strto( const char sptr[], char ** eptr, int base ) { return (unsigned int)strtoul( sptr, eptr, base ); }229 long int strto( const char sptr[], char ** eptr, int base ) { return strtol( sptr, eptr, base ); }230 unsigned long int strto( const char sptr[], char ** eptr, int base ) { return strtoul( sptr, eptr, base ); }231 long long int strto( const char sptr[], char ** eptr, int base ) { return strtoll( sptr, eptr, base ); }232 unsigned long long int strto( const char sptr[], char ** eptr, int base ) { return strtoull( sptr, eptr, base ); }233 234 float strto( const char sptr[], char ** eptr ) { return strtof( sptr, eptr ); }235 double strto( const char sptr[], char ** eptr ) { return strtod( sptr, eptr ); }236 long double strto( const char sptr[], char ** eptr ) { return strtold( sptr, eptr ); }237 } // distribution 238 239 float _Complex strto( const char sptr[], char ** eptr );240 double _Complex strto( const char sptr[], char ** eptr );241 long double _Complex strto( const char sptr[], char ** eptr );184 int strto( const char * sptr, char ** eptr, int base ) { return (int)strtol( sptr, eptr, base ); } 185 unsigned int strto( const char * sptr, char ** eptr, int base ) { return (unsigned int)strtoul( sptr, eptr, base ); } 186 long int strto( const char * sptr, char ** eptr, int base ) { return strtol( sptr, eptr, base ); } 187 unsigned long int strto( const char * sptr, char ** eptr, int base ) { return strtoul( sptr, eptr, base ); } 188 long long int strto( const char * sptr, char ** eptr, int base ) { return strtoll( sptr, eptr, base ); } 189 unsigned long long int strto( const char * sptr, char ** eptr, int base ) { return strtoull( sptr, eptr, base ); } 190 191 float strto( const char * sptr, char ** eptr ) { return strtof( sptr, eptr ); } 192 double strto( const char * sptr, char ** eptr ) { return strtod( sptr, eptr ); } 193 long double strto( const char * sptr, char ** eptr ) { return strtold( sptr, eptr ); } 194 } // distribution 195 196 float _Complex strto( const char * sptr, char ** eptr ); 197 double _Complex strto( const char * sptr, char ** eptr ); 198 long double _Complex strto( const char * sptr, char ** eptr ); 242 199 243 200 static inline { 244 int ato( const char sptr[] ) { return (int)strtol( sptr, 0p, 10 ); }245 unsigned int ato( const char sptr[] ) { return (unsigned int)strtoul( sptr, 0p, 10 ); }246 long int ato( const char sptr[] ) { return strtol( sptr, 0p, 10 ); }247 unsigned long int ato( const char sptr[] ) { return strtoul( sptr, 0p, 10 ); }248 long long int ato( const char sptr[] ) { return strtoll( sptr, 0p, 10 ); }249 unsigned long long int ato( const char sptr[] ) { return strtoull( sptr, 0p, 10 ); }250 251 float ato( const char sptr[] ) { return strtof( sptr, 0p); }252 double ato( const char sptr[] ) { return strtod( sptr, 0p); }253 long double ato( const char sptr[] ) { return strtold( sptr, 0p); }254 255 float _Complex ato( const char sptr[] ) { return strto( sptr, 0p); }256 double _Complex ato( const char sptr[] ) { return strto( sptr, 0p); }257 long double _Complex ato( const char sptr[] ) { return strto( sptr, 0p); }201 int ato( const char * sptr ) { return (int)strtol( sptr, 0, 10 ); } 202 unsigned int ato( const char * sptr ) { return (unsigned int)strtoul( sptr, 0, 10 ); } 203 long int ato( const char * sptr ) { return strtol( sptr, 0, 10 ); } 204 unsigned long int ato( const char * sptr ) { return strtoul( sptr, 0, 10 ); } 205 long long int ato( const char * sptr ) { return strtoll( sptr, 0, 10 ); } 206 unsigned long long int ato( const char * sptr ) { return strtoull( sptr, 0, 10 ); } 207 208 float ato( const char * sptr ) { return strtof( sptr, 0 ); } 209 double ato( const char * sptr ) { return strtod( sptr, 0 ); } 210 long double ato( const char * sptr ) { return strtold( sptr, 0 ); } 211 212 float _Complex ato( const char * sptr ) { return strto( sptr, NULL ); } 213 double _Complex ato( const char * sptr ) { return strto( sptr, NULL ); } 214 long double _Complex ato( const char * sptr ) { return strto( sptr, NULL ); } 258 215 } // distribution 259 216 -
libcfa/src/time.cfa
r7030dab r71d6bd8 10 10 // Created On : Tue Mar 27 13:33:14 2018 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Tue Feb 4 08:24:18 202013 // Update Count : 7012 // Last Modified On : Sat Jul 13 08:41:55 2019 13 // Update Count : 65 14 14 // 15 15 … … 33 33 forall( dtype ostype | ostream( ostype ) ) { 34 34 ostype & ?|?( ostype & os, Duration dur ) with( dur ) { 35 (ostype &)(os | t n/ TIMEGRAN); // print seconds36 long int ns = (t n < 0 ? -tn : tn) % TIMEGRAN; // compute nanoseconds35 (ostype &)(os | tv / TIMEGRAN); // print seconds 36 long int ns = (tv < 0 ? -tv : tv) % TIMEGRAN; // compute nanoseconds 37 37 if ( ns != 0 ) { // some ? 38 38 char buf[16]; … … 52 52 53 53 #ifdef __CFA_DEBUG__ 54 static void tabort( int year, int month, int day, int hour, int min, int sec, int 64_tnsec ) {54 static void tabort( int year, int month, int day, int hour, int min, int sec, int nsec ) { 55 55 abort | "Attempt to create Time( year=" | year | "(>=1970), month=" | month | "(1-12), day=" | day | "(1-31), hour=" | hour | "(0-23), min=" | min | "(0-59), sec=" | sec 56 | "(0-60), nsec=" | nsec | "(0-999_999_999), which is not in the range 00:00:00 UTC, January 1, 1970 to 03:14:07 UTC, January 19, 2038, where month and day have 1 origin.";56 | "(0-60), nsec=" | nsec | "(0-999_999_999), which exceeds range 00:00:00 UTC, January 1, 1970 to 03:14:07 UTC, January 19, 2038."; 57 57 } // tabort 58 58 #endif // __CFA_DEBUG__ 59 59 60 void ?{}( Time & time, int year, int month, int day, int hour, int min, int sec, int 64_tnsec ) with( time ) {60 void ?{}( Time & time, int year, int month, int day, int hour, int min, int sec, int nsec ) with( time ) { 61 61 tm tm; 62 62 63 // Values can be in any range (+/-) but result must be in the epoch.63 tm.tm_isdst = -1; // let mktime determine if alternate timezone is in effect 64 64 tm.tm_year = year - 1900; // mktime uses 1900 as its starting point 65 // Make month in range 1-12 to match with day. 65 #ifdef __CFA_DEBUG__ 66 if ( month < 1 || 12 < month ) { 67 tabort( year, month, day, hour, min, sec, nsec ); 68 } // if 69 #endif // __CFA_DEBUG__ 66 70 tm.tm_mon = month - 1; // mktime uses range 0-11 71 #ifdef __CFA_DEBUG__ 72 if ( day < 1 || 31 < day ) { 73 tabort( year, month, day, hour, min, sec, nsec ); 74 } // if 75 #endif // __CFA_DEBUG__ 67 76 tm.tm_mday = day; // mktime uses range 1-31 68 77 tm.tm_hour = hour; 69 78 tm.tm_min = min; 70 79 tm.tm_sec = sec; 71 tm.tm_isdst = -1; // let mktime determine if alternate timezone is in effect72 80 time_t epochsec = mktime( &tm ); 73 81 #ifdef __CFA_DEBUG__ 74 if ( epochsec <= (time_t)-1 ) { // MUST BE LESS THAN OR EQUAL!82 if ( epochsec == (time_t)-1 ) { 75 83 tabort( year, month, day, hour, min, sec, nsec ); 76 84 } // if 77 85 #endif // __CFA_DEBUG__ 78 t n= (int64_t)(epochsec) * TIMEGRAN + nsec; // convert to nanoseconds86 tv = (int64_t)(epochsec) * TIMEGRAN + nsec; // convert to nanoseconds 79 87 #ifdef __CFA_DEBUG__ 80 if ( t n> 2147483647LL * TIMEGRAN ) { // between 00:00:00 UTC, January 1, 1970 and 03:14:07 UTC, January 19, 2038.88 if ( tv > 2147483647LL * TIMEGRAN ) { // between 00:00:00 UTC, January 1, 1970 and 03:14:07 UTC, January 19, 2038. 81 89 tabort( year, month, day, hour, min, sec, nsec ); 82 90 } // if … … 85 93 86 94 char * yy_mm_dd( Time time, char * buf ) with( time ) { 87 time_t s = t n/ TIMEGRAN;95 time_t s = tv / TIMEGRAN; 88 96 tm tm; 89 97 gmtime_r( &s, &tm ); // tm_mon <= 11, tm_mday <= 31 … … 100 108 101 109 char * mm_dd_yy( Time time, char * buf ) with( time ) { 102 time_t s = t n/ TIMEGRAN;110 time_t s = tv / TIMEGRAN; 103 111 tm tm; 104 112 gmtime_r( &s, &tm ); // tm_mon <= 11, tm_mday <= 31 … … 115 123 116 124 char * dd_mm_yy( Time time, char * buf ) with( time ) { 117 time_t s = t n/ TIMEGRAN;125 time_t s = tv / TIMEGRAN; 118 126 tm tm; 119 127 gmtime_r( &s, &tm ); // tm_mon <= 11, tm_mday <= 31 … … 129 137 } // dd_mm_yy 130 138 131 size_t strftime( char buf[], size_t size, const char fmt[], Time time ) with( time ) {132 time_t s = t n/ TIMEGRAN;139 size_t strftime( char * buf, size_t size, const char * fmt, Time time ) with( time ) { 140 time_t s = tv / TIMEGRAN; 133 141 tm tm; 134 142 gmtime_r( &s, &tm ); … … 139 147 ostype & ?|?( ostype & os, Time time ) with( time ) { 140 148 char buf[32]; // at least 26 141 time_t s = t n/ TIMEGRAN;149 time_t s = tv / TIMEGRAN; 142 150 ctime_r( &s, (char *)&buf ); // 26 characters: "Wed Jun 30 21:49:08 1993\n" 143 151 buf[24] = '\0'; // remove trailing '\n' 144 long int ns = (t n < 0 ? -tn : tn) % TIMEGRAN; // compute nanoseconds152 long int ns = (tv < 0 ? -tv : tv) % TIMEGRAN; // compute nanoseconds 145 153 if ( ns == 0 ) { // none ? 146 154 (ostype &)(os | buf); // print date/time/year -
libcfa/src/time.hfa
r7030dab r71d6bd8 10 10 // Created On : Wed Mar 14 23:18:57 2018 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Tue Feb 4 08:24:32 202013 // Update Count : 6 5412 // Last Modified On : Sat Sep 22 12:25:34 2018 13 // Update Count : 643 14 14 // 15 15 … … 32 32 Duration ?=?( Duration & dur, __attribute__((unused)) zero_t ) { return dur{ 0 }; } 33 33 34 Duration +?( Duration rhs ) with( rhs ) { return (Duration)@{ +tn}; }35 Duration ?+?( Duration & lhs, Duration rhs ) { return (Duration)@{ lhs.t n + rhs.tn}; }34 Duration +?( Duration rhs ) with( rhs ) { return (Duration)@{ +tv }; } 35 Duration ?+?( Duration & lhs, Duration rhs ) { return (Duration)@{ lhs.tv + rhs.tv }; } 36 36 Duration ?+=?( Duration & lhs, Duration rhs ) { lhs = lhs + rhs; return lhs; } 37 37 38 Duration -?( Duration rhs ) with( rhs ) { return (Duration)@{ -t n}; }39 Duration ?-?( Duration & lhs, Duration rhs ) { return (Duration)@{ lhs.t n - rhs.tn}; }38 Duration -?( Duration rhs ) with( rhs ) { return (Duration)@{ -tv }; } 39 Duration ?-?( Duration & lhs, Duration rhs ) { return (Duration)@{ lhs.tv - rhs.tv }; } 40 40 Duration ?-=?( Duration & lhs, Duration rhs ) { lhs = lhs - rhs; return lhs; } 41 41 42 Duration ?*?( Duration lhs, int64_t rhs ) { return (Duration)@{ lhs.t n* rhs }; }43 Duration ?*?( int64_t lhs, Duration rhs ) { return (Duration)@{ lhs * rhs.t n}; }42 Duration ?*?( Duration lhs, int64_t rhs ) { return (Duration)@{ lhs.tv * rhs }; } 43 Duration ?*?( int64_t lhs, Duration rhs ) { return (Duration)@{ lhs * rhs.tv }; } 44 44 Duration ?*=?( Duration & lhs, int64_t rhs ) { lhs = lhs * rhs; return lhs; } 45 45 46 int64_t ?/?( Duration lhs, Duration rhs ) { return lhs.t n / rhs.tn; }47 Duration ?/?( Duration lhs, int64_t rhs ) { return (Duration)@{ lhs.t n/ rhs }; }46 int64_t ?/?( Duration lhs, Duration rhs ) { return lhs.tv / rhs.tv; } 47 Duration ?/?( Duration lhs, int64_t rhs ) { return (Duration)@{ lhs.tv / rhs }; } 48 48 Duration ?/=?( Duration & lhs, int64_t rhs ) { lhs = lhs / rhs; return lhs; } 49 double div( Duration lhs, Duration rhs ) { return (double)lhs.t n / (double)rhs.tn; }50 51 Duration ?%?( Duration lhs, Duration rhs ) { return (Duration)@{ lhs.t n % rhs.tn}; }49 double div( Duration lhs, Duration rhs ) { return (double)lhs.tv / (double)rhs.tv; } 50 51 Duration ?%?( Duration lhs, Duration rhs ) { return (Duration)@{ lhs.tv % rhs.tv }; } 52 52 Duration ?%=?( Duration & lhs, Duration rhs ) { lhs = lhs % rhs; return lhs; } 53 53 54 bool ?==?( Duration lhs, Duration rhs ) { return lhs.t n == rhs.tn; }55 bool ?!=?( Duration lhs, Duration rhs ) { return lhs.t n != rhs.tn; }56 bool ?<? ( Duration lhs, Duration rhs ) { return lhs.t n < rhs.tn; }57 bool ?<=?( Duration lhs, Duration rhs ) { return lhs.t n <= rhs.tn; }58 bool ?>? ( Duration lhs, Duration rhs ) { return lhs.t n > rhs.tn; }59 bool ?>=?( Duration lhs, Duration rhs ) { return lhs.t n >= rhs.tn; }60 61 bool ?==?( Duration lhs, __attribute__((unused)) zero_t ) { return lhs.t n== 0; }62 bool ?!=?( Duration lhs, __attribute__((unused)) zero_t ) { return lhs.t n!= 0; }63 bool ?<? ( Duration lhs, __attribute__((unused)) zero_t ) { return lhs.t n< 0; }64 bool ?<=?( Duration lhs, __attribute__((unused)) zero_t ) { return lhs.t n<= 0; }65 bool ?>? ( Duration lhs, __attribute__((unused)) zero_t ) { return lhs.t n> 0; }66 bool ?>=?( Duration lhs, __attribute__((unused)) zero_t ) { return lhs.t n>= 0; }67 68 Duration abs( Duration rhs ) { return rhs.t n>= 0 ? rhs : -rhs; }54 bool ?==?( Duration lhs, Duration rhs ) { return lhs.tv == rhs.tv; } 55 bool ?!=?( Duration lhs, Duration rhs ) { return lhs.tv != rhs.tv; } 56 bool ?<? ( Duration lhs, Duration rhs ) { return lhs.tv < rhs.tv; } 57 bool ?<=?( Duration lhs, Duration rhs ) { return lhs.tv <= rhs.tv; } 58 bool ?>? ( Duration lhs, Duration rhs ) { return lhs.tv > rhs.tv; } 59 bool ?>=?( Duration lhs, Duration rhs ) { return lhs.tv >= rhs.tv; } 60 61 bool ?==?( Duration lhs, __attribute__((unused)) zero_t ) { return lhs.tv == 0; } 62 bool ?!=?( Duration lhs, __attribute__((unused)) zero_t ) { return lhs.tv != 0; } 63 bool ?<? ( Duration lhs, __attribute__((unused)) zero_t ) { return lhs.tv < 0; } 64 bool ?<=?( Duration lhs, __attribute__((unused)) zero_t ) { return lhs.tv <= 0; } 65 bool ?>? ( Duration lhs, __attribute__((unused)) zero_t ) { return lhs.tv > 0; } 66 bool ?>=?( Duration lhs, __attribute__((unused)) zero_t ) { return lhs.tv >= 0; } 67 68 Duration abs( Duration rhs ) { return rhs.tv >= 0 ? rhs : -rhs; } 69 69 70 70 Duration ?`ns( int64_t nsec ) { return (Duration)@{ nsec }; } … … 82 82 Duration ?`w( double weeks ) { return (Duration)@{ weeks * (7LL * 24LL * 60LL * 60LL * TIMEGRAN) }; } 83 83 84 int64_t ?`ns( Duration dur ) { return dur.t n; }85 int64_t ?`us( Duration dur ) { return dur.t n/ (TIMEGRAN / 1_000_000LL); }86 int64_t ?`ms( Duration dur ) { return dur.t n/ (TIMEGRAN / 1_000LL); }87 int64_t ?`s( Duration dur ) { return dur.t n/ TIMEGRAN; }88 int64_t ?`m( Duration dur ) { return dur.t n/ (60LL * TIMEGRAN); }89 int64_t ?`h( Duration dur ) { return dur.t n/ (60LL * 60LL * TIMEGRAN); }90 int64_t ?`d( Duration dur ) { return dur.t n/ (24LL * 60LL * 60LL * TIMEGRAN); }91 int64_t ?`w( Duration dur ) { return dur.t n/ (7LL * 24LL * 60LL * 60LL * TIMEGRAN); }92 93 Duration max( Duration lhs, Duration rhs ) { return (lhs.t n < rhs.tn) ? rhs : lhs;}94 Duration min( Duration lhs, Duration rhs ) { return !(rhs.t n < lhs.tn) ? lhs : rhs;}84 int64_t ?`ns( Duration dur ) { return dur.tv; } 85 int64_t ?`us( Duration dur ) { return dur.tv / (TIMEGRAN / 1_000_000LL); } 86 int64_t ?`ms( Duration dur ) { return dur.tv / (TIMEGRAN / 1_000LL); } 87 int64_t ?`s( Duration dur ) { return dur.tv / TIMEGRAN; } 88 int64_t ?`m( Duration dur ) { return dur.tv / (60LL * TIMEGRAN); } 89 int64_t ?`h( Duration dur ) { return dur.tv / (60LL * 60LL * TIMEGRAN); } 90 int64_t ?`d( Duration dur ) { return dur.tv / (24LL * 60LL * 60LL * TIMEGRAN); } 91 int64_t ?`w( Duration dur ) { return dur.tv / (7LL * 24LL * 60LL * 60LL * TIMEGRAN); } 92 93 Duration max( Duration lhs, Duration rhs ) { return (lhs.tv < rhs.tv) ? rhs : lhs;} 94 Duration min( Duration lhs, Duration rhs ) { return !(rhs.tv < lhs.tv) ? lhs : rhs;} 95 95 } // distribution 96 96 … … 143 143 //######################### Time ######################### 144 144 145 void ?{}( Time & time, int year, int month = 1, int day = 1, int hour = 0, int min = 0, int sec = 0, int64_t nsec = 0 );145 void ?{}( Time & time, int year, int month = 0, int day = 0, int hour = 0, int min = 0, int sec = 0, int nsec = 0 ); 146 146 static inline { 147 147 Time ?=?( Time & time, __attribute__((unused)) zero_t ) { return time{ 0 }; } 148 148 149 void ?{}( Time & time, timeval t ) with( time ) { t n= (int64_t)t.tv_sec * TIMEGRAN + t.tv_usec * 1000; }149 void ?{}( Time & time, timeval t ) with( time ) { tv = (int64_t)t.tv_sec * TIMEGRAN + t.tv_usec * 1000; } 150 150 Time ?=?( Time & time, timeval t ) with( time ) { 151 t n= (int64_t)t.tv_sec * TIMEGRAN + t.tv_usec * (TIMEGRAN / 1_000_000LL);151 tv = (int64_t)t.tv_sec * TIMEGRAN + t.tv_usec * (TIMEGRAN / 1_000_000LL); 152 152 return time; 153 153 } // ?=? 154 154 155 void ?{}( Time & time, timespec t ) with( time ) { t n= (int64_t)t.tv_sec * TIMEGRAN + t.tv_nsec; }155 void ?{}( Time & time, timespec t ) with( time ) { tv = (int64_t)t.tv_sec * TIMEGRAN + t.tv_nsec; } 156 156 Time ?=?( Time & time, timespec t ) with( time ) { 157 t n= (int64_t)t.tv_sec * TIMEGRAN + t.tv_nsec;157 tv = (int64_t)t.tv_sec * TIMEGRAN + t.tv_nsec; 158 158 return time; 159 159 } // ?=? 160 160 161 Time ?+?( Time & lhs, Duration rhs ) { return (Time)@{ lhs.t n + rhs.tn}; }161 Time ?+?( Time & lhs, Duration rhs ) { return (Time)@{ lhs.tv + rhs.tv }; } 162 162 Time ?+?( Duration lhs, Time rhs ) { return rhs + lhs; } 163 163 Time ?+=?( Time & lhs, Duration rhs ) { lhs = lhs + rhs; return lhs; } 164 164 165 Duration ?-?( Time lhs, Time rhs ) { return (Duration)@{ lhs.t n - rhs.tn}; }166 Time ?-?( Time lhs, Duration rhs ) { return (Time)@{ lhs.t n - rhs.tn}; }165 Duration ?-?( Time lhs, Time rhs ) { return (Duration)@{ lhs.tv - rhs.tv }; } 166 Time ?-?( Time lhs, Duration rhs ) { return (Time)@{ lhs.tv - rhs.tv }; } 167 167 Time ?-=?( Time & lhs, Duration rhs ) { lhs = lhs - rhs; return lhs; } 168 bool ?==?( Time lhs, Time rhs ) { return lhs.tn == rhs.tn; } 169 bool ?!=?( Time lhs, Time rhs ) { return lhs.tn != rhs.tn; } 170 bool ?<?( Time lhs, Time rhs ) { return lhs.tn < rhs.tn; } 171 bool ?<=?( Time lhs, Time rhs ) { return lhs.tn <= rhs.tn; } 172 bool ?>?( Time lhs, Time rhs ) { return lhs.tn > rhs.tn; } 173 bool ?>=?( Time lhs, Time rhs ) { return lhs.tn >= rhs.tn; } 174 175 int64_t ?`ns( Time t ) { return t.tn; } 168 bool ?==?( Time lhs, Time rhs ) { return lhs.tv == rhs.tv; } 169 bool ?!=?( Time lhs, Time rhs ) { return lhs.tv != rhs.tv; } 170 bool ?<?( Time lhs, Time rhs ) { return lhs.tv < rhs.tv; } 171 bool ?<=?( Time lhs, Time rhs ) { return lhs.tv <= rhs.tv; } 172 bool ?>?( Time lhs, Time rhs ) { return lhs.tv > rhs.tv; } 173 bool ?>=?( Time lhs, Time rhs ) { return lhs.tv >= rhs.tv; } 176 174 } // distribution 177 175 … … 191 189 } // dmy 192 190 193 size_t strftime( char buf[], size_t size, const char fmt[], Time time );191 size_t strftime( char * buf, size_t size, const char * fmt, Time time ); 194 192 195 193 //------------------------- timeval (cont) ------------------------- 196 194 197 195 static inline void ?{}( timeval & t, Time time ) with( t, time ) { 198 tv_sec = t n/ TIMEGRAN; // seconds199 tv_usec = t n% TIMEGRAN / (TIMEGRAN / 1_000_000LL); // microseconds196 tv_sec = tv / TIMEGRAN; // seconds 197 tv_usec = tv % TIMEGRAN / (TIMEGRAN / 1_000_000LL); // microseconds 200 198 } // ?{} 201 199 … … 203 201 204 202 static inline void ?{}( timespec & t, Time time ) with( t, time ) { 205 tv_sec = t n/ TIMEGRAN; // seconds206 tv_nsec = t n% TIMEGRAN; // nanoseconds203 tv_sec = tv / TIMEGRAN; // seconds 204 tv_nsec = tv % TIMEGRAN; // nanoseconds 207 205 } // ?{} 208 206 -
libcfa/src/time_t.hfa
r7030dab r71d6bd8 10 10 // Created On : Tue Apr 10 14:42:03 2018 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Sun Jan 5 08:22:46 202013 // Update Count : 712 // Last Modified On : Fri Apr 13 07:51:47 2018 13 // Update Count : 6 14 14 // 15 15 … … 20 20 21 21 struct Duration { // private 22 int64_t t n; // nanoseconds22 int64_t tv; // nanoseconds 23 23 }; // Duration 24 24 25 static inline void ?{}( Duration & dur ) with( dur ) { t n= 0; }26 static inline void ?{}( Duration & dur, __attribute__((unused)) zero_t ) with( dur ) { t n= 0; }25 static inline void ?{}( Duration & dur ) with( dur ) { tv = 0; } 26 static inline void ?{}( Duration & dur, __attribute__((unused)) zero_t ) with( dur ) { tv = 0; } 27 27 28 28 … … 30 30 31 31 struct Time { // private 32 uint64_t t n; // nanoseconds since UNIX epoch32 uint64_t tv; // nanoseconds since UNIX epoch 33 33 }; // Time 34 34 35 static inline void ?{}( Time & time ) with( time ) { t n= 0; }36 static inline void ?{}( Time & time, __attribute__((unused)) zero_t ) with( time ) { t n= 0; }35 static inline void ?{}( Time & time ) with( time ) { tv = 0; } 36 static inline void ?{}( Time & time, __attribute__((unused)) zero_t ) with( time ) { tv = 0; } 37 37 38 38 // Local Variables: // -
longrun_tests/Makefile.in
r7030dab r71d6bd8 486 486 LTCFACOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ 487 487 $(LIBTOOLFLAGS) --mode=compile $(CFACC) $(DEFS) \ 488 $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CFAFLAGS) $(AM_CFLAGS) $(CFAFLAGS) $(CFLAGS) 488 $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CFAFLAGS) $(CFAFLAGS) \ 489 $(AM_CFLAGS) $(CFLAGS) 489 490 490 491 AM_V_CFA = $(am__v_CFA_@AM_V@) … … 492 493 am__v_CFA_0 = @echo " CFA " $@; 493 494 am__v_CFA_1 = 495 AM_V_JAVAC = $(am__v_JAVAC_@AM_V@) 496 am__v_JAVAC_ = $(am__v_JAVAC_@AM_DEFAULT_V@) 497 am__v_JAVAC_0 = @echo " JAVAC " $@; 498 am__v_JAVAC_1 = 499 AM_V_GOC = $(am__v_GOC_@AM_V@) 500 am__v_GOC_ = $(am__v_GOC_@AM_DEFAULT_V@) 501 am__v_GOC_0 = @echo " GOC " $@; 502 am__v_GOC_1 = 494 503 UPPCC = u++ 495 504 UPPCOMPILE = $(UPPCC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_UPPFLAGS) $(UPPFLAGS) $(AM_CXXFLAGS) $(CXXFLAGS) $(AM_CFLAGS) $(CFLAGS) … … 498 507 am__v_UPP_0 = @echo " UPP " $@; 499 508 am__v_UPP_1 = 500 AM_V_GOC = $(am__v_GOC_@AM_V@)501 am__v_GOC_ = $(am__v_GOC_@AM_DEFAULT_V@)502 am__v_GOC_0 = @echo " GOC " $@;503 am__v_GOC_1 =504 AM_V_PY = $(am__v_PY_@AM_V@)505 am__v_PY_ = $(am__v_PY_@AM_DEFAULT_V@)506 am__v_PY_0 = @echo " PYTHON " $@;507 am__v_PY_1 =508 AM_V_RUST = $(am__v_RUST_@AM_V@)509 am__v_RUST_ = $(am__v_RUST_@AM_DEFAULT_V@)510 am__v_RUST_0 = @echo " RUST " $@;511 am__v_RUST_1 =512 AM_V_NODEJS = $(am__v_NODEJS_@AM_V@)513 am__v_NODEJS_ = $(am__v_NODEJS_@AM_DEFAULT_V@)514 am__v_NODEJS_0 = @echo " NODEJS " $@;515 am__v_NODEJS_1 =516 AM_V_JAVAC = $(am__v_JAVAC_@AM_V@)517 am__v_JAVAC_ = $(am__v_JAVAC_@AM_DEFAULT_V@)518 am__v_JAVAC_0 = @echo " JAVAC " $@;519 am__v_JAVAC_1 =520 509 repeats = 10 521 510 max_time = 600 -
src/AST/Convert.cpp
r7030dab r71d6bd8 10 10 // Created On : Thu May 09 15::37::05 2019 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Wed Dec 11 21:39:32201913 // Update Count : 3312 // Last Modified On : Thu Jul 25 22:21:46 2019 13 // Update Count : 13 14 14 // 15 15 … … 245 245 auto decl = new StructDecl( 246 246 node->name, 247 (AggregateDecl::Aggregate)node->kind,247 node->kind, 248 248 get<Attribute>().acceptL( node->attributes ), 249 249 LinkageSpec::Spec( node->linkage.val ) … … 493 493 } 494 494 495 const ast::Stmt * visit(const ast::SuspendStmt * node ) override final {496 if ( inCache( node ) ) return nullptr;497 auto stmt = new SuspendStmt();498 stmt->then = get<CompoundStmt>().accept1( node->then );499 switch(node->type) {500 case ast::SuspendStmt::None : stmt->type = SuspendStmt::None ; break;501 case ast::SuspendStmt::Coroutine: stmt->type = SuspendStmt::Coroutine; break;502 case ast::SuspendStmt::Generator: stmt->type = SuspendStmt::Generator; break;503 }504 return stmtPostamble( stmt, node );505 }506 507 495 const ast::Stmt * visit( const ast::WaitForStmt * node ) override final { 508 496 if ( inCache( node ) ) return nullptr; … … 698 686 699 687 const ast::Expr * visit( const ast::KeywordCastExpr * node ) override final { 700 AggregateDecl::Aggregate castTarget = (AggregateDecl::Aggregate)node->target; 701 assert( AggregateDecl::Generator <= castTarget && castTarget <= AggregateDecl::Thread ); 688 KeywordCastExpr::Target castTarget = KeywordCastExpr::NUMBER_OF_TARGETS; 689 switch (node->target) { 690 case ast::KeywordCastExpr::Coroutine: 691 castTarget = KeywordCastExpr::Coroutine; 692 break; 693 case ast::KeywordCastExpr::Thread: 694 castTarget = KeywordCastExpr::Thread; 695 break; 696 case ast::KeywordCastExpr::Monitor: 697 castTarget = KeywordCastExpr::Monitor; 698 break; 699 default: 700 break; 701 } 702 assert ( castTarget < KeywordCastExpr::NUMBER_OF_TARGETS ); 702 703 auto expr = visitBaseExpr( node, 703 704 new KeywordCastExpr( … … 1246 1247 cv( node ), 1247 1248 node->name, 1248 node->kind == ast::Type Decl::Ftype,1249 node->kind == ast::TypeVar::Ftype, 1249 1250 get<Attribute>().acceptL( node->attributes ) 1250 1251 }; … … 1514 1515 old->location, 1515 1516 old->name, 1516 (ast::AggregateDecl::Aggregate)old->kind,1517 old->kind, 1517 1518 GET_ACCEPT_V(attributes, Attribute), 1518 1519 { old->linkage.val } … … 1601 1602 { old->storageClasses.val }, 1602 1603 GET_ACCEPT_1(base, Type), 1603 (ast::Type Decl::Kind)(unsigned)old->kind,1604 (ast::TypeVar::Kind)(unsigned)old->kind, 1604 1605 old->sized, 1605 1606 GET_ACCEPT_1(init, Type) … … 1882 1883 } 1883 1884 1884 virtual void visit( const SuspendStmt * old ) override final {1885 if ( inCache( old ) ) return;1886 ast::SuspendStmt::Type type;1887 switch (old->type) {1888 case SuspendStmt::Coroutine: type = ast::SuspendStmt::Coroutine; break;1889 case SuspendStmt::Generator: type = ast::SuspendStmt::Generator; break;1890 case SuspendStmt::None : type = ast::SuspendStmt::None ; break;1891 default: abort();1892 }1893 this->node = new ast::SuspendStmt(1894 old->location,1895 GET_ACCEPT_1(then , CompoundStmt),1896 type,1897 GET_LABELS_V(old->labels)1898 );1899 cache.emplace( old, this->node );1900 }1901 1902 1885 virtual void visit( const WaitForStmt * old ) override final { 1903 1886 if ( inCache( old ) ) return; … … 2073 2056 } 2074 2057 2075 virtual void visit( const KeywordCastExpr * old ) override final { 2076 ast::AggregateDecl::Aggregate castTarget = (ast::AggregateDecl::Aggregate)old->target; 2077 assert( ast::AggregateDecl::Generator <= castTarget && castTarget <= ast::AggregateDecl::Thread ); 2058 virtual void visit( const KeywordCastExpr * old) override final { 2059 ast::KeywordCastExpr::Target castTarget = ast::KeywordCastExpr::NUMBER_OF_TARGETS; 2060 switch (old->target) { 2061 case KeywordCastExpr::Coroutine: 2062 castTarget = ast::KeywordCastExpr::Coroutine; 2063 break; 2064 case KeywordCastExpr::Thread: 2065 castTarget = ast::KeywordCastExpr::Thread; 2066 break; 2067 case KeywordCastExpr::Monitor: 2068 castTarget = ast::KeywordCastExpr::Monitor; 2069 break; 2070 default: 2071 break; 2072 } 2073 assert ( castTarget < ast::KeywordCastExpr::NUMBER_OF_TARGETS ); 2078 2074 this->node = visitBaseExpr( old, 2079 2075 new ast::KeywordCastExpr( … … 2603 2599 ty = new ast::TypeInstType{ 2604 2600 old->name, 2605 old->isFtype ? ast::Type Decl::Ftype : ast::TypeDecl::Dtype,2601 old->isFtype ? ast::TypeVar::Ftype : ast::TypeVar::Dtype, 2606 2602 cv( old ), 2607 2603 GET_ACCEPT_V( attributes, Attribute ) -
src/AST/Decl.cpp
r7030dab r71d6bd8 9 9 // Author : Aaron B. Moss 10 10 // Created On : Thu May 9 10:00:00 2019 11 // Last Modified By : Peter A. Buhr12 // Last Modified On : Fri Dec 13 16:23:15201913 // Update Count : 2011 // Last Modified By : Aaron B. Moss 12 // Last Modified On : Thu May 9 10:00:00 2019 13 // Update Count : 1 14 14 // 15 15 … … 18 18 #include <cassert> // for assert, strict_dynamic_cast 19 19 #include <iostream> 20 #include <string> 20 21 #include <unordered_map> 21 22 … … 26 27 #include "Node.hpp" // for readonly 27 28 #include "Type.hpp" // for readonly 29 #include "Parser/ParseNode.h" // for DeclarationNode 28 30 29 31 namespace ast { … … 56 58 // --- TypeDecl 57 59 58 const char * TypeDecl::typeString() const { 59 static const char * kindNames[] = { "sized data type", "sized object type", "sized function type", "sized tuple type" }; 60 static_assert( sizeof(kindNames)/sizeof(kindNames[0]) == TypeDecl::NUMBER_OF_KINDS, "typeString: kindNames is out of sync." ); 61 assertf( kind < TypeDecl::NUMBER_OF_KINDS, "TypeDecl kind is out of bounds." ); 62 return sized ? kindNames[ kind ] : &kindNames[ kind ][ sizeof("sized") ]; // sizeof includes '\0' 60 std::string TypeDecl::typeString() const { 61 static const std::string kindNames[] = { "object type", "function type", "tuple type" }; 62 assertf( sizeof(kindNames)/sizeof(kindNames[0]) == DeclarationNode::NoTypeClass-1, 63 "typeString: kindNames is out of sync." ); 64 assertf( kind < sizeof(kindNames)/sizeof(kindNames[0]), "TypeDecl's kind is out of bounds." ); 65 return (sized ? "sized " : "") + kindNames[ kind ]; 63 66 } 64 67 65 const char *TypeDecl::genTypeString() const {66 static const char * kindNames[] = { "dtype", "otype", "ftype", "ttype" };67 static_assert( sizeof(kindNames)/sizeof(kindNames[0]) == TypeDecl::NUMBER_OF_KINDS, "genTypeString: kindNames is out of sync." );68 assertf( kind < TypeDecl::NUMBER_OF_KINDS, "TypeDeclkind is out of bounds." );68 std::string TypeDecl::genTypeString() const { 69 static const std::string kindNames[] = { "dtype", "ftype", "ttype" }; 70 assertf( sizeof(kindNames)/sizeof(kindNames[0]) == DeclarationNode::NoTypeClass-1, "genTypeString: kindNames is out of sync." ); 71 assertf( kind < sizeof(kindNames)/sizeof(kindNames[0]), "TypeDecl's kind is out of bounds." ); 69 72 return kindNames[ kind ]; 70 73 } … … 72 75 std::ostream & operator<< ( std::ostream & out, const TypeDecl::Data & data ) { 73 76 return out << data.kind << ", " << data.isComplete; 74 }75 76 // --- AggregateDecl77 78 // These must harmonize with the corresponding AggregateDecl::Aggregate enumerations.79 static const char * aggregateNames[] = { "struct", "union", "enum", "exception", "trait", "generator", "coroutine", "monitor", "thread", "NoAggregateName" };80 81 const char * AggregateDecl::aggrString( AggregateDecl::Aggregate aggr ) {82 return aggregateNames[aggr];83 77 } 84 78 -
src/AST/Decl.hpp
r7030dab r71d6bd8 9 9 // Author : Aaron B. Moss 10 10 // Created On : Thu May 9 10:00:00 2019 11 // Last Modified By : Peter A. Buhr12 // Last Modified On : Fri Dec 13 17:38:33201913 // Update Count : 2911 // Last Modified By : Aaron B. Moss 12 // Last Modified On : Thu May 9 10:00:00 2019 13 // Update Count : 1 14 14 // 15 15 … … 20 20 #include <unordered_map> 21 21 #include <vector> 22 #include <algorithm>23 22 24 23 #include "FunctionSpec.hpp" … … 28 27 #include "ParseNode.hpp" 29 28 #include "StorageClasses.hpp" 29 #include "TypeVar.hpp" 30 30 #include "Visitor.hpp" 31 #include "Common/utility.h" 32 #include "Common/SemanticError.h" // error_str 31 #include "Parser/ParseNode.h" // for DeclarationNode::Aggregate 33 32 34 33 // Must be included in *all* AST classes; should be #undef'd at the end of the file … … 128 127 std::vector< ptr<Expr> > withExprs; 129 128 130 FunctionDecl( const CodeLocation & loc, const std::string & 129 FunctionDecl( const CodeLocation & loc, const std::string &name, FunctionType * type, 131 130 CompoundStmt * stmts, Storage::Classes storage = {}, Linkage::Spec linkage = Linkage::C, 132 131 std::vector<ptr<Attribute>>&& attrs = {}, Function::Specs fs = {}) … … 139 138 bool has_body() const { return stmts; } 140 139 141 const DeclWithType * accept( Visitor & 140 const DeclWithType * accept( Visitor &v ) const override { return v.visit( this ); } 142 141 private: 143 142 FunctionDecl * clone() const override { return new FunctionDecl( *this ); } … … 152 151 std::vector<ptr<DeclWithType>> assertions; 153 152 154 NamedTypeDecl( 153 NamedTypeDecl( 155 154 const CodeLocation & loc, const std::string & name, Storage::Classes storage, 156 155 const Type * b, Linkage::Spec spec = Linkage::Cforall ) … … 158 157 159 158 /// Produces a name for the kind of alias 160 virtual const char *typeString() const = 0;159 virtual std::string typeString() const = 0; 161 160 162 161 private: … … 167 166 /// Cforall type variable: `dtype T` 168 167 class TypeDecl final : public NamedTypeDecl { 169 public: 170 enum Kind { Dtype, Otype, Ftype, Ttype, NUMBER_OF_KINDS }; 171 172 Kind kind; 168 public: 169 TypeVar::Kind kind; 173 170 bool sized; 174 171 ptr<Type> init; … … 176 173 /// Data extracted from a type decl 177 174 struct Data { 178 Kind kind;175 TypeVar::Kind kind; 179 176 bool isComplete; 180 177 181 Data() : kind( NUMBER_OF_KINDS), isComplete( false ) {}178 Data() : kind( (TypeVar::Kind)-1 ), isComplete( false ) {} 182 179 Data( const TypeDecl * d ) : kind( d->kind ), isComplete( d->sized ) {} 183 Data( Kind k, bool c ) : kind( k ), isComplete( c ) {}180 Data( TypeVar::Kind k, bool c ) : kind( k ), isComplete( c ) {} 184 181 Data( const Data & d1, const Data & d2 ) 185 : kind( d1.kind ), isComplete( d1.isComplete || d2.isComplete ) {} 186 187 bool operator==( const Data & o ) const { return kind == o.kind && isComplete == o.isComplete; } 188 bool operator!=( const Data & o ) const { return !(*this == o); } 182 : kind( d1.kind ), isComplete( d1.isComplete || d2.isComplete ) {} 183 184 bool operator== ( const Data & o ) const { 185 return kind == o.kind && isComplete == o.isComplete; 186 } 187 bool operator!= ( const Data & o ) const { return !(*this == o); } 189 188 }; 190 189 191 TypeDecl( 192 const CodeLocation & loc, const std::string & name, Storage::Classes storage, 190 TypeDecl( 191 const CodeLocation & loc, const std::string & name, Storage::Classes storage, 193 192 const Type * b, TypeVar::Kind k, bool s, const Type * i = nullptr ) 194 193 : NamedTypeDecl( loc, name, storage, b ), kind( k ), sized( k == TypeVar::Ttype || s ), 195 194 init( i ) {} 196 195 197 const char *typeString() const override;196 std::string typeString() const override; 198 197 /// Produces a name for generated code 199 const char *genTypeString() const;198 std::string genTypeString() const; 200 199 201 200 /// convenience accessor to match Type::isComplete() … … 203 202 204 203 const Decl * accept( Visitor & v ) const override { return v.visit( this ); } 205 204 private: 206 205 TypeDecl * clone() const override { return new TypeDecl{ *this }; } 207 206 MUTATE_FRIEND … … 217 216 : NamedTypeDecl( loc, name, storage, b, spec ) {} 218 217 219 const char *typeString() const override { return "typedef"; }218 std::string typeString() const override { return "typedef"; } 220 219 221 220 const Decl * accept( Visitor & v ) const override { return v.visit( this ); } … … 228 227 class AggregateDecl : public Decl { 229 228 public: 230 enum Aggregate { Struct, Union, Enum, Exception, Trait, Generator, Coroutine, Monitor, Thread, NoAggregate };231 static const char * aggrString( Aggregate aggr );232 233 229 std::vector<ptr<Decl>> members; 234 230 std::vector<ptr<TypeDecl>> params; … … 245 241 246 242 /// Produces a name for the kind of aggregate 247 virtual const char *typeString() const = 0;243 virtual std::string typeString() const = 0; 248 244 249 245 private: … … 255 251 class StructDecl final : public AggregateDecl { 256 252 public: 257 Aggregate kind;253 DeclarationNode::Aggregate kind; 258 254 259 255 StructDecl( const CodeLocation& loc, const std::string& name, 260 Aggregate kind =Struct,256 DeclarationNode::Aggregate kind = DeclarationNode::Struct, 261 257 std::vector<ptr<Attribute>>&& attrs = {}, Linkage::Spec linkage = Linkage::Cforall ) 262 258 : AggregateDecl( loc, name, std::move(attrs), linkage ), kind( kind ) {} 263 259 264 bool is_coroutine() { return kind == Coroutine; } 265 bool is_generator() { return kind == Generator; } 266 bool is_monitor () { return kind == Monitor ; } 267 bool is_thread () { return kind == Thread ; } 268 269 const Decl * accept( Visitor & v ) const override { return v.visit( this ); } 270 271 const char * typeString() const override { return aggrString( kind ); } 260 bool is_coroutine() { return kind == DeclarationNode::Coroutine; } 261 bool is_monitor() { return kind == DeclarationNode::Monitor; } 262 bool is_thread() { return kind == DeclarationNode::Thread; } 263 264 const Decl * accept( Visitor & v ) const override { return v.visit( this ); } 265 266 std::string typeString() const override { return "struct"; } 272 267 273 268 private: … … 285 280 const Decl * accept( Visitor& v ) const override { return v.visit( this ); } 286 281 287 const char * typeString() const override { return aggrString( Union ); }282 std::string typeString() const override { return "union"; } 288 283 289 284 private: … … 304 299 const Decl * accept( Visitor & v ) const override { return v.visit( this ); } 305 300 306 const char * typeString() const override { return aggrString( Enum ); }301 std::string typeString() const override { return "enum"; } 307 302 308 303 private: … … 323 318 const Decl * accept( Visitor & v ) const override { return v.visit( this ); } 324 319 325 const char *typeString() const override { return "trait"; }320 std::string typeString() const override { return "trait"; } 326 321 327 322 private: … … 349 344 ptr<AsmStmt> stmt; 350 345 351 AsmDecl( const CodeLocation & loc, AsmStmt * 346 AsmDecl( const CodeLocation & loc, AsmStmt *stmt ) 352 347 : Decl( loc, "", {}, {} ), stmt(stmt) {} 353 348 354 const AsmDecl * accept( Visitor & 355 private: 356 AsmDecl * 349 const AsmDecl * accept( Visitor &v ) const override { return v.visit( this ); } 350 private: 351 AsmDecl *clone() const override { return new AsmDecl( *this ); } 357 352 MUTATE_FRIEND 358 353 }; … … 366 361 : Decl( loc, "", {}, {} ), cond( condition ), msg( msg ) {} 367 362 368 const StaticAssertDecl * accept( Visitor & 363 const StaticAssertDecl * accept( Visitor &v ) const override { return v.visit( this ); } 369 364 private: 370 365 StaticAssertDecl * clone() const override { return new StaticAssertDecl( *this ); } -
src/AST/Expr.cpp
r7030dab r71d6bd8 9 9 // Author : Aaron B. Moss 10 10 // Created On : Wed May 15 17:00:00 2019 11 // Last Modified By : Peter A. Buhr12 // Created On : Thr Jun 13 13:38:00 201913 // Update Count : 611 // Last Modified By : Andrew Beach 12 // Created On : Fri Oct 4 15:34:00 2019 13 // Update Count : 4 14 14 // 15 15 … … 163 163 // --- KeywordCastExpr 164 164 165 const char * KeywordCastExpr::targetString() const { 166 return AggregateDecl::aggrString( target ); 165 const std::string & KeywordCastExpr::targetString() const { 166 static const std::string targetStrs[] = { 167 "coroutine", "thread", "monitor" 168 }; 169 static_assert( 170 (sizeof(targetStrs) / sizeof(targetStrs[0])) == ((unsigned long)NUMBER_OF_TARGETS), 171 "Each KeywordCastExpr::Target should have a corresponding string representation" 172 ); 173 return targetStrs[(unsigned long)target]; 167 174 } 168 175 -
src/AST/Expr.hpp
r7030dab r71d6bd8 9 9 // Author : Aaron B. Moss 10 10 // Created On : Fri May 10 10:30:00 2019 11 // Last Modified By : Peter A. Buhr12 // Created On : Fri May 10 10:30:00 201913 // Update Count : 711 // Last Modified By : Andrew Beach 12 // Created On : Thr Sep 26 12:51:00 2019 13 // Update Count : 2 14 14 // 15 15 … … 26 26 #include "Fwd.hpp" // for UniqueId 27 27 #include "Label.hpp" 28 #include "Decl.hpp"29 28 #include "ParseNode.hpp" 30 29 #include "Visitor.hpp" … … 311 310 public: 312 311 ptr<Expr> arg; 313 ast::AggregateDecl::Aggregatetarget;314 315 KeywordCastExpr( const CodeLocation & loc, const Expr * a, ast::AggregateDecl::Aggregatet )312 enum Target { Coroutine, Thread, Monitor, NUMBER_OF_TARGETS } target; 313 314 KeywordCastExpr( const CodeLocation & loc, const Expr * a, Target t ) 316 315 : Expr( loc ), arg( a ), target( t ) {} 317 316 318 317 /// Get a name for the target type 319 const char *targetString() const;318 const std::string& targetString() const; 320 319 321 320 const Expr * accept( Visitor & v ) const override { return v.visit( this ); } -
src/AST/Fwd.hpp
r7030dab r71d6bd8 53 53 class CatchStmt; 54 54 class FinallyStmt; 55 class SuspendStmt;56 55 class WaitForStmt; 57 56 class WithStmt; -
src/AST/Pass.hpp
r7030dab r71d6bd8 114 114 const ast::Stmt * visit( const ast::CatchStmt * ) override final; 115 115 const ast::Stmt * visit( const ast::FinallyStmt * ) override final; 116 const ast::Stmt * visit( const ast::SuspendStmt * ) override final;117 116 const ast::Stmt * visit( const ast::WaitForStmt * ) override final; 118 117 const ast::Decl * visit( const ast::WithStmt * ) override final; -
src/AST/Pass.impl.hpp
r7030dab r71d6bd8 838 838 839 839 //-------------------------------------------------------------------------- 840 // FinallyStmt841 template< typename pass_t >842 const ast::Stmt * ast::Pass< pass_t >::visit( const ast::SuspendStmt * node ) {843 VISIT_START( node );844 845 VISIT(846 maybe_accept( node, &SuspendStmt::then );847 )848 849 VISIT_END( Stmt, node );850 }851 852 //--------------------------------------------------------------------------853 840 // WaitForStmt 854 841 template< typename pass_t > -
src/AST/Print.cpp
r7030dab r71d6bd8 674 674 safe_print( node->body ); 675 675 --indent; 676 677 return node;678 }679 680 virtual const ast::Stmt * visit( const ast::SuspendStmt * node ) override final {681 os << "Suspend Statement";682 switch (node->type) {683 case ast::SuspendStmt::None : os << " with implicit target"; break;684 case ast::SuspendStmt::Generator: os << " for generator"; break;685 case ast::SuspendStmt::Coroutine: os << " for coroutine"; break;686 }687 os << endl;688 689 ++indent;690 if(node->then) {691 os << indent << " with post statement :" << endl;692 safe_print( node->then );693 }694 ++indent;695 676 696 677 return node; … … 1378 1359 preprint( node ); 1379 1360 os << "instance of type " << node->name 1380 << " (" << (node->kind == ast::Type Decl::Ftype ? "" : "not ") << "function type)";1361 << " (" << (node->kind == ast::TypeVar::Ftype ? "" : "not ") << "function type)"; 1381 1362 print( node->params ); 1382 1363 -
src/AST/Stmt.hpp
r7030dab r71d6bd8 344 344 }; 345 345 346 /// Suspend statement347 class SuspendStmt final : public Stmt {348 public:349 ptr<CompoundStmt> then;350 enum Type { None, Coroutine, Generator } type = None;351 352 SuspendStmt( const CodeLocation & loc, const CompoundStmt * then, Type type, std::vector<Label> && labels = {} )353 : Stmt(loc, std::move(labels)), then(then), type(type) {}354 355 const Stmt * accept( Visitor & v ) const override { return v.visit( this ); }356 private:357 SuspendStmt * clone() const override { return new SuspendStmt{ *this }; }358 MUTATE_FRIEND359 };360 361 346 /// Wait for concurrency statement `when (...) waitfor (... , ...) ... timeout(...) ... else ...` 362 347 class WaitForStmt final : public Stmt { -
src/AST/Type.cpp
r7030dab r71d6bd8 9 9 // Author : Aaron B. Moss 10 10 // Created On : Mon May 13 15:00:00 2019 11 // Last Modified By : Peter A. Buhr12 // Last Modified On : Sun Dec 15 16:56:28201913 // Update Count : 411 // Last Modified By : Aaron B. Moss 12 // Last Modified On : Mon May 13 15:00:00 2019 13 // Update Count : 1 14 14 // 15 15 … … 50 50 // --- BasicType 51 51 52 // GENERATED START, DO NOT EDIT 53 // GENERATED BY BasicTypes-gen.cc 54 const char * BasicType::typeNames[] = { 52 const char *BasicType::typeNames[] = { 55 53 "_Bool", 56 54 "char", … … 90 88 "_Float128x _Complex", 91 89 }; 92 // GENERATED END 90 static_assert( 91 sizeof(BasicType::typeNames)/sizeof(BasicType::typeNames[0]) == BasicType::NUMBER_OF_BASIC_TYPES, 92 "Each basic type name should have a corresponding kind enum value" 93 ); 93 94 94 95 // --- ParameterizedType -
src/AST/Type.hpp
r7030dab r71d6bd8 9 9 // Author : Aaron B. Moss 10 10 // Created On : Thu May 9 10:00:00 2019 11 // Last Modified By : Peter A. Buhr12 // Last Modified On : Wed Dec 11 21:56:46201913 // Update Count : 511 // Last Modified By : Aaron B. Moss 12 // Last Modified On : Thu May 9 10:00:00 2019 13 // Update Count : 1 14 14 // 15 15 … … 26 26 #include "Fwd.hpp" 27 27 #include "Node.hpp" // for Node, ptr, ptr_base 28 #include "TypeVar.hpp" 28 29 #include "Visitor.hpp" 29 30 … … 447 448 public: 448 449 readonly<TypeDecl> base; 449 Type Decl::Kind kind;450 TypeVar::Kind kind; 450 451 451 452 TypeInstType( … … 453 454 std::vector<ptr<Attribute>> && as = {} ) 454 455 : ReferenceToType( n, q, std::move(as) ), base( b ), kind( b->kind ) {} 455 TypeInstType( const std::string& n, TypeDecl::Kind k, CV::Qualifiers q = {}, 456 457 TypeInstType( 458 const std::string& n, TypeVar::Kind k, CV::Qualifiers q = {}, 456 459 std::vector<ptr<Attribute>> && as = {} ) 457 460 : ReferenceToType( n, q, std::move(as) ), base(), kind( k ) {} -
src/AST/TypeEnvironment.cpp
r7030dab r71d6bd8 9 9 // Author : Aaron B. Moss 10 10 // Created On : Wed May 29 11:00:00 2019 11 // Last Modified By : Peter A. Buhr12 // Last Modified On : Wed Dec 11 21:49:13201913 // Update Count : 411 // Last Modified By : Aaron B. Moss 12 // Last Modified On : Wed May 29 11:00:00 2019 13 // Update Count : 1 14 14 // 15 15 … … 240 240 return true; 241 241 } else if ( auto typeInst = dynamic_cast< const TypeInstType * >( type ) ) { 242 return typeInst->kind == Type Decl::Ftype;242 return typeInst->kind == TypeVar::Ftype; 243 243 } else return false; 244 244 } … … 248 248 bool tyVarCompatible( const TypeDecl::Data & data, const Type * type ) { 249 249 switch ( data.kind ) { 250 case Type Decl::Dtype:250 case TypeVar::Dtype: 251 251 // to bind to an object type variable, the type must not be a function type. 252 252 // if the type variable is specified to be a complete type then the incoming … … 254 254 // xxx - should this also check that type is not a tuple type and that it's not a ttype? 255 255 return ! isFtype( type ) && ( ! data.isComplete || type->isComplete() ); 256 case Type Decl::Ftype:256 case TypeVar::Ftype: 257 257 return isFtype( type ); 258 case Type Decl::Ttype:258 case TypeVar::Ttype: 259 259 // ttype unifies with any tuple type 260 260 return dynamic_cast< const TupleType * >( type ) || Tuples::isTtype( type ); -
src/AST/TypeEnvironment.hpp
r7030dab r71d6bd8 9 9 // Author : Aaron B. Moss 10 10 // Created On : Wed May 29 11:00:00 2019 11 // Last Modified By : Peter A. Buhr12 // Last Modified On : Wed Dec 11 21:55:54201913 // Update Count : 311 // Last Modified By : Aaron B. Moss 12 // Last Modified On : Wed May 29 11:00:00 2019 13 // Update Count : 1 14 14 // 15 15 … … 28 28 #include "Type.hpp" 29 29 #include "TypeSubstitution.hpp" 30 #include "TypeVar.hpp" 30 31 #include "Common/Indenter.h" 31 32 #include "ResolvExpr/WidenMode.h" … … 106 107 /// Singleton class constructor from substitution 107 108 EqvClass( const std::string & v, const Type * b ) 108 : vars{ v }, bound( b ), allowWidening( false ), data( Type Decl::Dtype, false ) {}109 : vars{ v }, bound( b ), allowWidening( false ), data( TypeVar::Dtype, false ) {} 109 110 110 111 /// Single-var constructor (strips qualifiers from bound type) -
src/AST/Visitor.hpp
r7030dab r71d6bd8 47 47 virtual const ast::Stmt * visit( const ast::CatchStmt * ) = 0; 48 48 virtual const ast::Stmt * visit( const ast::FinallyStmt * ) = 0; 49 virtual const ast::Stmt * visit( const ast::SuspendStmt * ) = 0;50 49 virtual const ast::Stmt * visit( const ast::WaitForStmt * ) = 0; 51 50 virtual const ast::Decl * visit( const ast::WithStmt * ) = 0; -
src/AST/module.mk
r7030dab r71d6bd8 10 10 ## Author : Thierry Delisle 11 11 ## Created On : Thu May 09 16:05:36 2019 12 ## Last Modified By : Peter A. Buhr13 ## Last Modified On : Sat Dec 14 07:29:10 201914 ## Update Count : 312 ## Last Modified By : 13 ## Last Modified On : 14 ## Update Count : 15 15 ############################################################################### 16 16 … … 35 35 AST/TypeSubstitution.cpp 36 36 37 38 37 39 SRC += $(SRC_AST) 38 40 SRCDEMANGLE += $(SRC_AST) -
src/BasicTypes-gen.cc
r7030dab r71d6bd8 273 273 274 274 275 #define Type HTOP_SRCDIR "src/SynTree/Type.h"276 resetInput( file, Type H, buffer, code, str );277 278 if ( (start = str.find( STARTMK )) == string::npos ) Abort( "start", Type H);275 #define Type TOP_SRCDIR "src/SynTree/Type.h" 276 resetInput( file, Type, buffer, code, str ); 277 278 if ( (start = str.find( STARTMK )) == string::npos ) Abort( "start", Type ); 279 279 start += sizeof( STARTMK ); // includes newline 280 280 code << str.substr( 0, start ); … … 289 289 code << "\t"; // indentation for end marker 290 290 291 if ( (start = str.find( ENDMK, start + 1 )) == string::npos ) Abort( "end", Type H);291 if ( (start = str.find( ENDMK, start + 1 )) == string::npos ) Abort( "end", Type ); 292 292 code << str.substr( start ); 293 293 294 output( file, Type H, code );294 output( file, Type, code ); 295 295 // cout << code.str(); 296 296 297 297 298 #define TypeC TOP_SRCDIR "src/SynTree/Type.cc"299 resetInput( file, TypeC, buffer, code, str );300 301 if ( (start = str.find( STARTMK )) == string::npos ) Abort( "start", TypeC );302 start += sizeof( STARTMK ); // includes newline303 code << str.substr( 0, start );304 305 code << BYMK << endl;306 code << "const char * BasicType::typeNames[] = {" << endl;307 for ( int r = 0; r < NUMBER_OF_BASIC_TYPES; r += 1 ) {308 code << "\t\"" << graph[r].type << "\"," << endl;309 } // for310 code << "};" << endl;311 312 if ( (start = str.find( ENDMK, start + 1 )) == string::npos ) Abort( "end", TypeC );313 code << str.substr( start );314 315 output( file, TypeC, code );316 // cout << code.str();317 318 319 298 // TEMPORARY DURING CHANGE OVER 320 #define Type H_AST TOP_SRCDIR "src/AST/Type.hpp"321 resetInput( file, Type H_AST, buffer, code, str );322 323 if ( (start = str.find( STARTMK )) == string::npos ) Abort( "start", Type H_AST );299 #define TypeAST TOP_SRCDIR "src/AST/Type.hpp" 300 resetInput( file, TypeAST, buffer, code, str ); 301 302 if ( (start = str.find( STARTMK )) == string::npos ) Abort( "start", TypeAST ); 324 303 start += sizeof( STARTMK ); // includes newline 325 304 code << str.substr( 0, start ); … … 334 313 code << "\t"; // indentation for end marker 335 314 336 if ( (start = str.find( ENDMK, start + 1 )) == string::npos ) Abort( "end", Type H_AST );315 if ( (start = str.find( ENDMK, start + 1 )) == string::npos ) Abort( "end", TypeAST ); 337 316 code << str.substr( start ); 338 317 339 output( file, TypeH_AST, code ); 340 // cout << code.str(); 341 342 343 #define TypeC_AST TOP_SRCDIR "src/AST/Type.cpp" 344 resetInput( file, TypeC_AST, buffer, code, str ); 345 346 if ( (start = str.find( STARTMK )) == string::npos ) Abort( "start", TypeC_AST ); 347 start += sizeof( STARTMK ); // includes newline 348 code << str.substr( 0, start ); 349 350 code << BYMK << endl; 351 code << "const char * BasicType::typeNames[] = {" << endl; 352 for ( int r = 0; r < NUMBER_OF_BASIC_TYPES; r += 1 ) { 353 code << "\t\"" << graph[r].type << "\"," << endl; 354 } // for 355 code << "};" << endl; 356 357 if ( (start = str.find( ENDMK, start + 1 )) == string::npos ) Abort( "end", TypeC_AST ); 358 code << str.substr( start ); 359 360 output( file, TypeC_AST, code ); 318 output( file, TypeAST, code ); 361 319 // cout << code.str(); 362 320 -
src/CodeGen/CodeGenerator.cc
