Changeset 6a490b2
- Timestamp:
- May 11, 2020, 1:53:29 PM (5 years ago)
- Branches:
- ADT, arm-eh, ast-experimental, enum, forall-pointer-decay, jacob/cs343-translation, master, new-ast, new-ast-unique-expr, pthread-emulation, qualifiedEnum
- Children:
- 504a7dc
- Parents:
- b7d6a36 (diff), a7b486b (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the(diff)
links above to see all the changes relative to each parent. - Files:
-
- 94 added
- 9 deleted
- 137 edited
- 2 moved
Legend:
- Unmodified
- Added
- Removed
-
Jenkinsfile
rb7d6a36 r6a490b2 126 126 } 127 127 128 sh "${SrcDir}/configure CXX=${Settings.Compiler.CXX} CC=${Settings.Compiler.CC} ${Settings.Architecture.flags} ${targets} --quiet"128 sh "${SrcDir}/configure CXX=${Settings.Compiler.CXX} CC=${Settings.Compiler.CC} ${Settings.Architecture.flags} AR=gcc-ar RANLIB=gcc-ranlib ${targets} --quiet --prefix=${BuildDir}" 129 129 130 130 // Configure libcfa … … 155 155 dir (BuildDir) { 156 156 sh "make -j 8 --no-print-directory -C libcfa/${Settings.Architecture.name}-nodebug" 157 } 158 } 159 160 build_stage('Build : install', true) { 161 // Build outside of the src tree to ease cleaning 162 dir (BuildDir) { 163 sh "make -j 8 --no-print-directory install" 157 164 } 158 165 } … … 179 186 echo "Archiving core dumps" 180 187 dir (BuildDir) { 181 archiveArtifacts artifacts: "tests/crashes/**/* ", fingerprint: true188 archiveArtifacts artifacts: "tests/crashes/**/*,lib/**/lib*.so*", fingerprint: true 182 189 } 183 190 throw err … … 325 332 public String CXX 326 333 public String CC 327 328 CC_Desc(String name, String CXX, String CC) { 334 public String lto 335 336 CC_Desc(String name, String CXX, String CC, String lto) { 329 337 this.name = name 330 338 this.CXX = CXX 331 this.CC = CC 339 this.CC = CC 340 this.lto = lto 332 341 } 333 342 } … … 364 373 switch( param.Compiler ) { 365 374 case 'gcc-9': 366 this.Compiler = new CC_Desc('gcc-9', 'g++-9', 'gcc-9' )375 this.Compiler = new CC_Desc('gcc-9', 'g++-9', 'gcc-9', '-flto=auto') 367 376 break 368 377 case 'gcc-8': 369 this.Compiler = new CC_Desc('gcc-8', 'g++-8', 'gcc-8' )378 this.Compiler = new CC_Desc('gcc-8', 'g++-8', 'gcc-8', '-flto=auto') 370 379 break 371 380 case 'gcc-7': 372 this.Compiler = new CC_Desc('gcc-7', 'g++-7', 'gcc-7' )381 this.Compiler = new CC_Desc('gcc-7', 'g++-7', 'gcc-7', '-flto=auto') 373 382 break 374 383 case 'gcc-6': 375 this.Compiler = new CC_Desc('gcc-6', 'g++-6', 'gcc-6' )384 this.Compiler = new CC_Desc('gcc-6', 'g++-6', 'gcc-6', '-flto=auto') 376 385 break 377 386 case 'gcc-5': 378 this.Compiler = new CC_Desc('gcc-5', 'g++-5', 'gcc-5' )387 this.Compiler = new CC_Desc('gcc-5', 'g++-5', 'gcc-5', '-flto=auto') 379 388 break 380 389 case 'gcc-4.9': 381 this.Compiler = new CC_Desc('gcc-4.9', 'g++-4.9', 'gcc-4.9' )390 this.Compiler = new CC_Desc('gcc-4.9', 'g++-4.9', 'gcc-4.9', '-flto=auto') 382 391 break 383 392 case 'clang': 384 this.Compiler = new CC_Desc('clang', 'clang++-6.0', 'gcc-6' )393 this.Compiler = new CC_Desc('clang', 'clang++-6.0', 'gcc-6', '-flto=thin -flto-jobs=0') 385 394 break 386 395 default : … … 439 448 // prepare the properties 440 449 properties ([ \ 450 buildDiscarder(logRotator( \ 451 artifactDaysToKeepStr: '', \ 452 artifactNumToKeepStr: '', \ 453 daysToKeepStr: '730', \ 454 numToKeepStr: '1000' \ 455 )), \ 441 456 [$class: 'ParametersDefinitionProperty', \ 442 457 parameterDefinitions: [ \ -
benchmark/Makefile.am
rb7d6a36 r6a490b2 11 11 ## Created On : Sun May 31 09:08:15 2015 12 12 ## Last Modified By : Peter A. Buhr 13 ## Last Modified On : Sat Jan 25 09:20:44202014 ## Update Count : 25 513 ## Last Modified On : Tue Mar 10 11:41:18 2020 14 ## Update Count : 258 15 15 ############################################################################### 16 16 … … 108 108 creation_cfa_coroutine_DURATION = 100000000 109 109 creation_cfa_coroutine_eager_DURATION = 10000000 110 creation_cfa_generator_DURATION = 1000000000 110 111 creation_upp_coroutine_DURATION = ${creation_cfa_coroutine_eager_DURATION} 111 112 creation_cfa_thread_DURATION = 10000000 … … 513 514 compile-typeof$(EXEEXT): 514 515 $(CFACOMPILE) -fsyntax-only -w $(testdir)/typeof.cfa 516 517 ## ========================================================================================================= 518 519 size$(EXEEXT) : size-cfa.runquiet 520 521 size-cfa$(EXEEXT): 522 $(BENCH_V_CFA)$(CFACOMPILE) $(srcdir)/size/size.cfa -
benchmark/Makefile.in
rb7d6a36 r6a490b2 447 447 creation_cfa_coroutine_DURATION = 100000000 448 448 creation_cfa_coroutine_eager_DURATION = 10000000 449 creation_cfa_generator_DURATION = 1000000000 449 450 creation_upp_coroutine_DURATION = ${creation_cfa_coroutine_eager_DURATION} 450 451 creation_cfa_thread_DURATION = 10000000 … … 1147 1148 $(CFACOMPILE) -fsyntax-only -w $(testdir)/typeof.cfa 1148 1149 1150 size$(EXEEXT) : size-cfa.runquiet 1151 1152 size-cfa$(EXEEXT): 1153 $(BENCH_V_CFA)$(CFACOMPILE) $(srcdir)/size/size.cfa 1154 1149 1155 # Tell versions [3.59,3.63) of GNU make to not export all variables. 1150 1156 # Otherwise a system limit (for SysV at least) may be exceeded. -
benchmark/creation/cfa_gen.cfa
rb7d6a36 r6a490b2 1 #include " bench.h"1 #include "../bench.h" 2 2 3 struct C{3 generator G { 4 4 volatile int restart; // ensure compiler does not optimize away all the code 5 5 }; 6 void ?{}( C & c ) { c.restart = 0; }7 void main( C& ) {}6 void ?{}( G & g ) { g.restart = 0; } 7 void main( G & ) {} 8 8 9 9 int main( int argc, char * argv[] ) { … … 11 11 BENCH( 12 12 for ( times ) { 13 C c;13 G g; 14 14 }, 15 15 result -
benchmark/ctxswitch/cfa_cor.cfa
rb7d6a36 r6a490b2 2 2 #include <thread.hfa> 3 3 4 #include " bench.h"4 #include "../bench.h" 5 5 6 coroutine C {} c;6 coroutine C {}; 7 7 void main( __attribute__((unused)) C & ) { 8 while() {9 suspend ();8 for () { 9 suspend; 10 10 } 11 11 } 12 12 int main( int argc, char * argv[] ) { 13 C c; 13 14 BENCH_START() 14 15 BENCH( -
benchmark/ctxswitch/cfa_gen.cfa
rb7d6a36 r6a490b2 1 1 #include "../bench.h" 2 2 3 typedef struct { 4 void * next; 5 } C; 6 7 void comain( C * c ) { 8 if ( __builtin_expect(c->next != 0, 1) ) goto *(c->next); 9 c->next = &&s1; 3 generator G {}; 4 void main( G & ) { 10 5 for () { 11 return; 12 s1: ; 6 suspend; 13 7 } 14 8 } 15 9 16 10 int main( int argc, char * argv[] ) { 11 G g; 17 12 BENCH_START() 18 C c = { 0 };19 13 BENCH( 20 14 for ( times ) { 21 comain( &c);15 resume( g ); 22 16 }, 23 17 result -
configure
rb7d6a36 r6a490b2 2557 2557 # don't use the default CFLAGS as they unconditonnaly add -O2 2558 2558 : ${CFLAGS=""} 2559 : ${CXXFLAGS=""} 2559 2560 2560 2561 am__api_version='1.15' -
configure.ac
rb7d6a36 r6a490b2 14 14 # don't use the default CFLAGS as they unconditonnaly add -O2 15 15 : ${CFLAGS=""} 16 : ${CXXFLAGS=""} 16 17 17 18 AM_INIT_AUTOMAKE([subdir-objects]) -
doc/bibliography/pl.bib
rb7d6a36 r6a490b2 9 9 % Predefined journal names: 10 10 % acmcs: Computing Surveys acta: Acta Infomatica 11 @string{acta="Acta Infomatica"}12 11 % cacm: Communications of the ACM 13 12 % ibmjrd: IBM J. Research & Development ibmsj: IBM Systems Journal … … 22 21 % tcs: Theoretical Computer Science 23 22 23 @string{acta="Acta Infomatica"} 24 24 string{ieeepds="IEEE Transactions on Parallel and Distributed Systems"} 25 25 @string{ieeepds="IEEE Trans. Parallel Distrib. Syst."} … … 124 124 series = {ACM Distinguished Dissertations}, 125 125 year = 1983, 126 } 127 128 @article{Zhang19, 129 keywords = {Algebraic effects, dynamic scoping, exceptions, parametricity, type systems}, 130 author = {Zhang, Yizhou and Myers, Andrew C.}, 131 title = {Abstraction-safe Effect Handlers via Tunneling}, 132 journal = {Proc. ACM Program. Lang.}, 133 issue_date = {January 2019}, 134 volume = {3}, 135 number = {POPL}, 136 month = jan, 137 year = {2019}, 138 issn = {2475-1421}, 139 pages = {5:1--5:29}, 140 articleno = {5}, 141 publisher = {ACM}, 142 address = {New York, NY, USA}, 143 } 144 145 @inproceedings{Zhang16, 146 keywords = {Exception tunneling, Genus, exception handling}, 147 author = {Zhang, Yizhou and Salvaneschi, Guido and Beightol, Quinn and Liskov, Barbara and Myers, Andrew C.}, 148 title = {Accepting Blame for Safe Tunneled Exceptions}, 149 booktitle = {Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation}, 150 series = {PLDI'16}, 151 year = {2016}, 152 location = {Santa Barbara, CA, USA}, 153 pages = {281--295}, 154 publisher = {ACM}, 155 address = {New York, NY, USA}, 126 156 } 127 157 … … 398 428 journal = sigplan, 399 429 year = 1981, 400 month = feb, volume = 16, number = 2, pages = {48-52}, 430 month = feb, 431 volume = 16, 432 number = 2, 433 pages = {48-52}, 401 434 comment = { 402 435 A one-pass, top-down algorithm for overload resolution. Input is a … … 477 510 title = {An Alternative to Subclassing}, 478 511 journal = sigplan, 479 volume = {21}, number = {11}, 512 volume = {21}, 513 number = {11}, 480 514 pages = {424-428}, 481 month = nov, year = 1986, 515 month = nov, 516 year = 1986, 482 517 comment = { 483 518 The Smalltalk class hierarchy has three uses: factoring out code; … … 533 568 isbn = {3-540-66538-2}, 534 569 location = {Toulouse, France}, 535 doi = {http://doi.acm.org/10.1145/318773.319251},536 570 publisher = {Springer}, 537 571 address = {London, UK}, … … 631 665 year = 2010, 632 666 pages = {39--50}, 633 numpages = {12},634 667 publisher = {IEEE Computer Society}, 635 668 address = {Washington, DC, USA}, … … 922 955 } 923 956 957 @manual{C99, 958 keywords = {ISO/IEC C 9899}, 959 contributer = {pabuhr@plg}, 960 key = {C99}, 961 title = {C Programming Language {ISO/IEC} 9899:1999(E)}, 962 edition = {2nd}, 963 publisher = {International Standard Organization}, 964 address = {\href{https://webstore.ansi.org/Standards/INCITS/INCITSISOIEC98991999R2005}{https://webstore.ansi.org/\-Standards/\-INCITS/\-INCITSISOIEC98991999R2005}}, 965 year = 1999, 966 } 967 924 968 @manual{C11, 925 969 keywords = {ISO/IEC C 11}, … … 1305 1349 location = {London, United Kingdom}, 1306 1350 pages = {41--53}, 1307 numpages = {13},1308 url = {http://doi.acm.org/10.1145/360204.360207},1309 doi = {10.1145/360204.360207},1310 acmid = {360207},1311 1351 publisher = {ACM}, 1312 1352 address = {New York, NY, USA}, … … 2408 2448 year = 1993, 2409 2449 pages = {201--208}, 2410 url = {http://doi.acm.org/10.1145/155360.155580},2411 2450 publisher = {ACM}, 2412 2451 address = {New York, NY, USA}, … … 2606 2645 location = {Boulder, Colorado, USA}, 2607 2646 pages = {91--97}, 2608 numpages = {7},2609 2647 publisher = {ACM}, 2610 2648 address = {New York, NY, USA}, … … 2637 2675 issn = {0004-5411}, 2638 2676 pages = {215--225}, 2639 numpages = {11},2640 url = {http://doi.acm.org/10.1145/321879.321884},2641 doi = {10.1145/321879.321884},2642 acmid = {321884},2643 2677 publisher = {ACM}, 2644 2678 address = {New York, NY, USA}, … … 2708 2742 } 2709 2743 2744 @misc{Drepper13, 2745 keywords = {thread-local storage}, 2746 contributer = {pabuhr@plg}, 2747 author = {Ulrich Drepper}, 2748 title = {{ELF} Handling For Thread-Local Storage}, 2749 year = 2013, 2750 month = aug, 2751 note = {WikipediA}, 2752 howpublished= {\href{http://www.akkadia.org/drepper/tls.pdf} 2753 {http://\-www.akkadia.org/\-drepper/\-tls.pdf}}, 2754 } 2755 2710 2756 @misc{Turley99, 2711 2757 keywords = {embedded system, micrprocessor}, … … 2718 2764 howpublished= {\href{https://www.eetimes.com/author.asp?sectionid=36&doc_id=1287712} 2719 2765 {https://\-www.eetimes.com/\-author.asp?sectionid=\-36&doc_id=1287712}}, 2766 } 2767 2768 @article{Xiao19, 2769 keywords = {bug classification, fault trigger, Linux operating system, regression bug}, 2770 contributer = {pabuhr@plg}, 2771 author = {Guanping Xiao and Zheng Zheng and Beibei Yin and Kishor S. Trivedi and Xiaoting Du and Kai-Yuan Cai}, 2772 title = {An Empirical Study of Fault Triggers in the Linux Operating System: An Evolutionary Perspective}, 2773 journal = {IEEE Transactions on Reliability}, 2774 month = dec, 2775 year = 2019, 2776 volume = 68, 2777 number = 4, 2778 pages = {1356-1383}, 2720 2779 } 2721 2780 … … 3137 3196 } 3138 3197 3198 @inproceedings{Palix11, 3199 keywords = {Linux, fault-finding tools}, 3200 contributer = {pabuhr@plg}, 3201 author = {Nicolas Palix and Ga\"el Thomas and Suman Saha and Christophe Calv\`es and Julia Lawall and Gilles Muller}, 3202 title = {Faults in Linux: Ten Years Later}, 3203 booktitle = {Proc. of the 16 International Conf. on Arch. Support for Prog. Lang. and Oper. Sys.}, 3204 series = {ASPLOS'11}, 3205 month = mar, 3206 year = 2011, 3207 location = {Newport Beach, California, USA}, 3208 pages = {305-318}, 3209 publisher = {ACM}, 3210 address = {New York, NY, USA}, 3211 } 3212 3139 3213 @article{Lamport87, 3140 3214 keywords = {software solutions, mutual exclusion, fast}, … … 3258 3332 issn = {0001-0782}, 3259 3333 pages = {107--115}, 3260 numpages = {9},3261 url = {http://doi.acm.org/10.1145/1538788.1538814},3262 doi = {10.1145/1538788.1538814},3263 acmid = {1538814},3264 3334 publisher = {ACM}, 3265 3335 address = {New York, NY, USA}, … … 3664 3734 } 3665 3735 3736 @mastersthesis{Radhakrishnan19, 3737 author = {Srihari Radhakrishnan}, 3738 title = {High Performance Web Servers: A Study In Concurrent Programming Models}, 3739 school = {School of Computer Sc., University of Waterloo}, 3740 year = 2019, 3741 optaddress = {Waterloo, Ontario, Canada, N2L 3G1}, 3742 note = {\href{https://uwspace.uwaterloo.ca/handle/10012/14706}{https://\-uwspace.uwaterloo.ca/\-handle/\-10012/\-14706}}, 3743 } 3744 3666 3745 @article{katzenelson83b, 3667 3746 contributer = {gjditchfield@plg}, … … 3697 3776 pages = {115-138}, 3698 3777 year = 1971, 3778 } 3779 3780 @inproceedings{Hagersten03, 3781 keywords = {cache storage, parallel architectures, performance evaluation, shared memory systems}, 3782 author = {Zoran Radovi\'{c} and Erik Hagersten}, 3783 title = {Hierarchical backoff locks for nonuniform communication architectures}, 3784 booktitle = {Proceedings of the Ninth International Symposium on High-Performance Computer Architecture}, 3785 year = {2003}, 3786 location = {Anaheim, CA, USA}, 3787 pages = {241-252}, 3788 publisher = {IEEE}, 3699 3789 } 3700 3790 … … 4365 4455 } 4366 4456 4457 @misc{gccValueLabels, 4458 keywords = {gcc extension, value labels}, 4459 contributer = {pabuhr@plg}, 4460 key = {Labels as Values}, 4461 author = {{gcc Extension}}, 4462 title = {Labels as Values}, 4463 year = {since gcc-3}, 4464 howpublished= {\href{https://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html} 4465 {https:\-//gcc.gnu.org/\-onlinedocs/\-gcc/\-Labels-as-Values.html}}, 4466 } 4467 4367 4468 @mastersthesis{Clarke90, 4368 4469 keywords = {concurrency, postponing requests}, … … 4423 4524 } 4424 4525 4526 @misc{libfibre, 4527 key = {libfibre}, 4528 author = {Martin Karsten}, 4529 title = {{libfibre:~User-Level Threading Runtime}}, 4530 howpublished= {\href{https://git.uwaterloo.ca/mkarsten/libfibre} 4531 {https://\-git.uwaterloo.ca/\-mkarsten/\-libfibre}}, 4532 note = {[Online; accessed 2020-04-15]}, 4533 } 4534 4425 4535 @article{Linda, 4426 4536 keywords = {Linda, concurrency}, … … 4456 4566 } 4457 4567 4568 @inproceedings{Fang06, 4569 author = {Fang, Yi and McMillan, Kenneth L. and Pnueli, Amir and Zuck, Lenore D.}, 4570 editor = {Najm, Elie and Pradat-Peyre, Jean-Fran{\c{c}}ois and Donzeau-Gouge, V{\'e}ronique Vigui{\'e}}, 4571 title = {Liveness by Invisible Invariants}, 4572 booktitle = {Formal Techniques for Networked and Distributed Systems - FORTE 2006}, 4573 year = 2006, 4574 publisher = {Springer Berlin Heidelberg}, 4575 address = {Berlin, Heidelberg}, 4576 pages = {356--371}, 4577 } 4578 4458 4579 @article{Pierce00, 4459 keywords = {Scala },4580 keywords = {Scala, polymorphism, subtyping, type inference}, 4460 4581 contributer = {a3moss@uwaterloo.ca}, 4461 4582 author = {Pierce, Benjamin C. and Turner, David N.}, … … 4469 4590 issn = {0164-0925}, 4470 4591 pages = {1--44}, 4471 numpages = {44},4472 url = {http://doi.acm.org/10.1145/345099.345100},4473 doi = {10.1145/345099.345100},4474 acmid = {345100},4475 4592 publisher = {ACM}, 4476 4593 address = {New York, NY, USA}, 4477 keywords = {polymorphism, subtyping, type inference},4478 4594 } 4595 4596 @article{Dice15, 4597 keywords = {Concurrency, NUMA, hierarchical locks, locks, multicore, mutex, mutual exclusion, spin locks}, 4598 author = {Dice, David and Marathe, Virendra J. and Shavit, Nir}, 4599 title = {Lock Cohorting: A General Technique for Designing NUMA Locks}, 4600 journal = {ACM Trans. Parallel Comput.}, 4601 issue_date = {January 2015}, 4602 volume = 1, 4603 number = 2, 4604 month = feb, 4605 year = 2015, 4606 pages = {13:1--13:42}, 4607 publisher = {ACM}, 4608 address = {New York, NY, USA}, 4609 } 4479 4610 4480 4611 @article{Sundell08, … … 4554 4685 journal = sigplan, 4555 4686 year = 1989, 4556 month = jun, volume = 24, number = 6, pages = {37-48}, 4687 month = jun, 4688 volume = 24, 4689 number = 6, 4690 pages = {37-48}, 4557 4691 abstract = { 4558 4692 This paper describes a scheme we have used to manage a large … … 4625 4759 contributer = {pabuhr@plg}, 4626 4760 author = {Gregory R. Andrews}, 4627 title = {A Method for Solving Syn ronization Problems},4761 title = {A Method for Solving Synchronization Problems}, 4628 4762 journal = scp, 4629 4763 volume = 13, … … 4950 5084 title = {Multiple Inheritance for {C}{\kern-.1em\hbox{\large\texttt{+\kern-.25em+}}}}, 4951 5085 booktitle = {Proceedings of the Spring '87 EUUG Conference}, 4952 month = may, year = 1987 5086 month = may, 5087 year = 1987, 4953 5088 } 4954 5089 … … 4995 5130 year = 1986, 4996 5131 pages = {313--326}, 4997 numpages = {14},4998 5132 publisher = {ACM}, 4999 5133 address = {New York, NY, USA}, … … 5011 5145 year = 1986, 5012 5146 pages = {327--348}, 5013 numpages = {22},5014 5147 publisher = {ACM}, 5015 5148 address = {New York, NY, USA}, … … 5208 5341 year = 2005, 5209 5342 pages = {146-196}, 5210 numpages = {51},5211 5343 publisher = {ACM}, 5212 5344 address = {New York, NY, USA}, … … 5354 5486 year = 2000, 5355 5487 pages = {29-46}, 5356 note = {OOPSLA'00, Oct. 15--19, 2000, Minneapolis, Minn esota, U.S.A.},5488 note = {OOPSLA'00, Oct. 15--19, 2000, Minneapolis, Minn., U.S.A.}, 5357 5489 } 5358 5490 … … 5468 5600 location = {San Diego, California, USA}, 5469 5601 pages = {101--112}, 5470 numpages = {12},5471 url = {http://doi.acm.org/10.1145/2535838.2535878},5472 doi = {10.1145/2535838.2535878},5473 acmid = {2535878},5474 5602 publisher = {ACM}, 5475 5603 address = {New York, NY, USA}, … … 5575 5703 issn = {0362-1340}, 5576 5704 pages = {30--42}, 5577 numpages = {13},5578 url = {http://doi.acm.org/10.1145/947586.947589},5579 doi = {10.1145/947586.947589},5580 5705 publisher = {ACM}, 5581 5706 address = {New York, NY, USA} … … 6112 6237 month = 9, 6113 6238 year = 2005, 6239 } 6240 6241 @article{Bauer15, 6242 keywords = {resumption exceptions, theory}, 6243 contributer = {pabuhr@plg}, 6244 author = {Andrej Bauer and Matija Pretnar}, 6245 title = {Programming with Algebraic Effects and Handlers}, 6246 journal = {Journal of Logical and Algebraic Methods in Programming}, 6247 publisher = {Elsevier BV}, 6248 volume = 84, 6249 number = 1, 6250 month = jan, 6251 year = 2015, 6252 pages = {108-123}, 6114 6253 } 6115 6254 … … 6499 6638 issn = {0164-0925}, 6500 6639 pages = {429-475}, 6501 url = {http://doi.acm.org/10.1145/1133651.1133653},6502 doi = {10.1145/1133651.1133653},6503 acmid = {1133653},6504 6640 publisher = {ACM}, 6505 6641 address = {New York, NY, USA}, … … 6529 6665 address = {\href{http://docs.paralleluniverse.co/quasar}{http://\-docs.paralleluniverse.co/\-quasar}}, 6530 6666 year = 2018, 6667 } 6668 6669 @article{Aravind09, 6670 author = {Alex A. Aravind and Wim H. Hesselink}, 6671 title = {A Queue Based Mutual Exclusion Algorithm}, 6672 journal = acta, 6673 volume = 46, 6674 pages = {73--86}, 6675 year = 2009, 6531 6676 } 6532 6677 … … 6879 7024 issn = {0001-0782}, 6880 7025 pages = {565--569}, 6881 numpages = {5},6882 url = {http://doi.acm.org/10.1145/359545.359566},6883 doi = {10.1145/359545.359566},6884 acmid = {359566},6885 7026 publisher = {ACM}, 6886 7027 address = {New York, NY, USA} … … 6900 7041 issn = {0362-1340}, 6901 7042 pages = {145--147}, 6902 numpages = {3},6903 url = {http://doi.acm.org/10.1145/122598.122614},6904 doi = {10.1145/122598.122614},6905 acmid = {122614},6906 7043 publisher = {ACM}, 6907 7044 address = {New York, NY, USA}, … … 7006 7143 issn = {0362-1340}, 7007 7144 pages = {82--87}, 7008 numpages = {6},7009 url = {http://doi.acm.org/10.1145/947680.947688},7010 doi = {10.1145/947680.947688},7011 7145 publisher = {ACM}, 7012 7146 address = {New York, NY, USA}, … … 7153 7287 } 7154 7288 7289 @article{Cascaval08, 7290 author = {Cascaval, Calin and Blundell, Colin and Michael, Maged and Cain, Harold W. and Wu, Peng and Chiras, Stefanie and Chatterjee, Siddhartha}, 7291 title = {Software Transactional Memory: Why Is It Only a Research Toy?}, 7292 journal = {Queue}, 7293 volume = {6}, 7294 number = {5}, 7295 month = sep, 7296 year = {2008}, 7297 pages = {40:46--40:58}, 7298 publisher = {ACM}, 7299 address = {New York, NY, USA}, 7300 } 7301 7155 7302 @article{Dijkstra65a, 7156 7303 keywords = {N-thread software-solution mutual exclusion}, … … 7363 7510 year = 1974, 7364 7511 pages = {261-301}, 7365 issn = {0360-0300},7366 doi = {http://doi.acm.org/10.1145/356635.356640},7367 7512 publisher = {ACM}, 7368 7513 address = {New York, NY, USA}, … … 7454 7599 publisher = {ACM Press}, 7455 7600 address = {New York, NY, USA}, 7456 doi = {http://doi.acm.org/10.1145/356586.356588},7457 7601 } 7458 7602 … … 7755 7899 howpublished= {\href{https://projects.eclipse.org/proposals/trace-compass}{https://\-projects.eclipse.org/\-proposals/\-trace-compass}}, 7756 7900 } 7757 7901 7902 @inproceedings{Boehm09, 7903 author = {Boehm, Hans-J.}, 7904 title = {Transactional Memory Should Be an Implementation Technique, Not a Programming Interface}, 7905 booktitle = {Proceedings of the First USENIX Conference on Hot Topics in Parallelism}, 7906 series = {HotPar'09}, 7907 year = {2009}, 7908 location = {Berkeley, California}, 7909 publisher = {USENIX Association}, 7910 address = {Berkeley, CA, USA}, 7911 } 7912 7758 7913 @article{Leroy00, 7759 7914 keywords = {type-systems, exceptions}, … … 7805 7960 number = {2}, 7806 7961 pages = {204-214}, 7807 month = apr, year = 1988, 7962 month = apr, 7963 year = 1988, 7808 7964 comment = { 7809 7965 Extended record types add fields to their base record. Assignment … … 7904 8060 } 7905 8061 8062 @article{Karsten20, 8063 author = {Karsten, Martin and Barghi, Saman}, 8064 title = {{User-level Threading: Have Your Cake and Eat It Too}}, 8065 year = {2020}, 8066 issue_date = {March 2020}, 8067 publisher = {Association for Computing Machinery}, 8068 address = {New York, NY, USA}, 8069 volume = {4}, 8070 number = {1}, 8071 url = {https://doi.org/10.1145/3379483}, 8072 doi = {10.1145/3379483}, 8073 journal = {Proc. ACM Meas. Anal. Comput. Syst.}, 8074 month = mar, 8075 numpages = {30}, 8076 } 8077 7906 8078 @techreport{Harmony, 7907 8079 keywords = {messages, concurrency}, … … 7919 8091 contributer = {gjditchfield@plg}, 7920 8092 author = {Henry Lieverman}, 7921 title = {Using Prototypical Objects to Implement Shared Behavior in 7922 Object Oriented Systems}, 8093 title = {Using Prototypical Objects to Implement Shared Behavior in Object Oriented Systems}, 7923 8094 journal = sigplan, 7924 month = nov, year = 1986, 7925 volume = 21, number = 11, pages = {214-223} 8095 month = nov, 8096 year = 1986, 8097 volume = 21, 8098 number = 11, 8099 pages = {214-223} 7926 8100 } 7927 8101 … … 8110 8284 issn = {0004-5411}, 8111 8285 pages = {245--281}, 8112 numpages = {37},8113 url = {http://doi.acm.org/10.1145/62.2160},8114 doi = {10.1145/62.2160},8115 acmid = {2160},8116 8286 publisher = {ACM}, 8117 8287 address = {New York, NY, USA}, … … 8126 8296 contributer = {pabuhr@plg}, 8127 8297 author = {Boehm, Hans-J. and Adve, Sarita V.}, 8128 title = {You Don' TKnow Jack About Shared Variables or Memory Models},8298 title = {You Don't Know Jack About Shared Variables or Memory Models}, 8129 8299 journal = cacm, 8130 8300 volume = 55, -
doc/papers/concurrency/Paper.tex
rb7d6a36 r6a490b2 61 61 \newcommand{\CCseventeen}{\textrm{C}\kern-.1em\hbox{+\kern-.25em+}17\xspace} % C++17 symbolic name 62 62 \newcommand{\CCtwenty}{\textrm{C}\kern-.1em\hbox{+\kern-.25em+}20\xspace} % C++20 symbolic name 63 \newcommand{\Csharp}{C\raisebox{-0.7ex}{\ Large$^\sharp$}\xspace} % C# symbolic name63 \newcommand{\Csharp}{C\raisebox{-0.7ex}{\large$^\sharp$}\xspace} % C# symbolic name 64 64 65 65 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% … … 127 127 \newcommand*{\etc}{% 128 128 \@ifnextchar{.}{\ETC}% 129 129 {\ETC.\xspace}% 130 130 }}{}% 131 131 \@ifundefined{etal}{ 132 132 \newcommand{\ETAL}{\abbrevFont{et}~\abbrevFont{al}} 133 133 \newcommand*{\etal}{% 134 \@ifnextchar{.}{\ protect\ETAL}%135 {\ protect\ETAL.\xspace}%134 \@ifnextchar{.}{\ETAL}% 135 {\ETAL.\xspace}% 136 136 }}{}% 137 137 \@ifundefined{viz}{ … … 163 163 __float80, float80, __float128, float128, forall, ftype, generator, _Generic, _Imaginary, __imag, __imag__, 164 164 inline, __inline, __inline__, __int128, int128, __label__, monitor, mutex, _Noreturn, one_t, or, 165 otype, restrict, __restrict, __restrict__, __signed, __signed__, _Static_assert, thread,165 otype, restrict, resume, __restrict, __restrict__, __signed, __signed__, _Static_assert, suspend, thread, 166 166 _Thread_local, throw, throwResume, timeout, trait, try, ttype, typeof, __typeof, __typeof__, 167 167 virtual, __volatile, __volatile__, waitfor, when, with, zero_t}, 168 168 moredirectives={defined,include_next}, 169 169 % replace/adjust listing characters that look bad in sanserif 170 literate={-}{\makebox[1ex][c]{\raisebox{0. 4ex}{\rule{0.8ex}{0.1ex}}}}1 {^}{\raisebox{0.6ex}{$\scriptstyle\land\,$}}1170 literate={-}{\makebox[1ex][c]{\raisebox{0.5ex}{\rule{0.8ex}{0.1ex}}}}1 {^}{\raisebox{0.6ex}{$\scriptstyle\land\,$}}1 171 171 {~}{\raisebox{0.3ex}{$\scriptstyle\sim\,$}}1 % {`}{\ttfamily\upshape\hspace*{-0.1ex}`}1 172 172 {<}{\textrm{\textless}}1 {>}{\textrm{\textgreater}}1 … … 197 197 _Else, _Enable, _Event, _Finally, _Monitor, _Mutex, _Nomutex, _PeriodicTask, _RealTimeTask, 198 198 _Resume, _Select, _SporadicTask, _Task, _Timeout, _When, _With, _Throw}, 199 }200 \lstdefinelanguage{Golang}{201 morekeywords=[1]{package,import,func,type,struct,return,defer,panic,recover,select,var,const,iota,},202 morekeywords=[2]{string,uint,uint8,uint16,uint32,uint64,int,int8,int16,int32,int64,203 bool,float32,float64,complex64,complex128,byte,rune,uintptr, error,interface},204 morekeywords=[3]{map,slice,make,new,nil,len,cap,copy,close,true,false,delete,append,real,imag,complex,chan,},205 morekeywords=[4]{for,break,continue,range,goto,switch,case,fallthrough,if,else,default,},206 morekeywords=[5]{Println,Printf,Error,},207 sensitive=true,208 morecomment=[l]{//},209 morecomment=[s]{/*}{*/},210 morestring=[b]',211 morestring=[b]",212 morestring=[s]{`}{`},213 199 } 214 200 … … 241 227 {} 242 228 \lstnewenvironment{uC++}[1][] 243 {\lstset{ #1}}229 {\lstset{language=uC++,moredelim=**[is][\protect\color{red}]{`}{`},#1}\lstset{#1}} 244 230 {} 245 231 \lstnewenvironment{Go}[1][] … … 262 248 } 263 249 264 \new box\myboxA265 \new box\myboxB266 \new box\myboxC267 \new box\myboxD250 \newsavebox{\myboxA} 251 \newsavebox{\myboxB} 252 \newsavebox{\myboxC} 253 \newsavebox{\myboxD} 268 254 269 255 \title{\texorpdfstring{Advanced Control-flow and Concurrency in \protect\CFA}{Advanced Control-flow in Cforall}} … … 282 268 \CFA is a polymorphic, non-object-oriented, concurrent, backwards-compatible extension of the C programming language. 283 269 This paper discusses the design philosophy and implementation of its advanced control-flow and concurrent/parallel features, along with the supporting runtime written in \CFA. 284 These features are created from scratch as ISO C has only low-level and/or unimplemented concurrency, so C programmers continue to rely on library features like pthreads.270 These features are created from scratch as ISO C has only low-level and/or unimplemented concurrency, so C programmers continue to rely on library approaches like pthreads. 285 271 \CFA introduces modern language-level control-flow mechanisms, like generators, coroutines, user-level threading, and monitors for mutual exclusion and synchronization. 286 272 % Library extension for executors, futures, and actors are built on these basic mechanisms. … … 295 281 296 282 \begin{document} 297 \linenumbers 283 \linenumbers % comment out to turn off line numbering 298 284 299 285 \maketitle … … 302 288 \section{Introduction} 303 289 304 This paper discusses the design philosophy and implementation of advanced language-level control-flow and concurrent/parallel features in \CFA~\cite{Moss18,Cforall} and its runtime, which is written entirely in \CFA. 305 \CFA is a modern, polymorphic, non-object-oriented\footnote{ 306 \CFA has features often associated with object-oriented programming languages, such as constructors, destructors, virtuals and simple inheritance. 290 \CFA~\cite{Moss18,Cforall} is a modern, polymorphic, non-object-oriented\footnote{ 291 \CFA has object-oriented features, such as constructors, destructors, virtuals and simple trait/interface inheritance. 292 % Go interfaces, Rust traits, Swift Protocols, Haskell Type Classes and Java Interfaces. 293 % "Trait inheritance" works for me. "Interface inheritance" might also be a good choice, and distinguish clearly from implementation inheritance. 294 % You'll want to be a little bit careful with terms like "structural" and "nominal" inheritance as well. CFA has structural inheritance (I think Go as well) -- it's inferred based on the structure of the code. Java, Rust, and Haskell (not sure about Swift) have nominal inheritance, where there needs to be a specific statement that "this type inherits from this type". 307 295 However, functions \emph{cannot} be nested in structures, so there is no lexical binding between a structure and set of functions (member/method) implemented by an implicit \lstinline@this@ (receiver) parameter.}, 308 296 backwards-compatible extension of the C programming language. 309 In many ways, \CFA is to C as Scala~\cite{Scala} is to Java, providing a \emph{research vehicle} for new typing and control-flow capabilities on top of a highly popular programming language allowing immediate dissemination. 310 Within the \CFA framework, new control-flow features are created from scratch because ISO \Celeven defines only a subset of the \CFA extensions, where the overlapping features are concurrency~\cite[\S~7.26]{C11}. 311 However, \Celeven concurrency is largely wrappers for a subset of the pthreads library~\cite{Butenhof97,Pthreads}, and \Celeven and pthreads concurrency is simple, based on thread fork/join in a function and mutex/condition locks, which is low-level and error-prone; 312 no high-level language concurrency features are defined. 313 Interestingly, almost a decade after publication of the \Celeven standard, neither gcc-8, clang-9 nor msvc-19 (most recent versions) support the \Celeven include @threads.h@, indicating little interest in the C11 concurrency approach (possibly because the effort to add concurrency to \CC). 314 Finally, while the \Celeven standard does not state a threading model, the historical association with pthreads suggests implementations would adopt kernel-level threading (1:1)~\cite{ThreadModel}. 315 297 In many ways, \CFA is to C as Scala~\cite{Scala} is to Java, providing a \emph{research vehicle} for new typing and control-flow capabilities on top of a highly popular programming language\footnote{ 298 The TIOBE index~\cite{TIOBE} for December 2019 ranks the top five \emph{popular} programming languages as Java 17\%, C 16\%, Python 10\%, and \CC 6\%, \Csharp 5\% = 54\%, and over the past 30 years, C has always ranked either first or second in popularity.} 299 allowing immediate dissemination. 300 This paper discusses the design philosophy and implementation of advanced language-level control-flow and concurrent/parallel features in \CFA and its runtime, which is written entirely in \CFA. 301 The \CFA control-flow framework extends ISO \Celeven~\cite{C11} with new call/return and concurrent/parallel control-flow. 302 303 % The call/return extensions retain state between callee and caller versus losing the callee's state on return; 304 % the concurrency extensions allow high-level management of threads. 305 306 Call/return control-flow with argument/parameter passing appeared in the first programming languages. 307 Over the past 50 years, call/return has been augmented with features like static/dynamic call, exceptions (multi-level return) and generators/coroutines (retain state between calls). 308 While \CFA has mechanisms for dynamic call (algebraic effects) and exceptions\footnote{ 309 \CFA exception handling will be presented in a separate paper. 310 The key feature that dovetails with this paper is nonlocal exceptions allowing exceptions to be raised across stacks, with synchronous exceptions raised among coroutines and asynchronous exceptions raised among threads, similar to that in \uC~\cite[\S~5]{uC++}}, this work only discusses retaining state between calls via generators/coroutines. 311 \newterm{Coroutining} was introduced by Conway~\cite{Conway63} (1963), discussed by Knuth~\cite[\S~1.4.2]{Knuth73V1}, implemented in Simula67~\cite{Simula67}, formalized by Marlin~\cite{Marlin80}, and is now popular and appears in old and new programming languages: CLU~\cite{CLU}, \Csharp~\cite{Csharp}, Ruby~\cite{Ruby}, Python~\cite{Python}, JavaScript~\cite{JavaScript}, Lua~\cite{Lua}, \CCtwenty~\cite{C++20Coroutine19}. 312 Coroutining is sequential execution requiring direct handoff among coroutines, \ie only the programmer is controlling execution order. 313 If coroutines transfer to an internal event-engine for scheduling the next coroutines, the program transitions into the realm of concurrency~\cite[\S~3]{Buhr05a}. 314 Coroutines are only a stepping stone towards concurrency where the commonality is that coroutines and threads retain state between calls. 315 316 \Celeven/\CCeleven define concurrency~\cite[\S~7.26]{C11}, but it is largely wrappers for a subset of the pthreads library~\cite{Pthreads}.\footnote{Pthreads concurrency is based on simple thread fork/join in a function and mutex/condition locks, which is low-level and error-prone} 317 Interestingly, almost a decade after the \Celeven standard, neither gcc-9, clang-9 nor msvc-19 (most recent versions) support the \Celeven include @threads.h@, indicating no interest in the C11 concurrency approach (possibly because of the recent effort to add concurrency to \CC). 318 While the \Celeven standard does not state a threading model, the historical association with pthreads suggests implementations would adopt kernel-level threading (1:1)~\cite{ThreadModel}, as for \CC. 316 319 In contrast, there has been a renewed interest during the past decade in user-level (M:N, green) threading in old and new programming languages. 317 320 As multi-core hardware became available in the 1980/90s, both user and kernel threading were examined. 318 321 Kernel threading was chosen, largely because of its simplicity and fit with the simpler operating systems and hardware architectures at the time, which gave it a performance advantage~\cite{Drepper03}. 319 322 Libraries like pthreads were developed for C, and the Solaris operating-system switched from user (JDK 1.1~\cite{JDK1.1}) to kernel threads. 320 As a result, languages like Java, Scala, Objective-C~\cite{obj-c-book}, \CCeleven~\cite{C11}, and C\#~\cite{Csharp} adopt the 1:1 kernel-threading model, with a variety of presentation mechanisms.321 From 2000 onwards, languages like Go~\cite{Go}, Erlang~\cite{Erlang}, Haskell~\cite{Haskell}, D~\cite{D}, and \uC~\cite{uC++,uC++book} have championed the M:N user-threading model, and many user-threading libraries have appeared~\cite{Qthreads,MPC,Marcel}, including putting green threads back into Java~\cite{Quasar}.322 The main argument for user-level threading is that it is lighter weight than kernel threading (locking and context switching do not cross the kernel boundary), so there is less restriction on programming styles that encourage large numbers of threads performing medium work unitsto facilitate load balancing by the runtime~\cite{Verch12}.323 As a result, many current languages implementations adopt the 1:1 kernel-threading model, like Java (Scala), Objective-C~\cite{obj-c-book}, \CCeleven~\cite{C11}, C\#~\cite{Csharp} and Rust~\cite{Rust}, with a variety of presentation mechanisms. 