r7030dab r71d6bd8 10 10 // Created On : Mon May 18 07:44:20 2015 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : S un Feb 16 08:32:48 202013 // Update Count : 5 3212 // Last Modified On : Sat Oct 19 19:30:38 2019 13 // Update Count : 506 14 14 // 15 15 #include "CodeGenerator.h" … … 23 23 #include "InitTweak/InitTweak.h" // for getPointerBase 24 24 #include "OperatorTable.h" // for OperatorInfo, operatorLookup 25 #include " SynTree/LinkageSpec.h"// for Spec, Intrinsic25 #include "Parser/LinkageSpec.h" // for Spec, Intrinsic 26 26 #include "SynTree/Attribute.h" // for Attribute 27 27 #include "SynTree/BaseSyntaxNode.h" // for BaseSyntaxNode … … 39 39 int CodeGenerator::tabsize = 4; 40 40 41 // The kinds of statements that would ideally be followed by whitespace.41 // the kinds of statements that would ideally be followed by whitespace 42 42 bool wantSpacing( Statement * stmt) { 43 43 return dynamic_cast< IfStmt * >( stmt ) || dynamic_cast< CompoundStmt * >( stmt ) || … … 78 78 } 79 79 80 // Using updateLocation at the beginning of a node and endl within a node should become the method of formating. 80 /* Using updateLocation at the beginning of a node and endl 81 * within a node should become the method of formating. 82 */ 81 83 void CodeGenerator::updateLocation( CodeLocation const & to ) { 82 84 // skip if linemarks shouldn't appear or if codelocation is unset … … 93 95 } else { 94 96 output << "\n# " << to.first_line << " \"" << to.filename 95 97 << "\"\n" << indent; 96 98 currentLocation = to; 97 99 } … … 129 131 130 132 void CodeGenerator::genAttributes( list< Attribute * > & attributes ) { 131 133 if ( attributes.empty() ) return; 132 134 output << "__attribute__ (("; 133 135 for ( list< Attribute * >::iterator attr( attributes.begin() );; ) { … … 138 140 output << ")"; 139 141 } // if 140 142 if ( ++attr == attributes.end() ) break; 141 143 output << ","; // separator 142 144 } // for … … 163 165 previsit( (BaseSyntaxNode *)node ); 164 166 GuardAction( [this, node](){ 165 166 167 168 167 if ( options.printExprTypes && node->result ) { 168 output << " /* " << genType( node->result, "", options ) << " */ "; 169 } 170 } ); 169 171 } 170 172 … … 397 399 extension( applicationExpr ); 398 400 if ( VariableExpr * varExpr = dynamic_cast< VariableExpr* >( applicationExpr->get_function() ) ) { 399 const OperatorInfo *opInfo;400 if ( varExpr->get_var()->get_linkage() == LinkageSpec::Intrinsic && ( opInfo = operatorLookup( varExpr->get_var()->get_name() )) ) {401 OperatorInfo opInfo; 402 if ( varExpr->get_var()->get_linkage() == LinkageSpec::Intrinsic && operatorLookup( varExpr->get_var()->get_name(), opInfo ) ) { 401 403 std::list< Expression* >::iterator arg = applicationExpr->get_args().begin(); 402 switch ( opInfo ->type ) {404 switch ( opInfo.type ) { 403 405 case OT_INDEX: 404 406 assert( applicationExpr->get_args().size() == 2 ); … … 421 423 output << "("; 422 424 (*arg++)->accept( *visitor ); 423 output << ") /* " << opInfo ->inputName << " */";425 output << ") /* " << opInfo.inputName << " */"; 424 426 } else if ( applicationExpr->get_args().size() == 2 ) { 425 427 // intrinsic two parameter constructors are essentially bitwise assignment 426 428 output << "("; 427 429 (*arg++)->accept( *visitor ); 428 output << opInfo ->symbol;430 output << opInfo.symbol; 429 431 (*arg)->accept( *visitor ); 430 output << ") /* " << opInfo ->inputName << " */";432 output << ") /* " << opInfo.inputName << " */"; 431 433 } else { 432 434 // no constructors with 0 or more than 2 parameters … … 439 441 assert( applicationExpr->get_args().size() == 1 ); 440 442 output << "("; 441 output << opInfo ->symbol;443 output << opInfo.symbol; 442 444 (*arg)->accept( *visitor ); 443 445 output << ")"; … … 448 450 assert( applicationExpr->get_args().size() == 1 ); 449 451 (*arg)->accept( *visitor ); 450 output << opInfo ->symbol;452 output << opInfo.symbol; 451 453 break; 452 454 … … 457 459 output << "("; 458 460 (*arg++)->accept( *visitor ); 459 output << opInfo ->symbol;461 output << opInfo.symbol; 460 462 (*arg)->accept( *visitor ); 461 463 output << ")"; … … 484 486 extension( untypedExpr ); 485 487 if ( NameExpr * nameExpr = dynamic_cast< NameExpr* >( untypedExpr->function ) ) { 486 const OperatorInfo * opInfo = operatorLookup( nameExpr->name );487 if ( op Info) {488 OperatorInfo opInfo; 489 if ( operatorLookup( nameExpr->name, opInfo ) ) { 488 490 std::list< Expression* >::iterator arg = untypedExpr->args.begin(); 489 switch ( opInfo ->type ) {491 switch ( opInfo.type ) { 490 492 case OT_INDEX: 491 493 assert( untypedExpr->args.size() == 2 ); … … 506 508 output << "("; 507 509 (*arg++)->accept( *visitor ); 508 output << ") /* " << opInfo ->inputName << " */";510 output << ") /* " << opInfo.inputName << " */"; 509 511 } else if ( untypedExpr->get_args().size() == 2 ) { 510 512 // intrinsic two parameter constructors are essentially bitwise assignment 511 513 output << "("; 512 514 (*arg++)->accept( *visitor ); 513 output << opInfo ->symbol;515 output << opInfo.symbol; 514 516 (*arg)->accept( *visitor ); 515 output << ") /* " << opInfo ->inputName << " */";517 output << ") /* " << opInfo.inputName << " */"; 516 518 } else { 517 519 // no constructors with 0 or more than 2 parameters … … 519 521 output << "("; 520 522 (*arg++)->accept( *visitor ); 521 output << opInfo ->symbol << "{ ";523 output << opInfo.symbol << "{ "; 522 524 genCommaList( arg, untypedExpr->args.end() ); 523 output << "}) /* " << opInfo ->inputName << " */";525 output << "}) /* " << opInfo.inputName << " */"; 524 526 } // if 525 527 break; … … 530 532 assert( untypedExpr->args.size() == 1 ); 531 533 output << "("; 532 output << opInfo ->symbol;534 output << opInfo.symbol; 533 535 (*arg)->accept( *visitor ); 534 536 output << ")"; … … 539 541 assert( untypedExpr->args.size() == 1 ); 540 542 (*arg)->accept( *visitor ); 541 output << opInfo ->symbol;543 output << opInfo.symbol; 542 544 break; 543 545 … … 547 549 output << "("; 548 550 (*arg++)->accept( *visitor ); 549 output << opInfo ->symbol;551 output << opInfo.symbol; 550 552 (*arg)->accept( *visitor ); 551 553 output << ")"; … … 579 581 void CodeGenerator::postvisit( NameExpr * nameExpr ) { 580 582 extension( nameExpr ); 581 const OperatorInfo * opInfo = operatorLookup( nameExpr->name );582 if ( op Info) {583 if ( opInfo ->type == OT_CONSTANT ) {584 output << opInfo ->symbol;583 OperatorInfo opInfo; 584 if ( operatorLookup( nameExpr->name, opInfo ) ) { 585 if ( opInfo.type == OT_CONSTANT ) { 586 output << opInfo.symbol; 585 587 } else { 586 output << opInfo ->outputName;588 output << opInfo.outputName; 587 589 } 588 590 } else { … … 652 654 void CodeGenerator::postvisit( VariableExpr * variableExpr ) { 653 655 extension( variableExpr ); 654 const OperatorInfo *opInfo;655 if ( variableExpr->get_var()->get_linkage() == LinkageSpec::Intrinsic && (opInfo = operatorLookup( variableExpr->get_var()->get_name() )) && opInfo->type == OT_CONSTANT ) {656 output << opInfo ->symbol;656 OperatorInfo opInfo; 657 if ( variableExpr->get_var()->get_linkage() == LinkageSpec::Intrinsic && operatorLookup( variableExpr->get_var()->get_name(), opInfo ) && opInfo.type == OT_CONSTANT ) { 658 output << opInfo.symbol; 657 659 } else { 658 660 output << mangleName( variableExpr->get_var() ); … … 1009 1011 case BranchStmt::FallThroughDefault: 1010 1012 assertf( ! options.genC, "fallthru should not reach code generation." ); 1011 1013 output << "fallthru"; 1012 1014 break; 1013 1015 } // switch … … 1033 1035 1034 1036 output << ((throwStmt->get_kind() == ThrowStmt::Terminate) ? 1035 1037 "throw" : "throwResume"); 1036 1038 if (throwStmt->get_expr()) { 1037 1039 output << " "; … … 1048 1050 1049 1051 output << ((stmt->get_kind() == CatchStmt::Terminate) ? 1050 1052 "catch" : "catchResume"); 1051 1053 output << "( "; 1052 1054 stmt->decl->accept( *visitor ); … … 1185 1187 1186 1188 std::string genName( DeclarationWithType * decl ) { 1187 const OperatorInfo * opInfo = operatorLookup( decl->get_name() );1188 if ( op Info) {1189 return opInfo ->outputName;1189 CodeGen::OperatorInfo opInfo; 1190 if ( operatorLookup( decl->get_name(), opInfo ) ) { 1191 return opInfo.outputName; 1190 1192 } else { 1191 1193 return decl->get_name(); -
src/CodeGen/CodeGenerator.h
r7030dab r71d6bd8 9 9 // Author : Richard C. Bilson 10 10 // Created On : Mon May 18 07:44:20 2015 11 // Last Modified By : Peter A. Buhr12 // Last Modified On : Sun Feb 16 03:58:31 202013 // Update Count : 6211 // Last Modified By : Andrew Beach 12 // Last Modified On : Tue Apr 30 12:01:00 2019 13 // Update Count : 57 14 14 // 15 15 … … 29 29 namespace CodeGen { 30 30 struct CodeGenerator : public WithShortCircuiting, public WithGuards, public WithVisitorRef<CodeGenerator> { 31 31 static int tabsize; 32 32 33 33 CodeGenerator( std::ostream &os, bool pretty = false, bool genC = false, bool lineMarks = false, bool printExprTypes = false ); … … 104 104 void postvisit( AsmStmt * ); 105 105 void postvisit( DirectiveStmt * ); 106 void postvisit( AsmDecl * ); 106 void postvisit( AsmDecl * ); // special: statement in declaration context 107 107 void postvisit( IfStmt * ); 108 108 void postvisit( SwitchStmt * ); … … 147 147 LabelPrinter printLabels; 148 148 Options options; 149 149 public: 150 150 LineEnder endl; 151 151 private: 152 152 153 153 CodeLocation currentLocation; … … 162 162 template< class Iterator > 163 163 void CodeGenerator::genCommaList( Iterator begin, Iterator end ) { 164 164 if ( begin == end ) return; 165 165 for ( ;; ) { 166 166 (*begin++)->accept( *visitor ); 167 167 if ( begin == end ) break; 168 168 output << ", "; // separator 169 169 } // for -
src/CodeGen/FixMain.h
r7030dab r71d6bd8 10 10 // Created On : Thr Jan 12 14:11:09 2017 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Sun Feb 16 03:24:32 202013 // Update Count : 512 // Last Modified On : Fri Jul 21 22:16:59 2017 13 // Update Count : 1 14 14 // 15 15 … … 19 19 #include <memory> 20 20 21 #include " SynTree/LinkageSpec.h"21 #include "Parser/LinkageSpec.h" 22 22 23 23 class FunctionDecl; … … 42 42 static std::unique_ptr<FunctionDecl> main_signature; 43 43 }; 44 } // namespace CodeGen44 }; -
src/CodeGen/FixNames.cc
r7030dab r71d6bd8 9 9 // Author : Richard C. Bilson 10 10 // Created On : Mon May 18 07:44:20 2015 11 // Last Modified By : Peter A. Buhr12 // Last Modified On : Fri Dec 13 23:39:14 201913 // Update Count : 2 111 // Last Modified By : Andrew Beach 12 // Last Modified On : Wed Jun 28 15:26:00 2017 13 // Update Count : 20 14 14 // 15 15 … … 22 22 #include "Common/SemanticError.h" // for SemanticError 23 23 #include "FixMain.h" // for FixMain 24 #include "Parser/LinkageSpec.h" // for Cforall, isMangled 24 25 #include "SymTab/Mangler.h" // for Mangler 25 #include "SynTree/LinkageSpec.h" // for Cforall, isMangled26 26 #include "SynTree/Constant.h" // for Constant 27 27 #include "SynTree/Declaration.h" // for FunctionDecl, ObjectDecl, Declarat... -
src/CodeGen/GenType.h
r7030dab r71d6bd8 9 9 // Author : Richard C. Bilson 10 10 // Created On : Mon May 18 07:44:20 2015 11 // Last Modified By : Peter A. Buhr12 // Last Modified On : Sun Feb 16 04:11:40 202013 // Update Count : 511 // Last Modified By : Andrew Beach 12 // Last Modified On : Tue Apr 30 11:47:00 2019 13 // Update Count : 3 14 14 // 15 15 … … 25 25 std::string genType( Type *type, const std::string &baseString, const Options &options ); 26 26 std::string genType( Type *type, const std::string &baseString, bool pretty = false, bool genC = false, bool lineMarks = false ); 27 27 std::string genPrettyType( Type * type, const std::string & baseString ); 28 28 } // namespace CodeGen 29 29 -
src/CodeGen/Generate.cc
r7030dab r71d6bd8 9 9 // Author : Richard C. Bilson 10 10 // Created On : Mon May 18 07:44:20 2015 11 // Last Modified By : Peter A. Buhr12 // Last Modified On : Sun Feb 16 03:01:51 202013 // Update Count : 911 // Last Modified By : Andrew Beach 12 // Last Modified On : Fri Aug 18 15:39:00 2017 13 // Update Count : 7 14 14 // 15 15 #include "Generate.h" … … 22 22 #include "GenType.h" // for genPrettyType 23 23 #include "Common/PassVisitor.h" // for PassVisitor 24 #include " SynTree/LinkageSpec.h"// for isBuiltin, isGeneratable24 #include "Parser/LinkageSpec.h" // for isBuiltin, isGeneratable 25 25 #include "SynTree/BaseSyntaxNode.h" // for BaseSyntaxNode 26 26 #include "SynTree/Declaration.h" // for Declaration … … 64 64 void generate( BaseSyntaxNode * node, std::ostream & os ) { 65 65 if ( Type * type = dynamic_cast< Type * >( node ) ) { 66 os << genPrettyType( type, "" );66 os << CodeGen::genPrettyType( type, "" ); 67 67 } else { 68 68 PassVisitor<CodeGenerator> cgv( os, true, false, false, false ); -
src/CodeGen/OperatorTable.cc
r7030dab r71d6bd8 10 10 // Created On : Mon May 18 07:44:20 2015 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Tue Feb 18 15:55:01 202013 // Update Count : 5512 // Last Modified On : Sat Jul 15 17:12:22 2017 13 // Update Count : 15 14 14 // 15 15 … … 17 17 #include <map> // for map, _Rb_tree_const_iterator, map<>::const_iterator 18 18 #include <utility> // for pair 19 using namespace std;20 19 21 20 #include "OperatorTable.h" … … 23 22 24 23 namespace CodeGen { 25 const OperatorInfo CodeGen::tableValues[] ={26 // inputName symbol outputName friendlyName type27 { "?[?]", "", "_operator_index", "Index", OT_INDEX},28 { "?{}", "=", "_constructor", "Constructor", OT_CTOR},29 { "^?{}", "", "_destructor", "Destructor", OT_DTOR},30 { "?()", "", "_operator_call", "Call Operator", OT_CALL},31 { "?++", "++", "_operator_postincr", "Postfix Increment", OT_POSTFIXASSIGN},32 { "?--", "--", "_operator_postdecr", "Postfix Decrement", OT_POSTFIXASSIGN},33 { "*?", "*", "_operator_deref", "Dereference", OT_PREFIX},34 { "+?", "+", "_operator_unaryplus", "Plus", OT_PREFIX},35 { "-?", "-", "_operator_unaryminus", "Minus", OT_PREFIX},36 { "~?", "~", "_operator_bitnot", "Bitwise Not", OT_PREFIX},37 { "!?", "!", "_operator_lognot", "Logical Not", OT_PREFIX},38 { "++?", "++", "_operator_preincr", "Prefix Increment", OT_PREFIXASSIGN},39 { "--?", "--", "_operator_predecr", "Prefix Decrement", OT_PREFIXASSIGN},40 { "?\\?", "\\", "_operator_exponential", "Exponentiation", OT_INFIX},41 { "?*?", "*", "_operator_multiply", "Multiplication", OT_INFIX},42 { "?/?", "/", "_operator_divide", "Division", OT_INFIX},43 { "?%?", "%", "_operator_modulus", "Modulo", OT_INFIX},44 { "?+?", "+", "_operator_add", "Addition", OT_INFIX},45 { "?-?", "-", "_operator_subtract", "Substraction", OT_INFIX},46 { "?<<?", "<<", "_operator_shiftleft", "Shift Left", OT_INFIX},47 { "?>>?", ">>", "_operator_shiftright", "Shift Right", OT_INFIX},48 { "?<?", "<", "_operator_less", "Less-than", OT_INFIX},49 { "?>?", ">", "_operator_greater", "Greater-than", OT_INFIX},50 { "?<=?", "<=", "_operator_lessequal", "Less-than-or-Equal", OT_INFIX},51 { "?>=?", ">=", "_operator_greaterequal", "Greater-than-or-Equal", OT_INFIX},52 { "?==?", "==", "_operator_equal", "Equality", OT_INFIX},53 { "?!=?", "!=", "_operator_notequal", "Not-Equal", OT_INFIX},54 { "?&?", "&", "_operator_bitand", "Bitwise And", OT_INFIX},55 { "?^?", "^", "_operator_bitxor", "Bitwise Xor", OT_INFIX},56 { "?|?", "|", "_operator_bitor", "Bitwise Or", OT_INFIX},57 { "?=?", "=", "_operator_assign", "Assignment", OT_INFIXASSIGN},58 { "?\\=?", "\\=", "_operator_expassign", "Exponentiation Assignment", OT_INFIXASSIGN},59 { "?*=?", "*=", "_operator_multassign", "Multiplication Assignment", OT_INFIXASSIGN},60 { "?/=?", "/=", "_operator_divassign", "Division Assignment", OT_INFIXASSIGN},61 { "?%=?", "%=", "_operator_modassign", "Modulo Assignment", OT_INFIXASSIGN},62 { "?+=?", "+=", "_operator_addassign", "Addition Assignment", OT_INFIXASSIGN},63 { "?-=?", "-=", "_operator_subassign", "Substrction Assignment", OT_INFIXASSIGN},64 { "?<<=?", "<<=", "_operator_shiftleftassign", "Shift Left Assignment", OT_INFIXASSIGN},65 { "?>>=?", ">>=", "_operator_shiftrightassign", "Shift Right Assignment", OT_INFIXASSIGN},66 { "?&=?", "&=", "_operator_bitandassign", "Bitwise And Assignment", OT_INFIXASSIGN},67 { "?^=?", "^=", "_operator_bitxorassign", "Bitwise Xor Assignment", OT_INFIXASSIGN},68 { "?|=?", "|=", "_operator_bitorassign", "Bitwise Or Assignment", OT_INFIXASSIGN},69 }; // tableValues24 namespace { 25 const OperatorInfo tableValues[] = { 26 { "?[?]", "", "_operator_index", OT_INDEX }, 27 { "?{}", "=", "_constructor", OT_CTOR }, 28 { "^?{}", "", "_destructor", OT_DTOR }, 29 { "?()", "", "_operator_call", OT_CALL }, 30 { "?++", "++", "_operator_postincr", OT_POSTFIXASSIGN }, 31 { "?--", "--", "_operator_postdecr", OT_POSTFIXASSIGN }, 32 { "*?", "*", "_operator_deref", OT_PREFIX }, 33 { "+?", "+", "_operator_unaryplus", OT_PREFIX }, 34 { "-?", "-", "_operator_unaryminus", OT_PREFIX }, 35 { "~?", "~", "_operator_bitnot", OT_PREFIX }, 36 { "!?", "!", "_operator_lognot", OT_PREFIX }, 37 { "++?", "++", "_operator_preincr", OT_PREFIXASSIGN }, 38 { "--?", "--", "_operator_predecr", OT_PREFIXASSIGN }, 39 { "?\\?", "\\", "_operator_exponential", OT_INFIX }, 40 { "?*?", "*", "_operator_multiply", OT_INFIX }, 41 { "?/?", "/", "_operator_divide", OT_INFIX }, 42 { "?%?", "%", "_operator_modulus", OT_INFIX }, 43 { "?+?", "+", "_operator_add", OT_INFIX }, 44 { "?-?", "-", "_operator_subtract", OT_INFIX }, 45 { "?<<?", "<<", "_operator_shiftleft", OT_INFIX }, 46 { "?>>?", ">>", "_operator_shiftright", OT_INFIX }, 47 { "?<?", "<", "_operator_less", OT_INFIX }, 48 { "?>?", ">", "_operator_greater", OT_INFIX }, 49 { "?<=?", "<=", "_operator_lessequal", OT_INFIX }, 50 { "?>=?", ">=", "_operator_greaterequal", OT_INFIX }, 51 { "?==?", "==", "_operator_equal", OT_INFIX }, 52 { "?!=?", "!=", "_operator_notequal", OT_INFIX }, 53 { "?&?", "&", "_operator_bitand", OT_INFIX }, 54 { "?^?", "^", "_operator_bitxor", OT_INFIX }, 55 { "?|?", "|", "_operator_bitor", OT_INFIX }, 56 { "?=?", "=", "_operator_assign", OT_INFIXASSIGN }, 57 { "?\\=?", "\\=", "_operator_expassign", OT_INFIXASSIGN }, 58 { "?*=?", "*=", "_operator_multassign", OT_INFIXASSIGN }, 59 { "?/=?", "/=", "_operator_divassign", OT_INFIXASSIGN }, 60 { "?%=?", "%=", "_operator_modassign", OT_INFIXASSIGN }, 61 { "?+=?", "+=", "_operator_addassign", OT_INFIXASSIGN }, 62 { "?-=?", "-=", "_operator_subassign", OT_INFIXASSIGN }, 63 { "?<<=?", "<<=", "_operator_shiftleftassign", OT_INFIXASSIGN }, 64 { "?>>=?", ">>=", "_operator_shiftrightassign", OT_INFIXASSIGN }, 65 { "?&=?", "&=", "_operator_bitandassign", OT_INFIXASSIGN }, 66 { "?^=?", "^=", "_operator_bitxorassign", OT_INFIXASSIGN }, 67 { "?|=?", "|=", "_operator_bitorassign", OT_INFIXASSIGN }, 68 }; 70 69 71 std::map< std::string, OperatorInfo > CodeGen::table;70 const int numOps = sizeof( tableValues ) / sizeof( OperatorInfo ); 72 71 73 CodeGen::CodeGen() { 74 enum { numOps = sizeof( tableValues ) / sizeof( OperatorInfo ) }; 75 for ( int i = 0; i < numOps; i += 1 ) { 76 table[ tableValues[i].inputName ] = tableValues[i]; 77 } // for 72 std::map< std::string, OperatorInfo > table; 73 74 void initialize() { 75 for ( int i = 0; i < numOps; ++i ) { 76 table[ tableValues[i].inputName ] = tableValues[i]; 77 } // for 78 } 79 } // namespace 80 81 bool operatorLookup( const std::string & funcName, OperatorInfo & info ) { 82 static bool init = false; 83 if ( ! init ) { 84 initialize(); 85 } // if 86 87 std::map< std::string, OperatorInfo >::const_iterator i = table.find( funcName ); 88 if ( i == table.end() ) { 89 if ( isPrefix( funcName, "?`" ) ) { 90 // handle literal suffixes, which are user-defined postfix operators 91 info.inputName = funcName; 92 info.symbol = funcName.substr(2); 93 info.outputName = toString( "__operator_literal_", info.symbol ); 94 info.type = OT_POSTFIX; 95 return true; 96 } 97 return false; 98 } else { 99 info = i->second; 100 return true; 101 } // if 78 102 } 79 103 80 const OperatorInfo * operatorLookup( const string & funcName ) { 81 if ( funcName.find_first_of( "?^*+-!", 0, 1 ) == string::npos ) return nullptr; // prefilter 82 const OperatorInfo * ret = &CodeGen::table.find( funcName )->second; // must be in the table 83 assert( ret ); 84 return ret; 104 bool isOperator( const std::string & funcName ) { 105 OperatorInfo info; 106 return operatorLookup( funcName, info ); 85 107 } 86 108 87 bool isOperator( const string & funcName ) { 88 return operatorLookup( funcName ) != nullptr; 89 } 90 91 string operatorFriendlyName( const string & funcName ) { 92 const OperatorInfo * info = operatorLookup( funcName ); 93 if ( info ) return info->friendlyName; 94 return ""; 95 } 96 97 bool isConstructor( const string & funcName ) { 98 const OperatorInfo * info = operatorLookup( funcName ); 99 if ( info ) return info->type == OT_CTOR; 109 /// determines if a given function name is one of the operator types between [begin, end) 110 template<typename Iterator> 111 bool isOperatorType( const std::string & funcName, Iterator begin, Iterator end ) { 112 OperatorInfo info; 113 if ( operatorLookup( funcName, info ) ) { 114 return std::find( begin, end, info.type ) != end; 115 } 100 116 return false; 101 117 } 102 118 103 bool isDestructor( const string & funcName ) { 104 const OperatorInfo * info = operatorLookup( funcName ); 105 if ( info ) return info->type == OT_DTOR; 106 return false; 119 bool isConstructor( const std::string & funcName ) { 120 static OperatorType types[] = { OT_CTOR }; 121 return isOperatorType( funcName, std::begin(types), std::end(types) ); 107 122 } 108 123 109 bool isCtorDtor( const string & funcName ) { 110 const OperatorInfo * info = operatorLookup( funcName ); 111 if ( info ) return info->type <= OT_CONSTRUCTOR; 112 return false; 124 bool isDestructor( const std::string & funcName ) { 125 static OperatorType types[] = { OT_DTOR }; 126 return isOperatorType( funcName, std::begin(types), std::end(types) ); 113 127 } 114 128 115 bool isAssignment( const string & funcName ) { 116 const OperatorInfo * info = operatorLookup( funcName ); 117 if ( info ) return info->type > OT_CONSTRUCTOR && info->type <= OT_ASSIGNMENT; 118 return false; 129 bool isAssignment( const std::string & funcName ) { 130 static OperatorType types[] = { OT_PREFIXASSIGN, OT_POSTFIXASSIGN, OT_INFIXASSIGN }; 131 return isOperatorType( funcName, std::begin(types), std::end(types) ); 119 132 } 120 133 121 bool isCtorDtorAssign( const string & funcName ) { 122 const OperatorInfo * info = operatorLookup( funcName ); 123 if ( info ) return info->type <= OT_ASSIGNMENT; 124 return false; 134 bool isCtorDtor( const std::string & funcName ) { 135 static OperatorType types[] = { OT_CTOR, OT_DTOR }; 136 return isOperatorType( funcName, std::begin(types), std::end(types) ); 125 137 } 126 138 127 CodeGen codegen; // initialize singleton package 139 bool isCtorDtorAssign( const std::string & funcName ) { 140 static OperatorType types[] = { OT_CTOR, OT_DTOR, OT_PREFIXASSIGN, OT_POSTFIXASSIGN, OT_INFIXASSIGN }; 141 return isOperatorType( funcName, std::begin(types), std::end(types) ); 142 } 128 143 } // namespace CodeGen 129 144 130 145 // Local Variables: // 131 146 // tab-width: 4 // 147 // mode: c++ // 148 // compile-command: "make install" // 132 149 // End: // -
src/CodeGen/OperatorTable.h
r7030dab r71d6bd8 10 10 // Created On : Mon May 18 07:44:20 2015 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Sun Feb 16 08:13:34 202013 // Update Count : 2612 // Last Modified On : Fri Jul 21 22:17:11 2017 13 // Update Count : 6 14 14 // 15 15 … … 17 17 18 18 #include <string> 19 #include <map>20 19 21 20 namespace CodeGen { 22 21 enum OperatorType { 22 OT_INDEX, 23 23 OT_CTOR, 24 24 OT_DTOR, 25 OT_CONSTRUCTOR = OT_DTOR, 25 OT_CALL, 26 OT_PREFIX, 27 OT_POSTFIX, 28 OT_INFIX, 26 29 OT_PREFIXASSIGN, 27 30 OT_POSTFIXASSIGN, 28 31 OT_INFIXASSIGN, 29 OT_ASSIGNMENT = OT_INFIXASSIGN,30 OT_CALL,31 OT_PREFIX,32 OT_INFIX,33 OT_POSTFIX,34 OT_INDEX,35 32 OT_LABELADDRESS, 36 33 OT_CONSTANT … … 41 38 std::string symbol; 42 39 std::string outputName; 43 std::string friendlyName;44 40 OperatorType type; 45 41 }; 46 42 47 class CodeGen {48 friend const OperatorInfo * operatorLookup( const std::string & funcName );49 50 static const OperatorInfo tableValues[];51 static std::map< std::string, OperatorInfo > table;52 public:53 CodeGen();54 }; // CodeGen55 56 43 bool isOperator( const std::string & funcName ); 57 const OperatorInfo * operatorLookup( const std::string & funcName ); 58 std::string operatorFriendlyName( const std::string & funcName ); 44 bool operatorLookup( const std::string & funcName, OperatorInfo & info ); 59 45 60 46 bool isConstructor( const std::string & ); -
src/CodeGen/Options.h
r7030dab r71d6bd8 9 9 // Author : Andrew Beach 10 10 // Created On : Tue Apr 30 11:36:00 2019 11 // Last Modified By : Peter A. Buhr12 // Last Modified On : Sat Feb 15 18:37:06 202013 // Update Count : 311 // Last Modified By : Andrew Beach 12 // Last Modified On : Thr May 2 10:45:00 2019 13 // Update Count : 2 14 14 // 15 15 16 16 #pragma once 17 17 18 struct Options { 19 // External Options: Same thoughout a pass. 20 bool pretty; 21 bool genC; 22 bool lineMarks; 23 bool printExprTypes; 18 namespace CodeGen { 19 struct Options { 20 // External Options: Same thoughout a pass. 21 bool pretty; 22 bool genC; 23 bool lineMarks; 24 bool printExprTypes; 24 25 25 // Internal Options: Changed on some recurisive calls.26 bool anonymousUnused = false;26 // Internal Options: Changed on some recurisive calls. 27 bool anonymousUnused = false; 27 28 28 Options(bool pretty, bool genC, bool lineMarks, bool printExprTypes) :29 pretty(pretty), genC(genC), lineMarks(lineMarks), printExprTypes(printExprTypes)29 Options(bool pretty, bool genC, bool lineMarks, bool printExprTypes) : 30 pretty(pretty), genC(genC), lineMarks(lineMarks), printExprTypes(printExprTypes) 30 31 {} 31 }; 32 }; 33 } // namespace CodeGen 32 34 33 35 // Local Variables: // -
src/CodeGen/module.mk
r7030dab r71d6bd8 11 11 ## Created On : Mon Jun 1 17:49:17 2015 12 12 ## Last Modified By : Peter A. Buhr 13 ## Last Modified On : Sat Dec 14 07:29:42 201914 ## Update Count : 413 ## Last Modified On : Tue Jun 2 11:17:02 2015 14 ## Update Count : 3 15 15 ############################################################################### 16 16 … … 24 24 CodeGen/OperatorTable.cc 25 25 26 26 27 SRC += $(SRC_CODEGEN) CodeGen/Generate.cc CodeGen/FixNames.cc 27 28 SRCDEMANGLE += $(SRC_CODEGEN) -
src/CodeTools/DeclStats.cc
r7030dab r71d6bd8 9 9 // Author : Aaron Moss 10 10 // Created On : Wed Jan 31 16:40:00 2016 11 // Last Modified By : Peter A. Buhr12 // Last Modified On : Fri Dec 13 23:39:33 201913 // Update Count : 211 // Last Modified By : Aaron Moss 12 // Last Modified On : Wed Jan 31 16:40:00 2016 13 // Update Count : 1 14 14 // 15 15 … … 26 26 #include "Common/VectorMap.h" // for VectorMap 27 27 #include "GenPoly/GenPoly.h" // for hasPolyBase 28 #include " SynTree/LinkageSpec.h"// for ::NoOfSpecs, Spec28 #include "Parser/LinkageSpec.h" // for ::NoOfSpecs, Spec 29 29 #include "SynTree/Declaration.h" // for FunctionDecl, TypeDecl, Declaration 30 30 #include "SynTree/Expression.h" // for UntypedExpr, Expression -
src/CodeTools/ResolvProtoDump.cc
r7030dab r71d6bd8 9 9 // Author : Aaron Moss 10 10 // Created On : Tue Sep 11 09:04:00 2018 11 // Last Modified By : Peter A. Buhr12 // Last Modified On : Sat Feb 15 13:50:11 202013 // Update Count : 311 // Last Modified By : Aaron Moss 12 // Last Modified On : Tue Sep 11 09:04:00 2018 13 // Update Count : 1 14 14 // 15 15 … … 182 182 183 183 // replace operator names 184 const CodeGen::OperatorInfo * opInfo = CodeGen::operatorLookup( name );185 if ( opInfo) {184 CodeGen::OperatorInfo info; 185 if ( CodeGen::operatorLookup( name, info ) ) { 186 186 ss << new_prefix(pre, ""); 187 op_name( opInfo->outputName, ss );187 op_name( info.outputName, ss ); 188 188 return; 189 189 } -
src/Common/Debug.h
r7030dab r71d6bd8 9 9 // Author : Rob Schluntz 10 10 // Created On : Fri Sep 1 11:09:14 2017 11 // Last Modified By : Peter A. Buhr12 // Last Modified On : Fri Dec 13 23:39:42 201913 // Update Count : 311 // Last Modified By : Rob Schluntz 12 // Last Modified On : Fri Sep 1 11:09:36 2017 13 // Update Count : 2 14 14 // 15 15 … … 21 21 22 22 #include "CodeGen/Generate.h" 23 #include " SynTree/LinkageSpec.h"23 #include "Parser/LinkageSpec.h" 24 24 #include "SynTree/Declaration.h" 25 25 -
src/Common/PassVisitor.h
r7030dab r71d6bd8 110 110 virtual void visit( FinallyStmt * finallyStmt ) override final; 111 111 virtual void visit( const FinallyStmt * finallyStmt ) override final; 112 virtual void visit( SuspendStmt * suspendStmt ) override final;113 virtual void visit( const SuspendStmt * suspendStmt ) override final;114 112 virtual void visit( WaitForStmt * waitforStmt ) override final; 115 113 virtual void visit( const WaitForStmt * waitforStmt ) override final; … … 278 276 virtual Statement * mutate( CatchStmt * catchStmt ) override final; 279 277 virtual Statement * mutate( FinallyStmt * finallyStmt ) override final; 280 virtual Statement * mutate( SuspendStmt * suspendStmt ) override final;281 278 virtual Statement * mutate( WaitForStmt * waitforStmt ) override final; 282 279 virtual Declaration * mutate( WithStmt * withStmt ) override final; -
src/Common/PassVisitor.impl.h
r7030dab r71d6bd8 1522 1522 1523 1523 //-------------------------------------------------------------------------- 1524 // SuspendStmt1525 template< typename pass_type >1526 void PassVisitor< pass_type >::visit( SuspendStmt * node ) {1527 VISIT_START( node );1528 1529 maybeAccept_impl( node->then , *this );1530 1531 VISIT_END( node );1532 }1533 1534 template< typename pass_type >1535 void PassVisitor< pass_type >::visit( const SuspendStmt * node ) {1536 VISIT_START( node );1537 1538 maybeAccept_impl( node->then , *this );1539 1540 VISIT_END( node );1541 }1542 1543 template< typename pass_type >1544 Statement * PassVisitor< pass_type >::mutate( SuspendStmt * node ) {1545 MUTATE_START( node );1546 1547 maybeMutate_impl( node->then , *this );1548 1549 MUTATE_END( Statement, node );1550 }1551 1552 //--------------------------------------------------------------------------1553 1524 // WaitForStmt 1554 1525 template< typename pass_type > … … 3331 3302 VISIT_START( node ); 3332 3303 3333 indexerAdd Union( node->name );3304 indexerAddStruct( node->name ); 3334 3305 3335 3306 { … … 3346 3317 VISIT_START( node ); 3347 3318 3348 indexerAdd Union( node->name );3319 indexerAddStruct( node->name ); 3349 3320 3350 3321 { … … 3361 3332 MUTATE_START( node ); 3362 3333 3363 indexerAdd Union( node->name );3334 indexerAddStruct( node->name ); 3364 3335 3365 3336 { -
src/Common/SemanticError.cc
r7030dab r71d6bd8 149 149 // Helpers 150 150 namespace ErrorHelpers { 151 Colors colors = Colors::Auto;152 153 static inline bool with_colors() {154 return colors == Colors::Auto ? isatty( STDERR_FILENO ) : bool(colors);155 }156 157 151 const std::string & error_str() { 158 static std::string str = with_colors() ? "\e[31merror:\e[39m " : "error: ";152 static std::string str = isatty( STDERR_FILENO ) ? "\e[31merror:\e[39m " : "error: "; 159 153 return str; 160 154 } 161 155 162 156 const std::string & warning_str() { 163 static std::string str = with_colors() ? "\e[95mwarning:\e[39m " : "warning: ";157 static std::string str = isatty( STDERR_FILENO ) ? "\e[95mwarning:\e[39m " : "warning: "; 164 158 return str; 165 159 } 166 160 167 161 const std::string & bold_ttycode() { 168 static std::string str = with_colors() ? "\e[1m" : "";162 static std::string str = isatty( STDERR_FILENO ) ? "\e[1m" : ""; 169 163 return str; 170 164 } 171 165 172 166 const std::string & reset_font_ttycode() { 173 static std::string str = with_colors() ? "\e[0m" : "";167 static std::string str = isatty( STDERR_FILENO ) ? "\e[0m" : ""; 174 168 return str; 175 169 } -
src/Common/SemanticError.h
r7030dab r71d6bd8 49 49 struct WarningData { 50 50 const char * const name; 51 const char * const message; 51 52 const Severity default_severity; 52 const char * const message;53 53 }; 54 54 55 55 constexpr WarningData WarningFormats[] = { 56 {"self-assign" , Severity::Warn , "self assignment of expression: %s" }, 57 {"reference-conversion" , Severity::Warn , "rvalue to reference conversion of rvalue: %s" }, 58 {"qualifiers-zero_t-one_t", Severity::Warn , "questionable use of type qualifier %s with %s" }, 59 {"aggregate-forward-decl" , Severity::Warn , "forward declaration of nested aggregate: %s" }, 60 {"superfluous-decl" , Severity::Warn , "declaration does not allocate storage: %s" }, 61 {"gcc-attributes" , Severity::Warn , "invalid attribute: %s" }, 62 {"c++-like-copy" , Severity::Warn , "Constructor from reference is not a valid copy constructor" }, 56 {"self-assign" , "self assignment of expression: %s" , Severity::Warn}, 57 {"reference-conversion" , "rvalue to reference conversion of rvalue: %s" , Severity::Warn}, 58 {"qualifiers-zero_t-one_t", "questionable use of type qualifier %s with %s", Severity::Warn}, 59 {"aggregate-forward-decl" , "forward declaration of nested aggregate: %s" , Severity::Warn}, 60 {"superfluous-decl" , "declaration does not allocate storage: %s" , Severity::Warn}, 61 {"gcc-attributes" , "invalid attribute: %s" , Severity::Warn}, 63 62 }; 64 63 … … 70 69 SuperfluousDecl, 71 70 GccAttributes, 72 CppCopy,73 71 NUMBER_OF_WARNINGS, // This MUST be the last warning 74 72 }; … … 99 97 // Helpers 100 98 namespace ErrorHelpers { 101 enum class Colors {102 Never = false,103 Always = true,104 Auto,105 };106 107 extern Colors colors;108 109 99 const std::string & error_str(); 110 100 const std::string & warning_str(); -
src/Common/Stats/Time.h
r7030dab r71d6bd8 9 9 // Author : Thierry Delisle 10 10 // Created On : Fri Mar 01 15:14:11 2019 11 // Last Modified By : Andrew Beach11 // Last Modified By : 12 12 // Last Modified On : 13 13 // Update Count : … … 41 41 f(); 42 42 } 43 44 template<typename ret_t = void, typename func_t, typename... arg_t>45 inline ret_t TimeCall(46 const char *, func_t func, arg_t&&... arg) {47 return func(std::forward<arg_t>(arg)...);48 }49 43 # else 50 44 void StartGlobal(); … … 65 59 func(); 66 60 } 67 68 template<typename ret_t = void, typename func_t, typename... arg_t>69 inline ret_t TimeCall(70 const char * name, func_t func, arg_t&&... arg) {71 BlockGuard guard(name);72 return func(std::forward<arg_t>(arg)...);73 }74 61 # endif 75 62 } -
src/Common/utility.h
r7030dab r71d6bd8 10 10 // Created On : Mon May 18 07:44:20 2015 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Tue Feb 11 13:00:36 202013 // Update Count : 5012 // Last Modified On : Wed Jul 24 14:28:19 2019 13 // Update Count : 41 14 14 // 15 15 … … 29 29 #include <utility> 30 30 #include <vector> 31 #include <cstring> // memcmp32 31 33 32 #include "Common/Indenter.h" … … 265 264 } 266 265 267 // determines if pref is a prefix of str268 static inline bool isPrefix( const std::string & str, const std::string & pref , unsigned int start = 0) {266 /// determines if `pref` is a prefix of `str` 267 static inline bool isPrefix( const std::string & str, const std::string & pref ) { 269 268 if ( pref.size() > str.size() ) return false; 270 return 0 == memcmp( str.c_str() + start, pref.c_str(), pref.size() );271 // return prefix == full.substr(0, prefix.size()); // for future, requires c++17269 auto its = std::mismatch( pref.begin(), pref.end(), str.begin() ); 270 return its.first == pref.end(); 272 271 } 273 272 -
src/Concurrency/Keywords.cc
r7030dab r71d6bd8 11 11 // Last Modified By : 12 12 // Last Modified On : 13 // Update Count : 1013 // Update Count : 5 14 14 // 15 15 16 16 #include "Concurrency/Keywords.h" 17 17 18 #include <cassert> // for assert 19 #include <string> // for string, operator== 20 21 #include "Common/PassVisitor.h" // for PassVisitor 22 #include "Common/SemanticError.h" // for SemanticError 23 #include "Common/utility.h" // for deleteAll, map_range 24 #include "CodeGen/OperatorTable.h" // for isConstructor 25 #include "ControlStruct/LabelGenerator.h" // for LebelGenerator 26 #include "InitTweak/InitTweak.h" // for getPointerBase 27 #include "SynTree/LinkageSpec.h" // for Cforall 28 #include "SynTree/Constant.h" // for Constant 29 #include "SynTree/Declaration.h" // for StructDecl, FunctionDecl, ObjectDecl 30 #include "SynTree/Expression.h" // for VariableExpr, ConstantExpr, Untype... 31 #include "SynTree/Initializer.h" // for SingleInit, ListInit, Initializer ... 32 #include "SynTree/Label.h" // for Label 33 #include "SynTree/Statement.h" // for CompoundStmt, DeclStmt, ExprStmt 34 #include "SynTree/Type.h" // for StructInstType, Type, PointerType 35 #include "SynTree/Visitor.h" // for Visitor, acceptAll 18 #include <cassert> // for assert 19 #include <string> // for string, operator== 20 21 #include "Common/PassVisitor.h" // for PassVisitor 22 #include "Common/SemanticError.h" // for SemanticError 23 #include "Common/utility.h" // for deleteAll, map_range 24 #include "CodeGen/OperatorTable.h" // for isConstructor 25 #include "InitTweak/InitTweak.h" // for getPointerBase 26 #include "Parser/LinkageSpec.h" // for Cforall 27 #include "SynTree/Constant.h" // for Constant 28 #include "SynTree/Declaration.h" // for StructDecl, FunctionDecl, ObjectDecl 29 #include "SynTree/Expression.h" // for VariableExpr, ConstantExpr, Untype... 30 #include "SynTree/Initializer.h" // for SingleInit, ListInit, Initializer ... 31 #include "SynTree/Label.h" // for Label 32 #include "SynTree/Statement.h" // for CompoundStmt, DeclStmt, ExprStmt 33 #include "SynTree/Type.h" // for StructInstType, Type, PointerType 34 #include "SynTree/Visitor.h" // for Visitor, acceptAll 36 35 37 36 class Attribute; … … 54 53 public: 55 54 56 ConcurrentSueKeyword( std::string&& type_name, std::string&& field_name, std::string&& getter_name, std::string&& context_error, bool needs_main, AggregateDecl::Aggregatecast_target ) :55 ConcurrentSueKeyword( std::string&& type_name, std::string&& field_name, std::string&& getter_name, std::string&& context_error, bool needs_main, KeywordCastExpr::Target cast_target ) : 57 56 type_name( type_name ), field_name( field_name ), getter_name( getter_name ), context_error( context_error ), needs_main( needs_main ), cast_target( cast_target ) {} 58 57 … … 60 59 61 60 Declaration * postmutate( StructDecl * decl ); 62 DeclarationWithType * postmutate( FunctionDecl * decl );63 61 64 62 void handle( StructDecl * ); … … 77 75 const std::string context_error; 78 76 bool needs_main; 79 AggregateDecl::Aggregate cast_target; 80 81 StructDecl * type_decl = nullptr; 82 FunctionDecl * dtor_decl = nullptr; 77 KeywordCastExpr::Target cast_target; 78 79 StructDecl* type_decl = nullptr; 83 80 }; 84 81 … … 89 86 // int data; int data; 90 87 // a_struct_t more_data; a_struct_t more_data; 91 // => $thread__thrd_d;88 // => thread_desc __thrd_d; 92 89 // }; }; 93 // static inline $thread* get_thread( MyThread * this ) { return &this->__thrd_d; }90 // static inline thread_desc * get_thread( MyThread * this ) { return &this->__thrd_d; } 94 91 // 95 92 class ThreadKeyword final : public ConcurrentSueKeyword { … … 97 94 98 95 ThreadKeyword() : ConcurrentSueKeyword( 99 " $thread",96 "thread_desc", 100 97 "__thrd", 101 98 "get_thread", 102 "thread keyword requires threads to be in scope, add #include <thread.hfa> \n",99 "thread keyword requires threads to be in scope, add #include <thread.hfa>", 103 100 true, 104 AggregateDecl::Thread101 KeywordCastExpr::Thread 105 102 ) 106 103 {} … … 121 118 // int data; int data; 122 119 // a_struct_t more_data; a_struct_t more_data; 123 // => $coroutine__cor_d;120 // => coroutine_desc __cor_d; 124 121 // }; }; 125 // static inline $coroutine* get_coroutine( MyCoroutine * this ) { return &this->__cor_d; }122 // static inline coroutine_desc * get_coroutine( MyCoroutine * this ) { return &this->__cor_d; } 126 123 // 127 124 class CoroutineKeyword final : public ConcurrentSueKeyword { … … 129 126 130 127 CoroutineKeyword() : ConcurrentSueKeyword( 131 " $coroutine",128 "coroutine_desc", 132 129 "__cor", 133 130 "get_coroutine", 134 "coroutine keyword requires coroutines to be in scope, add #include <coroutine.hfa> \n",131 "coroutine keyword requires coroutines to be in scope, add #include <coroutine.hfa>", 135 132 true, 136 AggregateDecl::Coroutine133 KeywordCastExpr::Coroutine 137 134 ) 138 135 {} … … 147 144 } 148 145 }; 149 150 151 146 152 147 //----------------------------------------------------------------------------- … … 155 150 // int data; int data; 156 151 // a_struct_t more_data; a_struct_t more_data; 157 // => $monitor__mon_d;152 // => monitor_desc __mon_d; 158 153 // }; }; 159 // static inline $monitor* get_coroutine( MyMonitor * this ) { return &this->__cor_d; }154 // static inline monitor_desc * get_coroutine( MyMonitor * this ) { return &this->__cor_d; } 160 155 // 161 156 class MonitorKeyword final : public ConcurrentSueKeyword { … … 163 158 164 159 MonitorKeyword() : ConcurrentSueKeyword( 165 " $monitor",160 "monitor_desc", 166 161 "__mon", 167 162 "get_monitor", 168 "monitor keyword requires monitors to be in scope, add #include <monitor.hfa> \n",163 "monitor keyword requires monitors to be in scope, add #include <monitor.hfa>", 169 164 false, 170 AggregateDecl::Monitor165 KeywordCastExpr::Monitor 171 166 ) 172 167 {} … … 183 178 184 179 //----------------------------------------------------------------------------- 185 //Handles generator type declarations :186 // generator MyGenerator { struct MyGenerator {187 // int data; int data;188 // a_struct_t more_data; a_struct_t more_data;189 // => int __gen_next;190 // }; };191 //192 class GeneratorKeyword final : public ConcurrentSueKeyword {193 public:194 195 GeneratorKeyword() : ConcurrentSueKeyword(196 "$generator",197 "__generator_state",198 "get_generator",199 "Unable to find builtin type $generator\n",200 true,201 AggregateDecl::Generator202 )203 {}204 205 virtual ~GeneratorKeyword() {}206 207 virtual bool is_target( StructDecl * decl ) override final { return decl->is_generator(); }208 209 static void implement( std::list< Declaration * > & translationUnit ) {210 PassVisitor< GeneratorKeyword > impl;211 mutateAll( translationUnit, impl );212 }213 };214 215 216 //-----------------------------------------------------------------------------217 class SuspendKeyword final : public WithStmtsToAdd, public WithGuards {218 public:219 SuspendKeyword() = default;220 virtual ~SuspendKeyword() = default;221 222 void premutate( FunctionDecl * );223 DeclarationWithType * postmutate( FunctionDecl * );224 225 Statement * postmutate( SuspendStmt * );226 227 static void implement( std::list< Declaration * > & translationUnit ) {228 PassVisitor< SuspendKeyword > impl;229 mutateAll( translationUnit, impl );230 }231 232 private:233 DeclarationWithType * is_main( FunctionDecl * );234 bool is_real_suspend( FunctionDecl * );235 236 Statement * make_generator_suspend( SuspendStmt * );237 Statement * make_coroutine_suspend( SuspendStmt * );238 239 struct LabelPair {240 Label obj;241 int idx;242 };243 244 LabelPair make_label() {245 labels.push_back( gen.newLabel("generator") );246 return { labels.back(), int(labels.size()) };247 }248 249 DeclarationWithType * in_generator = nullptr;250 FunctionDecl * decl_suspend = nullptr;251 std::vector<Label> labels;252 ControlStruct::LabelGenerator & gen = *ControlStruct::LabelGenerator::getGenerator();253 };254 255 //-----------------------------------------------------------------------------256 180 //Handles mutex routines definitions : 257 181 // void foo( A * mutex a, B * mutex b, int i ) { void foo( A * a, B * b, int i ) { 258 // $monitor* __monitors[] = { get_monitor(a), get_monitor(b) };182 // monitor_desc * __monitors[] = { get_monitor(a), get_monitor(b) }; 259 183 // monitor_guard_t __guard = { __monitors, 2 }; 260 184 // /*Some code*/ => /*Some code*/ … … 295 219 //Handles mutex routines definitions : 296 220 // void foo( A * mutex a, B * mutex b, int i ) { void foo( A * a, B * b, int i ) { 297 // $monitor* __monitors[] = { get_monitor(a), get_monitor(b) };221 // monitor_desc * __monitors[] = { get_monitor(a), get_monitor(b) }; 298 222 // monitor_guard_t __guard = { __monitors, 2 }; 299 223 // /*Some code*/ => /*Some code*/ … … 325 249 CoroutineKeyword ::implement( translationUnit ); 326 250 MonitorKeyword ::implement( translationUnit ); 327 GeneratorKeyword ::implement( translationUnit );328 SuspendKeyword ::implement( translationUnit );329 251 } 330 252 … … 362 284 } 363 285 364 DeclarationWithType * ConcurrentSueKeyword::postmutate( FunctionDecl * decl ) {365 if( !type_decl ) return decl;366 if( !CodeGen::isDestructor( decl->name ) ) return decl;367 368 auto params = decl->type->parameters;369 if( params.size() != 1 ) return decl;370 371 auto type = dynamic_cast<ReferenceType*>( params.front()->get_type() );372 if( !type ) return decl;373 374 auto stype = dynamic_cast<StructInstType*>( type->base );375 if( !stype ) return decl;376 if( stype->baseStruct != type_decl ) return decl;377 378 if( !dtor_decl ) dtor_decl = decl;379 return decl;380 }381 382 286 Expression * ConcurrentSueKeyword::postmutate( KeywordCastExpr * cast ) { 383 287 if ( cast_target == cast->target ) { 384 // convert (thread &)t to ( $thread&)*get_thread(t), etc.288 // convert (thread &)t to (thread_desc &)*get_thread(t), etc. 385 289 if( !type_decl ) SemanticError( cast, context_error ); 386 if( !dtor_decl ) SemanticError( cast, context_error ); 387 assert( cast->result == nullptr ); 388 cast->set_result( new ReferenceType( noQualifiers, new StructInstType( noQualifiers, type_decl ) ) ); 389 cast->concrete_target.field = field_name; 390 cast->concrete_target.getter = getter_name; 290 Expression * arg = cast->arg; 291 cast->arg = nullptr; 292 delete cast; 293 return new CastExpr( 294 UntypedExpr::createDeref( 295 new UntypedExpr( new NameExpr( getter_name ), { arg } ) 296 ), 297 new ReferenceType( 298 noQualifiers, 299 new StructInstType( noQualifiers, type_decl ) ) 300 ); 391 301 } 392 302 return cast; … … 398 308 399 309 if( !type_decl ) SemanticError( decl, context_error ); 400 if( !dtor_decl ) SemanticError( decl, context_error );401 310 402 311 FunctionDecl * func = forwardDeclare( decl ); … … 453 362 get_type, 454 363 nullptr, 455 { new Attribute("const") },364 noAttributes, 456 365 Type::Inline 457 366 ); … … 522 431 523 432 declsToAddAfter.push_back( get_decl ); 524 } 525 526 //============================================================================================= 527 // Suspend keyword implementation 528 //============================================================================================= 529 DeclarationWithType * SuspendKeyword::is_main( FunctionDecl * func) { 530 if(func->name != "main") return nullptr; 531 if(func->type->parameters.size() != 1) return nullptr; 532 533 auto param = func->type->parameters.front(); 534 535 auto type = dynamic_cast<ReferenceType * >(param->get_type()); 536 if(!type) return nullptr; 537 538 auto obj = dynamic_cast<StructInstType *>(type->base); 539 if(!obj) return nullptr; 540 541 if(!obj->baseStruct->is_generator()) return nullptr; 542 543 return param; 544 } 545 546 bool SuspendKeyword::is_real_suspend( FunctionDecl * func ) { 547 if(isMangled(func->linkage)) return false; // the real suspend isn't mangled 548 if(func->name != "__cfactx_suspend") return false; // the real suspend has a specific name 549 if(func->type->parameters.size() != 0) return false; // Too many parameters 550 if(func->type->returnVals.size() != 0) return false; // Too many return values 551 552 return true; 553 } 554 555 void SuspendKeyword::premutate( FunctionDecl * func ) { 556 GuardValue(in_generator); 557 in_generator = nullptr; 558 559 // Is this the real suspend? 560 if(is_real_suspend(func)) { 561 decl_suspend = decl_suspend ? decl_suspend : func; 562 return; 563 } 564 565 // Is this the main of a generator? 566 auto param = is_main( func ); 567 if(!param) return; 568 569 if(func->type->returnVals.size() != 0) SemanticError(func->location, "Generator main must return void"); 570 571 in_generator = param; 572 GuardValue(labels); 573 labels.clear(); 574 } 575 576 DeclarationWithType * SuspendKeyword::postmutate( FunctionDecl * func ) { 577 if( !func->statements ) return func; // Not the actual definition, don't do anything 578 if( !in_generator ) return func; // Not in a generator, don't do anything 579 if( labels.empty() ) return func; // Generator has no states, nothing to do, could throw a warning 580 581 // This is a generator main, we need to add the following code to the top 582 // static void * __generator_labels[] = {&&s0, &&s1, ...}; 583 // goto * __generator_labels[gen.__generator_state]; 584 const auto & loc = func->location; 585 586 const auto first_label = gen.newLabel("generator"); 587 588 // for each label add to declaration 589 std::list<Initializer*> inits = { new SingleInit( new LabelAddressExpr( first_label ) ) }; 590 for(const auto & label : labels) { 591 inits.push_back( 592 new SingleInit( 593 new LabelAddressExpr( label ) 594 ) 595 ); 596 } 597 auto init = new ListInit(std::move(inits), noDesignators, true); 598 labels.clear(); 599 600 // create decl 601 auto decl = new ObjectDecl( 602 "__generator_labels", 603 Type::StorageClasses( Type::Static ), 604 LinkageSpec::AutoGen, 605 nullptr, 606 new ArrayType( 607 Type::Qualifiers(), 608 new PointerType( 609 Type::Qualifiers(), 610 new VoidType( Type::Qualifiers() ) 611 ), 612 nullptr, 613 false, false 614 ), 615 init 616 ); 617 618 // create the goto 619 assert(in_generator); 620 621 auto go_decl = new ObjectDecl( 622 "__generator_label", 623 noStorageClasses, 624 LinkageSpec::AutoGen, 625 nullptr, 626 new PointerType( 627 Type::Qualifiers(), 628 new VoidType( Type::Qualifiers() ) 629 ), 630 new SingleInit( 631 new UntypedExpr( 632 new NameExpr("?[?]"), 633 { 634 new NameExpr("__generator_labels"), 635 new UntypedMemberExpr( 636 new NameExpr("__generator_state"), 637 new VariableExpr( in_generator ) 638 ) 639 } 640 ) 641 ) 642 ); 643 go_decl->location = loc; 644 645 auto go = new BranchStmt( 646 new VariableExpr( go_decl ), 647 BranchStmt::Goto 648 ); 649 go->location = loc; 650 go->computedTarget->location = loc; 651 652 auto noop = new NullStmt({ first_label }); 653 noop->location = loc; 654 655 // wrap everything in a nice compound 656 auto body = new CompoundStmt({ 657 new DeclStmt( decl ), 658 new DeclStmt( go_decl ), 659 go, 660 noop, 661 func->statements 662 }); 663 body->location = loc; 664 func->statements = body; 665 666 return func; 667 } 668 669 Statement * SuspendKeyword::postmutate( SuspendStmt * stmt ) { 670 SuspendStmt::Type type = stmt->type; 671 if(type == SuspendStmt::None) { 672 // This suspend has a implicit target, find it 673 type = in_generator ? SuspendStmt::Generator : SuspendStmt::Coroutine; 674 } 675 676 // Check that the target makes sense 677 if(!in_generator && type == SuspendStmt::Generator) SemanticError( stmt->location, "'suspend generator' must be used inside main of generator type."); 678 679 // Act appropriately 680 switch(type) { 681 case SuspendStmt::Generator: return make_generator_suspend(stmt); 682 case SuspendStmt::Coroutine: return make_coroutine_suspend(stmt); 683 default: abort(); 684 } 685 } 686 687 Statement * SuspendKeyword::make_generator_suspend( SuspendStmt * stmt ) { 688 assert(in_generator); 689 // Target code is : 690 // gen.__generator_state = X; 691 // { THEN } 692 // return; 693 // __gen_X:; 694 695 // Save the location and delete the old statement, we only need the location from this point on 696 auto loc = stmt->location; 697 698 // Build the label and get its index 699 auto label = make_label(); 700 701 // Create the context saving statement 702 auto save = new ExprStmt( new UntypedExpr( 703 new NameExpr( "?=?" ), 704 { 705 new UntypedMemberExpr( 706 new NameExpr("__generator_state"), 707 new VariableExpr( in_generator ) 708 ), 709 new ConstantExpr( 710 Constant::from_int( label.idx ) 711 ) 712 } 713 )); 714 assert(save->expr); 715 save->location = loc; 716 stmtsToAddBefore.push_back( save ); 717 718 // if we have a then add it here 719 auto then = stmt->then; 720 stmt->then = nullptr; 721 delete stmt; 722 if(then) stmtsToAddBefore.push_back( then ); 723 724 // Create the return statement 725 auto ret = new ReturnStmt( nullptr ); 726 ret->location = loc; 727 stmtsToAddBefore.push_back( ret ); 728 729 // Create the null statement with the created label 730 auto noop = new NullStmt({ label.obj }); 731 noop->location = loc; 732 733 // Return the null statement to take the place of the previous statement 734 return noop; 735 } 736 737 Statement * SuspendKeyword::make_coroutine_suspend( SuspendStmt * stmt ) { 738 if(stmt->then) SemanticError( stmt->location, "Compound statement following coroutines is not implemented."); 739 740 // Save the location and delete the old statement, we only need the location from this point on 741 auto loc = stmt->location; 742 delete stmt; 743 744 // Create the call expression 745 if(!decl_suspend) SemanticError( loc, "suspend keyword applied to coroutines requires coroutines to be in scope, add #include <coroutine.hfa>\n"); 746 auto expr = new UntypedExpr( VariableExpr::functionPointer( decl_suspend ) ); 747 expr->location = loc; 748 749 // Change this statement into a regular expr 750 assert(expr); 751 auto nstmt = new ExprStmt( expr ); 752 nstmt->location = loc; 753 return nstmt; 754 } 755 433 434 // get_decl->fixUniqueId(); 435 } 756 436 757 437 //============================================================================================= … … 821 501 void MutexKeyword::postvisit(StructDecl* decl) { 822 502 823 if( decl->name == " $monitor" && decl->body ) {503 if( decl->name == "monitor_desc" && decl->body ) { 824 504 assert( !monitor_decl ); 825 505 monitor_decl = decl; … … 917 597 ); 918 598 919 // $monitor* __monitors[] = { get_monitor(a), get_monitor(b) };599 //monitor_desc * __monitors[] = { get_monitor(a), get_monitor(b) }; 920 600 body->push_front( new DeclStmt( monitors) ); 921 601 } … … 978 658 ); 979 659 980 // $monitor* __monitors[] = { get_monitor(a), get_monitor(b) };660 //monitor_desc * __monitors[] = { get_monitor(a), get_monitor(b) }; 981 661 body->push_front( new DeclStmt( monitors) ); 982 662 } … … 986 666 //============================================================================================= 987 667 void ThreadStarter::previsit( StructDecl * decl ) { 988 if( decl->name == " $thread" && decl->body ) {668 if( decl->name == "thread_desc" && decl->body ) { 989 669 assert( !thread_decl ); 990 670 thread_decl = decl; … … 1021 701 new UntypedExpr( 1022 702 new NameExpr( "__thrd_start" ), 1023 { new VariableExpr( param ) , new NameExpr("main")}703 { new VariableExpr( param ) } 1024 704 ) 1025 705 ) -
src/Concurrency/Waitfor.cc
r7030dab r71d6bd8 11 11 // Last Modified By : 12 12 // Last Modified On : 13 // Update Count : 1213 // Update Count : 7 14 14 // 15 15 … … 23 23 #include "Common/PassVisitor.h" // for PassVisitor 24 24 #include "Common/SemanticError.h" // for SemanticError 25 #include "Common/UniqueName.h" // for UniqueName26 25 #include "Common/utility.h" // for deleteAll, map_range 27 26 #include "CodeGen/OperatorTable.h" // for isConstructor 28 27 #include "InitTweak/InitTweak.h" // for getPointerBase 28 #include "Parser/LinkageSpec.h" // for Cforall 29 29 #include "ResolvExpr/Resolver.h" // for findVoidExpression 30 #include "SynTree/LinkageSpec.h" // for Cforall31 30 #include "SynTree/Constant.h" // for Constant 32 31 #include "SynTree/Declaration.h" // for StructDecl, FunctionDecl, ObjectDecl … … 42 41 void foo() { 43 42 while( true ) { 44 when( a < 1 ) waitfor( f :a ) { bar(); }43 when( a < 1 ) waitfor( f, a ) { bar(); } 45 44 or timeout( swagl() ); 46 or waitfor( g :a ) { baz(); }47 or waitfor( ^?{} :a ) { break; }45 or waitfor( g, a ) { baz(); } 46 or waitfor( ^?{}, a ) { break; } 48 47 or waitfor( ^?{} ) { break; } 49 48 } … … 244 243 decl_mask = decl; 245 244 } 246 else if( decl->name == " $monitor" ) {245 else if( decl->name == "monitor_desc" ) { 247 246 assert( !decl_monitor ); 248 247 decl_monitor = decl; -
src/ControlStruct/ExceptTranslate.cc
r7030dab r71d6bd8 9 9 // Author : Andrew Beach 10 10 // Created On : Wed Jun 14 16:49:00 2017 11 // Last Modified By : Andrew Beach12 // Last Modified On : Fri Mar 27 11:58:00 202013 // Update Count : 1 311 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Wed Feb 13 18:15:29 2019 13 // Update Count : 11 14 14 // 15 15 … … 24 24 #include "Common/SemanticError.h" // for SemanticError 25 25 #include "Common/utility.h" // for CodeLocation 26 #include " SynTree/LinkageSpec.h"// for Cforall26 #include "Parser/LinkageSpec.h" // for Cforall 27 27 #include "SynTree/Attribute.h" // for Attribute 28 28 #include "SynTree/Constant.h" // for Constant … … 211 211 ThrowStmt *throwStmt ) { 212 212 // __throw_terminate( `throwStmt->get_name()` ); } 213 return create_given_throw( "__cfa ehm_throw_terminate", throwStmt );213 return create_given_throw( "__cfaabi_ehm__throw_terminate", throwStmt ); 214 214 } 215 215 … … 232 232 ) ) ); 233 233 result->push_back( new ExprStmt( 234 new UntypedExpr( new NameExpr( "__cfa ehm_rethrow_terminate" ) )234 new UntypedExpr( new NameExpr( "__cfaabi_ehm__rethrow_terminate" ) ) 235 235 ) ); 236 236 delete throwStmt; … … 241 241 ThrowStmt *throwStmt ) { 242 242 // __throw_resume( `throwStmt->get_name` ); 243 return create_given_throw( "__cfa ehm_throw_resume", throwStmt );243 return create_given_throw( "__cfaabi_ehm__throw_resume", throwStmt ); 244 244 } 245 245 … … 309 309 local_except->get_attributes().push_back( new Attribute( 310 310 "cleanup", 311 { new NameExpr( "__cfa ehm_cleanup_terminate" ) }311 { new NameExpr( "__cfaabi_ehm__cleanup_terminate" ) } 312 312 ) ); 313 313 … … 429 429 FunctionDecl * terminate_catch, 430 430 FunctionDecl * terminate_match ) { 431 // { __cfa ehm_try_terminate(`try`, `catch`, `match`); }431 // { __cfaabi_ehm__try_terminate(`try`, `catch`, `match`); } 432 432 433 433 UntypedExpr * caller = new UntypedExpr( new NameExpr( 434 "__cfa ehm_try_terminate" ) );434 "__cfaabi_ehm__try_terminate" ) ); 435 435 std::list<Expression *>& args = caller->get_args(); 436 436 args.push_back( nameOf( try_wrapper ) ); … … 486 486 487 487 // struct __try_resume_node __resume_node 488 // __attribute__((cleanup( __cfa ehm_try_resume_cleanup )));488 // __attribute__((cleanup( __cfaabi_ehm__try_resume_cleanup ))); 489 489 // ** unwinding of the stack here could cause problems ** 490 490 // ** however I don't think that can happen currently ** 491 // __cfa ehm_try_resume_setup( &__resume_node, resume_handler );491 // __cfaabi_ehm__try_resume_setup( &__resume_node, resume_handler ); 492 492 493 493 std::list< Attribute * > attributes; … … 495 495 std::list< Expression * > attr_params; 496 496 attr_params.push_back( new NameExpr( 497 "__cfa ehm_try_resume_cleanup" ) );497 "__cfaabi_ehm__try_resume_cleanup" ) ); 498 498 attributes.push_back( new Attribute( "cleanup", attr_params ) ); 499 499 } … … 514 514 515 515 UntypedExpr *setup = new UntypedExpr( new NameExpr( 516 "__cfa ehm_try_resume_setup" ) );516 "__cfaabi_ehm__try_resume_setup" ) ); 517 517 setup->get_args().push_back( new AddressExpr( nameOf( obj ) ) ); 518 518 setup->get_args().push_back( nameOf( resume_handler ) ); … … 539 539 ObjectDecl * ExceptionMutatorCore::create_finally_hook( 540 540 FunctionDecl * finally_wrapper ) { 541 // struct __cfa ehm_cleanup_hook __finally_hook541 // struct __cfaabi_ehm__cleanup_hook __finally_hook 542 542 // __attribute__((cleanup( finally_wrapper ))); 543 543 … … 593 593 // Skip children? 594 594 return; 595 } else if ( structDecl->get_name() == "__cfa ehm_base_exception_t" ) {595 } else if ( structDecl->get_name() == "__cfaabi_ehm__base_exception_t" ) { 596 596 assert( nullptr == except_decl ); 597 597 except_decl = structDecl; 598 598 init_func_types(); 599 } else if ( structDecl->get_name() == "__cfa ehm_try_resume_node" ) {599 } else if ( structDecl->get_name() == "__cfaabi_ehm__try_resume_node" ) { 600 600 assert( nullptr == node_decl ); 601 601 node_decl = structDecl; 602 } else if ( structDecl->get_name() == "__cfa ehm_cleanup_hook" ) {602 } else if ( structDecl->get_name() == "__cfaabi_ehm__cleanup_hook" ) { 603 603 assert( nullptr == hook_decl ); 604 604 hook_decl = structDecl; -
src/ControlStruct/LabelFixer.cc
r7030dab r71d6bd8 9 9 // Author : Rodolfo G. Esteves 10 10 // Created On : Mon May 18 07:44:20 2015 11 // Last Modified By : Andrew Beach12 // Last Modified On : Tue Jan 21 10:32:00 202013 // Update Count : 1 6011 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Mon Mar 11 22:26:02 2019 13 // Update Count : 159 14 14 // 15 15 … … 21 21 #include "ControlStruct/LabelGenerator.h" // for LabelGenerator 22 22 #include "LabelFixer.h" 23 #include "MLEMutator.h" // for M ultiLevelExitMutator23 #include "MLEMutator.h" // for MLEMutator 24 24 #include "SynTree/Declaration.h" // for FunctionDecl 25 25 #include "SynTree/Expression.h" // for NameExpr, Expression, Unty... … … 44 44 45 45 void LabelFixer::postvisit( FunctionDecl * functionDecl ) { 46 PassVisitor<MultiLevelExitMutator> mlem( resolveJumps(), generator ); 47 // We start in the body so we can stop when we hit another FunctionDecl. 48 maybeMutate( functionDecl->statements, mlem ); 46 PassVisitor<MLEMutator> mlemut( resolveJumps(), generator ); 47 functionDecl->acceptMutator( mlemut ); 49 48 } 50 49 … … 76 75 77 76 78 // Sets the definition of the labelTable entry to be the provided statement for every label in79 // the list parameter. Happens for every kind of statement.77 // sets the definition of the labelTable entry to be the provided statement for every label in the list 78 // parameter. Happens for every kind of statement 80 79 Label LabelFixer::setLabelsDef( std::list< Label > & llabel, Statement * definition ) { 81 80 assert( definition != 0 ); 82 81 assert( llabel.size() > 0 ); 82 83 Entry * e = new Entry( definition ); 83 84 84 85 for ( std::list< Label >::iterator i = llabel.begin(); i != llabel.end(); i++ ) { … … 86 87 l.set_statement( definition ); // attach statement to the label to be used later 87 88 if ( labelTable.find( l ) == labelTable.end() ) { 88 // All labels on this statement need to use the same entry, 89 // so this should only be created once. 89 // all labels on this statement need to use the same entry, so this should only be created once 90 90 // undefined and unused until now, add an entry 91 labelTable[ l ] = new Entry( definition );91 labelTable[ l ] = e; 92 92 } else if ( labelTable[ l ]->defined() ) { 93 93 // defined twice, error 94 SemanticError( l.get_statement()->location, 95 "Duplicate definition of label: " + l.get_name() ); 96 } else { 94 SemanticError( l.get_statement()->location, "Duplicate definition of label: " + l.get_name() ); 95 } else { 97 96 // used previously, but undefined until now -> link with this entry 98 // Question: Is changing objects important?99 97 delete labelTable[ l ]; 100 labelTable[ l ] = new Entry( definition );98 labelTable[ l ] = e; 101 99 } // if 102 100 } // for 103 101 104 // Produce one of the labels attached to this statement to be temporarily used as the 105 // canonical label. 102 // produce one of the labels attached to this statement to be temporarily used as the canonical label 106 103 return labelTable[ llabel.front() ]->get_label(); 107 104 } -
src/ControlStruct/MLEMutator.cc
r7030dab r71d6bd8 9 9 // Author : Rodolfo G. Esteves 10 10 // Created On : Mon May 18 07:44:20 2015 11 // Last Modified By : Andrew Beach12 // Last Modified On : Wed Jan 22 11:50:00 202013 // Update Count : 22 311 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Tue Oct 22 17:22:44 2019 13 // Update Count : 220 14 14 // 15 15 … … 33 33 34 34 namespace ControlStruct { 35 M ultiLevelExitMutator::~MultiLevelExitMutator() {35 MLEMutator::~MLEMutator() { 36 36 delete targetTable; 37 37 targetTable = 0; 38 38 } 39 39 namespace { 40 bool isLoop( const MultiLevelExitMutator::Entry & e ) { 41 return dynamic_cast< WhileStmt * >( e.get_controlStructure() ) 42 || dynamic_cast< ForStmt * >( e.get_controlStructure() ); 43 } 44 bool isSwitch( const MultiLevelExitMutator::Entry & e ) { 45 return dynamic_cast< SwitchStmt *>( e.get_controlStructure() ); 46 } 47 48 bool isBreakTarget( const MultiLevelExitMutator::Entry & e ) { 49 return isLoop( e ) || isSwitch( e ) 50 || dynamic_cast< CompoundStmt *>( e.get_controlStructure() ); 51 } 52 bool isContinueTarget( const MultiLevelExitMutator::Entry & e ) { 53 return isLoop( e ); 54 } 55 bool isFallthroughTarget( const MultiLevelExitMutator::Entry & e ) { 56 return dynamic_cast< CaseStmt *>( e.get_controlStructure() ); 57 } 58 bool isFallthroughDefaultTarget( const MultiLevelExitMutator::Entry & e ) { 59 return isSwitch( e ); 60 } 40 bool isLoop( const MLEMutator::Entry & e ) { return dynamic_cast< WhileStmt * >( e.get_controlStructure() ) || dynamic_cast< ForStmt * >( e.get_controlStructure() ); } 41 bool isSwitch( const MLEMutator::Entry & e ) { return dynamic_cast< SwitchStmt *>( e.get_controlStructure() ); } 42 43 bool isBreakTarget( const MLEMutator::Entry & e ) { return isLoop( e ) || isSwitch( e ) || dynamic_cast< CompoundStmt *>( e.get_controlStructure() ); } 44 bool isContinueTarget( const MLEMutator::Entry & e ) { return isLoop( e ); } 45 bool isFallthroughTarget( const MLEMutator::Entry & e ) { return dynamic_cast< CaseStmt *>( e.get_controlStructure() );; } 46 bool isFallthroughDefaultTarget( const MLEMutator::Entry & e ) { return isSwitch( e ); } 61 47 } // namespace 62 63 void MultiLevelExitMutator::premutate( FunctionDecl * ) {64 visit_children = false;65 }66 48 67 49 // break labels have to come after the statement they break out of, so mutate a statement, then if they inform us 68 50 // through the breakLabel field tha they need a place to jump to on a break statement, add the break label to the 69 51 // body of statements 70 void M ultiLevelExitMutator::fixBlock( std::list< Statement * > &kids, bool caseClause ) {52 void MLEMutator::fixBlock( std::list< Statement * > &kids, bool caseClause ) { 71 53 SemanticErrorException errors; 72 54 … … 99 81 } 100 82 101 void M ultiLevelExitMutator::premutate( CompoundStmt *cmpndStmt ) {83 void MLEMutator::premutate( CompoundStmt *cmpndStmt ) { 102 84 visit_children = false; 103 85 bool labeledBlock = !(cmpndStmt->labels.empty()); … … 136 118 } 137 119 } 138 assertf( false, "Could not find label '%s' on statement %s", 139 originalTarget.get_name().c_str(), toString( stmt ).c_str() ); 140 } 141 142 143 Statement *MultiLevelExitMutator::postmutate( BranchStmt *branchStmt ) 144 throw ( SemanticErrorException ) { 120 assertf( false, "Could not find label '%s' on statement %s", originalTarget.get_name().c_str(), toString( stmt ).c_str() ); 121 } 122 123 124 Statement *MLEMutator::postmutate( BranchStmt *branchStmt ) throw ( SemanticErrorException ) { 145 125 std::string originalTarget = branchStmt->originalTarget; 146 126 … … 250 230 } 251 231 252 Statement *MultiLevelExitMutator::mutateLoop( Statement *bodyLoop, Entry &e ) { 232 Statement *MLEMutator::mutateLoop( Statement *bodyLoop, Entry &e ) { 233 // ensure loop body is a block 234 CompoundStmt *newBody; 235 if ( ! (newBody = dynamic_cast<CompoundStmt *>( bodyLoop )) ) { 236 newBody = new CompoundStmt(); 237 newBody->get_kids().push_back( bodyLoop ); 238 } // if 239 253 240 // only generate these when needed 254 if( !e.isContUsed() && !e.isBreakUsed() ) return bodyLoop;255 256 // ensure loop body is a block257 CompoundStmt * newBody = new CompoundStmt();258 newBody->get_kids().push_back( bodyLoop );259 241 260 242 if ( e.isContUsed() ) { … … 273 255 274 256 template< typename LoopClass > 275 void M ultiLevelExitMutator::prehandleLoopStmt( LoopClass * loopStmt ) {257 void MLEMutator::prehandleLoopStmt( LoopClass * loopStmt ) { 276 258 // remember this as the most recent enclosing loop, then mutate the body of the loop -- this will determine 277 259 // whether brkLabel and contLabel are used with branch statements and will recursively do the same to nested … … 284 266 285 267 template< typename LoopClass > 286 Statement * M ultiLevelExitMutator::posthandleLoopStmt( LoopClass * loopStmt ) {268 Statement * MLEMutator::posthandleLoopStmt( LoopClass * loopStmt ) { 287 269 assert( ! enclosingControlStructures.empty() ); 288 270 Entry &e = enclosingControlStructures.back(); … … 295 277 } 296 278 297 void M ultiLevelExitMutator::premutate( WhileStmt * whileStmt ) {279 void MLEMutator::premutate( WhileStmt * whileStmt ) { 298 280 return prehandleLoopStmt( whileStmt ); 299 281 } 300 282 301 void M ultiLevelExitMutator::premutate( ForStmt * forStmt ) {283 void MLEMutator::premutate( ForStmt * forStmt ) { 302 284 return prehandleLoopStmt( forStmt ); 303 285 } 304 286 305 Statement * M ultiLevelExitMutator::postmutate( WhileStmt * whileStmt ) {287 Statement * MLEMutator::postmutate( WhileStmt * whileStmt ) { 306 288 return posthandleLoopStmt( whileStmt ); 307 289 } 308 290 309 Statement * M ultiLevelExitMutator::postmutate( ForStmt * forStmt ) {291 Statement * MLEMutator::postmutate( ForStmt * forStmt ) { 310 292 return posthandleLoopStmt( forStmt ); 311 293 } 312 294 313 void M ultiLevelExitMutator::premutate( IfStmt * ifStmt ) {295 void MLEMutator::premutate( IfStmt * ifStmt ) { 314 296 // generate a label for breaking out of a labeled if 315 297 bool labeledBlock = !(ifStmt->get_labels().empty()); … … 321 303 } 322 304 323 Statement * M ultiLevelExitMutator::postmutate( IfStmt * ifStmt ) {305 Statement * MLEMutator::postmutate( IfStmt * ifStmt ) { 324 306 bool labeledBlock = !(ifStmt->get_labels().empty()); 325 307 if ( labeledBlock ) { … … 331 313 } 332 314 333 void M ultiLevelExitMutator::premutate( TryStmt * tryStmt ) {315 void MLEMutator::premutate( TryStmt * tryStmt ) { 334 316 // generate a label for breaking out of a labeled if 335 317 bool labeledBlock = !(tryStmt->get_labels().empty()); … … 341 323 } 342 324 343 Statement * M ultiLevelExitMutator::postmutate( TryStmt * tryStmt ) {325 Statement * MLEMutator::postmutate( TryStmt * tryStmt ) { 344 326 bool labeledBlock = !(tryStmt->get_labels().empty()); 345 327 if ( labeledBlock ) { … … 351 333 } 352 334 353 void MultiLevelExitMutator::premutate( FinallyStmt * ) { 354 GuardAction([this, old = std::move(enclosingControlStructures)]() { 355 enclosingControlStructures = std::move(old); 356 }); 357 enclosingControlStructures = std::list<Entry>(); 358 GuardValue( inFinally ); 359 inFinally = true; 360 } 361 362 void MultiLevelExitMutator::premutate( ReturnStmt *returnStmt ) { 363 if ( inFinally ) { 364 SemanticError( returnStmt->location, "'return' may not appear in a finally clause" ); 365 } 366 } 367 368 void MultiLevelExitMutator::premutate( CaseStmt *caseStmt ) { 335 void MLEMutator::premutate( CaseStmt *caseStmt ) { 369 336 visit_children = false; 370 337 … … 405 372 } 406 373 407 void M ultiLevelExitMutator::premutate( SwitchStmt *switchStmt ) {374 void MLEMutator::premutate( SwitchStmt *switchStmt ) { 408 375 // generate a label for breaking out of a labeled switch 409 376 Label brkLabel = generator->newLabel("switchBreak", switchStmt); … … 431 398 } 432 399 433 Statement * M ultiLevelExitMutator::postmutate( SwitchStmt * switchStmt ) {400 Statement * MLEMutator::postmutate( SwitchStmt * switchStmt ) { 434 401 Entry &e = enclosingControlStructures.back(); 435 402 assert ( e == switchStmt ); -
src/ControlStruct/MLEMutator.h
r7030dab r71d6bd8 9 9 // Author : Rodolfo G. Esteves 10 10 // Created On : Mon May 18 07:44:20 2015 11 // Last Modified By : Andrew Beach12 // Last Modified On : Wed Jan 22 11:50:00 202013 // Update Count : 4 811 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Tue Oct 22 17:22:47 2019 13 // Update Count : 45 14 14 // 15 15 … … 30 30 class LabelGenerator; 31 31 32 class MultiLevelExitMutator : public WithVisitorRef<MultiLevelExitMutator>, 33 public WithShortCircuiting, public WithGuards { 32 class MLEMutator : public WithVisitorRef<MLEMutator>, public WithShortCircuiting, public WithGuards { 34 33 public: 35 34 class Entry; 36 MultiLevelExitMutator( std::map<Label, Statement *> *t, LabelGenerator *gen = 0 ) : 37 targetTable( t ), breakLabel(std::string("")), generator( gen ) {} 38 ~MultiLevelExitMutator(); 39 40 void premutate( FunctionDecl * ); 35 MLEMutator( std::map<Label, Statement *> *t, LabelGenerator *gen = 0 ) : targetTable( t ), breakLabel(std::string("")), generator( gen ) {} 36 ~MLEMutator(); 41 37 42 38 void premutate( CompoundStmt *cmpndStmt ); … … 51 47 void premutate( SwitchStmt *switchStmt ); 52 48 Statement * postmutate( SwitchStmt *switchStmt ); 53 void premutate( ReturnStmt *returnStmt );54 49 void premutate( TryStmt *tryStmt ); 55 50 Statement * postmutate( TryStmt *tryStmt ); 56 void premutate( FinallyStmt *finallyStmt );57 51 58 52 Statement *mutateLoop( Statement *bodyLoop, Entry &e ); … … 116 110 Label breakLabel; 117 111 LabelGenerator *generator; 118 bool inFinally = false;119 112 120 113 template< typename LoopClass > -
src/ControlStruct/Mutate.cc
r7030dab r71d6bd8 10 10 // Created On : Mon May 18 07:44:20 2015 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Sun Feb 16 03:22:07 202013 // Update Count : 1012 // Last Modified On : Thu Aug 4 11:39:08 2016 13 // Update Count : 9 14 14 // 15 15 … … 37 37 mutateAll( translationUnit, formut ); 38 38 } 39 } // namespace Co ntrolStruct39 } // namespace CodeGen 40 40 41 41 // Local Variables: // -
src/GenPoly/Box.cc
r7030dab r71d6bd8 10 10 // Created On : Mon May 18 07:44:20 2015 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Fri Dec 13 23:40:34 201913 // Update Count : 34 712 // Last Modified On : Wed Jun 21 15:49:59 2017 13 // Update Count : 346 14 14 // 15 15 … … 37 37 #include "InitTweak/InitTweak.h" // for getFunctionName, isAssignment 38 38 #include "Lvalue.h" // for generalizedLvalue 39 #include "Parser/LinkageSpec.h" // for C, Spec, Cforall, Intrinsic 39 40 #include "ResolvExpr/TypeEnvironment.h" // for EqvClass 40 41 #include "ResolvExpr/typeops.h" // for typesCompatible … … 43 44 #include "SymTab/Indexer.h" // for Indexer 44 45 #include "SymTab/Mangler.h" // for Mangler 45 #include "SynTree/LinkageSpec.h" // for C, Spec, Cforall, Intrinsic46 46 #include "SynTree/Attribute.h" // for Attribute 47 47 #include "SynTree/Constant.h" // for Constant -
src/GenPoly/Lvalue.cc
r7030dab r71d6bd8 10 10 // Created On : Mon May 18 07:44:20 2015 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Fri Dec 13 23:14:38 201913 // Update Count : 712 // Last Modified On : Fri Mar 17 09:11:18 2017 13 // Update Count : 5 14 14 // 15 15 … … 17 17 #include <string> // for string 18 18 19 #include "Common/UniqueName.h"20 19 #include "Common/PassVisitor.h" 21 20 #include "GenPoly.h" // for isPolyType … … 23 22 24 23 #include "InitTweak/InitTweak.h" 24 #include "Parser/LinkageSpec.h" // for Spec, isBuiltin, Intrinsic 25 25 #include "ResolvExpr/TypeEnvironment.h" // for AssertionSet, OpenVarSet 26 26 #include "ResolvExpr/Unify.h" // for unify 27 27 #include "ResolvExpr/typeops.h" 28 28 #include "SymTab/Indexer.h" // for Indexer 29 #include "SynTree/LinkageSpec.h" // for Spec, isBuiltin, Intrinsic30 29 #include "SynTree/Declaration.h" // for Declaration, FunctionDecl 31 30 #include "SynTree/Expression.h" // for Expression, ConditionalExpr … … 61 60 } 62 61 63 struct ReferenceConversions final : public WithStmtsToAdd , public WithGuards{62 struct ReferenceConversions final : public WithStmtsToAdd { 64 63 Expression * postmutate( CastExpr * castExpr ); 65 64 Expression * postmutate( AddressExpr * addrExpr ); … … 72 71 73 72 struct FixIntrinsicResult final : public WithGuards { 74 enum {75 NoSkip,76 Skip,77 SkipInProgress78 } skip = NoSkip;79 80 void premutate( AsmExpr * ) { GuardValue( skip ); skip = Skip; }81 void premutate( ApplicationExpr * ) { GuardValue( skip ); skip = (skip == Skip) ? SkipInProgress : NoSkip; }82 83 84 73 Expression * postmutate( ApplicationExpr * appExpr ); 85 74 void premutate( FunctionDecl * funcDecl ); … … 173 162 174 163 Expression * FixIntrinsicResult::postmutate( ApplicationExpr * appExpr ) { 175 if ( skip != SkipInProgress &&isIntrinsicReference( appExpr ) ) {164 if ( isIntrinsicReference( appExpr ) ) { 176 165 // eliminate reference types from intrinsic applications - now they return lvalues 177 166 ReferenceType * result = strict_dynamic_cast< ReferenceType * >( appExpr->result ); -
src/GenPoly/Specialize.cc
r7030dab r71d6bd8 10 10 // Created On : Mon May 18 07:44:20 2015 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Fri Dec 13 23:40:49 201913 // Update Count : 3 212 // Last Modified On : Thu Mar 16 07:53:59 2017 13 // Update Count : 31 14 14 // 15 15 … … 27 27 #include "GenPoly.h" // for getFunctionType 28 28 #include "InitTweak/InitTweak.h" // for isIntrinsicCallExpr 29 #include "Parser/LinkageSpec.h" // for C 29 30 #include "ResolvExpr/FindOpenVars.h" // for findOpenVars 30 31 #include "ResolvExpr/TypeEnvironment.h" // for OpenVarSet, AssertionSet 31 32 #include "Specialize.h" 32 #include "SynTree/LinkageSpec.h" // for C33 33 #include "SynTree/Attribute.h" // for Attribute 34 34 #include "SynTree/Declaration.h" // for FunctionDecl, DeclarationWit... -
src/InitTweak/FixGlobalInit.cc
r7030dab r71d6bd8 10 10 // Created On : Mon May 04 15:14:56 2016 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Fri Dec 13 23:41:10 201913 // Update Count : 1 912 // Last Modified On : Thu Mar 16 07:53:11 2017 13 // Update Count : 18 14 14 // 15 15 … … 23 23 #include "Common/UniqueName.h" // for UniqueName 24 24 #include "InitTweak.h" // for isIntrinsicSingleArgCallStmt 25 #include " SynTree/LinkageSpec.h"// for C25 #include "Parser/LinkageSpec.h" // for C 26 26 #include "SynTree/Attribute.h" // for Attribute 27 27 #include "SynTree/Constant.h" // for Constant -
src/InitTweak/FixInit.cc
r7030dab r71d6bd8 10 10 // Created On : Wed Jan 13 16:29:30 2016 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Sun Feb 16 04:17:07 202013 // Update Count : 8212 // Last Modified On : Wed Feb 13 18:15:56 2019 13 // Update Count : 76 14 14 // 15 15 #include "FixInit.h" … … 38 38 #include "GenPoly/GenPoly.h" // for getFunctionType 39 39 #include "InitTweak.h" // for getFunctionName, getCallArg 40 #include "Parser/LinkageSpec.h" // for C, Spec, Cforall, isBuiltin 40 41 #include "ResolvExpr/Resolver.h" // for findVoidExpression 41 42 #include "ResolvExpr/typeops.h" // for typesCompatible … … 43 44 #include "SymTab/Indexer.h" // for Indexer 44 45 #include "SymTab/Mangler.h" // for Mangler 45 #include "SynTree/LinkageSpec.h" // for C, Spec, Cforall, isBuiltin46 46 #include "SynTree/Attribute.h" // for Attribute 47 47 #include "SynTree/Constant.h" // for Constant … … 745 745 } 746 746 747 // to prevent warnings ( '_unq0'may be used uninitialized in this function),747 // to prevent warnings (ā_unq0ā may be used uninitialized in this function), 748 748 // insert an appropriate zero initializer for UniqueExpr temporaries. 749 749 Initializer * makeInit( Type * t ) { -
src/InitTweak/FixInit.h
r7030dab r71d6bd8 10 10 // Created On : Wed Jan 13 16:29:30 2016 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : S un Feb 16 07:54:50 202013 // Update Count : 812 // Last Modified On : Sat Jul 22 09:31:06 2017 13 // Update Count : 6 14 14 // 15 15 … … 22 22 23 23 namespace InitTweak { 24 /// replace constructor initializers with expression statements and unwrap basic C-style initializers 24 /// replace constructor initializers with expression statements 25 /// and unwrap basic C-style initializers 25 26 void fix( std::list< Declaration * > & translationUnit, bool inLibrary ); 26 27 } // namespace -
src/InitTweak/GenInit.cc
r7030dab r71d6bd8 10 10 // Created On : Mon May 18 07:44:20 2015 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Fri Dec 13 23:15:10 201913 // Update Count : 18 412 // Last Modified On : Fri Mar 17 09:12:36 2017 13 // Update Count : 183 14 14 // 15 15 #include "GenInit.h" … … 34 34 #include "GenPoly/ScopedSet.h" // for ScopedSet, ScopedSet<>::const_iter... 35 35 #include "InitTweak.h" // for isConstExpr, InitExpander, checkIn... 36 #include "Parser/LinkageSpec.h" // for isOverridable, C 36 37 #include "ResolvExpr/Resolver.h" 37 38 #include "SymTab/Autogen.h" // for genImplicitCall 38 39 #include "SymTab/Mangler.h" // for Mangler 39 #include "SynTree/LinkageSpec.h" // for isOverridable, C40 40 #include "SynTree/Declaration.h" // for ObjectDecl, DeclarationWithType 41 41 #include "SynTree/Expression.h" // for VariableExpr, UntypedExpr, Address... -
src/InitTweak/InitTweak.cc
r7030dab r71d6bd8 10 10 // Created On : Fri May 13 11:26:36 2016 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Fri Dec 13 23:15:52201913 // Update Count : 812 // Last Modified On : Thu Jul 25 22:21:48 2019 13 // Update Count : 7 14 14 // 15 15 … … 33 33 #include "GenPoly/GenPoly.h" // for getFunctionType 34 34 #include "InitTweak.h" 35 #include "Parser/LinkageSpec.h" // for Spec, isBuiltin, Intrinsic 35 36 #include "ResolvExpr/typeops.h" // for typesCompatibleIgnoreQualifiers 36 37 #include "SymTab/Autogen.h" 37 38 #include "SymTab/Indexer.h" // for Indexer 38 #include "SynTree/LinkageSpec.h" // for Spec, isBuiltin, Intrinsic39 39 #include "SynTree/Attribute.h" // for Attribute 40 40 #include "SynTree/Constant.h" // for Constant -
src/MakeLibCfa.cc
r7030dab r71d6bd8 10 10 // Created On : Sat May 16 10:33:33 2015 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Sun Feb 1 6 03:49:49 202013 // Update Count : 4 512 // Last Modified On : Sun Feb 17 21:08:09 2019 13 // Update Count : 41 14 14 // 15 15 … … 23 23 #include "Common/SemanticError.h" // for SemanticError 24 24 #include "Common/UniqueName.h" // for UniqueName 25 #include " SynTree/LinkageSpec.h"// for Spec, Intrinsic, C25 #include "Parser/LinkageSpec.h" // for Spec, Intrinsic, C 26 26 #include "SynTree/Declaration.h" // for FunctionDecl, ObjectDecl, Declara... 27 27 #include "SynTree/Expression.h" // for NameExpr, UntypedExpr, VariableExpr … … 96 96 97 97 FunctionDecl *funcDecl = origFuncDecl->clone(); 98 const CodeGen::OperatorInfo *opInfo;99 opInfo = CodeGen::operatorLookup( funcDecl->get_name());100 assert( opInfo);98 CodeGen::OperatorInfo opInfo; 99 bool lookResult = CodeGen::operatorLookup( funcDecl->get_name(), opInfo ); 100 assert( lookResult ); 101 101 assert( ! funcDecl->get_statements() ); 102 102 // build a recursive call - this is okay, as the call will actually be codegen'd using operator syntax … … 120 120 121 121 Statement * stmt = nullptr; 122 switch ( opInfo ->type ) {122 switch ( opInfo.type ) { 123 123 case CodeGen::OT_INDEX: 124 124 case CodeGen::OT_CALL: -
src/Makefile.in
r7030dab r71d6bd8 213 213 SymTab/Indexer.$(OBJEXT) SymTab/Mangler.$(OBJEXT) \ 214 214 SymTab/ManglerCommon.$(OBJEXT) SymTab/Validate.$(OBJEXT) 215 am__objects_7 = SynTree/AddressExpr.$(OBJEXT) \ 216 SynTree/AggregateDecl.$(OBJEXT) \ 217 SynTree/ApplicationExpr.$(OBJEXT) SynTree/ArrayType.$(OBJEXT) \ 218 SynTree/AttrType.$(OBJEXT) SynTree/Attribute.$(OBJEXT) \ 219 SynTree/BasicType.$(OBJEXT) SynTree/CommaExpr.$(OBJEXT) \ 220 SynTree/CompoundStmt.$(OBJEXT) SynTree/Constant.$(OBJEXT) \ 221 SynTree/DeclReplacer.$(OBJEXT) SynTree/DeclStmt.$(OBJEXT) \ 215 am__objects_7 = SynTree/Type.$(OBJEXT) SynTree/VoidType.$(OBJEXT) \ 216 SynTree/BasicType.$(OBJEXT) SynTree/PointerType.$(OBJEXT) \ 217 SynTree/ArrayType.$(OBJEXT) SynTree/ReferenceType.$(OBJEXT) \ 218 SynTree/FunctionType.$(OBJEXT) \ 219 SynTree/ReferenceToType.$(OBJEXT) SynTree/TupleType.$(OBJEXT) \ 220 SynTree/TypeofType.$(OBJEXT) SynTree/AttrType.$(OBJEXT) \ 221 SynTree/VarArgsType.$(OBJEXT) SynTree/ZeroOneType.$(OBJEXT) \ 222 SynTree/Constant.$(OBJEXT) SynTree/Expression.$(OBJEXT) \ 223 SynTree/TupleExpr.$(OBJEXT) SynTree/CommaExpr.$(OBJEXT) \ 224 SynTree/TypeExpr.$(OBJEXT) SynTree/ApplicationExpr.$(OBJEXT) \ 225 SynTree/AddressExpr.$(OBJEXT) SynTree/Statement.$(OBJEXT) \ 226 SynTree/CompoundStmt.$(OBJEXT) SynTree/DeclStmt.$(OBJEXT) \ 222 227 SynTree/Declaration.$(OBJEXT) \ 223 228 SynTree/DeclarationWithType.$(OBJEXT) \ 224 SynTree/Expression.$(OBJEXT) SynTree/FunctionDecl.$(OBJEXT) \ 225 SynTree/FunctionType.$(OBJEXT) SynTree/Initializer.$(OBJEXT) \ 226 SynTree/LinkageSpec.$(OBJEXT) SynTree/NamedTypeDecl.$(OBJEXT) \ 227 SynTree/ObjectDecl.$(OBJEXT) SynTree/PointerType.$(OBJEXT) \ 228 SynTree/ReferenceToType.$(OBJEXT) \ 229 SynTree/ReferenceType.$(OBJEXT) SynTree/Statement.$(OBJEXT) \ 230 SynTree/TupleExpr.$(OBJEXT) SynTree/TupleType.$(OBJEXT) \ 231 SynTree/Type.$(OBJEXT) SynTree/TypeDecl.$(OBJEXT) \ 232 SynTree/TypeExpr.$(OBJEXT) SynTree/TypeSubstitution.$(OBJEXT) \ 233 SynTree/TypeofType.$(OBJEXT) SynTree/VarArgsType.$(OBJEXT) \ 234 SynTree/VoidType.$(OBJEXT) SynTree/ZeroOneType.$(OBJEXT) 229 SynTree/ObjectDecl.$(OBJEXT) SynTree/FunctionDecl.$(OBJEXT) \ 230 SynTree/AggregateDecl.$(OBJEXT) \ 231 SynTree/NamedTypeDecl.$(OBJEXT) SynTree/TypeDecl.$(OBJEXT) \ 232 SynTree/Initializer.$(OBJEXT) \ 233 SynTree/TypeSubstitution.$(OBJEXT) SynTree/Attribute.$(OBJEXT) \ 234 SynTree/DeclReplacer.$(OBJEXT) 235 235 am__objects_8 = CompilationState.$(OBJEXT) $(am__objects_1) \ 236 236 $(am__objects_2) Concurrency/Keywords.$(OBJEXT) \ 237 237 $(am__objects_3) $(am__objects_4) GenPoly/GenPoly.$(OBJEXT) \ 238 238 GenPoly/Lvalue.$(OBJEXT) InitTweak/GenInit.$(OBJEXT) \ 239 InitTweak/InitTweak.$(OBJEXT) $(am__objects_5) \240 $(am__objects_ 6) SymTab/Demangle.$(OBJEXT) $(am__objects_7) \241 Tuples/TupleAssignment.$(OBJEXT) \239 InitTweak/InitTweak.$(OBJEXT) Parser/LinkageSpec.$(OBJEXT) \ 240 $(am__objects_5) $(am__objects_6) SymTab/Demangle.$(OBJEXT) \ 241 $(am__objects_7) Tuples/TupleAssignment.$(OBJEXT) \ 242 242 Tuples/TupleExpansion.$(OBJEXT) Tuples/Explode.$(OBJEXT) \ 243 243 Tuples/Tuples.$(OBJEXT) Validate/HandleAttributes.$(OBJEXT) \ … … 262 262 InitTweak/GenInit.$(OBJEXT) InitTweak/FixInit.$(OBJEXT) \ 263 263 InitTweak/FixGlobalInit.$(OBJEXT) \ 264 InitTweak/InitTweak.$(OBJEXT) Parser/ DeclarationNode.$(OBJEXT) \265 Parser/ ExpressionNode.$(OBJEXT) \266 Parser/ InitializerNode.$(OBJEXT) Parser/ParseNode.$(OBJEXT) \267 Parser/ StatementNode.$(OBJEXT) Parser/TypeData.$(OBJEXT) \268 Parser/ TypedefTable.$(OBJEXT) Parser/lex.$(OBJEXT) \269 Parser/ parser.$(OBJEXT) Parser/parserutility.$(OBJEXT) \264 InitTweak/InitTweak.$(OBJEXT) Parser/parser.$(OBJEXT) \ 265 Parser/lex.$(OBJEXT) Parser/TypedefTable.$(OBJEXT) \ 266 Parser/ParseNode.$(OBJEXT) Parser/DeclarationNode.$(OBJEXT) \ 267 Parser/ExpressionNode.$(OBJEXT) Parser/StatementNode.$(OBJEXT) \ 268 Parser/InitializerNode.$(OBJEXT) Parser/TypeData.$(OBJEXT) \ 269 Parser/LinkageSpec.$(OBJEXT) Parser/parserutility.$(OBJEXT) \ 270 270 $(am__objects_5) ResolvExpr/AlternativePrinter.$(OBJEXT) \ 271 271 $(am__objects_6) $(am__objects_7) \ … … 560 560 InitTweak/GenInit.cc InitTweak/FixInit.cc \ 561 561 InitTweak/FixGlobalInit.cc InitTweak/InitTweak.cc \ 562 Parser/ DeclarationNode.cc Parser/ExpressionNode.cc \563 Parser/ InitializerNode.cc Parser/ParseNode.cc \564 Parser/ StatementNode.cc Parser/TypeData.cc \565 Parser/ TypedefTable.cc Parser/lex.ll Parser/parser.yy\566 Parser/ parserutility.cc $(SRC_RESOLVEXPR)\567 ResolvExpr/AlternativePrinter.cc $(SRC_SYMTAB) $(SRC_SYNTREE)\568 Tuples/TupleAssignment.cc Tuples/TupleExpansion.cc \569 Tuples/ Explode.cc Tuples/Tuples.cc \562 Parser/parser.yy Parser/lex.ll Parser/TypedefTable.cc \ 563 Parser/ParseNode.cc Parser/DeclarationNode.cc \ 564 Parser/ExpressionNode.cc Parser/StatementNode.cc \ 565 Parser/InitializerNode.cc Parser/TypeData.cc \ 566 Parser/LinkageSpec.cc Parser/parserutility.cc \ 567 $(SRC_RESOLVEXPR) ResolvExpr/AlternativePrinter.cc \ 568 $(SRC_SYMTAB) $(SRC_SYNTREE) Tuples/TupleAssignment.cc \ 569 Tuples/TupleExpansion.cc Tuples/Explode.cc Tuples/Tuples.cc \ 570 570 Validate/HandleAttributes.cc Validate/FindSpecialDecls.cc \ 571 571 Virtual/ExpandCasts.cc … … 573 573 Concurrency/Keywords.cc $(SRC_COMMON) $(SRC_CONTROLSTRUCT) \ 574 574 GenPoly/GenPoly.cc GenPoly/Lvalue.cc InitTweak/GenInit.cc \ 575 InitTweak/InitTweak.cc $(SRC_RESOLVEXPR) $(SRC_SYMTAB) \ 576 SymTab/Demangle.cc $(SRC_SYNTREE) Tuples/TupleAssignment.cc \ 577 Tuples/TupleExpansion.cc Tuples/Explode.cc Tuples/Tuples.cc \ 575 InitTweak/InitTweak.cc Parser/LinkageSpec.cc $(SRC_RESOLVEXPR) \ 576 $(SRC_SYMTAB) SymTab/Demangle.cc $(SRC_SYNTREE) \ 577 Tuples/TupleAssignment.cc Tuples/TupleExpansion.cc \ 578 Tuples/Explode.cc Tuples/Tuples.cc \ 578 579 Validate/HandleAttributes.cc Validate/FindSpecialDecls.cc 579 580 MAINTAINERCLEANFILES = ${libdir}/${notdir ${cfa_cpplib_PROGRAMS}} … … 664 665 665 666 SRC_SYNTREE = \ 667 SynTree/Type.cc \ 668 SynTree/VoidType.cc \ 669 SynTree/BasicType.cc \ 670 SynTree/PointerType.cc \ 671 SynTree/ArrayType.cc \ 672 SynTree/ReferenceType.cc \ 673 SynTree/FunctionType.cc \ 674 SynTree/ReferenceToType.cc \ 675 SynTree/TupleType.cc \ 676 SynTree/TypeofType.cc \ 677 SynTree/AttrType.cc \ 678 SynTree/VarArgsType.cc \ 679 SynTree/ZeroOneType.cc \ 680 SynTree/Constant.cc \ 681 SynTree/Expression.cc \ 682 SynTree/TupleExpr.cc \ 683 SynTree/CommaExpr.cc \ 684 SynTree/TypeExpr.cc \ 685 SynTree/ApplicationExpr.cc \ 666 686 SynTree/AddressExpr.cc \ 667 SynTree/AggregateDecl.cc \ 668 SynTree/ApplicationExpr.cc \ 669 SynTree/ArrayType.cc \ 670 SynTree/AttrType.cc \ 671 SynTree/Attribute.cc \ 672 SynTree/BasicType.cc \ 673 SynTree/CommaExpr.cc \ 687 SynTree/Statement.cc \ 674 688 SynTree/CompoundStmt.cc \ 675 SynTree/Constant.cc \676 SynTree/DeclReplacer.cc \677 689 SynTree/DeclStmt.cc \ 678 690 SynTree/Declaration.cc \ 679 691 SynTree/DeclarationWithType.cc \ 680 SynTree/ Expression.cc \692 SynTree/ObjectDecl.cc \ 681 693 SynTree/FunctionDecl.cc \ 682 SynTree/FunctionType.cc \ 694 SynTree/AggregateDecl.cc \ 695 SynTree/NamedTypeDecl.cc \ 696 SynTree/TypeDecl.cc \ 683 697 SynTree/Initializer.cc \ 684 SynTree/LinkageSpec.cc \685 SynTree/NamedTypeDecl.cc \686 SynTree/ObjectDecl.cc \687 SynTree/PointerType.cc \688 SynTree/ReferenceToType.cc \689 SynTree/ReferenceType.cc \690 SynTree/Statement.cc \691 SynTree/TupleExpr.cc \692 SynTree/TupleType.cc \693 SynTree/Type.cc \694 SynTree/TypeDecl.cc \695 SynTree/TypeExpr.cc \696 698 SynTree/TypeSubstitution.cc \ 697 SynTree/TypeofType.cc \ 698 SynTree/VarArgsType.cc \ 699 SynTree/VoidType.cc \ 700 SynTree/ZeroOneType.cc 699 SynTree/Attribute.cc \ 700 SynTree/DeclReplacer.cc 701 701 702 702 … … 873 873 InitTweak/InitTweak.$(OBJEXT): InitTweak/$(am__dirstamp) \ 874 874 InitTweak/$(DEPDIR)/$(am__dirstamp) 875 Parser/$(am__dirstamp): 876 @$(MKDIR_P) Parser 877 @: > Parser/$(am__dirstamp) 878 Parser/$(DEPDIR)/$(am__dirstamp): 879 @$(MKDIR_P) Parser/$(DEPDIR) 880 @: > Parser/$(DEPDIR)/$(am__dirstamp) 881 Parser/LinkageSpec.$(OBJEXT): Parser/$(am__dirstamp) \ 882 Parser/$(DEPDIR)/$(am__dirstamp) 875 883 ResolvExpr/$(am__dirstamp): 876 884 @$(MKDIR_P) ResolvExpr … … 953 961 @$(MKDIR_P) SynTree/$(DEPDIR) 954 962 @: > SynTree/$(DEPDIR)/$(am__dirstamp) 963 SynTree/Type.$(OBJEXT): SynTree/$(am__dirstamp) \ 964 SynTree/$(DEPDIR)/$(am__dirstamp) 965 SynTree/VoidType.$(OBJEXT): SynTree/$(am__dirstamp) \ 966 SynTree/$(DEPDIR)/$(am__dirstamp) 967 SynTree/BasicType.$(OBJEXT): SynTree/$(am__dirstamp) \ 968 SynTree/$(DEPDIR)/$(am__dirstamp) 969 SynTree/PointerType.$(OBJEXT): SynTree/$(am__dirstamp) \ 970 SynTree/$(DEPDIR)/$(am__dirstamp) 971 SynTree/ArrayType.$(OBJEXT): SynTree/$(am__dirstamp) \ 972 SynTree/$(DEPDIR)/$(am__dirstamp) 973 SynTree/ReferenceType.$(OBJEXT): SynTree/$(am__dirstamp) \ 974 SynTree/$(DEPDIR)/$(am__dirstamp) 975 SynTree/FunctionType.$(OBJEXT): SynTree/$(am__dirstamp) \ 976 SynTree/$(DEPDIR)/$(am__dirstamp) 977 SynTree/ReferenceToType.$(OBJEXT): SynTree/$(am__dirstamp) \ 978 SynTree/$(DEPDIR)/$(am__dirstamp) 979 SynTree/TupleType.$(OBJEXT): SynTree/$(am__dirstamp) \ 980 SynTree/$(DEPDIR)/$(am__dirstamp) 981 SynTree/TypeofType.$(OBJEXT): SynTree/$(am__dirstamp) \ 982 SynTree/$(DEPDIR)/$(am__dirstamp) 983 SynTree/AttrType.$(OBJEXT): SynTree/$(am__dirstamp) \ 984 SynTree/$(DEPDIR)/$(am__dirstamp) 985 SynTree/VarArgsType.$(OBJEXT): SynTree/$(am__dirstamp) \ 986 SynTree/$(DEPDIR)/$(am__dirstamp) 987 SynTree/ZeroOneType.$(OBJEXT): SynTree/$(am__dirstamp) \ 988 SynTree/$(DEPDIR)/$(am__dirstamp) 989 SynTree/Constant.$(OBJEXT): SynTree/$(am__dirstamp) \ 990 SynTree/$(DEPDIR)/$(am__dirstamp) 991 SynTree/Expression.$(OBJEXT): SynTree/$(am__dirstamp) \ 992 SynTree/$(DEPDIR)/$(am__dirstamp) 993 SynTree/TupleExpr.$(OBJEXT): SynTree/$(am__dirstamp) \ 994 SynTree/$(DEPDIR)/$(am__dirstamp) 995 SynTree/CommaExpr.$(OBJEXT): SynTree/$(am__dirstamp) \ 996 SynTree/$(DEPDIR)/$(am__dirstamp) 997 SynTree/TypeExpr.$(OBJEXT): SynTree/$(am__dirstamp) \ 998 SynTree/$(DEPDIR)/$(am__dirstamp) 999 SynTree/ApplicationExpr.$(OBJEXT): SynTree/$(am__dirstamp) \ 1000 SynTree/$(DEPDIR)/$(am__dirstamp) 955 1001 SynTree/AddressExpr.$(OBJEXT): SynTree/$(am__dirstamp) \ 956 1002 SynTree/$(DEPDIR)/$(am__dirstamp) 1003 SynTree/Statement.$(OBJEXT): SynTree/$(am__dirstamp) \ 1004 SynTree/$(DEPDIR)/$(am__dirstamp) 1005 SynTree/CompoundStmt.$(OBJEXT): SynTree/$(am__dirstamp) \ 1006 SynTree/$(DEPDIR)/$(am__dirstamp) 1007 SynTree/DeclStmt.$(OBJEXT): SynTree/$(am__dirstamp) \ 1008 SynTree/$(DEPDIR)/$(am__dirstamp) 1009 SynTree/Declaration.$(OBJEXT): SynTree/$(am__dirstamp) \ 1010 SynTree/$(DEPDIR)/$(am__dirstamp) 1011 SynTree/DeclarationWithType.$(OBJEXT): SynTree/$(am__dirstamp) \ 1012 SynTree/$(DEPDIR)/$(am__dirstamp) 1013 SynTree/ObjectDecl.$(OBJEXT): SynTree/$(am__dirstamp) \ 1014 SynTree/$(DEPDIR)/$(am__dirstamp) 1015 SynTree/FunctionDecl.$(OBJEXT): SynTree/$(am__dirstamp) \ 1016 SynTree/$(DEPDIR)/$(am__dirstamp) 957 1017 SynTree/AggregateDecl.$(OBJEXT): SynTree/$(am__dirstamp) \ 958 1018 SynTree/$(DEPDIR)/$(am__dirstamp) 959 SynTree/ApplicationExpr.$(OBJEXT): SynTree/$(am__dirstamp) \ 960 SynTree/$(DEPDIR)/$(am__dirstamp) 961 SynTree/ArrayType.$(OBJEXT): SynTree/$(am__dirstamp) \ 962 SynTree/$(DEPDIR)/$(am__dirstamp) 963 SynTree/AttrType.$(OBJEXT): SynTree/$(am__dirstamp) \ 1019 SynTree/NamedTypeDecl.$(OBJEXT): SynTree/$(am__dirstamp) \ 1020 SynTree/$(DEPDIR)/$(am__dirstamp) 1021 SynTree/TypeDecl.$(OBJEXT): SynTree/$(am__dirstamp) \ 1022 SynTree/$(DEPDIR)/$(am__dirstamp) 1023 SynTree/Initializer.$(OBJEXT): SynTree/$(am__dirstamp) \ 1024 SynTree/$(DEPDIR)/$(am__dirstamp) 1025 SynTree/TypeSubstitution.$(OBJEXT): SynTree/$(am__dirstamp) \ 964 1026 SynTree/$(DEPDIR)/$(am__dirstamp) 965 1027 SynTree/Attribute.$(OBJEXT): SynTree/$(am__dirstamp) \ 966 1028 SynTree/$(DEPDIR)/$(am__dirstamp) 967 SynTree/BasicType.$(OBJEXT): SynTree/$(am__dirstamp) \968 SynTree/$(DEPDIR)/$(am__dirstamp)969 SynTree/CommaExpr.$(OBJEXT): SynTree/$(am__dirstamp) \970 SynTree/$(DEPDIR)/$(am__dirstamp)971 SynTree/CompoundStmt.$(OBJEXT): SynTree/$(am__dirstamp) \972 SynTree/$(DEPDIR)/$(am__dirstamp)973 SynTree/Constant.$(OBJEXT): SynTree/$(am__dirstamp) \974 SynTree/$(DEPDIR)/$(am__dirstamp)975 1029 SynTree/DeclReplacer.$(OBJEXT): SynTree/$(am__dirstamp) \ 976 SynTree/$(DEPDIR)/$(am__dirstamp)977 SynTree/DeclStmt.$(OBJEXT): SynTree/$(am__dirstamp) \978 SynTree/$(DEPDIR)/$(am__dirstamp)979 SynTree/Declaration.$(OBJEXT): SynTree/$(am__dirstamp) \980 SynTree/$(DEPDIR)/$(am__dirstamp)981 SynTree/DeclarationWithType.$(OBJEXT): SynTree/$(am__dirstamp) \982 SynTree/$(DEPDIR)/$(am__dirstamp)983 SynTree/Expression.$(OBJEXT): SynTree/$(am__dirstamp) \984 SynTree/$(DEPDIR)/$(am__dirstamp)985 SynTree/FunctionDecl.$(OBJEXT): SynTree/$(am__dirstamp) \986 SynTree/$(DEPDIR)/$(am__dirstamp)987 SynTree/FunctionType.$(OBJEXT): SynTree/$(am__dirstamp) \988 SynTree/$(DEPDIR)/$(am__dirstamp)989 SynTree/Initializer.$(OBJEXT): SynTree/$(am__dirstamp) \990 SynTree/$(DEPDIR)/$(am__dirstamp)991 SynTree/LinkageSpec.$(OBJEXT): SynTree/$(am__dirstamp) \992 SynTree/$(DEPDIR)/$(am__dirstamp)993 SynTree/NamedTypeDecl.$(OBJEXT): SynTree/$(am__dirstamp) \994 SynTree/$(DEPDIR)/$(am__dirstamp)995 SynTree/ObjectDecl.$(OBJEXT): SynTree/$(am__dirstamp) \996 SynTree/$(DEPDIR)/$(am__dirstamp)997 SynTree/PointerType.$(OBJEXT): SynTree/$(am__dirstamp) \998 SynTree/$(DEPDIR)/$(am__dirstamp)999 SynTree/ReferenceToType.$(OBJEXT): SynTree/$(am__dirstamp) \1000 SynTree/$(DEPDIR)/$(am__dirstamp)1001 SynTree/ReferenceType.$(OBJEXT): SynTree/$(am__dirstamp) \1002 SynTree/$(DEPDIR)/$(am__dirstamp)1003 SynTree/Statement.$(OBJEXT): SynTree/$(am__dirstamp) \1004 SynTree/$(DEPDIR)/$(am__dirstamp)1005 SynTree/TupleExpr.$(OBJEXT): SynTree/$(am__dirstamp) \1006 SynTree/$(DEPDIR)/$(am__dirstamp)1007 SynTree/TupleType.$(OBJEXT): SynTree/$(am__dirstamp) \1008 SynTree/$(DEPDIR)/$(am__dirstamp)1009 SynTree/Type.$(OBJEXT): SynTree/$(am__dirstamp) \1010 SynTree/$(DEPDIR)/$(am__dirstamp)1011 SynTree/TypeDecl.$(OBJEXT): SynTree/$(am__dirstamp) \1012 SynTree/$(DEPDIR)/$(am__dirstamp)1013 SynTree/TypeExpr.$(OBJEXT): SynTree/$(am__dirstamp) \1014 SynTree/$(DEPDIR)/$(am__dirstamp)1015 SynTree/TypeSubstitution.$(OBJEXT): SynTree/$(am__dirstamp) \1016 SynTree/$(DEPDIR)/$(am__dirstamp)1017 SynTree/TypeofType.$(OBJEXT): SynTree/$(am__dirstamp) \1018 SynTree/$(DEPDIR)/$(am__dirstamp)1019 SynTree/VarArgsType.$(OBJEXT): SynTree/$(am__dirstamp) \1020 SynTree/$(DEPDIR)/$(am__dirstamp)1021 SynTree/VoidType.$(OBJEXT): SynTree/$(am__dirstamp) \1022 SynTree/$(DEPDIR)/$(am__dirstamp)1023 SynTree/ZeroOneType.$(OBJEXT): SynTree/$(am__dirstamp) \1024 1030 SynTree/$(DEPDIR)/$(am__dirstamp) 1025 1031 Tuples/$(am__dirstamp): … … 1138 1144 InitTweak/FixGlobalInit.$(OBJEXT): InitTweak/$(am__dirstamp) \ 1139 1145 InitTweak/$(DEPDIR)/$(am__dirstamp) 1140 Parser/$(am__dirstamp): 1141 @$(MKDIR_P) Parser 1142 @: > Parser/$(am__dirstamp) 1143 Parser/$(DEPDIR)/$(am__dirstamp): 1144 @$(MKDIR_P) Parser/$(DEPDIR) 1145 @: > Parser/$(DEPDIR)/$(am__dirstamp) 1146 Parser/parser.hh: Parser/parser.cc 1147 @if test ! -f $@; then rm -f Parser/parser.cc; else :; fi 1148 @if test ! -f $@; then $(MAKE) $(AM_MAKEFLAGS) Parser/parser.cc; else :; fi 1149 Parser/parser.$(OBJEXT): Parser/$(am__dirstamp) \ 1150 Parser/$(DEPDIR)/$(am__dirstamp) 1151 Parser/lex.$(OBJEXT): Parser/$(am__dirstamp) \ 1152 Parser/$(DEPDIR)/$(am__dirstamp) 1153 Parser/TypedefTable.$(OBJEXT): Parser/$(am__dirstamp) \ 1154 Parser/$(DEPDIR)/$(am__dirstamp) 1155 Parser/ParseNode.$(OBJEXT): Parser/$(am__dirstamp) \ 1156 Parser/$(DEPDIR)/$(am__dirstamp) 1146 1157 Parser/DeclarationNode.$(OBJEXT): Parser/$(am__dirstamp) \ 1147 1158 Parser/$(DEPDIR)/$(am__dirstamp) 1148 1159 Parser/ExpressionNode.$(OBJEXT): Parser/$(am__dirstamp) \ 1149 1160 Parser/$(DEPDIR)/$(am__dirstamp) 1161 Parser/StatementNode.$(OBJEXT): Parser/$(am__dirstamp) \ 1162 Parser/$(DEPDIR)/$(am__dirstamp) 1150 1163 Parser/InitializerNode.$(OBJEXT): Parser/$(am__dirstamp) \ 1151 1164 Parser/$(DEPDIR)/$(am__dirstamp) 1152 Parser/ParseNode.$(OBJEXT): Parser/$(am__dirstamp) \1153 Parser/$(DEPDIR)/$(am__dirstamp)1154 Parser/StatementNode.$(OBJEXT): Parser/$(am__dirstamp) \1155 Parser/$(DEPDIR)/$(am__dirstamp)1156 1165 Parser/TypeData.$(OBJEXT): Parser/$(am__dirstamp) \ 1157 Parser/$(DEPDIR)/$(am__dirstamp)1158 Parser/TypedefTable.$(OBJEXT): Parser/$(am__dirstamp) \1159 Parser/$(DEPDIR)/$(am__dirstamp)1160 Parser/lex.$(OBJEXT): Parser/$(am__dirstamp) \1161 Parser/$(DEPDIR)/$(am__dirstamp)1162 Parser/parser.hh: Parser/parser.cc1163 @if test ! -f $@; then rm -f Parser/parser.cc; else :; fi1164 @if test ! -f $@; then $(MAKE) $(AM_MAKEFLAGS) Parser/parser.cc; else :; fi1165 Parser/parser.$(OBJEXT): Parser/$(am__dirstamp) \1166 1166 Parser/$(DEPDIR)/$(am__dirstamp) 1167 1167 Parser/parserutility.$(OBJEXT): Parser/$(am__dirstamp) \ … … 1275 1275 @AMDEP_TRUE@@am__include@ @am__quote@Parser/$(DEPDIR)/ExpressionNode.Po@am__quote@ 1276 1276 @AMDEP_TRUE@@am__include@ @am__quote@Parser/$(DEPDIR)/InitializerNode.Po@am__quote@ 1277 @AMDEP_TRUE@@am__include@ @am__quote@Parser/$(DEPDIR)/LinkageSpec.Po@am__quote@ 1277 1278 @AMDEP_TRUE@@am__include@ @am__quote@Parser/$(DEPDIR)/ParseNode.Po@am__quote@ 1278 1279 @AMDEP_TRUE@@am__include@ @am__quote@Parser/$(DEPDIR)/StatementNode.Po@am__quote@ … … 1333 1334 @AMDEP_TRUE@@am__include@ @am__quote@SynTree/$(DEPDIR)/FunctionType.Po@am__quote@ 1334 1335 @AMDEP_TRUE@@am__include@ @am__quote@SynTree/$(DEPDIR)/Initializer.Po@am__quote@ 1335 @AMDEP_TRUE@@am__include@ @am__quote@SynTree/$(DEPDIR)/LinkageSpec.Po@am__quote@1336 1336 @AMDEP_TRUE@@am__include@ @am__quote@SynTree/$(DEPDIR)/NamedTypeDecl.Po@am__quote@ 1337 1337 @AMDEP_TRUE@@am__include@ @am__quote@SynTree/$(DEPDIR)/ObjectDecl.Po@am__quote@ -
src/Parser/DeclarationNode.cc