324 From 2000 onwards, several language implementations have championed the M:N user-threading model, like Go~\cite{Go}, Erlang~\cite{Erlang}, Haskell~\cite{Haskell}, D~\cite{D}, and \uC~\cite{uC++,uC++book}, including putting green threads back into Java~\cite{Quasar}, and many user-threading libraries have appeared~\cite{Qthreads,MPC,Marcel}. 325 The main argument for user-level threading is that it is lighter weight than kernel threading (locking and context switching do not cross the kernel boundary), so there is less restriction on programming styles that encourages large numbers of threads performing medium-sized work to facilitate load balancing by the runtime~\cite{Verch12}. 323 326 As well, user-threading facilitates a simpler concurrency approach using thread objects that leverage sequential patterns versus events with call-backs~\cite{Adya02,vonBehren03}. 324 327 Finally, performant user-threading implementations (both time and space) meet or exceed direct kernel-threading implementations, while achieving the programming advantages of high concurrency levels and safety. 325 328 326 A further effort over the past two decades is the development of language memory models to deal with the conflict between language features and compiler/hardware optimizations, \ iesome language features are unsafe in the presence of aggressive sequential optimizations~\cite{Buhr95a,Boehm05}.329 A further effort over the past two decades is the development of language memory models to deal with the conflict between language features and compiler/hardware optimizations, \eg some language features are unsafe in the presence of aggressive sequential optimizations~\cite{Buhr95a,Boehm05}. 327 330 The consequence is that a language must provide sufficient tools to program around safety issues, as inline and library code is all sequential to the compiler. 328 331 One solution is low-level qualifiers and functions (\eg @volatile@ and atomics) allowing \emph{programmers} to explicitly write safe (race-free~\cite{Boehm12}) programs. 329 A safer solution is high-level language constructs so the \emph{compiler} knows the optimization boundaries, and hence, provides implicit safety. 330 This problem is best known with respect to concurrency, but applies to other complex control-flow, like exceptions\footnote{ 331 \CFA exception handling will be presented in a separate paper. 332 The key feature that dovetails with this paper is nonlocal exceptions allowing exceptions to be raised across stacks, with synchronous exceptions raised among coroutines and asynchronous exceptions raised among threads, similar to that in \uC~\cite[\S~5]{uC++} 333 } and coroutines. 334 Finally, language solutions allow matching constructs with language paradigm, \ie imperative and functional languages often have different presentations of the same concept to fit their programming model. 335 336 Finally, it is important for a language to provide safety over performance \emph{as the default}, allowing careful reduction of safety for performance when necessary. 337 Two concurrency violations of this philosophy are \emph{spurious wakeup} (random wakeup~\cite[\S~8]{Buhr05a}) and \emph{barging}\footnote{ 338 The notion of competitive succession instead of direct handoff, \ie a lock owner releases the lock and an arriving thread acquires it ahead of preexisting waiter threads. 332 A safer solution is high-level language constructs so the \emph{compiler} knows the concurrency boundaries (where mutual exclusion and synchronization are acquired/released) and provide implicit safety at and across these boundaries. 333 While the optimization problem is best known with respect to concurrency, it applies to other complex control-flow, like exceptions and coroutines. 334 As well, language solutions allow matching the language paradigm with the approach, \eg matching the functional paradigm with data-flow programming or the imperative paradigm with thread programming. 335 336 Finally, it is important for a language to provide safety over performance \emph{as the default}, allowing careful reduction of safety (unsafe code) for performance when necessary. 337 Two concurrency violations of this philosophy are \emph{spurious wakeup} (random wakeup~\cite[\S~9]{Buhr05a}) and \emph{barging}\footnote{ 338 Barging is competitive succession instead of direct handoff, \ie after a lock is released both arriving and preexisting waiter threads compete to acquire the lock. 339 Hence, an arriving thread can temporally \emph{barge} ahead of threads already waiting for an event, which can repeat indefinitely leading to starvation of waiter threads. 339 340 } (signals-as-hints~\cite[\S~8]{Buhr05a}), where one is a consequence of the other, \ie once there is spurious wakeup, signals-as-hints follow. 340 However, spurious wakeup is \emph{not} a foundational concurrency property~\cite[\S~8]{Buhr05a}, it is a performance design choice. 341 Similarly, signals-as-hints are often a performance decision. 342 We argue removing spurious wakeup and signals-as-hints make concurrent programming significantly safer because it removes local non-determinism and matches with programmer expectation. 343 (Author experience teaching concurrency is that students are highly confused by these semantics.) 344 Clawing back performance, when local non-determinism is unimportant, should be an option not the default. 345 346 \begin{comment} 347 Most augmented traditional (Fortran 18~\cite{Fortran18}, Cobol 14~\cite{Cobol14}, Ada 12~\cite{Ada12}, Java 11~\cite{Java11}) and new languages (Go~\cite{Go}, Rust~\cite{Rust}, and D~\cite{D}), except \CC, diverge from C with different syntax and semantics, only interoperate indirectly with C, and are not systems languages, for those with managed memory. 348 As a result, there is a significant learning curve to move to these languages, and C legacy-code must be rewritten. 349 While \CC, like \CFA, takes an evolutionary approach to extend C, \CC's constantly growing complex and interdependent features-set (\eg objects, inheritance, templates, etc.) mean idiomatic \CC code is difficult to use from C, and C programmers must expend significant effort learning \CC. 350 Hence, rewriting and retraining costs for these languages, even \CC, are prohibitive for companies with a large C software-base. 351 \CFA with its orthogonal feature-set, its high-performance runtime, and direct access to all existing C libraries circumvents these problems. 352 \end{comment} 353 354 \CFA embraces user-level threading, language extensions for advanced control-flow, and safety as the default. 355 We present comparative examples so the reader can judge if the \CFA control-flow extensions are better and safer than those in other concurrent, imperative programming languages, and perform experiments to show the \CFA runtime is competitive with other similar mechanisms. 341 (Author experience teaching concurrency is that students are confused by these semantics.) 342 However, spurious wakeup is \emph{not} a foundational concurrency property~\cite[\S~9]{Buhr05a}; 343 it is a performance design choice. 344 We argue removing spurious wakeup and signals-as-hints make concurrent programming simpler and safer as there is less local non-determinism to manage. 345 If barging acquisition is allowed, its specialized performance advantage should be available as an option not the default. 346 347 \CFA embraces language extensions for advanced control-flow, user-level threading, and safety as the default. 348 We present comparative examples to support our argument that the \CFA control-flow extensions are as expressive and safe as those in other concurrent imperative programming languages, and perform experiments to show the \CFA runtime is competitive with other similar mechanisms. 356 349 The main contributions of this work are: 357 \begin{itemize}[topsep=3pt,itemsep= 1pt]350 \begin{itemize}[topsep=3pt,itemsep=0pt] 358 351 \item 359 language-level generators, coroutines and user-level threading, which respect the expectations of C programmers. 352 a set of fundamental execution properties that dictate which language-level control-flow features need to be supported, 353 360 354 \item 361 monitor synchronization without barging, and the ability to safely acquiring multiple monitors \emph{simultaneously} (deadlock free), while seamlessly integrating these capabilities with all monitor synchronization mechanisms. 355 integration of these language-level control-flow features, while respecting the style and expectations of C programmers, 356 362 357 \item 363 providing statically type-safe interfaces that integrate with the \CFA polymorphic type-system and other language features. 358 monitor synchronization without barging, and the ability to safely acquiring multiple monitors \emph{simultaneously} (deadlock free), while seamlessly integrating these capabilities with all monitor synchronization mechanisms, 359 360 \item 361 providing statically type-safe interfaces that integrate with the \CFA polymorphic type-system and other language features, 362 364 363 % \item 365 364 % library extensions for executors, futures, and actors built on the basic mechanisms. 365 366 366 \item 367 a runtime system with no spurious wakeup. 367 a runtime system without spurious wake-up and no performance loss, 368 368 369 \item 369 a dynamic partitioning mechanism to segregate the execution environment for specialized requirements. 370 a dynamic partitioning mechanism to segregate groups of executing user and kernel threads performing specialized work (\eg web-server or compute engine) or requiring different scheduling (\eg NUMA or real-time). 371 370 372 % \item 371 373 % a non-blocking I/O library 374 372 375 \item 373 experimental results showing comparable performance of the new features with similar mechanisms in other programminglanguages.376 experimental results showing comparable performance of the \CFA features with similar mechanisms in other languages. 374 377 \end{itemize} 375 378 376 Section~\ref{s:StatefulFunction} begins advanced control by introducing sequential functions that retain data and execution state between calls, which produces constructs @generator@ and @coroutine@. 377 Section~\ref{s:Concurrency} begins concurrency, or how to create (fork) and destroy (join) a thread, which produces the @thread@ construct. 379 Section~\ref{s:FundamentalExecutionProperties} presents the compositional hierarchy of execution properties directing the design of control-flow features in \CFA. 380 Section~\ref{s:StatefulFunction} begins advanced control by introducing sequential functions that retain data and execution state between calls producing constructs @generator@ and @coroutine@. 381 Section~\ref{s:Concurrency} begins concurrency, or how to create (fork) and destroy (join) a thread producing the @thread@ construct. 378 382 Section~\ref{s:MutualExclusionSynchronization} discusses the two mechanisms to restricted nondeterminism when controlling shared access to resources (mutual exclusion) and timing relationships among threads (synchronization). 379 383 Section~\ref{s:Monitor} shows how both mutual exclusion and synchronization are safely embedded in the @monitor@ and @thread@ constructs. 380 384 Section~\ref{s:CFARuntimeStructure} describes the large-scale mechanism to structure (cluster) threads and virtual processors (kernel threads). 381 Section~\ref{s:Performance} uses a series of microbenchmarks to compare \CFA threading with pthreads, Java OpenJDK-9, Go 1.12.6 and \uC 7.0.0. 385 Section~\ref{s:Performance} uses a series of microbenchmarks to compare \CFA threading with pthreads, Java 11.0.6, Go 1.12.6, Rust 1.37.0, Python 3.7.6, Node.js 12.14.1, and \uC 7.0.0. 386 387 388 \section{Fundamental Execution Properties} 389 \label{s:FundamentalExecutionProperties} 390 391 The features in a programming language should be composed from a set of fundamental properties rather than an ad hoc collection chosen by the designers. 392 To this end, the control-flow features created for \CFA are based on the fundamental properties of any language with function-stack control-flow (see also \uC~\cite[pp.~140-142]{uC++}). 393 The fundamental properties are execution state, thread, and mutual-exclusion/synchronization (MES). 394 These independent properties can be used alone, in pairs, or in triplets to compose different language features, forming a compositional hierarchy where the most advanced feature has all the properties (state/thread/MES). 395 While it is possible for a language to only support the most advanced feature~\cite{Hermes90}, this unnecessarily complicates and makes inefficient solutions to certain classes of problems. 396 As is shown, each of the (non-rejected) composed features solves a particular set of problems, and hence, has a defensible position in a programming language. 397 If a compositional feature is missing, a programmer has too few/many fundamental properties resulting in a complex and/or is inefficient solution. 398 399 In detail, the fundamental properties are: 400 \begin{description}[leftmargin=\parindent,topsep=3pt,parsep=0pt] 401 \item[\newterm{execution state}:] 402 is the state information needed by a control-flow feature to initialize, manage compute data and execution location(s), and de-initialize. 403 State is retained in fixed-sized aggregate structures and dynamic-sized stack(s), often allocated in the heap(s) managed by the runtime system. 404 The lifetime of the state varies with the control-flow feature, where longer life-time and dynamic size provide greater power but also increase usage complexity and cost. 405 Control-flow transfers among execution states occurs in multiple ways, such as function call, context switch, asynchronous await, etc. 406 Because the programming language determines what constitutes an execution state, implicitly manages this state, and defines movement mechanisms among states, execution state is an elementary property of the semantics of a programming language. 407 % An execution-state is related to the notion of a process continuation \cite{Hieb90}. 408 409 \item[\newterm{threading}:] 410 is execution of code that occurs independently of other execution, \ie the execution resulting from a thread is sequential. 411 Multiple threads provide \emph{concurrent execution}; 412 concurrent execution becomes parallel when run on multiple processing units (hyper-threading, cores, sockets). 413 There must be language mechanisms to create, block/unblock, and join with a thread. 414 415 \item[\newterm{MES}:] 416 is the concurrency mechanisms to perform an action without interruption and establish timing relationships among multiple threads. 417 These two properties are independent, \ie mutual exclusion cannot provide synchronization and vice versa without introducing additional threads~\cite[\S~4]{Buhr05a}. 418 Limiting MES, \eg no access to shared data, results in contrived solutions and inefficiency on multi-core von Neumann computers where shared memory is a foundational aspect of its design. 419 \end{description} 420 These properties are fundamental because they cannot be built from existing language features, \eg a basic programming language like C99~\cite{C99} cannot create new control-flow features, concurrency, or provide MES using atomic hardware mechanisms. 421 422 423 \subsection{Execution Properties} 424 425 Table~\ref{t:ExecutionPropertyComposition} shows how the three fundamental execution properties: state, thread, and mutual exclusion compose a hierarchy of control-flow features needed in a programming language. 426 (When doing case analysis, not all combinations are meaningful.) 427 Note, basic von Neumann execution requires at least one thread and an execution state providing some form of call stack. 428 For table entries missing these minimal components, the property is borrowed from the invoker (caller). 429 430 Case 1 is a function that borrows storage for its state (stack frame/activation) and a thread from its invoker and retains this state across \emph{callees}, \ie function local-variables are retained on the stack across calls. 431 Case 2 is case 1 with access to shared state so callers are restricted during update (mutual exclusion) and scheduling for other threads (synchronization). 432 Case 3 is a stateful function supporting resume/suspend along with call/return to retain state across \emph{callers}, but has some restrictions because the function's state is stackless. 433 Note, stackless functions still borrow the caller's stack and thread, where the stack is used to preserve state across its callees. 434 Case 4 is cases 2 and 3 with protection to shared state for stackless functions. 435 Cases 5 and 6 are the same as 3 and 4 but only the thread is borrowed as the function state is stackful, so resume/suspend is a context switch from the caller's to the function's stack. 436 Cases 7 and 8 are rejected because a function that is given a new thread must have its own stack where the thread begins and stack frames are stored for calls, \ie there is no stack to borrow. 437 Cases 9 and 10 are rejected because a thread with a fixed state (no stack) cannot accept calls, make calls, block, or be preempted, all of which require an unknown amount of additional dynamic state. 438 Hence, once started, this kind of thread must execute to completion, \ie computation only, which severely restricts runtime management. 439 Cases 11 and 12 have a stackful thread with and without safe access to shared state. 440 Execution properties increase the cost of creation and execution along with complexity of usage. 441 442 \begin{table} 443 \caption{Execution property composition} 444 \centering 445 \label{t:ExecutionPropertyComposition} 446 \renewcommand{\arraystretch}{1.25} 447 %\setlength{\tabcolsep}{5pt} 448 \begin{tabular}{c|c||l|l} 449 \multicolumn{2}{c||}{execution properties} & \multicolumn{2}{c}{mutual exclusion / synchronization} \\ 450 \hline 451 stateful & thread & \multicolumn{1}{c|}{No} & \multicolumn{1}{c}{Yes} \\ 452 \hline 453 \hline 454 No & No & \textbf{1}\ \ \ function & \textbf{2}\ \ \ @monitor@ function \\ 455 \hline 456 Yes (stackless) & No & \textbf{3}\ \ \ @generator@ & \textbf{4}\ \ \ @monitor@ @generator@ \\ 457 \hline 458 Yes (stackful) & No & \textbf{5}\ \ \ @coroutine@ & \textbf{6}\ \ \ @monitor@ @coroutine@ \\ 459 \hline 460 No & Yes & \textbf{7}\ \ \ {\color{red}rejected} & \textbf{8}\ \ \ {\color{red}rejected} \\ 461 \hline 462 Yes (stackless) & Yes & \textbf{9}\ \ \ {\color{red}rejected} & \textbf{10}\ \ \ {\color{red}rejected} \\ 463 \hline 464 Yes (stackful) & Yes & \textbf{11}\ \ \ @thread@ & \textbf{12}\ \ @monitor@ @thread@ \\ 465 \end{tabular} 466 \end{table} 467 468 Given the execution-properties taxonomy, programmers can now answer three basic questions: is state necessary across calls and how much, is a separate thread necessary, is access to shared state necessary. 469 The answers define the optimal language feature need for implementing a programming problem. 470 The next sections discusses how \CFA fills in the table with language features, while other programming languages may only provide a subset of the table. 471 472 473 \subsection{Design Requirements} 474 475 The following design requirements largely stem from building \CFA on top of C. 476 \begin{itemize}[topsep=3pt,parsep=0pt] 477 \item 478 All communication must be statically type checkable for early detection of errors and efficient code generation. 479 This requirement is consistent with the fact that C is a statically-typed programming-language. 480 481 \item 482 Direct interaction among language features must be possible allowing any feature to be selected without restricting comm\-unication. 483 For example, many concurrent languages do not provide direct communication (calls) among threads, \ie threads only communicate indirectly through monitors, channels, messages, and/or futures. 484 Indirect communication increases the number of objects, consuming more resources, and require additional synchronization and possibly data transfer. 485 486 \item 487 All communication is performed using function calls, \ie data is transmitted from argument to parameter and results are returned from function calls. 488 Alternative forms of communication, such as call-backs, message passing, channels, or communication ports, step outside of C's normal form of communication. 489 490 \item 491 All stateful features must follow the same declaration scopes and lifetimes as other language data. 492 For C that means at program startup, during block and function activation, and on demand using dynamic allocation. 493 494 \item 495 MES must be available implicitly in language constructs as well as explicitly for specialized requirements, because requiring programmers to build MES using low-level locks often leads to incorrect programs. 496 Furthermore, reducing synchronization scope by encapsulating it within language constructs further reduces errors in concurrent programs. 497 498 \item 499 Both synchronous and asynchronous communication are needed. 500 However, we believe the best way to provide asynchrony, such as call-buffering/chaining and/or returning futures~\cite{multilisp}, is building it from expressive synchronous features. 501 502 \item 503 Synchronization must be able to control the service order of requests including prioritizing selection from different kinds of outstanding requests, and postponing a request for an unspecified time while continuing to accept new requests. 504 Otherwise, certain concurrency problems are difficult, e.g.\ web server, disk scheduling, and the amount of concurrency is inhibited~\cite{Gentleman81}. 505 \end{itemize} 506 We have satisfied these requirements in \CFA while maintaining backwards compatibility with the huge body of legacy C programs. 507 % In contrast, other new programming languages must still access C programs (\eg operating-system service routines), but do so through fragile C interfaces. 508 509 510 \subsection{Asynchronous Await / Call} 511 512 Asynchronous await/call is a caller mechanism for structuring programs and/or increasing concurrency, where the caller (client) postpones an action into the future, which is subsequently executed by a callee (server). 513 The caller detects the action's completion through a \newterm{future}/\newterm{promise}. 514 The benefit is asynchronous caller execution with respect to the callee until future resolution. 515 For single-threaded languages like JavaScript, an asynchronous call passes a callee action, which is queued in the event-engine, and continues execution with a promise. 516 When the caller needs the promise to be fulfilled, it executes @await@. 517 A promise-completion call-back can be part of the callee action or the caller is rescheduled; 518 in either case, the call back is executed after the promise is fulfilled. 519 While asynchronous calls generate new callee (server) events, we content this mechanism is insufficient for advanced control-flow mechanisms like generators or coroutines (which are discussed next). 520 Specifically, control between caller and callee occurs indirectly through the event-engine precluding direct handoff and cycling among events, and requires complex resolution of a control promise and data. 521 Note, @async-await@ is just syntactic-sugar over the event engine so it does not solve these deficiencies. 522 For multi-threaded languages like Java, the asynchronous call queues a callee action with an executor (server), which subsequently executes the work by a thread in the executor thread-pool. 523 The problem is when concurrent work-units need to interact and/or block as this effects the executor, \eg stops threads. 524 While it is possible to extend this approach to support the necessary mechanisms, \eg message passing in Actors, we show monitors and threads provide an equally competitive approach that does not deviate from normal call communication and can be used to build asynchronous call, as is done in Java. 382 525 383 526 … … 385 528 \label{s:StatefulFunction} 386 529 387 The stateful function is an old idea~\cite{Conway63,Marlin80} that is new again~\cite{C++20Coroutine19}, where execution is temporarily suspended and later resumed, \eg plugin, device driver, finite-state machine. 388 Hence, a stateful function may not end when it returns to its caller, allowing it to be restarted with the data and execution location present at the point of suspension. 389 This capability is accomplished by retaining a data/execution \emph{closure} between invocations. 390 If the closure is fixed size, we call it a \emph{generator} (or \emph{stackless}), and its control flow is restricted, \eg suspending outside the generator is prohibited. 391 If the closure is variable size, we call it a \emph{coroutine} (or \emph{stackful}), and as the names implies, often implemented with a separate stack with no programming restrictions. 392 Hence, refactoring a stackless coroutine may require changing it to stackful. 393 A foundational property of all \emph{stateful functions} is that resume/suspend \emph{do not} cause incremental stack growth, \ie resume/suspend operations are remembered through the closure not the stack. 394 As well, activating a stateful function is \emph{asymmetric} or \emph{symmetric}, identified by resume/suspend (no cycles) and resume/resume (cycles). 395 A fixed closure activated by modified call/return is faster than a variable closure activated by context switching. 396 Additionally, any storage management for the closure (especially in unmanaged languages, \ie no garbage collection) must also be factored into design and performance. 397 Therefore, selecting between stackless and stackful semantics is a tradeoff between programming requirements and performance, where stackless is faster and stackful is more general. 398 Note, creation cost is amortized across usage, so activation cost is usually the dominant factor. 530 A \emph{stateful function} has the ability to remember state between calls, where state can be either data or execution, \eg plugin, device driver, finite-state machine (FSM). 531 A simple technique to retain data state between calls is @static@ declarations within a function, which is often implemented by hoisting the declarations to the global scope but hiding the names within the function using name mangling. 532 However, each call starts the function at the top making it difficult to determine the last point of execution in an algorithm, and requiring multiple flag variables and testing to reestablish the continuation point. 533 Hence, the next step of generalizing function state is implicitly remembering the return point between calls and reentering the function at this point rather than the top, called \emph{generators}\,/\,\emph{iterators} or \emph{stackless coroutines}. 534 For example, a Fibonacci generator retains data and execution state allowing it to remember prior values needed to generate the next value and the location in the algorithm to compute that value. 535 The next step of generalization is instantiating the function to allow multiple named instances, \eg multiple Fibonacci generators, where each instance has its own state, and hence, can generate an independent sequence of values. 536 Note, a subset of generator state is a function \emph{closure}, \ie the technique of capturing lexical references when returning a nested function. 537 A further generalization is adding a stack to a generator's state, called a \emph{coroutine}, so it can suspend outside of itself, \eg call helper functions to arbitrary depth before suspending back to its resumer without unwinding these calls. 538 For example, a coroutine iterator for a binary tree can stop the traversal at the visit point (pre, infix, post traversal), return the node value to the caller, and then continue the recursive traversal from the current node on the next call. 539 540 There are two styles of activating a stateful function, \emph{asymmetric} or \emph{symmetric}, identified by resume/suspend (no cycles) and resume/resume (cycles). 541 These styles \emph{do not} cause incremental stack growth, \eg a million resume/suspend or resume/resume cycles do not remember each cycle just the last resumer for each cycle. 542 Selecting between stackless/stackful semantics and asymmetric/symmetric style is a tradeoff between programming requirements, performance, and design, where stackless is faster and smaller (modified call/return between closures), stackful is more general but slower and larger (context switching between distinct stacks), and asymmetric is simpler control-flow than symmetric. 543 Additionally, storage management for the closure/stack (especially in unmanaged languages, \ie no garbage collection) must be factored into design and performance. 544 Note, creation cost (closure/stack) is amortized across usage, so activation cost (resume/suspend) is usually the dominant factor. 545 546 % The stateful function is an old idea~\cite{Conway63,Marlin80} that is new again~\cite{C++20Coroutine19}, where execution is temporarily suspended and later resumed, \eg plugin, device driver, finite-state machine. 547 % Hence, a stateful function may not end when it returns to its caller, allowing it to be restarted with the data and execution location present at the point of suspension. 548 % If the closure is fixed size, we call it a \emph{generator} (or \emph{stackless}), and its control flow is restricted, \eg suspending outside the generator is prohibited. 549 % If the closure is variable size, we call it a \emph{coroutine} (or \emph{stackful}), and as the names implies, often implemented with a separate stack with no programming restrictions. 550 % Hence, refactoring a stackless coroutine may require changing it to stackful. 551 % A foundational property of all \emph{stateful functions} is that resume/suspend \emph{do not} cause incremental stack growth, \ie resume/suspend operations are remembered through the closure not the stack. 552 % As well, activating a stateful function is \emph{asymmetric} or \emph{symmetric}, identified by resume/suspend (no cycles) and resume/resume (cycles). 553 % A fixed closure activated by modified call/return is faster than a variable closure activated by context switching. 554 % Additionally, any storage management for the closure (especially in unmanaged languages, \ie no garbage collection) must also be factored into design and performance. 555 % Therefore, selecting between stackless and stackful semantics is a tradeoff between programming requirements and performance, where stackless is faster and stackful is more general. 556 % nppNote, creation cost is amortized across usage, so activation cost is usually the dominant factor. 557 558 For example, Python presents asymmetric generators as a function object, \uC presents symmetric coroutines as a \lstinline[language=C++]|class|-like object, and many languages present threading using function pointers, @pthreads@~\cite{Butenhof97}, \Csharp~\cite{Csharp}, Go~\cite{Go}, and Scala~\cite{Scala}. 559 \begin{center} 560 \begin{tabular}{@{}l|l|l@{}} 561 \multicolumn{1}{@{}c|}{Python asymmetric generator} & \multicolumn{1}{c|}{\uC symmetric coroutine} & \multicolumn{1}{c@{}}{Pthreads thread} \\ 562 \hline 563 \begin{python} 564 `def Gen():` $\LstCommentStyle{\color{red}// function}$ 565 ... yield val ... 566 gen = Gen() 567 for i in range( 10 ): 568 print( next( gen ) ) 569 \end{python} 570 & 571 \begin{uC++} 572 `_Coroutine Cycle {` $\LstCommentStyle{\color{red}// class}$ 573 Cycle * p; 574 void main() { p->cycle(); } 575 void cycle() { resume(); } `};` 576 Cycle c1, c2; c1.p=&c2; c2.p=&c1; c1.cycle(); 577 \end{uC++} 578 & 579 \begin{cfa} 580 void * rtn( void * arg ) { ... } 581 int i = 3, rc; 582 pthread_t t; $\C{// thread id}$ 583 $\LstCommentStyle{\color{red}// function pointer}$ 584 rc=pthread_create(&t, `rtn`, (void *)i); 585 \end{cfa} 586 \end{tabular} 587 \end{center} 588 \CFA's preferred presentation model for generators/coroutines/threads is a hybrid of functions and classes, giving an object-oriented flavour. 589 Essentially, the generator/coroutine/thread function is semantically coupled with a generator/coroutine/thread custom type via the type's name. 590 The custom type solves several issues, while accessing the underlying mechanisms used by the custom types is still allowed for flexibility reasons. 591 Each custom type is discussed in detail in the following sections. 592 593 594 \subsection{Generator} 595 596 Stackless generators (Table~\ref{t:ExecutionPropertyComposition} case 3) have the potential to be very small and fast, \ie as small and fast as function call/return for both creation and execution. 597 The \CFA goal is to achieve this performance target, possibly at the cost of some semantic complexity. 598 A series of different kinds of generators and their implementation demonstrate how this goal is accomplished.\footnote{ 599 The \CFA operator syntax uses \lstinline|?| to denote operands, which allows precise definitions for pre, post, and infix operators, \eg \lstinline|?++|, \lstinline|++?|, and \lstinline|?+?|, in addition \lstinline|?\{\}| denotes a constructor, as in \lstinline|foo `f` = `\{`...`\}`|, \lstinline|^?\{\}| denotes a destructor, and \lstinline|?()| is \CC function call \lstinline|operator()|. 600 Operator \lstinline+|+ is overloaded for printing, like bit-shift \lstinline|<<| in \CC. 601 The \CFA \lstinline|with| clause opens an aggregate scope making its fields directly accessible, like Pascal \lstinline|with|, but using parallel semantics; 602 multiple aggregates may be opened. 603 \CFA has rebindable references \lstinline|int i, & ip = i, j; `&ip = &j;`| and non-rebindable references \lstinline|int i, & `const` ip = i, j; `&ip = &j;` // disallowed|. 604 }% 399 605 400 606 \begin{figure} … … 410 616 411 617 618 619 412 620 int fn = f->fn; f->fn = f->fn1; 413 621 f->fn1 = f->fn + fn; 414 622 return fn; 415 416 623 } 417 624 int main() { … … 432 639 void `main(Fib & fib)` with(fib) { 433 640 641 434 642 [fn1, fn] = [1, 0]; 435 643 for () { … … 451 659 \begin{cfa}[aboveskip=0pt,belowskip=0pt] 452 660 typedef struct { 453 int fn1, fn; void * `next`;661 int `restart`, fn1, fn; 454 662 } Fib; 455 #define FibCtor { 1, 0, NULL}663 #define FibCtor { `0`, 1, 0 } 456 664 Fib * comain( Fib * f ) { 457 if ( f->next ) goto *f->next; 458 f->next = &&s1; 665 `static void * states[] = {&&s0, &&s1};` 666 `goto *states[f->restart];` 667 s0: f->`restart` = 1; 459 668 for ( ;; ) { 460 669 return f; 461 670 s1:; int fn = f->fn + f->fn1; 462 671 f->fn1 = f->fn; f->fn = fn; 463 672 } 464 673 } … … 472 681 \end{lrbox} 473 682 474 \subfloat[C asymmetric generator]{\label{f:CFibonacci}\usebox\myboxA}683 \subfloat[C]{\label{f:CFibonacci}\usebox\myboxA} 475 684 \hspace{3pt} 476 685 \vrule 477 686 \hspace{3pt} 478 \subfloat[\CFA asymmetric generator]{\label{f:CFAFibonacciGen}\usebox\myboxB}687 \subfloat[\CFA]{\label{f:CFAFibonacciGen}\usebox\myboxB} 479 688 \hspace{3pt} 480 689 \vrule 481 690 \hspace{3pt} 482 \subfloat[C generat or implementation]{\label{f:CFibonacciSim}\usebox\myboxC}691 \subfloat[C generated code for \CFA version]{\label{f:CFibonacciSim}\usebox\myboxC} 483 692 \caption{Fibonacci (output) asymmetric generator} 484 693 \label{f:FibonacciAsymmetricGenerator} … … 493 702 }; 494 703 void ?{}( Fmt & fmt ) { `resume(fmt);` } // constructor 495 void ^?{}( Fmt & f ) with(f) { $\C[ 1.75in]{// destructor}$704 void ^?{}( Fmt & f ) with(f) { $\C[2.25in]{// destructor}$ 496 705 if ( g != 0 || b != 0 ) sout | nl; } 497 706 void `main( Fmt & f )` with(f) { … … 499 708 for ( ; g < 5; g += 1 ) { $\C{// groups}$ 500 709 for ( ; b < 4; b += 1 ) { $\C{// blocks}$ 501 `suspend;` $\C{// wait for character}$502 while ( ch == '\n' ) `suspend;` // ignore503 sout | ch; // newline504 } sout | " "; // block spacer505 } sout | nl; // group newline710 do { `suspend;` $\C{// wait for character}$ 711 while ( ch == '\n' ); // ignore newline 712 sout | ch; $\C{// print character}$ 713 } sout | " "; $\C{// block separator}$ 714 } sout | nl; $\C{// group separator}$ 506 715 } 507 716 } … … 521 730 \begin{cfa}[aboveskip=0pt,belowskip=0pt] 522 731 typedef struct { 523 void * next;732 int `restart`, g, b; 524 733 char ch; 525 int g, b;526 734 } Fmt; 527 735 void comain( Fmt * f ) { 528 if ( f->next ) goto *f->next; 529 f->next = &&s1; 736 `static void * states[] = {&&s0, &&s1};` 737 `goto *states[f->restart];` 738 s0: f->`restart` = 1; 530 739 for ( ;; ) { 531 740 for ( f->g = 0; f->g < 5; f->g += 1 ) { 532 741 for ( f->b = 0; f->b < 4; f->b += 1 ) { 533 return;534 s1:; while ( f->ch == '\n' ) return;742 do { return; s1: ; 743 } while ( f->ch == '\n' ); 535 744 printf( "%c", f->ch ); 536 745 } printf( " " ); … … 539 748 } 540 749 int main() { 541 Fmt fmt = { NULL}; comain( &fmt ); // prime750 Fmt fmt = { `0` }; comain( &fmt ); // prime 542 751 for ( ;; ) { 543 752 scanf( "%c", &fmt.ch ); … … 550 759 \end{lrbox} 551 760 552 \subfloat[\CFA asymmetric generator]{\label{f:CFAFormatGen}\usebox\myboxA}553 \hspace{3 pt}761 \subfloat[\CFA]{\label{f:CFAFormatGen}\usebox\myboxA} 762 \hspace{35pt} 554 763 \vrule 555 764 \hspace{3pt} 556 \subfloat[C generat or simulation]{\label{f:CFormatSim}\usebox\myboxB}765 \subfloat[C generated code for \CFA version]{\label{f:CFormatGenImpl}\usebox\myboxB} 557 766 \hspace{3pt} 558 767 \caption{Formatter (input) asymmetric generator} … … 560 769 \end{figure} 561 770 562 Stateful functions appear as generators, coroutines, and threads, where presentations are based on function objects or pointers~\cite{Butenhof97, C++14, MS:VisualC++, BoostCoroutines15}. 