r7030dab r71d6bd8 10 10 // Created On : Sat May 16 12:34:05 2015 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Mon Dec 16 15:32:22201913 // Update Count : 11 3312 // Last Modified On : Thu Jul 25 22:17:10 2019 13 // Update Count : 1116 14 14 // 15 15 … … 24 24 #include "Common/UniqueName.h" // for UniqueName 25 25 #include "Common/utility.h" // for maybeClone, maybeBuild, CodeLocation 26 #include "Parser/LinkageSpec.h" // for Spec, linkageName, Cforall 26 27 #include "Parser/ParseNode.h" // for DeclarationNode, ExpressionNode 27 #include "SynTree/LinkageSpec.h" // for Spec, linkageName, Cforall28 28 #include "SynTree/Attribute.h" // for Attribute 29 29 #include "SynTree/Declaration.h" // for TypeDecl, ObjectDecl, Declaration … … 47 47 const char * DeclarationNode::signednessNames[] = { "signed", "unsigned", "NoSignednessNames" }; 48 48 const char * DeclarationNode::lengthNames[] = { "short", "long", "long long", "NoLengthNames" }; 49 const char * DeclarationNode::aggregateNames[] = { "struct", "union", "trait", "coroutine", "monitor", "thread", "NoAggregateNames" }; 50 const char * DeclarationNode::typeClassNames[] = { "otype", "dtype", "ftype", "NoTypeClassNames" }; 49 51 const char * DeclarationNode::builtinTypeNames[] = { "__builtin_va_list", "__auto_type", "zero_t", "one_t", "NoBuiltinTypeNames" }; 50 52 … … 57 59 58 60 // variable.name = nullptr; 59 variable.tyClass = TypeDecl::NUMBER_OF_KINDS;61 variable.tyClass = NoTypeClass; 60 62 variable.assertions = nullptr; 61 63 variable.initializer = nullptr; … … 133 135 134 136 if ( linkage != LinkageSpec::Cforall ) { 135 os << LinkageSpec:: name( linkage ) << " ";137 os << LinkageSpec::linkageName( linkage ) << " "; 136 138 } // if 137 139 … … 265 267 } 266 268 267 DeclarationNode * DeclarationNode::newAggregate( Aggregate Decl::Aggregatekind, const string * name, ExpressionNode * actuals, DeclarationNode * fields, bool body ) {269 DeclarationNode * DeclarationNode::newAggregate( Aggregate kind, const string * name, ExpressionNode * actuals, DeclarationNode * fields, bool body ) { 268 270 DeclarationNode * newnode = new DeclarationNode; 269 271 newnode->type = new TypeData( TypeData::Aggregate ); … … 311 313 } // DeclarationNode::newFromTypeGen 312 314 313 DeclarationNode * DeclarationNode::newTypeParam( Type Decl::Kindtc, const string * name ) {315 DeclarationNode * DeclarationNode::newTypeParam( TypeClass tc, const string * name ) { 314 316 DeclarationNode * newnode = new DeclarationNode; 315 317 newnode->type = nullptr; … … 326 328 newnode->type = new TypeData( TypeData::Aggregate ); 327 329 newnode->type->aggregate.name = name; 328 newnode->type->aggregate.kind = AggregateDecl::Trait;330 newnode->type->aggregate.kind = Trait; 329 331 newnode->type->aggregate.params = params; 330 332 newnode->type->aggregate.fields = asserts; … … 336 338 newnode->type = new TypeData( TypeData::AggregateInst ); 337 339 newnode->type->aggInst.aggregate = new TypeData( TypeData::Aggregate ); 338 newnode->type->aggInst.aggregate->aggregate.kind = AggregateDecl::Trait;340 newnode->type->aggInst.aggregate->aggregate.kind = Trait; 339 341 newnode->type->aggInst.aggregate->aggregate.name = name; 340 342 newnode->type->aggInst.params = params; … … 669 671 670 672 DeclarationNode * DeclarationNode::addAssertions( DeclarationNode * assertions ) { 671 if ( variable.tyClass != TypeDecl::NUMBER_OF_KINDS) {673 if ( variable.tyClass != NoTypeClass ) { 672 674 if ( variable.assertions ) { 673 675 variable.assertions->appendList( assertions ); … … 874 876 875 877 DeclarationNode * DeclarationNode::addTypeInitializer( DeclarationNode * init ) { 876 assertf( variable.tyClass != TypeDecl::NUMBER_OF_KINDS, "Called addTypeInitializer on something that isn't a type variable." );878 assertf( variable.tyClass != NoTypeClass, "Called addTypeInitializer on something that isn't a type variable." ); 877 879 variable.initializer = init; 878 880 return this; … … 1073 1075 } // if 1074 1076 1075 if ( variable.tyClass != TypeDecl::NUMBER_OF_KINDS) {1077 if ( variable.tyClass != NoTypeClass ) { 1076 1078 // otype is internally converted to dtype + otype parameters 1077 1079 static const TypeDecl::Kind kindMap[] = { TypeDecl::Dtype, TypeDecl::Dtype, TypeDecl::Ftype, TypeDecl::Ttype }; 1078 static_assert( sizeof(kindMap)/sizeof(kindMap[0]) == TypeDecl::NUMBER_OF_KINDS, "DeclarationNode::build: kindMap is out of sync." );1080 assertf( sizeof(kindMap)/sizeof(kindMap[0]) == NoTypeClass, "DeclarationNode::build: kindMap is out of sync." ); 1079 1081 assertf( variable.tyClass < sizeof(kindMap)/sizeof(kindMap[0]), "Variable's tyClass is out of bounds." ); 1080 TypeDecl * ret = new TypeDecl( *name, Type::StorageClasses(), nullptr, kindMap[ variable.tyClass ], variable.tyClass == TypeDecl::Otype, variable.initializer ? variable.initializer->buildType() : nullptr );1082 TypeDecl * ret = new TypeDecl( *name, Type::StorageClasses(), nullptr, kindMap[ variable.tyClass ], variable.tyClass == Otype, variable.initializer ? variable.initializer->buildType() : nullptr ); 1081 1083 buildList( variable.assertions, ret->get_assertions() ); 1082 1084 return ret; -
src/Parser/ExpressionNode.cc
r7030dab r71d6bd8 10 10 // Created On : Sat May 16 13:17:07 2015 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Wed Dec 18 21:14:58201913 // Update Count : 9 8112 // Last Modified On : Sun Aug 4 20:57:55 2019 13 // Update Count : 978 14 14 // 15 15 … … 265 265 static const BasicType::Kind kind[2][12] = { 266 266 { BasicType::Float, BasicType::Double, BasicType::LongDouble, BasicType::uuFloat80, BasicType::uuFloat128, BasicType::uFloat16, BasicType::uFloat32, BasicType::uFloat32x, BasicType::uFloat64, BasicType::uFloat64x, BasicType::uFloat128, BasicType::uFloat128x }, 267 { BasicType::FloatComplex, BasicType::DoubleComplex, BasicType::LongDoubleComplex, BasicType::NUMBER_OF_BASIC_TYPES, BasicType::NUMBER_OF_BASIC_TYPES, BasicType::uFloat16Complex, BasicType::uFloat32Complex, BasicType::uFloat32xComplex, BasicType::uFloat64Complex, BasicType::uFloat64xComplex, BasicType::uFloat128Complex, BasicType::uFloat128xComplex },267 { BasicType::FloatComplex, BasicType::DoubleComplex, BasicType::LongDoubleComplex, (BasicType::Kind)-1, (BasicType::Kind)-1, BasicType::uFloat16Complex, BasicType::uFloat32Complex, BasicType::uFloat32xComplex, BasicType::uFloat64Complex, BasicType::uFloat64xComplex, BasicType::uFloat128Complex, BasicType::uFloat128xComplex }, 268 268 }; 269 269 … … 374 374 375 375 Expression * build_field_name_FLOATING_DECIMALconstant( const string & str ) { 376 if ( str[str.size() -1] != '.' ) SemanticError( yylloc, "invalid tuple index " + str );376 if ( str[str.size()-1] != '.' ) SemanticError( yylloc, "invalid tuple index " + str ); 377 377 Expression * ret = build_constantInteger( *new string( str.substr( 0, str.size()-1 ) ) ); 378 378 delete &str; … … 434 434 } // build_cast 435 435 436 Expression * build_keyword_cast( AggregateDecl::Aggregatetarget, ExpressionNode * expr_node ) {436 Expression * build_keyword_cast( KeywordCastExpr::Target target, ExpressionNode * expr_node ) { 437 437 return new KeywordCastExpr( maybeMoveBuild< Expression >(expr_node), target ); 438 438 } -
src/Parser/ParseNode.h
r7030dab r71d6bd8 10 10 // Created On : Sat May 16 13:28:16 2015 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Fri Feb 7 17:56:02 202013 // Update Count : 8 9112 // Last Modified On : Thu Jul 25 22:17:10 2019 13 // Update Count : 876 14 14 // 15 15 … … 28 28 #include "Common/UniqueName.h" // for UniqueName 29 29 #include "Common/utility.h" // for maybeClone, maybeBuild 30 #include "SynTree/LinkageSpec.h" // for Spec 31 #include "SynTree/Declaration.h" // for Aggregate 30 #include "Parser/LinkageSpec.h" // for Spec 32 31 #include "SynTree/Expression.h" // for Expression, ConstantExpr (ptr only) 33 32 #include "SynTree/Label.h" // for Label … … 185 184 186 185 Expression * build_cast( DeclarationNode * decl_node, ExpressionNode * expr_node ); 187 Expression * build_keyword_cast( AggregateDecl::Aggregatetarget, ExpressionNode * expr_node );186 Expression * build_keyword_cast( KeywordCastExpr::Target target, ExpressionNode * expr_node ); 188 187 Expression * build_virtual_cast( DeclarationNode * decl_node, ExpressionNode * expr_node ); 189 188 Expression * build_fieldSel( ExpressionNode * expr_node, Expression * member ); … … 218 217 enum Length { Short, Long, LongLong, NoLength }; 219 218 static const char * lengthNames[]; 219 enum Aggregate { Struct, Union, Exception, Trait, Coroutine, Monitor, Thread, NoAggregate }; 220 static const char * aggregateNames[]; 221 enum TypeClass { Otype, Dtype, Ftype, Ttype, NoTypeClass }; 222 static const char * typeClassNames[]; 220 223 enum BuiltinType { Valist, AutoType, Zero, One, NoBuiltinType }; 221 224 static const char * builtinTypeNames[]; … … 234 237 static DeclarationNode * newQualifiedType( DeclarationNode *, DeclarationNode * ); 235 238 static DeclarationNode * newFunction( const std::string * name, DeclarationNode * ret, DeclarationNode * param, StatementNode * body ); 236 static DeclarationNode * newAggregate( Aggregate Decl::Aggregatekind, const std::string * name, ExpressionNode * actuals, DeclarationNode * fields, bool body );239 static DeclarationNode * newAggregate( Aggregate kind, const std::string * name, ExpressionNode * actuals, DeclarationNode * fields, bool body ); 237 240 static DeclarationNode * newEnum( const std::string * name, DeclarationNode * constants, bool body ); 238 241 static DeclarationNode * newEnumConstant( const std::string * name, ExpressionNode * constant ); 239 242 static DeclarationNode * newName( const std::string * ); 240 243 static DeclarationNode * newFromTypeGen( const std::string *, ExpressionNode * params ); 241 static DeclarationNode * newTypeParam( Type Decl::Kind, const std::string * );244 static DeclarationNode * newTypeParam( TypeClass, const std::string * ); 242 245 static DeclarationNode * newTrait( const std::string * name, DeclarationNode * params, DeclarationNode * asserts ); 243 246 static DeclarationNode * newTraitUse( const std::string * name, ExpressionNode * params ); … … 309 312 struct Variable_t { 310 313 // const std::string * name; 311 TypeDecl::KindtyClass;314 DeclarationNode::TypeClass tyClass; 312 315 DeclarationNode * assertions; 313 316 DeclarationNode * initializer; … … 428 431 Statement * build_asm( bool voltile, Expression * instruction, ExpressionNode * output = nullptr, ExpressionNode * input = nullptr, ExpressionNode * clobber = nullptr, LabelNode * gotolabels = nullptr ); 429 432 Statement * build_directive( std::string * directive ); 430 SuspendStmt * build_suspend( StatementNode *, SuspendStmt::Type = SuspendStmt::None);431 433 WaitForStmt * build_waitfor( ExpressionNode * target, StatementNode * stmt, ExpressionNode * when ); 432 434 WaitForStmt * build_waitfor( ExpressionNode * target, StatementNode * stmt, ExpressionNode * when, WaitForStmt * existing ); … … 450 452 * out++ = result; 451 453 } else { 452 SemanticError( cur->location, "type specifier declaration in forall clause is currently unimplemented.");454 assertf(false, "buildList unknown type"); 453 455 } // if 454 456 } catch( SemanticErrorException & e ) { -
src/Parser/ParserTypes.h
r7030dab r71d6bd8 10 10 // Created On : Sat Sep 22 08:58:10 2001 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Sat Feb 15 11:04:40 202013 // Update Count : 35 112 // Last Modified On : Sat Jul 22 09:33:28 2017 13 // Update Count : 350 14 14 // 15 15 … … 27 27 // current location in the input 28 28 extern int yylineno; 29 extern char * 29 extern char *yyfilename; 30 30 31 31 struct Location { 32 char * 32 char *file; 33 33 int line; 34 34 }; // Location 35 35 36 36 struct Token { 37 std::string * 37 std::string *str; // must be pointer as used in union 38 38 Location loc; 39 39 -
src/Parser/StatementNode.cc
r7030dab r71d6bd8 249 249 } // build_finally 250 250 251 SuspendStmt * build_suspend( StatementNode * then, SuspendStmt::Type type ) {252 auto node = new SuspendStmt();253 254 node->type = type;255 256 std::list< Statement * > stmts;257 buildMoveList< Statement, StatementNode >( then, stmts );258 if(!stmts.empty()) {259 assert( stmts.size() == 1 );260 node->then = dynamic_cast< CompoundStmt * >( stmts.front() );261 }262 263 return node;264 }265 266 251 WaitForStmt * build_waitfor( ExpressionNode * targetExpr, StatementNode * stmt, ExpressionNode * when ) { 267 252 auto node = new WaitForStmt(); -
src/Parser/TypeData.cc
r7030dab r71d6bd8 10 10 // Created On : Sat May 16 15:12:51 2015 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Mon Dec 16 07:56:46201913 // Update Count : 6 6212 // Last Modified On : Wed Feb 13 18:16:23 2019 13 // Update Count : 649 14 14 // 15 15 … … 67 67 case Aggregate: 68 68 // aggregate = new Aggregate_t; 69 aggregate.kind = AggregateDecl::NoAggregate;69 aggregate.kind = DeclarationNode::NoAggregate; 70 70 aggregate.name = nullptr; 71 71 aggregate.params = nullptr; … … 345 345 break; 346 346 case Aggregate: 347 os << AggregateDecl::aggrString( aggregate.kind )<< ' ' << *aggregate.name << endl;347 os << DeclarationNode::aggregateNames[ aggregate.kind ] << ' ' << *aggregate.name << endl; 348 348 if ( aggregate.params ) { 349 349 os << string( indent + 2, ' ' ) << "with type parameters" << endl; … … 489 489 for ( typename ForallList::iterator i = outputList.begin(); i != outputList.end(); ++i, n = (DeclarationNode*)n->get_next() ) { 490 490 TypeDecl * td = static_cast<TypeDecl *>(*i); 491 if ( n->variable.tyClass == TypeDecl::Otype ) {491 if ( n->variable.tyClass == DeclarationNode::Otype ) { 492 492 // add assertion parameters to `type' tyvars in reverse order 493 493 // add dtor: void ^?{}(T *) … … 522 522 switch ( td->kind ) { 523 523 case TypeData::Unknown: 524 // fill in implicit int525 return new BasicType( buildQualifiers( td ), BasicType::SignedInt );524 // fill in implicit int 525 return new BasicType( buildQualifiers( td ), BasicType::SignedInt ); 526 526 case TypeData::Basic: 527 return buildBasicType( td );527 return buildBasicType( td ); 528 528 case TypeData::Pointer: 529 return buildPointer( td );529 return buildPointer( td ); 530 530 case TypeData::Array: 531 return buildArray( td );531 return buildArray( td ); 532 532 case TypeData::Reference: 533 return buildReference( td );533 return buildReference( td ); 534 534 case TypeData::Function: 535 return buildFunction( td );535 return buildFunction( td ); 536 536 case TypeData::AggregateInst: 537 return buildAggInst( td );537 return buildAggInst( td ); 538 538 case TypeData::EnumConstant: 539 // the name gets filled in later -- by SymTab::Validate540 return new EnumInstType( buildQualifiers( td ), "" );539 // the name gets filled in later -- by SymTab::Validate 540 return new EnumInstType( buildQualifiers( td ), "" ); 541 541 case TypeData::SymbolicInst: 542 return buildSymbolicInst( td );542 return buildSymbolicInst( td ); 543 543 case TypeData::Tuple: 544 return buildTuple( td );544 return buildTuple( td ); 545 545 case TypeData::Typeof: 546 546 case TypeData::Basetypeof: 547 return buildTypeof( td );547 return buildTypeof( td ); 548 548 case TypeData::Builtin: 549 switch ( td->builtintype ) { 550 case DeclarationNode::Zero: 551 return new ZeroType( noQualifiers ); 552 case DeclarationNode::One: 553 return new OneType( noQualifiers ); 554 default: 555 return new VarArgsType( buildQualifiers( td ) ); 556 } // switch 549 if (td->builtintype == DeclarationNode::Zero) { 550 return new ZeroType( noQualifiers ); 551 } 552 else if (td->builtintype == DeclarationNode::One) { 553 return new OneType( noQualifiers ); 554 } 555 else { 556 return new VarArgsType( buildQualifiers( td ) ); 557 } 557 558 case TypeData::GlobalScope: 558 return new GlobalScopeType();559 560 return new QualifiedType( buildQualifiers( td ), typebuild( td->qualified.parent ), typebuild( td->qualified.child ) );559 return new GlobalScopeType(); 560 case TypeData::Qualified: 561 return new QualifiedType( buildQualifiers( td ), typebuild( td->qualified.parent ), typebuild( td->qualified.child ) ); 561 562 case TypeData::Symbolic: 562 563 case TypeData::Enum: 563 564 case TypeData::Aggregate: 564 assert( false );565 assert( false ); 565 566 } // switch 566 567 … … 767 768 AggregateDecl * at; 768 769 switch ( td->aggregate.kind ) { 769 case AggregateDecl::Struct: 770 case AggregateDecl::Coroutine: 771 case AggregateDecl::Generator: 772 case AggregateDecl::Monitor: 773 case AggregateDecl::Thread: 770 case DeclarationNode::Struct: 771 case DeclarationNode::Coroutine: 772 case DeclarationNode::Monitor: 773 case DeclarationNode::Thread: 774 774 at = new StructDecl( *td->aggregate.name, td->aggregate.kind, attributes, linkage ); 775 775 buildForall( td->aggregate.params, at->get_parameters() ); 776 776 break; 777 case AggregateDecl::Union:777 case DeclarationNode::Union: 778 778 at = new UnionDecl( *td->aggregate.name, attributes, linkage ); 779 779 buildForall( td->aggregate.params, at->get_parameters() ); 780 780 break; 781 case AggregateDecl::Trait:781 case DeclarationNode::Trait: 782 782 at = new TraitDecl( *td->aggregate.name, attributes, linkage ); 783 783 buildList( td->aggregate.params, at->get_parameters() ); … … 809 809 AggregateDecl * typedecl = buildAggregate( type, attributes, linkage ); 810 810 switch ( type->aggregate.kind ) { 811 case AggregateDecl::Struct:812 case AggregateDecl::Coroutine:813 case AggregateDecl::Monitor:814 case AggregateDecl::Thread:811 case DeclarationNode::Struct: 812 case DeclarationNode::Coroutine: 813 case DeclarationNode::Monitor: 814 case DeclarationNode::Thread: 815 815 ret = new StructInstType( buildQualifiers( type ), (StructDecl *)typedecl ); 816 816 break; 817 case AggregateDecl::Union:817 case DeclarationNode::Union: 818 818 ret = new UnionInstType( buildQualifiers( type ), (UnionDecl *)typedecl ); 819 819 break; 820 case AggregateDecl::Trait:820 case DeclarationNode::Trait: 821 821 assert( false ); 822 822 //ret = new TraitInstType( buildQualifiers( type ), (TraitDecl *)typedecl ); … … 827 827 } else { 828 828 switch ( type->aggregate.kind ) { 829 case AggregateDecl::Struct:830 case AggregateDecl::Coroutine:831 case AggregateDecl::Monitor:832 case AggregateDecl::Thread:829 case DeclarationNode::Struct: 830 case DeclarationNode::Coroutine: 831 case DeclarationNode::Monitor: 832 case DeclarationNode::Thread: 833 833 ret = new StructInstType( buildQualifiers( type ), *type->aggregate.name ); 834 834 break; 835 case AggregateDecl::Union:835 case DeclarationNode::Union: 836 836 ret = new UnionInstType( buildQualifiers( type ), *type->aggregate.name ); 837 837 break; 838 case AggregateDecl::Trait:838 case DeclarationNode::Trait: 839 839 ret = new TraitInstType( buildQualifiers( type ), *type->aggregate.name ); 840 840 break; … … 863 863 case TypeData::Aggregate: { 864 864 switch ( type->aggregate.kind ) { 865 case AggregateDecl::Struct:866 case AggregateDecl::Coroutine:867 case AggregateDecl::Monitor:868 case AggregateDecl::Thread:865 case DeclarationNode::Struct: 866 case DeclarationNode::Coroutine: 867 case DeclarationNode::Monitor: 868 case DeclarationNode::Thread: 869 869 ret = new StructInstType( buildQualifiers( type ), *type->aggregate.name ); 870 870 break; 871 case AggregateDecl::Union:871 case DeclarationNode::Union: 872 872 ret = new UnionInstType( buildQualifiers( type ), *type->aggregate.name ); 873 873 break; 874 case AggregateDecl::Trait:874 case DeclarationNode::Trait: 875 875 ret = new TraitInstType( buildQualifiers( type ), *type->aggregate.name ); 876 876 break; -
src/Parser/TypeData.h
r7030dab r71d6bd8 10 10 // Created On : Sat May 16 15:18:36 2015 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Fri Dec 13 23:42:35 201913 // Update Count : 19 912 // Last Modified On : Thu Nov 1 20:56:46 2018 13 // Update Count : 196 14 14 // 15 15 … … 21 21 22 22 #include "ParseNode.h" // for DeclarationNode, DeclarationNode::Ag... 23 #include " SynTree/LinkageSpec.h"// for Spec23 #include "Parser/LinkageSpec.h" // for Spec 24 24 #include "SynTree/Type.h" // for Type, ReferenceToType (ptr only) 25 25 #include "SynTree/SynTree.h" // for Visitor Nodes … … 30 30 31 31 struct Aggregate_t { 32 AggregateDecl::Aggregate kind;32 DeclarationNode::Aggregate kind; 33 33 const std::string * name = nullptr; 34 34 DeclarationNode * params = nullptr; -
src/Parser/TypedefTable.cc
r7030dab r71d6bd8 10 10 // Created On : Sat May 16 15:20:13 2015 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Sat Feb 15 08:06:36 202013 // Update Count : 25 912 // Last Modified On : Wed Jul 25 15:32:35 2018 13 // Update Count : 258 14 14 // 15 15 … … 47 47 } // TypedefTable::~TypedefTable 48 48 49 bool TypedefTable::exists( const string & identifier ) const{49 bool TypedefTable::exists( const string & identifier ) { 50 50 return kindTable.find( identifier ) != kindTable.end(); 51 51 } // TypedefTable::exists 52 52 53 bool TypedefTable::existsCurr( const string & identifier ) const{53 bool TypedefTable::existsCurr( const string & identifier ) { 54 54 return kindTable.findAt( kindTable.currentScope() - 1, identifier ) != kindTable.end(); 55 55 } // TypedefTable::exists -
src/Parser/TypedefTable.h
r7030dab r71d6bd8 10 10 // Created On : Sat May 16 15:24:36 2015 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Sat Feb 15 08:06:37 202013 // Update Count : 11 712 // Last Modified On : Wed Jul 25 15:33:55 2018 13 // Update Count : 114 14 14 // 15 15 … … 30 30 ~TypedefTable(); 31 31 32 bool exists( const std::string & identifier ) const;33 bool existsCurr( const std::string & identifier ) const;32 bool exists( const std::string & identifier ); 33 bool existsCurr( const std::string & identifier ); 34 34 int isKind( const std::string & identifier ) const; 35 35 void makeTypedef( const std::string & name, int kind = TYPEDEFname ); -
src/Parser/lex.ll
r7030dab r71d6bd8 10 10 * Created On : Sat Sep 22 08:58:10 2001 11 11 * Last Modified By : Peter A. Buhr 12 * Last Modified On : S at Feb 15 11:05:50 202013 * Update Count : 7 3712 * Last Modified On : Sun Aug 4 20:53:47 2019 13 * Update Count : 719 14 14 */ 15 15 … … 43 43 #include "TypedefTable.h" 44 44 45 string * build_postfix_name( string * name );46 47 45 char *yyfilename; 48 46 string *strtext; // accumulate parts of character and string constant value … … 65 63 #define FLOATXX(v) KEYWORD_RETURN(v); 66 64 #else 67 #define FLOATXX(v) IDENTIFIER_RETURN(); 65 #define FLOATXX(v) IDENTIFIER_RETURN(); 68 66 #endif // HAVE_KEYWORDS_FLOATXX 69 67 … … 301 299 _Static_assert { KEYWORD_RETURN(STATICASSERT); } // C11 302 300 struct { KEYWORD_RETURN(STRUCT); } 303 suspend { KEYWORD_RETURN(SUSPEND); } // CFA 301 /* suspend { KEYWORD_RETURN(SUSPEND); } // CFA */ 304 302 switch { KEYWORD_RETURN(SWITCH); } 305 303 thread { KEYWORD_RETURN(THREAD); } // C11 … … 332 330 /* identifier */ 333 331 {identifier} { IDENTIFIER_RETURN(); } 334 "` `"{identifier} {// CFA335 yytext[yyleng ] = '\0'; yytext += 2;// SKULLDUGGERY: remove backquotes (ok to shorten?)332 "`"{identifier}"`" { // CFA 333 yytext[yyleng - 1] = '\0'; yytext += 1; // SKULLDUGGERY: remove backquotes (ok to shorten?) 336 334 IDENTIFIER_RETURN(); 337 335 } … … 434 432 "?"({op_unary_pre_post}|"()"|"[?]"|"{}") { IDENTIFIER_RETURN(); } 435 433 "^?{}" { IDENTIFIER_RETURN(); } 436 "?`"{identifier} { // postfix operator 437 yylval.tok.str = new string( &yytext[2] ); // remove ?` 438 yylval.tok.str = build_postfix_name( yylval.tok.str ); // add prefix 439 RETURN_LOCN( typedefTable.isKind( *yylval.tok.str ) ); 440 } 434 "?`"{identifier} { IDENTIFIER_RETURN(); } // postfix operator 441 435 "?"{op_binary_over}"?" { IDENTIFIER_RETURN(); } // binary 442 436 /* -
src/Parser/module.mk
r7030dab r71d6bd8 11 11 ## Created On : Sat May 16 15:29:09 2015 12 12 ## Last Modified By : Peter A. Buhr 13 ## Last Modified On : Sat Dec 14 07:34:47 201914 ## Update Count : 10 713 ## Last Modified On : Wed Jun 28 21:58:29 2017 14 ## Update Count : 104 15 15 ############################################################################### 16 16 … … 19 19 AM_YFLAGS = -d -t -v 20 20 21 SRC += \ 21 SRC += Parser/parser.yy \ 22 Parser/lex.ll \ 23 Parser/TypedefTable.cc \ 24 Parser/ParseNode.cc \ 22 25 Parser/DeclarationNode.cc \ 23 26 Parser/ExpressionNode.cc \ 27 Parser/StatementNode.cc \ 24 28 Parser/InitializerNode.cc \ 25 Parser/ParseNode.cc \26 Parser/StatementNode.cc \27 29 Parser/TypeData.cc \ 28 Parser/TypedefTable.cc \ 29 Parser/lex.ll \ 30 Parser/parser.yy \ 30 Parser/LinkageSpec.cc \ 31 31 Parser/parserutility.cc 32 32 33 SRCDEMANGLE += \ 34 Parser/LinkageSpec.cc 35 36 33 37 MOSTLYCLEANFILES += Parser/lex.cc Parser/parser.cc Parser/parser.hh Parser/parser.output -
src/Parser/parser.yy
r7030dab r71d6bd8 10 10 // Created On : Sat Sep 1 20:22:55 2001 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Fri Mar 6 17:26:45 202013 // Update Count : 4 47412 // Last Modified On : Sun Aug 4 21:48:23 2019 13 // Update Count : 4364 14 14 // 15 15 … … 51 51 using namespace std; 52 52 53 #include "SynTree/Declaration.h"54 53 #include "ParseNode.h" 55 54 #include "TypedefTable.h" 56 55 #include "TypeData.h" 57 #include " SynTree/LinkageSpec.h"56 #include "LinkageSpec.h" 58 57 #include "Common/SemanticError.h" // error_str 59 58 #include "Common/utility.h" // for maybeMoveBuild, maybeBuild, CodeLo... … … 166 165 } // rebindForall 167 166 168 string * build_postfix_name( string * name ) { 169 *name = string("__postfix_func_") + *name; 170 return name; 167 NameExpr * build_postfix_name( const string * name ) { 168 NameExpr * new_name = build_varref( new string( "?`" + *name ) ); 169 delete name; 170 return new_name; 171 171 } // build_postfix_name 172 172 … … 210 210 } // if 211 211 } // forCtrl 212 212 213 213 214 bool forall = false, yyy = false; // aggregate have one or more forall qualifiers ? … … 236 237 ExpressionNode * en; 237 238 DeclarationNode * decl; 238 AggregateDecl::Aggregate aggKey;239 TypeDecl::Kindtclass;239 DeclarationNode::Aggregate aggKey; 240 DeclarationNode::TypeClass tclass; 240 241 StatementNode * sn; 241 242 WaitForStmt * wfs; … … 278 279 %token OTYPE FTYPE DTYPE TTYPE TRAIT // CFA 279 280 %token SIZEOF OFFSETOF 280 // %token RESUME // CFA 281 %token SUSPEND // CFA 281 // %token SUSPEND RESUME // CFA 282 282 %token ATTRIBUTE EXTENSION // GCC 283 283 %token IF ELSE SWITCH CASE DEFAULT DO WHILE FOR BREAK CONTINUE GOTO RETURN … … 323 323 %type<op> ptrref_operator unary_operator assignment_operator 324 324 %type<en> primary_expression postfix_expression unary_expression 325 %type<en> cast_expression _list cast_expressionexponential_expression multiplicative_expression additive_expression325 %type<en> cast_expression exponential_expression multiplicative_expression additive_expression 326 326 %type<en> shift_expression relational_expression equality_expression 327 327 %type<en> AND_expression exclusive_OR_expression inclusive_OR_expression … … 365 365 %type<decl> abstract_parameter_declaration 366 366 367 %type<aggKey> aggregate_key aggregate_data aggregate_control367 %type<aggKey> aggregate_key 368 368 %type<decl> aggregate_type aggregate_type_nobody 369 369 … … 579 579 | '(' compound_statement ')' // GCC, lambda expression 580 580 { $$ = new ExpressionNode( new StmtExpr( dynamic_cast< CompoundStmt * >(maybeMoveBuild< Statement >($2) ) ) ); } 581 | constant '`' IDENTIFIER // CFA, postfix call 582 { $$ = new ExpressionNode( build_func( new ExpressionNode( build_postfix_name( $3 ) ), $1 ) ); } 583 | string_literal '`' IDENTIFIER // CFA, postfix call 584 { $$ = new ExpressionNode( build_func( new ExpressionNode( build_postfix_name( $3 ) ), new ExpressionNode( $1 ) ) ); } 585 | IDENTIFIER '`' IDENTIFIER // CFA, postfix call 586 { $$ = new ExpressionNode( build_func( new ExpressionNode( build_postfix_name( $3 ) ), new ExpressionNode( build_varref( $1 ) ) ) ); } 587 | tuple '`' IDENTIFIER // CFA, postfix call 588 { $$ = new ExpressionNode( build_func( new ExpressionNode( build_postfix_name( $3 ) ), $1 ) ); } 589 | '(' comma_expression ')' '`' IDENTIFIER // CFA, postfix call 590 { $$ = new ExpressionNode( build_func( new ExpressionNode( build_postfix_name( $5 ) ), $2 ) ); } 581 591 | type_name '.' identifier // CFA, nested type 582 592 { SemanticError( yylloc, "Qualified name is currently unimplemented." ); $$ = nullptr; } … … 632 642 | postfix_expression '(' argument_expression_list ')' 633 643 { $$ = new ExpressionNode( build_func( $1, $3 ) ); } 634 | postfix_expression '`' identifier // CFA, postfix call635 { $$ = new ExpressionNode( build_func( new ExpressionNode( build_varref( build_postfix_name( $3 ) ) ), $1 ) ); }636 | constant '`' identifier // CFA, postfix call637 { $$ = new ExpressionNode( build_func( new ExpressionNode( build_varref( build_postfix_name( $3 ) ) ), $1 ) ); }638 | string_literal '`' identifier // CFA, postfix call639 { $$ = new ExpressionNode( build_func( new ExpressionNode( build_varref( build_postfix_name( $3 ) ) ), new ExpressionNode( $1 ) ) ); }640 644 | postfix_expression '.' identifier 641 645 { $$ = new ExpressionNode( build_fieldSel( $1, build_varref( $3 ) ) ); } … … 646 650 | postfix_expression '.' '[' field_name_list ']' // CFA, tuple field selector 647 651 { $$ = new ExpressionNode( build_fieldSel( $1, build_tuple( $4 ) ) ); } 648 | postfix_expression '.' aggregate_control649 { $$ = new ExpressionNode( build_keyword_cast( $3, $1 ) ); }650 652 | postfix_expression ARROW identifier 651 653 { $$ = new ExpressionNode( build_pfieldSel( $1, build_varref( $3 ) ) ); } … … 662 664 | '(' type_no_function ')' '@' '{' initializer_list_opt comma_opt '}' // CFA, explicit C compound-literal 663 665 { $$ = new ExpressionNode( build_compoundLiteral( $2, (new InitializerNode( $6, true ))->set_maybeConstructed( false ) ) ); } 664 | '^' primary_expression '{' argument_expression_list '}' // CFA , destructor call666 | '^' primary_expression '{' argument_expression_list '}' // CFA 665 667 { 666 668 Token fn; … … 675 677 | argument_expression 676 678 | argument_expression_list ',' argument_expression 677 { $$ = (ExpressionNode *)( $1->set_last( $3 )); }679 { $$ = (ExpressionNode *)( $1->set_last( $3 )); } 678 680 ; 679 681 … … 687 689 field_name_list: // CFA, tuple field selector 688 690 field 689 | field_name_list ',' field { $$ = (ExpressionNode *) ($1->set_last( $3 )); }691 | field_name_list ',' field { $$ = (ExpressionNode *)$1->set_last( $3 ); } 690 692 ; 691 693 … … 791 793 | '(' type_no_function ')' cast_expression 792 794 { $$ = new ExpressionNode( build_cast( $2, $4 ) ); } 793 | '(' aggregate_control '&' ')' cast_expression // CFA 794 { $$ = new ExpressionNode( build_keyword_cast( $2, $5 ) ); } 795 // keyword cast cannot be grouped because of reduction in aggregate_key 796 | '(' GENERATOR '&' ')' cast_expression // CFA 797 { $$ = new ExpressionNode( build_keyword_cast( KeywordCastExpr::Coroutine, $5 ) ); } 798 | '(' COROUTINE '&' ')' cast_expression // CFA 799 { $$ = new ExpressionNode( build_keyword_cast( KeywordCastExpr::Coroutine, $5 ) ); } 800 | '(' THREAD '&' ')' cast_expression // CFA 801 { $$ = new ExpressionNode( build_keyword_cast( KeywordCastExpr::Thread, $5 ) ); } 802 | '(' MONITOR '&' ')' cast_expression // CFA 803 { $$ = new ExpressionNode( build_keyword_cast( KeywordCastExpr::Monitor, $5 ) ); } 795 804 // VIRTUAL cannot be opt because of look ahead issues 796 805 | '(' VIRTUAL ')' cast_expression // CFA … … 919 928 conditional_expression 920 929 | unary_expression assignment_operator assignment_expression 921 { 922 if ( $2 == OperKinds::AtAssn ) { 923 SemanticError( yylloc, "C @= assignment is currently unimplemented." ); $$ = nullptr; 924 } else { 925 $$ = new ExpressionNode( build_binary_val( $2, $1, $3 ) ); 926 } // if 927 } 930 { $$ = new ExpressionNode( build_binary_val( $2, $1, $3 ) ); } 928 931 | unary_expression '=' '{' initializer_list_opt comma_opt '}' 929 932 { SemanticError( yylloc, "Initializer assignment is currently unimplemented." ); $$ = nullptr; } … … 962 965 { $$ = new ExpressionNode( build_tuple( (ExpressionNode *)(new ExpressionNode( nullptr ) )->set_last( $3 ) ) ); } 963 966 | '[' push assignment_expression pop ',' tuple_expression_list ']' 964 { $$ = new ExpressionNode( build_tuple( (ExpressionNode *) ($3->set_last( $6 ) ) )); }967 { $$ = new ExpressionNode( build_tuple( (ExpressionNode *)$3->set_last( $6 ) ) ); } 965 968 ; 966 969 … … 968 971 assignment_expression_opt 969 972 | tuple_expression_list ',' assignment_expression_opt 970 { $$ = (ExpressionNode *) ($1->set_last( $3 )); }973 { $$ = (ExpressionNode *)$1->set_last( $3 ); } 971 974 ; 972 975 … … 1192 1195 { $$ = forCtrl( $1, new string( DeclarationNode::anonymous.newName() ), new ExpressionNode( build_constantInteger( *new string( "0" ) ) ), 1193 1196 OperKinds::LThan, $1->clone(), new ExpressionNode( build_constantInteger( *new string( "1" ) ) ) ); } 1194 | '=' comma_expression // CFA1195 { $$ = forCtrl( $2, new string( DeclarationNode::anonymous.newName() ), new ExpressionNode( build_constantInteger( *new string( "0" ) ) ),1196 OperKinds::LEThan, $2->clone(), new ExpressionNode( build_constantInteger( *new string( "1" ) ) ) ); }1197 1197 | comma_expression inclexcl comma_expression // CFA 1198 1198 { $$ = forCtrl( $1, new string( DeclarationNode::anonymous.newName() ), $1->clone(), $2, $3, new ExpressionNode( build_constantInteger( *new string( "1" ) ) ) ); } … … 1202 1202 { $$ = forCtrl( $3, $1, new ExpressionNode( build_constantInteger( *new string( "0" ) ) ), 1203 1203 OperKinds::LThan, $3->clone(), new ExpressionNode( build_constantInteger( *new string( "1" ) ) ) ); } 1204 | comma_expression ';' '=' comma_expression // CFA1205 { $$ = forCtrl( $4, $1, new ExpressionNode( build_constantInteger( *new string( "0" ) ) ),1206 OperKinds::LEThan, $4->clone(), new ExpressionNode( build_constantInteger( *new string( "1" ) ) ) ); }1207 1204 | comma_expression ';' comma_expression inclexcl comma_expression // CFA 1208 1205 { $$ = forCtrl( $3, $1, $3->clone(), $4, $5, new ExpressionNode( build_constantInteger( *new string( "1" ) ) ) ); } … … 1266 1263 | RETURN '{' initializer_list_opt comma_opt '}' ';' 1267 1264 { SemanticError( yylloc, "Initializer return is currently unimplemented." ); $$ = nullptr; } 1268 | SUSPEND ';' 1269 { $$ = new StatementNode( build_suspend( nullptr ) ); } 1270 | SUSPEND compound_statement 1271 { $$ = new StatementNode( build_suspend( $2 ) ); } 1272 | SUSPEND COROUTINE ';' 1273 { $$ = new StatementNode( build_suspend( nullptr, SuspendStmt::Coroutine ) ); } 1274 | SUSPEND COROUTINE compound_statement 1275 { $$ = new StatementNode( build_suspend( $3, SuspendStmt::Coroutine ) ); } 1276 | SUSPEND GENERATOR ';' 1277 { $$ = new StatementNode( build_suspend( nullptr, SuspendStmt::Generator ) ); } 1278 | SUSPEND GENERATOR compound_statement 1279 { $$ = new StatementNode( build_suspend( $3, SuspendStmt::Generator ) ); } 1265 // | SUSPEND ';' 1266 // { SemanticError( yylloc, "Suspend expression is currently unimplemented." ); $$ = nullptr; } 1267 // | SUSPEND compound_statement ';' 1268 // { SemanticError( yylloc, "Suspend expression is currently unimplemented." ); $$ = nullptr; } 1280 1269 | THROW assignment_expression_opt ';' // handles rethrow 1281 1270 { $$ = new StatementNode( build_throw( $2 ) ); } … … 1317 1306 WAITFOR '(' cast_expression ')' 1318 1307 { $$ = $3; } 1319 // | WAITFOR '(' cast_expression ',' argument_expression_list ')' 1320 // { $$ = (ExpressionNode *)$3->set_last( $5 ); } 1321 | WAITFOR '(' cast_expression_list ':' argument_expression_list ')' 1322 { $$ = (ExpressionNode *)($3->set_last( $5 )); } 1323 ; 1324 1325 cast_expression_list: 1326 cast_expression 1327 | cast_expression_list ',' cast_expression 1328 { $$ = (ExpressionNode *)($1->set_last( $3 )); } 1308 | WAITFOR '(' cast_expression ',' argument_expression_list ')' 1309 { $$ = (ExpressionNode *)$3->set_last( $5 ); } 1329 1310 ; 1330 1311 … … 1437 1418 asm_operand 1438 1419 | asm_operands_list ',' asm_operand 1439 { $$ = (ExpressionNode *) ($1->set_last( $3 )); }1420 { $$ = (ExpressionNode *)$1->set_last( $3 ); } 1440 1421 ; 1441 1422 … … 1453 1434 { $$ = new ExpressionNode( $1 ); } 1454 1435 | asm_clobbers_list_opt ',' string_literal 1455 { $$ = (ExpressionNode *)($1->set_last( new ExpressionNode( $3 ) )); } 1436 // set_last returns ParseNode * 1437 { $$ = (ExpressionNode *)$1->set_last( new ExpressionNode( $3 ) ); } 1456 1438 ; 1457 1439 … … 1604 1586 // type_specifier can resolve to just TYPEDEFname (e.g., typedef int T; int f( T );). Therefore this must be 1605 1587 // flattened to allow lookahead to the '(' without having to reduce identifier_or_type_name. 1606 cfa_abstract_tuple identifier_or_type_name '(' push cfa_parameter_ellipsis_list_opt pop ')' attribute_list_opt1588 cfa_abstract_tuple identifier_or_type_name '(' push cfa_parameter_ellipsis_list_opt pop ')' 1607 1589 // To obtain LR(1 ), this rule must be factored out from function return type (see cfa_abstract_declarator). 1608 { $$ = DeclarationNode::newFunction( $2, $1, $5, 0 ) ->addQualifiers( $8 ); }1609 | cfa_function_return identifier_or_type_name '(' push cfa_parameter_ellipsis_list_opt pop ')' attribute_list_opt1610 { $$ = DeclarationNode::newFunction( $2, $1, $5, 0 ) ->addQualifiers( $8 ); }1590 { $$ = DeclarationNode::newFunction( $2, $1, $5, 0 ); } 1591 | cfa_function_return identifier_or_type_name '(' push cfa_parameter_ellipsis_list_opt pop ')' 1592 { $$ = DeclarationNode::newFunction( $2, $1, $5, 0 ); } 1611 1593 ; 1612 1594 … … 2077 2059 2078 2060 aggregate_key: 2079 aggregate_data2080 | aggregate_control2081 ;2082 2083 aggregate_data:2084 2061 STRUCT 2085 { yyy = true; $$ = AggregateDecl::Struct; }2062 { yyy = true; $$ = DeclarationNode::Struct; } 2086 2063 | UNION 2087 { yyy = true; $$ = AggregateDecl::Union; } 2088 | EXCEPTION // CFA 2089 { yyy = true; $$ = AggregateDecl::Exception; } 2090 ; 2091 2092 aggregate_control: // CFA 2093 GENERATOR 2094 { yyy = true; $$ = AggregateDecl::Generator; } 2095 | MONITOR GENERATOR 2096 { SemanticError( yylloc, "monitor generator is currently unimplemented." ); $$ = AggregateDecl::NoAggregate; } 2064 { yyy = true; $$ = DeclarationNode::Union; } 2065 | EXCEPTION 2066 { yyy = true; $$ = DeclarationNode::Exception; } 2067 | GENERATOR 2068 { yyy = true; $$ = DeclarationNode::Coroutine; } 2097 2069 | COROUTINE 2098 { yyy = true; $$ = AggregateDecl::Coroutine; }2070 { yyy = true; $$ = DeclarationNode::Coroutine; } 2099 2071 | MONITOR 2100 { yyy = true; $$ = AggregateDecl::Monitor; } 2101 | MONITOR COROUTINE 2102 { SemanticError( yylloc, "monitor coroutine is currently unimplemented." ); $$ = AggregateDecl::NoAggregate; } 2072 { yyy = true; $$ = DeclarationNode::Monitor; } 2103 2073 | THREAD 2104 { yyy = true; $$ = AggregateDecl::Thread; } 2105 | MONITOR THREAD 2106 { SemanticError( yylloc, "monitor thread is currently unimplemented." ); $$ = AggregateDecl::NoAggregate; } 2074 { yyy = true; $$ = DeclarationNode::Thread; } 2107 2075 ; 2108 2076 … … 2128 2096 distInl( $3 ); 2129 2097 } 2130 | INLINE aggregate_control ';' // CFA2131 { SemanticError( yylloc, "INLINE aggregate control currently unimplemented." ); $$ = nullptr; }2132 2098 | typedef_declaration ';' // CFA 2133 2099 | cfa_field_declaring_list ';' // CFA, new style field declaration … … 2382 2348 | initializer_list_opt ',' initializer { $$ = (InitializerNode *)( $1->set_last( $3 ) ); } 2383 2349 | initializer_list_opt ',' designation initializer 2384 { $$ = (InitializerNode *)( $1->set_last( $4->set_designators( $3 ) )); }2350 { $$ = (InitializerNode *)( $1->set_last( $4->set_designators( $3 ) ) ); } 2385 2351 ; 2386 2352 … … 2404 2370 designator 2405 2371 | designator_list designator 2406 { $$ = (ExpressionNode *)( $1->set_last( $2 )); }2372 { $$ = (ExpressionNode *)( $1->set_last( $2 ) ); } 2407 2373 //| designator_list designator { $$ = new ExpressionNode( $1, $2 ); } 2408 2374 ; … … 2460 2426 | type_specifier identifier_parameter_declarator 2461 2427 | assertion_list 2462 { $$ = DeclarationNode::newTypeParam( TypeDecl::Dtype, new string( DeclarationNode::anonymous.newName() ) )->addAssertions( $1 ); }2428 { $$ = DeclarationNode::newTypeParam( DeclarationNode::Dtype, new string( DeclarationNode::anonymous.newName() ) )->addAssertions( $1 ); } 2463 2429 ; 2464 2430 2465 2431 type_class: // CFA 2466 2432 OTYPE 2467 { $$ = TypeDecl::Otype; }2433 { $$ = DeclarationNode::Otype; } 2468 2434 | DTYPE 2469 { $$ = TypeDecl::Dtype; }2435 { $$ = DeclarationNode::Dtype; } 2470 2436 | FTYPE 2471 { $$ = TypeDecl::Ftype; }2437 { $$ = DeclarationNode::Ftype; } 2472 2438 | TTYPE 2473 { $$ = TypeDecl::Ttype; }2439 { $$ = DeclarationNode::Ttype; } 2474 2440 ; 2475 2441 … … 2501 2467 { SemanticError( yylloc, toString("Expression generic parameters are currently unimplemented: ", $1->build()) ); $$ = nullptr; } 2502 2468 | type_list ',' type 2503 { $$ = (ExpressionNode *)( $1->set_last( new ExpressionNode( new TypeExpr( maybeMoveBuildType( $3 ) ) ) )); }2469 { $$ = (ExpressionNode *)( $1->set_last( new ExpressionNode( new TypeExpr( maybeMoveBuildType( $3 ) ) ) ) ); } 2504 2470 | type_list ',' assignment_expression 2505 2471 { SemanticError( yylloc, toString("Expression generic parameters are currently unimplemented: ", $3->build()) ); $$ = nullptr; } … … 2612 2578 { 2613 2579 linkageStack.push( linkage ); // handle nested extern "C"/"Cforall" 2614 linkage = LinkageSpec:: update( yylloc, linkage, $2 );2580 linkage = LinkageSpec::linkageUpdate( yylloc, linkage, $2 ); 2615 2581 } 2616 2582 '{' up external_definition_list_opt down '}' -
src/ResolvExpr/AdjustExprType.cc
r7030dab r71d6bd8 10 10 // Created On : Sat May 16 23:41:42 2015 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Wed Dec 11 21:43:56 201913 // Update Count : 612 // Last Modified On : Wed Mar 2 17:34:53 2016 13 // Update Count : 4 14 14 // 15 15 … … 134 134 // replace known function-type-variables with pointer-to-function 135 135 if ( const ast::EqvClass * eqvClass = tenv.lookup( inst->name ) ) { 136 if ( eqvClass->data.kind == ast::Type Decl::Ftype ) {136 if ( eqvClass->data.kind == ast::TypeVar::Ftype ) { 137 137 return new ast::PointerType{ inst }; 138 138 } 139 139 } else if ( const ast::NamedTypeDecl * ntDecl = symtab.lookupType( inst->name ) ) { 140 140 if ( auto tyDecl = dynamic_cast< const ast::TypeDecl * >( ntDecl ) ) { 141 if ( tyDecl->kind == ast::Type Decl::Ftype ) {141 if ( tyDecl->kind == ast::TypeVar::Ftype ) { 142 142 return new ast::PointerType{ inst }; 143 143 } -
src/ResolvExpr/AlternativeFinder.cc
r7030dab r71d6bd8 69 69 void postvisit( CastExpr * castExpr ); 70 70 void postvisit( VirtualCastExpr * castExpr ); 71 void postvisit( KeywordCastExpr * castExpr );72 71 void postvisit( UntypedMemberExpr * memberExpr ); 73 72 void postvisit( MemberExpr * memberExpr ); … … 1256 1255 } 1257 1256 1258 void AlternativeFinder::Finder::postvisit( KeywordCastExpr * castExpr ) {1259 assertf( castExpr->get_result(), "Cast target should have been set in Validate." );1260 auto ref = dynamic_cast<ReferenceType*>(castExpr->get_result());1261 assert(ref);1262 auto inst = dynamic_cast<StructInstType*>(ref->base);1263 assert(inst);1264 auto target = inst->baseStruct;1265 1266 AlternativeFinder finder( indexer, env );1267 1268 auto pick_alternatives = [target, this](AltList & found, bool expect_ref) {1269 for(auto & alt : found) {1270 Type * expr = alt.expr->get_result();1271 if(expect_ref) {1272 auto res = dynamic_cast<ReferenceType*>(expr);1273 if(!res) { continue; }1274 expr = res->base;1275 }1276 1277 if(auto insttype = dynamic_cast<TypeInstType*>(expr)) {1278 auto td = alt.env.lookup(insttype->name);1279 if(!td) { continue; }1280 expr = td->type;1281 }1282 1283 if(auto base = dynamic_cast<StructInstType*>(expr)) {1284 if(base->baseStruct == target) {1285 alternatives.push_back(1286 std::move(alt)1287 );1288 }1289 }1290 }1291 };1292 1293 try {1294 // Attempt 1 : turn (thread&)X into ($thread&)X.__thrd1295 // Clone is purely for memory management1296 std::unique_ptr<Expression> tech1 { new UntypedMemberExpr(new NameExpr(castExpr->concrete_target.field), castExpr->arg->clone()) };1297 1298 // don't prune here, since it's guaranteed all alternatives will have the same type1299 finder.findWithoutPrune( tech1.get() );1300 pick_alternatives(finder.alternatives, false);1301 1302 return;1303 } catch(SemanticErrorException & ) {}1304 1305 // Fallback : turn (thread&)X into ($thread&)get_thread(X)1306 std::unique_ptr<Expression> fallback { UntypedExpr::createDeref( new UntypedExpr(new NameExpr(castExpr->concrete_target.getter), { castExpr->arg->clone() })) };1307 // don't prune here, since it's guaranteed all alternatives will have the same type1308 finder.findWithoutPrune( fallback.get() );1309 1310 pick_alternatives(finder.alternatives, true);1311 1312 // Whatever happens here, we have no more fallbacks1313 }1314 1315 1257 namespace { 1316 1258 /// Gets name from untyped member expression (member must be NameExpr) -
src/ResolvExpr/PtrsCastable.cc
r7030dab r71d6bd8 10 10 // Created On : Sun May 17 11:48:00 2015 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Wed Dec 11 21:48:33 201913 // Update Count : 912 // Last Modified On : Wed Mar 2 17:36:18 2016 13 // Update Count : 8 14 14 // 15 15 … … 176 176 if ( const ast::NamedTypeDecl * named = symtab.lookupType( inst->name ) ) { 177 177 if ( auto tyDecl = dynamic_cast< const ast::TypeDecl * >( named ) ) { 178 if ( tyDecl->kind == ast::Type Decl::Ftype ) {178 if ( tyDecl->kind == ast::TypeVar::Ftype ) { 179 179 return -1; 180 180 } 181 181 } 182 182 } else if ( const ast::EqvClass * eqvClass = env.lookup( inst->name ) ) { 183 if ( eqvClass->data.kind == ast::Type Decl::Ftype ) {183 if ( eqvClass->data.kind == ast::TypeVar::Ftype ) { 184 184 return -1; 185 185 } -
src/ResolvExpr/Resolver.cc
r7030dab r71d6bd8 9 9 // Author : Aaron B. Moss 10 10 // Created On : Sun May 17 12:17:01 2015 11 // Last Modified By : A ndrew Beach12 // Last Modified On : Fri Mar 27 11:58:00 202013 // Update Count : 24 211 // Last Modified By : Aaron B. Moss 12 // Last Modified On : Wed May 29 11:00:00 2019 13 // Update Count : 241 14 14 // 15 15 … … 84 84 void previsit( ThrowStmt * throwStmt ); 85 85 void previsit( CatchStmt * catchStmt ); 86 void postvisit( CatchStmt * catchStmt );87 86 void previsit( WaitForStmt * stmt ); 88 87 … … 560 559 // TODO: Replace *exception type with &exception type. 561 560 if ( throwStmt->get_expr() ) { 562 const StructDecl * exception_decl = indexer.lookupStruct( "__cfa ehm_base_exception_t" );561 const StructDecl * exception_decl = indexer.lookupStruct( "__cfaabi_ehm__base_exception_t" ); 563 562 assert( exception_decl ); 564 563 Type * exceptType = new PointerType( noQualifiers, new StructInstType( noQualifiers, const_cast<StructDecl *>(exception_decl) ) ); … … 568 567 569 568 void Resolver_old::previsit( CatchStmt * catchStmt ) { 570 // Until we are very sure this invarent (ifs that move between passes have thenPart)571 // holds, check it. This allows a check for when to decode the mangling.572 if ( IfStmt * ifStmt = dynamic_cast<IfStmt *>( catchStmt->body ) ) {573 assert( ifStmt->thenPart );574 }575 // Encode the catchStmt so the condition can see the declaration.576 569 if ( catchStmt->cond ) { 577 IfStmt * ifStmt = new IfStmt( catchStmt->cond, nullptr, catchStmt->body ); 578 catchStmt->cond = nullptr; 579 catchStmt->body = ifStmt; 580 } 581 } 582 583 void Resolver_old::postvisit( CatchStmt * catchStmt ) { 584 // Decode the catchStmt so everything is stored properly. 585 IfStmt * ifStmt = dynamic_cast<IfStmt *>( catchStmt->body ); 586 if ( nullptr != ifStmt && nullptr == ifStmt->thenPart ) { 587 assert( ifStmt->condition ); 588 assert( ifStmt->elsePart ); 589 catchStmt->cond = ifStmt->condition; 590 catchStmt->body = ifStmt->elsePart; 591 ifStmt->condition = nullptr; 592 ifStmt->elsePart = nullptr; 593 delete ifStmt; 570 findSingleExpression( catchStmt->cond, new BasicType( noQualifiers, BasicType::Bool ), indexer ); 594 571 } 595 572 } … … 1477 1454 if ( throwStmt->expr ) { 1478 1455 const ast::StructDecl * exceptionDecl = 1479 symtab.lookupStruct( "__cfa ehm_base_exception_t" );1456 symtab.lookupStruct( "__cfaabi_ehm__base_exception_t" ); 1480 1457 assert( exceptionDecl ); 1481 1458 ast::ptr< ast::Type > exceptType = … … 1489 1466 1490 1467 const ast::CatchStmt * Resolver_new::previsit( const ast::CatchStmt * catchStmt ) { 1491 // TODO: This will need a fix for the decl/cond scoping problem.1492 1468 if ( catchStmt->cond ) { 1493 1469 ast::ptr< ast::Type > boolType = new ast::BasicType{ ast::BasicType::Bool }; -
src/ResolvExpr/Unify.cc
r7030dab r71d6bd8 9 9 // Author : Richard C. Bilson 10 10 // Created On : Sun May 17 12:27:10 2015 11 // Last Modified By : Peter A. Buhr12 // Last Modified On : Fri Dec 13 23:43:05201913 // Update Count : 4 611 // Last Modified By : Andrew Beach 12 // Last Modified On : Wed Sep 4 10:00:00 2019 13 // Update Count : 44 14 14 // 15 15 … … 34 34 #include "Common/PassVisitor.h" // for PassVisitor 35 35 #include "FindOpenVars.h" // for findOpenVars 36 #include " SynTree/LinkageSpec.h"// for C36 #include "Parser/LinkageSpec.h" // for C 37 37 #include "SynTree/Constant.h" // for Constant 38 38 #include "SynTree/Declaration.h" // for TypeDecl, TypeDecl::Data, Declarati... … … 771 771 if ( const ast::EqvClass * clz = tenv.lookup( typeInst->name ) ) { 772 772 // expand ttype parameter into its actual type 773 if ( clz->data.kind == ast::Type Decl::Ttype && clz->bound ) {773 if ( clz->data.kind == ast::TypeVar::Ttype && clz->bound ) { 774 774 return clz->bound; 775 775 } -
src/SymTab/Autogen.h
r7030dab r71d6bd8 10 10 // Created On : Sun May 17 21:53:34 2015 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Fri Dec 13 16:38:06 201913 // Update Count : 1 612 // Last Modified On : Sat Jul 22 09:50:25 2017 13 // Update Count : 15 14 14 // 15 15 … … 35 35 #include "SynTree/Expression.h" // for NameExpr, ConstantExpr, UntypedExpr... 36 36 #include "SynTree/Type.h" // for Type, ArrayType, Type::Qualifiers 37 #include "SynTree/Statement.h" // for CompoundStmt, DeclStmt, ExprStmt38 37 39 38 class CompoundStmt; -
src/SymTab/Demangle.cc
r7030dab r71d6bd8 10 10 // Created On : Thu Jul 19 12:52:41 2018 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Tue Feb 11 15:09:18 202013 // Update Count : 1012 // Last Modified On : Tue Jul 30 13:46:33 2019 13 // Update Count : 3 14 14 // 15 15 … … 19 19 #include "CodeGen/GenType.h" 20 20 #include "Common/PassVisitor.h" 21 #include "Common/utility.h" // isPrefix22 21 #include "Mangler.h" 23 22 #include "SynTree/Type.h" … … 367 366 // type variable types 368 367 for (size_t k = 0; k < TypeDecl::NUMBER_OF_KINDS; ++k) { 369 static const std::string typeVariableNames[] = { "DT", " OT", "FT", "TT", };368 static const std::string typeVariableNames[] = { "DT", "FT", "TT", }; 370 369 static_assert( 371 370 sizeof(typeVariableNames)/sizeof(typeVariableNames[0]) == TypeDecl::NUMBER_OF_KINDS, … … 417 416 418 417 bool StringView::isPrefix(const std::string & pref) { 419 // if ( pref.size() > str.size()-idx ) return false; 420 // auto its = std::mismatch( pref.begin(), pref.end(), std::next(str.begin(), idx) ); 421 // if (its.first == pref.end()) { 422 // idx += pref.size(); 423 // return true; 424 // } 425 426 // This update is untested because there are no tests for this code. 427 if ( ::isPrefix( str, pref, idx ) ) { 418 if ( pref.size() > str.size()-idx ) return false; 419 auto its = std::mismatch( pref.begin(), pref.end(), std::next(str.begin(), idx) ); 420 if (its.first == pref.end()) { 428 421 idx += pref.size(); 429 422 return true; … … 436 429 PRINT( std::cerr << "====== " << str.size() << " " << str << std::endl; ) 437 430 if (str.size() < 2+Encoding::manglePrefix.size()) return false; // +2 for at least _1 suffix 438 if ( ! isPrefix(Encoding::manglePrefix) || ! isdigit(str.back() )) return false;431 if (! isPrefix(Encoding::manglePrefix) || ! isdigit(str.back())) return false; 439 432 440 433 // get name -
src/SymTab/Indexer.cc
r7030dab r71d6bd8 9 9 // Author : Richard C. Bilson 10 10 // Created On : Sun May 17 21:37:33 2015 11 // Last Modified By : Peter A. Buhr12 // Last Modified On : Fri Dec 13 23:43:19201913 // Update Count : 2 211 // Last Modified By : Aaron B. Moss 12 // Last Modified On : Fri Mar 8 13:55:00 2019 13 // Update Count : 21 14 14 // 15 15 … … 31 31 #include "InitTweak/InitTweak.h" // for isConstructor, isCopyFunction, isC... 32 32 #include "Mangler.h" // for Mangler 33 #include "Parser/LinkageSpec.h" // for isMangled, isOverridable, Spec 33 34 #include "ResolvExpr/typeops.h" // for typesCompatible 34 #include "SynTree/LinkageSpec.h" // for isMangled, isOverridable, Spec35 35 #include "SynTree/Constant.h" // for Constant 36 36 #include "SynTree/Declaration.h" // for DeclarationWithType, FunctionDecl -
src/SymTab/Mangler.cc
r7030dab r71d6bd8 10 10 // Created On : Sun May 17 21:40:29 2015 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Sat Feb 15 13:55:12 202013 // Update Count : 3312 // Last Modified On : Tue Jul 30 13:46:10 2019 13 // Update Count : 26 14 14 // 15 15 #include "Mangler.h" … … 26 26 #include "Common/SemanticError.h" // for SemanticError 27 27 #include "Common/utility.h" // for toString 28 #include "Parser/LinkageSpec.h" // for Spec, isOverridable, AutoGen, Int... 28 29 #include "ResolvExpr/TypeEnvironment.h" // for TypeEnvironment 29 #include "SynTree/LinkageSpec.h" // for Spec, isOverridable, AutoGen, Int...30 30 #include "SynTree/Declaration.h" // for TypeDecl, DeclarationWithType 31 31 #include "SynTree/Expression.h" // for TypeExpr, Expression, operator<< … … 128 128 } // if 129 129 mangleName << Encoding::manglePrefix; 130 const CodeGen::OperatorInfo * opInfo = CodeGen::operatorLookup( declaration->get_name() );131 if ( op Info) {132 mangleName << opInfo ->outputName.size() << opInfo->outputName;130 CodeGen::OperatorInfo opInfo; 131 if ( operatorLookup( declaration->get_name(), opInfo ) ) { 132 mangleName << opInfo.outputName.size() << opInfo.outputName; 133 133 } else { 134 134 mangleName << declaration->name.size() << declaration->name; … … 471 471 } // if 472 472 mangleName << Encoding::manglePrefix; 473 const CodeGen::OperatorInfo * opInfo = CodeGen::operatorLookup( decl->name );474 if ( op Info) {475 mangleName << opInfo ->outputName.size() << opInfo->outputName;473 CodeGen::OperatorInfo opInfo; 474 if ( operatorLookup( decl->name, opInfo ) ) { 475 mangleName << opInfo.outputName.size() << opInfo.outputName; 476 476 } else { 477 477 mangleName << decl->name.size() << decl->name; … … 654 654 // aside from the assert false. 655 655 assertf(false, "Mangler_new should not visit typedecl: %s", toCString(decl)); 656 assertf( decl->kind < ast::Type Decl::Kind::NUMBER_OF_KINDS, "Unhandled type variable kind: %d", decl->kind );656 assertf( decl->kind < ast::TypeVar::Kind::NUMBER_OF_KINDS, "Unhandled type variable kind: %d", decl->kind ); 657 657 mangleName << Encoding::typeVariables[ decl->kind ] << ( decl->name.length() ) << decl->name; 658 658 } … … 674 674 for ( const ast::TypeDecl * decl : ptype->forall ) { 675 675 switch ( decl->kind ) { 676 case ast::Type Decl::Kind::Dtype:676 case ast::TypeVar::Kind::Dtype: 677 677 dcount++; 678 678 break; 679 case ast::Type Decl::Kind::Ftype:679 case ast::TypeVar::Kind::Ftype: 680 680 fcount++; 681 681 break; 682 case ast::Type Decl::Kind::Ttype:682 case ast::TypeVar::Kind::Ttype: 683 683 vcount++; 684 684 break; -
src/SymTab/ManglerCommon.cc
r7030dab r71d6bd8 10 10 // Created On : Sun May 17 21:44:03 2015 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Fri Dec 13 14:54:38201913 // Update Count : 2 812 // Last Modified On : Thu Feb 14 17:06:37 2019 13 // Update Count : 26 14 14 // 15 15 … … 104 104 const std::string typeVariables[] = { 105 105 "BD", // dtype 106 "BO", // otype107 106 "BF", // ftype 108 107 "BT", // ttype -
src/SymTab/Validate.cc
r7030dab r71d6bd8 9 9 // Author : Richard C. Bilson 10 10 // Created On : Sun May 17 21:50:04 2015 11 // Last Modified By : Peter A. Buhr12 // Last Modified On : Fri Dec 13 23:43:34201913 // Update Count : 36 311 // Last Modified By : Andrew Beach 12 // Last Modified On : Wed Aug 7 6:42:00 2019 13 // Update Count : 360 14 14 // 15 15 … … 69 69 #include "InitTweak/GenInit.h" // for fixReturnStatements 70 70 #include "InitTweak/InitTweak.h" // for isCtorDtorAssign 71 #include "Parser/LinkageSpec.h" // for C 71 72 #include "ResolvExpr/typeops.h" // for typesCompatible 72 73 #include "ResolvExpr/Resolver.h" // for findSingleExpression 73 74 #include "ResolvExpr/ResolveTypeof.h" // for resolveTypeof 74 75 #include "SymTab/Autogen.h" // for SizeType 75 #include "SynTree/LinkageSpec.h" // for C76 76 #include "SynTree/Attribute.h" // for noAttributes, Attribute 77 77 #include "SynTree/Constant.h" // for Constant … … 311 311 Stats::Heap::newPass("validate-A"); 312 312 Stats::Time::BlockGuard guard("validate-A"); 313 VerifyCtorDtorAssign::verify( translationUnit ); // must happen before autogen, because autogen examines existing ctor/dtors314 313 acceptAll( translationUnit, hoistDecls ); 315 314 ReplaceTypedef::replaceTypedef( translationUnit ); … … 337 336 Stats::Time::BlockGuard guard("validate-C"); 338 337 acceptAll( translationUnit, genericParams ); // check as early as possible - can't happen before LinkReferenceToTypes_old 338 VerifyCtorDtorAssign::verify( translationUnit ); // must happen before autogen, because autogen examines existing ctor/dtors 339 339 ReturnChecker::checkFunctionReturns( translationUnit ); 340 340 InitTweak::fixReturnStatements( translationUnit ); // must happen before autogen … … 375 375 Stats::Heap::newPass("validate-F"); 376 376 Stats::Time::BlockGuard guard("validate-F"); 377 Stats::Time::TimeCall("Fix Object Type", 378 FixObjectType::fix, translationUnit); 379 Stats::Time::TimeCall("Array Length", 380 ArrayLength::computeLength, translationUnit); 381 Stats::Time::TimeCall("Find Special Declarations", 382 Validate::findSpecialDecls, translationUnit); 383 Stats::Time::TimeCall("Fix Label Address", 384 mutateAll<LabelAddressFixer>, translationUnit, labelAddrFixer); 385 Stats::Time::TimeCall("Handle Attributes", 386 Validate::handleAttributes, translationUnit); 377 Stats::Time::TimeBlock("Fix Object Type", [&]() { 378 FixObjectType::fix( translationUnit ); 379 }); 380 Stats::Time::TimeBlock("Array Length", [&]() { 381 ArrayLength::computeLength( translationUnit ); 382 }); 383 Stats::Time::TimeBlock("Find Special Declarations", [&]() { 384 Validate::findSpecialDecls( translationUnit ); 385 }); 386 Stats::Time::TimeBlock("Fix Label Address", [&]() { 387 mutateAll( translationUnit, labelAddrFixer ); 388 }); 389 Stats::Time::TimeBlock("Handle Attributes", [&]() { 390 Validate::handleAttributes( translationUnit ); 391 }); 387 392 } 388 393 } … … 1044 1049 Type * designatorType = tyDecl->base->stripDeclarator(); 1045 1050 if ( StructInstType * aggDecl = dynamic_cast< StructInstType * >( designatorType ) ) { 1046 declsToAddBefore.push_back( new StructDecl( aggDecl->name, AggregateDecl::Struct, noAttributes, tyDecl->linkage ) );1051 declsToAddBefore.push_back( new StructDecl( aggDecl->name, DeclarationNode::Struct, noAttributes, tyDecl->linkage ) ); 1047 1052 } else if ( UnionInstType * aggDecl = dynamic_cast< UnionInstType * >( designatorType ) ) { 1048 1053 declsToAddBefore.push_back( new UnionDecl( aggDecl->name, noAttributes, tyDecl->linkage ) ); … … 1182 1187 if ( CodeGen::isCtorDtorAssign( funcDecl->get_name() ) ) { // TODO: also check /=, etc. 1183 1188 if ( params.size() == 0 ) { 1184 SemanticError( funcDecl ->location, "Constructors, destructors, and assignment functions require at least one parameter." );1189 SemanticError( funcDecl, "Constructors, destructors, and assignment functions require at least one parameter " ); 1185 1190 } 1186 1191 ReferenceType * refType = dynamic_cast< ReferenceType * >( params.front()->get_type() ); 1187 1192 if ( ! refType ) { 1188 SemanticError( funcDecl ->location, "First parameter of a constructor, destructor, or assignment function must be a reference." );1193 SemanticError( funcDecl, "First parameter of a constructor, destructor, or assignment function must be a reference " ); 1189 1194 } 1190 1195 if ( CodeGen::isCtorDtor( funcDecl->get_name() ) && returnVals.size() != 0 ) { 1191 if(!returnVals.front()->get_type()->isVoid()) { 1192 SemanticError( funcDecl->location, "Constructors and destructors cannot have explicit return values." ); 1193 } 1196 SemanticError( funcDecl, "Constructors and destructors cannot have explicit return values " ); 1194 1197 } 1195 1198 } -
src/SynTree/AggregateDecl.cc
r7030dab r71d6bd8 9 9 // Author : Richard C. Bilson 10 10 // Created On : Sun May 17 23:56:39 2015 11 // Last Modified By : Peter A. Buhr12 // Last Modified On : Mon Dec 16 15:07:20 201913 // Update Count : 3111 // Last Modified By : Andrew Beach 12 // Last Modified On : Fri Aug 4 14:22:00 2017 13 // Update Count : 22 14 14 // 15 15 … … 21 21 #include "Common/utility.h" // for printAll, cloneAll, deleteAll 22 22 #include "Declaration.h" // for AggregateDecl, TypeDecl, Declaration 23 #include "Initializer.h" 24 #include "LinkageSpec.h" // for Spec, linkageName, Cforall 23 #include "Parser/LinkageSpec.h" // for Spec, linkageName, Cforall 25 24 #include "Type.h" // for Type, Type::StorageClasses 26 25 27 28 // These must harmonize with the corresponding AggregateDecl::Aggregate enumerations.29 static const char * aggregateNames[] = { "struct", "union", "enum", "exception", "trait", "generator", "coroutine", "monitor", "thread", "NoAggregateName" };30 31 const char * AggregateDecl::aggrString( AggregateDecl::Aggregate aggr ) {32 return aggregateNames[aggr];33 }34 26 35 27 AggregateDecl::AggregateDecl( const std::string &name, const std::list< Attribute * > & attributes, LinkageSpec::Spec linkage ) : Parent( name, Type::StorageClasses(), linkage ), body( false ), attributes( attributes ) { … … 55 47 os << typeString() << " " << name << ":"; 56 48 if ( get_linkage() != LinkageSpec::Cforall ) { 57 os << " " << LinkageSpec:: name( linkage );49 os << " " << LinkageSpec::linkageName( linkage ); 58 50 } // if 59 51 os << " with body " << has_body(); … … 86 78 } 87 79 88 const char * StructDecl::typeString() const { return aggrString( kind ); }80 std::string StructDecl::typeString() const { return "struct"; } 89 81 90 const char * UnionDecl::typeString() const { return aggrString( Union ); }82 std::string UnionDecl::typeString() const { return "union"; } 91 83 92 const char * EnumDecl::typeString() const { return aggrString( Enum ); }84 std::string EnumDecl::typeString() const { return "enum"; } 93 85 94 const char * TraitDecl::typeString() const { return aggrString( Trait ); }86 std::string TraitDecl::typeString() const { return "trait"; } 95 87 96 88 bool EnumDecl::valueOf( Declaration * enumerator, long long int & value ) { -
src/SynTree/Attribute.h
r7030dab r71d6bd8 10 10 // Created On : Mon May 18 07:44:20 2015 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Thu Feb 13 21:34:08 202013 // Update Count : 4012 // Last Modified On : Sat Jul 22 09:54:14 2017 13 // Update Count : 39 14 14 // 15 15 … … 38 38 virtual ~Attribute(); 39 39 40 const std::string &get_name() const { return name; }40 std::string get_name() const { return name; } 41 41 void set_name( const std::string & newValue ) { name = newValue; } 42 42 std::list< Expression * > & get_parameters() { return parameters; } -
src/SynTree/Declaration.cc
r7030dab r71d6bd8 9 9 // Author : Richard C. Bilson 10 10 // Created On : Mon May 18 07:44:20 2015 11 // Last Modified By : Peter A. Buhr12 // Last Modified On : Wed Dec 11 16:39:56 201913 // Update Count : 3611 // Last Modified By : Andrew Beach 12 // Last Modified On : Wed Aug 9 14:38:00 2017 13 // Update Count : 25 14 14 // 15 15 … … 24 24 #include "SynTree/Statement.h" // for AsmStmt 25 25 #include "SynTree/SynTree.h" // for UniqueId 26 #include "SynTree/Expression.h"27 26 #include "Type.h" // for Type, Type::StorageClasses 28 27 29 // To canonicalize declarations30 28 static UniqueId lastUniqueId = 0; 31 29 -
src/SynTree/Declaration.h
r7030dab r71d6bd8 9 9 // Author : Richard C. Bilson 10 10 // Created On : Mon May 18 07:44:20 2015 11 // Last Modified By : Peter A. Buhr12 // Last Modified On : Fri Dec 13 23:11:22201913 // Update Count : 1 5711 // Last Modified By : Andrew Beach 12 // Last Modified On : Thr May 2 10:47:00 2019 13 // Update Count : 135 14 14 // 15 15 … … 24 24 #include "BaseSyntaxNode.h" // for BaseSyntaxNode 25 25 #include "Mutator.h" // for Mutator 26 #include "LinkageSpec.h" // for Spec, Cforall 26 #include "Parser/LinkageSpec.h" // for Spec, Cforall 27 #include "Parser/ParseNode.h" // for DeclarationNode, DeclarationNode::Ag... 27 28 #include "SynTree.h" // for UniqueId 28 29 #include "SynTree/Type.h" // for Type, Type::StorageClasses, Type::Fu... … … 43 44 bool extension = false; 44 45 45 Declaration( const std::string & 46 Declaration( const Declaration & 46 Declaration( const std::string &name, Type::StorageClasses scs, LinkageSpec::Spec linkage ); 47 Declaration( const Declaration &other ); 47 48 virtual ~Declaration(); 48 49 49 const std::string & 50 const std::string &get_name() const { return name; } 50 51 void set_name( std::string newValue ) { name = newValue; } 51 52 … … 58 59 59 60 bool get_extension() const { return extension; } 60 Declaration * 61 Declaration *set_extension( bool exten ) { extension = exten; return this; } 61 62 62 63 void fixUniqueId( void ); 63 virtual Declaration * 64 virtual Declaration *clone() const override = 0; 64 65 virtual void accept( Visitor & v ) override = 0; 65 66 virtual void accept( Visitor & v ) const override = 0; 66 virtual Declaration * acceptMutator( Mutator &m ) override = 0;67 virtual void print( std::ostream & 68 virtual void printShort( std::ostream & 67 virtual Declaration *acceptMutator( Mutator &m ) override = 0; 68 virtual void print( std::ostream &os, Indenter indent = {} ) const override = 0; 69 virtual void printShort( std::ostream &os, Indenter indent = {} ) const = 0; 69 70 70 71 UniqueId uniqueId; … … 80 81 int scopeLevel = 0; 81 82 82 Expression * 83 Expression *asmName; 83 84 std::list< Attribute * > attributes; 84 85 bool isDeleted = false; 85 86 86 DeclarationWithType( const std::string & 87 DeclarationWithType( const DeclarationWithType & 87 DeclarationWithType( const std::string &name, Type::StorageClasses scs, LinkageSpec::Spec linkage, const std::list< Attribute * > & attributes, Type::FuncSpecifiers fs ); 88 DeclarationWithType( const DeclarationWithType &other ); 88 89 virtual ~DeclarationWithType(); 89 90 … … 96 97 DeclarationWithType * set_scopeLevel( int newValue ) { scopeLevel = newValue; return this; } 97 98 98 Expression * 99 DeclarationWithType * set_asmName( Expression * 99 Expression *get_asmName() const { return asmName; } 100 DeclarationWithType * set_asmName( Expression *newValue ) { asmName = newValue; return this; } 100 101 101 102 std::list< Attribute * >& get_attributes() { return attributes; } … … 105 106 //void set_functionSpecifiers( Type::FuncSpecifiers newValue ) { fs = newValue; } 106 107 107 virtual DeclarationWithType * 108 virtual DeclarationWithType * acceptMutator( Mutator &m ) override = 0;108 virtual DeclarationWithType *clone() const override = 0; 109 virtual DeclarationWithType *acceptMutator( Mutator &m ) override = 0; 109 110 110 111 virtual Type * get_type() const = 0; … … 118 119 typedef DeclarationWithType Parent; 119 120 public: 120 Type * 121 Initializer * 122 Expression * 123 124 ObjectDecl( const std::string & name, Type::StorageClasses scs, LinkageSpec::Spec linkage, Expression * bitfieldWidth, Type * type, Initializer *init,121 Type *type; 122 Initializer *init; 123 Expression *bitfieldWidth; 124 125 ObjectDecl( const std::string &name, Type::StorageClasses scs, LinkageSpec::Spec linkage, Expression *bitfieldWidth, Type *type, Initializer *init, 125 126 const std::list< Attribute * > attributes = std::list< Attribute * >(), Type::FuncSpecifiers fs = Type::FuncSpecifiers() ); 126 ObjectDecl( const ObjectDecl & 127 ObjectDecl( const ObjectDecl &other ); 127 128 virtual ~ObjectDecl(); 128 129 129 130 virtual Type * get_type() const override { return type; } 130 virtual void set_type(Type * 131 132 Initializer * 133 void set_init( Initializer * 134 135 Expression * 136 void set_bitfieldWidth( Expression * 131 virtual void set_type(Type *newType) override { type = newType; } 132 133 Initializer *get_init() const { return init; } 134 void set_init( Initializer *newValue ) { init = newValue; } 135 136 Expression *get_bitfieldWidth() const { return bitfieldWidth; } 137 void set_bitfieldWidth( Expression *newValue ) { bitfieldWidth = newValue; } 137 138 138 139 static ObjectDecl * newObject( const std::string & name, Type * type, Initializer * init ); 139 140 140 virtual ObjectDecl * 141 virtual void accept( Visitor & v ) override { v.visit( this ); } 142 virtual void accept( Visitor & v ) const override { v.visit( this ); } 143 virtual DeclarationWithType * acceptMutator( Mutator &m ) override { return m.mutate( this ); }144 virtual void print( std::ostream & 145 virtual void printShort( std::ostream & 141 virtual ObjectDecl *clone() const override { return new ObjectDecl( *this ); } 142 virtual void accept( Visitor & v ) override { v.visit( this ); } 143 virtual void accept( Visitor & v ) const override { v.visit( this ); } 144 virtual DeclarationWithType *acceptMutator( Mutator &m ) override { return m.mutate( this ); } 145 virtual void print( std::ostream &os, Indenter indent = {} ) const override; 146 virtual void printShort( std::ostream &os, Indenter indent = {} ) const override; 146 147 }; 147 148 … … 149 150 typedef DeclarationWithType Parent; 150 151 public: 151 FunctionType * 152 CompoundStmt * 152 FunctionType *type; 153 CompoundStmt *statements; 153 154 std::list< Expression * > withExprs; 154 155 155 FunctionDecl( const std::string & name, Type::StorageClasses scs, LinkageSpec::Spec linkage, FunctionType * type, CompoundStmt *statements,156 FunctionDecl( const std::string &name, Type::StorageClasses scs, LinkageSpec::Spec linkage, FunctionType *type, CompoundStmt *statements, 156 157 const std::list< Attribute * > attributes = std::list< Attribute * >(), Type::FuncSpecifiers fs = Type::FuncSpecifiers() ); 157 FunctionDecl( const FunctionDecl & 158 FunctionDecl( const FunctionDecl &other ); 158 159 virtual ~FunctionDecl(); 159 160 … … 162 163 163 164 FunctionType * get_functionType() const { return type; } 164 void set_functionType( FunctionType * 165 CompoundStmt * 166 void set_statements( CompoundStmt * 165 void set_functionType( FunctionType *newValue ) { type = newValue; } 166 CompoundStmt *get_statements() const { return statements; } 167 void set_statements( CompoundStmt *newValue ) { statements = newValue; } 167 168 bool has_body() const { return NULL != statements; } 168 169 169 170 static FunctionDecl * newFunction( const std::string & name, FunctionType * type, CompoundStmt * statements ); 170 171 171 virtual FunctionDecl * 172 virtual void accept( Visitor & v ) override { v.visit( this ); } 173 virtual void accept( Visitor & v ) const override { v.visit( this ); } 174 virtual DeclarationWithType * acceptMutator( Mutator &m ) override { return m.mutate( this ); }175 virtual void print( std::ostream & 176 virtual void printShort( std::ostream & 172 virtual FunctionDecl *clone() const override { return new FunctionDecl( *this ); } 173 virtual void accept( Visitor & v ) override { v.visit( this ); } 174 virtual void accept( Visitor & v ) const override { v.visit( this ); } 175 virtual DeclarationWithType *acceptMutator( Mutator &m ) override { return m.mutate( this ); } 176 virtual void print( std::ostream &os, Indenter indent = {} ) const override; 177 virtual void printShort( std::ostream &os, Indenter indent = {} ) const override; 177 178 }; 178 179 … … 180 181 typedef Declaration Parent; 181 182 public: 182 Type * 183 std::list< TypeDecl 184 std::list< DeclarationWithType 185 186 NamedTypeDecl( const std::string & name, Type::StorageClasses scs, Type *type );187 NamedTypeDecl( const NamedTypeDecl & 183 Type *base; 184 std::list< TypeDecl* > parameters; 185 std::list< DeclarationWithType* > assertions; 186 187 NamedTypeDecl( const std::string &name, Type::StorageClasses scs, Type *type ); 188 NamedTypeDecl( const NamedTypeDecl &other ); 188 189 virtual ~NamedTypeDecl(); 189 190 190 Type * 191 void set_base( Type * 192 std::list< TypeDecl* > 193 std::list< DeclarationWithType 194 195 virtual const char *typeString() const = 0;196 197 virtual NamedTypeDecl * 198 virtual void print( std::ostream & 199 virtual void printShort( std::ostream & 191 Type *get_base() const { return base; } 192 void set_base( Type *newValue ) { base = newValue; } 193 std::list< TypeDecl* >& get_parameters() { return parameters; } 194 std::list< DeclarationWithType* >& get_assertions() { return assertions; } 195 196 virtual std::string typeString() const = 0; 197 198 virtual NamedTypeDecl *clone() const override = 0; 199 virtual void print( std::ostream &os, Indenter indent = {} ) const override; 200 virtual void printShort( std::ostream &os, Indenter indent = {} ) const override; 200 201 }; 201 202 … … 203 204 typedef NamedTypeDecl Parent; 204 205 public: 205 enum Kind { Dtype, Otype,Ftype, Ttype, NUMBER_OF_KINDS };206 207 Kind kind;206 enum Kind { Dtype, Ftype, Ttype, NUMBER_OF_KINDS }; 207 208 Type * init; 208 209 bool sized; 209 Type * init;210 210 211 211 /// Data extracted from a type decl 212 212 struct Data { 213 Kind kind;213 TypeDecl::Kind kind; 214 214 bool isComplete; 215 215 216 Data() : kind( NUMBER_OF_KINDS), isComplete( false ) {}217 Data( constTypeDecl * typeDecl ) : Data( typeDecl->get_kind(), typeDecl->isComplete() ) {}216 Data() : kind( (TypeDecl::Kind)-1 ), isComplete( false ) {} 217 Data( TypeDecl * typeDecl ) : Data( typeDecl->get_kind(), typeDecl->isComplete() ) {} 218 218 Data( Kind kind, bool isComplete ) : kind( kind ), isComplete( isComplete ) {} 219 Data( const Data & d1, const Data& d2 )220 : kind( d1.kind ), isComplete( d1.isComplete || d2.isComplete ) {}221 222 bool operator==( const Data & other) const { return kind == other.kind && isComplete == other.isComplete; }223 bool operator!=( const Data & other) const { return !(*this == other);}219 Data( const Data& d1, const Data& d2 ) 220 : kind( d1.kind ), isComplete ( d1.isComplete || d2.isComplete ) {} 221 222 bool operator==(const Data & other) const { return kind == other.kind && isComplete == other.isComplete; } 223 bool operator!=(const Data & other) const { return !(*this == other);} 224 224 }; 225 225 226 TypeDecl( const std::string & name, Type::StorageClasses scs, Type *type, Kind kind, bool sized, Type * init = nullptr );227 TypeDecl( const TypeDecl & 226 TypeDecl( const std::string &name, Type::StorageClasses scs, Type *type, Kind kind, bool sized, Type * init = nullptr ); 227 TypeDecl( const TypeDecl &other ); 228 228 virtual ~TypeDecl(); 229 229 … … 237 237 TypeDecl * set_sized( bool newValue ) { sized = newValue; return this; } 238 238 239 virtual const char * typeString() const override; 240 virtual const char * genTypeString() const; 241 242 virtual TypeDecl * clone() const override { return new TypeDecl( *this ); } 243 virtual void accept( Visitor & v ) override { v.visit( this ); } 244 virtual void accept( Visitor & v ) const override { v.visit( this ); } 245 virtual Declaration * acceptMutator( Mutator & m ) override { return m.mutate( this ); } 246 virtual void print( std::ostream & os, Indenter indent = {} ) const override; 239 virtual std::string typeString() const override; 240 virtual std::string genTypeString() const; 241 242 virtual TypeDecl *clone() const override { return new TypeDecl( *this ); } 243 virtual void accept( Visitor & v ) override { v.visit( this ); } 244 virtual void accept( Visitor & v ) const override { v.visit( this ); } 245 virtual Declaration *acceptMutator( Mutator &m ) override { return m.mutate( this ); } 246 virtual void print( std::ostream &os, Indenter indent = {} ) const override; 247 248 Kind kind; 247 249 }; 248 250 … … 250 252 typedef NamedTypeDecl Parent; 251 253 public: 252 TypedefDecl( const std::string & name, CodeLocation location, Type::StorageClasses scs, Type *type, LinkageSpec::Spec spec = LinkageSpec::Cforall )254 TypedefDecl( const std::string &name, CodeLocation location, Type::StorageClasses scs, Type *type, LinkageSpec::Spec spec = LinkageSpec::Cforall ) 253 255 : Parent( name, scs, type ) { set_linkage( spec ); this->location = location; } 254 256 255 TypedefDecl( const TypedefDecl & 256 257 virtual const char *typeString() const override;258 259 virtual TypedefDecl * 260 virtual void accept( Visitor & v ) override { v.visit( this ); } 261 virtual void accept( Visitor & v ) const override { v.visit( this ); } 262 virtual Declaration * acceptMutator( Mutator &m ) override { return m.mutate( this ); }257 TypedefDecl( const TypedefDecl &other ) : Parent( other ) {} 258 259 virtual std::string typeString() const override; 260 261 virtual TypedefDecl *clone() const override { return new TypedefDecl( *this ); } 262 virtual void accept( Visitor & v ) override { v.visit( this ); } 263 virtual void accept( Visitor & v ) const override { v.visit( this ); } 264 virtual Declaration *acceptMutator( Mutator &m ) override { return m.mutate( this ); } 263 265 private: 264 266 }; … … 267 269 typedef Declaration Parent; 268 270 public: 269 enum Aggregate { Struct, Union, Enum, Exception, Trait, Generator, Coroutine, Monitor, Thread, NoAggregate };270 static const char * aggrString( Aggregate aggr );271 272 271 std::list<Declaration*> members; 273 272 std::list<TypeDecl*> parameters; … … 276 275 AggregateDecl * parent = nullptr; 277 276 278 AggregateDecl( const std::string & 279 AggregateDecl( const AggregateDecl & 277 AggregateDecl( const std::string &name, const std::list< Attribute * > & attributes = std::list< class Attribute * >(), LinkageSpec::Spec linkage = LinkageSpec::Cforall ); 278 AggregateDecl( const AggregateDecl &other ); 280 279 virtual ~AggregateDecl(); 281 280 … … 289 288 AggregateDecl * set_body( bool body ) { AggregateDecl::body = body; return this; } 290 289 291 virtual void print( std::ostream & 292 virtual void printShort( std::ostream & 290 virtual void print( std::ostream &os, Indenter indent = {} ) const override final; 291 virtual void printShort( std::ostream &os, Indenter indent = {} ) const override; 293 292 protected: 294 virtual const char *typeString() const = 0;293 virtual std::string typeString() const = 0; 295 294 }; 296 295 … … 298 297 typedef AggregateDecl Parent; 299 298 public: 300 StructDecl( const std::string & name, Aggregate kind = Struct, const std::list< Attribute * > & attributes = std::list< class Attribute * >(), LinkageSpec::Spec linkage = LinkageSpec::Cforall ) : Parent( name, attributes, linkage ), kind( kind ) {} 301 StructDecl( const StructDecl & other ) : Parent( other ), kind( other.kind ) {} 302 303 bool is_coroutine() { return kind == Coroutine; } 304 bool is_generator() { return kind == Generator; } 305 bool is_monitor () { return kind == Monitor ; } 306 bool is_thread () { return kind == Thread ; } 307 308 virtual StructDecl * clone() const override { return new StructDecl( *this ); } 309 virtual void accept( Visitor & v ) override { v.visit( this ); } 310 virtual void accept( Visitor & v ) const override { v.visit( this ); } 311 virtual Declaration * acceptMutator( Mutator & m ) override { return m.mutate( this ); } 312 Aggregate kind; 313 private: 314 virtual const char * typeString() const override; 299 StructDecl( const std::string &name, DeclarationNode::Aggregate kind = DeclarationNode::Struct, const std::list< Attribute * > & attributes = std::list< class Attribute * >(), LinkageSpec::Spec linkage = LinkageSpec::Cforall ) : Parent( name, attributes, linkage ), kind( kind ) {} 300 StructDecl( const StructDecl &other ) : Parent( other ), kind( other.kind ) {} 301 302 bool is_coroutine() { return kind == DeclarationNode::Coroutine; } 303 bool is_monitor() { return kind == DeclarationNode::Monitor; } 304 bool is_thread() { return kind == DeclarationNode::Thread; } 305 306 virtual StructDecl *clone() const override { return new StructDecl( *this ); } 307 virtual void accept( Visitor & v ) override { v.visit( this ); } 308 virtual void accept( Visitor & v ) const override { v.visit( this ); } 309 virtual Declaration *acceptMutator( Mutator &m ) override { return m.mutate( this ); } 310 DeclarationNode::Aggregate kind; 311 private: 312 virtual std::string typeString() const override; 315 313 }; 316 314 … … 318 316 typedef AggregateDecl Parent; 319 317 public: 320 UnionDecl( const std::string & 321 UnionDecl( const UnionDecl & 322 323 virtual UnionDecl * 324 virtual void accept( Visitor & v ) override { v.visit( this ); } 325 virtual void accept( Visitor & v ) const override { v.visit( this ); } 326 virtual Declaration * acceptMutator( Mutator &m ) override { return m.mutate( this ); }327 private: 328 virtual const char *typeString() const override;318 UnionDecl( const std::string &name, const std::list< Attribute * > & attributes = std::list< class Attribute * >(), LinkageSpec::Spec linkage = LinkageSpec::Cforall ) : Parent( name, attributes, linkage ) {} 319 UnionDecl( const UnionDecl &other ) : Parent( other ) {} 320 321 virtual UnionDecl *clone() const override { return new UnionDecl( *this ); } 322 virtual void accept( Visitor & v ) override { v.visit( this ); } 323 virtual void accept( Visitor & v ) const override { v.visit( this ); } 324 virtual Declaration *acceptMutator( Mutator &m ) override { return m.mutate( this ); } 325 private: 326 virtual std::string typeString() const override; 329 327 }; 330 328 … … 332 330 typedef AggregateDecl Parent; 333 331 public: 334 EnumDecl( const std::string & 335 EnumDecl( const EnumDecl & 332 EnumDecl( const std::string &name, const std::list< Attribute * > & attributes = std::list< class Attribute * >(), LinkageSpec::Spec linkage = LinkageSpec::Cforall ) : Parent( name, attributes, linkage ) {} 333 EnumDecl( const EnumDecl &other ) : Parent( other ) {} 336 334 337 335 bool valueOf( Declaration * enumerator, long long int & value ); 338 336 339 virtual EnumDecl * 340 virtual void accept( Visitor & v ) override { v.visit( this ); } 341 virtual void accept( Visitor & v ) const override { v.visit( this ); } 342 virtual Declaration * acceptMutator( Mutator &m ) override { return m.mutate( this ); }337 virtual EnumDecl *clone() const override { return new EnumDecl( *this ); } 338 virtual void accept( Visitor & v ) override { v.visit( this ); } 339 virtual void accept( Visitor & v ) const override { v.visit( this ); } 340 virtual Declaration *acceptMutator( Mutator &m ) override { return m.mutate( this ); } 343 341 private: 344 342 std::unordered_map< std::string, long long int > enumValues; 345 virtual const char *typeString() const override;343 virtual std::string typeString() const override; 346 344 }; 347 345 … … 349 347 typedef AggregateDecl Parent; 350 348 public: 351 TraitDecl( const std::string & 349 TraitDecl( const std::string &name, const std::list< Attribute * > & attributes, LinkageSpec::Spec linkage ) : Parent( name, attributes, linkage ) { 352 350 assertf( attributes.empty(), "attribute unsupported for traits" ); 353 351 } 354 TraitDecl( const TraitDecl & 355 356 virtual TraitDecl * 357 virtual void accept( Visitor & v ) override { v.visit( this ); } 358 virtual void accept( Visitor & v ) const override { v.visit( this ); } 359 virtual Declaration * acceptMutator( Mutator &m ) override { return m.mutate( this ); }360 private: 361 virtual const char *typeString() const override;352 TraitDecl( const TraitDecl &other ) : Parent( other ) {} 353 354 virtual TraitDecl *clone() const override { return new TraitDecl( *this ); } 355 virtual void accept( Visitor & v ) override { v.visit( this ); } 356 virtual void accept( Visitor & v ) const override { v.visit( this ); } 357 virtual Declaration *acceptMutator( Mutator &m ) override { return m.mutate( this ); } 358 private: 359 virtual std::string typeString() const override; 362 360 }; 363 361 … … 381 379 class AsmDecl : public Declaration { 382 380 public: 383 AsmStmt * 384 385 AsmDecl( AsmStmt * 386 AsmDecl( const AsmDecl & 381 AsmStmt *stmt; 382 383 AsmDecl( AsmStmt *stmt ); 384 AsmDecl( const AsmDecl &other ); 387 385 virtual ~AsmDecl(); 388 386 389 AsmStmt * 390 void set_stmt( AsmStmt * 391 392 virtual AsmDecl * 393 virtual void accept( Visitor & v ) override { v.visit( this ); } 394 virtual void accept( Visitor & v ) const override { v.visit( this ); } 395 virtual AsmDecl * acceptMutator( Mutator &m ) override { return m.mutate( this ); }396 virtual void print( std::ostream & 397 virtual void printShort( std::ostream & 387 AsmStmt *get_stmt() { return stmt; } 388 void set_stmt( AsmStmt *newValue ) { stmt = newValue; } 389 390 virtual AsmDecl *clone() const override { return new AsmDecl( *this ); } 391 virtual void accept( Visitor & v ) override { v.visit( this ); } 392 virtual void accept( Visitor & v ) const override { v.visit( this ); } 393 virtual AsmDecl *acceptMutator( Mutator &m ) override { return m.mutate( this ); } 394 virtual void print( std::ostream &os, Indenter indent = {} ) const override; 395 virtual void printShort( std::ostream &os, Indenter indent = {} ) const override; 398 396 }; 399 397 … … 410 408 virtual void accept( Visitor & v ) override { v.visit( this ); } 411 409 virtual void accept( Visitor & v ) const override { v.visit( this ); } 412 virtual StaticAssertDecl * acceptMutator( Mutator & 413 virtual void print( std::ostream & 414 virtual void printShort( std::ostream & 410 virtual StaticAssertDecl * acceptMutator( Mutator &m ) override { return m.mutate( this ); } 411 virtual void print( std::ostream &os, Indenter indent = {} ) const override; 412 virtual void printShort( std::ostream &os, Indenter indent = {} ) const override; 415 413 }; 416 414 -
src/SynTree/DeclarationWithType.cc
r7030dab r71d6bd8 10 10 // Created On : Mon May 18 07:44:20 2015 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Fri Dec 13 23:45:16 201913 // Update Count : 2 612 // Last Modified On : Thu Mar 16 08:34:35 2017 13 // Update Count : 25 14 14 // 15 15 … … 20 20 #include "Common/utility.h" // for cloneAll, deleteAll, maybeClone 21 21 #include "Declaration.h" // for DeclarationWithType, Declaration 22 #include " LinkageSpec.h"// for Spec23 #include " Expression.h"// for ConstantExpr22 #include "Parser/LinkageSpec.h" // for Spec 23 #include "SynTree/Expression.h" // for ConstantExpr 24 24 #include "Type.h" // for Type, Type::FuncSpecifiers, Type::St... 25 25 -
src/SynTree/Expression.cc
r7030dab r71d6bd8 9 9 // Author : Richard C. Bilson 10 10 // Created On : Mon May 18 07:44:20 2015 11 // Last Modified By : Peter A. Buhr12 // Last Modified On : Wed Dec 11 07:55:15201913 // Update Count : 7011 // Last Modified By : Andrew Beach 12 // Last Modified On : Thr Aug 15 13:43:00 2019 13 // Update Count : 64 14 14 // 15 15 … … 22 22 23 23 #include "Common/utility.h" // for maybeClone, cloneAll, deleteAll 24 #include "Declaration.h" // for ObjectDecl, DeclarationWithType 24 25 #include "Expression.h" // for Expression, ImplicitCopyCtorExpr 25 26 #include "InitTweak/InitTweak.h" // for getCallArg, getPointerBase … … 293 294 } 294 295 295 KeywordCastExpr::KeywordCastExpr( Expression * arg, AggregateDecl::Aggregatetarget ) : Expression(), arg(arg), target( target ) {296 KeywordCastExpr::KeywordCastExpr( Expression * arg, Target target ) : Expression(), arg(arg), target( target ) { 296 297 } 297 298 … … 303 304 } 304 305 305 const char * KeywordCastExpr::targetString() const { 306 return AggregateDecl::aggrString( target ); 306 const std::string & KeywordCastExpr::targetString() const { 307 static const std::string targetStrs[] = { 308 "coroutine", "thread", "monitor" 309 }; 310 static_assert( 311 (sizeof(targetStrs) / sizeof(targetStrs[0])) == ((unsigned long)NUMBER_OF_TARGETS), 312 "Each KeywordCastExpr::Target should have a corresponding string representation" 313 ); 314 return targetStrs[(unsigned long)target]; 307 315 } 308 316 -
src/SynTree/Expression.h
r7030dab r71d6bd8 9 9 // Author : Richard C. Bilson 10 10 // Created On : Mon May 18 07:44:20 2015 11 // Last Modified By : Peter A. Buhr12 // Last Modified On : Wed Dec 11 16:50:19201913 // Update Count : 6011 // Last Modified By : Andrew Beach 12 // Last Modified On : Thr Aug 15 13:46:00 2019 13 // Update Count : 54 14 14 // 15 15 … … 28 28 #include "Label.h" // for Label 29 29 #include "Mutator.h" // for Mutator 30 #include "Declaration.h" // for Aggregate31 30 #include "SynTree.h" // for UniqueId 32 31 #include "Visitor.h" // for Visitor … … 230 229 public: 231 230 Expression * arg; 232 struct Concrete { 233 std::string field; 234 std::string getter; 235 }; 236 AggregateDecl::Aggregate target; 237 Concrete concrete_target; 238 239 KeywordCastExpr( Expression * arg, AggregateDecl::Aggregate target ); 231 enum Target { 232 Coroutine, Thread, Monitor, NUMBER_OF_TARGETS 233 } target; 234 235 KeywordCastExpr( Expression * arg, Target target ); 240 236 KeywordCastExpr( const KeywordCastExpr & other ); 241 237 virtual ~KeywordCastExpr(); 242 238 243 const char *targetString() const;239 const std::string & targetString() const; 244 240 245 241 virtual KeywordCastExpr * clone() const override { return new KeywordCastExpr( * this ); } -
src/SynTree/FunctionDecl.cc
r7030dab r71d6bd8 10 10 // Created On : Mon May 18 07:44:20 2015 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Mon Dec 16 15:11:20 201913 // Update Count : 7 712 // Last Modified On : Thu Mar 16 08:33:41 2017 13 // Update Count : 74 14 14 // 15 15 … … 23 23 #include "Common/utility.h" // for maybeClone, printAll 24 24 #include "Declaration.h" // for FunctionDecl, FunctionDecl::Parent 25 #include "Expression.h" 26 #include "LinkageSpec.h" // for Spec, linkageName, Cforall 25 #include "Parser/LinkageSpec.h" // for Spec, linkageName, Cforall 27 26 #include "Statement.h" // for CompoundStmt 28 27 #include "Type.h" // for Type, FunctionType, Type::FuncSpecif... … … 73 72 } // if 74 73 if ( linkage != LinkageSpec::Cforall ) { 75 os << LinkageSpec:: name( linkage ) << " ";74 os << LinkageSpec::linkageName( linkage ) << " "; 76 75 } // if 77 76 -
src/SynTree/Mutator.h
r7030dab r71d6bd8 51 51 virtual Statement * mutate( CatchStmt * catchStmt ) = 0; 52 52 virtual Statement * mutate( FinallyStmt * catchStmt ) = 0; 53 virtual Statement * mutate( SuspendStmt * suspendStmt ) = 0;54 53 virtual Statement * mutate( WaitForStmt * waitforStmt ) = 0; 55 54 virtual Declaration * mutate( WithStmt * withStmt ) = 0; -
src/SynTree/NamedTypeDecl.cc
r7030dab r71d6bd8 9 9 // Author : Richard C. Bilson 10 10 // Created On : Mon May 18 07:44:20 2015 11 // Last Modified By : Peter A. Buhr12 // Last Modified On : Mon Dec 16 15:11:40 201913 // Update Count : 1 711 // Last Modified By : Andrew Beach 12 // Last Modified On : Wed Aug 9 13:28:00 2017 13 // Update Count : 14 14 14 // 15 15 … … 20 20 #include "Common/utility.h" // for printAll, cloneAll, deleteAll, maybe... 21 21 #include "Declaration.h" // for NamedTypeDecl, DeclarationWithType 22 #include " LinkageSpec.h"// for Spec, Cforall, linkageName22 #include "Parser/LinkageSpec.h" // for Spec, Cforall, linkageName 23 23 #include "Type.h" // for Type, Type::StorageClasses 24 24 … … 44 44 45 45 if ( linkage != LinkageSpec::Cforall ) { 46 os << LinkageSpec:: name( linkage ) << " ";46 os << LinkageSpec::linkageName( linkage ) << " "; 47 47 } // if 48 48 get_storageClasses().print( os ); … … 78 78 } 79 79 80 const char *TypedefDecl::typeString() const { return "typedef"; }80 std::string TypedefDecl::typeString() const { return "typedef"; } 81 81 82 82 // Local Variables: // -
src/SynTree/ObjectDecl.cc
r7030dab r71d6bd8 10 10 // Created On : Mon May 18 07:44:20 2015 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Mon Dec 16 15:12:03 201913 // Update Count : 6112 // Last Modified On : Thu Mar 16 08:34:27 2017 13 // Update Count : 59 14 14 // 15 15 … … 23 23 #include "Expression.h" // for Expression 24 24 #include "Initializer.h" // for Initializer 25 #include " LinkageSpec.h"// for Spec, linkageName, Cforall25 #include "Parser/LinkageSpec.h" // for Spec, linkageName, Cforall 26 26 #include "Type.h" // for Type, Type::StorageClasses, Type::Fu... 27 27 … … 48 48 49 49 if ( linkage != LinkageSpec::Cforall ) { 50 os << LinkageSpec:: name( linkage ) << " ";50 os << LinkageSpec::linkageName( linkage ) << " "; 51 51 } // if 52 52 -
src/SynTree/Statement.cc
r7030dab r71d6bd8 9 9 // Author : Richard C. Bilson 10 10 // Created On : Mon May 18 07:44:20 2015 11 // Last Modified By : Andrew Beach12 // Last Modified On : Mon Jan 20 16:03:00 202013 // Update Count : 7111 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Sun Sep 3 20:46:44 2017 13 // Update Count : 68 14 14 // 15 15 … … 46 46 Statement::~Statement() {} 47 47 48 ExprStmt::ExprStmt( Expression * 49 50 ExprStmt::ExprStmt( const ExprStmt & 48 ExprStmt::ExprStmt( Expression *expr ) : Statement(), expr( expr ) {} 49 50 ExprStmt::ExprStmt( const ExprStmt &other ) : Statement( other ), expr( maybeClone( other.expr ) ) {} 51 51 52 52 ExprStmt::~ExprStmt() { … … 54 54 } 55 55 56 void ExprStmt::print( std::ostream & 56 void ExprStmt::print( std::ostream &os, Indenter indent ) const { 57 57 os << "Expression Statement:" << endl << indent+1; 58 58 expr->print( os, indent+1 ); … … 60 60 61 61 62 AsmStmt::AsmStmt( bool voltile, Expression * 62 AsmStmt::AsmStmt( bool voltile, Expression *instruction, std::list<Expression *> output, std::list<Expression *> input, std::list<ConstantExpr *> clobber, std::list<Label> gotolabels ) : Statement(), voltile( voltile ), instruction( instruction ), output( output ), input( input ), clobber( clobber ), gotolabels( gotolabels ) {} 63 63 64 64 AsmStmt::AsmStmt( const AsmStmt & other ) : Statement( other ), voltile( other.voltile ), instruction( maybeClone( other.instruction ) ), gotolabels( other.gotolabels ) { … … 75 75 } 76 76 77 void AsmStmt::print( std::ostream & 77 void AsmStmt::print( std::ostream &os, Indenter indent ) const { 78 78 os << "Assembler Statement:" << endl; 79 79 os << indent+1 << "instruction: " << endl << indent; … … 96 96 DirectiveStmt::DirectiveStmt( const std::string & directive ) : Statement(), directive( directive ) {} 97 97 98 void DirectiveStmt::print( std::ostream & 98 void DirectiveStmt::print( std::ostream &os, Indenter ) const { 99 99 os << "GCC Directive:" << directive << endl; 100 100 } 101 101 102 102 103 const char * BranchStmt::brType[] = { 104 "Goto", "Break", "Continue", "Fall Through", "Fall Through Default", 105 }; 103 const char *BranchStmt::brType[] = { "Goto", "Break", "Continue" }; 106 104 107 105 BranchStmt::BranchStmt( Label target, Type type ) throw ( SemanticErrorException ) : … … 113 111 } 114 112 115 BranchStmt::BranchStmt( Expression * 113 BranchStmt::BranchStmt( Expression *computedTarget, Type type ) throw ( SemanticErrorException ) : 116 114 Statement(), computedTarget( computedTarget ), type( type ) { 117 115 if ( type != BranchStmt::Goto || computedTarget == nullptr ) { … … 120 118 } 121 119 122 void BranchStmt::print( std::ostream & os, Indenter indent ) const { 123 assert(type < 5); 120 void BranchStmt::print( std::ostream &os, Indenter indent ) const { 124 121 os << "Branch (" << brType[type] << ")" << endl ; 125 122 if ( target != "" ) os << indent+1 << "with target: " << target << endl; … … 128 125 } 129 126 130 ReturnStmt::ReturnStmt( Expression * 127 ReturnStmt::ReturnStmt( Expression *expr ) : Statement(), expr( expr ) {} 131 128 132 129 ReturnStmt::ReturnStmt( const ReturnStmt & other ) : Statement( other ), expr( maybeClone( other.expr ) ) {} … … 136 133 } 137 134 138 void ReturnStmt::print( std::ostream & 135 void ReturnStmt::print( std::ostream &os, Indenter indent ) const { 139 136 os << "Return Statement, returning: "; 140 137 if ( expr != nullptr ) { … … 145 142 } 146 143 147 IfStmt::IfStmt( Expression * condition, Statement * thenPart, Statement *elsePart, std::list<Statement *> initialization ):144 IfStmt::IfStmt( Expression *condition, Statement *thenPart, Statement *elsePart, std::list<Statement *> initialization ): 148 145 Statement(), condition( condition ), thenPart( thenPart ), elsePart( elsePart ), initialization( initialization ) {} 149 146 … … 160 157 } 161 158 162 void IfStmt::print( std::ostream & 159 void IfStmt::print( std::ostream &os, Indenter indent ) const { 163 160 os << "If on condition: " << endl; 164 161 os << indent+1; … … 179 176 thenPart->print( os, indent+1 ); 180 177 181 if ( elsePart != nullptr) {178 if ( elsePart != 0 ) { 182 179 os << indent << "... else: " << endl; 183 180 os << indent+1; … … 186 183 } 187 184 188 SwitchStmt::SwitchStmt( Expression * condition, const std::list<Statement *> & 185 SwitchStmt::SwitchStmt( Expression * condition, const std::list<Statement *> &statements ): 189 186 Statement(), condition( condition ), statements( statements ) { 190 187 } … … 201 198 } 202 199 203 void SwitchStmt::print( std::ostream & 200 void SwitchStmt::print( std::ostream &os, Indenter indent ) const { 204 201 os << "Switch on condition: "; 205 202 condition->print( os ); … … 211 208 } 212 209 213 CaseStmt::CaseStmt( Expression * condition, const std::list<Statement *> &statements, bool deflt ) throw ( SemanticErrorException ) :210 CaseStmt::CaseStmt( Expression *condition, const std::list<Statement *> &statements, bool deflt ) throw ( SemanticErrorException ) : 214 211 Statement(), condition( condition ), stmts( statements ), _isDefault( deflt ) { 215 if ( isDefault() && condition != nullptr) SemanticError( condition, "default case with condition: " );212 if ( isDefault() && condition != 0 ) SemanticError( condition, "default case with condition: " ); 216 213 } 217 214 … … 232 229 } 233 230 234 void CaseStmt::print( std::ostream & 231 void CaseStmt::print( std::ostream &os, Indenter indent ) const { 235 232 if ( isDefault() ) os << indent << "Default "; 236 233 else { … … 246 243 } 247 244 248 WhileStmt::WhileStmt( Expression * condition, Statement *body, std::list< Statement * > & initialization, bool isDoWhile ):245 WhileStmt::WhileStmt( Expression *condition, Statement *body, std::list< Statement * > & initialization, bool isDoWhile ): 249 246 Statement(), condition( condition), body( body), initialization( initialization ), isDoWhile( isDoWhile) { 250 247 } … … 259 256 } 260 257 261 void WhileStmt::print( std::ostream & 258 void WhileStmt::print( std::ostream &os, Indenter indent ) const { 262 259 os << "While on condition: " << endl ; 263 260 condition->print( os, indent+1 ); … … 265 262 os << indent << "... with body: " << endl; 266 263 267 if ( body != nullptr) body->print( os, indent+1 );268 } 269 270 ForStmt::ForStmt( std::list<Statement *> initialization, Expression * condition, Expression * increment, Statement *body ):264 if ( body != 0 ) body->print( os, indent+1 ); 265 } 266 267 ForStmt::ForStmt( std::list<Statement *> initialization, Expression *condition, Expression *increment, Statement *body ): 271 268 Statement(), initialization( initialization ), condition( condition ), increment( increment ), body( body ) { 272 269 } … … 285 282 } 286 283 287 void ForStmt::print( std::ostream & 284 void ForStmt::print( std::ostream &os, Indenter indent ) const { 288 285 Statement::print( os, indent ); // print labels 289 286 … … 308 305 } 309 306 310 if ( body != nullptr) {307 if ( body != 0 ) { 311 308 os << "\n" << indent << "... with body: \n" << indent+1; 312 309 body->print( os, indent+1 ); … … 320 317 } 321 318 322 ThrowStmt::ThrowStmt( const ThrowStmt & 319 ThrowStmt::ThrowStmt( const ThrowStmt &other ) : 323 320 Statement ( other ), kind( other.kind ), expr( maybeClone( other.expr ) ), target( maybeClone( other.target ) ) { 324 321 } … … 329 326 } 330 327 331 void ThrowStmt::print( std::ostream & 328 void ThrowStmt::print( std::ostream &os, Indenter indent) const { 332 329 if ( target ) os << "Non-Local "; 333 330 os << "Throw Statement, raising: "; … … 339 336 } 340 337 341 TryStmt::TryStmt( CompoundStmt * tryBlock, std::list<CatchStmt *> & handlers, FinallyStmt *finallyBlock ) :338 TryStmt::TryStmt( CompoundStmt *tryBlock, std::list<CatchStmt *> &handlers, FinallyStmt *finallyBlock ) : 342 339 Statement(), block( tryBlock ), handlers( handlers ), finallyBlock( finallyBlock ) { 343 340 } 344 341 345 TryStmt::TryStmt( const TryStmt & 342 TryStmt::TryStmt( const TryStmt &other ) : Statement( other ), block( maybeClone( other.block ) ), finallyBlock( maybeClone( other.finallyBlock ) ) { 346 343 cloneAll( other.handlers, handlers ); 347 344 } … … 353 350 } 354 351 355 void TryStmt::print( std::ostream & 352 void TryStmt::print( std::ostream &os, Indenter indent ) const { 356 353 os << "Try Statement" << endl; 357 354 os << indent << "... with block:" << endl << indent+1; … … 366 363 367 364 // finally block 368 if ( finallyBlock != nullptr) {365 if ( finallyBlock != 0 ) { 369 366 os << indent << "... and finally:" << endl << indent+1; 370 367 finallyBlock->print( os, indent+1 ); … … 372 369 } 373 370 374 CatchStmt::CatchStmt( Kind kind, Declaration * decl, Expression * cond, Statement *body ) :371 CatchStmt::CatchStmt( Kind kind, Declaration *decl, Expression *cond, Statement *body ) : 375 372 Statement(), kind ( kind ), decl ( decl ), cond ( cond ), body( body ) { 376 373 assertf( decl, "Catch clause must have a declaration." ); … … 386 383 } 387 384 388 void CatchStmt::print( std::ostream & 385 void CatchStmt::print( std::ostream &os, Indenter indent ) const { 389 386 os << "Catch " << ((Terminate == kind) ? "Terminate" : "Resume") << " Statement" << endl; 390 387 … … 404 401 405 402 406 FinallyStmt::FinallyStmt( CompoundStmt * 403 FinallyStmt::FinallyStmt( CompoundStmt *block ) : Statement(), block( block ) { 407 404 } 408 405 … … 414 411 } 415 412 416 void FinallyStmt::print( std::ostream & 413 void FinallyStmt::print( std::ostream &os, Indenter indent ) const { 417 414 os << "Finally Statement" << endl; 418 415 os << indent << "... with block:" << endl << indent+1; 419 416 block->print( os, indent+1 ); 420 }421 422 SuspendStmt::SuspendStmt( const SuspendStmt & other )423 : Statement( other )424 , then( maybeClone(other.then) )425 {}426 427 SuspendStmt::~SuspendStmt() {428 delete then;429 }430 431 void SuspendStmt::print( std::ostream & os, Indenter indent ) const {432 os << "Suspend Statement";433 switch (type) {434 case None : os << " with implicit target"; break;435 case Generator: os << " for generator" ; break;436 case Coroutine: os << " for coroutine" ; break;437 }438 os << endl;439 indent += 1;440 441 if(then) {442 os << indent << " with post statement :" << endl;443 then->print( os, indent + 1);444 }445 417 } 446 418 … … 486 458 } 487 459 488 void WaitForStmt::print( std::ostream & 460 void WaitForStmt::print( std::ostream &os, Indenter indent ) const { 489 461 os << "Waitfor Statement" << endl; 490 462 indent += 1; … … 542 514 } 543 515 544 void NullStmt::print( std::ostream & 516 void NullStmt::print( std::ostream &os, Indenter indent ) const { 545 517 os << "Null Statement" << endl; 546 518 Statement::print( os, indent ); … … 558 530 } 559 531 560 void ImplicitCtorDtorStmt::print( std::ostream & 532 void ImplicitCtorDtorStmt::print( std::ostream &os, Indenter indent ) const { 561 533 os << "Implicit Ctor Dtor Statement" << endl; 562 534 os << indent << "... with Ctor/Dtor: "; -