563 For example, Python presents generators as a function object: 564 \begin{python} 565 def Gen(): 566 ... `yield val` ... 567 gen = Gen() 568 for i in range( 10 ): 569 print( next( gen ) ) 570 \end{python} 571 Boost presents coroutines in terms of four functor object-types: 572 \begin{cfa} 573 asymmetric_coroutine<>::pull_type 574 asymmetric_coroutine<>::push_type 575 symmetric_coroutine<>::call_type 576 symmetric_coroutine<>::yield_type 577 \end{cfa} 578 and many languages present threading using function pointers, @pthreads@~\cite{Butenhof97}, \Csharp~\cite{Csharp}, Go~\cite{Go}, and Scala~\cite{Scala}, \eg pthreads: 579 \begin{cfa} 580 void * rtn( void * arg ) { ... } 581 int i = 3, rc; 582 pthread_t t; $\C{// thread id}$ 583 `rc = pthread_create( &t, rtn, (void *)i );` $\C{// create and initialized task, type-unsafe input parameter}$ 584 \end{cfa} 585 % void mycor( pthread_t cid, void * arg ) { 586 % int * value = (int *)arg; $\C{// type unsafe, pointer-size only}$ 587 % // thread body 588 % } 589 % int main() { 590 % int input = 0, output; 591 % coroutine_t cid = coroutine_create( &mycor, (void *)&input ); $\C{// type unsafe, pointer-size only}$ 592 % coroutine_resume( cid, (void *)input, (void **)&output ); $\C{// type unsafe, pointer-size only}$ 593 % } 594 \CFA's preferred presentation model for generators/coroutines/threads is a hybrid of objects and functions, with an object-oriented flavour. 595 Essentially, the generator/coroutine/thread function is semantically coupled with a generator/coroutine/thread custom type. 596 The custom type solves several issues, while accessing the underlying mechanisms used by the custom types is still allowed. 597 598 599 \subsection{Generator} 600 601 Stackless generators have the potential to be very small and fast, \ie as small and fast as function call/return for both creation and execution. 602 The \CFA goal is to achieve this performance target, possibly at the cost of some semantic complexity. 603 A series of different kinds of generators and their implementation demonstrate how this goal is accomplished. 604 605 Figure~\ref{f:FibonacciAsymmetricGenerator} shows an unbounded asymmetric generator for an infinite sequence of Fibonacci numbers written in C and \CFA, with a simple C implementation for the \CFA version. 771 Figure~\ref{f:FibonacciAsymmetricGenerator} shows an unbounded asymmetric generator for an infinite sequence of Fibonacci numbers written (left to right) in C, \CFA, and showing the underlying C implementation for the \CFA version. 606 772 This generator is an \emph{output generator}, producing a new result on each resumption. 607 773 To compute Fibonacci, the previous two values in the sequence are retained to generate the next value, \ie @fn1@ and @fn@, plus the execution location where control restarts when the generator is resumed, \ie top or middle. … … 611 777 The C version only has the middle execution state because the top execution state is declaration initialization. 612 778 Figure~\ref{f:CFAFibonacciGen} shows the \CFA approach, which also has a manual closure, but replaces the structure with a custom \CFA @generator@ type. 613 This generator type is then connected to a function that \emph{must be named \lstinline|main|},\footnote{ 614 The name \lstinline|main| has special meaning in C, specifically the function where a program starts execution. 615 Hence, overloading this name for other starting points (generator/coroutine/thread) is a logical extension.} 616 called a \emph{generator main},which takes as its only parameter a reference to the generator type. 779 Each generator type must have a function named \lstinline|main|, 780 % \footnote{ 781 % The name \lstinline|main| has special meaning in C, specifically the function where a program starts execution. 782 % Leveraging starting semantics to this name for generator/coroutine/thread is a logical extension.} 783 called a \emph{generator main} (leveraging the starting semantics for program @main@ in C), which is connected to the generator type via its single reference parameter. 617 784 The generator main contains @suspend@ statements that suspend execution without ending the generator versus @return@. 618 For the Fibonacci generator-main,\footnote{ 619 The \CFA \lstinline|with| opens an aggregate scope making its fields directly accessible, like Pascal \lstinline|with|, but using parallel semantics. 620 Multiple aggregates may be opened.} 785 For the Fibonacci generator-main, 621 786 the top initialization state appears at the start and the middle execution state is denoted by statement @suspend@. 622 787 Any local variables in @main@ \emph{are not retained} between calls; … … 627 792 Resuming an ended (returned) generator is undefined. 628 793 Function @resume@ returns its argument generator so it can be cascaded in an expression, in this case to print the next Fibonacci value @fn@ computed in the generator instance. 629 Figure~\ref{f:CFibonacciSim} shows the C implementation of the \CFA generator only needs one additional field, @next@, to handle retention of execution state. 630 The computed @goto@ at the start of the generator main, which branches after the previous suspend, adds very little cost to the resume call. 631 Finally, an explicit generator type provides both design and performance benefits, such as multiple type-safe interface functions taking and returning arbitrary types.\footnote{ 632 The \CFA operator syntax uses \lstinline|?| to denote operands, which allows precise definitions for pre, post, and infix operators, \eg \lstinline|++?|, \lstinline|?++|, and \lstinline|?+?|, in addition \lstinline|?\{\}| denotes a constructor, as in \lstinline|foo `f` = `\{`...`\}`|, \lstinline|^?\{\}| denotes a destructor, and \lstinline|?()| is \CC function call \lstinline|operator()|. 633 }% 794 Figure~\ref{f:CFibonacciSim} shows the C implementation of the \CFA asymmetric generator. 795 Only one execution-state field, @restart@, is needed to subscript the suspension points in the generator. 796 At the start of the generator main, the @static@ declaration, @states@, is initialized to the N suspend points in the generator (where operator @&&@ dereferences/references a label~\cite{gccValueLabels}). 797 Next, the computed @goto@ selects the last suspend point and branches to it. 798 The cost of setting @restart@ and branching via the computed @goto@ adds very little cost to the suspend/resume calls. 799 800 An advantage of the \CFA explicit generator type is the ability to allow multiple type-safe interface functions taking and returning arbitrary types. 634 801 \begin{cfa} 635 802 int ?()( Fib & fib ) { return `resume( fib )`.fn; } $\C[3.9in]{// function-call interface}$ 636 int ?()( Fib & fib, int N ) { for ( N - 1 ) `fib()`; return `fib()`; } $\C{// use function-call interface to skip N values}$ 637 double ?()( Fib & fib ) { return (int)`fib()` / 3.14159; } $\C{// different return type, cast prevents recursive call}\CRT$ 638 sout | (int)f1() | (double)f1() | f2( 2 ); // alternative interface, cast selects call based on return type, step 2 values 803 int ?()( Fib & fib, int N ) { for ( N - 1 ) `fib()`; return `fib()`; } $\C{// add parameter to skip N values}$ 804 double ?()( Fib & fib ) { return (int)`fib()` / 3.14159; } $\C{// different return type, cast prevents recursive call}$ 805 Fib f; int i; double d; 806 i = f(); i = f( 2 ); d = f(); $\C{// alternative interfaces}\CRT$ 639 807 \end{cfa} 640 808 Now, the generator can be a separately compiled opaque-type only accessed through its interface functions. 641 809 For contrast, Figure~\ref{f:PythonFibonacci} shows the equivalent Python Fibonacci generator, which does not use a generator type, and hence only has a single interface, but an implicit closure. 642 810 643 Having to manually create the generator closure by moving local-state variables into the generator type is an additional programmer burden. 644 (This restriction is removed by the coroutine in Section~\ref{s:Coroutine}.) 645 This requirement follows from the generality of variable-size local-state, \eg local state with a variable-length array requires dynamic allocation because the array size is unknown at compile time. 811 \begin{figure} 812 %\centering 813 \newbox\myboxA 814 \begin{lrbox}{\myboxA} 815 \begin{python}[aboveskip=0pt,belowskip=0pt] 816 def Fib(): 817 fn1, fn = 0, 1 818 while True: 819 `yield fn1` 820 fn1, fn = fn, fn1 + fn 821 f1 = Fib() 822 f2 = Fib() 823 for i in range( 10 ): 824 print( next( f1 ), next( f2 ) ) 825 826 827 828 829 830 831 832 833 834 835 \end{python} 836 \end{lrbox} 837 838 \newbox\myboxB 839 \begin{lrbox}{\myboxB} 840 \begin{python}[aboveskip=0pt,belowskip=0pt] 841 def Fmt(): 842 try: 843 while True: $\C[2.5in]{\# until destructor call}$ 844 for g in range( 5 ): $\C{\# groups}$ 845 for b in range( 4 ): $\C{\# blocks}$ 846 while True: 847 ch = (yield) $\C{\# receive from send}$ 848 if '\n' not in ch: $\C{\# ignore newline}$ 849 break 850 print( ch, end='' ) $\C{\# print character}$ 851 print( ' ', end='' ) $\C{\# block separator}$ 852 print() $\C{\# group separator}$ 853 except GeneratorExit: $\C{\# destructor}$ 854 if g != 0 | b != 0: $\C{\# special case}$ 855 print() 856 fmt = Fmt() 857 `next( fmt )` $\C{\# prime, next prewritten}$ 858 for i in range( 41 ): 859 `fmt.send( 'a' );` $\C{\# send to yield}$ 860 \end{python} 861 \end{lrbox} 862 863 \hspace{30pt} 864 \subfloat[Fibonacci]{\label{f:PythonFibonacci}\usebox\myboxA} 865 \hspace{3pt} 866 \vrule 867 \hspace{3pt} 868 \subfloat[Formatter]{\label{f:PythonFormatter}\usebox\myboxB} 869 \caption{Python generator} 870 \label{f:PythonGenerator} 871 \end{figure} 872 873 Having to manually create the generator closure by moving local-state variables into the generator type is an additional programmer burden (removed by the coroutine in Section~\ref{s:Coroutine}). 874 This manual requirement follows from the generality of allowing variable-size local-state, \eg local state with a variable-length array requires dynamic allocation as the array size is unknown at compile time. 646 875 However, dynamic allocation significantly increases the cost of generator creation/destruction and is a showstopper for embedded real-time programming. 647 876 But more importantly, the size of the generator type is tied to the local state in the generator main, which precludes separate compilation of the generator main, \ie a generator must be inlined or local state must be dynamically allocated. 648 With respect to safety, we believe static analysis can discriminate local state from temporary variables in a generator, \ie variable usage spanning @suspend@, and generate a compile-time error.649 Finally, our current experience is that most generatorproblems have simple data state, including local state, but complex execution state, so the burden of creating the generator type is small.877 With respect to safety, we believe static analysis can discriminate persistent generator state from temporary generator-main state and raise a compile-time error for temporary usage spanning suspend points. 878 Our experience using generators is that the problems have simple data state, including local state, but complex execution state, so the burden of creating the generator type is small. 650 879 As well, C programmers are not afraid of this kind of semantic programming requirement, if it results in very small, fast generators. 651 880 … … 669 898 The example takes advantage of resuming a generator in the constructor to prime the loops so the first character sent for formatting appears inside the nested loops. 670 899 The destructor provides a newline, if formatted text ends with a full line. 671 Figure~\ref{f:CFormatSim} shows the C implementation of the \CFA input generator with one additional field and the computed @goto@. 672 For contrast, Figure~\ref{f:PythonFormatter} shows the equivalent Python format generator with the same properties as the Fibonacci generator. 673 674 Figure~\ref{f:DeviceDriverGen} shows a \emph{killer} asymmetric generator, a device-driver, because device drivers caused 70\%-85\% of failures in Windows/Linux~\cite{Swift05}. 675 Device drives follow the pattern of simple data state but complex execution state, \ie finite state-machine (FSM) parsing a protocol. 676 For example, the following protocol: 900 Figure~\ref{f:CFormatGenImpl} shows the C implementation of the \CFA input generator with one additional field and the computed @goto@. 901 For contrast, Figure~\ref{f:PythonFormatter} shows the equivalent Python format generator with the same properties as the format generator. 902 903 % https://dl-acm-org.proxy.lib.uwaterloo.ca/ 904 905 Figure~\ref{f:DeviceDriverGen} shows an important application for an asymmetric generator, a device-driver, because device drivers are a significant source of operating-system errors: 85\% in Windows XP~\cite[p.~78]{Swift05} and 51.6\% in Linux~\cite[p.~1358,]{Xiao19}. %\cite{Palix11} 906 Swift \etal~\cite[p.~86]{Swift05} restructure device drivers using the Extension Procedure Call (XPC) within the kernel via functions @nooks_driver_call@ and @nooks_kernel_call@, which have coroutine properties context switching to separate stacks with explicit hand-off calls; 907 however, the calls do not retain execution state, and hence always start from the top. 908 The alternative approach for implementing device drivers is using stack-ripping. 909 However, Adya \etal~\cite{Adya02} argue against stack ripping in Section 3.2 and suggest a hybrid approach in Section 4 using cooperatively scheduled \emph{fibers}, which is coroutining. 910 911 As an example, the following protocol: 677 912 \begin{center} 678 913 \ldots\, STX \ldots\, message \ldots\, ESC ETX \ldots\, message \ldots\, ETX 2-byte crc \ldots 679 914 \end{center} 680 is anetwork message beginning with the control character STX, ending with an ETX, and followed by a 2-byte cyclic-redundancy check.915 is for a simple network message beginning with the control character STX, ending with an ETX, and followed by a 2-byte cyclic-redundancy check. 681 916 Control characters may appear in a message if preceded by an ESC. 682 917 When a message byte arrives, it triggers an interrupt, and the operating system services the interrupt by calling the device driver with the byte read from a hardware register. 683 The device driver returns a status code of its current state, and when a complete message is obtained, the operating system knows the message is in the message buffer. 684 Hence, the device driver is an input/output generator. 685 686 Note, the cost of creating and resuming the device-driver generator, @Driver@, is virtually identical to call/return, so performance in an operating-system kernel is excellent. 687 As well, the data state is small, where variables @byte@ and @msg@ are communication variables for passing in message bytes and returning the message, and variables @lnth@, @crc@, and @sum@ are local variable that must be retained between calls and are manually hoisted into the generator type. 688 % Manually, detecting and hoisting local-state variables is easy when the number is small. 689 In contrast, the execution state is large, with one @resume@ and seven @suspend@s. 690 Hence, the key benefits of the generator are correctness, safety, and maintenance because the execution states are transcribed directly into the programming language rather than using a table-driven approach. 691 Because FSMs can be complex and frequently occur in important domains, direct generator support is important in a system programming language. 918 The device driver returns a status code of its current state, and when a complete message is obtained, the operating system read the message accumulated in the supplied buffer. 919 Hence, the device driver is an input/output generator, where the cost of resuming the device-driver generator is the same as call/return, so performance in an operating-system kernel is excellent. 920 The key benefits of using a generator are correctness, safety, and maintenance because the execution states are transcribed directly into the programming language rather than table lookup or stack ripping. 921 The conclusion is that FSMs are complex and occur in important domains, so direct generator support is important in a system programming language. 692 922 693 923 \begin{figure} 694 924 \centering 695 \newbox\myboxA696 \begin{lrbox}{\myboxA}697 \begin{python}[aboveskip=0pt,belowskip=0pt]698 def Fib():699 fn1, fn = 0, 1700 while True:701 `yield fn1`702 fn1, fn = fn, fn1 + fn703 f1 = Fib()704 f2 = Fib()705 for i in range( 10 ):706 print( next( f1 ), next( f2 ) )707 708 709 710 711 712 713 \end{python}714 \end{lrbox}715 716 \newbox\myboxB717 \begin{lrbox}{\myboxB}718 \begin{python}[aboveskip=0pt,belowskip=0pt]719 def Fmt():720 try:721 while True:722 for g in range( 5 ):723 for b in range( 4 ):724 print( `(yield)`, end='' )725 print( ' ', end='' )726 print()727 except GeneratorExit:728 if g != 0 | b != 0:729 print()730 fmt = Fmt()731 `next( fmt )` # prime, next prewritten732 for i in range( 41 ):733 `fmt.send( 'a' );` # send to yield734 \end{python}735 \end{lrbox}736 \subfloat[Fibonacci]{\label{f:PythonFibonacci}\usebox\myboxA}737 \hspace{3pt}738 \vrule739 \hspace{3pt}740 \subfloat[Formatter]{\label{f:PythonFormatter}\usebox\myboxB}741 \caption{Python generator}742 \label{f:PythonGenerator}743 744 \bigskip745 746 925 \begin{tabular}{@{}l|l@{}} 747 926 \begin{cfa}[aboveskip=0pt,belowskip=0pt] … … 750 929 `generator` Driver { 751 930 Status status; 752 unsignedchar byte, * msg; // communication753 unsignedint lnth, sum; // local state754 unsignedshort int crc;931 char byte, * msg; // communication 932 int lnth, sum; // local state 933 short int crc; 755 934 }; 756 935 void ?{}( Driver & d, char * m ) { d.msg = m; } … … 800 979 (The trivial cycle is a generator resuming itself.) 801 980 This control flow is similar to recursion for functions but without stack growth. 802 The steps for symmetric control-flow are creating, executing, and terminating the cycle.981 Figure~\ref{f:PingPongFullCoroutineSteps} shows the steps for symmetric control-flow are creating, executing, and terminating the cycle. 803 982 Constructing the cycle must deal with definition-before-use to close the cycle, \ie, the first generator must know about the last generator, which is not within scope. 804 983 (This issue occurs for any cyclic data structure.) 805 % The example creates all the generatorsand then assigns the partners that form the cycle.806 % Alternatively, the constructor can assign the partners as they are declared, except the first, and the first-generator partner is set after the last generator declaration to close the cycle.807 Once the cycle is formed, the program main resumes one of the generators, and the generators can then traverse an arbitrary cycle using @resume@ to activate partner generator(s).984 The example creates the generators, @ping@/@pong@, and then assigns the partners that form the cycle. 985 % (Alternatively, the constructor can assign the partners as they are declared, except the first, and the first-generator partner is set after the last generator declaration to close the cycle.) 986 Once the cycle is formed, the program main resumes one of the generators, @ping@, and the generators can then traverse an arbitrary cycle using @resume@ to activate partner generator(s). 808 987 Terminating the cycle is accomplished by @suspend@ or @return@, both of which go back to the stack frame that started the cycle (program main in the example). 988 Note, the creator and starter may be different, \eg if the creator calls another function that starts the cycle. 809 989 The starting stack-frame is below the last active generator because the resume/resume cycle does not grow the stack. 810 Also, since local variables are not retained in the generator function, it does not contain any objects with destructors that must be called, so the cost is the same as a function return. 811 Destructor cost occurs when the generator instance is deallocated, which is easily controlled by the programmer. 812 813 Figure~\ref{f:CPingPongSim} shows the implementation of the symmetric generator, where the complexity is the @resume@, which needs an extension to the calling convention to perform a forward rather than backward jump. 814 This jump-starts at the top of the next generator main to re-execute the normal calling convention to make space on the stack for its local variables. 815 However, before the jump, the caller must reset its stack (and any registers) equivalent to a @return@, but subsequently jump forward. 816 This semantics is basically a tail-call optimization, which compilers already perform. 817 The example shows the assembly code to undo the generator's entry code before the direct jump. 818 This assembly code depends on what entry code is generated, specifically if there are local variables and the level of optimization. 819 To provide this new calling convention requires a mechanism built into the compiler, which is beyond the scope of \CFA at this time. 820 Nevertheless, it is possible to hand generate any symmetric generators for proof of concept and performance testing. 821 A compiler could also eliminate other artifacts in the generator simulation to further increase performance, \eg LLVM has various coroutine support~\cite{CoroutineTS}, and \CFA can leverage this support should it fork @clang@. 990 Also, since local variables are not retained in the generator function, there are no objects with destructors to be called, so the cost is the same as a function return. 991 Destructor cost occurs when the generator instance is deallocated by the creator. 822 992 823 993 \begin{figure} … … 826 996 \begin{cfa}[aboveskip=0pt,belowskip=0pt] 827 997 `generator PingPong` { 998 int N, i; // local state 828 999 const char * name; 829 int N;830 int i; // local state831 1000 PingPong & partner; // rebindable reference 832 1001 }; 833 1002 834 1003 void `main( PingPong & pp )` with(pp) { 1004 1005 835 1006 for ( ; i < N; i += 1 ) { 836 1007 sout | name | i; … … 850 1021 \begin{cfa}[escapechar={},aboveskip=0pt,belowskip=0pt] 851 1022 typedef struct PingPong { 1023 int restart, N, i; 852 1024 const char * name; 853 int N, i;854 1025 struct PingPong * partner; 855 void * next;856 1026 } PingPong; 857 #define PPCtor(name, N) { name,N,0,NULL,NULL}1027 #define PPCtor(name, N) {0, N, 0, name, NULL} 858 1028 void comain( PingPong * pp ) { 859 if ( pp->next ) goto *pp->next; 860 pp->next = &&cycle; 1029 static void * states[] = {&&s0, &&s1}; 1030 goto *states[pp->restart]; 1031 s0: pp->restart = 1; 861 1032 for ( ; pp->i < pp->N; pp->i += 1 ) { 862 1033 printf( "%s %d\n", pp->name, pp->i ); 863 1034 asm( "mov %0,%%rdi" : "=m" (pp->partner) ); 864 1035 asm( "mov %rdi,%rax" ); 865 asm( "popq %rbx" ); 1036 asm( "add $16, %rsp" ); 1037 asm( "popq %rbp" ); 866 1038 asm( "jmp comain" ); 867 cycle: ;1039 s1: ; 868 1040 } 869 1041 } … … 881 1053 \end{figure} 882 1054 883 Finally, part of this generator work was inspired by the recent \CCtwenty generator proposal~\cite{C++20Coroutine19} (which they call coroutines). 1055 \begin{figure} 1056 \centering 1057 \input{FullCoroutinePhases.pstex_t} 1058 \vspace*{-10pt} 1059 \caption{Symmetric coroutine steps: Ping / Pong} 1060 \label{f:PingPongFullCoroutineSteps} 1061 \end{figure} 1062 1063 Figure~\ref{f:CPingPongSim} shows the C implementation of the \CFA symmetric generator, where there is still only one additional field, @restart@, but @resume@ is more complex because it does a forward rather than backward jump. 1064 Before the jump, the parameter for the next call @partner@ is placed into the register used for the first parameter, @rdi@, and the remaining registers are reset for a return. 1065 The @jmp comain@ restarts the function but with a different parameter, so the new call's behaviour depends on the state of the coroutine type, i.e., branch to restart location with different data state. 1066 While the semantics of call forward is a tail-call optimization, which compilers perform, the generator state is different on each call rather a common state for a tail-recursive function (i.e., the parameter to the function never changes during the forward calls. 1067 However, this assembler code depends on what entry code is generated, specifically if there are local variables and the level of optimization. 1068 Hence, internal compiler support is necessary for any forward call (or backwards return), \eg LLVM has various coroutine support~\cite{CoroutineTS}, and \CFA can leverage this support should it eventually fork @clang@. 1069 For this reason, \CFA does not support general symmetric generators at this time, but, it is possible to hand generate any symmetric generators (as in Figure~\ref{f:CPingPongSim}) for proof of concept and performance testing. 1070 1071 Finally, part of this generator work was inspired by the recent \CCtwenty coroutine proposal~\cite{C++20Coroutine19}, which uses the general term coroutine to mean generator. 884 1072 Our work provides the same high-performance asymmetric generators as \CCtwenty, and extends their work with symmetric generators. 885 1073 An additional \CCtwenty generator feature allows @suspend@ and @resume@ to be followed by a restricted compound statement that is executed after the current generator has reset its stack but before calling the next generator, specified with \CFA syntax: … … 896 1084 \label{s:Coroutine} 897 1085 898 Stackful coroutines extend generator semantics, \ie there is an implicit closure and @suspend@ may appear in a helper function called from the coroutine main.1086 Stackful coroutines (Table~\ref{t:ExecutionPropertyComposition} case 5) extend generator semantics, \ie there is an implicit closure and @suspend@ may appear in a helper function called from the coroutine main. 899 1087 A coroutine is specified by replacing @generator@ with @coroutine@ for the type. 900 Coroutine generality results in higher cost for creation, due to dynamic stack allocation, execution, due to context switching among stacks, andterminating, due to possible stack unwinding and dynamic stack deallocation.1088 Coroutine generality results in higher cost for creation, due to dynamic stack allocation, for execution, due to context switching among stacks, and for terminating, due to possible stack unwinding and dynamic stack deallocation. 901 1089 A series of different kinds of coroutines and their implementations demonstrate how coroutines extend generators. 902 1090 903 1091 First, the previous generator examples are converted to their coroutine counterparts, allowing local-state variables to be moved from the generator type into the coroutine main. 904 \begin{description} 905 \item[Fibonacci] 906 Move the declaration of @fn1@ to the start of coroutine main. 1092 \begin{center} 1093 \begin{tabular}{@{}l|l|l|l@{}} 1094 \multicolumn{1}{c|}{Fibonacci} & \multicolumn{1}{c|}{Formatter} & \multicolumn{1}{c|}{Device Driver} & \multicolumn{1}{c}{PingPong} \\ 1095 \hline 907 1096 \begin{cfa}[xleftmargin=0pt] 908 void main( Fib & fib ) with(fib) {1097 void main( Fib & fib ) ... 909 1098 `int fn1;` 910 \end{cfa} 911 \item[Formatter] 912 Move the declaration of @g@ and @b@ to the for loops in the coroutine main. 1099 1100 1101 \end{cfa} 1102 & 913 1103 \begin{cfa}[xleftmargin=0pt] 914 1104 for ( `g`; 5 ) { 915 1105 for ( `b`; 4 ) { 916 \end{cfa} 917 \item[Device Driver] 918 Move the declaration of @lnth@ and @sum@ to their points of initialization. 1106 1107 1108 \end{cfa} 1109 & 919 1110 \begin{cfa}[xleftmargin=0pt] 920 status = CONT; 921 `unsigned int lnth = 0, sum = 0;` 922 ... 923 `unsigned short int crc = byte << 8;` 924 \end{cfa} 925 \item[PingPong] 926 Move the declaration of @i@ to the for loop in the coroutine main. 1111 status = CONT; 1112 `int lnth = 0, sum = 0;` 1113 ... 1114 `short int crc = byte << 8;` 1115 \end{cfa} 1116 & 927 1117 \begin{cfa}[xleftmargin=0pt] 928 void main( PingPong & pp ) with(pp) {1118 void main( PingPong & pp ) ... 929 1119 for ( `i`; N ) { 930 \end{cfa} 931 \end{description} 1120 1121 1122 \end{cfa} 1123 \end{tabular} 1124 \end{center} 932 1125 It is also possible to refactor code containing local-state and @suspend@ statements into a helper function, like the computation of the CRC for the device driver. 933 1126 \begin{cfa} 934 unsignedint Crc() {1127 int Crc() { 935 1128 `suspend;` 936 unsignedshort int crc = byte << 8;1129 short int crc = byte << 8; 937 1130 `suspend;` 938 1131 status = (crc | byte) == sum ? MSG : ECRC; … … 945 1138 946 1139 \begin{comment} 947 Figure~\ref{f:Coroutine3States} creates a @coroutine@ type, @`coroutine` Fib { int fn; }@, which provides communication, @fn@, for the \newterm{coroutine main}, @main@, which runs on the coroutine stack, and possibly multiple interface functions, \eg @ next@.1140 Figure~\ref{f:Coroutine3States} creates a @coroutine@ type, @`coroutine` Fib { int fn; }@, which provides communication, @fn@, for the \newterm{coroutine main}, @main@, which runs on the coroutine stack, and possibly multiple interface functions, \eg @restart@. 948 1141 Like the structure in Figure~\ref{f:ExternalState}, the coroutine type allows multiple instances, where instances of this type are passed to the (overloaded) coroutine main. 949 1142 The coroutine main's stack holds the state for the next generation, @f1@ and @f2@, and the code represents the three states in the Fibonacci formula via the three suspend points, to context switch back to the caller's @resume@. 950 The interface function @ next@, takes a Fibonacci instance and context switches to it using @resume@;1143 The interface function @restart@, takes a Fibonacci instance and context switches to it using @resume@; 951 1144 on restart, the Fibonacci field, @fn@, contains the next value in the sequence, which is returned. 952 1145 The first @resume@ is special because it allocates the coroutine stack and cocalls its coroutine main on that stack; … … 1114 1307 \begin{figure} 1115 1308 \centering 1116 \lstset{language=CFA,escapechar={},moredelim=**[is][\protect\color{red}]{`}{`}}% allow $1117 1309 \begin{tabular}{@{}l@{\hspace{2\parindentlnth}}l@{}} 1118 1310 \begin{cfa} 1119 1311 `coroutine` Prod { 1120 Cons & c; // communication1312 Cons & c; $\C[1.5in]{// communication}$ 1121 1313 int N, money, receipt; 1122 1314 }; 1123 1315 void main( Prod & prod ) with( prod ) { 1124 // 1st resume starts here 1125 for ( i; N ) { 1316 for ( i; N ) { $\C{// 1st resume}\CRT$ 1126 1317 int p1 = random( 100 ), p2 = random( 100 ); 1127 sout | p1 | " " | p2;1128 1318 int status = delivery( c, p1, p2 ); 1129 sout | " $" | money | nl | status;1130 1319 receipt += 1; 1131 1320 } 1132 1321 stop( c ); 1133 sout | "prod stops";1134 1322 } 1135 1323 int payment( Prod & prod, int money ) { … … 1152 1340 \begin{cfa} 1153 1341 `coroutine` Cons { 1154 Prod & p; // communication1342 Prod & p; $\C[1.5in]{// communication}$ 1155 1343 int p1, p2, status; 1156 1344 bool done; 1157 1345 }; 1158 1346 void ?{}( Cons & cons, Prod & p ) { 1159 &cons.p = &p; // reassignable reference1347 &cons.p = &p; $\C{// reassignable reference}$ 1160 1348 cons.[status, done ] = [0, false]; 1161 1349 } 1162 1350 void main( Cons & cons ) with( cons ) { 1163 // 1st resume starts here 1164 int money = 1, receipt; 1351 int money = 1, receipt; $\C{// 1st resume}\CRT$ 1165 1352 for ( ; ! done; ) { 1166 sout | p1 | " " | p2 | nl | " $" | money;1167 1353 status += 1; 1168 1354 receipt = payment( p, money ); 1169 sout | " #" | receipt;1170 1355 money += 1; 1171 1356 } 1172 sout | "cons stops";1173 1357 } 1174 1358 int delivery( Cons & cons, int p1, int p2 ) { … … 1191 1375 This example is illustrative because both producer/consumer have two interface functions with @resume@s that suspend execution in these interface (helper) functions. 1192 1376 The program main creates the producer coroutine, passes it to the consumer coroutine in its initialization, and closes the cycle at the call to @start@ along with the number of items to be produced. 1193 The first @resume@ of @prod@ creates @prod@'s stack with a frame for @prod@'s coroutine main at the top, and context switches to it. 1194 @prod@'s coroutine main starts, creates local-state variables that are retained between coroutine activations, and executes $N$ iterations, each generating two random values, calling the consumer to deliver the values, and printing the status returned from the consumer. 1195 1377 The call to @start@ is the first @resume@ of @prod@, which remembers the program main as the starter and creates @prod@'s stack with a frame for @prod@'s coroutine main at the top, and context switches to it. 1378 @prod@'s coroutine main starts, creates local-state variables that are retained between coroutine activations, and executes $N$ iterations, each generating two random values, calling the consumer's @deliver@ function to transfer the values, and printing the status returned from the consumer. 1196 1379 The producer call to @delivery@ transfers values into the consumer's communication variables, resumes the consumer, and returns the consumer status. 1197 On the first resume, @cons@'s stack is created and initialized, holding local-state variables retained between subsequent activations of the coroutine. 1198 The consumer iterates until the @done@ flag is set, prints the values delivered by the producer, increments status, and calls back to the producer via @payment@, and on return from @payment@, prints the receipt from the producer and increments @money@ (inflation). 1199 The call from the consumer to @payment@ introduces the cycle between producer and consumer. 1200 When @payment@ is called, the consumer copies values into the producer's communication variable and a resume is executed. 1201 The context switch restarts the producer at the point where it last context switched, so it continues in @delivery@ after the resume. 1202 @delivery@ returns the status value in @prod@'s coroutine main, where the status is printed. 1203 The loop then repeats calling @delivery@, where each call resumes the consumer coroutine. 1204 The context switch to the consumer continues in @payment@. 1205 The consumer increments and returns the receipt to the call in @cons@'s coroutine main. 1206 The loop then repeats calling @payment@, where each call resumes the producer coroutine. 1380 Similarly on the first resume, @cons@'s stack is created and initialized, holding local-state variables retained between subsequent activations of the coroutine. 1381 The symmetric coroutine cycle forms when the consumer calls the producer's @payment@ function, which resumes the producer in the consumer's delivery function. 1382 When the producer calls @delivery@ again, it resumes the consumer in the @payment@ function. 1383 Both interface function than return to the their corresponding coroutine-main functions for the next cycle. 1207 1384 Figure~\ref{f:ProdConsRuntimeStacks} shows the runtime stacks of the program main, and the coroutine mains for @prod@ and @cons@ during the cycling. 1385 As a consequence of a coroutine retaining its last resumer for suspending back, these reverse pointers allow @suspend@ to cycle \emph{backwards} around a symmetric coroutine cycle. 1208 1386 1209 1387 \begin{figure} … … 1214 1392 \caption{Producer / consumer runtime stacks} 1215 1393 \label{f:ProdConsRuntimeStacks} 1216 1217 \medskip1218 1219 \begin{center}1220 \input{FullCoroutinePhases.pstex_t}1221 \end{center}1222 \vspace*{-10pt}1223 \caption{Ping / Pong coroutine steps}1224 \label{f:PingPongFullCoroutineSteps}1225 1394 \end{figure} 1226 1395 1227 1396 Terminating a coroutine cycle is more complex than a generator cycle, because it requires context switching to the program main's \emph{stack} to shutdown the program, whereas generators started by the program main run on its stack. 