src/SynTree/Statement.h
r7030dab r71d6bd8 10 10 // Created On : Mon May 18 07:44:20 2015 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Fri Jan 10 14:13:24 202013 // Update Count : 8 512 // Last Modified On : Tue Mar 12 09:01:53 2019 13 // Update Count : 83 14 14 // 15 15 … … 257 257 Statement * body; 258 258 259 ForStmt( std::list<Statement *> initialization, Expression * condition = nullptr, Expression * increment = nullptr, Statement * body = nullptr);259 ForStmt( std::list<Statement *> initialization, Expression * condition = 0, Expression * increment = 0, Statement * body = 0 ); 260 260 ForStmt( const ForStmt & other ); 261 261 virtual ~ForStmt(); … … 357 357 FinallyStmt * finallyBlock; 358 358 359 TryStmt( CompoundStmt * tryBlock, std::list<CatchStmt *> & handlers, FinallyStmt * finallyBlock = nullptr);359 TryStmt( CompoundStmt * tryBlock, std::list<CatchStmt *> & handlers, FinallyStmt * finallyBlock = 0 ); 360 360 TryStmt( const TryStmt & other ); 361 361 virtual ~TryStmt(); … … 422 422 }; 423 423 424 class SuspendStmt : public Statement {425 public:426 CompoundStmt * then = nullptr;427 enum Type { None, Coroutine, Generator } type = None;428 429 SuspendStmt() = default;430 SuspendStmt( const SuspendStmt & );431 virtual ~SuspendStmt();432 433 virtual SuspendStmt * clone() const override { return new SuspendStmt( *this ); }434 virtual void accept( Visitor & v ) override { v.visit( this ); }435 virtual void accept( Visitor & v ) const override { v.visit( this ); }436 virtual Statement * acceptMutator( Mutator & m ) override { return m.mutate( this ); }437 virtual void print( std::ostream & os, Indenter indent = {} ) const override;438 };439 440 424 class WaitForStmt : public Statement { 441 425 public: -
src/SynTree/SynTree.h
r7030dab r71d6bd8 54 54 class CatchStmt; 55 55 class FinallyStmt; 56 class SuspendStmt;57 56 class WaitForStmt; 58 57 class WithStmt; -
src/SynTree/TupleType.cc
r7030dab r71d6bd8 10 10 // Created On : Mon May 18 07:44:20 2015 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Fri Dec 13 23:44:38 201913 // Update Count : 412 // Last Modified On : Wed Feb 1 17:10:58 2017 13 // Update Count : 3 14 14 // 15 15 … … 20 20 #include "Declaration.h" // for Declaration, ObjectDecl 21 21 #include "Initializer.h" // for ListInit 22 #include " LinkageSpec.h"// for Cforall22 #include "Parser/LinkageSpec.h" // for Cforall 23 23 #include "Type.h" // for TupleType, Type, Type::Qualifiers 24 24 -
src/SynTree/Type.cc
r7030dab r71d6bd8 10 10 // Created On : Mon May 18 07:44:20 2015 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Sun Dec 15 16:52:37 201913 // Update Count : 4 912 // Last Modified On : Sun Aug 4 21:05:07 2019 13 // Update Count : 45 14 14 // 15 15 #include "Type.h" … … 24 24 using namespace std; 25 25 26 // GENERATED START, DO NOT EDIT27 // GENERATED BY BasicTypes-gen.cc28 26 const char * BasicType::typeNames[] = { 29 27 "_Bool", … … 47 45 "float", 48 46 "float _Complex", 47 //"float _Imaginary", 49 48 "_Float32x", 50 49 "_Float32x _Complex", … … 53 52 "double", 54 53 "double _Complex", 54 //"double _Imaginary", 55 55 "_Float64x", 56 56 "_Float64x _Complex", … … 61 61 "long double", 62 62 "long double _Complex", 63 //"long double _Imaginary", 63 64 "_Float128x", 64 65 "_Float128x _Complex", 65 66 }; 66 // GENERATED END 67 static_assert( 68 sizeof(BasicType::typeNames) / sizeof(BasicType::typeNames[0]) == BasicType::NUMBER_OF_BASIC_TYPES, 69 "Each basic type name should have a corresponding kind enum value" 70 ); 67 71 68 72 Type::Type( const Qualifiers &tq, const std::list< Attribute * > & attributes ) : tq( tq ), attributes( attributes ) {} -
src/SynTree/TypeDecl.cc
r7030dab r71d6bd8 9 9 // Author : Richard C. Bilson 10 10 // Created On : Mon May 18 07:44:20 2015 11 // Last Modified By : Peter A. Buhr12 // Last Modified On : Fri Dec 13 15:26:14 201913 // Update Count : 2111 // Last Modified By : Andrew Beach 12 // Last Modified On : Wed Aug 9 14:35:00 2017 13 // Update Count : 6 14 14 // 15 15 … … 21 21 #include "Type.h" // for Type, Type::StorageClasses 22 22 23 TypeDecl::TypeDecl( const std::string & name, Type::StorageClasses scs, Type * type, Kind kind, bool sized, Type * init ) : Parent( name, scs, type ), kind( kind ), sized( kind == Ttype || sized ), init( init) {23 TypeDecl::TypeDecl( const std::string &name, Type::StorageClasses scs, Type *type, Kind kind, bool sized, Type * init ) : Parent( name, scs, type ), init( init ), sized( kind == Ttype || sized ), kind( kind ) { 24 24 } 25 25 26 TypeDecl::TypeDecl( const TypeDecl & other ) : Parent( other ), kind( other.kind ), sized( other.sized ), init( maybeClone( other.init )) {26 TypeDecl::TypeDecl( const TypeDecl &other ) : Parent( other ), init( maybeClone( other.init ) ), sized( other.sized ), kind( other.kind ) { 27 27 } 28 28 29 29 TypeDecl::~TypeDecl() { 30 30 delete init; 31 31 } 32 32 33 const char *TypeDecl::typeString() const {34 static const char * kindNames[] = { "sized data type", "sized object type", "sized function type", "sizedtuple type" };35 static_assert( sizeof(kindNames)/sizeof(kindNames[0]) == TypeDecl::NUMBER_OF_KINDS, "typeString: kindNames is out of sync." );36 assertf( kind < TypeDecl::NUMBER_OF_KINDS, "TypeDeclkind is out of bounds." );37 return isComplete() ? kindNames[ kind ] : &kindNames[ kind ][ sizeof("sized") ]; // sizeof includes '\0'33 std::string TypeDecl::typeString() const { 34 static const std::string kindNames[] = { "object type", "function type", "tuple type" }; 35 assertf( sizeof(kindNames)/sizeof(kindNames[0]) == DeclarationNode::NoTypeClass-1, "typeString: kindNames is out of sync." ); 36 assertf( kind < sizeof(kindNames)/sizeof(kindNames[0]), "TypeDecl's kind is out of bounds." ); 37 return (isComplete() ? "sized " : "") + kindNames[ kind ]; 38 38 } 39 39 40 const char *TypeDecl::genTypeString() const {41 static const char * kindNames[] = { "dtype", "otype", "ftype", "ttype" };42 static_assert( sizeof(kindNames)/sizeof(kindNames[0]) == TypeDecl::NUMBER_OF_KINDS, "genTypeString: kindNames is out of sync." );43 assertf( kind < TypeDecl::NUMBER_OF_KINDS, "TypeDeclkind is out of bounds." );40 std::string TypeDecl::genTypeString() const { 41 static const std::string kindNames[] = { "dtype", "ftype", "ttype" }; 42 assertf( sizeof(kindNames)/sizeof(kindNames[0]) == DeclarationNode::NoTypeClass-1, "genTypeString: kindNames is out of sync." ); 43 assertf( kind < sizeof(kindNames)/sizeof(kindNames[0]), "TypeDecl's kind is out of bounds." ); 44 44 return kindNames[ kind ]; 45 45 } 46 46 47 47 void TypeDecl::print( std::ostream &os, Indenter indent ) const { 48 49 50 51 52 } // if 48 NamedTypeDecl::print( os, indent ); 49 if ( init ) { 50 os << std::endl << indent << "with type initializer: "; 51 init->print( os, indent + 1 ); 52 } 53 53 } 54 54 55 55 56 std::ostream & operator<<( std::ostream & os, const TypeDecl::Data & data ) { 56 57 return os << data.kind << ", " << data.isComplete; 57 58 } 58 59 -
src/SynTree/Visitor.h
r7030dab r71d6bd8 78 78 virtual void visit( FinallyStmt * node ) { visit( const_cast<const FinallyStmt *>(node) ); } 79 79 virtual void visit( const FinallyStmt * finallyStmt ) = 0; 80 virtual void visit( SuspendStmt * node ) { visit( const_cast<const SuspendStmt *>(node) ); }81 virtual void visit( const SuspendStmt * suspendStmt ) = 0;82 80 virtual void visit( WaitForStmt * node ) { visit( const_cast<const WaitForStmt *>(node) ); } 83 81 virtual void visit( const WaitForStmt * waitforStmt ) = 0; -
src/SynTree/module.mk
r7030dab r71d6bd8 11 11 ## Created On : Mon Jun 1 17:49:17 2015 12 12 ## Last Modified By : Peter A. Buhr 13 ## Last Modified On : Sat Dec 14 07:26:43 201914 ## Update Count : 213 ## Last Modified On : Mon Jun 1 17:54:09 2015 14 ## Update Count : 1 15 15 ############################################################################### 16 16 17 17 SRC_SYNTREE = \ 18 SynTree/Type.cc \ 19 SynTree/VoidType.cc \ 20 SynTree/BasicType.cc \ 21 SynTree/PointerType.cc \ 22 SynTree/ArrayType.cc \ 23 SynTree/ReferenceType.cc \ 24 SynTree/FunctionType.cc \ 25 SynTree/ReferenceToType.cc \ 26 SynTree/TupleType.cc \ 27 SynTree/TypeofType.cc \ 28 SynTree/AttrType.cc \ 29 SynTree/VarArgsType.cc \ 30 SynTree/ZeroOneType.cc \ 31 SynTree/Constant.cc \ 32 SynTree/Expression.cc \ 33 SynTree/TupleExpr.cc \ 34 SynTree/CommaExpr.cc \ 35 SynTree/TypeExpr.cc \ 36 SynTree/ApplicationExpr.cc \ 18 37 SynTree/AddressExpr.cc \ 19 SynTree/AggregateDecl.cc \ 20 SynTree/ApplicationExpr.cc \ 21 SynTree/ArrayType.cc \ 22 SynTree/AttrType.cc \ 23 SynTree/Attribute.cc \ 24 SynTree/BasicType.cc \ 25 SynTree/CommaExpr.cc \ 38 SynTree/Statement.cc \ 26 39 SynTree/CompoundStmt.cc \ 27 SynTree/Constant.cc \28 SynTree/DeclReplacer.cc \29 40 SynTree/DeclStmt.cc \ 30 41 SynTree/Declaration.cc \ 31 42 SynTree/DeclarationWithType.cc \ 32 SynTree/ Expression.cc \43 SynTree/ObjectDecl.cc \ 33 44 SynTree/FunctionDecl.cc \ 34 SynTree/FunctionType.cc \ 45 SynTree/AggregateDecl.cc \ 46 SynTree/NamedTypeDecl.cc \ 47 SynTree/TypeDecl.cc \ 35 48 SynTree/Initializer.cc \ 36 SynTree/LinkageSpec.cc \37 SynTree/NamedTypeDecl.cc \38 SynTree/ObjectDecl.cc \39 SynTree/PointerType.cc \40 SynTree/ReferenceToType.cc \41 SynTree/ReferenceType.cc \42 SynTree/Statement.cc \43 SynTree/TupleExpr.cc \44 SynTree/TupleType.cc \45 SynTree/Type.cc \46 SynTree/TypeDecl.cc \47 SynTree/TypeExpr.cc \48 49 SynTree/TypeSubstitution.cc \ 49 SynTree/TypeofType.cc \ 50 SynTree/VarArgsType.cc \ 51 SynTree/VoidType.cc \ 52 SynTree/ZeroOneType.cc 50 SynTree/Attribute.cc \ 51 SynTree/DeclReplacer.cc 53 52 54 53 SRC += $(SRC_SYNTREE) -
src/Tuples/TupleAssignment.cc
r7030dab r71d6bd8 10 10 // Created On : Mon May 18 07:44:20 2015 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Fri Dec 13 23:45:33 201913 // Update Count : 912 // Last Modified On : Fri Mar 17 09:43:03 2017 13 // Update Count : 8 14 14 // 15 15 … … 34 34 #include "InitTweak/GenInit.h" // for genCtorInit 35 35 #include "InitTweak/InitTweak.h" // for getPointerBase, isAssignment 36 #include "Parser/LinkageSpec.h" // for Cforall 36 37 #include "ResolvExpr/Alternative.h" // for AltList, Alternative 37 38 #include "ResolvExpr/AlternativeFinder.h" // for AlternativeFinder, simpleC... … … 40 41 #include "ResolvExpr/TypeEnvironment.h" // for TypeEnvironment 41 42 #include "ResolvExpr/typeops.h" // for combos 42 #include "SynTree/LinkageSpec.h" // for Cforall43 43 #include "SynTree/Declaration.h" // for ObjectDecl 44 44 #include "SynTree/Expression.h" // for Expression, CastExpr, Name... -
src/Tuples/TupleExpansion.cc
r7030dab r71d6bd8 9 9 // Author : Rodolfo G. Esteves 10 10 // Created On : Mon May 18 07:44:20 2015 11 // Last Modified By : Peter A. Buhr12 // Last Modified On : Fri Dec 13 23:45:51201913 // Update Count : 2 411 // Last Modified By : Andrew Beach 12 // Last Modified On : Fri Oct 4 15:38:00 2019 13 // Update Count : 23 14 14 // 15 15 … … 27 27 #include "Common/utility.h" // for CodeLocation 28 28 #include "InitTweak/InitTweak.h" // for getFunction 29 #include " SynTree/LinkageSpec.h"// for Spec, C, Intrinsic29 #include "Parser/LinkageSpec.h" // for Spec, C, Intrinsic 30 30 #include "SynTree/Constant.h" // for Constant 31 31 #include "SynTree/Declaration.h" // for StructDecl, DeclarationWithType … … 361 361 const ast::TypeInstType * isTtype( const ast::Type * type ) { 362 362 if ( const ast::TypeInstType * inst = dynamic_cast< const ast::TypeInstType * >( type ) ) { 363 if ( inst->base && inst->base->kind == ast::Type Decl::Ttype ) {363 if ( inst->base && inst->base->kind == ast::TypeVar::Ttype ) { 364 364 return inst; 365 365 } -
src/cfa.make
r7030dab r71d6bd8 1 2 1 3 CFACOMPILE = $(CFACC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CFAFLAGS) $(CFAFLAGS) $(AM_CFLAGS) $(CFLAGS) 2 4 LTCFACOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ 3 5 $(LIBTOOLFLAGS) --mode=compile $(CFACC) $(DEFS) \ 4 $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CFAFLAGS) $(AM_CFLAGS) $(CFAFLAGS) $(CFLAGS) 6 $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CFAFLAGS) $(CFAFLAGS) \ 7 $(AM_CFLAGS) $(CFLAGS) 5 8 6 9 AM_V_CFA = $(am__v_CFA_@AM_V@) … … 19 22 $(am__mv) $$depbase.Tpo $$depbase.Plo 20 23 24 AM_V_JAVAC = $(am__v_JAVAC_@AM_V@) 25 am__v_JAVAC_ = $(am__v_JAVAC_@AM_DEFAULT_V@) 26 am__v_JAVAC_0 = @echo " JAVAC " $@; 27 am__v_JAVAC_1 = 28 29 AM_V_GOC = $(am__v_GOC_@AM_V@) 30 am__v_GOC_ = $(am__v_GOC_@AM_DEFAULT_V@) 31 am__v_GOC_0 = @echo " GOC " $@; 32 am__v_GOC_1 = 33 21 34 UPPCC = u++ 22 35 UPPCOMPILE = $(UPPCC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_UPPFLAGS) $(UPPFLAGS) $(AM_CXXFLAGS) $(CXXFLAGS) $(AM_CFLAGS) $(CFLAGS) … … 26 39 am__v_UPP_0 = @echo " UPP " $@; 27 40 am__v_UPP_1 = 28 29 AM_V_GOC = $(am__v_GOC_@AM_V@)30 am__v_GOC_ = $(am__v_GOC_@AM_DEFAULT_V@)31 am__v_GOC_0 = @echo " GOC " $@;32 am__v_GOC_1 =33 34 AM_V_PY = $(am__v_PY_@AM_V@)35 am__v_PY_ = $(am__v_PY_@AM_DEFAULT_V@)36 am__v_PY_0 = @echo " PYTHON " $@;37 am__v_PY_1 =38 39 AM_V_RUST = $(am__v_RUST_@AM_V@)40 am__v_RUST_ = $(am__v_RUST_@AM_DEFAULT_V@)41 am__v_RUST_0 = @echo " RUST " $@;42 am__v_RUST_1 =43 44 AM_V_NODEJS = $(am__v_NODEJS_@AM_V@)45 am__v_NODEJS_ = $(am__v_NODEJS_@AM_DEFAULT_V@)46 am__v_NODEJS_0 = @echo " NODEJS " $@;47 am__v_NODEJS_1 =48 49 AM_V_JAVAC = $(am__v_JAVAC_@AM_V@)50 am__v_JAVAC_ = $(am__v_JAVAC_@AM_DEFAULT_V@)51 am__v_JAVAC_0 = @echo " JAVAC " $@;52 am__v_JAVAC_1 = -
src/main.cc
r7030dab r71d6bd8 10 10 // Created On : Fri May 15 23:12:02 2015 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Sat Feb 8 08:33:50 202013 // Update Count : 6 3312 // Last Modified On : Fri Aug 23 06:50:08 2019 13 // Update Count : 607 14 14 // 15 15 … … 20 20 #include <cstdio> // for fopen, FILE, fclose, stdin 21 21 #include <cstdlib> // for exit, free, abort, EXIT_F... 22 #include <csignal> 22 #include <csignal> // for signal, SIGABRT, SIGSEGV 23 23 #include <cstring> // for index 24 24 #include <fstream> // for ofstream … … 28 28 #include <list> // for list 29 29 #include <string> // for char_traits, operator<< 30 31 using namespace std;32 30 33 31 #include "AST/Convert.hpp" … … 56 54 #include "InitTweak/GenInit.h" // for genInit 57 55 #include "MakeLibCfa.h" // for makeLibCfa 56 #include "Parser/LinkageSpec.h" // for Spec, Cforall, Intrinsic 58 57 #include "Parser/ParseNode.h" // for DeclarationNode, buildList 59 58 #include "Parser/TypedefTable.h" // for TypedefTable … … 61 60 #include "ResolvExpr/Resolver.h" // for resolve 62 61 #include "SymTab/Validate.h" // for validate 63 #include "SynTree/LinkageSpec.h" // for Spec, Cforall, Intrinsic64 62 #include "SynTree/Declaration.h" // for Declaration 65 63 #include "SynTree/Visitor.h" // for acceptAll … … 67 65 #include "Virtual/ExpandCasts.h" // for expandCasts 68 66 67 68 using namespace std; 69 69 70 70 static void NewPass( const char * const name ) { … … 98 98 static bool waiting_for_gdb = false; // flag to set cfa-cpp to wait for gdb on start 99 99 100 static st ring PreludeDirector = "";100 static std::string PreludeDirector = ""; 101 101 102 102 static void parse_cmdline( int argc, char *argv[] ); … … 105 105 106 106 static void backtrace( int start ) { // skip first N stack frames 107 enum { Frames = 50 , }; // maximum number of stack frames107 enum { Frames = 50 }; 108 108 void * array[Frames]; 109 size_t size = ::backtrace( array, Frames );109 int size = ::backtrace( array, Frames ); 110 110 char ** messages = ::backtrace_symbols( array, size ); // does not demangle names 111 111 … … 114 114 115 115 // skip last 2 stack frames after main 116 for ( unsignedint i = start; i < size - 2 && messages != nullptr; i += 1 ) {116 for ( int i = start; i < size - 2 && messages != nullptr; i += 1 ) { 117 117 char * mangled_name = nullptr, * offset_begin = nullptr, * offset_end = nullptr; 118 119 for ( char * p = messages[i]; *p; p += 1 ) { // find parantheses and +offset 118 for ( char *p = messages[i]; *p; ++p ) { // find parantheses and +offset 120 119 if ( *p == '(' ) { 121 120 mangled_name = p; … … 155 154 } // backtrace 156 155 157 #define SIGPARMS int sig __attribute__(( unused )), siginfo_t * sfp __attribute__(( unused )), ucontext_t * cxt __attribute__(( unused )) 158 159 static void Signal( int sig, void (*handler)(SIGPARMS), int flags ) { 160 struct sigaction act; 161 162 act.sa_sigaction = (void (*)(int, siginfo_t *, void *))handler; 163 act.sa_flags = flags; 164 165 if ( sigaction( sig, &act, nullptr ) == -1 ) { 166 cerr << "*CFA runtime error* problem installing signal handler, error(" << errno << ") " << strerror( errno ) << endl; 167 _exit( EXIT_FAILURE ); 168 } // if 169 } // Signal 170 171 static void sigSegvBusHandler( SIGPARMS ) { 172 if ( sfp->si_addr == nullptr ) { 173 cerr << "Null pointer (nullptr) dereference." << endl; 174 } else { 175 cerr << (sig == SIGSEGV ? "Segment fault" : "Bus error") << " at memory location " << sfp->si_addr << "." << endl 176 << "Possible cause is reading outside the address space or writing to a protected area within the address space with an invalid pointer or subscript." << endl; 177 } // if 156 static void sigSegvBusHandler( int sig_num ) { 157 cerr << "*CFA runtime error* program cfa-cpp terminated with " 158 << (sig_num == SIGSEGV ? "segment fault" : "bus error") 159 << "." << endl; 178 160 backtrace( 2 ); // skip first 2 stack frames 161 //_exit( EXIT_FAILURE ); 179 162 abort(); // cause core dump for debugging 180 163 } // sigSegvBusHandler 181 164 182 static void sigFpeHandler( SIGPARMS ) { 183 const char * msg; 184 185 switch ( sfp->si_code ) { 186 case FPE_INTDIV: case FPE_FLTDIV: msg = "divide by zero"; break; 187 case FPE_FLTOVF: msg = "overflow"; break; 188 case FPE_FLTUND: msg = "underflow"; break; 189 case FPE_FLTRES: msg = "inexact result"; break; 190 case FPE_FLTINV: msg = "invalid operation"; break; 191 default: msg = "unknown"; 192 } // choose 193 cerr << "Computation error " << msg << " at location " << sfp->si_addr << endl 194 << "Possible cause is constant-expression evaluation invalid." << endl; 195 backtrace( 2 ); // skip first 2 stack frames 196 abort(); // cause core dump for debugging 197 } // sigFpeHandler 198 199 static void sigAbortHandler( SIGPARMS ) { 165 static void sigAbortHandler( __attribute__((unused)) int sig_num ) { 200 166 backtrace( 6 ); // skip first 6 stack frames 201 Signal( SIGABRT, (void (*)(SIGPARMS))SIG_DFL, SA_SIGINFO );// reset default signal handler167 signal( SIGABRT, SIG_DFL); // reset default signal handler 202 168 raise( SIGABRT ); // reraise SIGABRT 203 169 } // sigAbortHandler … … 208 174 list< Declaration * > translationUnit; 209 175 210 Signal( SIGSEGV, sigSegvBusHandler, SA_SIGINFO ); 211 Signal( SIGBUS, sigSegvBusHandler, SA_SIGINFO ); 212 Signal( SIGFPE, sigFpeHandler, SA_SIGINFO ); 213 Signal( SIGABRT, sigAbortHandler, SA_SIGINFO ); 214 215 // cout << "main" << endl; 176 signal( SIGSEGV, sigSegvBusHandler ); 177 signal( SIGBUS, sigSegvBusHandler ); 178 signal( SIGABRT, sigAbortHandler ); 179 180 // std::cout << "main" << std::endl; 216 181 // for ( int i = 0; i < argc; i += 1 ) { 217 // cout << '\t' << argv[i] <<endl;182 // std::cout << '\t' << argv[i] << std::endl; 218 183 // } // for 219 184 … … 222 187 223 188 if ( waiting_for_gdb ) { 224 cerr << "Waiting for gdb" <<endl;225 cerr << "run :" <<endl;226 cerr << " gdb attach " << getpid() <<endl;189 std::cerr << "Waiting for gdb" << std::endl; 190 std::cerr << "run :" << std::endl; 191 std::cerr << " gdb attach " << getpid() << std::endl; 227 192 raise(SIGSTOP); 228 193 } // if … … 430 395 return EXIT_FAILURE; 431 396 } catch ( ... ) { 432 exception_ptr eptr =current_exception();397 std::exception_ptr eptr = std::current_exception(); 433 398 try { 434 399 if (eptr) { 435 rethrow_exception(eptr);400 std::rethrow_exception(eptr); 436 401 } else { 437 cerr << "Exception Uncaught and Unknown" <<endl;438 } // if 439 } catch(const exception& e) {440 cerr << "Uncaught Exception \"" << e.what() << "\"\n";402 std::cerr << "Exception Uncaught and Unknown" << std::endl; 403 } // if 404 } catch(const std::exception& e) { 405 std::cerr << "Uncaught Exception \"" << e.what() << "\"\n"; 441 406 } // try 442 407 return EXIT_FAILURE; … … 449 414 450 415 451 static const char optstring[] = ": c:ghlLmNnpP:S:twW:D:";416 static const char optstring[] = ":hlLmNnpP:S:tgwW:D:"; 452 417 453 418 enum { PreludeDir = 128 }; 454 419 static struct option long_opts[] = { 455 { "colors", required_argument, nullptr, 'c' },456 { "gdb", no_argument, nullptr, 'g' },457 420 { "help", no_argument, nullptr, 'h' }, 458 421 { "libcfa", no_argument, nullptr, 'l' }, … … 466 429 { "statistics", required_argument, nullptr, 'S' }, 467 430 { "tree", no_argument, nullptr, 't' }, 431 { "gdb", no_argument, nullptr, 'g' }, 468 432 { "", no_argument, nullptr, 0 }, // -w 469 433 { "", no_argument, nullptr, 0 }, // -W … … 473 437 474 438 static const char * description[] = { 475 "diagnostic color: never, always, or auto.", // -c 476 "wait for gdb to attach", // -g 477 "print help message", // -h 478 "generate libcfa.c", // -l 479 "generate line marks", // -L 480 "do not replace main", // -m 481 "do not generate line marks", // -N 482 "do not read prelude", // -n 439 "print help message", // -h 440 "generate libcfa.c", // -l 441 "generate line marks", // -L 442 "do not replace main", // -m 443 "do not generate line marks", // -N 444 "do not read prelude", // -n 483 445 "generate prototypes for prelude functions", // -p 484 "print", 446 "print", // -P 485 447 "<directory> prelude directory for debug/nodebug", // no flag 486 448 "<option-list> enable profiling information:\n counters,heap,time,all,none", // -S 487 "building cfa standard lib", // -t 488 "", // -w 489 "", // -W 490 "", // -D 449 "building cfa standard lib", // -t 450 "wait for gdb to attach", // -g 451 "", // -w 452 "", // -W 453 "", // -D 491 454 }; // description 492 455 … … 556 519 while ( (c = getopt_long( argc, argv, optstring, long_opts, nullptr )) != -1 ) { 557 520 switch ( c ) { 558 case 'c': // diagnostic colors559 if ( strcmp( optarg, "always" ) == 0 ) {560 ErrorHelpers::colors = ErrorHelpers::Colors::Always;561 } else if ( strcmp( optarg, "never" ) == 0 ) {562 ErrorHelpers::colors = ErrorHelpers::Colors::Never;563 } else if ( strcmp( optarg, "auto" ) == 0 ) {564 ErrorHelpers::colors = ErrorHelpers::Colors::Auto;565 } // if566 break;567 521 case 'h': // help message 568 522 usage( argv ); // no return -
tests/.expect/alloc-ERROR.txt
r7030dab r71d6bd8 1 alloc.cfa:3 62:1 error: No reasonable alternatives for expression Applying untyped:1 alloc.cfa:311:1 error: No reasonable alternatives for expression Applying untyped: 2 2 Name: ?=? 3 3 ...to: 4 Name: ip4 Name: p 5 5 Applying untyped: 6 6 Name: realloc … … 19 19 20 20 21 alloc.cfa:3 63:1 error: No reasonable alternatives for expression Applying untyped:21 alloc.cfa:312:1 error: No reasonable alternatives for expression Applying untyped: 22 22 Name: ?=? 23 23 ...to: 24 Name: ip 24 Name: p 25 Applying untyped: 26 Name: alloc 27 ...to: 28 Name: stp 29 Applying untyped: 30 Name: ?*? 31 ...to: 32 Name: dim 33 Sizeof Expression on: Applying untyped: 34 Name: *? 35 ...to: 36 Name: stp 37 38 39 40 41 alloc.cfa:313:1 error: No reasonable alternatives for expression Applying untyped: 42 Name: ?=? 43 ...to: 44 Name: p 25 45 Applying untyped: 26 46 Name: memset … … 30 50 31 51 32 alloc.cfa:3 64:1 error: No reasonable alternatives for expression Applying untyped:52 alloc.cfa:314:1 error: No reasonable alternatives for expression Applying untyped: 33 53 Name: ?=? 34 54 ...to: 35 Name: ip55 Name: p 36 56 Applying untyped: 37 57 Name: memcpy -
tests/.expect/alloc.txt
r7030dab r71d6bd8 2 2 CFA malloc 0xdeadbeef 3 3 CFA alloc 0xdeadbeef 4 CFA array alloc, fill 0xde 4 5 CFA alloc, fill dededede 5 6 CFA alloc, fill 3 … … 23 24 0xefefefef 0xefefefef 0xefefefef 0xefefefef 0xefefefef 0xefefefef 0xefefefef 0xefefefef 0xefefefef 0xefefefef 0x1010101 0x1010101 0x1010101 0x1010101 0x1010101 0x1010101 0x1010101 0x1010101 0x1010101 0x1010101 24 25 25 CFA re allocarray alloc26 CFA resize array alloc 26 27 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 27 CFA re allocarray alloc28 CFA resize array alloc 28 29 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0x1010101 0x1010101 0x1010101 0x1010101 0x1010101 0x1010101 0x1010101 0x1010101 0x1010101 0x1010101 29 CFA re allocarray alloc30 CFA resize array alloc 30 31 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 31 CFA re allocarray alloc, fill32 CFA resize array alloc, fill 32 33 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0x1010101 0x1010101 0x1010101 0x1010101 0x1010101 0x1010101 0x1010101 0x1010101 0x1010101 0x1010101 0xdededede 0xdededede 0xdededede 0xdededede 0xdededede 0xdededede 0xdededede 0xdededede 0xdededede 0xdededede 33 CFA re allocarray alloc, fill34 CFA resize array alloc, fill 34 35 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 35 CFA realloc array alloc, fill 36 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0x1010101 0x1010101 0x1010101 0x1010101 0x1010101 0x1010101 0xdededede 0xdededede 0xdededede 0xdededede 0xdededede 0xdededede 0xdededede 0xdededede 0xdededede 0xdededede 0xdededede 0xdededede 0xdededede 0xdededede 37 CFA realloc array alloc, 5 38 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0x1010101 0x1010101 0x1010101 0x1010101 0x1010101 0x1010101 0xdededede 0xdededede 0xdededede 0xdededede 0xdededede 0xdededede 0xdededede 0xdededede 0xdededede 0xdededede 0xdededede 0xdededede 0xdededede 0xdededede 39 CFA realloc array alloc, 5 40 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 41 CFA realloc array alloc, 5 42 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0x1010101 0x1010101 0x1010101 0x1010101 0x1010101 0x1010101 0xffffffff 0xffffffff 0xffffffff 0xffffffff 0xffffffff 0xffffffff 0xffffffff 0xffffffff 0xffffffff 0xffffffff 0xffffffff 0xffffffff 0xffffffff 0xffffffff 36 CFA resize array alloc, fill 37 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0x1010101 0x1010101 0x1010101 0x1010101 0x1010101 0x1010101 0x1010101 0x1010101 0x1010101 0x1010101 0xdededede 0xdededede 0xdededede 0xdededede 0xdededede 0xdededede 0xdededede 0xdededede 0xdededede 0xdededede 43 38 44 39 C memalign 42 42.5 -
tests/.expect/loopctrl.txt
r7030dab r71d6bd8 6 6 A 7 7 A A A A A A A A A A 8 A A A A A A A A A A A9 8 B B B B B 10 9 C C C C C … … 13 12 14 13 0 1 2 3 4 5 6 7 8 9 15 0 1 2 3 4 5 6 7 8 9 1016 14 1 3 5 7 9 17 15 10 8 6 4 2 … … 30 28 N N N N N N N N N N 31 29 0 1 2 3 4 5 6 7 8 9 32 0 1 2 3 4 5 6 7 8 9 1033 30 10 9 8 7 6 5 4 3 2 1 34 31 -
tests/.expect/nested-types-ERR1.txt
r7030dab r71d6bd8 1 nested-types.cfa: 83:1 error: Use of undefined type T1 nested-types.cfa:70:1 error: Use of undefined type T -
tests/.expect/nested-types-ERR2.txt
r7030dab r71d6bd8 1 nested-types.cfa: 86:1 error: Use of undefined global type Z2 nested-types.cfa: 87:1 error: Qualified type requires an aggregate on the left, but has: signed int3 nested-types.cfa: 88:1 error: Undefined type in qualified type: Qualified Type:1 nested-types.cfa:73:1 error: Use of undefined global type Z 2 nested-types.cfa:74:1 error: Qualified type requires an aggregate on the left, but has: signed int 3 nested-types.cfa:75:1 error: Undefined type in qualified type: Qualified Type: 4 4 instance of struct S with body 1 5 5 instance of type Z (not function type) -
tests/.expect/rational.txt
r7030dab r71d6bd8 1 1 constructor 2 3/1 4/1 0/1 0/1 1/12 3/1 4/1 0/1 3 3 1/2 5/7 4 4 2/3 -3/2 -
tests/.expect/references.txt
r7030dab r71d6bd8 36 36 3 37 37 3 9 { 1., 7. }, [1, 2, 3] 38 439 38 Destructing a Y 40 39 Destructing a Y -
tests/.expect/time.txt
r7030dab r71d6bd8 18 18 Dividing that by 2 gives 2403.5 seconds 19 19 4807 seconds is 1 hours, 20 minutes, 7 seconds 20 2020 Jan 5 14:01:40 (GMT)21 1970 Jan 5 14:00:00 (GMT)22 1973 Jan 2 06:59:00 (GMT) -
tests/Makefile.am
r7030dab r71d6bd8 46 46 47 47 # adjust CC to current flags 48 CC = $(if $(DISTCC_CFA_PATH),distcc $(DISTCC_CFA_PATH) ${ARCH_FLAGS},$(TARGET_CFA) ${DEBUG_FLAGS} ${ARCH_FLAGS})48 CC = $(if $(DISTCC_CFA_PATH),distcc $(DISTCC_CFA_PATH),$(TARGET_CFA) ${DEBUG_FLAGS} ${ARCH_FLAGS}) 49 49 CFACC = $(CC) 50 50 … … 53 53 54 54 # adjusted CC but without the actual distcc call 55 CFACCLOCAL = $(if $(DISTCC_CFA_PATH),$(DISTCC_CFA_PATH) ${ARCH_FLAGS},$(TARGET_CFA) ${DEBUG_FLAGS} ${ARCH_FLAGS})55 CFACCLOCAL = $(if $(DISTCC_CFA_PATH),$(DISTCC_CFA_PATH),$(TARGET_CFA) ${DEBUG_FLAGS} ${ARCH_FLAGS}) 56 56 57 57 PRETTY_PATH=mkdir -p $(dir $(abspath ${@})) && cd ${srcdir} && -
tests/Makefile.in
r7030dab r71d6bd8 214 214 215 215 # adjust CC to current flags 216 CC = $(if $(DISTCC_CFA_PATH),distcc $(DISTCC_CFA_PATH) ${ARCH_FLAGS},$(TARGET_CFA) ${DEBUG_FLAGS} ${ARCH_FLAGS})216 CC = $(if $(DISTCC_CFA_PATH),distcc $(DISTCC_CFA_PATH),$(TARGET_CFA) ${DEBUG_FLAGS} ${ARCH_FLAGS}) 217 217 CCAS = @CCAS@ 218 218 CCASDEPMODE = @CCASDEPMODE@ … … 358 358 LTCFACOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ 359 359 $(LIBTOOLFLAGS) --mode=compile $(CFACC) $(DEFS) \ 360 $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CFAFLAGS) $(AM_CFLAGS) $(CFAFLAGS) $(CFLAGS) 360 $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CFAFLAGS) $(CFAFLAGS) \ 361 $(AM_CFLAGS) $(CFLAGS) 361 362 362 363 AM_V_CFA = $(am__v_CFA_@AM_V@) … … 364 365 am__v_CFA_0 = @echo " CFA " $@; 365 366 am__v_CFA_1 = 367 AM_V_JAVAC = $(am__v_JAVAC_@AM_V@) 368 am__v_JAVAC_ = $(am__v_JAVAC_@AM_DEFAULT_V@) 369 am__v_JAVAC_0 = @echo " JAVAC " $@; 370 am__v_JAVAC_1 = 371 AM_V_GOC = $(am__v_GOC_@AM_V@) 372 am__v_GOC_ = $(am__v_GOC_@AM_DEFAULT_V@) 373 am__v_GOC_0 = @echo " GOC " $@; 374 am__v_GOC_1 = 366 375 UPPCC = u++ 367 376 UPPCOMPILE = $(UPPCC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_UPPFLAGS) $(UPPFLAGS) $(AM_CXXFLAGS) $(CXXFLAGS) $(AM_CFLAGS) $(CFLAGS) … … 370 379 am__v_UPP_0 = @echo " UPP " $@; 371 380 am__v_UPP_1 = 372 AM_V_GOC = $(am__v_GOC_@AM_V@)373 am__v_GOC_ = $(am__v_GOC_@AM_DEFAULT_V@)374 am__v_GOC_0 = @echo " GOC " $@;375 am__v_GOC_1 =376 AM_V_PY = $(am__v_PY_@AM_V@)377 am__v_PY_ = $(am__v_PY_@AM_DEFAULT_V@)378 am__v_PY_0 = @echo " PYTHON " $@;379 am__v_PY_1 =380 AM_V_RUST = $(am__v_RUST_@AM_V@)381 am__v_RUST_ = $(am__v_RUST_@AM_DEFAULT_V@)382 am__v_RUST_0 = @echo " RUST " $@;383 am__v_RUST_1 =384 AM_V_NODEJS = $(am__v_NODEJS_@AM_V@)385 am__v_NODEJS_ = $(am__v_NODEJS_@AM_DEFAULT_V@)386 am__v_NODEJS_0 = @echo " NODEJS " $@;387 am__v_NODEJS_1 =388 AM_V_JAVAC = $(am__v_JAVAC_@AM_V@)389 am__v_JAVAC_ = $(am__v_JAVAC_@AM_DEFAULT_V@)390 am__v_JAVAC_0 = @echo " JAVAC " $@;391 am__v_JAVAC_1 =392 381 debug = yes 393 382 installed = no … … 416 405 417 406 # adjusted CC but without the actual distcc call 418 CFACCLOCAL = $(if $(DISTCC_CFA_PATH),$(DISTCC_CFA_PATH) ${ARCH_FLAGS},$(TARGET_CFA) ${DEBUG_FLAGS} ${ARCH_FLAGS})407 CFACCLOCAL = $(if $(DISTCC_CFA_PATH),$(DISTCC_CFA_PATH),$(TARGET_CFA) ${DEBUG_FLAGS} ${ARCH_FLAGS}) 419 408 PRETTY_PATH = mkdir -p $(dir $(abspath ${@})) && cd ${srcdir} && 420 409 avl_test_SOURCES = avltree/avl_test.cfa avltree/avl0.cfa avltree/avl1.cfa avltree/avl2.cfa avltree/avl3.cfa avltree/avl4.cfa avltree/avl-private.cfa -
tests/alloc.cfa
r7030dab r71d6bd8 10 10 // Created On : Wed Feb 3 07:56:22 2016 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Wed Apr 1 10:58:35 202013 // Update Count : 42412 // Last Modified On : Sun Oct 20 21:45:21 2019 13 // Update Count : 391 14 14 // 15 15 … … 28 28 size_t dim = 10; 29 29 char fill = '\xde'; 30 int * ip, * ip1;30 int * p, * p1; 31 31 32 32 // allocation, non-array types 33 33 34 ip = (int *)malloc( sizeof(*ip) ); // C malloc, type unsafe 35 *ip = 0xdeadbeef; 36 printf( "C malloc %#x\n", *ip ); 37 free( ip ); 38 39 ip = malloc(); // CFA malloc, type safe 40 *ip = 0xdeadbeef; 41 printf( "CFA malloc %#x\n", *ip ); 42 free( ip ); 43 44 ip = alloc(); // CFA alloc, type safe 45 *ip = 0xdeadbeef; 46 printf( "CFA alloc %#x\n", *ip ); 47 free( ip ); 48 49 ip = alloc_set( fill ); // CFA alloc, fill 50 printf( "CFA alloc, fill %08x\n", *ip ); 51 free( ip ); 52 53 ip = alloc_set( 3 ); // CFA alloc, fill 54 printf( "CFA alloc, fill %d\n", *ip ); 55 free( ip ); 34 p = (int *)malloc( sizeof(*p) ); // C malloc, type unsafe 35 *p = 0xdeadbeef; 36 printf( "C malloc %#x\n", *p ); 37 free( p ); 38 39 p = malloc(); // CFA malloc, type safe 40 *p = 0xdeadbeef; 41 printf( "CFA malloc %#x\n", *p ); 42 free( p ); 43 44 p = alloc(); // CFA alloc, type safe 45 *p = 0xdeadbeef; 46 printf( "CFA alloc %#x\n", *p ); 47 free( p ); 48 49 p = alloc_set( fill ); // CFA alloc, fill 50 printf( "CFA array alloc, fill %#hhx\n", fill ); 51 printf( "CFA alloc, fill %08x\n", *p ); 52 free( p ); 53 54 p = alloc_set( 3 ); // CFA alloc, fill 55 printf( "CFA alloc, fill %d\n", *p ); 56 free( p ); 56 57 57 58 … … 59 60 printf( "\n" ); 60 61 61 ip = (int *)calloc( dim, sizeof( *ip ) );// C array calloc, type unsafe62 p = (int *)calloc( dim, sizeof( *p ) ); // C array calloc, type unsafe 62 63 printf( "C array calloc, fill 0\n" ); 63 for ( i; dim ) { printf( "%#x ", ip[i] ); }64 printf( "\n" ); 65 free( ip );66 67 ip = calloc( dim );// CFA array calloc, type safe64 for ( i; dim ) { printf( "%#x ", p[i] ); } 65 printf( "\n" ); 66 free( p ); 67 68 p = calloc( dim ); // CFA array calloc, type safe 68 69 printf( "CFA array calloc, fill 0\n" ); 69 for ( i; dim ) { printf( "%#x ", ip[i] ); }70 printf( "\n" ); 71 free( ip );72 73 ip = alloc( dim );// CFA array alloc, type safe74 for ( i; dim ) { ip[i] = 0xdeadbeef; }70 for ( i; dim ) { printf( "%#x ", p[i] ); } 71 printf( "\n" ); 72 free( p ); 73 74 p = alloc( dim ); // CFA array alloc, type safe 75 for ( i; dim ) { p[i] = 0xdeadbeef; } 75 76 printf( "CFA array alloc, no fill\n" ); 76 for ( i; dim ) { printf( "%#x ", ip[i] ); }77 printf( "\n" ); 78 free( ip );79 80 ip = alloc_set( 2 * dim, fill );// CFA array alloc, fill77 for ( i; dim ) { printf( "%#x ", p[i] ); } 78 printf( "\n" ); 79 free( p ); 80 81 p = alloc_set( 2 * dim, fill ); // CFA array alloc, fill 81 82 printf( "CFA array alloc, fill %#hhx\n", fill ); 82 for ( i; 2 * dim ) { printf( "%#x ", ip[i] ); }83 printf( "\n" ); 84 free( ip );85 86 ip = alloc_set( 2 * dim, 0xdeadbeef ); // CFA array alloc, fill83 for ( i; 2 * dim ) { printf( "%#x ", p[i] ); } 84 printf( "\n" ); 85 free( p ); 86 87 p = alloc_set( 2 * dim, 0xdeadbeef ); // CFA array alloc, fill 87 88 printf( "CFA array alloc, fill %#hhx\n", 0xdeadbeef ); 88 for ( i; 2 * dim ) { printf( "%#x ", ip[i] ); }89 printf( "\n" ); 90 // do not free 91 92 ip1 = alloc_set( 2 * dim, ip ); // CFA array alloc, fill89 for ( i; 2 * dim ) { printf( "%#x ", p[i] ); } 90 printf( "\n" ); 91 // do not free 92 93 p1 = alloc_set( 2 * dim, p ); // CFA array alloc, fill 93 94 printf( "CFA array alloc, fill from array\n" ); 94 for ( i; 2 * dim ) { printf( "%#x %#x, ", ip[i], ip1[i] ); }95 free( ip1 );96 printf( "\n" ); 97 98 99 // re alloc, non-array types100 printf( "\n" ); 101 102 ip = (int *)realloc( ip, dim * sizeof(*ip) );// C realloc95 for ( i; 2 * dim ) { printf( "%#x %#x, ", p[i], p1[i] ); } 96 free( p1 ); 97 printf( "\n" ); 98 99 100 // resize, non-array types 101 printf( "\n" ); 102 103 p = (int *)realloc( p, dim * sizeof(*p) ); // C realloc 103 104 printf( "C realloc\n" ); 104 for ( i; dim ) { printf( "%#x ", ip[i] ); }105 printf( "\n" ); 106 // do not free 107 108 ip = realloc( ip, 2 * dim * sizeof(*ip) );// CFA realloc109 for ( i; dim ~ 2 * dim ) { ip[i] = 0x1010101; }105 for ( i; dim ) { printf( "%#x ", p[i] ); } 106 printf( "\n" ); 107 // do not free 108 109 p = realloc( p, 2 * dim * sizeof(*p) ); // CFA realloc 110 for ( i; dim ~ 2 * dim ) { p[i] = 0x1010101; } 110 111 printf( "CFA realloc\n" ); 111 for ( i; 2 * dim ) { printf( "%#x ", ip[i] ); } 112 printf( "\n" ); 113 // do not free 114 115 116 // realloc, array types 117 printf( "\n" ); 118 119 ip = alloc( ip, dim ); // CFA realloc array alloc 120 for ( i; dim ) { ip[i] = 0xdeadbeef; } 121 printf( "CFA realloc array alloc\n" ); 122 for ( i; dim ) { printf( "%#x ", ip[i] ); } 123 printf( "\n" ); 124 // do not free 125 126 ip = alloc( ip, 2 * dim ); // CFA realloc array alloc 127 for ( i; dim ~ 2 * dim ) { ip[i] = 0x1010101; } // fill upper part 128 printf( "CFA realloc array alloc\n" ); 129 for ( i; 2 * dim ) { printf( "%#x ", ip[i] ); } 130 printf( "\n" ); 131 // do not free 132 133 ip = alloc( ip, dim ); // CFA realloc array alloc 134 printf( "CFA realloc array alloc\n" ); 135 for ( i; dim ) { printf( "%#x ", ip[i] ); } 136 printf( "\n" ); 137 // do not free 138 139 ip = alloc_set( ip, 3 * dim, fill ); // CFA realloc array alloc, fill 140 printf( "CFA realloc array alloc, fill\n" ); 141 for ( i; 3 * dim ) { printf( "%#x ", ip[i] ); } 142 printf( "\n" ); 143 // do not free 144 145 ip = alloc_set( ip, dim, fill ); // CFA realloc array alloc, fill 146 printf( "CFA realloc array alloc, fill\n" ); 147 for ( i; dim ) { printf( "%#x ", ip[i] ); } 148 printf( "\n" ); 149 // do not free 150 151 ip = alloc_set( ip, 3 * dim, fill ); // CFA realloc array alloc, fill 152 printf( "CFA realloc array alloc, fill\n" ); 153 for ( i; 3 * dim ) { printf( "%#x ", ip[i] );; } 154 printf( "\n" ); 155 // do not free 156 157 ip = alloc_set( ip, 3 * dim, 5 ); // CFA realloc array alloc, 5 158 printf( "CFA realloc array alloc, 5\n" ); 159 for ( i; 3 * dim ) { printf( "%#x ", ip[i] ); } 160 printf( "\n" ); 161 // do not free 162 163 ip = alloc_set( ip, dim, 5 ); // CFA realloc array alloc, 5 164 printf( "CFA realloc array alloc, 5\n" ); 165 for ( i; dim ) { printf( "%#x ", ip[i] ); } 166 printf( "\n" ); 167 // do not free 168 169 ip = alloc_set( ip, 3 * dim, 5 ); // CFA realloc array alloc, 5 170 printf( "CFA realloc array alloc, 5\n" ); 171 for ( i; 3 * dim ) { printf( "%#x ", ip[i] );; } 172 printf( "\n" ); 173 free( ip ); 174 175 176 // resize, non-array types 177 178 struct S { 179 int a[5]; 180 }; 181 182 ip = alloc(); 183 *ip = 5; 184 double * dp = alloc( ip ); 185 *dp = 5.5; 186 S * sp = alloc( dp ); 187 *sp = (S){ {0, 1, 2, 3, 4} }; 188 ip = alloc( sp ); 189 *ip = 3; 190 free( ip ); 112 for ( i; 2 * dim ) { printf( "%#x ", p[i] ); } 113 printf( "\n" ); 114 // do not free 191 115 192 116 193 117 // resize, array types 194 195 ip = alloc( 5 ); 196 for ( i; 5 ) { ip[i] = 5; } 197 dp = alloc( ip, 5 ); 198 for ( i; 5 ) { dp[i] = 5.5; } 199 sp = alloc( dp, 5 ); 200 for ( i; 5 ) { sp[i] = (S){ {0, 1, 2, 3, 4} }; } 201 ip = alloc( sp, 3 ); 202 for ( i; 3 ) { ip[i] = 3; } 203 ip = alloc( ip, 7 ); 204 for ( i; 7 ) { ip[i] = 7; } 205 ip = alloc( ip, 7, false ); 206 for ( i; 7 ) { ip[i] = 7; } 207 free( ip ); 118 printf( "\n" ); 119 120 p = alloc( p, dim ); // CFA resize array alloc 121 for ( i; dim ) { p[i] = 0xdeadbeef; } 122 printf( "CFA resize array alloc\n" ); 123 for ( i; dim ) { printf( "%#x ", p[i] ); } 124 printf( "\n" ); 125 // do not free 126 127 p = alloc( p, 2 * dim ); // CFA resize array alloc 128 for ( i; dim ~ 2 * dim ) { p[i] = 0x1010101; } 129 printf( "CFA resize array alloc\n" ); 130 for ( i; 2 * dim ) { printf( "%#x ", p[i] ); } 131 printf( "\n" ); 132 // do not free 133 134 p = alloc( p, dim ); // CFA resize array alloc 135 printf( "CFA resize array alloc\n" ); 136 for ( i; dim ) { printf( "%#x ", p[i] ); } 137 printf( "\n" ); 138 // do not free 139 140 p = alloc_set( p, 3 * dim, fill ); // CFA resize array alloc, fill 141 printf( "CFA resize array alloc, fill\n" ); 142 for ( i; 3 * dim ) { printf( "%#x ", p[i] ); } 143 printf( "\n" ); 144 // do not free 145 146 p = alloc_set( p, dim, fill ); // CFA resize array alloc, fill 147 printf( "CFA resize array alloc, fill\n" ); 148 for ( i; dim ) { printf( "%#x ", p[i] ); } 149 printf( "\n" ); 150 // do not free 151 152 p = alloc_set( p, 3 * dim, fill ); // CFA resize array alloc, fill 153 printf( "CFA resize array alloc, fill\n" ); 154 for ( i; 3 * dim ) { printf( "%#x ", p[i] );; } 155 printf( "\n" ); 156 free( p ); 208 157 209 158 … … 220 169 free( stp ); 221 170 222 stp = &(*memalign( Alignment )){ 42, 42.5 }; 171 stp = &(*memalign( Alignment )){ 42, 42.5 }; // CFA memalign 223 172 assert( (uintptr_t)stp % Alignment == 0 ); 224 173 printf( "CFA memalign %d %g\n", stp->x, stp->y ); … … 352 301 free( fp - 1 ); 353 302 354 ip = foo( bar( baz( malloc(), 0 ), 0 ), 0 );355 * ip = 0xdeadbeef;356 printf( "CFA deep malloc %#x\n", * ip );357 free( ip );303 p = foo( bar( baz( malloc(), 0 ), 0 ), 0 ); 304 *p = 0xdeadbeef; 305 printf( "CFA deep malloc %#x\n", *p ); 306 free( p ); 358 307 359 308 #ifdef ERR1 360 309 stp = malloc(); 361 310 printf( "\nSHOULD FAIL\n" ); 362 ip = realloc( stp, dim * sizeof( *stp ) ); 363 ip = memset( stp, 10 ); 364 ip = memcpy( &st1, &st ); 311 p = realloc( stp, dim * sizeof( *stp ) ); 312 p = alloc( stp, dim * sizeof( *stp ) ); 313 p = memset( stp, 10 ); 314 p = memcpy( &st1, &st ); 365 315 #endif 366 316 } // main -
tests/builtins/sync.cfa
r7030dab r71d6bd8 4 4 void foo() { 5 5 volatile _Bool * vpB = 0; _Bool vB = 0; 6 volatile char * vpc = 0; char * rpc = 0; char vc = 0; 7 volatile short * vps = 0; short * rps = 0; short vs = 0; 8 volatile int * vpi = 0; int * rpi = 0; int vi = 0; 9 volatile long int * vpl = 0; long int * rpl = 0; long int vl = 0; 10 volatile long long int * vpll = 0; long long int * rpll = 0; long long int vll = 0; 11 #if defined(__SIZEOF_INT128__) 12 volatile __int128 * vplll = 0; __int128 * rplll = 0; __int128 vlll = 0; 6 volatile char * vp1 = 0; char * rp1 = 0; char v1 = 0; 7 volatile short * vp2 = 0; short * rp2 = 0; short v2 = 0; 8 volatile int * vp4 = 0; int * rp4 = 0; int v4 = 0; 9 volatile long long int * vp8 = 0; long long int * rp8 = 0; long long int v8 = 0; 10 #if defined(__SIZEOF_INT128__) 11 volatile __int128 * vp16 = 0; __int128 * rp16 = 0; __int128 v16 = 0; 13 12 #endif 14 13 struct type * volatile * vpp = 0; struct type ** rpp = 0; struct type * vp = 0; 15 14 16 { char ret; ret = __sync_fetch_and_add(vpc, vc); } 17 { short ret; ret = __sync_fetch_and_add(vps, vs); } 18 { int ret; ret = __sync_fetch_and_add(vpi, vi); } 19 { long int ret; ret = __sync_fetch_and_add(vpl, vl); } 20 { long long int ret; ret = __sync_fetch_and_add(vpll, vll); } 21 #if defined(__SIZEOF_INT128__) 22 { __int128 ret; ret = __sync_fetch_and_add(vplll, vlll); } 23 #endif 24 25 { char ret; ret = __sync_fetch_and_sub(vpc, vc); } 26 { short ret; ret = __sync_fetch_and_sub(vps, vs); } 27 { int ret; ret = __sync_fetch_and_sub(vpi, vi); } 28 { long int ret; ret = __sync_fetch_and_sub(vpl, vl); } 29 { long long int ret; ret = __sync_fetch_and_sub(vpll, vll); } 30 #if defined(__SIZEOF_INT128__) 31 { __int128 ret; ret = __sync_fetch_and_sub(vplll, vlll); } 32 #endif 33 34 { char ret; ret = __sync_fetch_and_or(vpc, vc); } 35 { short ret; ret = __sync_fetch_and_or(vps, vs); } 36 { int ret; ret = __sync_fetch_and_or(vpi, vi); } 37 { long int ret; ret = __sync_fetch_and_or(vpl, vl); } 38 { long long int ret; ret = __sync_fetch_and_or(vpll, vll); } 39 #if defined(__SIZEOF_INT128__) 40 { __int128 ret; ret = __sync_fetch_and_or(vplll, vlll); } 41 #endif 42 43 { char ret; ret = __sync_fetch_and_and(vpc, vc); } 44 { short ret; ret = __sync_fetch_and_and(vps, vs); } 45 { int ret; ret = __sync_fetch_and_and(vpi, vi); } 46 { long int ret; ret = __sync_fetch_and_and(vpl, vl); } 47 { long long int ret; ret = __sync_fetch_and_and(vpll, vll); } 48 #if defined(__SIZEOF_INT128__) 49 { __int128 ret; ret = __sync_fetch_and_and(vplll, vlll); } 50 #endif 51 52 { char ret; ret = __sync_fetch_and_xor(vpc, vc); } 53 { short ret; ret = __sync_fetch_and_xor(vps, vs); } 54 { int ret; ret = __sync_fetch_and_xor(vpi, vi); } 55 { long int ret; ret = __sync_fetch_and_xor(vpl, vl); } 56 { long long int ret; ret = __sync_fetch_and_xor(vpll, vll); } 57 #if defined(__SIZEOF_INT128__) 58 { __int128 ret; ret = __sync_fetch_and_xor(vplll, vlll); } 59 #endif 60 61 { char ret; ret = __sync_fetch_and_nand(vpc, vc); } 62 { short ret; ret = __sync_fetch_and_nand(vps, vs); } 63 { int ret; ret = __sync_fetch_and_nand(vpi, vi); } 64 { long int ret; ret = __sync_fetch_and_nand(vpl, vl); } 65 { long long int ret; ret = __sync_fetch_and_nand(vpll, vll); } 66 #if defined(__SIZEOF_INT128__) 67 { __int128 ret; ret = __sync_fetch_and_nand(vplll, vlll); } 68 { __int128 ret; ret = __sync_fetch_and_nand_16(vplll, vlll); } 69 #endif 70 71 { char ret; ret = __sync_add_and_fetch(vpc, vc); } 72 { short ret; ret = __sync_add_and_fetch(vps, vs); } 73 { int ret; ret = __sync_add_and_fetch(vpi, vi); } 74 { long int ret; ret = __sync_add_and_fetch(vpl, vl); } 75 { long long int ret; ret = __sync_add_and_fetch(vpll, vll); } 76 #if defined(__SIZEOF_INT128__) 77 { __int128 ret; ret = __sync_add_and_fetch(vplll, vlll); } 78 #endif 79 80 { char ret; ret = __sync_sub_and_fetch(vpc, vc); } 81 { short ret; ret = __sync_sub_and_fetch(vps, vs); } 82 { int ret; ret = __sync_sub_and_fetch(vpi, vi); } 83 { long int ret; ret = __sync_sub_and_fetch(vpl, vl); } 84 { long long int ret; ret = __sync_sub_and_fetch(vpll, vll); } 85 #if defined(__SIZEOF_INT128__) 86 { __int128 ret; ret = __sync_sub_and_fetch(vplll, vlll); } 87 #endif 88 89 { char ret; ret = __sync_or_and_fetch(vpc, vc); } 90 { short ret; ret = __sync_or_and_fetch(vps, vs); } 91 { int ret; ret = __sync_or_and_fetch(vpi, vi); } 92 { long int ret; ret = __sync_or_and_fetch(vpl, vl); } 93 { long long int ret; ret = __sync_or_and_fetch(vpll, vll); } 94 #if defined(__SIZEOF_INT128__) 95 { __int128 ret; ret = __sync_or_and_fetch(vplll, vlll); } 96 #endif 97 98 { char ret; ret = __sync_and_and_fetch(vpc, vc); } 99 { short ret; ret = __sync_and_and_fetch(vps, vs); } 100 { int ret; ret = __sync_and_and_fetch(vpi, vi); } 101 { long int ret; ret = __sync_and_and_fetch(vpl, vl); } 102 { long long int ret; ret = __sync_and_and_fetch(vpll, vll); } 103 #if defined(__SIZEOF_INT128__) 104 { __int128 ret; ret = __sync_and_and_fetch(vplll, vlll); } 105 #endif 106 107 { char ret; ret = __sync_xor_and_fetch(vpc, vc); } 108 { short ret; ret = __sync_xor_and_fetch(vps, vs); } 109 { int ret; ret = __sync_xor_and_fetch(vpi, vi); } 110 { long int ret; ret = __sync_xor_and_fetch(vpl, vl); } 111 { long long int ret; ret = __sync_xor_and_fetch(vpll, vll); } 112 #if defined(__SIZEOF_INT128__) 113 { __int128 ret; ret = __sync_xor_and_fetch(vplll, vlll); } 114 #endif 115 116 { char ret; ret = __sync_nand_and_fetch(vpc, vc); } 117 { short ret; ret = __sync_nand_and_fetch(vps, vs); } 118 { int ret; ret = __sync_nand_and_fetch(vpi, vi); } 119 { long int ret; ret = __sync_nand_and_fetch(vpl, vl); } 120 { long long int ret; ret = __sync_nand_and_fetch(vpll, vll); } 121 #if defined(__SIZEOF_INT128__) 122 { __int128 ret; ret = __sync_nand_and_fetch(vplll, vlll); } 123 #endif 124 125 { _Bool ret; ret = __sync_bool_compare_and_swap(vpc, vc, vc); } 126 { _Bool ret; ret = __sync_bool_compare_and_swap(vps, vs, vs); } 127 { _Bool ret; ret = __sync_bool_compare_and_swap(vpi, vi, vi); } 128 { _Bool ret; ret = __sync_bool_compare_and_swap(vpl, vl, vl); } 129 { _Bool ret; ret = __sync_bool_compare_and_swap(vpll, vll, vll); } 130 #if defined(__SIZEOF_INT128__) 131 { _Bool ret; ret = __sync_bool_compare_and_swap(vplll, vlll, vlll); } 15 { char ret; ret = __sync_fetch_and_add(vp1, v1); } 16 { char ret; ret = __sync_fetch_and_add_1(vp1, v1); } 17 { short ret; ret = __sync_fetch_and_add(vp2, v2); } 18 { short ret; ret = __sync_fetch_and_add_2(vp2, v2); } 19 { int ret; ret = __sync_fetch_and_add(vp4, v4); } 20 { int ret; ret = __sync_fetch_and_add_4(vp4, v4); } 21 { long long int ret; ret = __sync_fetch_and_add(vp8, v8); } 22 { long long int ret; ret = __sync_fetch_and_add_8(vp8, v8); } 23 #if defined(__SIZEOF_INT128__) 24 { __int128 ret; ret = __sync_fetch_and_add(vp16, v16); } 25 { __int128 ret; ret = __sync_fetch_and_add_16(vp16, v16); } 26 #endif 27 28 { char ret; ret = __sync_fetch_and_sub(vp1, v1); } 29 { char ret; ret = __sync_fetch_and_sub_1(vp1, v1); } 30 { short ret; ret = __sync_fetch_and_sub(vp2, v2); } 31 { short ret; ret = __sync_fetch_and_sub_2(vp2, v2); } 32 { int ret; ret = __sync_fetch_and_sub(vp4, v4); } 33 { int ret; ret = __sync_fetch_and_sub_4(vp4, v4); } 34 { long long int ret; ret = __sync_fetch_and_sub(vp8, v8); } 35 { long long int ret; ret = __sync_fetch_and_sub_8(vp8, v8); } 36 #if defined(__SIZEOF_INT128__) 37 { __int128 ret; ret = __sync_fetch_and_sub(vp16, v16); } 38 { __int128 ret; ret = __sync_fetch_and_sub_16(vp16, v16); } 39 #endif 40 41 { char ret; ret = __sync_fetch_and_or(vp1, v1); } 42 { char ret; ret = __sync_fetch_and_or_1(vp1, v1); } 43 { short ret; ret = __sync_fetch_and_or(vp2, v2); } 44 { short ret; ret = __sync_fetch_and_or_2(vp2, v2); } 45 { int ret; ret = __sync_fetch_and_or(vp4, v4); } 46 { int ret; ret = __sync_fetch_and_or_4(vp4, v4); } 47 { long long int ret; ret = __sync_fetch_and_or(vp8, v8); } 48 { long long int ret; ret = __sync_fetch_and_or_8(vp8, v8); } 49 #if defined(__SIZEOF_INT128__) 50 { __int128 ret; ret = __sync_fetch_and_or(vp16, v16); } 51 { __int128 ret; ret = __sync_fetch_and_or_16(vp16, v16); } 52 #endif 53 54 { char ret; ret = __sync_fetch_and_and(vp1, v1); } 55 { char ret; ret = __sync_fetch_and_and_1(vp1, v1); } 56 { short ret; ret = __sync_fetch_and_and(vp2, v2); } 57 { short ret; ret = __sync_fetch_and_and_2(vp2, v2); } 58 { int ret; ret = __sync_fetch_and_and(vp4, v4); } 59 { int ret; ret = __sync_fetch_and_and_4(vp4, v4); } 60 { long long int ret; ret = __sync_fetch_and_and(vp8, v8); } 61 { long long int ret; ret = __sync_fetch_and_and_8(vp8, v8); } 62 #if defined(__SIZEOF_INT128__) 63 { __int128 ret; ret = __sync_fetch_and_and(vp16, v16); } 64 { __int128 ret; ret = __sync_fetch_and_and_16(vp16, v16); } 65 #endif 66 67 { char ret; ret = __sync_fetch_and_xor(vp1, v1); } 68 { char ret; ret = __sync_fetch_and_xor_1(vp1, v1); } 69 { short ret; ret = __sync_fetch_and_xor(vp2, v2); } 70 { short ret; ret = __sync_fetch_and_xor_2(vp2, v2); } 71 { int ret; ret = __sync_fetch_and_xor(vp4, v4); } 72 { int ret; ret = __sync_fetch_and_xor_4(vp4, v4); } 73 { long long int ret; ret = __sync_fetch_and_xor(vp8, v8); } 74 { long long int ret; ret = __sync_fetch_and_xor_8(vp8, v8); } 75 #if defined(__SIZEOF_INT128__) 76 { __int128 ret; ret = __sync_fetch_and_xor(vp16, v16); } 77 { __int128 ret; ret = __sync_fetch_and_xor_16(vp16, v16); } 78 #endif 79 80 { char ret; ret = __sync_fetch_and_nand(vp1, v1); } 81 { char ret; ret = __sync_fetch_and_nand_1(vp1, v1); } 82 { short ret; ret = __sync_fetch_and_nand(vp2, v2); } 83 { short ret; ret = __sync_fetch_and_nand_2(vp2, v2); } 84 { int ret; ret = __sync_fetch_and_nand(vp4, v4); } 85 { int ret; ret = __sync_fetch_and_nand_4(vp4, v4); } 86 { long long int ret; ret = __sync_fetch_and_nand(vp8, v8); } 87 { long long int ret; ret = __sync_fetch_and_nand_8(vp8, v8); } 88 #if defined(__SIZEOF_INT128__) 89 { __int128 ret; ret = __sync_fetch_and_nand(vp16, v16); } 90 { __int128 ret; ret = __sync_fetch_and_nand_16(vp16, v16); } 91 #endif 92 93 { char ret; ret = __sync_add_and_fetch(vp1, v1); } 94 { char ret; ret = __sync_add_and_fetch_1(vp1, v1); } 95 { short ret; ret = __sync_add_and_fetch(vp2, v2); } 96 { short ret; ret = __sync_add_and_fetch_2(vp2, v2); } 97 { int ret; ret = __sync_add_and_fetch(vp4, v4); } 98 { int ret; ret = __sync_add_and_fetch_4(vp4, v4); } 99 { long long int ret; ret = __sync_add_and_fetch(vp8, v8); } 100 { long long int ret; ret = __sync_add_and_fetch_8(vp8, v8); } 101 #if defined(__SIZEOF_INT128__) 102 { __int128 ret; ret = __sync_add_and_fetch(vp16, v16); } 103 { __int128 ret; ret = __sync_add_and_fetch_16(vp16, v16); } 104 #endif 105 106 { char ret; ret = __sync_sub_and_fetch(vp1, v1); } 107 { char ret; ret = __sync_sub_and_fetch_1(vp1, v1); } 108 { short ret; ret = __sync_sub_and_fetch(vp2, v2); } 109 { short ret; ret = __sync_sub_and_fetch_2(vp2, v2); } 110 { int ret; ret = __sync_sub_and_fetch(vp4, v4); } 111 { int ret; ret = __sync_sub_and_fetch_4(vp4, v4); } 112 { long long int ret; ret = __sync_sub_and_fetch(vp8, v8); } 113 { long long int ret; ret = __sync_sub_and_fetch_8(vp8, v8); } 114 #if defined(__SIZEOF_INT128__) 115 { __int128 ret; ret = __sync_sub_and_fetch(vp16, v16); } 116 { __int128 ret; ret = __sync_sub_and_fetch_16(vp16, v16); } 117 #endif 118 119 { char ret; ret = __sync_or_and_fetch(vp1, v1); } 120 { char ret; ret = __sync_or_and_fetch_1(vp1, v1); } 121 { short ret; ret = __sync_or_and_fetch(vp2, v2); } 122 { short ret; ret = __sync_or_and_fetch_2(vp2, v2); } 123 { int ret; ret = __sync_or_and_fetch(vp4, v4); } 124 { int ret; ret = __sync_or_and_fetch_4(vp4, v4); } 125 { long long int ret; ret = __sync_or_and_fetch(vp8, v8); } 126 { long long int ret; ret = __sync_or_and_fetch_8(vp8, v8); } 127 #if defined(__SIZEOF_INT128__) 128 { __int128 ret; ret = __sync_or_and_fetch(vp16, v16); } 129 { __int128 ret; ret = __sync_or_and_fetch_16(vp16, v16); } 130 #endif 131 132 { char ret; ret = __sync_and_and_fetch(vp1, v1); } 133 { char ret; ret = __sync_and_and_fetch_1(vp1, v1); } 134 { short ret; ret = __sync_and_and_fetch(vp2, v2); } 135 { short ret; ret = __sync_and_and_fetch_2(vp2, v2); } 136 { int ret; ret = __sync_and_and_fetch(vp4, v4); } 137 { int ret; ret = __sync_and_and_fetch_4(vp4, v4); } 138 { long long int ret; ret = __sync_and_and_fetch(vp8, v8); } 139 { long long int ret; ret = __sync_and_and_fetch_8(vp8, v8); } 140 #if defined(__SIZEOF_INT128__) 141 { __int128 ret; ret = __sync_and_and_fetch(vp16, v16); } 142 { __int128 ret; ret = __sync_and_and_fetch_16(vp16, v16); } 143 #endif 144 145 { char ret; ret = __sync_xor_and_fetch(vp1, v1); } 146 { char ret; ret = __sync_xor_and_fetch_1(vp1, v1); } 147 { short ret; ret = __sync_xor_and_fetch(vp2, v2); } 148 { short ret; ret = __sync_xor_and_fetch_2(vp2, v2); } 149 { int ret; ret = __sync_xor_and_fetch(vp4, v4); } 150 { int ret; ret = __sync_xor_and_fetch_4(vp4, v4); } 151 { long long int ret; ret = __sync_xor_and_fetch(vp8, v8); } 152 { long long int ret; ret = __sync_xor_and_fetch_8(vp8, v8); } 153 #if defined(__SIZEOF_INT128__) 154 { __int128 ret; ret = __sync_xor_and_fetch(vp16, v16); } 155 { __int128 ret; ret = __sync_xor_and_fetch_16(vp16, v16); } 156 #endif 157 158 { char ret; ret = __sync_nand_and_fetch(vp1, v1); } 159 { char ret; ret = __sync_nand_and_fetch_1(vp1, v1); } 160 { short ret; ret = __sync_nand_and_fetch(vp2, v2); } 161 { short ret; ret = __sync_nand_and_fetch_2(vp2, v2); } 162 { int ret; ret = __sync_nand_and_fetch(vp4, v4); } 163 { int ret; ret = __sync_nand_and_fetch_4(vp4, v4); } 164 { long long int ret; ret = __sync_nand_and_fetch(vp8, v8); } 165 { long long int ret; ret = __sync_nand_and_fetch_8(vp8, v8); } 166 #if defined(__SIZEOF_INT128__) 167 { __int128 ret; ret = __sync_nand_and_fetch(vp16, v16); } 168 { __int128 ret; ret = __sync_nand_and_fetch_16(vp16, v16); } 169 #endif 170 171 { _Bool ret; ret = __sync_bool_compare_and_swap(vp1, v1, v1); } 172 { _Bool ret; ret = __sync_bool_compare_and_swap_1(vp1, v1, v1); } 173 { _Bool ret; ret = __sync_bool_compare_and_swap(vp2, v2, v2); } 174 { _Bool ret; ret = __sync_bool_compare_and_swap_2(vp2, v2, v2); } 175 { _Bool ret; ret = __sync_bool_compare_and_swap(vp4, v4, v4); } 176 { _Bool ret; ret = __sync_bool_compare_and_swap_4(vp4, v4, v4); } 177 { _Bool ret; ret = __sync_bool_compare_and_swap(vp8, v8, v8); } 178 { _Bool ret; ret = __sync_bool_compare_and_swap_8(vp8, v8, v8); } 179 #if defined(__SIZEOF_INT128__) 180 { _Bool ret; ret = __sync_bool_compare_and_swap(vp16, v16, v16); } 181 { _Bool ret; ret = __sync_bool_compare_and_swap_16(vp16, v16,v16); } 132 182 #endif 133 183 { _Bool ret; ret = __sync_bool_compare_and_swap(vpp, vp, vp); } 134 184 135 { char ret; ret = __sync_val_compare_and_swap(vpc, vc, vc); } 136 { short ret; ret = __sync_val_compare_and_swap(vps, vs, vs); } 137 { int ret; ret = __sync_val_compare_and_swap(vpi, vi, vi); } 138 { long int ret; ret = __sync_val_compare_and_swap(vpl, vl, vl); } 139 { long long int ret; ret = __sync_val_compare_and_swap(vpll, vll, vll); } 140 #if defined(__SIZEOF_INT128__) 141 { __int128 ret; ret = __sync_val_compare_and_swap(vplll, vlll, vlll); } 185 { char ret; ret = __sync_val_compare_and_swap(vp1, v1, v1); } 186 { char ret; ret = __sync_val_compare_and_swap_1(vp1, v1, v1); } 187 { short ret; ret = __sync_val_compare_and_swap(vp2, v2, v2); } 188 { short ret; ret = __sync_val_compare_and_swap_2(vp2, v2, v2); } 189 { int ret; ret = __sync_val_compare_and_swap(vp4, v4, v4); } 190 { int ret; ret = __sync_val_compare_and_swap_4(vp4, v4, v4); } 191 { long long int ret; ret = __sync_val_compare_and_swap(vp8, v8, v8); } 192 { long long int ret; ret = __sync_val_compare_and_swap_8(vp8, v8, v8); } 193 #if defined(__SIZEOF_INT128__) 194 { __int128 ret; ret = __sync_val_compare_and_swap(vp16, v16, v16); } 195 { __int128 ret; ret = __sync_val_compare_and_swap_16(vp16, v16,v16); } 142 196 #endif 143 197 { struct type * ret; ret = __sync_val_compare_and_swap(vpp, vp, vp); } 144 198 145 199 146 { char ret; ret = __sync_lock_test_and_set(vpc, vc); } 147 { short ret; ret = __sync_lock_test_and_set(vps, vs); } 148 { int ret; ret = __sync_lock_test_and_set(vpi, vi); } 149 { long int ret; ret = __sync_lock_test_and_set(vpl, vl); } 150 { long long int ret; ret = __sync_lock_test_and_set(vpll, vll); } 151 #if defined(__SIZEOF_INT128__) 152 { __int128 ret; ret = __sync_lock_test_and_set(vplll, vlll); } 153 #endif 154 155 { __sync_lock_release(vpc); } 156 { __sync_lock_release(vps); } 157 { __sync_lock_release(vpi); } 158 { __sync_lock_release(vpl); } 159 { __sync_lock_release(vpll); } 160 #if defined(__SIZEOF_INT128__) 161 { __sync_lock_release(vplll); } 200 { char ret; ret = __sync_lock_test_and_set(vp1, v1); } 201 { char ret; ret = __sync_lock_test_and_set_1(vp1, v1); } 202 { short ret; ret = __sync_lock_test_and_set(vp2, v2); } 203 { short ret; ret = __sync_lock_test_and_set_2(vp2, v2); } 204 { int ret; ret = __sync_lock_test_and_set(vp4, v4); } 205 { int ret; ret = __sync_lock_test_and_set_4(vp4, v4); } 206 { long long int ret; ret = __sync_lock_test_and_set(vp8, v8); } 207 { long long int ret; ret = __sync_lock_test_and_set_8(vp8, v8); } 208 #if defined(__SIZEOF_INT128__) 209 { __int128 ret; ret = __sync_lock_test_and_set(vp16, v16); } 210 { __int128 ret; ret = __sync_lock_test_and_set_16(vp16, v16); } 211 #endif 212 213 { __sync_lock_release(vp1); } 214 { __sync_lock_release_1(vp1); } 215 { __sync_lock_release(vp2); } 216 { __sync_lock_release_2(vp2); } 217 { __sync_lock_release(vp4); } 218 { __sync_lock_release_4(vp4); } 219 { __sync_lock_release(vp8); } 220 { __sync_lock_release_8(vp8); } 221 #if defined(__SIZEOF_INT128__) 222 { __sync_lock_release(vp16); } 223 { __sync_lock_release_16(vp16); } 162 224 #endif 163 225 … … 168 230 169 231 { _Bool ret; ret = __atomic_test_and_set(vpB, vB); } 170 { _Bool ret; ret = __atomic_test_and_set(vp c, vc); }232 { _Bool ret; ret = __atomic_test_and_set(vp1, v1); } 171 233 { __atomic_clear(vpB, vB); } 172 { __atomic_clear(vpc, vc); } 173 174 { char ret; ret = __atomic_exchange_n(vpc, vc, __ATOMIC_SEQ_CST); } 175 { char ret; __atomic_exchange(vpc, &vc, &ret, __ATOMIC_SEQ_CST); } 176 { short ret; ret = __atomic_exchange_n(vps, vs, __ATOMIC_SEQ_CST); } 177 { short ret; __atomic_exchange(vps, &vs, &ret, __ATOMIC_SEQ_CST); } 178 { int ret; ret = __atomic_exchange_n(vpi, vi, __ATOMIC_SEQ_CST); } 179 { int ret; __atomic_exchange(vpi, &vi, &ret, __ATOMIC_SEQ_CST); } 180 { long int ret; ret = __atomic_exchange_n(vpl, vl, __ATOMIC_SEQ_CST); } 181 { long int ret; __atomic_exchange(vpl, &vl, &ret, __ATOMIC_SEQ_CST); } 182 { long long int ret; ret = __atomic_exchange_n(vpll, vll, __ATOMIC_SEQ_CST); } 183 { long long int ret; __atomic_exchange(vpll, &vll, &ret, __ATOMIC_SEQ_CST); } 184 #if defined(__SIZEOF_INT128__) 185 { __int128 ret; ret = __atomic_exchange_n(vplll, vlll, __ATOMIC_SEQ_CST); } 186 { __int128 ret; __atomic_exchange(vplll, &vlll, &ret, __ATOMIC_SEQ_CST); } 234 { __atomic_clear(vp1, v1); } 235 236 { char ret; ret = __atomic_exchange_n(vp1, v1, __ATOMIC_SEQ_CST); } 237 { char ret; ret = __atomic_exchange_1(vp1, v1, __ATOMIC_SEQ_CST); } 238 { char ret; __atomic_exchange(vp1, &v1, &ret, __ATOMIC_SEQ_CST); } 239 { short ret; ret = __atomic_exchange_n(vp2, v2, __ATOMIC_SEQ_CST); } 240 { short ret; ret = __atomic_exchange_2(vp2, v2, __ATOMIC_SEQ_CST); } 241 { short ret; __atomic_exchange(vp2, &v2, &ret, __ATOMIC_SEQ_CST); } 242 { int ret; ret = __atomic_exchange_n(vp4, v4, __ATOMIC_SEQ_CST); } 243 { int ret; ret = __atomic_exchange_4(vp4, v4, __ATOMIC_SEQ_CST); } 244 { int ret; __atomic_exchange(vp4, &v4, &ret, __ATOMIC_SEQ_CST); } 245 { long long int ret; ret = __atomic_exchange_n(vp8, v8, __ATOMIC_SEQ_CST); } 246 { long long int ret; ret = __atomic_exchange_8(vp8, v8, __ATOMIC_SEQ_CST); } 247 { long long int ret; __atomic_exchange(vp8, &v8, &ret, __ATOMIC_SEQ_CST); } 248 #if defined(__SIZEOF_INT128__) 249 { __int128 ret; ret = __atomic_exchange_n(vp16, v16, __ATOMIC_SEQ_CST); } 250 { __int128 ret; ret = __atomic_exchange_16(vp16, v16, __ATOMIC_SEQ_CST); } 251 { __int128 ret; __atomic_exchange(vp16, &v16, &ret, __ATOMIC_SEQ_CST); } 187 252 #endif 188 253 { struct type * ret; ret = __atomic_exchange_n(vpp, vp, __ATOMIC_SEQ_CST); } 189 254 { struct type * ret; __atomic_exchange(vpp, &vp, &ret, __ATOMIC_SEQ_CST); } 190 255 191 { char ret; ret = __atomic_load_n(vpc, __ATOMIC_SEQ_CST); } 192 { char ret; __atomic_load(vpc, &ret, __ATOMIC_SEQ_CST); } 193 { short ret; ret = __atomic_load_n(vps, __ATOMIC_SEQ_CST); } 194 { short ret; __atomic_load(vps, &ret, __ATOMIC_SEQ_CST); } 195 { int ret; ret = __atomic_load_n(vpi, __ATOMIC_SEQ_CST); } 196 { int ret; __atomic_load(vpi, &ret, __ATOMIC_SEQ_CST); } 197 { long int ret; ret = __atomic_load_n(vpl, __ATOMIC_SEQ_CST); } 198 { long int ret; __atomic_load(vpl, &ret, __ATOMIC_SEQ_CST); } 199 { long long int ret; ret = __atomic_load_n(vpll, __ATOMIC_SEQ_CST); } 200 { long long int ret; __atomic_load(vpll, &ret, __ATOMIC_SEQ_CST); } 201 #if defined(__SIZEOF_INT128__) 202 { __int128 ret; ret = __atomic_load_n(vplll, __ATOMIC_SEQ_CST); } 203 { __int128 ret; __atomic_load(vplll, &ret, __ATOMIC_SEQ_CST); } 256 { char ret; ret = __atomic_load_n(vp1, __ATOMIC_SEQ_CST); } 257 { char ret; ret = __atomic_load_1(vp1, __ATOMIC_SEQ_CST); } 258 { char ret; __atomic_load(vp1, &ret, __ATOMIC_SEQ_CST); } 259 { short ret; ret = __atomic_load_n(vp2, __ATOMIC_SEQ_CST); } 260 { short ret; ret = __atomic_load_2(vp2, __ATOMIC_SEQ_CST); } 261 { short ret; __atomic_load(vp2, &ret, __ATOMIC_SEQ_CST); } 262 { int ret; ret = __atomic_load_n(vp4, __ATOMIC_SEQ_CST); } 263 { int ret; ret = __atomic_load_4(vp4, __ATOMIC_SEQ_CST); } 264 { int ret; __atomic_load(vp4, &ret, __ATOMIC_SEQ_CST); } 265 { long long int ret; ret = __atomic_load_n(vp8, __ATOMIC_SEQ_CST); } 266 { long long int ret; ret = __atomic_load_8(vp8, __ATOMIC_SEQ_CST); } 267 { long long int ret; __atomic_load(vp8, &ret, __ATOMIC_SEQ_CST); } 268 #if defined(__SIZEOF_INT128__) 269 { __int128 ret; ret = __atomic_load_n(vp16, __ATOMIC_SEQ_CST); } 270 { __int128 ret; ret = __atomic_load_16(vp16, __ATOMIC_SEQ_CST); } 271 { __int128 ret; __atomic_load(vp16, &ret, __ATOMIC_SEQ_CST); } 204 272 #endif 205 273 { struct type * ret; ret = __atomic_load_n(vpp, __ATOMIC_SEQ_CST); } 206 274 { struct type * ret; __atomic_load(vpp, &ret, __ATOMIC_SEQ_CST); } 207 275 208 { _Bool ret; ret = __atomic_compare_exchange_n(vpc, rpc, vc, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST); } 209 { _Bool ret; ret = __atomic_compare_exchange(vpc, rpc, &vc, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST); } 210 { _Bool ret; ret = __atomic_compare_exchange_n(vps, rps, vs, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST); } 211 { _Bool ret; ret = __atomic_compare_exchange(vps, rps, &vs, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST); } 212 { _Bool ret; ret = __atomic_compare_exchange_n(vpi, rpi, vi, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST); } 213 { _Bool ret; ret = __atomic_compare_exchange(vpi, rpi, &vi, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST); } 214 { _Bool ret; ret = __atomic_compare_exchange_n(vpl, rpl, vl, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST); } 215 { _Bool ret; ret = __atomic_compare_exchange(vpl, rpl, &vl, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST); } 216 { _Bool ret; ret = __atomic_compare_exchange_n(vpll, rpll, vll, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST); } 217 { _Bool ret; ret = __atomic_compare_exchange(vpll, rpll, &vll, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST); } 218 #if defined(__SIZEOF_INT128__) 219 { _Bool ret; ret = __atomic_compare_exchange_n(vplll, rplll, vlll, 0, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST); } 220 { _Bool ret; ret = __atomic_compare_exchange(vplll, rplll, &vlll, 0, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST); } 276 { _Bool ret; ret = __atomic_compare_exchange_n(vp1, rp1, v1, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST); } 277 { _Bool ret; ret = __atomic_compare_exchange_1(vp1, rp1, v1, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST); } 278 { _Bool ret; ret = __atomic_compare_exchange(vp1, rp1, &v1, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST); } 279 { _Bool ret; ret = __atomic_compare_exchange_n(vp2, rp2, v2, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST); } 280 { _Bool ret; ret = __atomic_compare_exchange_2(vp2, rp2, v2, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST); } 281 { _Bool ret; ret = __atomic_compare_exchange(vp2, rp2, &v2, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST); } 282 { _Bool ret; ret = __atomic_compare_exchange_n(vp4, rp4, v4, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST); } 283 { _Bool ret; ret = __atomic_compare_exchange_4(vp4, rp4, v4, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST); } 284 { _Bool ret; ret = __atomic_compare_exchange(vp4, rp4, &v4, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST); } 285 { _Bool ret; ret = __atomic_compare_exchange_n(vp8, rp8, v8, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST); } 286 { _Bool ret; ret = __atomic_compare_exchange_8(vp8, rp8, v8, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST); } 287 { _Bool ret; ret = __atomic_compare_exchange(vp8, rp8, &v8, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST); } 288 #if defined(__SIZEOF_INT128__) 289 { _Bool ret; ret = __atomic_compare_exchange_n(vp16, rp16, v16, 0, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST); } 290 { _Bool ret; ret = __atomic_compare_exchange_16(vp16, rp16, v16, 0, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST); } 291 { _Bool ret; ret = __atomic_compare_exchange(vp16, rp16, &v16, 0, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST); } 221 292 #endif 222 293 { _Bool ret; ret = __atomic_compare_exchange_n(vpp, rpp, vp, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST); } 223 294 { _Bool ret; ret = __atomic_compare_exchange(vpp, rpp, &vp, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST); } 224 295 225 { __atomic_store_n(vpc, vc, __ATOMIC_SEQ_CST); } 226 { __atomic_store(vpc, &vc, __ATOMIC_SEQ_CST); } 227 { __atomic_store_n(vps, vs, __ATOMIC_SEQ_CST); } 228 { __atomic_store(vps, &vs, __ATOMIC_SEQ_CST); } 229 { __atomic_store_n(vpi, vi, __ATOMIC_SEQ_CST); } 230 { __atomic_store(vpi, &vi, __ATOMIC_SEQ_CST); } 231 { __atomic_store_n(vpl, vl, __ATOMIC_SEQ_CST); } 232 { __atomic_store(vpl, &vl, __ATOMIC_SEQ_CST); } 233 { __atomic_store_n(vpll, vll, __ATOMIC_SEQ_CST); } 234 { __atomic_store(vpll, &vll, __ATOMIC_SEQ_CST); } 235 #if defined(__SIZEOF_INT128__) 236 { __atomic_store_n(vplll, vlll, __ATOMIC_SEQ_CST); } 237 { __atomic_store(vplll, &vlll, __ATOMIC_SEQ_CST); } 296 { __atomic_store_n(vp1, v1, __ATOMIC_SEQ_CST); } 297 { __atomic_store_1(vp1, v1, __ATOMIC_SEQ_CST); } 298 { __atomic_store(vp1, &v1, __ATOMIC_SEQ_CST); } 299 { __atomic_store_n(vp2, v2, __ATOMIC_SEQ_CST); } 300 { __atomic_store_2(vp2, v2, __ATOMIC_SEQ_CST); } 301 { __atomic_store(vp2, &v2, __ATOMIC_SEQ_CST); } 302 { __atomic_store_n(vp4, v4, __ATOMIC_SEQ_CST); } 303 { __atomic_store_4(vp4, v4, __ATOMIC_SEQ_CST); } 304 { __atomic_store(vp4, &v4, __ATOMIC_SEQ_CST); } 305 { __atomic_store_n(vp8, v8, __ATOMIC_SEQ_CST); } 306 { __atomic_store_8(vp8, v8, __ATOMIC_SEQ_CST); } 307 { __atomic_store(vp8, &v8, __ATOMIC_SEQ_CST); } 308 #if defined(__SIZEOF_INT128__) 309 { __atomic_store_n(vp16, v16, __ATOMIC_SEQ_CST); } 310 { __atomic_store_16(vp16, v16, __ATOMIC_SEQ_CST); } 311 { __atomic_store(vp16, &v16, __ATOMIC_SEQ_CST); } 238 312 #endif 239 313 { __atomic_store_n(vpp, vp, __ATOMIC_SEQ_CST); } 240 314 { __atomic_store(vpp, &vp, __ATOMIC_SEQ_CST); } 241 315 242 { char ret; ret = __atomic_add_fetch(vpc, vc, __ATOMIC_SEQ_CST); } 243 { short ret; ret = __atomic_add_fetch(vps, vs, __ATOMIC_SEQ_CST); } 244 { int ret; ret = __atomic_add_fetch(vpi, vi, __ATOMIC_SEQ_CST); } 245 { long int ret; ret = __atomic_add_fetch(vpl, vl, __ATOMIC_SEQ_CST); } 246 { long long int ret; ret = __atomic_add_fetch(vpll, vll, __ATOMIC_SEQ_CST); } 247 #if defined(__SIZEOF_INT128__) 248 { __int128 ret; ret = __atomic_add_fetch(vplll, vlll, __ATOMIC_SEQ_CST); } 249 #endif 250 251 { char ret; ret = __atomic_sub_fetch(vpc, vc, __ATOMIC_SEQ_CST); } 252 { short ret; ret = __atomic_sub_fetch(vps, vs, __ATOMIC_SEQ_CST); } 253 { int ret; ret = __atomic_sub_fetch(vpi, vi, __ATOMIC_SEQ_CST); } 254 { long int ret; ret = __atomic_sub_fetch(vpl, vl, __ATOMIC_SEQ_CST); } 255 { long long int ret; ret = __atomic_sub_fetch(vpll, vll, __ATOMIC_SEQ_CST); } 256 #if defined(__SIZEOF_INT128__) 257 { __int128 ret; ret = __atomic_sub_fetch(vplll, vlll, __ATOMIC_SEQ_CST); } 258 #endif 259 260 { char ret; ret = __atomic_and_fetch(vpc, vc, __ATOMIC_SEQ_CST); } 261 { short ret; ret = __atomic_and_fetch(vps, vs, __ATOMIC_SEQ_CST); } 262 { int ret; ret = __atomic_and_fetch(vpi, vi, __ATOMIC_SEQ_CST); } 263 { long int ret; ret = __atomic_and_fetch(vpl, vl, __ATOMIC_SEQ_CST); } 264 { long long int ret; ret = __atomic_and_fetch(vpll, vll, __ATOMIC_SEQ_CST); } 265 #if defined(__SIZEOF_INT128__) 266 { __int128 ret; ret = __atomic_and_fetch(vplll, vlll, __ATOMIC_SEQ_CST); } 267 #endif 268 269 { char ret; ret = __atomic_nand_fetch(vpc, vc, __ATOMIC_SEQ_CST); } 270 { short ret; ret = __atomic_nand_fetch(vps, vs, __ATOMIC_SEQ_CST); } 271 { int ret; ret = __atomic_nand_fetch(vpi, vi, __ATOMIC_SEQ_CST); } 272 { long int ret; ret = __atomic_nand_fetch(vpl, vl, __ATOMIC_SEQ_CST); } 273 { long long int ret; ret = __atomic_nand_fetch(vpll, vll, __ATOMIC_SEQ_CST); } 274 #if defined(__SIZEOF_INT128__) 275 { __int128 ret; ret = __atomic_nand_fetch(vplll, vlll, __ATOMIC_SEQ_CST); } 276 #endif 277 278 { char ret; ret = __atomic_xor_fetch(vpc, vc, __ATOMIC_SEQ_CST); } 279 { short ret; ret = __atomic_xor_fetch(vps, vs, __ATOMIC_SEQ_CST); } 280 { int ret; ret = __atomic_xor_fetch(vpi, vi, __ATOMIC_SEQ_CST); } 281 { long int ret; ret = __atomic_xor_fetch(vpl, vl, __ATOMIC_SEQ_CST); } 282 { long long int ret; ret = __atomic_xor_fetch(vpll, vll, __ATOMIC_SEQ_CST); } 283 #if defined(__SIZEOF_INT128__) 284 { __int128 ret; ret = __atomic_xor_fetch(vplll, vlll, __ATOMIC_SEQ_CST); } 285 #endif 286 287 { char ret; ret = __atomic_or_fetch(vpc, vc, __ATOMIC_SEQ_CST); } 288 { short ret; ret = __atomic_or_fetch(vps, vs, __ATOMIC_SEQ_CST); } 289 { int ret; ret = __atomic_or_fetch(vpi, vi, __ATOMIC_SEQ_CST); } 290 { long int ret; ret = __atomic_or_fetch(vpl, vl, __ATOMIC_SEQ_CST); } 291 { long long int ret; ret = __atomic_or_fetch(vpll, vll, __ATOMIC_SEQ_CST); } 292 #if defined(__SIZEOF_INT128__) 293 { __int128 ret; ret = __atomic_or_fetch(vplll, vlll, __ATOMIC_SEQ_CST); } 294 #endif 295 296 { char ret; ret = __atomic_fetch_add(vpc, vc, __ATOMIC_SEQ_CST); } 297 { short ret; ret = __atomic_fetch_add(vps, vs, __ATOMIC_SEQ_CST); } 298 { int ret; ret = __atomic_fetch_add(vpi, vi, __ATOMIC_SEQ_CST); } 299 { long int ret; ret = __atomic_fetch_add(vpl, vl, __ATOMIC_SEQ_CST); } 300 { long long int ret; ret = __atomic_fetch_add(vpll, vll, __ATOMIC_SEQ_CST); } 301 #if defined(__SIZEOF_INT128__) 302 { __int128 ret; ret = __atomic_fetch_add(vplll, vlll, __ATOMIC_SEQ_CST); } 303 #endif 304 305 { char ret; ret = __atomic_fetch_sub(vpc, vc, __ATOMIC_SEQ_CST); } 306 { short ret; ret = __atomic_fetch_sub(vps, vs, __ATOMIC_SEQ_CST); } 307 { int ret; ret = __atomic_fetch_sub(vpi, vi, __ATOMIC_SEQ_CST); } 308 { long int ret; ret = __atomic_fetch_sub(vpl, vl, __ATOMIC_SEQ_CST); } 309 { long long int ret; ret = __atomic_fetch_sub(vpll, vll, __ATOMIC_SEQ_CST); } 310 #if defined(__SIZEOF_INT128__) 311 { __int128 ret; ret = __atomic_fetch_sub(vplll, vlll, __ATOMIC_SEQ_CST); } 312 #endif 313 314 { char ret; ret = __atomic_fetch_and(vpc, vc, __ATOMIC_SEQ_CST); } 315 { short ret; ret = __atomic_fetch_and(vps, vs, __ATOMIC_SEQ_CST); } 316 { int ret; ret = __atomic_fetch_and(vpi, vi, __ATOMIC_SEQ_CST); } 317 { long int ret; ret = __atomic_fetch_and(vpl, vl, __ATOMIC_SEQ_CST); } 318 { long long int ret; ret = __atomic_fetch_and(vpll, vll, __ATOMIC_SEQ_CST); } 319 #if defined(__SIZEOF_INT128__) 320 { __int128 ret; ret = __atomic_fetch_and(vplll, vlll, __ATOMIC_SEQ_CST); } 321 #endif 322 323 { char ret; ret = __atomic_fetch_nand(vpc, vc, __ATOMIC_SEQ_CST); } 324 { short ret; ret = __atomic_fetch_nand(vps, vs, __ATOMIC_SEQ_CST); } 325 { int ret; ret = __atomic_fetch_nand(vpi, vi, __ATOMIC_SEQ_CST); } 326 { long int ret; ret = __atomic_fetch_nand(vpl, vl, __ATOMIC_SEQ_CST); } 327 { long long int ret; ret = __atomic_fetch_nand(vpll, vll, __ATOMIC_SEQ_CST); } 328 #if defined(__SIZEOF_INT128__) 329 { __int128 ret; ret = __atomic_fetch_nand(vplll, vlll, __ATOMIC_SEQ_CST); } 330 #endif 331 332 { char ret; ret = __atomic_fetch_xor(vpc, vc, __ATOMIC_SEQ_CST); } 333 { short ret; ret = __atomic_fetch_xor(vps, vs, __ATOMIC_SEQ_CST); } 334 { int ret; ret = __atomic_fetch_xor(vpi, vi, __ATOMIC_SEQ_CST); } 335 { long int ret; ret = __atomic_fetch_xor(vpl, vl, __ATOMIC_SEQ_CST); } 336 { long long int ret; ret = __atomic_fetch_xor(vpll, vll, __ATOMIC_SEQ_CST); } 337 #if defined(__SIZEOF_INT128__) 338 { __int128 ret; ret = __atomic_fetch_xor(vplll, vlll, __ATOMIC_SEQ_CST); } 339 #endif 340 341 { char ret; ret = __atomic_fetch_or(vpc, vc, __ATOMIC_SEQ_CST); } 342 { short ret; ret = __atomic_fetch_or(vps, vs, __ATOMIC_SEQ_CST); } 343 { int ret; ret = __atomic_fetch_or(vpi, vi, __ATOMIC_SEQ_CST); } 344 { long int ret; ret = __atomic_fetch_or(vpl, vl, __ATOMIC_SEQ_CST); } 345 { long long int ret; ret = __atomic_fetch_or(vpll, vll, __ATOMIC_SEQ_CST); } 346 #if defined(__SIZEOF_INT128__) 347 { __int128 ret; ret = __atomic_fetch_or(vplll, vlll, __ATOMIC_SEQ_CST); } 348 #endif 349 350 { _Bool ret; ret = __atomic_always_lock_free(sizeof(int), vpi); } 351 { _Bool ret; ret = __atomic_is_lock_free(sizeof(int), vpi); } 316 { char ret; ret = __atomic_add_fetch(vp1, v1, __ATOMIC_SEQ_CST); } 317 { char ret; ret = __atomic_add_fetch_1(vp1, v1, __ATOMIC_SEQ_CST); } 318 { short ret; ret = __atomic_add_fetch(vp2, v2, __ATOMIC_SEQ_CST); } 319 { short ret; ret = __atomic_add_fetch_2(vp2, v2, __ATOMIC_SEQ_CST); } 320 { int ret; ret = __atomic_add_fetch(vp4, v4, __ATOMIC_SEQ_CST); } 321 { int ret; ret = __atomic_add_fetch_4(vp4, v4, __ATOMIC_SEQ_CST); } 322 { long long int ret; ret = __atomic_add_fetch(vp8, v8, __ATOMIC_SEQ_CST); } 323 { long long int ret; ret = __atomic_add_fetch_8(vp8, v8, __ATOMIC_SEQ_CST); } 324 #if defined(__SIZEOF_INT128__) 325 { __int128 ret; ret = __atomic_add_fetch(vp16, v16, __ATOMIC_SEQ_CST); } 326 { __int128 ret; ret = __atomic_add_fetch_16(vp16, v16, __ATOMIC_SEQ_CST); } 327 #endif 328 329 { char ret; ret = __atomic_sub_fetch(vp1, v1, __ATOMIC_SEQ_CST); } 330 { char ret; ret = __atomic_sub_fetch_1(vp1, v1, __ATOMIC_SEQ_CST); } 331 { short ret; ret = __atomic_sub_fetch(vp2, v2, __ATOMIC_SEQ_CST); } 332 { short ret; ret = __atomic_sub_fetch_2(vp2, v2, __ATOMIC_SEQ_CST); } 333 { int ret; ret = __atomic_sub_fetch(vp4, v4, __ATOMIC_SEQ_CST); } 334 { int ret; ret = __atomic_sub_fetch_4(vp4, v4, __ATOMIC_SEQ_CST); } 335 { long long int ret; ret = __atomic_sub_fetch(vp8, v8, __ATOMIC_SEQ_CST); } 336 { long long int ret; ret = __atomic_sub_fetch_8(vp8, v8, __ATOMIC_SEQ_CST); } 337 #if defined(__SIZEOF_INT128__) 338 { __int128 ret; ret = __atomic_sub_fetch(vp16, v16, __ATOMIC_SEQ_CST); } 339 { __int128 ret; ret = __atomic_sub_fetch_16(vp16, v16, __ATOMIC_SEQ_CST); } 340 #endif 341 342 { char ret; ret = __atomic_and_fetch(vp1, v1, __ATOMIC_SEQ_CST); } 343 { char ret; ret = __atomic_and_fetch_1(vp1, v1, __ATOMIC_SEQ_CST); } 344 { short ret; ret = __atomic_and_fetch(vp2, v2, __ATOMIC_SEQ_CST); } 345 { short ret; ret = __atomic_and_fetch_2(vp2, v2, __ATOMIC_SEQ_CST); } 346 { int ret; ret = __atomic_and_fetch(vp4, v4, __ATOMIC_SEQ_CST); } 347 { int ret; ret = __atomic_and_fetch_4(vp4, v4, __ATOMIC_SEQ_CST); } 348 { long long int ret; ret = __atomic_and_fetch(vp8, v8, __ATOMIC_SEQ_CST); } 349 { long long int ret; ret = __atomic_and_fetch_8(vp8, v8, __ATOMIC_SEQ_CST); } 350 #if defined(__SIZEOF_INT128__) 351 { __int128 ret; ret = __atomic_and_fetch(vp16, v16, __ATOMIC_SEQ_CST); } 352 { __int128 ret; ret = __atomic_and_fetch_16(vp16, v16, __ATOMIC_SEQ_CST); } 353 #endif 354 355 { char ret; ret = __atomic_nand_fetch(vp1, v1, __ATOMIC_SEQ_CST); } 356 { char ret; ret = __atomic_nand_fetch_1(vp1, v1, __ATOMIC_SEQ_CST); } 357 { short ret; ret = __atomic_nand_fetch(vp2, v2, __ATOMIC_SEQ_CST); } 358 { short ret; ret = __atomic_nand_fetch_2(vp2, v2, __ATOMIC_SEQ_CST); } 359 { int ret; ret = __atomic_nand_fetch(vp4, v4, __ATOMIC_SEQ_CST); } 360 { int ret; ret = __atomic_nand_fetch_4(vp4, v4, __ATOMIC_SEQ_CST); } 361 { long long int ret; ret = __atomic_nand_fetch(vp8, v8, __ATOMIC_SEQ_CST); } 362 { long long int ret; ret = __atomic_nand_fetch_8(vp8, v8, __ATOMIC_SEQ_CST); } 363 #if defined(__SIZEOF_INT128__) 364 { __int128 ret; ret = __atomic_nand_fetch(vp16, v16, __ATOMIC_SEQ_CST); } 365 { __int128 ret; ret = __atomic_nand_fetch_16(vp16, v16, __ATOMIC_SEQ_CST); } 366 #endif 367 368 { char ret; ret = __atomic_xor_fetch(vp1, v1, __ATOMIC_SEQ_CST); } 369 { char ret; ret = __atomic_xor_fetch_1(vp1, v1, __ATOMIC_SEQ_CST); } 370 { short ret; ret = __atomic_xor_fetch(vp2, v2, __ATOMIC_SEQ_CST); } 371 { short ret; ret = __atomic_xor_fetch_2(vp2, v2, __ATOMIC_SEQ_CST); } 372 { int ret; ret = __atomic_xor_fetch(vp4, v4, __ATOMIC_SEQ_CST); } 373 { int ret; ret = __atomic_xor_fetch_4(vp4, v4, __ATOMIC_SEQ_CST); } 374 { long long int ret; ret = __atomic_xor_fetch(vp8, v8, __ATOMIC_SEQ_CST); } 375 { long long int ret; ret = __atomic_xor_fetch_8(vp8, v8, __ATOMIC_SEQ_CST); } 376 #if defined(__SIZEOF_INT128__) 377 { __int128 ret; ret = __atomic_xor_fetch(vp16, v16, __ATOMIC_SEQ_CST); } 378 { __int128 ret; ret = __atomic_xor_fetch_16(vp16, v16, __ATOMIC_SEQ_CST); } 379 #endif 380 381 { char ret; ret = __atomic_or_fetch(vp1, v1, __ATOMIC_SEQ_CST); } 382 { char ret; ret = __atomic_or_fetch_1(vp1, v1, __ATOMIC_SEQ_CST); } 383 { short ret; ret = __atomic_or_fetch(vp2, v2, __ATOMIC_SEQ_CST); } 384 { short ret; ret = __atomic_or_fetch_2(vp2, v2, __ATOMIC_SEQ_CST); } 385 { int ret; ret = __atomic_or_fetch(vp4, v4, __ATOMIC_SEQ_CST); } 386 { int ret; ret = __atomic_or_fetch_4(vp4, v4, __ATOMIC_SEQ_CST); } 387 { long long int ret; ret = __atomic_or_fetch(vp8, v8, __ATOMIC_SEQ_CST); } 388 { long long int ret; ret = __atomic_or_fetch_8(vp8, v8, __ATOMIC_SEQ_CST); } 389 #if defined(__SIZEOF_INT128__) 390 { __int128 ret; ret = __atomic_or_fetch(vp16, v16, __ATOMIC_SEQ_CST); } 391 { __int128 ret; ret = __atomic_or_fetch_16(vp16, v16, __ATOMIC_SEQ_CST); } 392 #endif 393 394 { char ret; ret = __atomic_fetch_add(vp1, v1, __ATOMIC_SEQ_CST); } 395 { char ret; ret = __atomic_fetch_add_1(vp1, v1, __ATOMIC_SEQ_CST); } 396 { short ret; ret = __atomic_fetch_add(vp2, v2, __ATOMIC_SEQ_CST); } 397 { short ret; ret = __atomic_fetch_add_2(vp2, v2, __ATOMIC_SEQ_CST); } 398 { int ret; ret = __atomic_fetch_add(vp4, v4, __ATOMIC_SEQ_CST); } 399 { int ret; ret = __atomic_fetch_add_4(vp4, v4, __ATOMIC_SEQ_CST); } 400 { long long int ret; ret = __atomic_fetch_add(vp8, v8, __ATOMIC_SEQ_CST); } 401 { long long int ret; ret = __atomic_fetch_add_8(vp8, v8, __ATOMIC_SEQ_CST); } 402 #if defined(__SIZEOF_INT128__) 403 { __int128 ret; ret = __atomic_fetch_add(vp16, v16, __ATOMIC_SEQ_CST); } 404 { __int128 ret; ret = __atomic_fetch_add_16(vp16, v16, __ATOMIC_SEQ_CST); } 405 #endif 406 407 { char ret; ret = __atomic_fetch_sub(vp1, v1, __ATOMIC_SEQ_CST); } 408 { char ret; ret = __atomic_fetch_sub_1(vp1, v1, __ATOMIC_SEQ_CST); } 409 { short ret; ret = __atomic_fetch_sub(vp2, v2, __ATOMIC_SEQ_CST); } 410 { short ret; ret = __atomic_fetch_sub_2(vp2, v2, __ATOMIC_SEQ_CST); } 411 { int ret; ret = __atomic_fetch_sub(vp4, v4, __ATOMIC_SEQ_CST); } 412 { int ret; ret = __atomic_fetch_sub_4(vp4, v4, __ATOMIC_SEQ_CST); } 413 { long long int ret; ret = __atomic_fetch_sub(vp8, v8, __ATOMIC_SEQ_CST); } 414 { long long int ret; ret = __atomic_fetch_sub_8(vp8, v8, __ATOMIC_SEQ_CST); } 415 #if defined(__SIZEOF_INT128__) 416 { __int128 ret; ret = __atomic_fetch_sub(vp16, v16, __ATOMIC_SEQ_CST); } 417 { __int128 ret; ret = __atomic_fetch_sub_16(vp16, v16, __ATOMIC_SEQ_CST); } 418 #endif 419 420 { char ret; ret = __atomic_fetch_and(vp1, v1, __ATOMIC_SEQ_CST); } 421 { char ret; ret = __atomic_fetch_and_1(vp1, v1, __ATOMIC_SEQ_CST); } 422 { short ret; ret = __atomic_fetch_and(vp2, v2, __ATOMIC_SEQ_CST); } 423 { short ret; ret = __atomic_fetch_and_2(vp2, v2, __ATOMIC_SEQ_CST); } 424 { int ret; ret = __atomic_fetch_and(vp4, v4, __ATOMIC_SEQ_CST); } 425 { int ret; ret = __atomic_fetch_and_4(vp4, v4, __ATOMIC_SEQ_CST); } 426 { long long int ret; ret = __atomic_fetch_and(vp8, v8, __ATOMIC_SEQ_CST); } 427 { long long int ret; ret = __atomic_fetch_and_8(vp8, v8, __ATOMIC_SEQ_CST); } 428 #if defined(__SIZEOF_INT128__) 429 { __int128 ret; ret = __atomic_fetch_and(vp16, v16, __ATOMIC_SEQ_CST); } 430 { __int128 ret; ret = __atomic_fetch_and_16(vp16, v16, __ATOMIC_SEQ_CST); } 431 #endif 432 433 { char ret; ret = __atomic_fetch_nand(vp1, v1, __ATOMIC_SEQ_CST); } 434 { char ret; ret = __atomic_fetch_nand_1(vp1, v1, __ATOMIC_SEQ_CST); } 435 { short ret; ret = __atomic_fetch_nand(vp2, v2, __ATOMIC_SEQ_CST); } 436 { short ret; ret = __atomic_fetch_nand_2(vp2, v2, __ATOMIC_SEQ_CST); } 437 { int ret; ret = __atomic_fetch_nand(vp4, v4, __ATOMIC_SEQ_CST); } 438 { int ret; ret = __atomic_fetch_nand_4(vp4, v4, __ATOMIC_SEQ_CST); } 439 { long long int ret; ret = __atomic_fetch_nand(vp8, v8, __ATOMIC_SEQ_CST); } 440 { long long int ret; ret = __atomic_fetch_nand_8(vp8, v8, __ATOMIC_SEQ_CST); } 441 #if defined(__SIZEOF_INT128__) 442 { __int128 ret; ret = __atomic_fetch_nand(vp16, v16, __ATOMIC_SEQ_CST); } 443 { __int128 ret; ret = __atomic_fetch_nand_16(vp16, v16, __ATOMIC_SEQ_CST); } 444 #endif 445 446 { char ret; ret = __atomic_fetch_xor(vp1, v1, __ATOMIC_SEQ_CST); } 447 { char ret; ret = __atomic_fetch_xor_1(vp1, v1, __ATOMIC_SEQ_CST); } 448 { short ret; ret = __atomic_fetch_xor(vp2, v2, __ATOMIC_SEQ_CST); } 449 { short ret; ret = __atomic_fetch_xor_2(vp2, v2, __ATOMIC_SEQ_CST); } 450 { int ret; ret = __atomic_fetch_xor(vp4, v4, __ATOMIC_SEQ_CST); } 451 { int ret; ret = __atomic_fetch_xor_4(vp4, v4, __ATOMIC_SEQ_CST); } 452 { long long int ret; ret = __atomic_fetch_xor(vp8, v8, __ATOMIC_SEQ_CST); } 453 { long long int ret; ret = __atomic_fetch_xor_8(vp8, v8, __ATOMIC_SEQ_CST); } 454 #if defined(__SIZEOF_INT128__) 455 { __int128 ret; ret = __atomic_fetch_xor(vp16, v16, __ATOMIC_SEQ_CST); } 456 { __int128 ret; ret = __atomic_fetch_xor_16(vp16, v16, __ATOMIC_SEQ_CST); } 457 #endif 458 459 { char ret; ret = __atomic_fetch_or(vp1, v1, __ATOMIC_SEQ_CST); } 460 { char ret; ret = __atomic_fetch_or_1(vp1, v1, __ATOMIC_SEQ_CST); } 461 { short ret; ret = __atomic_fetch_or(vp2, v2, __ATOMIC_SEQ_CST); } 462 { short ret; ret = __atomic_fetch_or_2(vp2, v2, __ATOMIC_SEQ_CST); } 463 { int ret; ret = __atomic_fetch_or(vp4, v4, __ATOMIC_SEQ_CST); } 464 { int ret; ret = __atomic_fetch_or_4(vp4, v4, __ATOMIC_SEQ_CST); } 465 { long long int ret; ret = __atomic_fetch_or(vp8, v8, __ATOMIC_SEQ_CST); } 466 { long long int ret; ret = __atomic_fetch_or_8(vp8, v8, __ATOMIC_SEQ_CST); } 467 #if defined(__SIZEOF_INT128__) 468 { __int128 ret; ret = __atomic_fetch_or(vp16, v16, __ATOMIC_SEQ_CST); } 469 { __int128 ret; ret = __atomic_fetch_or_16(vp16, v16, __ATOMIC_SEQ_CST); } 470 #endif 471 472 { _Bool ret; ret = __atomic_always_lock_free(sizeof(int), vp4); } 473 { _Bool ret; ret = __atomic_is_lock_free(sizeof(int), vp4); } 352 474 { __atomic_thread_fence(__ATOMIC_SEQ_CST); } 353 475 { __atomic_signal_fence(__ATOMIC_SEQ_CST); } -
tests/concurrent/coroutineYield.cfa
r7030dab r71d6bd8 33 33 sout | "Coroutine 2"; 34 34 #endif 35 suspend ;35 suspend(); 36 36 } 37 37 } -
tests/concurrent/examples/.expect/datingService.txt
r7030dab r71d6bd8 1 Girl:17 is dating Boy at 2 with ccode 17 2 Boy:2 is dating Girl 17 with ccode 17 3 Boy:14 is dating Girl 5 with ccode 5 4 Girl:5 is dating Boy at 14 with ccode 5 5 Boy:9 is dating Girl 10 with ccode 10 6 Girl:10 is dating Boy at 9 with ccode 10 7 Boy:1 is dating Girl 18 with ccode 18 8 Girl:18 is dating Boy at 1 with ccode 18 9 Boy:16 is dating Girl 3 with ccode 3 10 Girl:3 is dating Boy at 16 with ccode 3 11 Boy:5 is dating Girl 14 with ccode 14 12 Girl:14 is dating Boy at 5 with ccode 14 13 Boy:15 is dating Girl 4 with ccode 4 14 Girl:4 is dating Boy at 15 with ccode 4 15 Girl:0 is dating Boy at 19 with ccode 0 16 Boy:19 is dating Girl 0 with ccode 0 17 Girl:9 is dating Boy at 10 with ccode 9 18 Boy:10 is dating Girl 9 with ccode 9 19 Girl:11 is dating Boy at 8 with ccode 11 20 Boy:8 is dating Girl 11 with ccode 11 21 Boy:12 is dating Girl 7 with ccode 7 22 Girl:7 is dating Boy at 12 with ccode 7 23 Boy:11 is dating Girl 8 with ccode 8 24 Girl:8 is dating Boy at 11 with ccode 8 25 Girl:16 is dating Boy at 3 with ccode 16 26 Boy:3 is dating Girl 16 with ccode 16 27 Girl:15 is dating Boy at 4 with ccode 15 28 Boy:4 is dating Girl 15 with ccode 15 29 Girl:19 is dating Boy at 0 with ccode 19 30 Boy:0 is dating Girl 19 with ccode 19 31 Girl:2 is dating Boy at 17 with ccode 2 32 Boy:17 is dating Girl 2 with ccode 2 33 Boy:13 is dating Girl 6 with ccode 6 34 Girl:6 is dating Boy at 13 with ccode 6 35 Boy:7 is dating Girl 12 with ccode 12 36 Girl:12 is dating Boy at 7 with ccode 12 37 Girl:13 is dating Boy at 6 with ccode 13 38 Boy:6 is dating Girl 13 with ccode 13 39 Girl:1 is dating Boy at 18 with ccode 1 40 Boy:18 is dating Girl 1 with ccode 1 -
tests/concurrent/examples/boundedBufferEXT.cfa
r7030dab r71d6bd8 10 10 // Created On : Wed Apr 18 22:52:12 2018 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Thu Jan 16 22:36:34 202013 // Update Count : 1 512 // Last Modified On : Fri Jun 21 08:19:20 2019 13 // Update Count : 14 14 14 // 15 15 … … 37 37 38 38 void insert( Buffer(T) & mutex buffer, T elem ) with( buffer ) { 39 if ( count == BufferSize ) waitfor( remove :buffer );39 if ( count == BufferSize ) waitfor( remove, buffer ); 40 40 elements[back] = elem; 41 41 back = ( back + 1 ) % BufferSize; … … 44 44 45 45 T remove( Buffer(T) & mutex buffer ) with( buffer ) { 46 if ( count == 0 ) waitfor( insert :buffer );46 if ( count == 0 ) waitfor( insert, buffer ); 47 47 T elem = elements[front]; 48 48 front = ( front + 1 ) % BufferSize; -
tests/concurrent/examples/boundedBufferTHREAD.cfa
r7030dab r71d6bd8 10 10 // Created On : Wed Apr 18 22:52:12 2018 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Thu Jan 16 23:09:43 202013 // Update Count : 2 512 // Last Modified On : Fri Jun 21 11:50:12 2019 13 // Update Count : 24 14 14 // 15 15 … … 44 44 void main( Buffer & buffer ) with( buffer ) { 45 45 for () { 46 waitfor( ^?{} :buffer ) {46 waitfor( ^?{}, buffer ) { 47 47 break; 48 } or when ( count != 20 ) waitfor( insert :buffer ) {48 } or when ( count != 20 ) waitfor( insert, buffer ) { 49 49 back = (back + 1) % 20; 50 50 count += 1; 51 } or when ( count != 0 ) waitfor( remove :buffer ) {51 } or when ( count != 0 ) waitfor( remove, buffer ) { 52 52 front = (front + 1) % 20; 53 53 count -= 1; -
tests/concurrent/examples/datingService.cfa
r7030dab r71d6bd8 1 1 // 2 2 // Cforall Version 1.0.0 Copyright (C) 2017 University of Waterloo 3 // 3 // 4 4 // The contents of this file are covered under the licence agreement in the 5 5 // file "LICENCE" distributed with Cforall. … … 35 35 signal_block( Boys[ccode] ); // restart boy to set phone number 36 36 } // if 37 //sout | "Girl:" | PhoneNo | "is dating Boy at" | BoyPhoneNo | "with ccode" | ccode;37 sout | "Girl:" | PhoneNo | "is dating Boy at" | BoyPhoneNo | "with ccode" | ccode; 38 38 return BoyPhoneNo; 39 39 } // DatingService girl … … 47 47 signal_block( Girls[ccode] ); // restart girl to set phone number 48 48 } // if 49 //sout | " Boy:" | PhoneNo | "is dating Girl" | GirlPhoneNo | "with ccode" | ccode;49 sout | " Boy:" | PhoneNo | "is dating Girl" | GirlPhoneNo | "with ccode" | ccode; 50 50 return GirlPhoneNo; 51 51 } // DatingService boy -
tests/concurrent/examples/gortn.cfa
r7030dab r71d6bd8 10 10 // Created On : Wed Feb 20 08:02:37 2019 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Thu Jan 16 22:43:40 202013 // Update Count : 512 // Last Modified On : Fri Jun 21 08:25:03 2019 13 // Update Count : 4 14 14 // 15 15 … … 26 26 void main( GoRtn & gortn ) with( gortn ) { 27 27 for () { 28 waitfor( mem1 :gortn ) sout | i;29 or waitfor( mem2 :gortn ) sout | f;30 or waitfor( mem3 :gortn ) sout | m.i | m.j;31 or waitfor( ^?{} :gortn ) break;28 waitfor( mem1, gortn ) sout | i; 29 or waitfor( mem2, gortn ) sout | f; 30 or waitfor( mem3, gortn ) sout | m.i | m.j; 31 or waitfor( ^?{}, gortn ) break; 32 32 } 33 33 } -
tests/concurrent/examples/quickSort.cfa
r7030dab r71d6bd8 11 11 // Created On : Wed Dec 6 12:15:52 2017 12 12 // Last Modified By : Peter A. Buhr 13 // Last Modified On : Wed Feb 12 18:24:47 202014 // Update Count : 17 713 // Last Modified On : Thu Oct 10 13:58:18 2019 14 // Update Count : 176 15 15 // 16 16 … … 27 27 28 28 void ?{}( Quicksort & qs, int values[], int size, int depth ) { 29 qs. [values, low, high, depth] = [values, 0, size, depth];29 qs.values = values; qs.low = 0; qs.high = size; qs.depth = depth; 30 30 } // Quicksort 31 31 … … 167 167 values[counter] = size - counter; // descending values 168 168 } // for 169 for ( i ; 200 ) {// random shuffle a few values169 for ( int i = 0; i < 200; i +=1 ) { // random shuffle a few values 170 170 swap( values[rand() % size], values[rand() % size] ); 171 171 } // for -
tests/concurrent/multi-monitor.cfa
r7030dab r71d6bd8 11 11 12 12 void increment( monitor_t & mutex p1, monitor_t & mutex p2, int & value ) { 13 assert(active_thread() == get_monitor(p1)->owner);14 assert(active_thread() == get_monitor(p2)->owner);15 13 value += 1; 16 assert(active_thread() == get_monitor(p1)->owner);17 assert(active_thread() == get_monitor(p2)->owner);18 14 } 19 15 -
tests/concurrent/preempt.cfa
r7030dab r71d6bd8 36 36 if( (counter % 7) == this.value ) { 37 37 __cfaabi_check_preemption(); 38 int next = __atomic_add_fetch ( &counter, 1, __ATOMIC_SEQ_CST);38 int next = __atomic_add_fetch_4(&counter, 1, __ATOMIC_SEQ_CST); 39 39 __cfaabi_check_preemption(); 40 40 if( (next % 100) == 0 ) printf("%d\n", (int)next); -
tests/concurrent/signal/block.cfa
r7030dab r71d6bd8 33 33 34 34 monitor global_data_t { 35 $thread* last_thread;36 $thread* last_signaller;35 thread_desc * last_thread; 36 thread_desc * last_signaller; 37 37 }; 38 38 … … 82 82 if( !is_empty( cond ) ) { 83 83 84 $thread* next = front( cond );84 thread_desc * next = front( cond ); 85 85 86 86 if( ! signal_block( cond ) ) { -
tests/concurrent/signal/wait.cfa
r7030dab r71d6bd8 98 98 } 99 99 100 __ atomic_fetch_sub( &waiter_left, 1, __ATOMIC_SEQ_CST);100 __sync_fetch_and_sub_4( &waiter_left, 1); 101 101 } 102 102 … … 109 109 } 110 110 111 __ atomic_fetch_sub( &waiter_left, 1, __ATOMIC_SEQ_CST);111 __sync_fetch_and_sub_4( &waiter_left, 1); 112 112 } 113 113 … … 120 120 } 121 121 122 __ atomic_fetch_sub( &waiter_left, 1, __ATOMIC_SEQ_CST);122 __sync_fetch_and_sub_4( &waiter_left, 1); 123 123 } 124 124 … … 131 131 } 132 132 133 __ atomic_fetch_sub( &waiter_left, 1, __ATOMIC_SEQ_CST);133 __sync_fetch_and_sub_4( &waiter_left, 1); 134 134 } 135 135 -
tests/concurrent/thread.cfa
r7030dab r71d6bd8 7 7 thread Second { semaphore* lock; }; 8 8 9 void ?{}( First & this, semaphore & lock ) { ((thread&)this){ "Thread 1"}; this.lock = &lock; }10 void ?{}( Second & this, semaphore & lock ) { ((thread&)this){ "Thread 2"}; this.lock = &lock; }9 void ?{}( First & this, semaphore & lock ) { ((thread&)this){"Thread 1"}; this.lock = &lock; } 10 void ?{}( Second & this, semaphore & lock ) { ((thread&)this){"Thread 2"}; this.lock = &lock; } 11 11 12 12 void main(First& this) { -
tests/concurrent/waitfor/barge.cfa
r7030dab r71d6bd8 65 65 yield(random( 10 )); 66 66 this.state = WAITFOR; 67 waitfor(do_call :this) {67 waitfor(do_call, this) { 68 68 sout | i; 69 69 } -
tests/concurrent/waitfor/dtor.cfa
r7030dab r71d6bd8 47 47 yield(random( 10 )); 48 48 set_state( this, MAIN ); 49 waitfor( ^?{} :this ) {49 waitfor( ^?{}, this ) { 50 50 set_state( this, AFTER ); 51 51 } -
tests/concurrent/waitfor/else.cfa
r7030dab r71d6bd8 14 14 sout | "Starting"; 15 15 16 when( false ) waitfor( notcalled :m );16 when( false ) waitfor( notcalled, m ); 17 17 18 18 sout | "Step" | i++; 19 19 20 waitfor( notcalled :m ); or else {20 waitfor( notcalled, m ); or else { 21 21 sout | "else called"; 22 22 } … … 24 24 sout | "Step" | i++; 25 25 26 when( true ) waitfor( notcalled :m ); or when( true ) else {26 when( true ) waitfor( notcalled, m ); or when( true ) else { 27 27 sout | "else called"; 28 28 } … … 30 30 sout | "Step" | i++; 31 31 32 when( false ) waitfor( notcalled :m ); or when( true ) else {32 when( false ) waitfor( notcalled, m ); or when( true ) else { 33 33 sout | "else called"; 34 34 } … … 36 36 sout | "Step" | i++; 37 37 38 when( false ) waitfor( notcalled :m ); or when( false ) else {38 when( false ) waitfor( notcalled, m ); or when( false ) else { 39 39 sout | "else called"; 40 40 } -
tests/concurrent/waitfor/parse.cfa
r7030dab r71d6bd8 24 24 25 25 //--------------------------------------- 26 waitfor( f1 :a ) {26 waitfor( f1, a ) { 27 27 1; 28 28 } 29 29 30 30 //--------------------------------------- 31 waitfor( f1 :a ) {31 waitfor( f1, a ) { 32 32 2; 33 33 } 34 waitfor( f2 :a ) {34 waitfor( f2, a ) { 35 35 3; 36 36 } 37 37 38 38 //--------------------------------------- 39 when( 1 < 3 ) waitfor( f2 :a, a ) {39 when( 1 < 3 ) waitfor( f2, a, a ) { 40 40 4; 41 41 } … … 45 45 46 46 //--------------------------------------- 47 when( 2 < 3 ) waitfor( f3 :a ) {47 when( 2 < 3 ) waitfor( f3, a ) { 48 48 5; 49 49 } … … 53 53 54 54 //--------------------------------------- 55 when( 3 < 3 ) waitfor( f3 :a, a ) {55 when( 3 < 3 ) waitfor( f3, a, a ) { 56 56 7; 57 57 } … … 64 64 65 65 //--------------------------------------- 66 when( 6 < 3 ) waitfor( f3 :a, a, a ) {66 when( 6 < 3 ) waitfor( f3, a, a, a ) { 67 67 10; 68 68 } 69 or when( 7 < 3 ) waitfor( f1 :a ) {69 or when( 7 < 3 ) waitfor( f1, a ) { 70 70 11; 71 71 } … … 75 75 76 76 //--------------------------------------- 77 when( 8 < 3 ) waitfor( f3 :a, a ) {77 when( 8 < 3 ) waitfor( f3, a, a ) { 78 78 13; 79 79 } 80 or waitfor( f1 :a ) {80 or waitfor( f1, a ) { 81 81 14; 82 82 } … … 86 86 87 87 //--------------------------------------- 88 when( 10 < 3 ) waitfor( f1 :a ) {88 when( 10 < 3 ) waitfor( f1, a ) { 89 89 16; 90 90 } 91 or waitfor( f2 :a, a ) {91 or waitfor( f2, a, a ) { 92 92 17; 93 93 } … … 100 100 } 101 101 102 int main() {} 102 int main() { 103 104 } -
tests/concurrent/waitfor/parse2.cfa
r7030dab r71d6bd8 10 10 // Created On : Wed Aug 30 17:53:29 2017 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Thu Jan 16 23:13:37 202013 // Update Count : 612 // Last Modified On : Fri Mar 22 13:42:11 2019 13 // Update Count : 3 14 14 // 15 15 … … 26 26 } 27 27 28 waitfor( x :z ) {28 waitfor( x, z ) { 29 29 } 30 30 … … 37 37 or waitfor( y ); 38 38 39 waitfor( x :z );39 waitfor( x, z ); 40 40 or waitfor( y ); 41 41 … … 43 43 or when( true ) waitfor( y ); 44 44 45 when( true ) waitfor( x :z );45 when( true ) waitfor( x, z ); 46 46 or when( true ) waitfor( y ); 47 47 … … 50 50 } 51 51 52 waitfor( x :z ) {52 waitfor( x, z ) { 53 53 } or waitfor( y ) { 54 54 } … … 80 80 or else; 81 81 82 when( true ) waitfor( x :z );82 when( true ) waitfor( x, z ); 83 83 or else; 84 84 … … 99 99 } 100 100 101 when( true ) waitfor( x :z );101 when( true ) waitfor( x, z ); 102 102 or else { 103 103 } … … 115 115 or when( true ) else; 116 116 117 when( true ) waitfor( x :z );117 when( true ) waitfor( x, z ); 118 118 or when( true ) else; 119 119 … … 134 134 } 135 135 136 when( true ) waitfor( x :z );136 when( true ) waitfor( x, z ); 137 137 or when( true ) else { 138 138 } … … 149 149 or timeout( 3 ); 150 150 151 waitfor( x :z );151 waitfor( x, z ); 152 152 or timeout( 3 ); 153 153 … … 163 163 } 164 164 165 when( true ) waitfor( x :z ) {165 when( true ) waitfor( x, z ) { 166 166 } or timeout( 3 ) { 167 167 } … … 171 171 } 172 172 173 when( true ) waitfor( x :z ) {173 when( true ) waitfor( x, z ) { 174 174 } or when ( true ) timeout( 3 ) { 175 175 } … … 229 229 230 230 int or, timeout; 231 waitfor( timeout :7 ) 3;232 waitfor( timeout : 7 ) 3; or waitfor( timeout :7 ) 3;233 when( or ) waitfor( or :) { 4; } or timeout( 1 ) 3;234 when( 3 ) waitfor( or :2 ) 4; or else 4;235 when( 3 ) waitfor( or :3 ) 4; or when( or ) timeout( or ) 4; or when( or ) else timeout;236 when( 3 ) waitfor( or : or ) 3; or when( or ) waitfor( or :timeout ) 4; or else 4;237 when( 3 ) waitfor( or : or ) 3; or waitfor( or :9 ) 4; or when( or ) timeout( timeout ) 4;238 when( 3 ) waitfor( or : 3 ) 3; or waitfor( or :7 ) or; or timeout( 1 ) or; or when( 3 ) else or;231 waitfor( timeout, 7 ) 3; 232 waitfor( timeout, 7 ) 3; or waitfor( timeout, 7 ) 3; 233 when( or ) waitfor( or, ) { 4; } or timeout( 1 ) 3; 234 when( 3 ) waitfor( or, 2 ) 4; or else 4; 235 when( 3 ) waitfor( or, 3 ) 4; or when( or ) timeout( or ) 4; or when( or ) else timeout; 236 when( 3 ) waitfor( or, or ) 3; or when( or ) waitfor( or, timeout ) 4; or else 4; 237 when( 3 ) waitfor( or, or ) 3; or waitfor( or, 9 ) 4; or when( or ) timeout( timeout ) 4; 238 when( 3 ) waitfor( or, 3 ) 3; or waitfor( or, 7 ) or; or timeout( 1 ) or; or when( 3 ) else or; 239 239 240 240 // test else selection -
tests/concurrent/waitfor/recurse.cfa
r7030dab r71d6bd8 66 66 67 67 rand_yield(); 68 waitfor( call4 :this );68 waitfor( call4, this ); 69 69 rand_yield(); 70 70 … … 78 78 79 79 rand_yield(); 80 waitfor( call3 :this );80 waitfor( call3, this ); 81 81 rand_yield(); 82 82 … … 92 92 93 93 rand_yield(); 94 waitfor( call2 :this );94 waitfor( call2, this ); 95 95 rand_yield(); 96 96 -
tests/concurrent/waitfor/statment.cfa