1228 Furthermore, each deallocated coroutine must guarantee all destructors are run for object allocated in the coroutine type \emph{and} allocated on the coroutine's stack at the point of suspension, which can be arbitrarily deep. 1229 When a coroutine's main ends, its stack is already unwound so any stack allocated objects with destructors have been finalized. 1397 Furthermore, each deallocated coroutine must execute all destructors for object allocated in the coroutine type \emph{and} allocated on the coroutine's stack at the point of suspension, which can be arbitrarily deep. 1398 In the example, termination begins with the producer's loop stopping after N iterations and calling the consumer's @stop@ function, which sets the @done@ flag, resumes the consumer in function @payment@, terminating the call, and the consumer's loop in its coroutine main. 1399 % (Not shown is having @prod@ raise a nonlocal @stop@ exception at @cons@ after it finishes generating values and suspend back to @cons@, which catches the @stop@ exception to terminate its loop.) 1400 When the consumer's main ends, its stack is already unwound so any stack allocated objects with destructors are finalized. 1401 The question now is where does control continue? 1402 1230 1403 The na\"{i}ve semantics for coroutine-cycle termination is to context switch to the last resumer, like executing a @suspend@/@return@ in a generator. 1231 1404 However, for coroutines, the last resumer is \emph{not} implicitly below the current stack frame, as for generators, because each coroutine's stack is independent. 1232 1405 Unfortunately, it is impossible to determine statically if a coroutine is in a cycle and unrealistic to check dynamically (graph-cycle problem). 1233 1406 Hence, a compromise solution is necessary that works for asymmetric (acyclic) and symmetric (cyclic) coroutines. 1234 1235 Our solution is to context switch back to the first resumer (starter) once the coroutine ends.1407 Our solution is to retain a coroutine's starter (first resumer), and context switch back to the starter when the coroutine ends. 1408 Hence, the consumer restarts its first resumer, @prod@, in @stop@, and when the producer ends, it restarts its first resumer, program main, in @start@ (see dashed lines from the end of the coroutine mains in Figure~\ref{f:ProdConsRuntimeStacks}). 1236 1409 This semantics works well for the most common asymmetric and symmetric coroutine usage patterns. 1237 For asymmetric coroutines, it is common for the first resumer (starter) coroutine to be the only resumer. 1238 All previous generators converted to coroutines have this property. 1239 For symmetric coroutines, it is common for the cycle creator to persist for the lifetime of the cycle. 1240 Hence, the starter coroutine is remembered on the first resume and ending the coroutine resumes the starter. 1241 Figure~\ref{f:ProdConsRuntimeStacks} shows this semantic by the dashed lines from the end of the coroutine mains: @prod@ starts @cons@ so @cons@ resumes @prod@ at the end, and the program main starts @prod@ so @prod@ resumes the program main at the end. 1410 For asymmetric coroutines, it is common for the first resumer (starter) coroutine to be the only resumer; 1411 for symmetric coroutines, it is common for the cycle creator to persist for the lifetime of the cycle. 1242 1412 For other scenarios, it is always possible to devise a solution with additional programming effort, such as forcing the cycle forward (backward) to a safe point before starting termination. 1243 1413 1244 The producer/consumer example does not illustrate the full power of the starter semantics because @cons@ always ends first. 1245 Assume generator @PingPong@ is converted to a coroutine. 1246 Figure~\ref{f:PingPongFullCoroutineSteps} shows the creation, starter, and cyclic execution steps of the coroutine version. 1247 The program main creates (declares) coroutine instances @ping@ and @pong@. 1248 Next, program main resumes @ping@, making it @ping@'s starter, and @ping@'s main resumes @pong@'s main, making it @pong@'s starter. 1249 Execution forms a cycle when @pong@ resumes @ping@, and cycles $N$ times. 1250 By adjusting $N$ for either @ping@/@pong@, it is possible to have either one finish first, instead of @pong@ always ending first. 1251 If @pong@ ends first, it resumes its starter @ping@ in its coroutine main, then @ping@ ends and resumes its starter the program main in function @start@. 1252 If @ping@ ends first, it resumes its starter the program main in function @start@. 1253 Regardless of the cycle complexity, the starter stack always leads back to the program main, but the stack can be entered at an arbitrary point. 1254 Once back at the program main, coroutines @ping@ and @pong@ are deallocated. 1255 For generators, deallocation runs the destructors for all objects in the generator type. 1256 For coroutines, deallocation deals with objects in the coroutine type and must also run the destructors for any objects pending on the coroutine's stack for any unterminated coroutine. 1257 Hence, if a coroutine's destructor detects the coroutine is not ended, it implicitly raises a cancellation exception (uncatchable exception) at the coroutine and resumes it so the cancellation exception can propagate to the root of the coroutine's stack destroying all local variable on the stack. 1258 So the \CFA semantics for the generator and coroutine, ensure both can be safely deallocated at any time, regardless of their current state, like any other aggregate object. 1259 Explicitly raising normal exceptions at another coroutine can replace flag variables, like @stop@, \eg @prod@ raises a @stop@ exception at @cons@ after it finishes generating values and resumes @cons@, which catches the @stop@ exception to terminate its loop. 1260 1261 Finally, there is an interesting effect for @suspend@ with symmetric coroutines. 1262 A coroutine must retain its last resumer to suspend back because the resumer is on a different stack. 1263 These reverse pointers allow @suspend@ to cycle \emph{backwards}, which may be useful in certain cases. 1264 However, there is an anomaly if a coroutine resumes itself, because it overwrites its last resumer with itself, losing the ability to resume the last external resumer. 1265 To prevent losing this information, a self-resume does not overwrite the last resumer. 1414 Note, the producer/consumer example does not illustrate the full power of the starter semantics because @cons@ always ends first. 1415 Assume generator @PingPong@ in Figure~\ref{f:PingPongSymmetricGenerator} is converted to a coroutine. 1416 Unlike generators, coroutines have a starter structure with multiple levels, where the program main starts @ping@ and @ping@ starts @pong@. 1417 By adjusting $N$ for either @ping@/@pong@, it is possible to have either finish first. 1418 If @pong@ ends first, it resumes its starter @ping@ in its coroutine main, then @ping@ ends and resumes its starter the program main on return; 1419 if @ping@ ends first, it resumes its starter the program main on return. 1420 Regardless of the cycle complexity, the starter structure always leads back to the program main, but the path can be entered at an arbitrary point. 1421 Once back at the program main (creator), coroutines @ping@ and @pong@ are deallocated, runnning any destructors for objects within the coroutine and possibly deallocating any coroutine stacks for non-terminated coroutines, where stack deallocation implies stack unwinding to find destructors for allocated objects on the stack. 1422 Hence, the \CFA termination semantics for the generator and coroutine ensure correct deallocation semnatics, regardless of the coroutine's state (terminated or active), like any other aggregate object. 1266 1423 1267 1424 … … 1294 1451 Users wanting to extend custom types or build their own can only do so in ways offered by the language. 1295 1452 Furthermore, implementing custom types without language support may display the power of a programming language. 1296 \CFA blends the two approaches, providing custom type for idiomatic \CFA code, while extending and building new custom types is still possible, similar to Java concurrency with builtin and library .1453 \CFA blends the two approaches, providing custom type for idiomatic \CFA code, while extending and building new custom types is still possible, similar to Java concurrency with builtin and library (@java.util.concurrent@) monitors. 1297 1454 1298 1455 Part of the mechanism to generalize custom types is the \CFA trait~\cite[\S~2.3]{Moss18}, \eg the definition for custom-type @coroutine@ is anything satisfying the trait @is_coroutine@, and this trait both enforces and restricts the coroutine-interface functions. … … 1304 1461 forall( `dtype` T | is_coroutine(T) ) void $suspend$( T & ), resume( T & ); 1305 1462 \end{cfa} 1306 Note, copying generators/coroutines/threads is not meaningful. 1307 For example, both the resumer and suspender descriptors can have bidirectional pointers; 1308 copying these coroutines does not update the internal pointers so behaviour of both copies would be difficult to understand. 1309 Furthermore, two coroutines cannot logically execute on the same stack. 1310 A deep coroutine copy, which copies the stack, is also meaningless in an unmanaged language (no garbage collection), like C, because the stack may contain pointers to object within it that require updating for the copy. 1463 Note, copying generators/coroutines/threads is undefined because muliple objects cannot execute on a shared stack and stack copying does not work in unmanaged languages (no garbage collection), like C, because the stack may contain pointers to objects within it that require updating for the copy. 1311 1464 The \CFA @dtype@ property provides no \emph{implicit} copying operations and the @is_coroutine@ trait provides no \emph{explicit} copying operations, so all coroutines must be passed by reference (pointer). 1312 1465 The function definitions ensure there is a statically typed @main@ function that is the starting point (first stack frame) of a coroutine, and a mechanism to get (read) the coroutine descriptor from its handle. … … 1352 1505 The combination of custom types and fundamental @trait@ description of these types allows a concise specification for programmers and tools, while more advanced programmers can have tighter control over memory layout and initialization. 1353 1506 1354 Figure~\ref{f:CoroutineMemoryLayout} shows different memory-layout options for a coroutine (where a t askis similar).1507 Figure~\ref{f:CoroutineMemoryLayout} shows different memory-layout options for a coroutine (where a thread is similar). 1355 1508 The coroutine handle is the @coroutine@ instance containing programmer specified type global/communication variables across interface functions. 1356 1509 The coroutine descriptor contains all implicit declarations needed by the runtime, \eg @suspend@/@resume@, and can be part of the coroutine handle or separate. 1357 1510 The coroutine stack can appear in a number of locations and be fixed or variable sized. 1358 Hence, the coroutine's stack could be a VLS\footnote{1359 We are examining variable-sized structures (VLS), where fields can be variable-sized structures or arrays.1511 Hence, the coroutine's stack could be a variable-length structure (VLS)\footnote{ 1512 We are examining VLSs, where fields can be variable-sized structures or arrays. 1360 1513 Once allocated, a VLS is fixed sized.} 1361 1514 on the allocating stack, provided the allocating stack is large enough. 1362 1515 For a VLS stack allocation/deallocation is an inexpensive adjustment of the stack pointer, modulo any stack constructor costs (\eg initial frame setup). 1363 For heap stack allocation, allocation/deallocation is an expensive heap allocation (where the heap can be a shared resource), modulo any stack constructor costs.1364 With heap stack allocation, it is also possible to use a split (segmented) stack calling convention, available with gcc and clang, so the stack is variable sized.1516 For stack allocation in the heap, allocation/deallocation is an expensive allocation, where the heap can be a shared resource, modulo any stack constructor costs. 1517 It is also possible to use a split (segmented) stack calling convention, available with gcc and clang, allowing a variable-sized stack via a set of connected blocks in the heap. 1365 1518 Currently, \CFA supports stack/heap allocated descriptors but only fixed-sized heap allocated stacks. 1366 1519 In \CFA debug-mode, the fixed-sized stack is terminated with a write-only page, which catches most stack overflows. 1367 1520 Experience teaching concurrency with \uC~\cite{CS343} shows fixed-sized stacks are rarely an issue for students. 1368 Split-stack allocation is under development but requires recompilation of legacy code, which may be impossible.1521 Split-stack allocation is under development but requires recompilation of legacy code, which is not always possible. 1369 1522 1370 1523 \begin{figure} … … 1380 1533 1381 1534 Concurrency is nondeterministic scheduling of independent sequential execution paths (threads), where each thread has its own stack. 1382 A single thread with multiple call stacks, \newterm{coroutining}~\cite{Conway63,Marlin80}, does \emph{not} imply concurrency~\cite[\S~2]{Buhr05a}.1383 In coroutining, coroutinesself-schedule the thread across stacks so execution is deterministic.1535 A single thread with multiple stacks, \ie coroutining, does \emph{not} imply concurrency~\cite[\S~3]{Buhr05a}. 1536 Coroutining self-schedule the thread across stacks so execution is deterministic. 1384 1537 (It is \emph{impossible} to generate a concurrency error when coroutining.) 1385 However, coroutines are a stepping stone towards concurrency. 1386 1387 The transition to concurrency, even for a single thread with multiple stacks, occurs when coroutines context switch to a \newterm{scheduling coroutine}, introducing non-determinism from the coroutine perspective~\cite[\S~3,]{Buhr05a}. 1538 1539 The transition to concurrency, even for a single thread with multiple stacks, occurs when coroutines context switch to a \newterm{scheduling coroutine}, introducing non-determinism from the coroutine perspective~\cite[\S~3]{Buhr05a}. 1388 1540 Therefore, a minimal concurrency system requires coroutines \emph{in conjunction with a nondeterministic scheduler}. 1389 The resulting execution system now follows a cooperative threading model~\cite{Adya02,libdill}, called \newterm{non-preemptive scheduling}. 1390 Adding \newterm{preemption} introduces non-cooperative scheduling, where context switching occurs randomly between any two instructions often based on a timer interrupt, called \newterm{preemptive scheduling}. 1391 While a scheduler introduces uncertain execution among explicit context switches, preemption introduces uncertainty by introducing implicit context switches. 1541 The resulting execution system now follows a cooperative threading-model~\cite{Adya02,libdill} because context-switching points to the scheduler (blocking) are known, but the next unblocking point is unknown due to the scheduler. 1542 Adding \newterm{preemption} introduces \newterm{non-cooperative} or \newterm{preemptive} scheduling, where context switching points to the scheduler are unknown as they can occur randomly between any two instructions often based on a timer interrupt. 1392 1543 Uncertainty gives the illusion of parallelism on a single processor and provides a mechanism to access and increase performance on multiple processors. 1393 1544 The reason is that the scheduler/runtime have complete knowledge about resources and how to best utilized them. 1394 However, the introduction of unrestricted nondeterminism results in the need for \newterm{mutual exclusion} and \newterm{synchronization} , which restrict nondeterminism for correctness;1545 However, the introduction of unrestricted nondeterminism results in the need for \newterm{mutual exclusion} and \newterm{synchronization}~\cite[\S~4]{Buhr05a}, which restrict nondeterminism for correctness; 1395 1546 otherwise, it is impossible to write meaningful concurrent programs. 1396 1547 Optimal concurrent performance is often obtained by having as much nondeterminism as mutual exclusion and synchronization correctness allow. 1397 1548 1398 A scheduler can either be astackless or stackful.1549 A scheduler can also be stackless or stackful. 1399 1550 For stackless, the scheduler performs scheduling on the stack of the current coroutine and switches directly to the next coroutine, so there is one context switch. 1400 1551 For stackful, the current coroutine switches to the scheduler, which performs scheduling, and it then switches to the next coroutine, so there are two context switches. … … 1405 1556 \label{s:threads} 1406 1557 1407 Threading needs the ability to start a thread and wait for its completion.1558 Threading (Table~\ref{t:ExecutionPropertyComposition} case 11) needs the ability to start a thread and wait for its completion. 1408 1559 A common API for this ability is @fork@ and @join@. 1409 \begin{cquote} 1410 \begin{tabular}{@{}lll@{}} 1411 \multicolumn{1}{c}{\textbf{Java}} & \multicolumn{1}{c}{\textbf{\Celeven}} & \multicolumn{1}{c}{\textbf{pthreads}} \\ 1412 \begin{cfa} 1413 class MyTask extends Thread {...} 1414 mytask t = new MyTask(...); 1560 \vspace{4pt} 1561 \par\noindent 1562 \begin{tabular}{@{}l|l|l@{}} 1563 \multicolumn{1}{c|}{\textbf{Java}} & \multicolumn{1}{c|}{\textbf{\Celeven}} & \multicolumn{1}{c}{\textbf{pthreads}} \\ 1564 \hline 1565 \begin{cfa} 1566 class MyThread extends Thread {...} 1567 mythread t = new MyThread(...); 1415 1568 `t.start();` // start 1416 1569 // concurrency … … 1419 1572 & 1420 1573 \begin{cfa} 1421 class MyT ask{ ... } // functor1422 MyT ask mytask;1423 `thread t( myt ask, ... );` // start1574 class MyThread { ... } // functor 1575 MyThread mythread; 1576 `thread t( mythread, ... );` // start 1424 1577 // concurrency 1425 1578 `t.join();` // wait … … 1434 1587 \end{cfa} 1435 1588 \end{tabular} 1436 \end{cquote} 1589 \vspace{1pt} 1590 \par\noindent 1437 1591 \CFA has a simpler approach using a custom @thread@ type and leveraging declaration semantics (allocation/deallocation), where threads implicitly @fork@ after construction and @join@ before destruction. 1438 1592 \begin{cfa} 1439 thread MyT ask{};1440 void main( MyT ask& this ) { ... }1593 thread MyThread {}; 1594 void main( MyThread & this ) { ... } 1441 1595 int main() { 1442 MyT askteam`[10]`; $\C[2.5in]{// allocate stack-based threads, implicit start after construction}$1596 MyThread team`[10]`; $\C[2.5in]{// allocate stack-based threads, implicit start after construction}$ 1443 1597 // concurrency 1444 1598 } $\C{// deallocate stack-based threads, implicit joins before destruction}$ … … 1448 1602 Arbitrary topologies are possible using dynamic allocation, allowing threads to outlive their declaration scope, identical to normal dynamic allocation. 1449 1603 \begin{cfa} 1450 MyT ask* factory( int N ) { ... return `anew( N )`; } $\C{// allocate heap-based threads, implicit start after construction}$1604 MyThread * factory( int N ) { ... return `anew( N )`; } $\C{// allocate heap-based threads, implicit start after construction}$ 1451 1605 int main() { 1452 MyT ask* team = factory( 10 );1606 MyThread * team = factory( 10 ); 1453 1607 // concurrency 1454 1608 `delete( team );` $\C{// deallocate heap-based threads, implicit joins before destruction}\CRT$ … … 1496 1650 1497 1651 Threads in \CFA are user level run by runtime kernel threads (see Section~\ref{s:CFARuntimeStructure}), where user threads provide concurrency and kernel threads provide parallelism. 1498 Like coroutines, and for the same design reasons, \CFA provides a custom @thread@ type and a @trait@ to enforce and restrict the t ask-interface functions.1652 Like coroutines, and for the same design reasons, \CFA provides a custom @thread@ type and a @trait@ to enforce and restrict the thread-interface functions. 1499 1653 \begin{cquote} 1500 1654 \begin{tabular}{@{}c@{\hspace{3\parindentlnth}}c@{}} … … 1527 1681 \label{s:MutualExclusionSynchronization} 1528 1682 1529 Unrestricted nondeterminism is meaningless as there is no way to know when the result is completed without synchronization.1683 Unrestricted nondeterminism is meaningless as there is no way to know when a result is completed and safe to access. 1530 1684 To produce meaningful execution requires clawing back some determinism using mutual exclusion and synchronization, where mutual exclusion provides access control for threads using shared data, and synchronization is a timing relationship among threads~\cite[\S~4]{Buhr05a}. 1531 Some concurrent systems eliminate mutable shared-state by switching to stateless communication like message passing~\cite{Thoth,Harmony,V-Kernel,MPI} (Erlang, MPI), channels~\cite{CSP} (CSP,Go), actors~\cite{Akka} (Akka, Scala), or functional techniques (Haskell). 1685 The shared data protected by mutual exlusion is called a \newterm{critical section}~\cite{Dijkstra65}, and the protection can be simple (only 1 thread) or complex (only N kinds of threads, \eg group~\cite{Joung00} or readers/writer~\cite{Courtois71}). 1686 Without synchronization control in a critical section, an arriving thread can barge ahead of preexisting waiter threads resulting in short/long-term starvation, staleness/freshness problems, and/or incorrect transfer of data. 1687 Preventing or detecting barging is a challenge with low-level locks, but made easier through higher-level constructs. 1688 This challenge is often split into two different approaches: barging \emph{avoidance} and \emph{prevention}. 1689 Approaches that unconditionally releasing a lock for competing threads to acquire must use barging avoidance with flag/counter variable(s) to force barging threads to wait; 1690 approaches that conditionally hold locks during synchronization, \eg baton-passing~\cite{Andrews89}, prevent barging completely. 1691 1692 At the lowest level, concurrent control is provided by atomic operations, upon which different kinds of locking mechanisms are constructed, \eg spin locks, semaphores~\cite{Dijkstra68b}, barriers, and path expressions~\cite{Campbell74}. 1693 However, for productivity it is always desirable to use the highest-level construct that provides the necessary efficiency~\cite{Hochstein05}. 1694 A significant challenge with locks is composability because it takes careful organization for multiple locks to be used while preventing deadlock. 1695 Easing composability is another feature higher-level mutual-exclusion mechanisms can offer. 1696 Some concurrent systems eliminate mutable shared-state by switching to non-shared communication like message passing~\cite{Thoth,Harmony,V-Kernel,MPI} (Erlang, MPI), channels~\cite{CSP} (CSP,Go), actors~\cite{Akka} (Akka, Scala), or functional techniques (Haskell). 1532 1697 However, these approaches introduce a new communication mechanism for concurrency different from the standard communication using function call/return. 1533 1698 Hence, a programmer must learn and manipulate two sets of design/programming patterns. 1534 1699 While this distinction can be hidden away in library code, effective use of the library still has to take both paradigms into account. 1535 In contrast, approaches based on stateful models more closely resemble the standard call/return programming model, resulting in a single programming paradigm. 1536 1537 At the lowest level, concurrent control is implemented by atomic operations, upon which different kinds of locking mechanisms are constructed, \eg semaphores~\cite{Dijkstra68b}, barriers, and path expressions~\cite{Campbell74}. 1538 However, for productivity it is always desirable to use the highest-level construct that provides the necessary efficiency~\cite{Hochstein05}. 1539 A newer approach for restricting non-determinism is transactional memory~\cite{Herlihy93}. 1540 While this approach is pursued in hardware~\cite{Nakaike15} and system languages, like \CC~\cite{Cpp-Transactions}, the performance and feature set is still too restrictive to be the main concurrency paradigm for system languages, which is why it is rejected as the core paradigm for concurrency in \CFA. 1541 1542 One of the most natural, elegant, and efficient mechanisms for mutual exclusion and synchronization for shared-memory systems is the \emph{monitor}. 1543 First proposed by Brinch Hansen~\cite{Hansen73} and later described and extended by C.A.R.~Hoare~\cite{Hoare74}, many concurrent programming languages provide monitors as an explicit language construct: \eg Concurrent Pascal~\cite{ConcurrentPascal}, Mesa~\cite{Mesa}, Modula~\cite{Modula-2}, Turing~\cite{Turing:old}, Modula-3~\cite{Modula-3}, NeWS~\cite{NeWS}, Emerald~\cite{Emerald}, \uC~\cite{Buhr92a} and Java~\cite{Java}. 1544 In addition, operating-system kernels and device drivers have a monitor-like structure, although they often use lower-level primitives such as mutex locks or semaphores to simulate monitors. 1545 For these reasons, \CFA selected monitors as the core high-level concurrency construct, upon which higher-level approaches can be easily constructed. 1546 1547 1548 \subsection{Mutual Exclusion} 1549 1550 A group of instructions manipulating a specific instance of shared data that must be performed atomically is called a \newterm{critical section}~\cite{Dijkstra65}, which is enforced by \newterm{simple mutual-exclusion}. 1551 The generalization is called a \newterm{group critical-section}~\cite{Joung00}, where multiple tasks with the same session use the resource simultaneously and different sessions are segregated, which is enforced by \newterm{complex mutual-exclusion} providing the correct kind and number of threads using a group critical-section. 1552 The readers/writer problem~\cite{Courtois71} is an instance of a group critical-section, where readers share a session but writers have a unique session. 1553 1554 However, many solutions exist for mutual exclusion, which vary in terms of performance, flexibility and ease of use. 1555 Methods range from low-level locks, which are fast and flexible but require significant attention for correctness, to higher-level concurrency techniques, which sacrifice some performance to improve ease of use. 1556 Ease of use comes by either guaranteeing some problems cannot occur, \eg deadlock free, or by offering a more explicit coupling between shared data and critical section. 1557 For example, the \CC @std::atomic<T>@ offers an easy way to express mutual-exclusion on a restricted set of operations, \eg reading/writing, for numerical types. 1558 However, a significant challenge with locks is composability because it takes careful organization for multiple locks to be used while preventing deadlock. 1559 Easing composability is another feature higher-level mutual-exclusion mechanisms can offer. 1560 1561 1562 \subsection{Synchronization} 1563 1564 Synchronization enforces relative ordering of execution, and synchronization tools provide numerous mechanisms to establish these timing relationships. 1565 Low-level synchronization primitives offer good performance and flexibility at the cost of ease of use; 1566 higher-level mechanisms often simplify usage by adding better coupling between synchronization and data, \eg receive-specific versus receive-any thread in message passing or offering specialized solutions, \eg barrier lock. 1567 Often synchronization is used to order access to a critical section, \eg ensuring a waiting writer thread enters the critical section before a calling reader thread. 1568 If the calling reader is scheduled before the waiting writer, the reader has barged. 1569 Barging can result in staleness/freshness problems, where a reader barges ahead of a writer and reads temporally stale data, or a writer barges ahead of another writer overwriting data with a fresh value preventing the previous value from ever being read (lost computation). 1570 Preventing or detecting barging is an involved challenge with low-level locks, which is made easier through higher-level constructs. 1571 This challenge is often split into two different approaches: barging avoidance and prevention. 1572 Algorithms that unconditionally releasing a lock for competing threads to acquire use barging avoidance during synchronization to force a barging thread to wait; 1573 algorithms that conditionally hold locks during synchronization, \eg baton-passing~\cite{Andrews89}, prevent barging completely. 1700 In contrast, approaches based on shared-state models more closely resemble the standard call/return programming model, resulting in a single programming paradigm. 1701 Finally, a newer approach for restricting non-determinism is transactional memory~\cite{Herlihy93}. 1702 While this approach is pursued in hardware~\cite{Nakaike15} and system languages, like \CC~\cite{Cpp-Transactions}, the performance and feature set is still too restrictive~\cite{Cascaval08,Boehm09} to be the main concurrency paradigm for system languages. 1574 1703 1575 1704 … … 1577 1706 \label{s:Monitor} 1578 1707 1579 A \textbf{monitor} is a set of functions that ensure mutual exclusion when accessing shared state. 1580 More precisely, a monitor is a programming technique that implicitly binds mutual exclusion to static function scope, as opposed to locks, where mutual-exclusion is defined by acquire/release calls, independent of lexical context (analogous to block and heap storage allocation). 1708 One of the most natural, elegant, efficient, high-level mechanisms for mutual exclusion and synchronization for shared-memory systems is the \emph{monitor} (Table~\ref{t:ExecutionPropertyComposition} case 2). 1709 First proposed by Brinch Hansen~\cite{Hansen73} and later described and extended by C.A.R.~Hoare~\cite{Hoare74}, many concurrent programming languages provide monitors as an explicit language construct: \eg Concurrent Pascal~\cite{ConcurrentPascal}, Mesa~\cite{Mesa}, Modula~\cite{Modula-2}, Turing~\cite{Turing:old}, Modula-3~\cite{Modula-3}, NeWS~\cite{NeWS}, Emerald~\cite{Emerald}, \uC~\cite{Buhr92a} and Java~\cite{Java}. 1710 In addition, operating-system kernels and device drivers have a monitor-like structure, although they often use lower-level primitives such as mutex locks or semaphores to manually implement a monitor. 1711 For these reasons, \CFA selected monitors as the core high-level concurrency construct, upon which higher-level approaches can be easily constructed. 1712 1713 Specifically, a \textbf{monitor} is a set of functions that ensure mutual exclusion when accessing shared state. 1714 More precisely, a monitor is a programming technique that implicitly binds mutual exclusion to static function scope by call/return, as opposed to locks, where mutual-exclusion is defined by acquire/release calls, independent of lexical context (analogous to block and heap storage allocation). 1581 1715 Restricting acquire/release points eases programming, comprehension, and maintenance, at a slight cost in flexibility and efficiency. 1582 1716 \CFA uses a custom @monitor@ type and leverages declaration semantics (deallocation) to protect active or waiting threads in a monitor. 1583 1717 1584 1718 The following is a \CFA monitor implementation of an atomic counter. 1585 \begin{cfa} [morekeywords=nomutex]1719 \begin{cfa} 1586 1720 `monitor` Aint { int cnt; }; $\C[4.25in]{// atomic integer counter}$ 1587 int ++?( Aint & `mutex`$\(_{opt}\)$ this ) with( this ) { return ++cnt; } $\C{// increment}$ 1588 int ?=?( Aint & `mutex`$\(_{opt}\)$ lhs, int rhs ) with( lhs ) { cnt = rhs; } $\C{// conversions with int}\CRT$ 1589 int ?=?( int & lhs, Aint & `mutex`$\(_{opt}\)$ rhs ) with( rhs ) { lhs = cnt; } 1590 \end{cfa} 1591 % The @Aint@ constructor, @?{}@, uses the \lstinline[morekeywords=nomutex]@nomutex@ qualifier indicating mutual exclusion is unnecessary during construction because an object is inaccessible (private) until after it is initialized. 1592 % (While a constructor may publish its address into a global variable, doing so generates a race-condition.) 1593 The prefix increment operation, @++?@, is normally @mutex@, indicating mutual exclusion is necessary during function execution, to protect the incrementing from race conditions, unless there is an atomic increment instruction for the implementation type. 1594 The assignment operators provide bidirectional conversion between an atomic and normal integer without accessing field @cnt@; 1595 these operations only need @mutex@, if reading/writing the implementation type is not atomic. 1596 The atomic counter is used without any explicit mutual-exclusion and provides thread-safe semantics, which is similar to the \CC template @std::atomic@. 1721 int ++?( Aint & `mutex` this ) with( this ) { return ++cnt; } $\C{// increment}$ 1722 int ?=?( Aint & `mutex` lhs, int rhs ) with( lhs ) { cnt = rhs; } $\C{// conversions with int, mutex optional}\CRT$ 1723 int ?=?( int & lhs, Aint & `mutex` rhs ) with( rhs ) { lhs = cnt; } 1724 \end{cfa} 1725 The operators use the parameter-only declaration type-qualifier @mutex@ to mark which parameters require locking during function execution to protect from race conditions. 1726 The assignment operators provide bidirectional conversion between an atomic and normal integer without accessing field @cnt@. 1727 (These operations only need @mutex@, if reading/writing the implementation type is not atomic.) 1728 The atomic counter is used without any explicit mutual-exclusion and provides thread-safe semantics. 1597 1729 \begin{cfa} 1598 1730 int i = 0, j = 0, k = 5; … … 1602 1734 i = x; j = y; k = z; 1603 1735 \end{cfa} 1736 Note, like other concurrent programming languages, \CFA has specializations for the basic types using atomic instructions for performance and a general trait similar to the \CC template @std::atomic@. 1604 1737 1605 1738 \CFA monitors have \newterm{multi-acquire} semantics so the thread in the monitor may acquire it multiple times without deadlock, allowing recursion and calling other interface functions. 1739 \newpage 1606 1740 \begin{cfa} 1607 1741 monitor M { ... } m; … … 1612 1746 \end{cfa} 1613 1747 \CFA monitors also ensure the monitor lock is released regardless of how an acquiring function ends (normal or exceptional), and returning a shared variable is safe via copying before the lock is released. 1614 Similar safety is offered by \emph{explicit} mechanisms like \CC RAII; 1615 monitor \emph{implicit} safety ensures no programmer usage errors. 1748 Similar safety is offered by \emph{explicit} opt-in disciplines like \CC RAII versus the monitor \emph{implicit} language-enforced safety guarantee ensuring no programmer usage errors. 1616 1749 Furthermore, RAII mechanisms cannot handle complex synchronization within a monitor, where the monitor lock may not be released on function exit because it is passed to an unblocking thread; 1617 1750 RAII is purely a mutual-exclusion mechanism (see Section~\ref{s:Scheduling}). … … 1639 1772 \end{cquote} 1640 1773 The @dtype@ property prevents \emph{implicit} copy operations and the @is_monitor@ trait provides no \emph{explicit} copy operations, so monitors must be passed by reference (pointer). 1641 % Copying a lock is insecure because it is possible to copy an open lock and then use the open copy when the original lock is closed to simultaneously access the shared data.1642 % Copying a monitor is secure because both the lock and shared data are copies, but copying the shared data is meaningless because it no longer represents a unique entity.1643 1774 Similarly, the function definitions ensures there is a mechanism to get (read) the monitor descriptor from its handle, and a special destructor to prevent deallocation if a thread using the shared data. 1644 1775 The custom monitor type also inserts any locks needed to implement the mutual exclusion semantics. … … 1652 1783 For example, a monitor may be passed through multiple helper functions before it is necessary to acquire the monitor's mutual exclusion. 1653 1784 1654 The benefit of mandatory monitor qualifiers is self-documentation, but requiring both @mutex@ and \lstinline[morekeywords=nomutex]@nomutex@ for all monitor parameters is redundant. 1655 Instead, the semantics has one qualifier as the default and the other required. 1656 For example, make the safe @mutex@ qualifier the default because assuming \lstinline[morekeywords=nomutex]@nomutex@ may cause subtle errors. 1657 Alternatively, make the unsafe \lstinline[morekeywords=nomutex]@nomutex@ qualifier the default because it is the \emph{normal} parameter semantics while @mutex@ parameters are rare. 1658 Providing a default qualifier implies knowing whether a parameter is a monitor. 