r7030dab r71d6bd8 101 101 102 102 while( !done ) { 103 waitfor( get_index :this );104 or waitfor( call1 :this ) { sout | "Statement"; if( this.last_val != 1 ) { serr | "Incorrect index: expected" | 1 | "got" | this.last_val; } }105 or waitfor( call2 :this ) { sout | "Statement"; if( this.last_val != 2 ) { serr | "Incorrect index: expected" | 2 | "got" | this.last_val; } }106 or waitfor( call3 :this ) { sout | "Statement"; if( this.last_val != 3 ) { serr | "Incorrect index: expected" | 3 | "got" | this.last_val; } }107 or waitfor( call4 :this ) { sout | "Statement"; if( this.last_val != 4 ) { serr | "Incorrect index: expected" | 4 | "got" | this.last_val; } }108 or waitfor( call5 :this ) { sout | "Statement"; if( this.last_val != 5 ) { serr | "Incorrect index: expected" | 5 | "got" | this.last_val; } }109 or waitfor( call6 :this ) { sout | "Statement"; if( this.last_val != 6 ) { serr | "Incorrect index: expected" | 6 | "got" | this.last_val; } }110 or waitfor( call7 :this ) { sout | "Statement"; if( this.last_val != 7 ) { serr | "Incorrect index: expected" | 7 | "got" | this.last_val; } }103 waitfor( get_index, this ); 104 or waitfor( call1, this ) { sout | "Statement"; if( this.last_val != 1 ) { serr | "Incorrect index: expected" | 1 | "got" | this.last_val; } } 105 or waitfor( call2, this ) { sout | "Statement"; if( this.last_val != 2 ) { serr | "Incorrect index: expected" | 2 | "got" | this.last_val; } } 106 or waitfor( call3, this ) { sout | "Statement"; if( this.last_val != 3 ) { serr | "Incorrect index: expected" | 3 | "got" | this.last_val; } } 107 or waitfor( call4, this ) { sout | "Statement"; if( this.last_val != 4 ) { serr | "Incorrect index: expected" | 4 | "got" | this.last_val; } } 108 or waitfor( call5, this ) { sout | "Statement"; if( this.last_val != 5 ) { serr | "Incorrect index: expected" | 5 | "got" | this.last_val; } } 109 or waitfor( call6, this ) { sout | "Statement"; if( this.last_val != 6 ) { serr | "Incorrect index: expected" | 6 | "got" | this.last_val; } } 110 or waitfor( call7, this ) { sout | "Statement"; if( this.last_val != 7 ) { serr | "Incorrect index: expected" | 7 | "got" | this.last_val; } } 111 111 112 112 done = true; -
tests/concurrent/waitfor/when.cfa
r7030dab r71d6bd8 58 58 void arbiter( global_t & mutex this ) { 59 59 for( int i = 0; i < N; i++ ) { 60 when( this.last_call == 6 ) waitfor( call1 :this ) { if( this.last_call != 1) { serr | "Expected last_call to be 1 got" | this.last_call; } }61 or when( this.last_call == 1 ) waitfor( call2 :this ) { if( this.last_call != 2) { serr | "Expected last_call to be 2 got" | this.last_call; } }62 or when( this.last_call == 2 ) waitfor( call3 :this ) { if( this.last_call != 3) { serr | "Expected last_call to be 3 got" | this.last_call; } }63 or when( this.last_call == 3 ) waitfor( call4 :this ) { if( this.last_call != 4) { serr | "Expected last_call to be 4 got" | this.last_call; } }64 or when( this.last_call == 4 ) waitfor( call5 :this ) { if( this.last_call != 5) { serr | "Expected last_call to be 5 got" | this.last_call; } }65 or when( this.last_call == 5 ) waitfor( call6 :this ) { if( this.last_call != 6) { serr | "Expected last_call to be 6 got" | this.last_call; } }60 when( this.last_call == 6 ) waitfor( call1, this ) { if( this.last_call != 1) { serr | "Expected last_call to be 1 got" | this.last_call; } } 61 or when( this.last_call == 1 ) waitfor( call2, this ) { if( this.last_call != 2) { serr | "Expected last_call to be 2 got" | this.last_call; } } 62 or when( this.last_call == 2 ) waitfor( call3, this ) { if( this.last_call != 3) { serr | "Expected last_call to be 3 got" | this.last_call; } } 63 or when( this.last_call == 3 ) waitfor( call4, this ) { if( this.last_call != 4) { serr | "Expected last_call to be 4 got" | this.last_call; } } 64 or when( this.last_call == 4 ) waitfor( call5, this ) { if( this.last_call != 5) { serr | "Expected last_call to be 5 got" | this.last_call; } } 65 or when( this.last_call == 5 ) waitfor( call6, this ) { if( this.last_call != 6) { serr | "Expected last_call to be 6 got" | this.last_call; } } 66 66 67 67 sout | this.last_call; -
tests/coroutine/.expect/fmtLines.txt
r7030dab r71d6bd8 48 48 { // f or n ewli 49 49 ne c hara cter s su 50 spen d ; i f ( fmt.51 ch ! = '\ n' ) bre ak;52 // igno re n ewli ne53 } // f or so ut |54 fmt .ch; / / pr55 int char acte r } //56 for s out | " ";57 / / pr int bloc58 k se para tor } / / fo59 r s out | nl ;60 // pri nt g roup sep61 arat or } // for} //62 main void prt ( Fo rmat63 & f mt, char ch ) {64 f mt.c h = ch; r65 esum e( f mt ) ;} / / pr66 tint mai n() { Fo rmat67 fmt ; ch ar c h; f or (68 ;; ) { sin | c h;69 // r ead one70 char acte r if ( eof71 ( si n ) ) br eak;72 / / eo f ? prt ( fm73 t, c h ); } / / fo r} /74 / ma in// Loc al V aria75 bles : // // t ab-w idth76 : 4 //// com pile -com77 mand : "c fa f mtLi nes.78 cfa" /// / En d: //50 spen d(); if ( fm 51 t.ch != '\n' ) b reak 52 ; / / ig nore new line 53 } // for sout 54 | f mt.c h; // 55 prin t ch arac ter } 56 // f or sou t | " " 57 ; // prin t bl 58 ock sepa rato r } // 59 for sou t | nl; 60 // p rint gro up s 61 epar ator } / / fo r} / 62 / ma invo id p rt( Form 63 at & fmt , ch ar c h ) 64 { fmt .ch = ch ; 65 res ume( fmt );} // 66 prti nt m ain( ) { Form 67 at f mt; char ch; for 68 ( ; ; ) { s in | ch; 69 // rea d on 70 e ch arac ter if ( e 71 of( sin ) ) brea k; 72 // eof ? p rt( 73 fmt, ch ); } // for} 74 // main // L ocal Var 75 iabl es: //// tab -wid 76 th: 4 // // c ompi le-c 77 omma nd: "cfa fmt Line 78 s.cf a" / /// End: // -
tests/coroutine/.in/fmtLines.txt
r7030dab r71d6bd8 35 35 for ( fmt.b = 0; fmt.b < 4; fmt.b += 1 ) { // blocks of 4 characters 36 36 for ( ;; ) { // for newline characters 37 suspend ;37 suspend(); 38 38 if ( fmt.ch != '\n' ) break; // ignore newline 39 39 } // for -
tests/coroutine/cntparens.cfa
r7030dab r71d6bd8 1 // 1 // 2 2 // Cforall Version 1.0.0 Copyright (C) 2017 University of Waterloo 3 3 // 4 4 // The contents of this file are covered under the licence agreement in the 5 5 // file "LICENCE" distributed with Cforall. 6 // 6 // 7 7 // cntparens.cfa -- match left/right parenthesis 8 // 8 // 9 9 // Author : Peter A. Buhr 10 10 // Created On : Sat Apr 20 11:04:45 2019 … … 12 12 // Last Modified On : Sat Apr 20 11:06:21 2019 13 13 // Update Count : 1 14 // 14 // 15 15 16 16 #include <fstream.hfa> … … 26 26 void main( CntParens & cpns ) with( cpns ) { 27 27 for ( ; ch == '('; cnt += 1 ) { // left parenthesis 28 suspend ;28 suspend(); 29 29 } 30 30 for ( ; ch == ')' && cnt > 1; cnt -= 1 ) { // right parenthesis 31 suspend ;31 suspend(); 32 32 } 33 33 status = ch == ')' ? Match : Error; 34 34 } // main 35 35 36 36 void ?{}( CntParens & cpns ) with( cpns ) { status = Cont; cnt = 0; } 37 37 -
tests/coroutine/devicedriver.cfa
r7030dab r71d6bd8 1 // 1 // 2 2 // Cforall Version 1.0.0 Copyright (C) 2017 University of Waterloo 3 3 // 4 4 // The contents of this file are covered under the licence agreement in the 5 5 // file "LICENCE" distributed with Cforall. 6 // 7 // devicedriver.cfa -- 8 // 6 // 7 // devicedriver.cfa -- 8 // 9 9 // Author : Peter A. Buhr 10 10 // Created On : Sat Mar 16 15:30:34 2019 … … 12 12 // Last Modified On : Sat Apr 20 09:07:19 2019 13 13 // Update Count : 90 14 // 14 // 15 15 16 16 #include <fstream.hfa> … … 29 29 30 30 void checkCRC( Driver & d, unsigned int sum ) with( d ) { 31 suspend ;31 suspend(); 32 32 unsigned short int crc = byte << 8; // sign extension over written 33 suspend ;33 suspend(); 34 34 // prevent sign extension for signed char 35 35 status = (crc | (unsigned char)byte) == sum ? MSG : ECRC; … … 41 41 status = CONT; 42 42 unsigned int lnth = 0, sum = 0; 43 while ( byte != STX ) suspend ;43 while ( byte != STX ) suspend(); 44 44 emsg: for () { 45 suspend ;45 suspend(); 46 46 choose ( byte ) { // process byte 47 47 case STX: 48 status = ESTX; suspend ; continue msg;48 status = ESTX; suspend(); continue msg; 49 49 case ETX: 50 50 break emsg; 51 51 case ESC: 52 suspend ;52 suspend(); 53 53 } // choose 54 54 if ( lnth >= MaxMsg ) { // buffer full ? 55 status = ELNTH; suspend ; continue msg;55 status = ELNTH; suspend(); continue msg; 56 56 } // if 57 57 msg[lnth++] = byte; … … 60 60 msg[lnth] = '\0'; // terminate string 61 61 checkCRC( d, sum ); // refactor CRC check 62 suspend ;62 suspend(); 63 63 } // for 64 64 } // main -
tests/coroutine/fibonacci.cfa
r7030dab r71d6bd8 22 22 int fn1, fn2; // retained between resumes 23 23 fn = 0; fn1 = fn; // 1st case 24 suspend ; // restart last resume24 suspend(); // restart last resume 25 25 fn = 1; fn2 = fn1; fn1 = fn; // 2nd case 26 suspend ; // restart last resume26 suspend(); // restart last resume 27 27 for () { 28 28 fn = fn1 + fn2; fn2 = fn1; fn1 = fn; // general case 29 suspend ; // restart last resume29 suspend(); // restart last resume 30 30 } // for 31 31 } -
tests/coroutine/fibonacci_1.cfa
r7030dab r71d6bd8 12 12 // Last Modified On : Thu Mar 21 08:10:45 2019 13 13 // Update Count : 25 14 // 14 // 15 15 16 16 #include <fstream.hfa> … … 23 23 [fn1, fn] = [0, 1]; // precompute first two states 24 24 for () { 25 suspend ; // restart last resume25 suspend(); // restart last resume 26 26 [fn1, fn] = [fn, fn1 + fn]; // general case 27 27 } // for -
tests/coroutine/fmtLines.cfa
r7030dab r71d6bd8 27 27 for ( b = 0; b < 4; b += 1 ) { // blocks of 4 characters 28 28 for () { // for newline characters 29 suspend ;29 suspend(); 30 30 if ( ch != '\n' ) break; // ignore newline 31 31 } // for -
tests/coroutine/raii.cfa
r7030dab r71d6bd8 39 39 Raii raii = { "Coroutine" }; 40 40 sout | "Before Suspend"; 41 suspend ;41 suspend(); 42 42 sout | "After Suspend"; 43 43 } -
tests/coroutine/runningTotal.cfa
r7030dab r71d6bd8 25 25 void update( RunTotal & rntl, int input ) with( rntl ) { // helper 26 26 total += input; // remember between activations 27 suspend ; // inactivate on stack27 suspend(); // inactivate on stack 28 28 } 29 29 -
tests/coroutine/suspend_then.cfa
r7030dab r71d6bd8 15 15 16 16 #include <fstream.hfa> 17 #include <coroutine.hfa> 17 18 18 generator Fibonacci { 19 int fn; // used for communication 20 int fn1, fn2; // retained between resumes 21 }; 19 void then() { 20 sout | "Then!"; 21 } 22 23 coroutine Fibonacci { int fn; }; // used for communication 22 24 23 25 void main( Fibonacci & fib ) with( fib ) { // called on first resume 26 int fn1, fn2; // retained between resumes 24 27 fn = 0; fn1 = fn; // 1st case 25 suspend { sout | "Then!"; }// restart last resume28 suspend_then(then); // restart last resume 26 29 fn = 1; fn2 = fn1; fn1 = fn; // 2nd case 27 suspend { sout | "Then!"; }// restart last resume30 suspend_then(then); // restart last resume 28 31 for () { 29 32 fn = fn1 + fn2; fn2 = fn1; fn1 = fn; // general case 30 suspend { sout | "Then!"; }// restart last resume33 suspend_then(then); // restart last resume 31 34 } // for 32 35 } -
tests/expression.cfa
r7030dab r71d6bd8 1 struct S { int i; };2 void ?{}( S & s, int i ) { s.i = i; }3 int ?`mary( int );4 int ?`mary( S );5 [int] ?`mary( [int, int] );6 int & ?`jane( int & );7 int jack( int );8 9 1 int main() { 10 int a[3] = { 0, 0, 0 }; 11 S s = { 3 }, * ps = &s; 12 [int] t = { 3 }; 13 * [int] pt = &t; 14 int i = 1, j = 2; 2 struct s { int i; } x, *p = &x; 3 int i = 3; 15 4 16 5 // operators 17 6 18 ! i;7 ! i; 19 8 ~i; 20 9 +i; 21 10 -i; 22 *p s;23 ++p s;24 --p s;25 p s++;26 p s--;11 *p; 12 ++p; 13 --p; 14 p++; 15 p--; 27 16 28 i + j;29 i - j;30 i * j;17 i+i; 18 i-i; 19 i*i; 31 20 32 i / j;33 i % j;34 i ^ j;35 i & j;36 i | j;37 i < j;38 i > j;39 i = j;21 i/i; 22 i%i; 23 i^i; 24 i&i; 25 i|i; 26 i<i; 27 i>i; 28 i=i; 40 29 41 i == j; 42 i != j; 43 i << j; 44 i >> j; 45 i <= j; 46 i >= j; 47 i && j; 48 i || j; 49 ps->i; 30 i==i; 31 i!=i; 32 i<<i; 33 i>>i; 34 i<=i; 35 i>=i; 36 i&&i; 37 i||i; 38 p->i; 39 i*=i; 40 i/=i; 41 i%=i; 42 i+=i; 43 i-=i; 44 i&=i; 45 i|=i; 46 i^=i; 47 i<<=i; 48 i>>=i; 50 49 51 i *= j; 52 i /= j; 53 i %= j; 54 i += j; 55 i -= j; 56 i &= j; 57 i |= j; 58 i ^= j; 59 i <<= j; 60 i >>= j; 61 62 i ? i : j; 63 64 // postfix function call 65 66 (3 + 4)`mary; 67 ({3 + 4;})`mary; 68 [3, 4]`mary; 69 3`mary; 70 a[0]`mary; 71 a[0]`mary`mary; 72 s{0}`mary; 73 a[3]`jane++; 74 jack(3)`mary; 75 s.i`mary; 76 t.0`mary; 77 s.[i]`mary; 78 ps->i`mary; 79 pt->0`mary; 80 ps->[i]`mary; 81 i++`mary; 82 i--`mary; 83 (S){2}`mary; 84 (S)@{2}`mary; 50 i?i:i; 85 51 } // main -
tests/heap.cfa
r7030dab r71d6bd8 10 10 // Created On : Tue Nov 6 17:54:56 2018 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Sun Nov 24 12:34:51201913 // Update Count : 2812 // Last Modified On : Fri Jul 19 08:22:34 2019 13 // Update Count : 19 14 14 // 15 15 … … 38 38 enum { NoOfAllocs = 5000, NoOfMmaps = 10 }; 39 39 char * locns[NoOfAllocs]; 40 size_t amount; 41 enum { limit = 64 * 1024 }; // check alignments up to here 40 int i; 42 41 43 42 // check alloc/free … … 75 74 size_t s = (i + 1) * 20; 76 75 char * area = (char *)malloc( s ); 77 if ( area == 0 p) abort( "malloc/free out of memory" );76 if ( area == 0 ) abort( "malloc/free out of memory" ); 78 77 area[0] = '\345'; area[s - 1] = '\345'; // fill first/last 79 78 area[malloc_usable_size( area ) - 1] = '\345'; // fill ultimate byte … … 84 83 size_t s = i + 1; // +1 to make initialization simpler 85 84 locns[i] = (char *)malloc( s ); 86 if ( locns[i] == 0 p) abort( "malloc/free out of memory" );85 if ( locns[i] == 0 ) abort( "malloc/free out of memory" ); 87 86 locns[i][0] = '\345'; locns[i][s - 1] = '\345'; // fill first/last 88 87 locns[i][malloc_usable_size( locns[i] ) - 1] = '\345'; // fill ultimate byte … … 100 99 size_t s = i + default_mmap_start(); // cross over point 101 100 char * area = (char *)malloc( s ); 102 if ( area == 0 p) abort( "malloc/free out of memory" );101 if ( area == 0 ) abort( "malloc/free out of memory" ); 103 102 area[0] = '\345'; area[s - 1] = '\345'; // fill first/last 104 103 area[malloc_usable_size( area ) - 1] = '\345'; // fill ultimate byte … … 109 108 size_t s = i + default_mmap_start(); // cross over point 110 109 locns[i] = (char *)malloc( s ); 111 if ( locns[i] == 0 p) abort( "malloc/free out of memory" );110 if ( locns[i] == 0 ) abort( "malloc/free out of memory" ); 112 111 locns[i][0] = '\345'; locns[i][s - 1] = '\345'; // fill first/last 113 112 locns[i][malloc_usable_size( locns[i] ) - 1] = '\345'; // fill ultimate byte … … 125 124 size_t s = (i + 1) * 20; 126 125 char * area = (char *)calloc( 5, s ); 127 if ( area == 0 p) abort( "calloc/free out of memory" );126 if ( area == 0 ) abort( "calloc/free out of memory" ); 128 127 if ( area[0] != '\0' || area[s - 1] != '\0' || 129 128 area[malloc_usable_size( area ) - 1] != '\0' || … … 137 136 size_t s = i + 1; 138 137 locns[i] = (char *)calloc( 5, s ); 139 if ( locns[i] == 0 p) abort( "calloc/free out of memory" );138 if ( locns[i] == 0 ) abort( "calloc/free out of memory" ); 140 139 if ( locns[i][0] != '\0' || locns[i][s - 1] != '\0' || 141 140 locns[i][malloc_usable_size( locns[i] ) - 1] != '\0' || … … 156 155 size_t s = i + default_mmap_start(); // cross over point 157 156 char * area = (char *)calloc( 1, s ); 158 if ( area == 0 p) abort( "calloc/free out of memory" );157 if ( area == 0 ) abort( "calloc/free out of memory" ); 159 158 if ( area[0] != '\0' || area[s - 1] != '\0' ) abort( "calloc/free corrupt storage4.1" ); 160 159 if ( area[malloc_usable_size( area ) - 1] != '\0' ) abort( "calloc/free corrupt storage4.2" ); … … 168 167 size_t s = i + default_mmap_start(); // cross over point 169 168 locns[i] = (char *)calloc( 1, s ); 170 if ( locns[i] == 0 p) abort( "calloc/free out of memory" );169 if ( locns[i] == 0 ) abort( "calloc/free out of memory" ); 171 170 if ( locns[i][0] != '\0' || locns[i][s - 1] != '\0' || 172 171 locns[i][malloc_usable_size( locns[i] ) - 1] != '\0' || … … 184 183 // check memalign/free (sbrk) 185 184 185 enum { limit = 64 * 1024 }; // check alignments up to here 186 186 187 for ( a; libAlign() ~= limit ~ a ) { // generate powers of 2 187 188 //sout | alignments[a]; 188 189 for ( s; 1 ~ NoOfAllocs ) { // allocation of size 0 can return null 189 190 char * area = (char *)memalign( a, s ); 190 if ( area == 0 p) abort( "memalign/free out of memory" );191 //sout | i | area;191 if ( area == 0 ) abort( "memalign/free out of memory" ); 192 //sout | i | " " | area; 192 193 if ( (size_t)area % a != 0 || malloc_alignment( area ) != a ) { // check for initial alignment 193 194 abort( "memalign/free bad alignment : memalign(%d,%d) = %p", (int)a, s, area ); 194 195 } // if 195 area[0] = '\345'; area[s - 1] = '\345'; 196 area[0] = '\345'; area[s - 1] = '\345'; // fill first/last byte 196 197 area[malloc_usable_size( area ) - 1] = '\345'; // fill ultimate byte 197 198 free( area ); … … 206 207 size_t s = i + default_mmap_start(); // cross over point 207 208 char * area = (char *)memalign( a, s ); 208 if ( area == 0 p) abort( "memalign/free out of memory" );209 //sout | i | area;209 if ( area == 0 ) abort( "memalign/free out of memory" ); 210 //sout | i | " " | area; 210 211 if ( (size_t)area % a != 0 || malloc_alignment( area ) != a ) { // check for initial alignment 211 212 abort( "memalign/free bad alignment : memalign(%d,%d) = %p", (int)a, (int)s, area ); … … 222 223 // initial N byte allocation 223 224 char * area = (char *)calloc( 5, i ); 224 if ( area == 0 p) abort( "calloc/realloc/free out of memory" );225 if ( area == 0 ) abort( "calloc/realloc/free out of memory" ); 225 226 if ( area[0] != '\0' || area[i - 1] != '\0' || 226 227 area[malloc_usable_size( area ) - 1] != '\0' || … … 230 231 for ( s; i ~ 256 * 1024 ~ 26 ) { // start at initial memory request 231 232 area = (char *)realloc( area, s ); // attempt to reuse storage 232 if ( area == 0 p) abort( "calloc/realloc/free out of memory" );233 if ( area == 0 ) abort( "calloc/realloc/free out of memory" ); 233 234 if ( area[0] != '\0' || area[s - 1] != '\0' || 234 235 area[malloc_usable_size( area ) - 1] != '\0' || … … 244 245 size_t s = i + default_mmap_start(); // cross over point 245 246 char * area = (char *)calloc( 1, s ); 246 if ( area == 0 p) abort( "calloc/realloc/free out of memory" );247 if ( area == 0 ) abort( "calloc/realloc/free out of memory" ); 247 248 if ( area[0] != '\0' || area[s - 1] != '\0' || 248 249 area[malloc_usable_size( area ) - 1] != '\0' || … … 252 253 for ( r; i ~ 256 * 1024 ~ 26 ) { // start at initial memory request 253 254 area = (char *)realloc( area, r ); // attempt to reuse storage 254 if ( area == 0 p) abort( "calloc/realloc/free out of memory" );255 if ( area == 0 ) abort( "calloc/realloc/free out of memory" ); 255 256 if ( area[0] != '\0' || area[r - 1] != '\0' || 256 257 area[malloc_usable_size( area ) - 1] != '\0' || … … 262 263 // check memalign/realloc/free 263 264 264 amount = 2;265 size_t amount = 2; 265 266 for ( a; libAlign() ~= limit ~ a ) { // generate powers of 2 266 267 // initial N byte allocation 267 268 char * area = (char *)memalign( a, amount ); // aligned N-byte allocation 268 if ( area == 0 p) abort( "memalign/realloc/free out of memory" ); // no storage ?269 //sout | alignments[a] | area;269 if ( area == 0 ) abort( "memalign/realloc/free out of memory" ); // no storage ? 270 //sout | alignments[a] | " " | area; 270 271 if ( (size_t)area % a != 0 || malloc_alignment( area ) != a ) { // check for initial alignment 271 272 abort( "memalign/realloc/free bad alignment : memalign(%d,%d) = %p", (int)a, (int)amount, area ); … … 277 278 if ( area[0] != '\345' || area[s - 2] != '\345' ) abort( "memalign/realloc/free corrupt storage" ); 278 279 area = (char *)realloc( area, s ); // attempt to reuse storage 279 if ( area == 0 p) abort( "memalign/realloc/free out of memory" ); // no storage ?280 //sout | i | area;280 if ( area == 0 ) abort( "memalign/realloc/free out of memory" ); // no storage ? 281 //sout | i | " " | area; 281 282 if ( (size_t)area % a != 0 ) { // check for initial alignment 282 283 abort( "memalign/realloc/free bad alignment %p", area ); … … 293 294 for ( s; 1 ~ limit ) { // allocation of size 0 can return null 294 295 char * area = (char *)cmemalign( a, 1, s ); 295 if ( area == 0 p) abort( "cmemalign/free out of memory" );296 //sout | i | area;296 if ( area == 0 ) abort( "cmemalign/free out of memory" ); 297 //sout | i | " " | area; 297 298 if ( (size_t)area % a != 0 || malloc_alignment( area ) != a ) { // check for initial alignment 298 299 abort( "cmemalign/free bad alignment : cmemalign(%d,%d) = %p", (int)a, s, area ); … … 312 313 // initial N byte allocation 313 314 char * area = (char *)cmemalign( a, 1, amount ); // aligned N-byte allocation 314 if ( area == 0 p) abort( "cmemalign/realloc/free out of memory" ); // no storage ?315 //sout | alignments[a] | area;315 if ( area == 0 ) abort( "cmemalign/realloc/free out of memory" ); // no storage ? 316 //sout | alignments[a] | " " | area; 316 317 if ( (size_t)area % a != 0 || malloc_alignment( area ) != a ) { // check for initial alignment 317 318 abort( "cmemalign/realloc/free bad alignment : cmemalign(%d,%d) = %p", (int)a, (int)amount, area ); … … 326 327 if ( area[0] != '\345' || area[s - 2] != '\345' ) abort( "cmemalign/realloc/free corrupt storage2" ); 327 328 area = (char *)realloc( area, s ); // attempt to reuse storage 328 if ( area == 0 p) abort( "cmemalign/realloc/free out of memory" ); // no storage ?329 //sout | i | area;329 if ( area == 0 ) abort( "cmemalign/realloc/free out of memory" ); // no storage ? 330 //sout | i | " " | area; 330 331 if ( (size_t)area % a != 0 || malloc_alignment( area ) != a ) { // check for initial alignment 331 332 abort( "cmemalign/realloc/free bad alignment %p", area ); … … 338 339 free( area ); 339 340 } // for 340 341 // check memalign/realloc with align/free342 343 amount = 2;344 for ( a; libAlign() ~= limit ~ a ) { // generate powers of 2345 // initial N byte allocation346 char * area = (char *)memalign( a, amount ); // aligned N-byte allocation347 if ( area == 0p ) abort( "memalign/realloc with align/free out of memory" ); // no storage ?348 //sout | alignments[a] | area | endl;349 if ( (size_t)area % a != 0 || malloc_alignment( area ) != a ) { // check for initial alignment350 abort( "memalign/realloc with align/free bad alignment : memalign(%d,%d) = %p", (int)a, (int)amount, area );351 } // if352 area[0] = '\345'; area[amount - 2] = '\345'; // fill first/penultimate byte353 354 // Do not start this loop index at 0 because realloc of 0 bytes frees the storage.355 for ( s; amount ~ 256 * 1024 ) { // start at initial memory request356 if ( area[0] != '\345' || area[s - 2] != '\345' ) abort( "memalign/realloc/free corrupt storage" );357 area = (char *)realloc( area, a * 2, s ); // attempt to reuse storage358 if ( area == 0p ) abort( "memalign/realloc with align/free out of memory" ); // no storage ?359 //sout | i | area | endl;360 if ( (size_t)area % a * 2 != 0 ) { // check for initial alignment361 abort( "memalign/realloc with align/free bad alignment %p", area );362 } // if363 area[s - 1] = '\345'; // fill last byte364 } // for365 free( area );366 } // for367 368 // check cmemalign/realloc with align/free369 370 amount = 2;371 for ( size_t a = libAlign() + libAlign(); a <= limit; a += a ) { // generate powers of 2372 // initial N byte allocation373 char *area = (char *)cmemalign( a, 1, amount ); // aligned N-byte allocation374 if ( area == 0p ) abort( "cmemalign/realloc with align/free out of memory" ); // no storage ?375 //sout | alignments[a] | area | endl;376 if ( (size_t)area % a != 0 || malloc_alignment( area ) != a ) { // check for initial alignment377 abort( "cmemalign/realloc with align/free bad alignment : cmemalign(%d,%d) = %p", (int)a, (int)amount, area );378 } // if379 if ( area[0] != '\0' || area[amount - 1] != '\0' ||380 area[malloc_usable_size( area ) - 1] != '\0' ||381 ! malloc_zero_fill( area ) ) abort( "cmemalign/realloc with align/free corrupt storage1" );382 area[0] = '\345'; area[amount - 2] = '\345'; // fill first/penultimate byte383 384 // Do not start this loop index at 0 because realloc of 0 bytes frees the storage.385 for ( int s = amount; s < 256 * 1024; s += 1 ) { // start at initial memory request386 if ( area[0] != '\345' || area[s - 2] != '\345' ) abort( "cmemalign/realloc with align/free corrupt storage2" );387 area = (char *)realloc( area, a * 2, s ); // attempt to reuse storage388 if ( area == 0p ) abort( "cmemalign/realloc with align/free out of memory" ); // no storage ?389 //sout | i | area | endl;390 if ( (size_t)area % a * 2 != 0 || malloc_alignment( area ) != a * 2 ) { // check for initial alignment391 abort( "cmemalign/realloc with align/free bad alignment %p %jd %jd", area, malloc_alignment( area ), a * 2 );392 } // if393 if ( area[s - 1] != '\0' || area[s - 1] != '\0' ||394 area[malloc_usable_size( area ) - 1] != '\0' ||395 ! malloc_zero_fill( area ) ) abort( "cmemalign/realloc/free corrupt storage3" );396 area[s - 1] = '\345'; // fill last byte397 } // for398 free( area );399 } // for400 401 341 //sout | "worker" | thisTask() | "successful completion"; 402 342 } // Worker main -
tests/labelledExit.cfa
r7030dab r71d6bd8 10 10 // Created On : Wed Aug 10 07:29:39 2016 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Wed Feb 5 16:49:48 202013 // Update Count : 912 // Last Modified On : Fri Oct 25 17:41:51 2019 13 // Update Count : 7 14 14 // 15 15 … … 162 162 163 163 // computed goto 164 {165 void *array[] = { &&foo, &&bar, &&hack };166 foo: bar: hack:167 &&foo;168 &&bar;169 goto *array[i];170 }164 // { 165 // void *array[] = { &&foo, &&bar, &&hack }; 166 // foo: bar: hack: 167 // &&foo; 168 // &&bar; 169 // goto *array[i]; 170 // } 171 171 172 172 Q: if ( i > 5 ) { -
tests/linking/withthreads.cfa
r7030dab r71d6bd8 34 34 // Local Variables: // 35 35 // tab-width: 4 // 36 // compile-command: "cfa withthreads.cfa" //36 // compile-command: "cfa nothreads.cfa" // 37 37 // End: // -
tests/loopctrl.cfa
r7030dab r71d6bd8 10 10 // Created On : Wed Aug 8 18:32:59 2018 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Thu Dec 12 17:55:26201913 // Update Count : 10 812 // Last Modified On : Fri Jul 12 12:05:05 2019 13 // Update Count : 106 14 14 // 15 15 … … 43 43 for ( 1 ) { sout | "A"; } sout | nl; 44 44 for ( 10 ) { sout | "A"; } sout | nl; 45 for ( = 10 ) { sout | "A"; } sout | nl;46 45 for ( 1 ~= 10 ~ 2 ) { sout | "B"; } sout | nl; 47 46 for ( 10 -~= 1 ~ 2 ) { sout | "C"; } sout | nl; … … 50 49 51 50 for ( i; 10 ) { sout | i; } sout | nl; 52 for ( i; = 10 ) { sout | i; } sout | nl;53 51 for ( i; 1 ~= 10 ~ 2 ) { sout | i; } sout | nl; 54 52 for ( i; 10 -~= 1 ~ 2 ) { sout | i; } sout | nl; … … 89 87 for ( N ) { sout | "N"; } sout | nl; 90 88 for ( i; N ) { sout | i; } sout | nl; 91 for ( i; = N ) { sout | i; } sout | nl;92 89 for ( i; N -~ 0 ) { sout | i; } sout | nl | nl; 93 90 -
tests/nested-types.cfa
r7030dab r71d6bd8 10 10 // Created On : Mon Jul 9 10:20:03 2018 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Wed Feb 12 18:21:15 202013 // Update Count : 312 // Last Modified On : Tue Nov 6 17:59:40 2018 13 // Update Count : 2 14 14 // 15 15 … … 50 50 // double d; 51 51 // }; 52 53 // struct S {54 // enum C { R, G, B };55 // int i;56 // struct T {57 // int i;58 // };59 // T t;60 // };61 62 // S s;63 // S.C c;64 // S.T t;65 52 66 53 int main() { -
tests/pybin/settings.py
r7030dab r71d6bd8 77 77 print("updated to %s" % self.target) 78 78 79 def filter(self, tests): 80 return [test for test in tests if not test.arch or self.target == test.arch] 79 def match(self, arch): 81 80 return True if not arch else self.target == arch 82 81 … … 114 113 115 114 def init( options ): 116 global all_arch117 global all_debug118 global all_install119 115 global arch 120 116 global archive 121 global continue_122 117 global debug 118 global distcc 123 119 global dry_run 124 120 global generating … … 127 123 global output_width 128 124 global timeout 129 global timeout2gdb130 125 131 all_arch = [Architecture(o) for o in list(dict.fromkeys(options.arch ))] 132 all_debug = [Debug(o) for o in list(dict.fromkeys(options.debug ))] 133 all_install = [Install(o) for o in list(dict.fromkeys(options.install))] 126 arch = Architecture(options.arch) 134 127 archive = os.path.abspath(os.path.join(original_path, options.archive_errors)) if options.archive_errors else None 135 continue_ = options.continue_128 debug = Debug(options.debug) 136 129 dry_run = options.dry_run # must be called before tools.config_hash() 130 distcc = "DISTCC_CFA_PATH=~/.cfadistcc/%s/cfa" % tools.config_hash() 137 131 generating = options.regenerate_expected 132 install = Install(options.install) 138 133 make = ['make'] 139 134 output_width = 24 140 135 timeout = Timeouts(options.timeout, options.global_timeout) 141 timeout2gdb = options.timeout_with_gdb142 136 143 137 # if we distribute, distcc errors will fail tests, use log file for distcc … … 152 146 153 147 def validate(): 154 """Validate the current configuration and update globals"""155 156 global distcc157 distcc = "DISTCC_CFA_PATH=~/.cfadistcc/%s/cfa" % tools.config_hash()158 148 errf = os.path.join(BUILDDIR, ".validate.err") 159 149 make_ret, out = tools.make( ".validate", error_file = errf, output_file=subprocess.DEVNULL, error=subprocess.DEVNULL ) -
tests/pybin/tools.py
r7030dab r71d6bd8 75 75 return proc.returncode, out.decode("utf-8") if out else None 76 76 except subprocess.TimeoutExpired: 77 if settings.timeout2gdb: 78 print("Process {} timeout".format(proc.pid)) 79 proc.communicate() 80 return 124, str(None) 81 else: 82 proc.send_signal(signal.SIGABRT) 83 proc.communicate() 84 return 124, str(None) 77 proc.send_signal(signal.SIGABRT) 78 proc.communicate() 79 return 124, str(None) 85 80 86 81 except Exception as ex: … … 180 175 181 176 def which(program): 182 fpath, fname = os.path.split(program) 183 if fpath: 184 if is_exe(program): 185 return program 186 else: 187 for path in os.environ["PATH"].split(os.pathsep): 188 exe_file = os.path.join(path, program) 189 if is_exe(exe_file): 190 return exe_file 191 return None 177 fpath, fname = os.path.split(program) 178 if fpath: 179 if is_exe(program): 180 return program 181 else: 182 for path in os.environ["PATH"].split(os.pathsep): 183 exe_file = os.path.join(path, program) 184 if is_exe(exe_file): 185 return exe_file 186 187 return None 192 188 193 189 @contextlib.contextmanager … … 327 323 raise argparse.ArgumentTypeError(msg) 328 324 329 # Convert a function that converts a string to one that converts comma separated string.330 def comma_separated(elements):331 return lambda string: [elements(part) for part in string.split(',')]332 333 325 def fancy_print(text): 334 326 column = which('column') … … 373 365 374 366 class Timed: 375 376 377 378 379 380 381 367 def __enter__(self): 368 self.start = time.time() 369 return self 370 371 def __exit__(self, *args): 372 self.end = time.time() 373 self.duration = self.end - self.start 382 374 383 375 def timed(src, timeout): 384 376 expire = time.time() + timeout 385 377 i = iter(src) 386 with contextlib.suppress(StopIteration): 387 while True: 388 yield i.next(max(expire - time.time(), 0)) 378 while True: 379 yield i.next(max(expire - time.time(), 0)) -
tests/quotedKeyword.cfa
r7030dab r71d6bd8 10 10 // Created On : Wed May 27 17:56:53 2015 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Fri Feb 7 19:07:07 202013 // Update Count : 2 512 // Last Modified On : Tue Dec 4 21:45:53 2018 13 // Update Count : 23 14 14 // 15 15 … … 17 17 18 18 struct { 19 int ` `otype;20 int ` `struct;19 int `otype`; 20 int `struct`; 21 21 } st = { 10, 10 }; 22 22 23 typedef int ` `forall;24 ` `forallxxx = 10;23 typedef int `forall`; 24 `forall` xxx = 10; 25 25 26 int ` `_Alignas, ``_Alignof, ``__alignof, ``__alignof__, ``asm, ``__asm, ``__asm__, ``_At, ``_Atomic, ``__attribute,27 ` `__attribute__, ``auto, ``_Bool, ``break, ``case, ``catch, ``catchResume, ``char, ``choose, ``_Complex, ``__complex,28 ` `__complex__, ``const, ``__const, ``__const__, ``continue, ``default, ``disable, ``do, ``double, ``dtype, ``else,29 ` `enable, ``enum, ``__extension__, ``extern, ``fallthru, ``finally, ``float, ``__float128, ``for, ``forall, ``fortran,30 ` `ftype, ``_Generic, ``goto, ``if, ``_Imaginary, ``__imag, ``__imag__, ``inline, ``__inline, ``__inline__, ``int,31 ` `__int128, ``__label__, ``long, ``lvalue, ``_Noreturn, ``__builtin_offsetof, ``otype, ``register, ``restrict,32 ` `__restrict, ``__restrict__, ``return, ``short, ``signed, ``__signed, ``__signed__, ``sizeof, ``static,33 ` `_Static_assert, ``struct, ``switch, ``_Thread_local, ``throw, ``throwResume, ``trait, ``try, ``typedef,34 ` `typeof, ``__typeof, ``__typeof__, ``union, ``unsigned, ``__builtin_va_list, ``void, ``volatile, ``__volatile,35 ` `__volatile__, ``while;26 int `_Alignas`, `_Alignof`, `__alignof`, `__alignof__`, `asm`, `__asm`, `__asm__`, `_At`, `_Atomic`, `__attribute`, 27 `__attribute__`, `auto`, `_Bool`, `break`, `case`, `catch`, `catchResume`, `char`, `choose`, `_Complex`, `__complex`, 28 `__complex__`, `const`, `__const`, `__const__`, `continue`, `default`, `disable`, `do`, `double`, `dtype`, `else`, 29 `enable`, `enum`, `__extension__`, `extern`, `fallthru`, `finally`, `float`, `__float128`, `for`, `forall`, `fortran`, 30 `ftype`, `_Generic`, `goto`, `if`, `_Imaginary`, `__imag`, `__imag__`, `inline`, `__inline`, `__inline__`, `int`, 31 `__int128`, `__label__`, `long`, `lvalue`, `_Noreturn`, `__builtin_offsetof`, `otype`, `register`, `restrict`, 32 `__restrict`, `__restrict__`, `return`, `short`, `signed`, `__signed`, `__signed__`, `sizeof`, `static`, 33 `_Static_assert`, `struct`, `switch`, `_Thread_local`, `throw`, `throwResume`, `trait`, `try`, `typedef`, 34 `typeof`, `__typeof`, `__typeof__`, `union`, `unsigned`, `__builtin_va_list`, `void`, `volatile`, `__volatile`, 35 `__volatile__`, `while`; 36 36 37 37 int main() { 38 int ` `if= 0;39 ` `catch= 1;40 st.` `otype= 2;41 st.` `struct= 3;42 ` `throw= 4;43 sout | ` `catch + st.``otype + st.``struct + ``throw;38 int `if` = 0; 39 `catch` = 1; 40 st.`otype` = 2; 41 st.`struct` = 3; 42 `throw` = 4; 43 sout | `catch` + st.`otype` + st.`struct` + `throw`; 44 44 } 45 45 -
tests/raii/dtor-early-exit.cfa
r7030dab r71d6bd8 217 217 } 218 218 219 void i() {220 // potential loop221 for() {222 if(true) continue;223 int t = 0;224 }225 }226 227 219 // TODO: implement __label__ and uncomment these lines 228 220 void computedGoto() { -
tests/rational.cfa
r7030dab r71d6bd8 10 10 // Created On : Mon Mar 28 08:43:12 2016 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Sat Feb 8 18:46:23 202013 // Update Count : 8 612 // Last Modified On : Wed Mar 27 07:37:17 2019 13 // Update Count : 80 14 14 // 15 15 … … 19 19 #include <fstream.hfa> 20 20 21 typedef Rational(int) RatInt; 22 double convert( int i ) { return (double)i; } // used by narrow/widen 21 double convert( int i ) { return (double)i; } 23 22 int convert( double d ) { return (int)d; } 24 23 25 24 int main() { 26 25 sout | "constructor"; 27 Rat Int a = { 3 }, b = { 4 }, c, d = 0, e = 1;28 sout | a | b | c | d | e;26 Rational(int) a = { 3 }, b = { 4 }, c; 27 sout | a | b | c; 29 28 30 a = (Rat Int){ 4, 8 };31 b = (Rat Int){ 5, 7 };29 a = (Rational(int)){ 4, 8 }; 30 b = (Rational(int)){ 5, 7 }; 32 31 sout | a | b; 33 a = (Rat Int){ -2, -3 };34 b = (Rat Int){ 3, -2 };32 a = (Rational(int)){ -2, -3 }; 33 b = (Rational(int)){ 3, -2 }; 35 34 sout | a | b; 36 a = (Rat Int){ -2, 3 };37 b = (Rat Int){ 3, 2 };35 a = (Rational(int)){ -2, 3 }; 36 b = (Rational(int)){ 3, 2 }; 38 37 sout | a | b; 39 38 40 39 sout | "logical"; 41 a = (Rat Int){ -2 };42 b = (Rat Int){ -3, 2 };40 a = (Rational(int)){ -2 }; 41 b = (Rational(int)){ -3, 2 }; 43 42 sout | a | b; 44 43 // sout | a == 1; // FIX ME … … 59 58 60 59 sout | "conversion"; 61 a = (Rat Int){ 3, 4 };60 a = (Rational(int)){ 3, 4 }; 62 61 sout | widen( a ); 63 a = (Rat Int){ 1, 7 };62 a = (Rational(int)){ 1, 7 }; 64 63 sout | widen( a ); 65 a = (Rat Int){ 355, 113 };64 a = (Rational(int)){ 355, 113 }; 66 65 sout | widen( a ); 67 66 sout | narrow( 0.75, 4 ); … … 75 74 76 75 sout | "more tests"; 77 Rat Intx = { 1, 2 }, y = { 2 };76 Rational(int) x = { 1, 2 }, y = { 2 }; 78 77 sout | x - y; 79 78 sout | x > y; … … 81 80 sout | y | denominator( y, -2 ) | y; 82 81 83 Rat Intz = { 0, 5 };82 Rational(int) z = { 0, 5 }; 84 83 sout | z; 85 84 86 85 sout | x | numerator( x, 0 ) | x; 87 86 88 x = (Rat Int){ 1, MAX } + (RatInt){ 1, MAX };87 x = (Rational(int)){ 1, MAX } + (Rational(int)){ 1, MAX }; 89 88 sout | x; 90 x = (Rat Int){ 3, MAX } + (RatInt){ 2, MAX };89 x = (Rational(int)){ 3, MAX } + (Rational(int)){ 2, MAX }; 91 90 sout | x; 92 91 -
tests/references.cfa
r7030dab r71d6bd8 119 119 f( 3, a + b, (S){ 1.0, 7.0 }, (int [3]){ 1, 2, 3 } ); // two rvalue to reference 120 120 } 121 122 {123 int a = 3;124 int *p = &a;125 asm (126 "incl %[p]\n\t"127 : [p] "+m" (*p)128 );129 printf("%d\n", a);130 }131 121 } 132 122 -
tests/test.py
r7030dab r71d6bd8 6 6 7 7 import argparse 8 import itertools9 8 import re 10 9 import sys 11 10 import tempfile 12 11 import time 13 14 import os15 import psutil16 import signal17 12 18 13 ################################################################################ … … 30 25 test.path = match.group(1) 31 26 test.arch = match.group(3)[1:] if match.group(3) else None 32 expected.append(test) 27 if settings.arch.match(test.arch): 28 expected.append(test) 33 29 34 30 path_walk( match_test ) … … 52 48 x.target().startswith( tuple(excludes) ) 53 49 ] 54 55 # sort the test alphabetically for convenience56 test_list.sort(key=lambda t: ('~' if t.arch else '') + t.target() + (t.arch if t.arch else ''))57 50 58 51 return test_list … … 79 72 80 73 if test : 81 tests. extend( test)74 tests.append( test[0] ) 82 75 else : 83 76 print('ERROR: No expected file for test %s, ignoring it' % testname, file=sys.stderr) … … 89 82 # create a parser with the arguments for the tests script 90 83 parser = argparse.ArgumentParser(description='Script which runs cforall tests') 91 parser.add_argument('--debug', help='Run all tests in debug or release', type=comma_separated(yes_no), default='yes') 92 parser.add_argument('--install', help='Run all tests based on installed binaries or tree binaries', type=comma_separated(yes_no), default='no') 93 parser.add_argument('--arch', help='Test for specific architecture', type=comma_separated(str), default='') 94 parser.add_argument('--continue', help='When multiple specifications are passed (debug/install/arch), sets whether or not to continue if the last specification failed', type=yes_no, default='yes', dest='continue_') 84 parser.add_argument('--debug', help='Run all tests in debug or release', type=yes_no, default='yes') 85 parser.add_argument('--install', help='Run all tests based on installed binaries or tree binaries', type=yes_no, default='no') 86 parser.add_argument('--arch', help='Test for specific architecture', type=str, default='') 95 87 parser.add_argument('--timeout', help='Maximum duration in seconds after a single test is considered to have timed out', type=int, default=60) 96 88 parser.add_argument('--global-timeout', help='Maximum cumulative duration in seconds after the ALL tests are considered to have timed out', type=int, default=7200) 97 parser.add_argument('--timeout-with-gdb', help='Instead of killing the command when it times out, orphan it and print process id to allow gdb to attach', type=yes_no, default="no")98 89 parser.add_argument('--dry-run', help='Don\'t run the tests, only output the commands', action='store_true') 99 90 parser.add_argument('--list', help='List all test available', action='store_true') … … 157 148 # run everything in a temp directory to make sure core file are handled properly 158 149 with tempdir(): 159 # if the make command succe eds continue otherwise skip to diff150 # if the make command succeds continue otherwise skip to diff 160 151 if success(make_ret): 161 152 with Timed() as run_dur: … … 230 221 make('clean', output_file=subprocess.DEVNULL, error=subprocess.DEVNULL) 231 222 232 # since python prints stacks by default on a interrupt, redo the interrupt handling to be silent233 def worker_init():234 def sig_int(signal_num, frame):235 pass236 237 signal.signal(signal.SIGINT, sig_int)238 239 223 # create the executor for our jobs and handle the signal properly 240 pool = multiprocessing.Pool(jobs , worker_init)224 pool = multiprocessing.Pool(jobs) 241 225 242 226 failed = False 243 244 def stop(x, y):245 print("Tests interrupted by user", file=sys.stderr)246 sys.exit(1)247 signal.signal(signal.SIGINT, stop)248 227 249 228 # for each test to run … … 283 262 make('clean', output_file=subprocess.DEVNULL, error=subprocess.DEVNULL) 284 263 285 return failed264 return 1 if failed else 0 286 265 287 266 … … 297 276 settings.init( options ) 298 277 278 # fetch the liest of all valid tests 279 all_tests = list_tests( options.include, options.exclude ) 280 281 282 # if user wants all tests than no other treatement of the test list is required 283 if options.all or options.list or options.list_comp or options.include : 284 tests = all_tests 285 286 #otherwise we need to validate that the test list that was entered is valid 287 else : 288 tests = valid_tests( options ) 289 290 # make sure we have at least some test to run 291 if not tests : 292 print('ERROR: No valid test to run', file=sys.stderr) 293 sys.exit(1) 294 295 296 # sort the test alphabetically for convenience 297 tests.sort(key=lambda t: (t.arch if t.arch else '') + t.target()) 298 299 299 # users may want to simply list the tests 300 300 if options.list_comp : 301 # fetch the liest of all valid tests 302 tests = list_tests( None, None ) 303 304 # print the possible options 305 print("-h --help --debug --dry-run --list --arch --all --regenerate-expected --archive-errors --install --timeout --global-timeout --timeout-with-gdb -j --jobs -I --include -E --exclude --continue ", end='') 301 print("-h --help --debug --dry-run --list --arch --all --regenerate-expected --archive-errors --install --timeout --global-timeout -j --jobs ", end='') 306 302 print(" ".join(map(lambda t: "%s" % (t.target()), tests))) 307 303 308 304 elif options.list : 309 # fetch the liest of all valid tests 310 tests = list_tests( options.include, options.exclude ) 311 312 # print the available tests 305 print("Listing for %s:%s"% (settings.arch.string, settings.debug.string)) 313 306 fancy_print("\n".join(map(lambda t: t.toString(), tests))) 314 307 315 308 else : 316 # fetch the liest of all valid tests 317 all_tests = list_tests( options.include, options.exclude ) 318 319 # if user wants all tests than no other treatement of the test list is required 320 if options.all or options.include : 321 tests = all_tests 322 323 #otherwise we need to validate that the test list that was entered is valid 324 else : 325 tests = valid_tests( options ) 326 327 # make sure we have at least some test to run 328 if not tests : 329 print('ERROR: No valid test to run', file=sys.stderr) 330 sys.exit(1) 331 332 # prep invariants 309 # check the build configuration works 333 310 settings.prep_output(tests) 334 failed = 0 335 336 # for each build configurations, run the test 337 for arch, debug, install in itertools.product(settings.all_arch, settings.all_debug, settings.all_install): 338 settings.arch = arch 339 settings.debug = debug 340 settings.install = install 341 342 # filter out the tests for a different architecture 343 # tests are the same across debug/install 344 local_tests = settings.arch.filter( tests ) 345 options.jobs, forceJobs = job_count( options, local_tests ) 346 settings.update_make_cmd(forceJobs, options.jobs) 347 348 # check the build configuration works 349 settings.validate() 350 351 # print configuration 352 print('%s %i tests on %i cores (%s:%s)' % ( 353 'Regenerating' if settings.generating else 'Running', 354 len(local_tests), 355 options.jobs, 356 settings.arch.string, 357 settings.debug.string 358 )) 359 360 # otherwise run all tests and make sure to return the correct error code 361 failed = run_tests(local_tests, options.jobs) 362 if failed: 363 result = 1 364 if not settings.continue_: 365 break 366 367 368 sys.exit( failed ) 311 settings.validate() 312 313 options.jobs, forceJobs = job_count( options, tests ) 314 settings.update_make_cmd(forceJobs, options.jobs) 315 316 print('%s %i tests on %i cores (%s:%s)' % ( 317 'Regenerating' if settings.generating else 'Running', 318 len(tests), 319 options.jobs, 320 settings.arch.string, 321 settings.debug.string 322 )) 323 324 # otherwise run all tests and make sure to return the correct error code 325 sys.exit( run_tests(tests, options.jobs) ) -
tests/time.cfa
r7030dab r71d6bd8 10 10 // Created On : Tue Mar 27 17:24:56 2018 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Sun Jan 5 18:27:37 202013 // Update Count : 3412 // Last Modified On : Thu Dec 20 23:09:21 2018 13 // Update Count : 23 14 14 // 15 15 … … 20 20 Duration d1 = 3`h, d2 = 2`s, d3 = 3.375`s, d4 = 12`s, d5 = 1`s + 10_000`ns; 21 21 sout | d1 | d2 | d3 | d4 | d5; 22 int i; 22 23 d1 = 0; 23 24 sout | d1 | d2 | d3; … … 34 35 sout | t; 35 36 t = t + d1; 36 sout | t | t `ns;37 sout | t | t.tv; 37 38 Time t1 = (timespec){ 104_414, 10_000_000 }; 38 sout | t1 | t1 `ns;39 sout | t - t | t + d5 | t `ns;40 char buf[ 64];39 sout | t1 | t1.tv; 40 sout | t - t | t + d5 | t.tv; 41 char buf[16]; 41 42 sout | "yy/mm/dd" | [t, buf]`ymd | nonl; // shared buf => separate calls 42 43 sout | "mm/dd/yy" | mm_dd_yy( t, buf ) | nonl; … … 45 46 sout | "dd/yy/mm" | [t, buf]`dmy; 46 47 Time t2 = { 2001, 7, 4, 0, 0, 1, 0 }, t3 = (timeval){ 994_219_201 }; 47 sout | t2 | t2 `ns | nl | t3 | t3`ns;48 sout | t2 | t2.tv | nl | t3 | t3.tv; 48 49 sout | nl; 49 50 … … 62 63 sout | "Dividing that by 2 gives" | s / 2 | "seconds"; 63 64 sout | s | "seconds is" | s`h | "hours," | (s % 1`h)`m | "minutes," | (s % 1`m)`s | "seconds"; 64 65 t1 = (Time){ 2020, 1, 5, 9, 0, 0, 100000000000LL };66 t2 = (Time){ 1969, 13, 5, 9 };67 t3 = (Time){ 1970, 25, 366, 48, 120, -120, 60000000000LL };68 strftime( buf, 128, "%Y %b %e %H:%M:%S (GMT)", t1 );69 sout | buf;70 strftime( buf, 128, "%Y %b %e %H:%M:%S (GMT)", t2 );71 sout | buf;72 strftime( buf, 128, "%Y %b %e %H:%M:%S (GMT)", t3 );73 sout | buf;74 65 } // main 75 66 -
tests/userLiterals.cfa
r7030dab r71d6bd8 5 5 // file "LICENCE" distributed with Cforall. 6 6 // 7 // user Literals.cfa --7 // user_literals.cfa -- 8 8 // 9 9 // Author : Peter A. Buhr 10 10 // Created On : Wed Sep 6 21:40:50 2017 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Wed Feb 19 07:48:45 202013 // Update Count : 7412 // Last Modified On : Tue Dec 4 22:03:10 2018 13 // Update Count : 56 14 14 // 15 15 … … 24 24 int ?`__thingy_( int x ) { sout | "_thingy_" | x; return x; } 25 25 26 int ?`s( const char * s ) { sout | "s " | s; return 0; }27 int ?`m( const char16_t * m ) { sout | "m " | m; return 0;}28 int ?`h( const char32_t * h ) { sout | "h " | h; return 0; }26 int ?`s( const char * s ) { sout | "secs" | s; return 0; } 27 int ?`m( const char16_t * m ) { sout | "mins" | m; return 0;} 28 int ?`h( const char32_t * h ) { sout | "hours" | h; return 0; } 29 29 int ?`_A_( const wchar_t * str ) { sout | "_A_" | str; return 0; } 30 30 int ?`__thingy_( const char * str ) { sout | "_thingy_" | str; return 0; } … … 37 37 return (Weight){ l.stones + r.stones }; 38 38 } 39 ofstream & ?|?( ofstream & os, Weight w ) { return os | wd(1,1, w.stones); } 40 void ?|?( ofstream & os, Weight w ) { (ofstream)(os | w); ends( os ); } 39 ofstream & ?|?( ofstream & os, Weight w ) { return os | w.stones; } 41 40 42 41 Weight ?`st( double w ) { return (Weight){ w }; } // backquote for user literals … … 61 60 sout | w; 62 61 63 0`s;62 // 0`secs; 64 63 1`s; 65 64 23`s; … … 83 82 84 83 "abc"`s; 85 // FIX ME: requires char16_t, char32_t, and wchar_t be unique types 86 // u"abc"`m; 87 // U_"abc"`h; 88 // L"abc"`_A_; 84 // u"abc"`m; 85 // U_"abc"`h; 86 // L"abc"`_A_; 89 87 u8_"abc"`__thingy_; 90 88 } // main … … 92 90 // Local Variables: // 93 91 // tab-width: 4 // 94 // compile-command: "cfa user Literals.cfa" //92 // compile-command: "cfa user_literals.cfa" // 95 93 // End: // -
tools/catchsig.c
r7030dab r71d6bd8 21 21 printf("Starting...\n"); 22 22 sig(SIGHUP); 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 23 sig(SIGINT); 24 sig(SIGQUIT); 25 sig(SIGILL); 26 sig(SIGABRT); 27 sig(SIGFPE); 28 sig(SIGSEGV); 29 sig(SIGPIPE); 30 sig(SIGALRM); 31 sig(SIGTERM); 32 sig(SIGUSR1); 33 sig(SIGUSR2); 34 sig(SIGCHLD); 35 sig(SIGCONT); 36 sig(SIGTSTP); 37 sig(SIGTTIN); 38 sig(SIGTTOU); 39 39 while(1); 40 40 return 0; -
tools/cfa.nanorc
r7030dab r71d6bd8 14 14 15 15 # Declarations 16 color brightgreen "\<(struct|union|typedef|trait|coroutine| generator)\>"17 color brightgreen "\<( monitor|thread|with)\>"16 color brightgreen "\<(struct|union|typedef|trait|coroutine|monitor|thread)\>" 17 color brightgreen "\<(with)\>" 18 18 19 19 # Control Flow Structures 20 20 color brightyellow "\<(if|else|while|do|for|switch|choose|case|default)\>" 21 color brightyellow "\<(disable|enable|waitfor|when|timeout |suspend)\>"21 color brightyellow "\<(disable|enable|waitfor|when|timeout)\>" 22 22 color brightyellow "\<(try|catch(Resume)?|finally)\>" 23 23 … … 26 26 27 27 # Escaped Keywords, now Identifiers. 28 color white "` `\w+"28 color white "`\w+`" 29 29 30 30 # Operator Names … … 37 37 ## Update/Redistribute 38 38 # GCC builtins 39 color cyan "__attribute__[[:space:]]*\(\( ([^)]|[^)]\))*\)\)"39 color cyan "__attribute__[[:space:]]*\(\([^()]*(\([^()]*\)[^()]*)*\)\)" 40 40 ##color cyan "__(aligned|asm|builtin|hidden|inline|packed|restrict|section|typeof|weak)__" 41 41 -
tools/stat.py
r7030dab r71d6bd8 17 17 avg = numpy.mean (content) 18 18 std = numpy.std (content) 19 print "median {0:.1f} avg {1:.1f} stddev {2:. 1f}".format( med, avg, std )19 print "median {0:.1f} avg {1:.1f} stddev {2:.2f}".format( med, avg, std ) 20 20 21 21 -
tools/vscode/uwaterloo.cforall-0.1.0/package.json
r7030dab r71d6bd8 2 2 "name": "cforall", 3 3 "version": "0.1.0", 4 "displayName": "C ā (C-for-all)Language Support",4 "displayName": "Cforall Language Support", 5 5 "description": "Cforall - colorizer, grammar and snippets.", 6 6 "publisher": "uwaterloo", … … 9 9 "vscode": "^1.5.0" 10 10 }, 11 "icon": "images/icon. png",11 "icon": "images/icon.svg", 12 12 "categories": [ 13 " ProgrammingLanguages",13 "Languages", 14 14 "Linters", 15 15 "Other" 16 16 ], 17 "activationEvents": [18 "onLanguage:cforall"19 ],20 "main": "./client/main.js",21 17 "contributes": { 22 18 "languages": [ … … 25 21 "aliases": [ 26 22 "Cā", 23 "Cforall", 27 24 "CForAll", 28 "Cforall",29 25 "cforall" 30 26 ], 31 27 "extensions": [ 32 ".cfa", 33 ".hfa", 34 ".ifa" 28 ".cf" 35 29 ], 36 30 "configuration": "./cforall.configuration.json" … … 40 34 { 41 35 "language": "cforall", 42 "scopeName": "source.cf a",43 "path": "./syntaxes/cfa.tmLanguage .json"36 "scopeName": "source.cf", 37 "path": "./syntaxes/cfa.tmLanguage" 44 38 } 45 ], 46 "configuration": { 47 "type": "object", 48 "title": "Example configuration", 49 "properties": { 50 "cforall.maxNumberOfProblems": { 51 "scope": "resource", 52 "type": "number", 53 "default": 100, 54 "description": "Controls the maximum number of problems produced by the server." 55 }, 56 "cforall.trace.server": { 57 "scope": "window", 58 "type": "string", 59 "enum": [ 60 "off", 61 "messages", 62 "verbose" 63 ], 64 "default": "off", 65 "description": "Traces the communication between VS Code and the language server." 66 } 67 } 68 } 69 }, 70 "dependencies": { 71 "vscode-languageclient": "^4.1.4" 72 }, 73 "devDependencies": { 74 "vscode-languageclient": "^4.1.4" 39 ] 75 40 } 76 41 }
Note:
See TracChangeset
for help on using the changeset viewer.