1659 Since \CFA relies heavily on traits as an abstraction mechanism, types can coincidentally match the monitor trait but not be a monitor, similar to inheritance where a shape and playing card can both be drawable. 1660 For this reason, \CFA requires programmers to identify the kind of parameter with the @mutex@ keyword and uses no keyword to mean \lstinline[morekeywords=nomutex]@nomutex@. 1785 \CFA requires programmers to identify the kind of parameter with the @mutex@ keyword and uses no keyword to mean \lstinline[morekeywords=nomutex]@nomutex@, because @mutex@ parameters are rare and no keyword is the \emph{normal} parameter semantics. 1786 Hence, @mutex@ parameters are documentation, at the function and its prototype, to both programmer and compiler, without other redundant keywords. 1787 Furthermore, \CFA relies heavily on traits as an abstraction mechanism, so the @mutex@ qualifier prevents coincidentally matching of a monitor trait with a type that is not a monitor, similar to coincidental inheritance where a shape and playing card can both be drawable. 1661 1788 1662 1789 The next semantic decision is establishing which parameter \emph{types} may be qualified with @mutex@. … … 1672 1799 Function @f3@ has a multiple object matrix, and @f4@ a multiple object data structure. 1673 1800 While shown shortly, multiple object acquisition is possible, but the number of objects must be statically known. 1674 Therefore, \CFA only acquires one monitor per parameter with at most one level of indirection, excluding pointers as it is impossible to statically determine the size.1801 Therefore, \CFA only acquires one monitor per parameter with exactly one level of indirection, and exclude pointer types to unknown sized arrays. 1675 1802 1676 1803 For object-oriented monitors, \eg Java, calling a mutex member \emph{implicitly} acquires mutual exclusion of the receiver object, @`rec`.foo(...)@. … … 1679 1806 While object-oriented monitors can be extended with a mutex qualifier for multiple-monitor members, no prior example of this feature could be found.} 1680 1807 called \newterm{bulk acquire}. 1681 \CFA guarantees acquisition order is consistent across calls to @mutex@ functions using the same monitors as arguments, so acquiring multiple monitorsis safe from deadlock.1808 \CFA guarantees bulk acquisition order is consistent across calls to @mutex@ functions using the same monitors as arguments, so acquiring multiple monitors in a bulk acquire is safe from deadlock. 1682 1809 Figure~\ref{f:BankTransfer} shows a trivial solution to the bank transfer problem~\cite{BankTransfer}, where two resources must be locked simultaneously, using \CFA monitors with implicit locking and \CC with explicit locking. 1683 1810 A \CFA programmer only has to manage when to acquire mutual exclusion; … … 1699 1826 void transfer( BankAccount & `mutex` my, 1700 1827 BankAccount & `mutex` your, int me2you ) { 1701 1828 // bulk acquire 1702 1829 deposit( my, -me2you ); // debit 1703 1830 deposit( your, me2you ); // credit … … 1729 1856 void transfer( BankAccount & my, 1730 1857 BankAccount & your, int me2you ) { 1731 `scoped_lock lock( my.m, your.m );` 1858 `scoped_lock lock( my.m, your.m );` // bulk acquire 1732 1859 deposit( my, -me2you ); // debit 1733 1860 deposit( your, me2you ); // credit … … 1757 1884 \end{figure} 1758 1885 1759 Users can still force the acquiring order by using @mutex@/\lstinline[morekeywords=nomutex]@nomutex@.1886 Users can still force the acquiring order by using or not using @mutex@. 1760 1887 \begin{cfa} 1761 1888 void foo( M & mutex m1, M & mutex m2 ); $\C{// acquire m1 and m2}$ 1762 void bar( M & mutex m1, M & /* nomutex */ m2 ) { $\C{//acquire m1}$1889 void bar( M & mutex m1, M & m2 ) { $\C{// only acquire m1}$ 1763 1890 ... foo( m1, m2 ); ... $\C{// acquire m2}$ 1764 1891 } 1765 void baz( M & /* nomutex */ m1, M & mutex m2 ) { $\C{//acquire m2}$1892 void baz( M & m1, M & mutex m2 ) { $\C{// only acquire m2}$ 1766 1893 ... foo( m1, m2 ); ... $\C{// acquire m1}$ 1767 1894 } … … 1806 1933 % There are many aspects of scheduling in a concurrency system, all related to resource utilization by waiting threads, \ie which thread gets the resource next. 1807 1934 % Different forms of scheduling include access to processors by threads (see Section~\ref{s:RuntimeStructureCluster}), another is access to a shared resource by a lock or monitor. 1808 This section discusses monitor scheduling for waiting threads eligible for entry, \ie which thread gets the shared resource next. (See Section~\ref{s:RuntimeStructureCluster} for scheduling threads on virtual processors.) 1809 While monitor mutual-exclusion provides safe access to shared data, the monitor data may indicate that a thread accessing it cannot proceed, \eg a bounded buffer may be full/empty so produce/consumer threads must block. 1810 Leaving the monitor and trying again (busy waiting) is impractical for high-level programming. 1811 Monitors eliminate busy waiting by providing synchronization to schedule threads needing access to the shared data, where threads block versus spinning. 1935 This section discusses scheduling for waiting threads eligible for monitor entry, \ie which user thread gets the shared resource next. (See Section~\ref{s:RuntimeStructureCluster} for scheduling kernel threads on virtual processors.) 1936 While monitor mutual-exclusion provides safe access to its shared data, the data may indicate a thread cannot proceed, \eg a bounded buffer may be full/\-empty so produce/consumer threads must block. 1937 Leaving the monitor and retrying (busy waiting) is impractical for high-level programming. 1938 1939 Monitors eliminate busy waiting by providing synchronization within the monitor critical-section to schedule threads needing access to the shared data, where threads block versus spin. 1812 1940 Synchronization is generally achieved with internal~\cite{Hoare74} or external~\cite[\S~2.9.2]{uC++} scheduling. 1813 \newterm{Internal scheduling} is characterized by each thread entering the monitor and making an individual decision about proceeding or blocking, while \newterm{external scheduling} is characterized by an entering thread making a decision about proceeding for itself and on behalf of other threads attempting entry. 1814 Finally, \CFA monitors do not allow calling threads to barge ahead of signalled threads, which simplifies synchronization among threads in the monitor and increases correctness. 1815 If barging is allowed, synchronization between a signaller and signallee is difficult, often requiring additional flags and multiple unblock/block cycles. 1816 In fact, signals-as-hints is completely opposite from that proposed by Hoare in the seminal paper on monitors~\cite[p.~550]{Hoare74}. 1941 \newterm{Internal} (largely) schedules threads located \emph{inside} the monitor and is accomplished using condition variables with signal and wait. 1942 \newterm{External} (largely) schedules threads located \emph{outside} the monitor and is accomplished with the @waitfor@ statement. 1943 Note, internal scheduling has a small amount of external scheduling and vice versus, so the naming denotes where the majority of the block threads reside (inside or outside) for scheduling. 1944 For complex scheduling, the approaches can be combined, so there can be an equal number of threads waiting inside and outside. 1945 1946 \CFA monitors do not allow calling threads to barge ahead of signalled threads (via barging prevention), which simplifies synchronization among threads in the monitor and increases correctness. 1947 A direct consequence of this semantics is that unblocked waiting threads are not required to recheck the waiting condition, \ie waits are not in a starvation-prone busy-loop as required by the signals-as-hints style with barging. 1948 Preventing barging comes directly from Hoare's semantics in the seminal paper on monitors~\cite[p.~550]{Hoare74}. 1817 1949 % \begin{cquote} 1818 1950 % However, we decree that a signal operation be followed immediately by resumption of a waiting program, without possibility of an intervening procedure call from yet a third program. 1819 1951 % It is only in this way that a waiting program has an absolute guarantee that it can acquire the resource just released by the signalling program without any danger that a third program will interpose a monitor entry and seize the resource instead.~\cite[p.~550]{Hoare74} 1820 1952 % \end{cquote} 1821 Furthermore, \CFA concurrency has no spurious wakeup~\cite[\S~9]{Buhr05a}, which eliminates an implicit form of self barging. 1822 Hence, a \CFA @wait@ statement is not enclosed in a @while@ loop retesting a blocking predicate, which can cause thread starvation due to barging. 1823 1824 Figure~\ref{f:MonitorScheduling} shows general internal/external scheduling (for the bounded-buffer example in Figure~\ref{f:InternalExternalScheduling}). 1825 External calling threads block on the calling queue, if the monitor is occupied, otherwise they enter in FIFO order. 1826 Internal threads block on condition queues via @wait@ and reenter from the condition in FIFO order. 1827 Alternatively, internal threads block on urgent from the @signal_block@ or @waitfor@, and reenter implicitly when the monitor becomes empty, \ie, the thread in the monitor exits or waits. 1828 1829 There are three signalling mechanisms to unblock waiting threads to enter the monitor. 1830 Note, signalling cannot have the signaller and signalled thread in the monitor simultaneously because of the mutual exclusion, so either the signaller or signallee can proceed. 1831 For internal scheduling, threads are unblocked from condition queues using @signal@, where the signallee is moved to urgent and the signaller continues (solid line). 1832 Multiple signals move multiple signallees to urgent until the condition is empty. 1833 When the signaller exits or waits, a thread blocked on urgent is processed before calling threads to prevent barging. 1953 Furthermore, \CFA concurrency has no spurious wakeup~\cite[\S~9]{Buhr05a}, which eliminates an implicit self barging. 1954 1955 Monitor mutual-exclusion means signalling cannot have the signaller and signalled thread in the monitor simultaneously, so only the signaller or signallee can proceed. 1956 Figure~\ref{f:MonitorScheduling} shows internal/external scheduling for the bounded-buffer examples in Figure~\ref{f:GenericBoundedBuffer}. 1957 For internal scheduling in Figure~\ref{f:BBInt}, the @signal@ moves the signallee (front thread of the specified condition queue) to urgent and the signaller continues (solid line). 1958 Multiple signals move multiple signallees to urgent until the condition queue is empty. 1959 When the signaller exits or waits, a thread is implicitly unblocked from urgent (if available) before unblocking a calling thread to prevent barging. 1834 1960 (Java conceptually moves the signalled thread to the calling queue, and hence, allows barging.) 1835 The alternative unblock is in the opposite order using @signal_block@, where the signaller is moved to urgent and the signallee continues (dashed line), and is implicitly unblocked from urgent when the signallee exits or waits. 1836 1837 For external scheduling, the condition queues are not used; 1838 instead threads are unblocked directly from the calling queue using @waitfor@ based on function names requesting mutual exclusion. 1839 (The linear search through the calling queue to locate a particular call can be reduced to $O(1)$.) 1840 The @waitfor@ has the same semantics as @signal_block@, where the signalled thread executes before the signallee, which waits on urgent. 1841 Executing multiple @waitfor@s from different signalled functions causes the calling threads to move to urgent. 1842 External scheduling requires urgent to be a stack, because the signaller expects to execute immediately after the specified monitor call has exited or waited. 1843 Internal scheduling behaves the same for an urgent stack or queue, except for multiple signalling, where the threads unblock from urgent in reverse order from signalling. 1844 If the restart order is important, multiple signalling by a signal thread can be transformed into daisy-chain signalling among threads, where each thread signals the next thread. 1845 We tried both a stack for @waitfor@ and queue for signalling, but that resulted in complex semantics about which thread enters next. 1846 Hence, \CFA uses a single urgent stack to correctly handle @waitfor@ and adequately support both forms of signalling. 1961 Signal is used when the signaller is providing the cooperation needed by the signallee (\eg creating an empty slot in a buffer for a producer) and the signaller immediately exits the monitor to run concurrently (consume the buffer element) and passes control of the monitor to the signalled thread, which can immediately take advantage of the state change. 1962 Specifically, the @wait@ function atomically blocks the calling thread and implicitly releases the monitor lock(s) for all monitors in the function's parameter list. 1963 Signalling is unconditional because signalling an empty condition queue does nothing. 1964 It is common to declare condition queues as monitor fields to prevent shared access, hence no locking is required for access as the queues are protected by the monitor lock. 1965 In \CFA, a condition queue can be created/stored independently. 1847 1966 1848 1967 \begin{figure} … … 1862 1981 \end{figure} 1863 1982 1864 Figure~\ref{f:BBInt} shows a \CFA generic bounded-buffer with internal scheduling, where producers/consumers enter the monitor, detect the buffer is full/empty, and block on an appropriate condition variable, @full@/@empty@.1865 The @wait@ function atomically blocks the calling thread and implicitly releases the monitor lock(s) for all monitors in the function's parameter list.1866 The appropriate condition variable is signalled to unblock an opposite kind of thread after an element is inserted/removed from the buffer.1867 Signalling is unconditional, because signalling an empty condition variable does nothing.1868 It is common to declare condition variables as monitor fields to prevent shared access, hence no locking is required for access as the conditions are protected by the monitor lock.1869 In \CFA, a condition variable can be created/stored independently.1870 % To still prevent expensive locking on access, a condition variable is tied to a \emph{group} of monitors on first use, called \newterm{branding}, resulting in a low-cost boolean test to detect sharing from other monitors.1871 1872 % Signalling semantics cannot have the signaller and signalled thread in the monitor simultaneously, which means:1873 % \begin{enumerate}1874 % \item1875 % The signalling thread returns immediately and the signalled thread continues.1876 % \item1877 % The signalling thread continues and the signalled thread is marked for urgent unblocking at the next scheduling point (exit/wait).1878 % \item1879 % The signalling thread blocks but is marked for urgent unblocking at the next scheduling point and the signalled thread continues.1880 % \end{enumerate}1881 % The first approach is too restrictive, as it precludes solving a reasonable class of problems, \eg dating service (see Figure~\ref{f:DatingService}).1882 % \CFA supports the next two semantics as both are useful.1883 1884 1983 \begin{figure} 1885 1984 \centering … … 1893 1992 T elements[10]; 1894 1993 }; 1895 void ?{}( Buffer(T) & buf fer ) with(buffer) {1994 void ?{}( Buffer(T) & buf ) with(buf) { 1896 1995 front = back = count = 0; 1897 1996 } 1898 void insert( Buffer(T) & mutex buffer, T elem ) 1899 with(buffer){1900 if ( count == 10 ) `wait( empty )`; 1901 // insert el em into buffer1997 1998 void insert(Buffer(T) & mutex buf, T elm) with(buf){ 1999 if ( count == 10 ) `wait( empty )`; // full ? 2000 // insert elm into buf 1902 2001 `signal( full )`; 1903 2002 } 1904 T remove( Buffer(T) & mutex buf fer ) with(buffer) {1905 if ( count == 0 ) `wait( full )`; 1906 // remove el em from buffer2003 T remove( Buffer(T) & mutex buf ) with(buf) { 2004 if ( count == 0 ) `wait( full )`; // empty ? 2005 // remove elm from buf 1907 2006 `signal( empty )`; 1908 return el em;2007 return elm; 1909 2008 } 1910 2009 } 1911 2010 \end{cfa} 1912 2011 \end{lrbox} 1913 1914 % \newbox\myboxB1915 % \begin{lrbox}{\myboxB}1916 % \begin{cfa}[aboveskip=0pt,belowskip=0pt]1917 % forall( otype T ) { // distribute forall1918 % monitor Buffer {1919 %1920 % int front, back, count;1921 % T elements[10];1922 % };1923 % void ?{}( Buffer(T) & buffer ) with(buffer) {1924 % [front, back, count] = 0;1925 % }1926 % T remove( Buffer(T) & mutex buffer ); // forward1927 % void insert( Buffer(T) & mutex buffer, T elem )1928 % with(buffer) {1929 % if ( count == 10 ) `waitfor( remove, buffer )`;1930 % // insert elem into buffer1931 %1932 % }1933 % T remove( Buffer(T) & mutex buffer ) with(buffer) {1934 % if ( count == 0 ) `waitfor( insert, buffer )`;1935 % // remove elem from buffer1936 %1937 % return elem;1938 % }1939 % }1940 % \end{cfa}1941 % \end{lrbox}1942 2012 1943 2013 \newbox\myboxB 1944 2014 \begin{lrbox}{\myboxB} 1945 2015 \begin{cfa}[aboveskip=0pt,belowskip=0pt] 2016 forall( otype T ) { // distribute forall 2017 monitor Buffer { 2018 2019 int front, back, count; 2020 T elements[10]; 2021 }; 2022 void ?{}( Buffer(T) & buf ) with(buf) { 2023 front = back = count = 0; 2024 } 2025 T remove( Buffer(T) & mutex buf ); // forward 2026 void insert(Buffer(T) & mutex buf, T elm) with(buf){ 2027 if ( count == 10 ) `waitfor( remove : buf )`; 2028 // insert elm into buf 2029 2030 } 2031 T remove( Buffer(T) & mutex buf ) with(buf) { 2032 if ( count == 0 ) `waitfor( insert : buf )`; 2033 // remove elm from buf 2034 2035 return elm; 2036 } 2037 } 2038 \end{cfa} 2039 \end{lrbox} 2040 2041 \subfloat[Internal scheduling]{\label{f:BBInt}\usebox\myboxA} 2042 \hspace{1pt} 2043 \vrule 2044 \hspace{3pt} 2045 \subfloat[External scheduling]{\label{f:BBExt}\usebox\myboxB} 2046 2047 \caption{Generic bounded buffer} 2048 \label{f:GenericBoundedBuffer} 2049 \end{figure} 2050 2051 The @signal_block@ provides the opposite unblocking order, where the signaller is moved to urgent and the signallee continues and a thread is implicitly unblocked from urgent when the signallee exits or waits (dashed line). 2052 Signal block is used when the signallee is providing the cooperation needed by the signaller (\eg if the buffer is removed and a producer hands off an item to a consumer, as in Figure~\ref{f:DatingSignalBlock}) so the signaller must wait until the signallee unblocks, provides the cooperation, exits the monitor to run concurrently, and passes control of the monitor to the signaller, which can immediately take advantage of the state change. 2053 Using @signal@ or @signal_block@ can be a dynamic decision based on whether the thread providing the cooperation arrives before or after the thread needing the cooperation. 2054 2055 External scheduling in Figure~\ref{f:BBExt} simplifies internal scheduling by eliminating condition queues and @signal@/@wait@ (cases where it cannot are discussed shortly), and has existed in the programming language Ada for almost 40 years with variants in other languages~\cite{SR,ConcurrentC++,uC++}. 2056 While prior languages use external scheduling solely for thread interaction, \CFA generalizes it to both monitors and threads. 2057 External scheduling allows waiting for events from other threads while restricting unrelated events, that would otherwise have to wait on condition queues in the monitor. 2058 Scheduling is controlled by the @waitfor@ statement, which atomically blocks the calling thread, releases the monitor lock, and restricts the function calls that can next acquire mutual exclusion. 2059 Specifically, a thread calling the monitor is unblocked directly from the calling queue based on function names that can fulfill the cooperation required by the signaller. 2060 (The linear search through the calling queue to locate a particular call can be reduced to $O(1)$.) 2061 Hence, the @waitfor@ has the same semantics as @signal_block@, where the signallee thread from the calling queue executes before the signaller, which waits on urgent. 2062 Now when a producer/consumer detects a full/empty buffer, the necessary cooperation for continuation is specified by indicating the next function call that can occur. 2063 For example, a producer detecting a full buffer must have cooperation from a consumer to remove an item so function @remove@ is accepted, which prevents producers from entering the monitor, and after a consumer calls @remove@, the producer waiting on urgent is \emph{implicitly} unblocked because it can now continue its insert operation. 2064 Hence, this mechanism is done in terms of control flow, next call, versus in terms of data, channels, as in Go/Rust @select@. 2065 While both mechanisms have strengths and weaknesses, \CFA uses the control-flow mechanism to be consistent with other language features. 2066 2067 Figure~\ref{f:ReadersWriterLock} shows internal/external scheduling for a readers/writer lock with no barging and threads are serviced in FIFO order to eliminate staleness/freshness among the reader/writer threads. 2068 For internal scheduling in Figure~\ref{f:RWInt}, the readers and writers wait on the same condition queue in FIFO order, making it impossible to tell if a waiting thread is a reader or writer. 2069 To clawback the kind of thread, a \CFA condition can store user data in the node for a blocking thread at the @wait@, \ie whether the thread is a @READER@ or @WRITER@. 2070 An unblocked reader thread checks if the thread at the front of the queue is a reader and unblock it, \ie the readers daisy-chain signal the next group of readers demarcated by the next writer or end of the queue. 2071 For external scheduling in Figure~\ref{f:RWExt}, a waiting reader checks if a writer is using the resource, and if so, restricts further calls until the writer exits by calling @EndWrite@. 2072 The writer does a similar action for each reader or writer using the resource. 2073 Note, no new calls to @StartRead@/@StartWrite@ may occur when waiting for the call to @EndRead@/@EndWrite@. 2074 2075 \begin{figure} 2076 \centering 2077 \newbox\myboxA 2078 \begin{lrbox}{\myboxA} 2079 \begin{cfa}[aboveskip=0pt,belowskip=0pt] 2080 enum RW { READER, WRITER }; 1946 2081 monitor ReadersWriter { 1947 int rcnt, wcnt; // readers/writer using resource 2082 int rcnt, wcnt; // readers/writer using resource 2083 `condition RWers;` 1948 2084 }; 1949 2085 void ?{}( ReadersWriter & rw ) with(rw) { … … 1952 2088 void EndRead( ReadersWriter & mutex rw ) with(rw) { 1953 2089 rcnt -= 1; 2090 if ( rcnt == 0 ) `signal( RWers )`; 1954 2091 } 1955 2092 void EndWrite( ReadersWriter & mutex rw ) with(rw) { 1956 2093 wcnt = 0; 2094 `signal( RWers );` 1957 2095 } 1958 2096 void StartRead( ReadersWriter & mutex rw ) with(rw) { 1959 if ( wcnt > 0 ) `waitfor( EndWrite, rw );` 2097 if ( wcnt !=0 || ! empty( RWers ) ) 2098 `wait( RWers, READER )`; 1960 2099 rcnt += 1; 2100 if ( ! empty(RWers) && `front(RWers) == READER` ) 2101 `signal( RWers )`; // daisy-chain signalling 1961 2102 } 1962 2103 void StartWrite( ReadersWriter & mutex rw ) with(rw) { 1963 if ( wcnt > 0 ) `waitfor( EndWrite, rw );`1964 else while ( rcnt > 0 ) `waitfor( EndRead, rw );` 2104 if ( wcnt != 0 || rcnt != 0 ) `wait( RWers, WRITER )`; 2105 1965 2106 wcnt = 1; 1966 2107 } 1967 1968 2108 \end{cfa} 1969 2109 \end{lrbox} 1970 2110 1971 \subfloat[Generic bounded buffer, internal scheduling]{\label{f:BBInt}\usebox\myboxA} 1972 \hspace{3pt} 2111 \newbox\myboxB 2112 \begin{lrbox}{\myboxB} 2113 \begin{cfa}[aboveskip=0pt,belowskip=0pt] 2114 2115 monitor ReadersWriter { 2116 int rcnt, wcnt; // readers/writer using resource 2117 2118 }; 2119 void ?{}( ReadersWriter & rw ) with(rw) { 2120 rcnt = wcnt = 0; 2121 } 2122 void EndRead( ReadersWriter & mutex rw ) with(rw) { 2123 rcnt -= 1; 2124 2125 } 2126 void EndWrite( ReadersWriter & mutex rw ) with(rw) { 2127 wcnt = 0; 2128 2129 } 2130 void StartRead( ReadersWriter & mutex rw ) with(rw) { 2131 if ( wcnt > 0 ) `waitfor( EndWrite : rw );` 2132 2133 rcnt += 1; 2134 2135 2136 } 2137 void StartWrite( ReadersWriter & mutex rw ) with(rw) { 2138 if ( wcnt > 0 ) `waitfor( EndWrite : rw );` 2139 else while ( rcnt > 0 ) `waitfor( EndRead : rw );` 2140 wcnt = 1; 2141 } 2142 \end{cfa} 2143 \end{lrbox} 2144 2145 \subfloat[Internal scheduling]{\label{f:RWInt}\usebox\myboxA} 2146 \hspace{1pt} 1973 2147 \vrule 1974 2148 \hspace{3pt} 1975 \subfloat[ Readers / writer lock, external scheduling]{\label{f:RWExt}\usebox\myboxB}1976 1977 \caption{ Internal / external scheduling}1978 \label{f: InternalExternalScheduling}2149 \subfloat[External scheduling]{\label{f:RWExt}\usebox\myboxB} 2150 2151 \caption{Readers / writer lock} 2152 \label{f:ReadersWriterLock} 1979 2153 \end{figure} 1980 2154 1981 Figure~\ref{f:BBInt} can be transformed into external scheduling by removing the condition variables and signals/waits, and adding the following lines at the locations of the current @wait@s in @insert@/@remove@, respectively. 1982 \begin{cfa}[aboveskip=2pt,belowskip=1pt] 1983 if ( count == 10 ) `waitfor( remove, buffer )`; | if ( count == 0 ) `waitfor( insert, buffer )`; 1984 \end{cfa} 1985 Here, the producers/consumers detects a full/\-empty buffer and prevents more producers/consumers from entering the monitor until there is a free/empty slot in the buffer. 1986 External scheduling is controlled by the @waitfor@ statement, which atomically blocks the calling thread, releases the monitor lock, and restricts the function calls that can next acquire mutual exclusion. 1987 If the buffer is full, only calls to @remove@ can acquire the buffer, and if the buffer is empty, only calls to @insert@ can acquire the buffer. 1988 Threads calling excluded functions block outside of (external to) the monitor on the calling queue, versus blocking on condition queues inside of (internal to) the monitor. 1989 Figure~\ref{f:RWExt} shows a readers/writer lock written using external scheduling, where a waiting reader detects a writer using the resource and restricts further calls until the writer exits by calling @EndWrite@. 1990 The writer does a similar action for each reader or writer using the resource. 1991 Note, no new calls to @StarRead@/@StartWrite@ may occur when waiting for the call to @EndRead@/@EndWrite@. 1992 External scheduling allows waiting for events from other threads while restricting unrelated events, that would otherwise have to wait on conditions in the monitor. 1993 The mechnaism can be done in terms of control flow, \eg Ada @accept@ or \uC @_Accept@, or in terms of data, \eg Go @select@ on channels. 1994 While both mechanisms have strengths and weaknesses, this project uses the control-flow mechanism to be consistent with other language features. 1995 % Two challenges specific to \CFA for external scheduling are loose object-definitions (see Section~\ref{s:LooseObjectDefinitions}) and multiple-monitor functions (see Section~\ref{s:Multi-MonitorScheduling}). 1996 1997 Figure~\ref{f:DatingService} shows a dating service demonstrating non-blocking and blocking signalling. 1998 The dating service matches girl and boy threads with matching compatibility codes so they can exchange phone numbers. 1999 A thread blocks until an appropriate partner arrives. 2000 The complexity is exchanging phone numbers in the monitor because of the mutual-exclusion property. 2001 For signal scheduling, the @exchange@ condition is necessary to block the thread finding the match, while the matcher unblocks to take the opposite number, post its phone number, and unblock the partner. 2002 For signal-block scheduling, the implicit urgent-queue replaces the explict @exchange@-condition and @signal_block@ puts the finding thread on the urgent condition and unblocks the matcher. 2003 The dating service is an example of a monitor that cannot be written using external scheduling because it requires knowledge of calling parameters to make scheduling decisions, and parameters of waiting threads are unavailable; 2004 as well, an arriving thread may not find a partner and must wait, which requires a condition variable, and condition variables imply internal scheduling. 2005 Furthermore, barging corrupts the dating service during an exchange because a barger may also match and change the phone numbers, invalidating the previous exchange phone number. 2006 Putting loops around the @wait@s does not correct the problem; 2007 the simple solution must be restructured to account for barging. 2155 Finally, external scheduling requires urgent to be a stack, because the signaller expects to execute immediately after the specified monitor call has exited or waited. 2156 Internal schedulling performing multiple signalling results in unblocking from urgent in the reverse order from signalling. 2157 It is rare for the unblocking order to be important as an unblocked thread can be time-sliced immediately after leaving the monitor. 2158 If the unblocking order is important, multiple signalling can be restructured into daisy-chain signalling, where each thread signals the next thread. 2159 Hence, \CFA uses a single urgent stack to correctly handle @waitfor@ and adequately support both forms of signalling. 2160 (Advanced @waitfor@ features are discussed in Section~\ref{s:ExtendedWaitfor}.) 2008 2161 2009 2162 \begin{figure} … … 2019 2172 }; 2020 2173 int girl( DS & mutex ds, int phNo, int ccode ) { 2021 if ( is_empty( Boys[ccode] ) ) {2174 if ( empty( Boys[ccode] ) ) { 2022 2175 wait( Girls[ccode] ); 2023 2176 GirlPhNo = phNo; … … 2046 2199 }; 2047 2200 int girl( DS & mutex ds, int phNo, int ccode ) { 2048 if ( is_empty( Boys[ccode] ) ) { // no compatible2201 if ( empty( Boys[ccode] ) ) { // no compatible 2049 2202 wait( Girls[ccode] ); // wait for boy 2050 2203 GirlPhNo = phNo; // make phone number available … … 2066 2219 \qquad 2067 2220 \subfloat[\lstinline@signal_block@]{\label{f:DatingSignalBlock}\usebox\myboxB} 2068 \caption{Dating service }2069 \label{f:DatingService }2221 \caption{Dating service Monitor} 2222 \label{f:DatingServiceMonitor} 2070 2223 \end{figure} 2071 2224 2072 In summation, for internal scheduling, non-blocking signalling (as in the producer/consumer example) is used when the signaller is providing the cooperation for a waiting thread; 2073 the signaller enters the monitor and changes state, detects a waiting threads that can use the state, performs a non-blocking signal on the condition queue for the waiting thread, and exits the monitor to run concurrently. 2074 The waiter unblocks next from the urgent queue, uses/takes the state, and exits the monitor. 2075 Blocking signal is the reverse, where the waiter is providing the cooperation for the signalling thread; 2076 the signaller enters the monitor, detects a waiting thread providing the necessary state, performs a blocking signal to place it on the urgent queue and unblock the waiter. 2077 The waiter changes state and exits the monitor, and the signaller unblocks next from the urgent queue to use/take the state. 2225 Figure~\ref{f:DatingServiceMonitor} shows a dating service demonstrating non-blocking and blocking signalling. 2226 The dating service matches girl and boy threads with matching compatibility codes so they can exchange phone numbers. 2227 A thread blocks until an appropriate partner arrives. 2228 The complexity is exchanging phone numbers in the monitor because of the mutual-exclusion property. 2229 For signal scheduling, the @exchange@ condition is necessary to block the thread finding the match, while the matcher unblocks to take the opposite number, post its phone number, and unblock the partner. 2230 For signal-block scheduling, the implicit urgent-queue replaces the explicit @exchange@-condition and @signal_block@ puts the finding thread on the urgent stack and unblocks the matcher. 2231 2232 The dating service is an important example of a monitor that cannot be written using external scheduling. 2233 First, because scheduling requires knowledge of calling parameters to make matching decisions, and parameters of calling threads are unavailable within the monitor. 2234 For example, a girl thread within the monitor cannot examine the @ccode@ of boy threads waiting on the calling queue to determine if there is a matching partner. 2235 Second, because a scheduling decision may be delayed when there is no immediate match, which requires a condition queue for waiting, and condition queues imply internal scheduling. 2236 For example, if a girl thread could determine there is no calling boy with the same @ccode@, it must wait until a matching boy arrives. 2237 Finally, barging corrupts the dating service during an exchange because a barger may also match and change the phone numbers, invalidating the previous exchange phone number. 2238 This situation shows rechecking the waiting condition and waiting again (signals-as-hints) fails, requiring significant restructured to account for barging. 2078 2239 2079 2240 Both internal and external scheduling extend to multiple monitors in a natural way. 2080 2241 \begin{cquote} 2081 \begin{tabular}{@{}l@{\hspace{ 3\parindentlnth}}l@{}}2242 \begin{tabular}{@{}l@{\hspace{2\parindentlnth}}l@{}} 2082 2243 \begin{cfa} 2083 2244 monitor M { `condition e`; ... }; … … 2090 2251 & 2091 2252 \begin{cfa} 2092 void rtn$\(_1\)$( M & mutex m1, M & mutex m2 ); 2253 void rtn$\(_1\)$( M & mutex m1, M & mutex m2 ); // overload rtn 2093 2254 void rtn$\(_2\)$( M & mutex m1 ); 2094 2255 void bar( M & mutex m1, M & mutex m2 ) { 2095 ... waitfor( `rtn` ); ... // $\LstCommentStyle{waitfor( rtn\(_1\),m1, m2 )}$2096 ... waitfor( `rtn , m1` ); ... // $\LstCommentStyle{waitfor( rtn\(_2\), m1 )}$2256 ... waitfor( `rtn`${\color{red}\(_1\)}$ ); ... // $\LstCommentStyle{waitfor( rtn\(_1\) : m1, m2 )}$ 2257 ... waitfor( `rtn${\color{red}\(_2\)}$ : m1` ); ... 2097 2258 } 2098 2259 \end{cfa} … … 2101 2262 For @wait( e )@, the default semantics is to atomically block the signaller and release all acquired mutex parameters, \ie @wait( e, m1, m2 )@. 2102 2263 To override the implicit multi-monitor wait, specific mutex parameter(s) can be specified, \eg @wait( e, m1 )@. 2103 Wait cannot statically verif iesthe released monitors are the acquired mutex-parameters without disallowing separately compiled helper functions calling @wait@.2104 While \CC supports bulk locking, @wait@ only accepts a single lock for a condition variable, so bulk locking with condition variables is asymmetric.2264 Wait cannot statically verify the released monitors are the acquired mutex-parameters without disallowing separately compiled helper functions calling @wait@. 2265 While \CC supports bulk locking, @wait@ only accepts a single lock for a condition queue, so bulk locking with condition queues is asymmetric. 2105 2266 Finally, a signaller, 2106 2267 \begin{cfa} … … 2111 2272 must have acquired at least the same locks as the waiting thread signalled from a condition queue to allow the locks to be passed, and hence, prevent barging. 2112 2273 2113 Similarly, for @waitfor( rtn )@, the default semantics is to atomically block the acceptor and release all acquired mutex parameters, \ie @waitfor( rtn ,m1, m2 )@.2114 To override the implicit multi-monitor wait, specific mutex parameter(s) can be specified, \eg @waitfor( rtn ,m1 )@.2274 Similarly, for @waitfor( rtn )@, the default semantics is to atomically block the acceptor and release all acquired mutex parameters, \ie @waitfor( rtn : m1, m2 )@. 2275 To override the implicit multi-monitor wait, specific mutex parameter(s) can be specified, \eg @waitfor( rtn : m1 )@. 2115 2276 @waitfor@ does statically verify the monitor types passed are the same as the acquired mutex-parameters of the given function or function pointer, hence the function (pointer) prototype must be accessible. 2116 2277 % When an overloaded function appears in an @waitfor@ statement, calls to any function with that name are accepted. … … 2120 2281 void rtn( M & mutex m ); 2121 2282 `int` rtn( M & mutex m ); 2122 waitfor( (`int` (*)( M & mutex ))rtn, m ); 2123 \end{cfa} 2124 2125 The ability to release a subset of acquired monitors can result in a \newterm{nested monitor}~\cite{Lister77} deadlock. 2283 waitfor( (`int` (*)( M & mutex ))rtn : m ); 2284 \end{cfa} 2285 2286 The ability to release a subset of acquired monitors can result in a \newterm{nested monitor}~\cite{Lister77} deadlock (see Section~\ref{s:MutexAcquisition}). 2287 \newpage 2126 2288 \begin{cfa} 2127 2289 void foo( M & mutex m1, M & mutex m2 ) { 2128 ... wait( `e, m1` ); ... $\C{// release m1, keeping m2 acquired )}$2129 void bar( M & mutex m1, M & mutex m2 ) { $\C{// must acquire m1 and m2 )}$2290 ... wait( `e, m1` ); ... $\C{// release m1, keeping m2 acquired}$ 2291 void bar( M & mutex m1, M & mutex m2 ) { $\C{// must acquire m1 and m2}$ 2130 2292 ... signal( `e` ); ... 2131 2293 \end{cfa} 2132 2294 The @wait@ only releases @m1@ so the signalling thread cannot acquire @m1@ and @m2@ to enter @bar@ and @signal@ the condition. 2133 While deadlock can occur with multiple/nesting acquisition, this is a consequence of locks, and by extension monitors, not being perfectly composable. 2134 2295 While deadlock can occur with multiple/nesting acquisition, this is a consequence of locks, and by extension monitor locking is not perfectly composable. 2135 2296 2136 2297 2137 2298 \subsection{\texorpdfstring{Extended \protect\lstinline@waitfor@}{Extended waitfor}} 2299 \label{s:ExtendedWaitfor} 2138 2300 2139 2301 Figure~\ref{f:ExtendedWaitfor} shows the extended form of the @waitfor@ statement to conditionally accept one of a group of mutex functions, with an optional statement to be performed \emph{after} the mutex function finishes. … … 2146 2308 Hence, the terminating @else@ clause allows a conditional attempt to accept a call without blocking. 2147 2309 If both @timeout@ and @else@ clause are present, the @else@ must be conditional, or the @timeout@ is never triggered. 2148 There is also a traditional future wait queue (not shown) (\eg Microsoft (@WaitForMultipleObjects@)), to wait for a specified number of future elements in the queue. 2310 There is also a traditional future wait queue (not shown) (\eg Microsoft @WaitForMultipleObjects@), to wait for a specified number of future elements in the queue. 2311 Finally, there is a shorthand for specifying multiple functions using the same set of monitors: @waitfor( f, g, h : m1, m2, m3 )@. 2149 2312 2150 2313 \begin{figure} … … 2173 2336 The right example accepts either @mem1@ or @mem2@ if @C1@ and @C2@ are true. 2174 2337 2175 An interesting use of @waitfor@ is accepting the @mutex@ destructor to know when an object is deallocated, \eg assume the bounded buffer is restruct red from a monitor to a thread with the following @main@.2338 An interesting use of @waitfor@ is accepting the @mutex@ destructor to know when an object is deallocated, \eg assume the bounded buffer is restructured from a monitor to a thread with the following @main@. 2176 2339 \begin{cfa} 2177 2340 void main( Buffer(T) & buffer ) with(buffer) { 2178 2341 for () { 2179 `waitfor( ^?{} ,buffer )` break;2180 or when ( count != 20 ) waitfor( insert ,buffer ) { ... }2181 or when ( count != 0 ) waitfor( remove ,buffer ) { ... }2342 `waitfor( ^?{} : buffer )` break; 2343 or when ( count != 20 ) waitfor( insert : buffer ) { ... } 2344 or when ( count != 0 ) waitfor( remove : buffer ) { ... } 2182 2345 } 2183 2346 // clean up … … 2271 2434 To support this efficient semantics (and prevent barging), the implementation maintains a list of monitors acquired for each blocked thread. 2272 2435 When a signaller exits or waits in a monitor function/statement, the front waiter on urgent is unblocked if all its monitors are released. 2273 Implementing a fast subset check for the necessary released monitors is important .2436 Implementing a fast subset check for the necessary released monitors is important and discussed in the following sections. 2274 2437 % The benefit is encapsulating complexity into only two actions: passing monitors to the next owner when they should be released and conditionally waking threads if all conditions are met. 2275 2438 2276 2439 2277 \subsection{Loose Object Definitions} 2278 \label{s:LooseObjectDefinitions} 2279 2280 In an object-oriented programming language, a class includes an exhaustive list of operations. 2281 A new class can add members via static inheritance but the subclass still has an exhaustive list of operations. 2282 (Dynamic member adding, \eg JavaScript~\cite{JavaScript}, is not considered.) 2283 In the object-oriented scenario, the type and all its operators are always present at compilation (even separate compilation), so it is possible to number the operations in a bit mask and use an $O(1)$ compare with a similar bit mask created for the operations specified in a @waitfor@. 2284 2285 However, in \CFA, monitor functions can be statically added/removed in translation units, making a fast subset check difficult. 2286 \begin{cfa} 2287 monitor M { ... }; // common type, included in .h file 2288 translation unit 1 2289 void `f`( M & mutex m ); 2290 void g( M & mutex m ) { waitfor( `f`, m ); } 2291 translation unit 2 2292 void `f`( M & mutex m ); $\C{// replacing f and g for type M in this translation unit}$ 2293 void `g`( M & mutex m ); 2294 void h( M & mutex m ) { waitfor( `f`, m ) or waitfor( `g`, m ); } $\C{// extending type M in this translation unit}$ 2295 \end{cfa} 2296 The @waitfor@ statements in each translation unit cannot form a unique bit-mask because the monitor type does not carry that information. 2440 \subsection{\texorpdfstring{\protect\lstinline@waitfor@ Implementation}{waitfor Implementation}} 2441 \label{s:waitforImplementation} 2442 2443 In a statically-typed object-oriented programming language, a class has an exhaustive list of members, even when members are added via static inheritance (see Figure~\ref{f:uCinheritance}). 2444 Knowing all members at compilation (even separate compilation) allows uniquely numbered them so the accept-statement implementation can use a fast/compact bit mask with $O(1)$ compare. 2445 2446 \begin{figure} 2447 \centering 2448 \begin{lrbox}{\myboxA} 2449 \begin{uC++}[aboveskip=0pt,belowskip=0pt] 2450 $\emph{translation unit 1}$ 2451 _Monitor B { // common type in .h file 2452 _Mutex virtual void `f`( ... ); 2453 _Mutex virtual void `g`( ... ); 2454 _Mutex virtual void w1( ... ) { ... _Accept(`f`, `g`); ... } 2455 }; 2456 $\emph{translation unit 2}$ 2457 // include B 2458 _Monitor D : public B { // inherit 2459 _Mutex void `h`( ... ); // add 2460 _Mutex void w2( ... ) { ... _Accept(`f`, `h`); ... } 2461 }; 2462 \end{uC++} 2463 \end{lrbox} 2464 2465 \begin{lrbox}{\myboxB} 2466 \begin{cfa}[aboveskip=0pt,belowskip=0pt] 2467 $\emph{translation unit 1}$ 2468 monitor M { ... }; // common type in .h file 2469 void `f`( M & mutex m, ... ); 2470 void `g`( M & mutex m, ... ); 2471 void w1( M & mutex m, ... ) { ... waitfor(`f`, `g` : m); ... } 2472 2473 $\emph{translation unit 2}$ 2474 // include M 2475 extern void `f`( M & mutex m, ... ); // import f but not g 2476 void `h`( M & mutex m ); // add 2477 void w2( M & mutex m, ... ) { ... waitfor(`f`, `h` : m); ... } 2478 2479 \end{cfa} 2480 \end{lrbox} 2481 2482 \subfloat[\uC]{\label{f:uCinheritance}\usebox\myboxA} 2483 \hspace{3pt} 2484 \vrule 2485 \hspace{3pt} 2486 \subfloat[\CFA]{\label{f:CFinheritance}\usebox\myboxB} 2487 \caption{Member / Function visibility} 2488 \label{f:MemberFunctionVisibility} 2489 \end{figure} 2490 2491 However, the @waitfor@ statement in translation unit 2 (see Figure~\ref{f:CFinheritance}) cannot see function @g@ in translation unit 1 precluding a unique numbering for a bit-mask because the monitor type only carries the protected shared-data. 2492 (A possible way to construct a dense mapping is at link or load-time.) 2297 2493 Hence, function pointers are used to identify the functions listed in the @waitfor@ statement, stored in a variable-sized array. 2298 Then, the same implementation approach used for the urgent stack is used for the calling queue. 2299 Each caller has a list of monitors acquired, and the @waitfor@ statement performs a (usually short) linear search matching functions in the @waitfor@ list with called functions, and then verifying the associated mutex locks can be transfers. 2300 (A possible way to construct a dense mapping is at link or load-time.) 2494 Then, the same implementation approach used for the urgent stack (see Section~\ref{s:Scheduling}) is used for the calling queue. 2495 Each caller has a list of monitors acquired, and the @waitfor@ statement performs a (short) linear search matching functions in the @waitfor@ list with called functions, and then verifying the associated mutex locks can be transfers. 2301 2496 2302 2497 … … 2313 2508 The solution is for the programmer to disambiguate: 2314 2509 \begin{cfa} 2315 waitfor( f ,`m2` ); $\C{// wait for call to f with argument m2}$2510 waitfor( f : `m2` ); $\C{// wait for call to f with argument m2}$ 2316 2511 \end{cfa} 2317 2512 Both locks are acquired by function @g@, so when function @f@ is called, the lock for monitor @m2@ is passed from @g@ to @f@, while @g@ still holds lock @m1@. … … 2320 2515 monitor M { ... }; 2321 2516 void f( M & mutex m1, M & mutex m2 ); 2322 void g( M & mutex m1, M & mutex m2 ) { waitfor( f ,`m1, m2` ); $\C{// wait for call to f with arguments m1 and m2}$2517 void g( M & mutex m1, M & mutex m2 ) { waitfor( f : `m1, m2` ); $\C{// wait for call to f with arguments m1 and m2}$ 2323 2518 \end{cfa} 2324 2519 Again, the set of monitors passed to the @waitfor@ statement must be entirely contained in the set of monitors already acquired by the accepting function. 2325 Also, the order of the monitors in a @waitfor@ statement is unimportant.2326 2327 Figure~\ref{f:UnmatchedMutexSets} shows an example where, for internal and external scheduling with multiple monitors, a signalling or accepting thread must match exactly, \ie partial matching results in waiting.2328 For both examples, the set of monitors is disjoint so unblocking is impossible.2520 % Also, the order of the monitors in a @waitfor@ statement must match the order of the mutex parameters. 2521 2522 Figure~\ref{f:UnmatchedMutexSets} shows internal and external scheduling with multiple monitors that must match exactly with a signalling or accepting thread, \ie partial matching results in waiting. 2523 In both cases, the set of monitors is disjoint so unblocking is impossible. 2329 2524 2330 2525 \begin{figure} … … 2355 2550 } 2356 2551 void g( M1 & mutex m1, M2 & mutex m2 ) { 2357 waitfor( f ,m1, m2 );2552 waitfor( f : m1, m2 ); 2358 2553 } 2359 2554 g( `m11`, m2 ); // block on accept … … 2370 2565 \end{figure} 2371 2566 2372 2373 \subsection{\texorpdfstring{\protect\lstinline@mutex@ Threads}{mutex Threads}}2374 2375 Threads in \CFA can also be monitors to allow \emph{direct communication} among threads, \ie threads can have mutex functions that are called by other threads.2376 Hence, all monitor features are available when using threads.2377 Figure~\ref{f:DirectCommunication} shows a comparison of direct call communication in \CFA with direct channel communication in Go.2378 (Ada provides a similar mechanism to the \CFA direct communication.)2379 The program main in both programs communicates directly with the other thread versus indirect communication where two threads interact through a passive monitor.2380 Both direct and indirection thread communication are valuable tools in structuring concurrent programs.2381 2382 2567 \begin{figure} 2383 2568 \centering … … 2386 2571 2387 2572 struct Msg { int i, j; }; 2388 thread GoRtn { int i; float f; Msg m; };2573 monitor thread GoRtn { int i; float f; Msg m; }; 2389 2574 void mem1( GoRtn & mutex gortn, int i ) { gortn.i = i; } 2390 2575 void mem2( GoRtn & mutex gortn, float f ) { gortn.f = f; } … … 2396 2581 for () { 2397 2582 2398 `waitfor( mem1 ,gortn )` sout | i; // wait for calls2399 or `waitfor( mem2 ,gortn )` sout | f;2400 or `waitfor( mem3 ,gortn )` sout | m.i | m.j;2401 or `waitfor( ^?{} , gortn )` break;2583 `waitfor( mem1 : gortn )` sout | i; // wait for calls 2584 or `waitfor( mem2 : gortn )` sout | f; 2585 or `waitfor( mem3 : gortn )` sout | m.i | m.j; 2586 or `waitfor( ^?{} : gortn )` break; // low priority 2402 2587 2403 2588 } … … 2453 2638 \hspace{3pt} 2454 2639 \subfloat[Go]{\label{f:Gochannel}\usebox\myboxB} 2455 \caption{Direct communication} 2456 \label{f:DirectCommunication} 2640 \caption{Direct versus indirect communication} 2641 \label{f:DirectCommunicationComparison} 2642 2643 \medskip 2644 2645 \begin{cfa} 2646 monitor thread DatingService { 2647 condition Girls[CompCodes], Boys[CompCodes]; 2648 int girlPhoneNo, boyPhoneNo, ccode; 2649 }; 2650 int girl( DatingService & mutex ds, int phoneno, int code ) with( ds ) { 2651 girlPhoneNo = phoneno; ccode = code; 2652 `wait( Girls[ccode] );` $\C{// wait for boy}$ 2653 girlPhoneNo = phoneno; return boyPhoneNo; 2654 } 2655 int boy( DatingService & mutex ds, int phoneno, int code ) with( ds ) { 2656 boyPhoneNo = phoneno; ccode = code; 2657 `wait( Boys[ccode] );` $\C{// wait for girl}$ 2658 boyPhoneNo = phoneno; return girlPhoneNo; 2659 } 2660 void main( DatingService & ds ) with( ds ) { $\C{// thread starts, ds defaults to mutex}$ 2661 for () { 2662 waitfor( ^?{} ) break; $\C{// high priority}$ 2663 or waitfor( girl ) $\C{// girl called, compatible boy ? restart boy then girl}$ 2664 if ( ! is_empty( Boys[ccode] ) ) { `signal_block( Boys[ccode] ); signal_block( Girls[ccode] );` } 2665 or waitfor( boy ) { $\C{// boy called, compatible girl ? restart girl then boy}$ 2666 if ( ! is_empty( Girls[ccode] ) ) { `signal_block( Girls[ccode] ); signal_block( Boys[ccode] );` } 2667 } 2668 } 2669 \end{cfa} 2670 \caption{Direct communication dating service} 2671 \label{f:DirectCommunicationDatingService} 2457 2672 \end{figure} 2458 2673 … … 2469 2684 void main( Ping & pi ) { 2470 2685 for ( 10 ) { 2471 `waitfor( ping ,pi );`2686 `waitfor( ping : pi );` 2472 2687 `pong( po );` 2473 2688 } … … 2482 2697 for ( 10 ) { 2483 2698 `ping( pi );` 2484 `waitfor( pong ,po );`2699 `waitfor( pong : po );` 2485 2700 } 2486 2701 } … … 2497 2712 2498 2713 2499 \subsection{Execution Properties} 2500 2501 Table~\ref{t:ObjectPropertyComposition} shows how the \CFA high-level constructs cover 3 fundamental execution properties: thread, stateful function, and mutual exclusion. 2502 Case 1 is a basic object, with none of the new execution properties. 2503 Case 2 allows @mutex@ calls to Case 1 to protect shared data. 2504 Case 3 allows stateful functions to suspend/resume but restricts operations because the state is stackless. 2505 Case 4 allows @mutex@ calls to Case 3 to protect shared data. 2506 Cases 5 and 6 are the same as 3 and 4 without restriction because the state is stackful. 2507 Cases 7 and 8 are rejected because a thread cannot execute without a stackful state in a preemptive environment when context switching from the signal handler. 2508 Cases 9 and 10 have a stackful thread without and with @mutex@ calls. 2509 For situations where threads do not require direct communication, case 9 provides faster creation/destruction by eliminating @mutex@ setup. 2510 2511 \begin{table} 2512 \caption{Object property composition} 2513 \centering 2514 \label{t:ObjectPropertyComposition} 2515 \renewcommand{\arraystretch}{1.25} 2516 %\setlength{\tabcolsep}{5pt} 2517 \begin{tabular}{c|c||l|l} 2518 \multicolumn{2}{c||}{object properties} & \multicolumn{2}{c}{mutual exclusion} \\ 2519 \hline 2520 thread & stateful & \multicolumn{1}{c|}{No} & \multicolumn{1}{c}{Yes} \\ 2521 \hline 2522 \hline 2523 No & No & \textbf{1}\ \ \ aggregate type & \textbf{2}\ \ \ @monitor@ aggregate type \\ 2524 \hline 2525 No & Yes (stackless) & \textbf{3}\ \ \ @generator@ & \textbf{4}\ \ \ @monitor@ @generator@ \\ 2526 \hline 2527 No & Yes (stackful) & \textbf{5}\ \ \ @coroutine@ & \textbf{6}\ \ \ @monitor@ @coroutine@ \\ 2528 \hline 2529 Yes & No / Yes (stackless) & \textbf{7}\ \ \ {\color{red}rejected} & \textbf{8}\ \ \ {\color{red}rejected} \\ 2530 \hline 2531 Yes & Yes (stackful) & \textbf{9}\ \ \ @thread@ & \textbf{10}\ \ @monitor@ @thread@ \\ 2532 \end{tabular} 2533 \end{table} 2714 \subsection{\texorpdfstring{\protect\lstinline@monitor@ Generators / Coroutines / Threads}{monitor Generators / Coroutines / Threads}} 2715 2716 \CFA generators, coroutines, and threads can also be monitors (Table~\ref{t:ExecutionPropertyComposition} cases 4, 6, 12) allowing safe \emph{direct communication} with threads, \ie the custom types can have mutex functions that are called by other threads. 2717 All monitor features are available within these mutex functions. 2718 For example, if the formatter generator (or coroutine equivalent) in Figure~\ref{f:CFAFormatGen} is extended with the monitor property and this interface function is used to communicate with the formatter: 2719 \begin{cfa} 2720 void fmt( Fmt & mutex fmt, char ch ) { fmt.ch = ch; resume( fmt ) } 2721 \end{cfa} 2722 multiple threads can safely pass characters for formatting. 2723 2724 Figure~\ref{f:DirectCommunicationComparison} shows a comparison of direct call-communication in \CFA versus indirect channel-communication in Go. 2725 (Ada has a similar mechanism to \CFA direct communication.) 2726 The program thread in \CFA @main@ uses the call/return paradigm to directly communicate with the @GoRtn main@, whereas Go switches to the channel paradigm to indirectly communicate with the goroutine. 2727 Communication by multiple threads is safe for the @gortn@ thread via mutex calls in \CFA or channel assignment in Go. 2728 2729 Figure~\ref{f:DirectCommunicationDatingService} shows the dating-service problem in Figure~\ref{f:DatingServiceMonitor} extended from indirect monitor communication to direct thread communication. 2730 When converting a monitor to a thread (server), the coding pattern is to move as much code as possible from the accepted members into the thread main so it does an much work as possible. 2731 Notice, the dating server is postponing requests for an unspecified time while continuing to accept new requests. 2732 For complex servers (web-servers), there can be hundreds of lines of code in the thread main and safe interaction with clients can be complex. 2534 2733 2535 2734 … … 2537 2736 2538 2737 For completeness and efficiency, \CFA provides a standard set of low-level locks: recursive mutex, condition, semaphore, barrier, \etc, and atomic instructions: @fetchAssign@, @fetchAdd@, @testSet@, @compareSet@, \etc. 2539 Some of these low-level mechanism are used in the \CFA runtime, but we stronglyadvocate using high-level mechanisms whenever possible.2738 Some of these low-level mechanism are used to build the \CFA runtime, but we always advocate using high-level mechanisms whenever possible. 2540 2739 2541 2740 … … 2580 2779 \begin{cfa} 2581 2780 struct Adder { 2582 2781 int * row, cols; 2583 2782 }; 2584 2783 int operator()() { … … 2639 2838 \label{s:RuntimeStructureCluster} 2640 2839 2641 A \newterm{cluster} is a collection of threads and virtual processors (abstract kernel-thread) that execute the (user) threads from its own ready queue (like an OS executing kernel threads). 2840 A \newterm{cluster} is a collection of user and kernel threads, where the kernel threads run the user threads from the cluster's ready queue, and the operating system runs the kernel threads on the processors from its ready queue. 2841 The term \newterm{virtual processor} is introduced as a synonym for kernel thread to disambiguate between user and kernel thread. 2842 From the language perspective, a virtual processor is an actual processor (core). 2843 2642 2844 The purpose of a cluster is to control the amount of parallelism that is possible among threads, plus scheduling and other execution defaults. 2643 2845 The default cluster-scheduler is single-queue multi-server, which provides automatic load-balancing of threads on processors. … … 2658 2860 Programs may use more virtual processors than hardware processors. 2659 2861 On a multiprocessor, kernel threads are distributed across the hardware processors resulting in virtual processors executing in parallel. 2660 (It is possible to use affinity to lock a virtual processor onto a particular hardware processor~\cite{affinityLinux, affinityWindows, affinityFreebsd, affinityNetbsd, affinityMacosx}, which is used when caching issues occur or for heterogeneous hardware processors.)2862 (It is possible to use affinity to lock a virtual processor onto a particular hardware processor~\cite{affinityLinux,affinityWindows}, which is used when caching issues occur or for heterogeneous hardware processors.) %, affinityFreebsd, affinityNetbsd, affinityMacosx 2661 2863 The \CFA runtime attempts to block unused processors and unblock processors as the system load increases; 2662 balancing the workload with processors is difficult because it requires future knowledge, \ie what will the applicat on workload do next.2864 balancing the workload with processors is difficult because it requires future knowledge, \ie what will the application workload do next. 2663 2865 Preemption occurs on virtual processors rather than user threads, via operating-system interrupts. 2664 2866 Thus virtual processors execute user threads, where preemption frequency applies to a virtual processor, so preemption occurs randomly across the executed user threads. … … 2695 2897 Nondeterministic preemption provides fairness from long-running threads, and forces concurrent programmers to write more robust programs, rather than relying on code between cooperative scheduling to be atomic. 2696 2898 This atomic reliance can fail on multi-core machines, because execution across cores is nondeterministic. 2697 A different reason for not supporting preemption is that it significantly complicates the runtime system, \eg Microsoftruntime does not support interrupts and on Linux systems, interrupts are complex (see below).2899 A different reason for not supporting preemption is that it significantly complicates the runtime system, \eg Windows runtime does not support interrupts and on Linux systems, interrupts are complex (see below). 2698 2900 Preemption is normally handled by setting a countdown timer on each virtual processor. 2699 When the timer expires, an interrupt is delivered, and the interrupthandler resets the countdown timer, and if the virtual processor is executing in user code, the signal handler performs a user-level context-switch, or if executing in the language runtime kernel, the preemption is ignored or rolled forward to the point where the runtime kernel context switches back to user code.2901 When the timer expires, an interrupt is delivered, and its signal handler resets the countdown timer, and if the virtual processor is executing in user code, the signal handler performs a user-level context-switch, or if executing in the language runtime kernel, the preemption is ignored or rolled forward to the point where the runtime kernel context switches back to user code. 2700 2902 Multiple signal handlers may be pending. 2701 2903 When control eventually switches back to the signal handler, it returns normally, and execution continues in the interrupted user thread, even though the return from the signal handler may be on a different kernel thread than the one where the signal is delivered. 2702 2904 The only issue with this approach is that signal masks from one kernel thread may be restored on another as part of returning from the signal handler; 2703 2905 therefore, the same signal mask is required for all virtual processors in a cluster. 2704 Because preemption frequency is usually long (1 millisecond) performance cost is negligible. 2705 2706 Linux switched a decade ago from specific to arbitrary process signal-delivery for applications with multiple kernel threads. 2707 \begin{cquote} 2708 A process-directed signal may be delivered to any one of the threads that does not currently have the signal blocked. 2709 If more than one of the threads has the signal unblocked, then the kernel chooses an arbitrary thread to which it will deliver the signal. 2710 SIGNAL(7) - Linux Programmer's Manual 2711 \end{cquote} 2906 Because preemption interval is usually long (1 millisecond) performance cost is negligible. 2907 2908 Linux switched a decade ago from specific to arbitrary virtual-processor signal-delivery for applications with multiple kernel threads. 2909 In the new semantics, a virtual-processor directed signal may be delivered to any virtual processor created by the application that does not have the signal blocked. 2712 2910 Hence, the timer-expiry signal, which is generated \emph{externally} by the Linux kernel to an application, is delivered to any of its Linux subprocesses (kernel threads). 2713 2911 To ensure each virtual processor receives a preemption signal, a discrete-event simulation is run on a special virtual processor, and only it sets and receives timer events. … … 2727 2925 \label{s:Performance} 2728 2926 2729 To verify the implementation of the \CFA runtime, a series of microbenchmarks are performed comparing \CFA with pthreads, Java OpenJDK-9, Go 1.12.6and \uC 7.0.0.2927 To test the performance of the \CFA runtime, a series of microbenchmarks are used to compare \CFA with pthreads, Java 11.0.6, Go 1.12.6, Rust 1.37.0, Python 3.7.6, Node.js 12.14.1, and \uC 7.0.0. 2730 2928 For comparison, the package must be multi-processor (M:N), which excludes libdill/libmil~\cite{libdill} (M:1)), and use a shared-memory programming model, \eg not message passing. 2731 The benchmark computer is an AMD Opteron\texttrademark\ 6380 NUMA 64-core, 8 socket, 2.5 GHz processor, running Ubuntu 16.04.6 LTS, and \CFA/\uC are compiled with gcc 6.5.2929 The benchmark computer is an AMD Opteron\texttrademark\ 6380 NUMA 64-core, 8 socket, 2.5 GHz processor, running Ubuntu 16.04.6 LTS, and pthreads/\CFA/\uC are compiled with gcc 9.2.1. 2732 2930 2733 2931 All benchmarks are run using the following harness. (The Java harness is augmented to circumvent JIT issues.) 2734 2932 \begin{cfa} 2735 unsigned int N = 10_000_000; 2736 #define BENCH( `run` ) Time before = getTimeNsec(); `run;` Duration result = (getTimeNsec() - before) / N; 2737 \end{cfa} 2738 The method used to get time is @clock_gettime( CLOCK_REALTIME )@. 2739 Each benchmark is performed @N@ times, where @N@ varies depending on the benchmark; 2740 the total time is divided by @N@ to obtain the average time for a benchmark. 2741 Each benchmark experiment is run 31 times. 2933 #define BENCH( `run` ) uint64_t start = cputime_ns(); `run;` double result = (double)(cputime_ns() - start) / N; 2934 \end{cfa} 2935 where CPU time in nanoseconds is from the appropriate language clock. 2936 Each benchmark is performed @N@ times, where @N@ is selected so the benchmark runs in the range of 2--20 seconds for the specific programming language. 2937 The total time is divided by @N@ to obtain the average time for a benchmark. 2938 Each benchmark experiment is run 13 times and the average appears in the table. 2742 2939 All omitted tests for other languages are functionally identical to the \CFA tests and available online~\cite{CforallBenchMarks}. 2743 % tar --exclude=.deps --exclude=Makefile --exclude=Makefile.in --exclude=c.c --exclude=cxx.cpp --exclude=fetch_add.c -cvhf benchmark.tar benchmark 2744 2745 \paragraph{Object Creation} 2746 2747 Object creation is measured by creating/deleting the specific kind of concurrent object. 2748 Figure~\ref{f:creation} shows the code for \CFA, with results in Table~\ref{tab:creation}. 2749 The only note here is that the call stacks of \CFA coroutines are lazily created, therefore without priming the coroutine to force stack creation, the creation cost is artificially low. 2750 2751 \begin{multicols}{2} 2752 \lstset{language=CFA,moredelim=**[is][\color{red}]{@}{@},deletedelim=**[is][]{`}{`}} 2753 \begin{cfa} 2754 @thread@ MyThread {}; 2755 void @main@( MyThread & ) {} 2756 int main() { 2757 BENCH( for ( N ) { @MyThread m;@ } ) 2758 sout | result`ns; 2759 } 2760 \end{cfa} 2761 \captionof{figure}{\CFA object-creation benchmark} 2762 \label{f:creation} 2763 2764 \columnbreak 2765 2766 \vspace*{-16pt} 2767 \captionof{table}{Object creation comparison (nanoseconds)} 2768 \label{tab:creation} 2769 2770 \begin{tabular}[t]{@{}r*{3}{D{.}{.}{5.2}}@{}} 2771 \multicolumn{1}{@{}c}{} & \multicolumn{1}{c}{Median} & \multicolumn{1}{c}{Average} & \multicolumn{1}{c@{}}{Std Dev} \\ 2772 \CFA Coroutine Lazy & 13.2 & 13.1 & 0.44 \\ 2773 \CFA Coroutine Eager & 531.3 & 536.0 & 26.54 \\ 2774 \CFA Thread & 2074.9 & 2066.5 & 170.76 \\ 2775 \uC Coroutine & 89.6 & 90.5 & 1.83 \\ 2776 \uC Thread & 528.2 & 528.5 & 4.94 \\ 2777 Goroutine & 4068.0 & 4113.1 & 414.55 \\ 2778 Java Thread & 103848.5 & 104295.4 & 2637.57 \\ 2779 Pthreads & 33112.6 & 33127.1 & 165.90 2780 \end{tabular} 2781 \end{multicols} 2782 2783 2784 \paragraph{Context-Switching} 2940 % tar --exclude-ignore=exclude -cvhf benchmark.tar benchmark 2941 2942 \paragraph{Context Switching} 2785 2943 2786 2944 In procedural programming, the cost of a function call is important as modularization (refactoring) increases. 2787 (In many cases, a compiler inlines function calls to eliminate this cost.)2788 Similarly, when modularization extends to coroutines/t asks, the time for a context switch becomes a relevant factor.2945 (In many cases, a compiler inlines function calls to increase the size and number of basic blocks for optimizing.) 2946 Similarly, when modularization extends to coroutines/threads, the time for a context switch becomes a relevant factor. 2789 2947 The coroutine test is from resumer to suspender and from suspender to resumer, which is two context switches. 2948 %For async-await systems, the test is scheduling and fulfilling @N@ empty promises, where all promises are allocated before versus interleaved with fulfillment to avoid garbage collection. 2949 For async-await systems, the test measures the cost of the @await@ expression entering the event engine by awaiting @N@ promises, where each created promise is resolved by an immediate event in the engine (using Node.js @setImmediate@). 2790 2950 The thread test is using yield to enter and return from the runtime kernel, which is two context switches. 2791 2951 The difference in performance between coroutine and thread context-switch is the cost of scheduling for threads, whereas coroutines are self-scheduling. 2792 Figure~\ref{f:ctx-switch} only shows the \CFA code for coroutines/threads (other systems are similar) with all results in Table~\ref{tab:ctx-switch}. 2952 Figure~\ref{f:ctx-switch} shows the \CFA code for a coroutine/thread with results in Table~\ref{t:ctx-switch}. 2953 2954 % From: Gregor Richards <gregor.richards@uwaterloo.ca> 2955 % To: "Peter A. Buhr" <pabuhr@plg2.cs.uwaterloo.ca> 2956 % Date: Fri, 24 Jan 2020 13:49:18 -0500 2957 % 2958 % I can also verify that the previous version, which just tied a bunch of promises together, *does not* go back to the 2959 % event loop at all in the current version of Node. Presumably they're taking advantage of the fact that the ordering of 2960 % events is intentionally undefined to just jump right to the next 'then' in the chain, bypassing event queueing 2961 % entirely. That's perfectly correct behavior insofar as its difference from the specified behavior isn't observable, but 2962 % it isn't typical or representative of much anything useful, because most programs wouldn't have whole chains of eager 2963 % promises. Also, it's not representative of *anything* you can do with async/await, as there's no way to encode such an 2964 % eager chain that way. 2793 2965 2794 2966 \begin{multicols}{2} 2795 2967 \lstset{language=CFA,moredelim=**[is][\color{red}]{@}{@},deletedelim=**[is][]{`}{`}} 2796 2968 \begin{cfa}[aboveskip=0pt,belowskip=0pt] 2797 @coroutine@ C {} c;2798 void main( C & ) { for ( ;;) { @suspend;@ } }2969 @coroutine@ C {}; 2970 void main( C & ) { for () { @suspend;@ } } 2799 2971 int main() { // coroutine test 2972 C c; 2800 2973 BENCH( for ( N ) { @resume( c );@ } ) 2801 sout | result `ns;2802 } 2803 int main() { // t asktest2974 sout | result; 2975 } 2976 int main() { // thread test 2804 2977 BENCH( for ( N ) { @yield();@ } ) 2805 sout | result `ns;2978 sout | result; 2806 2979 } 2807 2980 \end{cfa} … … 2813 2986 \vspace*{-16pt} 2814 2987 \captionof{table}{Context switch comparison (nanoseconds)} 2815 \label{t ab:ctx-switch}2988 \label{t:ctx-switch} 2816 2989 \begin{tabular}{@{}r*{3}{D{.}{.}{3.2}}@{}} 2817 2990 \multicolumn{1}{@{}c}{} & \multicolumn{1}{c}{Median} &\multicolumn{1}{c}{Average} & \multicolumn{1}{c@{}}{Std Dev} \\ 2818 C function & 1.8 & 1.8 & 0.01 \\ 2819 \CFA generator & 2.4 & 2.2 & 0.25 \\ 2820 \CFA Coroutine & 36.2 & 36.2 & 0.25 \\ 2821 \CFA Thread & 93.2 & 93.5 & 2.09 \\ 2822 \uC Coroutine & 52.0 & 52.1 & 0.51 \\ 2823 \uC Thread & 96.2 & 96.3 & 0.58 \\ 2824 Goroutine & 141.0 & 141.3 & 3.39 \\ 2825 Java Thread & 374.0 & 375.8 & 10.38 \\ 2826 Pthreads Thread & 361.0 & 365.3 & 13.19 2991 C function & 1.8 & 1.8 & 0.0 \\ 2992 \CFA generator & 1.8 & 2.0 & 0.3 \\ 2993 \CFA coroutine & 32.5 & 32.9 & 0.8 \\ 2994 \CFA thread & 93.8 & 93.6 & 2.2 \\ 2995 \uC coroutine & 50.3 & 50.3 & 0.2 \\ 2996 \uC thread & 97.3 & 97.4 & 1.0 \\ 2997 Python generator & 40.9 & 41.3 & 1.5 \\ 2998 Node.js generator & 32.6 & 32.2 & 1.0 \\ 2999 Node.js await & 1852.2 & 1854.7 & 16.4 \\ 3000 Goroutine thread & 143.0 & 143.3 & 1.1 \\ 3001 Rust thread & 332.0 & 331.4 & 2.4 \\ 3002 Java thread & 405.0 & 415.0 & 17.6 \\ 3003 Pthreads thread & 334.3 & 335.2 & 3.9 2827 3004 \end{tabular} 2828 3005 \end{multicols} 2829 3006 2830 2831 \paragraph{Mutual-Exclusion} 2832 2833 Uncontented mutual exclusion, which frequently occurs, is measured by entering/leaving a critical section. 2834 For monitors, entering and leaving a monitor function is measured. 2835 To put the results in context, the cost of entering a non-inline function and the cost of acquiring and releasing a @pthread_mutex@ lock is also measured. 2836 Figure~\ref{f:mutex} shows the code for \CFA with all results in Table~\ref{tab:mutex}. 3007 \paragraph{Internal Scheduling} 3008 3009 Internal scheduling is measured using a cycle of two threads signalling and waiting. 3010 Figure~\ref{f:schedint} shows the code for \CFA, with results in Table~\ref{t:schedint}. 2837 3011 Note, the incremental cost of bulk acquire for \CFA, which is largely a fixed cost for small numbers of mutex objects. 3012 Java scheduling is significantly greater because the benchmark explicitly creates multiple thread in order to prevent the JIT from making the program sequential, \ie removing all locking. 2838 3013 2839 3014 \begin{multicols}{2} 2840 3015 \lstset{language=CFA,moredelim=**[is][\color{red}]{@}{@},deletedelim=**[is][]{`}{`}} 2841 3016 \begin{cfa} 3017 volatile int go = 0; 3018 @condition c;@ 2842 3019 @monitor@ M {} m1/*, m2, m3, m4*/; 2843 void __attribute__((noinline)) 2844 do_call( M & @mutex m/*, m2, m3, m4*/@ ) {} 3020 void call( M & @mutex p1/*, p2, p3, p4*/@ ) { 3021 @signal( c );@ 3022 } 3023 void wait( M & @mutex p1/*, p2, p3, p4*/@ ) { 3024 go = 1; // continue other thread 3025 for ( N ) { @wait( c );@ } ); 3026 } 3027 thread T {}; 3028 void main( T & ) { 3029 while ( go == 0 ) { yield(); } // waiter must start first 3030 BENCH( for ( N ) { call( m1/*, m2, m3, m4*/ ); } ) 3031 sout | result; 3032 } 2845 3033 int main() { 2846 BENCH( 2847 for( N ) do_call( m1/*, m2, m3, m4*/ ); 2848 ) 2849 sout | result`ns; 2850 } 2851 \end{cfa} 2852 \captionof{figure}{\CFA acquire/release mutex benchmark} 2853 \label{f:mutex} 3034 T t; 3035 wait( m1/*, m2, m3, m4*/ ); 3036 } 3037 \end{cfa} 3038 \captionof{figure}{\CFA Internal-scheduling benchmark} 3039 \label{f:schedint} 2854 3040 2855 3041 \columnbreak 2856 3042 2857 3043 \vspace*{-16pt} 2858 \captionof{table}{Mutex comparison (nanoseconds)} 2859 \label{tab:mutex} 2860 \begin{tabular}{@{}r*{3}{D{.}{.}{3.2}}@{}} 2861 \multicolumn{1}{@{}c}{} & \multicolumn{1}{c}{Median} &\multicolumn{1}{c}{Average} & \multicolumn{1}{c@{}}{Std Dev} \\ 2862 test and test-and-test lock & 19.1 & 18.9 & 0.40 \\ 2863 \CFA @mutex@ function, 1 arg. & 45.9 & 46.6 & 1.45 \\ 2864 \CFA @mutex@ function, 2 arg. & 105.0 & 104.7 & 3.08 \\ 2865 \CFA @mutex@ function, 4 arg. & 165.0 & 167.6 & 5.65 \\ 2866 \uC @monitor@ member rtn. & 54.0 & 53.7 & 0.82 \\ 2867 Java synchronized method & 31.0 & 31.1 & 0.50 \\ 2868 Pthreads Mutex Lock & 33.6 & 32.6 & 1.14 3044 \captionof{table}{Internal-scheduling comparison (nanoseconds)} 3045 \label{t:schedint} 3046 \bigskip 3047 3048 \begin{tabular}{@{}r*{3}{D{.}{.}{5.2}}@{}} 3049 \multicolumn{1}{@{}c}{} & \multicolumn{1}{c}{Median} & \multicolumn{1}{c}{Average} & \multicolumn{1}{c@{}}{Std Dev} \\ 3050 \CFA @signal@, 1 monitor & 364.4 & 364.2 & 4.4 \\ 3051 \CFA @signal@, 2 monitor & 484.4 & 483.9 & 8.8 \\ 3052 \CFA @signal@, 4 monitor & 709.1 & 707.7 & 15.0 \\ 3053 \uC @signal@ monitor & 328.3 & 327.4 & 2.4 \\ 3054 Rust cond. variable & 7514.0 & 7437.4 & 397.2 \\ 3055 Java @notify@ monitor & 9623.0 & 9654.6 & 236.2 \\ 3056 Pthreads cond. variable & 5553.7 & 5576.1 & 345.6 2869 3057 \end{tabular} 2870 3058 \end{multicols} … … 2874 3062 2875 3063 External scheduling is measured using a cycle of two threads calling and accepting the call using the @waitfor@ statement. 2876 Figure~\ref{f: ext-sched} shows the code for \CFA, with results in Table~\ref{tab:ext-sched}.3064 Figure~\ref{f:schedext} shows the code for \CFA with results in Table~\ref{t:schedext}. 2877 3065 Note, the incremental cost of bulk acquire for \CFA, which is largely a fixed cost for small numbers of mutex objects. 2878 3066 … … 2881 3069 \vspace*{-16pt} 2882 3070 \begin{cfa} 2883 volatile int go = 0; 2884 @monitor@ M {} m; 3071 @monitor@ M {} m1/*, m2, m3, m4*/; 3072 void call( M & @mutex p1/*, p2, p3, p4*/@ ) {} 3073 void wait( M & @mutex p1/*, p2, p3, p4*/@ ) { 3074 for ( N ) { @waitfor( call : p1/*, p2, p3, p4*/ );@ } 3075 } 2885 3076 thread T {}; 2886 void __attribute__((noinline))2887 do_call( M & @mutex@ ) {}2888 3077 void main( T & ) { 2889 while ( go == 0 ) { yield(); } 2890 while ( go == 1 ) { do_call( m ); } 2891 } 2892 int __attribute__((noinline)) 2893 do_wait( M & @mutex@ m ) { 2894 go = 1; // continue other thread 2895 BENCH( for ( N ) { @waitfor( do_call, m );@ } ) 2896 go = 0; // stop other thread 2897 sout | result`ns; 3078 BENCH( for ( N ) { call( m1/*, m2, m3, m4*/ ); } ) 3079 sout | result; 2898 3080 } 2899 3081 int main() { 2900 3082 T t; 2901 do_wait( m);3083 wait( m1/*, m2, m3, m4*/ ); 2902 3084 } 2903 3085 \end{cfa} 2904 3086 \captionof{figure}{\CFA external-scheduling benchmark} 2905 \label{f: ext-sched}3087 \label{f:schedext} 2906 3088 2907 3089 \columnbreak … … 2909 3091 \vspace*{-16pt} 2910 3092 \captionof{table}{External-scheduling comparison (nanoseconds)} 2911 \label{t ab:ext-sched}3093 \label{t:schedext} 2912 3094 \begin{tabular}{@{}r*{3}{D{.}{.}{3.2}}@{}} 2913 3095 \multicolumn{1}{@{}c}{} & \multicolumn{1}{c}{Median} &\multicolumn{1}{c}{Average} & \multicolumn{1}{c@{}}{Std Dev} \\ 2914 \CFA @waitfor@, 1 @monitor@ & 376.4 & 376.8 & 7.63 \\ 2915 \CFA @waitfor@, 2 @monitor@ & 491.4 & 492.0 & 13.31 \\ 2916 \CFA @waitfor@, 4 @monitor@ & 681.0 & 681.7 & 19.10 \\ 2917 \uC @_Accept@ & 331.1 & 331.4 & 2.66 3096 \CFA @waitfor@, 1 monitor & 367.1 & 365.3 & 5.0 \\ 3097 \CFA @waitfor@, 2 monitor & 463.0 & 464.6 & 7.1 \\ 3098 \CFA @waitfor@, 4 monitor & 689.6 & 696.2 & 21.5 \\ 3099 \uC \lstinline[language=uC++]|_Accept| monitor & 328.2 & 329.1 & 3.4 \\ 3100 Go \lstinline[language=Golang]|select| channel & 365.0 & 365.5 & 1.2 2918 3101 \end{tabular} 2919 3102 \end{multicols} 2920 3103 2921 2922 \paragraph{Internal Scheduling} 2923 2924 Internal scheduling is measured using a cycle of two threads signalling and waiting.2925 F igure~\ref{f:int-sched} shows the code for \CFA, with results in Table~\ref{tab:int-sched}.2926 Note, the incremental cost of bulk acquire for \CFA, which is largely a fixed cost for small numbers of mutex objects.2927 Java scheduling is significantly greater because the benchmark explicitly creates multiple thread in order to prevent the JIT from making the program sequential, \ie removing all locking.3104 \paragraph{Mutual-Exclusion} 3105 3106 Uncontented mutual exclusion, which frequently occurs, is measured by entering/leaving a critical section. 3107 For monitors, entering and leaving a monitor function is measured, otherwise the language-appropriate mutex-lock is measured. 3108 For comparison, a spinning (versus blocking) test-and-test-set lock is presented. 3109 Figure~\ref{f:mutex} shows the code for \CFA with results in Table~\ref{t:mutex}. 3110 Note the incremental cost of bulk acquire for \CFA, which is largely a fixed cost for small numbers of mutex objects. 2928 3111 2929 3112 \begin{multicols}{2} 2930 3113 \lstset{language=CFA,moredelim=**[is][\color{red}]{@}{@},deletedelim=**[is][]{`}{`}} 2931 3114 \begin{cfa} 2932 volatile int go = 0; 2933 @monitor@ M { @condition c;@ } m; 2934 void __attribute__((noinline)) 2935 do_call( M & @mutex@ a1 ) { @signal( c );@ } 2936 thread T {}; 2937 void main( T & this ) { 2938 while ( go == 0 ) { yield(); } 2939 while ( go == 1 ) { do_call( m ); } 2940 } 2941 int __attribute__((noinline)) 2942 do_wait( M & mutex m ) with(m) { 2943 go = 1; // continue other thread 2944 BENCH( for ( N ) { @wait( c );@ } ); 2945 go = 0; // stop other thread 2946 sout | result`ns; 2947 } 3115 @monitor@ M {} m1/*, m2, m3, m4*/; 3116 call( M & @mutex p1/*, p2, p3, p4*/@ ) {} 2948 3117 int main() { 2949 T t;2950 do_wait( m );2951 } 2952 \end{cfa} 2953 \captionof{figure}{\CFA Internal-schedulingbenchmark}2954 \label{f: int-sched}3118 BENCH( for( N ) call( m1/*, m2, m3, m4*/ ); ) 3119 sout | result; 3120 } 3121 \end{cfa} 3122 \captionof{figure}{\CFA acquire/release mutex benchmark} 3123 \label{f:mutex} 2955 3124 2956 3125 \columnbreak 2957 3126 2958 3127 \vspace*{-16pt} 2959 \captionof{table}{Internal-scheduling comparison (nanoseconds)} 2960 \label{tab:int-sched} 2961 \bigskip 2962 2963 \begin{tabular}{@{}r*{3}{D{.}{.}{5.2}}@{}} 2964 \multicolumn{1}{@{}c}{} & \multicolumn{1}{c}{Median} & \multicolumn{1}{c}{Average} & \multicolumn{1}{c@{}}{Std Dev} \\ 2965 \CFA @signal@, 1 @monitor@ & 372.6 & 374.3 & 14.17 \\ 2966 \CFA @signal@, 2 @monitor@ & 492.7 & 494.1 & 12.99 \\ 2967 \CFA @signal@, 4 @monitor@ & 749.4 & 750.4 & 24.74 \\ 2968 \uC @signal@ & 320.5 & 321.0 & 3.36 \\ 2969 Java @notify@ & 10160.5 & 10169.4 & 267.71 \\ 2970 Pthreads Cond. Variable & 4949.6 & 5065.2 & 363 3128 \captionof{table}{Mutex comparison (nanoseconds)} 3129 \label{t:mutex} 3130 \begin{tabular}{@{}r*{3}{D{.}{.}{3.2}}@{}} 3131 \multicolumn{1}{@{}c}{} & \multicolumn{1}{c}{Median} &\multicolumn{1}{c}{Average} & \multicolumn{1}{c@{}}{Std Dev} \\ 3132 test-and-test-set lock & 19.1 & 18.9 & 0.4 \\ 3133 \CFA @mutex@ function, 1 arg. & 48.3 & 47.8 & 0.9 \\ 3134 \CFA @mutex@ function, 2 arg. & 86.7 & 87.6 & 1.9 \\ 3135 \CFA @mutex@ function, 4 arg. & 173.4 & 169.4 & 5.9 \\ 3136 \uC @monitor@ member rtn. & 54.8 & 54.8 & 0.1 \\ 3137 Goroutine mutex lock & 34.0 & 34.0 & 0.0 \\ 3138 Rust mutex lock & 33.0 & 33.2 & 0.8 \\ 3139 Java synchronized method & 31.0 & 31.0 & 0.0 \\ 3140 Pthreads mutex Lock & 31.0 & 31.1 & 0.4 2971 3141 \end{tabular} 2972 3142 \end{multicols} 2973 3143 3144 \paragraph{Creation} 3145 3146 Creation is measured by creating/deleting a specific kind of control-flow object. 3147 Figure~\ref{f:creation} shows the code for \CFA with results in Table~\ref{t:creation}. 3148 Note, the call stacks of \CFA coroutines are lazily created on the first resume, therefore the cost of creation with and without a stack are presented. 3149 3150 \begin{multicols}{2} 3151 \lstset{language=CFA,moredelim=**[is][\color{red}]{@}{@},deletedelim=**[is][]{`}{`}} 3152 \begin{cfa} 3153 @coroutine@ MyCoroutine {}; 3154 void ?{}( MyCoroutine & this ) { 3155 #ifdef EAGER 3156 resume( this ); 3157 #endif 3158 } 3159 void main( MyCoroutine & ) {} 3160 int main() { 3161 BENCH( for ( N ) { @MyCoroutine c;@ } ) 3162 sout | result; 3163 } 3164 \end{cfa} 3165 \captionof{figure}{\CFA creation benchmark} 3166 \label{f:creation} 3167 3168 \columnbreak 3169 3170 \vspace*{-16pt} 3171 \captionof{table}{Creation comparison (nanoseconds)} 3172 \label{t:creation} 3173 3174 \begin{tabular}[t]{@{}r*{3}{D{.}{.}{5.2}}@{}} 3175 \multicolumn{1}{@{}c}{} & \multicolumn{1}{c}{Median} & \multicolumn{1}{c}{Average} & \multicolumn{1}{c@{}}{Std Dev} \\ 3176 \CFA generator & 0.6 & 0.6 & 0.0 \\ 3177 \CFA coroutine lazy & 13.4 & 13.1 & 0.5 \\ 3178 \CFA coroutine eager & 144.7 & 143.9 & 1.5 \\ 3179 \CFA thread & 466.4 & 468.0 & 11.3 \\ 3180 \uC coroutine & 155.6 & 155.7 & 1.7 \\ 3181 \uC thread & 523.4 & 523.9 & 7.7 \\ 3182 Python generator & 123.2 & 124.3 & 4.1 \\ 3183 Node.js generator & 32.3 & 32.2 & 0.3 \\ 3184 Goroutine thread & 751.0 & 750.5 & 3.1 \\ 3185 Rust thread & 53801.0 & 53896.8 & 274.9 \\ 3186 Java thread & 120274.0 & 120722.9 & 2356.7 \\ 3187 Pthreads thread & 31465.5 & 31419.5 & 140.4 3188 \end{tabular} 3189 \end{multicols} 3190 3191 3192 \subsection{Discussion} 3193 3194 Languages using 1:1 threading based on pthreads can at best meet or exceed (due to language overhead) the pthread results. 3195 Note, pthreads has a fast zero-contention mutex lock checked in user space. 3196 Languages with M:N threading have better performance than 1:1 because there is no operating-system interactions. 3197 Languages with stackful coroutines have higher cost than stackless coroutines because of stack allocation and context switching; 3198 however, stackful \uC and \CFA coroutines have approximately the same performance as stackless Python and Node.js generators. 3199 The \CFA stackless generator is approximately 25 times faster for suspend/resume and 200 times faster for creation than stackless Python and Node.js generators. 3200 2974 3201 2975 3202 \section{Conclusion} … … 2977 3204 Advanced control-flow will always be difficult, especially when there is temporal ordering and nondeterminism. 2978 3205 However, many systems exacerbate the difficulty through their presentation mechanisms. 2979 This paper shows it is possible to present a hierarchy of control-flow features, generator, coroutine, thread, and monitor, providing an integrated set of high-level, efficient, and maintainable control-flow features. 2980 Eliminated from \CFA are spurious wakeup and barging, which are nonintuitive and lead to errors, and having to work with a bewildering set of low-level locks and acquisition techniques. 2981 \CFA high-level race-free monitors and tasks provide the core mechanisms for mutual exclusion and synchronization, without having to resort to magic qualifiers like @volatile@/@atomic@. 3206 This paper shows it is possible to understand high-level control-flow using three properties: statefulness, thread, mutual-exclusion/synchronization. 3207 Combining these properties creates a number of high-level, efficient, and maintainable control-flow types: generator, coroutine, thread, each of which can be a monitor. 3208 Eliminated from \CFA are barging and spurious wakeup, which are nonintuitive and lead to errors, and having to work with a bewildering set of low-level locks and acquisition techniques. 3209 \CFA high-level race-free monitors and threads provide the core mechanisms for mutual exclusion and synchronization, without having to resort to magic qualifiers like @volatile@/@atomic@. 2982 3210 Extending these mechanisms to handle high-level deadlock-free bulk acquire across both mutual exclusion and synchronization is a unique contribution. 2983 3211 The \CFA runtime provides concurrency based on a preemptive M:N user-level threading-system, executing in clusters, which encapsulate scheduling of work on multiple kernel threads providing parallelism. 2984 3212 The M:N model is judged to be efficient and provide greater flexibility than a 1:1 threading model. 2985 3213 These concepts and the \CFA runtime-system are written in the \CFA language, extensively leveraging the \CFA type-system, which demonstrates the expressiveness of the \CFA language. 2986 Performance comparisons with other concurrent systems/languages show the \CFA approach is competitive across all low-level operations, which translates directly into good performance in well-written concurrent applications.2987 C programmers should feel comfortable using these mechanisms for developing complex control-flow in applications, with the ability to obtain maximum available performance by selecting mechanisms at the appropriate level of need .3214 Performance comparisons with other concurrent systems/languages show the \CFA approach is competitive across all basic operations, which translates directly into good performance in well-written applications with advanced control-flow. 3215 C programmers should feel comfortable using these mechanisms for developing complex control-flow in applications, with the ability to obtain maximum available performance by selecting mechanisms at the appropriate level of need using only calling communication. 2988 3216 2989 3217 … … 3005 3233 \label{futur:nbio} 3006 3234 3007 Many modern workloads are not bound by computation but IO operations, a common casebeing web servers and XaaS~\cite{XaaS} (anything as a service).3235 Many modern workloads are not bound by computation but IO operations, common cases being web servers and XaaS~\cite{XaaS} (anything as a service). 3008 3236 These types of workloads require significant engineering to amortizing costs of blocking IO-operations. 3009 3237 At its core, non-blocking I/O is an operating-system level feature queuing IO operations, \eg network operations, and registering for notifications instead of waiting for requests to complete. … … 3033 3261 \section{Acknowledgements} 3034 3262 3035 The authors would like to recognize the design assistance of Aaron Moss, Rob Schluntz, Andrew Beach and Michael Brooks on the features described in this paper.3036 Funding for this project has been provided by Huawei Ltd.\ (\url{http://www.huawei.com}). %, and Peter Buhr is partially funded by the Natural Sciences and Engineering Research Council of Canada.3263 The authors recognize the design assistance of Aaron Moss, Rob Schluntz, Andrew Beach, and Michael Brooks; David Dice for commenting and helping with the Java benchmarks; and Gregor Richards for helping with the Node.js benchmarks. 3264 This research is funded by a grant from Waterloo-Huawei (\url{http://www.huawei.com}) Joint Innovation Lab. %, and Peter Buhr is partially funded by the Natural Sciences and Engineering Research Council of Canada. 3037 3265 3038 3266 {% 3039 \fontsize{9bp}{1 2bp}\selectfont%3267 \fontsize{9bp}{11.5bp}\selectfont% 3040 3268 \bibliography{pl,local} 3041 3269 }% -
doc/papers/concurrency/examples/Fib.py
rb7d6a36 r6a490b2 4 4 while True: 5 5 fn = fn1 + fn2; fn2 = fn1; fn1 = fn; yield fn 6 7 8 6 9 7 f1 = Fib() … … 14 12 # Local Variables: # 15 13 # tab-width: 4 # 16 # compile-command: "python3. 5Fib.py" #14 # compile-command: "python3.7 Fib.py" # 17 15 # End: # -
doc/papers/concurrency/examples/Fib2.c
rb7d6a36 r6a490b2 1 1 #include <stdio.h> 2 2 3 void mary() {4 printf( "MARY\n" );5 }6 7 3 #define FIB_INIT { 0 } 8 typedef struct { int next; int fn1, fn2; } Fib;4 typedef struct { int restart; int fn1, fn2; } Fib; 9 5 int fib( Fib * f ) { 10 static void * states[] = { &&s1, &&s2, &&s3 }; 11 goto *states[f->next]; 6 static void * states[] = { &&s0, &&s1, &&s2 }; 7 goto *states[f->restart]; 8 s0: 9 f->fn1 = 0; 10 f->restart = 1; 11 return f->fn1; 12 12 s1: 13 mary();14 f->fn1 = 0;15 f->next = 1;16 return f->fn1;17 s2:18 mary();19 13 f->fn2 = f->fn1; 20 14 f->fn1 = 1; 21 f-> next = 2;15 f->restart = 2; 22 16 return f->fn1; 23 s3:; 24 mary(); 17 s2:; 25 18 int fn = f->fn1 + f->fn2; 26 19 f->fn2 = f->fn1; -
doc/papers/concurrency/examples/Fib2.py
rb7d6a36 r6a490b2 1 1 def Fib(): 2 fn1, fn = 0, 12 fn1, fn = 1, 0 3 3 while True: 4 yield fn 14 yield fn 5 5 fn1, fn = fn, fn1 + fn 6 6 … … 12 12 # Local Variables: # 13 13 # tab-width: 4 # 14 # compile-command: "python3. 5Fib2.py" #14 # compile-command: "python3.7 Fib2.py" # 15 15 # End: # -
doc/papers/concurrency/examples/Fib3.c
rb7d6a36 r6a490b2 2 2 3 3 typedef struct { 4 int fn1, fn; 5 void * next; 4 int restart, fn1, fn; 6 5 } Fib; 7 #define FibCtor { 1, 0, NULL}6 #define FibCtor { 0, 1, 0 } 8 7 9 8 Fib * comain( Fib * f ) { 10 if ( __builtin_expect(f->next != 0, 1) ) goto *f->next; 11 f->next = &&s1; 9 static void * states[] = {&&s0, &&s1}; 10 goto *states[f->restart]; 11 s0: f->restart = 1; 12 12 for ( ;; ) { 13 13 return f; -
doc/papers/concurrency/examples/FibRefactor.py
rb7d6a36 r6a490b2 22 22 # Local Variables: # 23 23 # tab-width: 4 # 24 # compile-command: "python3. 5FibRefactor.py" #24 # compile-command: "python3.7 FibRefactor.py" # 25 25 # End: # -
doc/papers/concurrency/examples/Format.c
rb7d6a36 r6a490b2 2 2 3 3 typedef struct { 4 void * next;4 int restart, g, b; 5 5 char ch; 6 int g, b;7 6 } Fmt; 8 7 9 8 void comain( Fmt * f ) { 10 if ( __builtin_expect(f->next != 0, 1) ) goto *f->next; 11 f->next = &&s1; 9 static void * states[] = {&&s0, &&s1}; 10 goto *states[f->restart]; 11 s0: f->restart = 1; 12 12 for ( ;; ) { 13 13 for ( f->g = 0; f->g < 5; f->g += 1 ) { // groups 14 14 for ( f->b = 0; f->b < 4; f->b += 1 ) { // blocks 15 return; 16 s1:; while ( f->ch == '\n' ) return; // ignore 15 do { 16 return; s1: ; 17 } while ( f->ch == '\n' ); // ignore 17 18 printf( "%c", f->ch ); // print character 18 19 } … … 24 25 25 26 int main() { 26 Fmt fmt = { NULL};27 Fmt fmt = { 0 }; 27 28 comain( &fmt ); // prime 28 29 for ( ;; ) { -
doc/papers/concurrency/examples/Format.cc
rb7d6a36 r6a490b2 6 6 for ( g = 0; g < 5; g += 1 ) { // groups of 5 blocks 7 7 for ( b = 0; b < 4; b += 1 ) { // blocks of 4 characters 8 //for ( ;; ) { // for newline characters8 for ( ;; ) { // for newline characters 9 9 suspend(); 10 //if ( ch != '\n' ) break; // ignore newline11 //}10 if ( ch != '\n' ) break; // ignore newline 11 } 12 12 // cout << ch; // print character 13 13 } … … 31 31 // Local Variables: // 32 32 // tab-width: 4 // 33 // compile-command: "u++-work -O2 -nodebu bg Format.cc" //33 // compile-command: "u++-work -O2 -nodebug Format.cc" // 34 34 // End: // -
doc/papers/concurrency/examples/Format.cfa
rb7d6a36 r6a490b2 11 11 for ( g = 0; g < 5; g += 1 ) { // groups of 5 blocks 12 12 for ( b = 0; b < 4; b += 1 ) { // blocks of 4 characters 13 //do {13 do { 14 14 suspend(); 15 //} while ( ch == '\n' || ch == '\t' );15 } while ( ch == '\n' || ch == '\t' ); 16 16 sout | ch; // print character 17 17 } -
doc/papers/concurrency/examples/Format.data
rb7d6a36 r6a490b2 1 abcdefghijklmnopqrstuvwxyzxxxxxxxxxxxxxx 1 abcdefghijklmnop 2 qrstuvwxyzx 3 xxxxxxxxxxxxx -
doc/papers/concurrency/examples/Format.py
rb7d6a36 r6a490b2 4 4 for g in range( 5 ): # groups of 5 blocks 5 5 for b in range( 4 ): # blocks of 4 characters 6 print( (yield), end='' ) # receive from send 6 while True: 7 ch = (yield) # receive from send 8 if '\n' not in ch: 9 break 10 print( ch, end='' ) # receive from send 7 11 print( ' ', end='' ) # block separator 8 12 print() # group separator … … 11 15 print() 12 16 17 input = "abcdefghijklmnop\nqrstuvwx\nyzxxxxxxxxxxxxxx\n" 18 13 19 fmt = Format() 14 20 next( fmt ) # prime generator 15 for i in range( 41 ):16 fmt.send( 'a'); # send to yield21 for i in input: 22 fmt.send( i ); # send to yield 17 23 18 24 # Local Variables: # 19 25 # tab-width: 4 # 20 # compile-command: "python3. 5Format.py" #26 # compile-command: "python3.7 Format.py" # 21 27 # End: # -
doc/papers/concurrency/examples/Format1.c
rb7d6a36 r6a490b2 2 2 3 3 typedef struct { 4 void * next;4 int restart, g, b; 5 5 char ch; 6 int g, b;7 6 } Fmt; 8 7 9 8 void format( Fmt * f ) { 10 if ( __builtin_expect(f->next != 0, 1) ) goto *f->next; 11 f->next = &&s1; 9 static void * states[] = {&&s0, &&s1}; 10 goto *states[f->restart]; 11 s0: f->restart = 1; 12 12 for ( ;; ) { 13 13 for ( f->g = 0; f->g < 5; f->g += 1 ) { // groups 14 14 for ( f->b = 0; f->b < 4; f->b += 1 ) { // blocks 15 15 return; 16 s1: ; 17 if ( f->ch == '\0' ) goto fini; // EOF ? 16 s1: if ( f->ch == '\0' ) goto fini; // EOF ? 18 17 while ( f->ch == '\n' ) return; // ignore 19 printf( "%c", f->ch ); // print character18 // printf( "%c", f->ch ); // print character 20 19 } 21 printf( " " ); // block separator20 // printf( " " ); // block separator 22 21 } 23 printf( "\n" ); // group separator22 // printf( "\n" ); // group separator 24 23 } 25 fini: 26 if ( f->g != 0 || f->b != 0 ) printf( "\n" );24 fini:; 25 // if ( f->g != 0 || f->b != 0 ) printf( "\n" ); 27 26 } 28 27 29 28 int main() { 30 Fmt fmt = { NULL};29 Fmt fmt = { 0 }; 31 30 format( &fmt ); // prime 32 for ( ;; ) { 33 scanf( "%c", &fmt.ch ); // direct read into communication variable 34 if ( feof( stdin ) ) break; 31 fmt.ch = 'a'; 32 for ( long int i = 0; i < 1000000000; i += 1 ) { 33 // scanf( "%c", &fmt.ch ); // direct read into communication variable 34 // if ( feof( stdin ) ) break; 35 35 format( &fmt ); 36 36 } 37 fmt.ch = '\0'; 37 fmt.ch = '\0'; // sentential (EOF) 38 38 format( &fmt ); 39 39 } -
doc/papers/concurrency/examples/PingPong.c
rb7d6a36 r6a490b2 2 2 3 3 typedef struct PingPong { 4 int restart; // style 1 5 int N, i; 4 6 const char * name; 5 int N, i;6 7 struct PingPong * partner; 7 void * next; 8 void * next; // style 2 8 9 } PingPong; 9 #define PPCtor( name, N ) { name, N, 0, NULL, NULL } 10 #define PPCtor( name, N ) { 0, N, 0, name, NULL, NULL } 11 10 12 void comain( PingPong * pp ) __attribute__(( noinline )); 11 13 void comain( PingPong * pp ) { 14 #if 0 12 15 if ( __builtin_expect(pp->next != 0, 1) ) goto *pp->next; 13 #if 014 pp->next = &&here;15 asm( "mov %0,%%rdi" : "=m" (pp) );16 asm( "mov %rdi,%rax" );17 #ifndef OPT18 #ifdef PRINT19 asm( "add $16, %rsp" );20 #endif // PRINT21 asm( "popq %rbp" );22 #endif // ! OPT23 24 #ifdef OPT25 #ifdef PRINT26 asm( "popq %rbx" );27 #endif // PRINT28 #endif // OPT29 asm( "jmp comain" );30 here: ;31 #endif // 032 33 16 pp->next = &&cycle; 34 17 for ( ; pp->i < pp->N; pp->i += 1 ) { … … 53 36 cycle: ; 54 37 } // for 38 #endif // 0 39 40 #if 1 41 static void * states[] = {&&s0, &&s1}; 42 goto *states[pp->restart]; 43 s0: pp->restart = 1; 44 for ( ; pp->i < pp->N; pp->i += 1 ) { 45 #ifdef PRINT 46 printf( "%s %d\n", pp->name, pp->i ); 47 #endif // PRINT 48 asm( "mov %0,%%rdi" : "=m" (pp->partner) ); 49 asm( "mov %rdi,%rax" ); 50 #ifndef OPT 51 #ifdef PRINT 52 asm( "add $16, %rsp" ); 53 #endif // PRINT 54 asm( "popq %rbp" ); 55 #endif // ! OPT 56 57 #ifdef OPT 58 #ifdef PRINT 59 asm( "popq %rbx" ); 60 #endif // PRINT 61 #endif // OPT 62 asm( "jmp comain" ); 63 s1: ; 64 } // for 65 #endif // 0 55 66 } 56 67 … … 70 81 // Local Variables: // 71 82 // tab-width: 4 // 72 // compile-command: "gcc- 8-g -DPRINT PingPong.c" //83 // compile-command: "gcc-9 -g -DPRINT PingPong.c" // 73 84 // End: // -
doc/papers/concurrency/examples/Pingpong.py
rb7d6a36 r6a490b2 1 1 def PingPong( name, N ): 2 partner = (yield)# get partner3 yield 2 partner = yield # get partner 3 yield # resume scheduler 4 4 for i in range( N ): 5 5 print( name ) 6 yield partner 6 yield partner # execute next 7 7 print( "end", name ) 8 8 9 9 def Scheduler(): 10 n = (yield) # starting coroutine 11 while True: 12 n = next( n ) # schedule coroutine 10 n = yield # starting coroutine 11 try: 12 while True: 13 n = next( n ) # schedule coroutine 14 except StopIteration: 15 pass 13 16 14 17 pi = PingPong( "ping", 5 ) 15 18 po = PingPong( "pong", 5 ) 16 next( pi ) 17 pi.send( po ) 18 next( po ) 19 po.send( pi ) 19 next( pi ) # prime 20 pi.send( po ) # send partner 21 next( po ) # prime 22 po.send( pi ) # send partner 20 23 21 24 s = Scheduler(); 22 next( s ) 25 next( s ) # prime 23 26 try: 24 27 s.send( pi ) # start cycle 25 except StopIteration: 26 p rint( "scheduler stop" )28 except StopIteration: # scheduler stopped 29 pass 27 30 print( "stop" ) 28 31 29 32 # Local Variables: # 30 33 # tab-width: 4 # 31 # compile-command: "python3. 5Pingpong.py" #34 # compile-command: "python3.7 Pingpong.py" # 32 35 # End: # -
doc/papers/concurrency/examples/ProdCons.py
rb7d6a36 r6a490b2 1 1 def Prod( N ): 2 cons = (yield)# get cons3 yield 2 cons = yield # get cons 3 yield # resume scheduler 4 4 for i in range( N ): 5 5 print( "prod" ) 6 yield cons 6 yield cons # execute next 7 7 print( "end", "prod" ) 8 8 9 9 def Cons( N ): 10 prod = (yield)# get prod11 yield 10 prod = yield # get prod 11 yield # resume scheduler 12 12 for i in range( N ): 13 13 print( "cons" ) 14 yield prod 14 yield prod # execute next 15 15 print( "end", "cons" ) 16 16 17 17 def Scheduler(): 18 n = (yield) # starting coroutine 19 while True: 20 n = next( n ) # schedule coroutine 18 n = yield # starting coroutine 19 try: 20 while True: 21 n = next( n ) # schedule coroutine 22 except StopIteration: 23 pass 21 24 22 25 prod = Prod( 5 ) 23 26 cons = Cons( 5 ) 24 next( prod ) 25 prod.send( cons ) 26 next( cons ) 27 cons.send( prod ) 27 next( prod ) # prime 28 prod.send( cons ) # send cons 29 next( cons ) # prime 30 cons.send( prod ) # send prod 28 31 29 32 s = Scheduler(); 30 next( s ) 33 next( s ) # prime 31 34 try: 32 35 s.send( prod ) # start cycle 33 except StopIteration: 34 p rint( "scheduler stop" )36 except StopIteration: # scheduler stopped 37 pass 35 38 print( "stop" ) 36 39 37 40 # Local Variables: # 38 41 # tab-width: 4 # 39 # compile-command: "python3. 5ProdCons.py" #42 # compile-command: "python3.7 ProdCons.py" # 40 43 # End: # -
doc/papers/concurrency/examples/RWMonitorEXT.cfa
rb7d6a36 r6a490b2 7 7 int rcnt, wcnt; // number of readers/writer using resource 8 8 }; 9 10 void ?{}( ReadersWriter & rw ) with(rw) { rcnt = wcnt = 0; } 9 11 void EndRead( ReadersWriter & mutex rw ) with(rw) { rcnt -= 1; } 10 12 void EndWrite( ReadersWriter & mutex rw ) with(rw) { wcnt = 0; } 11 13 void StartRead( ReadersWriter & mutex rw ) with(rw) { 12 if ( wcnt > 0 ) waitfor( EndWrite ,rw );14 if ( wcnt > 0 ) waitfor( EndWrite : rw ); 13 15 rcnt += 1; 14 16 } 15 17 void StartWrite( ReadersWriter & mutex rw ) with(rw) { 16 if ( wcnt > 0 ) waitfor( EndWrite ,rw );17 else while ( rcnt > 0 ) waitfor( EndRead ,rw );18 if ( wcnt > 0 ) waitfor( EndWrite : rw ); 19 else while ( rcnt > 0 ) waitfor( EndRead : rw ); 18 20 wcnt = 1; 19 21 } 20 void ?{}( ReadersWriter & rw ) with(rw) { rcnt = wcnt = 0; }21 22 int readers( ReadersWriter & rw ) { return rw.rcnt; } 23 22 24 void Read( ReadersWriter & rw ) { 23 25 StartRead( rw ); … … 34 36 EndWrite( rw ); 35 37 } 38 36 39 thread Worker { 37 40 ReadersWriter &rw; … … 47 50 } // for 48 51 } 52 49 53 int main() { 50 54 enum { MaxTask = 5 }; … … 57 61 } // main 58 62 59 60 63 // Local Variables: // 61 64 // tab-width: 4 // 62 // compile-command: "cfa -O2 RWMonitor .cfa" //65 // compile-command: "cfa -O2 RWMonitorEXT.cfa" // 63 66 // End: // -
doc/papers/concurrency/examples/Refactor.py
rb7d6a36 r6a490b2 26 26 # Local Variables: # 27 27 # tab-width: 4 # 28 # compile-command: "python3. 5Refactor.py" #28 # compile-command: "python3.7 Refactor.py" # 29 29 # End: # -
doc/papers/concurrency/figures/FullCoroutinePhases.fig
rb7d6a36 r6a490b2 8 8 -2 9 9 1200 2 10 5 1 0 1 0 7 100 0 -1 0.000 0 0 1 0 4575.000 2437.500 4275 1875 4575 1800 4875 187510 5 1 0 1 0 7 100 0 -1 0.000 0 0 1 0 5175.000 2437.500 4875 1875 5175 1800 5475 1875 11 11 1 1 1.00 45.00 90.00 12 5 1 0 1 0 7 100 0 -1 0.000 0 0 1 0 4575.000 1537.500 4875 2100 4575 2175 4275 210012 5 1 0 1 0 7 100 0 -1 0.000 0 0 1 0 5175.000 1537.500 5475 2100 5175 2175 4875 2100 13 13 1 1 1.00 45.00 90.00 14 5 1 0 1 0 7 50 -1 -1 0.000 0 1 1 0 4 207.500 1642.500 4125 1425 3975 1650 4200 187514 5 1 0 1 0 7 50 -1 -1 0.000 0 1 1 0 4807.500 1642.500 4725 1425 4575 1650 4800 1875 15 15 1 1 1.00 45.00 90.00 16 6 1575 1575 2700 2025 16 17 2 1 0 1 0 7 100 0 -1 0.000 0 0 -1 1 0 2 17 18 1 1 1.00 45.00 90.00 … … 20 21 1 1 1.00 45.00 90.00 21 22 2175 1575 2400 1800 23 4 1 0 100 0 4 10 0.0000 2 165 300 1725 1950 ping\001 24 4 1 0 100 0 4 10 0.0000 2 135 360 2475 1950 pong\001 25 -6 26 6 3075 1575 4200 2025 27 6 3075 1575 4200 2025 22 28 2 1 0 1 0 7 100 0 -1 0.000 0 0 -1 1 0 2 23 29 1 1 1.00 45.00 90.00 24 3 3001575 3300 180030 3525 1575 3300 1800 25 31 2 1 0 1 0 7 100 0 -1 0.000 0 0 -1 1 0 2 26 32 1 1 1.00 45.00 90.00 27 3300 2025 3300 2250 28 4 1 0 100 0 0 10 0.0000 2 105 555 2100 1200 creation\001 29 4 1 0 100 0 4 10 0.0000 2 165 300 1725 1950 ping\001 30 4 1 0 100 0 4 10 0.0000 2 135 360 2475 1950 pong\001 31 4 1 0 100 0 4 10 0.0000 2 165 300 3300 1950 ping\001 32 4 1 0 100 0 4 10 0.0000 2 135 360 3300 2400 pong\001 33 4 1 0 100 0 0 10 0.0000 2 105 675 4575 1200 execution\001 34 4 1 0 100 0 4 10 0.0000 2 165 300 4275 2025 ping\001 35 4 1 0 100 0 4 10 0.0000 2 135 360 4875 2025 pong\001 36 4 1 0 100 0 0 10 0.0000 2 90 420 3300 1200 starter\001 33 3675 1575 3900 1800 34 4 1 0 100 0 4 10 0.0000 2 165 300 3225 1950 ping\001 35 4 1 0 100 0 4 10 0.0000 2 135 360 3975 1950 pong\001 36 -6 37 -6 37 38 4 1 0 100 0 4 10 0.0000 2 165 705 2100 1500 pgm main\001 38 4 1 0 100 0 4 10 0.0000 2 165 705 3300 1500 pgm main\001 39 4 1 0 100 0 4 10 0.0000 2 165 705 4500 1500 pgm main\001 39 4 1 0 100 0 4 10 0.0000 2 165 705 3600 1500 pgm main\001 40 4 1 0 100 0 4 10 0.0000 2 165 300 4875 2025 ping\001 41 4 1 0 100 0 4 10 0.0000 2 135 360 5475 2025 pong\001 42 4 1 0 100 0 4 10 0.0000 2 165 705 5100 1500 pgm main\001 43 4 1 0 100 0 2 10 0.0000 2 105 540 2100 1275 creator\001 44 4 1 0 100 0 2 10 0.0000 2 105 495 3600 1275 starter\001 45 4 1 0 100 0 2 10 0.0000 2 105 690 5175 1275 execution\001 -
doc/papers/concurrency/figures/RunTimeStructure.fig
rb7d6a36 r6a490b2 36 36 1 3 0 1 -1 -1 0 0 20 0.000 1 0.0000 4500 3600 15 15 4500 3600 4515 3615 37 37 -6 38 6 2175 4650 7050 4950 39 1 3 0 1 0 0 0 0 0 0.000 1 0.0000 2250 4830 30 30 2250 4830 2280 4860 40 1 1 0 1 -1 -1 0 0 -1 0.000 1 0.0000 4200 4800 150 75 4200 4800 4350 4875 41 1 3 0 1 -1 -1 0 0 -1 0.000 1 0.0000 3275 4800 100 100 3275 4800 3375 4800 38 6 3225 4125 4650 4425 39 6 4350 4200 4650 4350 40 1 3 0 1 -1 -1 0 0 20 0.000 1 0.0000 4425 4275 15 15 4425 4275 4440 4290 41 1 3 0 1 -1 -1 0 0 20 0.000 1 0.0000 4500 4275 15 15 4500 4275 4515 4290 42 1 3 0 1 -1 -1 0 0 20 0.000 1 0.0000 4575 4275 15 15 4575 4275 4590 4290 43 -6 44 1 1 0 1 -1 -1 0 0 -1 0.000 1 0.0000 3450 4275 225 150 3450 4275 3675 4425 45 1 1 0 1 -1 -1 0 0 -1 0.000 1 0.0000 4050 4275 225 150 4050 4275 4275 4425 46 -6 47 6 6675 4125 7500 4425 48 6 7200 4200 7500 4350 49 1 3 0 1 -1 -1 0 0 20 0.000 1 0.0000 7275 4275 15 15 7275 4275 7290 4290 50 1 3 0 1 -1 -1 0 0 20 0.000 1 0.0000 7350 4275 15 15 7350 4275 7365 4290 51 1 3 0 1 -1 -1 0 0 20 0.000 1 0.0000 7425 4275 15 15 7425 4275 7440 4290 52 -6 53 1 1 0 1 -1 -1 0 0 -1 0.000 1 0.0000 6900 4275 225 150 6900 4275 7125 4425 54 -6 55 6 6675 3525 8025 3975 56 2 1 0 1 -1 -1 0 0 -1 0.000 0 0 -1 1 0 2 57 1 1 1.00 45.00 90.00 58 6675 3750 6975 3750 59 2 1 0 1 -1 -1 0 0 -1 0.000 0 0 -1 1 0 2 60 1 1 1.00 45.00 90.00 61 7125 3750 7350 3750 42 62 2 2 0 1 -1 -1 0 0 -1 0.000 0 0 0 0 0 5 43 5400 4950 5400 4725 5175 4725 5175 4950 5400 4950 44 2 2 1 1 -1 -1 0 0 -1 3.000 0 0 0 0 0 5 45 6525 4950 6300 4950 6300 4725 6525 4725 6525 4950 46 4 0 -1 0 0 0 10 0.0000 2 105 450 6600 4875 cluster\001 47 4 0 -1 0 0 0 10 0.0000 2 105 660 5475 4875 processor\001 48 4 0 -1 0 0 0 10 0.0000 2 105 555 4425 4875 monitor\001 49 4 0 -1 0 0 0 10 0.0000 2 120 270 3450 4875 task\001 50 4 0 -1 0 0 0 10 0.0000 2 105 660 2325 4875 coroutine\001 51 -6 52 6 3450 1275 3750 1425 53 1 3 0 1 -1 -1 0 0 20 0.000 1 0.0000 3525 1350 15 15 3525 1350 3540 1365 54 1 3 0 1 -1 -1 0 0 20 0.000 1 0.0000 3600 1350 15 15 3600 1350 3615 1365 55 1 3 0 1 -1 -1 0 0 20 0.000 1 0.0000 3675 1350 15 15 3675 1350 3690 1365 56 -6 57 6 5550 1275 5850 1425 58 1 3 0 1 -1 -1 0 0 20 0.000 1 0.0000 5625 1350 15 15 5625 1350 5640 1365 59 1 3 0 1 -1 -1 0 0 20 0.000 1 0.0000 5700 1350 15 15 5700 1350 5715 1365 60 1 3 0 1 -1 -1 0 0 20 0.000 1 0.0000 5775 1350 15 15 5775 1350 5790 1365 63 7800 3975 7800 3525 7350 3525 7350 3975 7800 3975 64 2 1 0 1 -1 -1 0 0 -1 0.000 0 0 -1 1 0 2 65 1 1 1.00 45.00 90.00 66 7800 3750 8025 3750 61 67 -6 62 68 1 3 0 1 -1 -1 0 0 -1 0.000 1 0.0000 5550 2625 150 150 5550 2625 5700 2625 … … 67 73 1 3 0 1 -1 -1 0 0 -1 0.000 1 0.0000 4425 2850 150 150 4425 2850 4575 2850 68 74 1 3 0 1 -1 -1 0 0 -1 0.000 1 0.0000 4650 2475 150 150 4650 2475 4800 2475 69 1 3 0 1 -1 -1 0 0 -1 0.000 1 0.0000 3525 3600 150 150 3525 3600 3675 360070 75 1 3 0 1 -1 -1 0 0 -1 0.000 1 0.0000 3975 3600 150 150 3975 3600 4125 3600 71 76 1 3 0 1 0 0 0 0 0 0.000 1 0.0000 3525 3600 30 30 3525 3600 3555 3630 … … 74 79 1 3 0 1 -1 -1 0 0 -1 0.000 1 0.0000 3975 2850 150 150 3975 2850 4125 2850 75 80 1 3 0 1 -1 -1 0 0 -1 0.000 1 0.0000 7200 2775 150 150 7200 2775 7350 2775 76 1 1 0 1 -1 -1 0 0 -1 0.000 1 0.0000 4650 1350 225 150 4650 1350 4875 1500 77 1 1 0 1 -1 -1 0 0 -1 0.000 1 0.0000 5250 1350 225 150 5250 1350 5475 1500 78 1 1 0 1 -1 -1 0 0 -1 0.000 1 0.0000 4050 1350 225 150 4050 1350 4275 1500 81 1 3 0 1 0 0 0 0 0 0.000 1 0.0000 2250 4830 30 30 2250 4830 2280 4860 82 1 3 0 1 0 0 0 0 0 0.000 1 0.0000 7200 2775 30 30 7200 2775 7230 2805 83 1 3 0 1 -1 -1 0 0 -1 0.000 1 0.0000 3525 3600 150 150 3525 3600 3675 3600 84 1 3 0 1 -1 -1 0 0 -1 0.000 1 0.0000 3875 4800 100 100 3875 4800 3975 4800 85 1 1 0 1 -1 -1 0 0 -1 0.000 1 0.0000 4650 4800 150 75 4650 4800 4800 4875 79 86 2 2 0 1 -1 -1 0 0 -1 0.000 0 0 0 0 0 5 80 87 2400 4200 2400 3750 1950 3750 1950 4200 2400 4200 … … 140 147 2 1 0 1 -1 -1 0 0 -1 0.000 0 0 -1 1 0 2 141 148 1 1 1.00 45.00 90.00 142 6675 3975 6975 3975143 2 1 0 1 -1 -1 0 0 -1 0.000 0 0 -1 1 0 2144 1 1 1.00 45.00 90.00145 149 7050 2775 6825 2775 146 150 2 1 0 1 -1 -1 0 0 -1 0.000 0 0 -1 0 0 2 147 6825 2775 6825 3975 148 2 1 0 1 -1 -1 0 0 -1 0.000 0 0 -1 1 0 2 149 1 1 1.00 45.00 90.00 150 7125 3975 7350 3975 151 2 2 0 1 -1 -1 0 0 -1 0.000 0 0 0 0 0 5 152 7800 4200 7800 3750 7350 3750 7350 4200 7800 4200 153 2 1 0 1 -1 -1 0 0 -1 0.000 0 0 -1 1 0 2 154 1 1 1.00 45.00 90.00 155 7800 3975 8025 3975 151 6825 2775 6825 3750 156 152 2 1 0 1 -1 -1 0 0 -1 0.000 0 0 -1 1 0 4 157 153 1 1 1.00 45.00 90.00 158 7875 3975 7875 2325 7200 2325 7200 2550 154 7875 3750 7875 2325 7200 2325 7200 2550 155 2 2 0 1 -1 -1 0 0 -1 0.000 0 0 0 0 0 5 156 5850 4950 5850 4725 5625 4725 5625 4950 5850 4950 157 2 2 1 1 -1 -1 0 0 -1 3.000 0 0 0 0 0 5 158 6975 4950 6750 4950 6750 4725 6975 4725 6975 4950 159 159 4 1 -1 0 0 0 10 0.0000 2 105 720 5550 4425 Processors\001 160 160 4 1 -1 0 0 0 10 0.0000 2 120 1005 4200 3225 Blocked Tasks\001 … … 165 165 4 1 -1 0 0 0 10 0.0000 2 105 990 2175 3525 Discrete-event\001 166 166 4 1 -1 0 0 0 10 0.0000 2 135 795 2175 4350 preemption\001 167 4 0 -1 0 0 0 10 0.0000 2 150 1290 2325 4875 genrator/coroutine\001 168 4 0 -1 0 0 0 10 0.0000 2 120 270 4050 4875 task\001 169 4 0 -1 0 0 0 10 0.0000 2 105 450 7050 4875 cluster\001 170 4 0 -1 0 0 0 10 0.0000 2 105 660 5925 4875 processor\001 171 4 0 -1 0 0 0 10 0.0000 2 105 555 4875 4875 monitor\001 -
doc/papers/concurrency/mail2
rb7d6a36 r6a490b2 22 22 Software: Practice and Experience Editorial Office 23 23 24 25 26 Date: Tue, 12 Nov 2019 22:25:17 +0000 27 From: Richard Jones <onbehalfof@manuscriptcentral.com> 28 Reply-To: R.E.Jones@kent.ac.uk 29 To: tdelisle@uwaterloo.ca, pabuhr@uwaterloo.ca 30 Subject: Software: Practice and Experience - Decision on Manuscript ID 31 SPE-19-0219 32 33 12-Nov-2019 34 35 Dear Dr Buhr, 36 37 Many thanks for submitting SPE-19-0219 entitled "Advanced Control-flow and Concurrency in Cforall" to Software: Practice and Experience. The paper has now been reviewed and the comments of the referees are included at the bottom of this letter. 38 39 The decision on this paper is that it requires substantial further work is required. The referees have a number of substantial concerns. All the reviewers found the submission very hard to read; two of the reviewers state that it needs very substantial restructuring. These concerns must be addressed before your submission can be considered further. 40 41 A revised version of your manuscript that takes into account the comments of the referees will be reconsidered for publication. 42 43 Please note that submitting a revision of your manuscript does not guarantee eventual acceptance, and that your revision will be subject to re-review by the referees before a decision is rendered. 44 45 You have 90 days from the date of this email to submit your revision. If you are unable to complete the revision within this time, please contact me to request an extension. 46 47 You can upload your revised manuscript and submit it through your Author Center. Log into https://mc.manuscriptcentral.com/spe and enter your Author Center, where you will find your manuscript title listed under "Manuscripts with Decisions". 48 49 When submitting your revised manuscript, you will be able to respond to the comments made by the referee(s) in the space provided. You can use this space to document any changes you make to the original manuscript. 50 51 If you feel that your paper could benefit from English language polishing, you may wish to consider having your paper professionally edited for English language by a service such as Wiley's at http://wileyeditingservices.com. Please note that while this service will greatly improve the readability of your paper, it does not guarantee acceptance of your paper by the journal. 52 53 Once again, thank you for submitting your manuscript to Software: Practice and Experience and I look forward to receiving your revision. 54 55 56 Sincerely, 57 58 Prof. Richard Jones 59 Software: Practice and Experience 60 R.E.Jones@kent.ac.uk 61 62 63 Referee(s)' Comments to Author: 64 65 Reviewing: 1 66 67 Comments to the Author 68 This article presents the design and rationale behind the various 69 threading and synchronization mechanisms of C-forall, a new low-level 70 programming language. This paper is very similar to a companion paper 71 which I have also received: as the papers are similar, so will these 72 reviews be --- in particular any general comments from the other 73 review apply to this paper also. 74 75 As far as I can tell, the article contains three main ideas: an 76 asynchronous execution / threading model; a model for monitors to 77 provide mutual exclusion; and an implementation. The first two ideas 78 are drawn together in Table 1: unfortunately this is on page 25 of 30 79 pages of text. Implementation choices and descriptions are scattered 80 throughout the paper - and the sectioning of the paper seems almost 81 arbitrary. 82 83 The article is about its contributions. Simply adding feature X to 84 language Y isn't by itself a contribution, (when feature X isn't 85 already a contribution). The contribution can be in the design: the 86 motivation, the space of potential design options, the particular 87 design chosen and the rationale for that choice, or the resulting 88 performance. For example: why support two kinds of generators as well 89 as user-level threads? Why support both low and high level 90 synchronization constructs? Similarly I would have found the article 91 easier to follow if it was written top down, presenting the design 92 principles, present the space of language features, justify chosen 93 language features (and rationale) and those excluded, and then present 94 implementation, and performance. 95 96 Then the writing of the article is often hard to follow, to say the 97 least. Two examples: section 3 "stateful functions" - I've some idea 98 what that is (a function with Algol's "own" or C's "static" variables? 99 but in fact the paper has a rather more specific idea than that. The 100 top of page 3 throws a whole lot of defintions at the reader 101 "generator" "coroutine" "stackful" "stackless" "symmetric" 102 "asymmetric" without every stopping to define each one --- but then in 103 footnote "C" takes the time to explain what C's "main" function is? I 104 cannot imagine a reader of this paper who doesn't know what "main" is 105 in C; especially if they understand the other concepts already 106 presented in the paper. The start of section 3 then does the same 107 thing: putting up a whole lot of definitions, making distinctions and 108 comparisons, even talking about some runtime details, but the critical 109 definition of a monitor doesn't appear until three pages later, at the 110 start of section 5 on p15, lines 29-34 are a good, clear, description 111 of what a monitor actually is. That needs to come first, rather than 112 being buried again after two sections of comparisons, discussions, 113 implementations, and options that are ungrounded because they haven't 114 told the reader what they are actually talking about. First tell the 115 reader what something is, then how they might use it (as programmers: 116 what are the rules and restrictions) and only then start comparison 117 with other things, other approaches, other languages, or 118 implementations. 119 120 The description of the implementation is similarly lost in the trees 121 without ever really seeing the wood. Figure 19 is crucial here, but 122 it's pretty much at the end of the paper, and comments about 123 implementations are threaded throughout the paper without the context 124 (fig 19) to understand what's going on. The protocol for performance 125 testing may just about suffice for C (although is N constantly ten 126 million, or does it vary for each benchmark) but such evaluation isn't 127 appropriate for garbage-collected or JITTed languages like Java or Go. 128 129 other comments working through the paper - these are mostly low level 130 and are certainly not comprehensive. 131 132 p1 only a subset of C-forall extensions? 133 134 p1 "has features often associated with object-oriented programming 135 languages, such as constructors, destructors, virtuals and simple 136 inheritance." There's no need to quibble about this. Once a language 137 has inheritance, it's hard to claim it's not object-oriented. 138 139 140 p2 barging? signals-as-hints? 141 142 p3 start your discussion of generations with a simple example of a 143 C-forall generator. Fig 1(b) might do: but put it inline instead of 144 the python example - and explain the key rules and restrictions on the 145 construct. Then don't even start to compare with coroutines until 146 you've presented, described and explained your coroutines... 147 p3 I'd probably leave out the various "C" versions unless there are 148 key points to make you can't make in C-forall. All the alternatives 149 are just confusing. 150 151 152 p4 but what's that "with" in Fig 1(B) 153 154 p5 start with the high level features of C-forall generators... 155 156 p5 why is the paper explaining networking protocols? 157 158 p7 lines 1-9 (transforming generator to coroutine - why would I do any 159 of this? Why would I want one instead of the other (do not use "stack" 160 in your answer!) 161 162 p10 last para "A coroutine must retain its last resumer to suspend 163 back because the resumer is on a different stack. These reverse 164 pointers allow suspend to cycle backwards, " I've no idea what is 165 going on here? why should I care? Shouldn't I just be using threads 166 instead? why not? 167 168 p16 for the same reasons - what reasons? 169 170 p17 if the multiple-monitor entry procedure really is novel, write a 171 paper about that, and only about that. 172 173 p23 "Loose Object Definitions" - no idea what that means. in that 174 section: you can't leave out JS-style dynamic properties. Even in 175 OOLs that (one way or another) allow separate definitions of methods 176 (like Objective-C, Swift, Ruby, C#) at any time a runtime class has a 177 fixed definition. Quite why the detail about bit mask implementation 178 is here anyway, I've no idea. 179 180 p25 this cluster isn't a CLU cluster then? 181 182 * conclusion should conclude the paper, not the related. 183 184 185 Reviewing: 2 186 187 Comments to the Author 188 This paper describes the concurrency features of an extension of C (whose name I will write as "C\/" here, for convenience), including much design-level discussion of the coroutine- and monitor-based features and some microbenchmarks exploring the current implementation's performance. The key message of the latter is that the system's concurrency abstractions are much lighter-weight than the threading found in mainstream C or Java implementations. 189 190 There is much description of the system and its details, but nothing about (non-artificial) uses of it. Although the microbenchmark data is encouraging, arguably not enough practical experience with the system has been reported here to say much about either its usability advantages or its performance. 191 192 As such, the main contribution of the paper seem to be to document the existence of the described system and to provide a detailed design rationale and (partial) tutorial. I believe that could be of interest to some readers, so an acceptable manuscript is lurking in here somewhere. 193 194 Unfortunately, at present the writing style is somewhere between unclear and infuriating. It omits to define terms; it uses needlessly many terms for what are apparently (but not clearly) the same things; it interrupts itself rather than deliver the natural consequent of whatever it has just said; and so on. Section 5 is particularly bad in these regards -- see my detailed comments below. Fairly major additional efforts will be needed to turn the present text into a digestible design-and-tutorial document. I suspect that a shorter paper could do this job better than the present manuscript, which is overwrought in parts. 195 196 p2: lines 4--9 are a little sloppy. It is not the languages but their popular implementations which "adopt" the 1:1 kernel threading model. 197 198 line 10: "medium work" -- "medium-sized work"? 199 200 line 18: "is all sequential to the compiler" -- not true in modern compilers, and in 2004 H-J Boehm wrote a tech report describing exactly why ("Threads cannot be implemented as a library", HP Labs). 201 202 line 20: "knows the optimization boundaries" -- I found this vague. What's an example? 203 204 line 31: this paragraph has made a lot of claims. Perhaps forward-reference to the parts of the paper that discuss each one. 205 206 line 33: "so the reader can judge if" -- this reads rather passive-aggressively. Perhaps better: "... to support our argument that..." 207 208 line 41: "a dynamic partitioning mechanism" -- I couldn't tell what this meant 209 210 p3. Presenting concept of a "stateful function" as a new language feature seems odd. In C, functions often have local state thanks to static local variables (or globals, indeed). Of course, that has several limitations. Can you perhaps present your contributions by enumerating these limitations? See also my suggestion below about a possible framing centred on a strawman. 211 212 line 2: "an old idea that is new again" -- this is too oblique 213 214 lines 2--15: I found this to be a word/concept soup. Stacks, closures, generators, stackless stackful, coroutine, symmetric, asymmetric, resume/suspend versus resume/resume... there needs to be a more gradual and structured way to introduce all this, and ideally one that minimises redundancy. Maybe present it as a series of "definitions" each with its own heading, e.g. "A closure is stackless if its local state has statically known fixed size"; "A generator simply means a stackless closure." And so on. Perhaps also strongly introduce the word "activate" as a direct contrast with resume and suspend. These are just a flavour of the sort of changes that might make this paragraph into something readable. 215 216 Continuing the thought: I found it confusing that by these definitinos, a stackful closure is not a stack, even though logically the stack *is* a kind of closure (it is a representation of the current thread's continuation). 217 218 lines 24--27: without explaining what the boost functor types mean, I don't think the point here comes across. 219 220 line 34: "semantically coupled" -- I wasn't surew hat this meant 221 222 p4: the point of Figure 1 (C) was not immediately clear. It seem to be showing how one might "compile down" Figure 1 (B). Or is that Figure 1 (A)? 223 224 It's right that the incidental language features of the system are not front-and-centre, but I'd appreciate some brief glossing of non-C languages features as they appear. Examples are the square bracket notation, the pipe notation and the constructor syntax. These explanations could go in the caption of the figure which first uses them, perhaps. Overall I found the figure captions to be terse, and a missed opportunity to explain clearly what was going on. 225 226 p5 line 23: "This restriction is removed..." -- give us some up-front summary of your contributions and the elements of the language design that will be talked about, so that this isn't an aside. This will reduce the "twisty passages" feeling that characterises much of the paper. 227 228 line 40: "a killer asymmetric generator" -- this is stylistically odd, and the sentence about failures doesn't convincigly argue that C\/ will help with them. Have you any experience writing device drivers using C\/? Or any argument that the kinds of failures can be traced to the "stack-ripping" style that one is forced to use without coroutines? Also, a typo on line 41: "device drives". And saying "Windows/Linux" is sloppy... what does the cited paper actually say? 229 230 p6 lines 13--23: this paragraph is difficult to understand. It seems to be talking about a control-flow pattern roughly equivalent to tail recursion. What is the high-level point, other than that this is possible? 231 232 line 34: "which they call coroutines" -- a better way to make this point is presumably that the C++20 proposal only provides a specialised kind of coroutine, namely generators, despite its use of the more general word. 233 234 line 47: "... due to dynamic stack allocation, execution..." -- this sentence doesn't scan. I suggest adding "and for" in the relevant places where currently there are only commas. 235 236 p8 / Figure 5 (B) -- the GNU C extension of unary "&&" needs to be explained. The whole figure needs a better explanation, in fact. 237 238 p9, lines 1--10: I wasn't sure this stepping-through really added much value. What are the truly important points to note about this code? 239 240 p10: similarly, lines 3--27 again are somewhere between tedious and confusing. I'm sure the motivation and details of "starter semantics" can both be stated much more pithily. 241 242 line 32: "a self-resume does not overwrite the last resumer" -- is this a hack or a defensible principled decision? 243 244 p11: "a common source of errors" -- among beginners or among production code? Presumably the former. 245 246 line 23: "with builtin and library" -- not sure what this means 247 248 lines 31--36: these can be much briefer. The only important point here seems to be that coroutines cannot be copied. 249 250 p12: line 1: what is a "task"? Does it matter? 251 252 line 7: calling it "heap stack" seems to be a recipe for confusion. "Stack-and-heap" might be better, and contrast with "stack-and-VLS" perhaps. When "VLS" is glossed, suggest actually expanding its initials: say "length" not "size". 253 254 line 21: are you saying "cooperative threading" is the same as "non-preemptive scheduling", or that one is a special case (kind) of the other? Both are defensible, but be clear. 255 256 line 27: "mutual exclusion and synchronization" -- the former is a kind of the latter, so I suggest "and other forms of synchronization". 257 258 line 30: "can either be a stackless or stackful" -- stray "a", but also, this seems to be switching from generic/background terminology to C\/-specific terminology. 259 260 An expositional idea occurs: start the paper with a strawman naive/limited realisation of coroutines -- say, Simon Tatham's popular "Coroutines in C" web page -- and identify point by point what the limitations are and how C\/ overcomes them. Currently the presentation is often flat (lacking motivating contrasts) and backwards (stating solutions before problems). The foregoing approach might fix both of these. 261 262 page 13: line 23: it seems a distraction to mention the Python feature here. 263 264 p14 line 5: it seems odd to describe these as "stateless" just because they lack shared mutable state. It means the code itself is even more stateful. Maybe the "stack ripping" argument could usefully be given here. 265 266 line 16: "too restrictive" -- would be good to have a reference to justify this, or at least give a sense of what the state-of-the-art performance in transactional memory systems is (both software and hardware) 267 268 line 22: "simulate monitors" -- what about just *implementing* monitors? isn't that what these systems do? or is the point more about refining them somehow into something more specialised? 269 270 p15: sections 4.1 and 4.2 seem adrift and misplaced. Split them into basic parts (which go earlier) and more advanced parts (e.g. barging, which can be explained later). 271 272 line 31: "acquire/release" -- misses an opportunity to contrast the monitor's "enter/exit" abstraction with the less structured acquire/release of locks. 273 274 p16 line 12: the "implicit" versus "explicit" point is unclear. Is it perhaps about the contract between an opt-in *discipline* and a language-enforced *guarantee*? 275 276 line 28: no need to spend ages dithering about which one is default and which one is the explicit qualifier. Tell us what you decided, briefly justify it, and move on. 277 278 p17: Figure 11: since the main point seems to be to highlight bulk acquire, include a comment which identifies the line where this is happening. 279 280 line 2: "impossible to statically..." -- or dynamically. Doing it dynamically would be perfectly acceptable (locking is a dynamic operation after all) 281 282 "guarantees acquisition order is consistent" -- assuming it's done in a single bulk acquire. 283 284 p18: section 5.3: the text here is a mess. The explanations of "internal" versus "external" scheduling are unclear, and "signals as hints" is not explained. "... can cause thread starvation" -- means including a while loop, or not doing so? "There are three signalling mechanisms.." but the text does not follow that by telling us what they are. My own scribbled attempt at unpicking the internal/external thing: "threads already in the monitor, albeit waiting, have priority over those trying to enter". 285 286 p19: line 3: "empty condition" -- explain that condition variables don't store anything. So being "empty" means that the queue of waiting threads (threads waiting to be signalled that the condition has become true) is empty. 287 288 line 6: "... can be transformed into external scheduling..." -- OK, but give some motivation. 289 290 p20: line 6: "mechnaism" 291 292 lines 16--20: this is dense and can probably only be made clear with an example 293 294 p21 line 21: clarify that nested monitor deadlock was describe earlier (in 5.2). (Is the repetition necessary?) 295 296 line 27: "locks, and by extension monitors" -- this is true but the "by extension" argument is faulty. It is perfectly possible to use locks as a primitive and build a compositional mechanism out of them, e.g. transactions. 297 298 p22 line 2: should say "restructured" 299 300 line 33: "Implementing a fast subset check..." -- make clear that the following section explains how to do this. Restructuring the sections themselves could do this, or noting in the text. 301 302 p23: line 3: "dynamic member adding, eg, JavaScript" -- needs to say "as permitted in JavaScript", and "dynamically adding members" is stylistically better 303 304 p23: line 18: "urgent stack" -- back-reference to where this was explained before 305 306 p24 line 7: I did not understand what was more "direct" about "direct communication". Also, what is a "passive monitor" -- just a monitor, given that monitors are passive by design? 307 308 line 14 / section 5.9: this table was useful and it (or something like it) could be used much earlier on to set the structure of the rest of the paper. The explanation at present is too brief, e.g. I did not really understand the point about cases 7 and 8. 309 310 p25 line 2: instead of casually dropping in a terse explanation for the newly intrdouced term "virtual processor", introduce it properly. Presumably the point is to give a less ambiguous meaning to "thread" by reserving it only for C\/'s green threads. 311 312 Table 1: what does "No / Yes" mean? 313 314 p26 line 15: "transforms user threads into fibres" -- a reference is needed to explain what "fibres" means... guessing it's in the sense of Adya et al. 315 316 line 20: "Microsoft runtime" -- means Windows? 317 318 lines 21--26: don't say "interrupt" to mean "signal", especially not without clear introduction. You can use "POSIX signal" to disambiguate from condition variables' "signal". 319 320 p27 line 3: "frequency is usually long" -- that's a "time period" or "interval", not a frequency 321 322 line 5: the lengthy quotation is not really necessary; just paraphrase the first sentence and move on. 323 324 line 20: "to verify the implementation" -- I don't think that means what is intended 325 326 Tables in section 7 -- too many significant figures. How many overall runs are described? What is N in each case? 327 328 p29 line 2: "to eliminate this cost" -- arguably confusing since nowadays on commodity CPUs most of the benefits of inlining are not to do with call overheads, but from later optimizations enabled as a consequence of the inlining 329 330 line 41: "a hierarchy" -- are they a hierarchy? If so, this could be explained earlier. Also, to say these make up "an integrated set... of control-flow features" verges on the tautologous. 331 332 p30 line 15: "a common case being web servers and XaaS" -- that's two cases 333 334 335 Reviewing: 3 336 337 Comments to the Author 338 # Cforall review 339 340 Overall, I quite enjoyed reading the paper. Cforall has some very interesting ideas. I did have some suggestions that I think would be helpful before final publication. I also left notes on various parts of the paper that I find confusing when reading, in hopes that it may be useful to you. 341 342 ## Summary 343 344 * Expand on the motivations for including both generator and coroutines, vs trying to build one atop the other 345 * Expand on the motivations for having Why both symmetric and asymettric coroutines? 346 * Comparison to async-await model adopted by other languages 347 * C#, JS 348 * Rust and its async/await model 349 * Consider performance comparisons against node.js and Rust frameworks 350 * Discuss performance of monitors vs finer-grained memory models and atomic operations found in other languages 351 * Why both internal/external scheduling for synchronization? 352 353 ## Generator/coroutines 354 355 In general, this section was clear, but I thought it would be useful to provide a somewhat deeper look into why Cforall opted for the particular combination of features that it offers. I see three main differences from other languages: 356 357 * Generators are not exposed as a "function" that returns a generator object, but rather as a kind of struct, with communication happening via mutable state instead of "return values". That is, the generator must be manually resumed and (if I understood) it is expected to store values that can then later be read (perhaps via methods), instead of having a `yield <Expr>` statement that yields up a value explicitly. 358 * Both "symmetric" and "asymmetric" generators are supported, instead of only asymmetric. 359 * Coroutines (multi-frame generators) are an explicit mechanism. 360 361 In most other languages, coroutines are rather built by layering single-frame generators atop one another (e.g., using a mechanism like async-await), and symmetric coroutines are basically not supported. I'd like to see a bit more justification for Cforall including all the above mechanisms -- it seemed like symmetric coroutines were a useful building block for some of the user-space threading and custom scheduler mechanisms that were briefly mentioned later in the paper. 362 363 In the discussion of coroutines, I would have expected a bit more of a comparison to the async-await mechanism offered in other languages. Certainly the semantics of async-await in JavaScript implies significantly more overhead (because each async fn is a distinct heap object). [Rust's approach avoids this overhead][zc], however, and might be worthy of a comparison (see the Performance section). 364 365 ## Locks and threading 366 367 ### Comparison to atomics overlooks performance 368 369 There are several sections in the paper that compare against atomics -- for example, on page 15, the paper shows a simple monitor that encapsulates an integer and compares that to C++ atomics. Later, the paper compares the simplicity of monitors against the `volatile` quantifier from Java. The conclusion in section 8 also revisits this point. 370 371 While I agree that monitors are simpler, they are obviously also significantly different from a performance perspective -- the paper doesn't seem to address this at all. It's plausible that (e.g.) the `Aint` monitor type described in the paper can be compiled and mapped to the specialized instructions offered by hardware, but I didn't see any mention of how this would be done. There is also no mention of the more nuanced memory ordering relations offered by C++11 and how one might achieve similar performance characteristics in Cforall (perhaps the answer is that one simply doesn't need to; I think that's defensible, but worth stating explicitly). 372 373 ### Justification for external scheduling feels lacking 374 375 Cforall includes both internal and external scheduling; I found the explanation for the external scheduling mechanism to be lacking in justification. Why include both mechanisms when most languages seem to make do with only internal scheduling? It would be useful to show some scenarios where external scheduling is truly more powerful. 376 377 I would have liked to see some more discussion of external scheduling and how it interacts with software engineering best practices. It seems somewhat similar to AOP in certain regards. It seems to add a bit of "extra semantics" to monitor methods, in that any method may now also become a kind of synchronization point. The "open-ended" nature of this feels like it could easily lead to subtle bugs, particularly when code refactoring occurs (which may e.g. split an existing method into two). This seems particularly true if external scheduling can occur across compilation units -- the paper suggested that this is true, but I wasn't entirely clear. 378 379 I would have also appreciated a few more details on how external scheduling is implemented. It seems to me that there must be some sort of "hooks" on mutex methods so that they can detect whether some other function is waiting on them and awaken those blocked threads. I'm not sure how such hooks are inserted, particularly across compilation units. The material in Section 5.6 didn't quite clarify the matter for me. For example, it left me somewhat confused about whether the `f` and `g` functions declared were meant to be local to a translation unit, or shared with other unit. 380 381 ### Presentation of monitors is somewhat confusing 382 383 I found myself confused fairly often in the section on monitors. I'm just going to leave some notes here on places that I got confused in how that it could be useful to you as feedback on writing that might want to be clarified. 384 385 To start, I did not realize that the `mutex_opt` notation was a keyword, I thought it was a type annotation. I think this could be called out more explicitly. 386 387 Later, in section 5.2, the paper discusses `nomutex` annotations, which initially threw me, as they had not been introduced (now I realize that this paragraph is there to justify why there is no such keyword). The paragraph might be rearranged to make that clearer, perhaps by leading with the choice that Cforall made. 388 389 On page 17, the paper states that "acquiring multiple monitors is safe from deadlock", but this could be stated a bit more precisely: acquiring multiple monitors in a bulk-acquire is safe from deadlock (deadlock can still result from nested acquires). 390 391 On page 18, the paper states that wait states do not have to be enclosed in loops, as there is no concern of barging. This seems true but there are also other reasons to use loops (e.g., if there are multiple reasons to notify on the same condition). Thus the statement initially surprised me, as barging is only one of many reasons that I typically employ loops around waits. 392 393 I did not understand the diagram in Figure 12 for some time. Initially, I thought that it was generic to all monitors, and I could not understand the state space. It was only later that I realized it was specific to your example. Updating the caption from "Monitor scheduling to "Monitor scheduling in the example from Fig 13" might have helped me quite a bit. 394 395 I spent quite some time reading the boy/girl dating example (\*) and I admit I found it somewhat confusing. For example, I couldn't tell whether there were supposed to be many "girl" threads executing at once, or if there was only supposed to be one girl and one boy thread executing in a loop. Are the girl/boy threads supposed to invoke the girl/boy methods or vice versa? Surely there is some easier way to set this up? I believe that when reading the paper I convinced myself of how it was supposed to be working, but I'm writing this review some days later, and I find myself confused all over again and not able to easily figure it out. 396 397 (\*) as an aside, I would consider modifying the example to some other form of matching, like customers and support personnel. 398 399 ## Related work 400 401 The paper offered a number of comparisons to Go, C#, Scala, and so forth, but seems to have overlooked another recent language, Rust. In many ways, Rust seems to be closest in philosophy to Cforall, so it seems like an odd omission. I already mentioned above that Rust is in the process of shipping [async-await syntax][aa], which is definitely an alternative to the generator/coroutine approach in Cforall (though one with clear pros/cons). 402 403 ## Performance 404 405 In the performance section in particular, you might consider comparing against some of the Rust web servers and threading systems. For example, actix is top of the [single query TechEmpower Framework benchmarks], and tokio is near the top of the [plainthreading benchmarks][pt] (hyper, the top, is more of an HTTP framework, though it is also written in Rust). It would seem worth trying to compare their "context switching" costs as well -- I believe both actix and tokio have a notion of threads that could be readily compared. 406 407 Another addition that might be worth considering is to compare against node.js promises, although I think the comparison to process creation is not as clean. 408 409 That said, I think that the performance comparison is not a big focus of the paper, so it may not be necessary to add anything to it. 410 411 ## Authorship of this review 412 413 I'm going to sign this review. This review was authored by Nicholas D. Matsakis. In the intrerest of full disclosure, I'm heavily involved in the Rust project, although I dont' think that influenced this review in particular. Feel free to reach out to me for clarifying questions. 414 415 ## Links 416 417 [aa]: https://blog.rust-lang.org/2019/09/30/Async-await-hits-beta.html 418 [zc]: https://aturon.github.io/blog/2016/08/11/futures/ 419 [sq]: https://www.techempower.com/benchmarks/#section=data-r18&hw=ph&test=db 420 [pt]: https://www.techempower.com/benchmarks/#section=data-r18&hw=ph&test=plaintext 421 422 423 424 Subject: Re: manuscript SPE-19-0219 425 To: "Peter A. Buhr" <pabuhr@uwaterloo.ca> 426 From: Richard Jones <R.E.Jones@kent.ac.uk> 427 Date: Tue, 12 Nov 2019 22:43:55 +0000 428 429 Dear Dr Buhr 430 431 Your should have received a decision letter on this today. I am sorry that this 432 has taken so long. Unfortunately SP&E receives a lot of submissions and getting 433 reviewers is a perennial problem. 434 435 Regards 436 Richard 437 438 Peter A. Buhr wrote on 11/11/2019 13:10: 439 > 26-Jun-2019 440 > Your manuscript entitled "Advanced Control-flow and Concurrency in Cforall" 441 > has been received by Software: Practice and Experience. It will be given 442 > full consideration for publication in the journal. 443 > 444 > Hi, it has been over 4 months since submission of our manuscript SPE-19-0219 445 > with no response. 446 > 447 > Currently, I am refereeing a paper for IEEE that already cites our prior SP&E 448 > paper and the Master's thesis forming the bases of the SP&E paper under 449 > review. Hence our work is apropos and we want to get it disseminates as soon as 450 > possible. 451 > 452 > [3] A. Moss, R. Schluntz, and P. A. Buhr, "Cforall: Adding modern programming 453 > language features to C," Software - Practice and Experience, vol. 48, 454 > no. 12, pp. 2111-2146, 2018. 455 > 456 > [4] T. Delisle, "Concurrency in C for all," Master's thesis, University of 457 > Waterloo, 2018. [Online]. Available: 458 > https://uwspace.uwaterloo.ca/bitstream/handle/10012/12888 459 460 461 462 Date: Mon, 13 Jan 2020 05:33:15 +0000 463 From: Richard Jones <onbehalfof@manuscriptcentral.com> 464 Reply-To: R.E.Jones@kent.ac.uk 465 To: pabuhr@uwaterloo.ca 466 Subject: Revision reminder - SPE-19-0219 467 468 13-Jan-2020 469 Dear Dr Buhr 470 SPE-19-0219 471 472 This is a reminder that your opportunity to revise and re-submit your 473 manuscript will expire 28 days from now. If you require more time please 474 contact me directly and I may grant an extension to this deadline, otherwise 475 the option to submit a revision online, will not be available. 476 477 I look forward to receiving your revision. 478 479 Sincerely, 480 481 Prof. Richard Jones 482 Editor, Software: Practice and Experience 483 https://mc.manuscriptcentral.com/spe 484 485 486 487 Date: Wed, 5 Feb 2020 04:22:18 +0000 488 From: Aaron Thomas <onbehalfof@manuscriptcentral.com> 489 Reply-To: speoffice@wiley.com 490 To: tdelisle@uwaterloo.ca, pabuhr@uwaterloo.ca 491 Subject: SPE-19-0219.R1 successfully submitted 492 493 04-Feb-2020 494 495 Dear Dr Buhr, 496 497 Your manuscript entitled "Advanced Control-flow and Concurrency in Cforall" has 498 been successfully submitted online and is presently being given full 499 consideration for publication in Software: Practice and Experience. 500 501 Your manuscript number is SPE-19-0219.R1. Please mention this number in all 502 future correspondence regarding this submission. 503 504 You can view the status of your manuscript at any time by checking your Author 505 Center after logging into https://mc.manuscriptcentral.com/spe. If you have 506 difficulty using this site, please click the 'Get Help Now' link at the top 507 right corner of the site. 508 509 Thank you for submitting your manuscript to Software: Practice and Experience. 510 511 Sincerely, 512 Software: Practice and Experience Editorial Office 513 -
doc/proposals/vtable.md
rb7d6a36 r6a490b2 237 237 default is provided or not, the second syntax can be used to pick a 238 238 parameter on instantiation. 239 240 ### Extension: Object Access 241 This requires that the resolution scope (see below) is at the type level or 242 has explicate points with names. These are the tables and table names used 243 here. 244 245 The system already knows where to find the virtual table and the object. If 246 the tables have particular identities, or on the user side names, then it is 247 meaningful to check if a binding virtual table is the same* as another. The 248 main use of this is virtual table declarations also give the type they bind 249 and if a binding table matches a known table then the underlyind object in the 250 trait object must be of that type. 251 252 * By identity, by value would work and in some senses be more flexiable. But 253 it would be slower and refering to further away functions would be harder. 254 255 This gives one of the main new features of the hierarchical use of virtual 256 tables (see below); the ability to recover the underlying object. Or a pointer 257 of the approprate type it which both reflects the implementation and gives a 258 convenent way to encode the boolean/conditional aspect of the operation which 259 is that a different virtual table might be in use. 260 261 There are two general ways to reperent this; a cast or a field access. The 262 cast is traditional and would definitely fit if a single pointer repersents 263 a trait object with the virtual table as part of the object. However for a 264 double pointer field access might be more approprate. By this system though 265 it is not the type that is used as the identifier but the virtual table. If 266 there is one table per type than it becomes equivilant again. Otherwise the 267 table has to be used as the identifier and the type is just a result of that 268 which seems important for syntax. 239 269 240 270 Hierarchy … … 560 590 be used in only some of the declarations. 561 591 562 trait combiner fee = (summation_instance, sum);592 trait combiner fee = {summation_instance, sum}; 563 593 trait combiner foe = summation_instance; 564 594 -
doc/theses/thierry_delisle_PhD/.gitignore
rb7d6a36 r6a490b2 8 8 9 9 comp_II/build/ 10 comp_II/img/*.fig.bak 10 11 comp_II/comp_II.pdf 11 12 comp_II/comp_II.ps -
doc/theses/thierry_delisle_PhD/comp_II/Makefile
rb7d6a36 r6a490b2 2 2 3 3 Build = build 4 Figures = figures4 Figures = img 5 5 Macros = ../../../LaTeXmacros 6 6 TeXLIB = .:${Macros}:${Build}:../../../bibliography: … … 18 18 19 19 FIGURES = ${addsuffix .tex, \ 20 base \ 21 empty \ 22 emptybit \ 23 emptytree \ 24 emptytls \ 25 resize \ 26 system \ 20 27 } 21 28 … … 70 77 mkdir -p ${Build} 71 78 72 %.tex : %.fig ${Build}79 %.tex : img/%.fig ${Build} 73 80 fig2dev -L eepic $< > ${Build}/$@ 74 81 75 %.ps : %.fig | ${Build}82 %.ps : img/%.fig | ${Build} 76 83 fig2dev -L ps $< > ${Build}/$@ 77 84 78 %.pstex : %.fig | ${Build}85 %.pstex : img/%.fig | ${Build} 79 86 fig2dev -L pstex $< > ${Build}/$@ 80 87 fig2dev -L pstex_t -p ${Build}/$@ $< > ${Build}/$@_t -
doc/theses/thierry_delisle_PhD/comp_II/comp_II.tex
rb7d6a36 r6a490b2 1 \documentclass[11pt,fullpage]{article} 1 \documentclass[11pt]{article} 2 \usepackage{fullpage} 2 3 \usepackage[T1]{fontenc} 3 4 \usepackage[utf8]{inputenc} 4 \usepackage{listings} % for code listings5 5 \usepackage{xspace} 6 6 \usepackage{xcolor} 7 7 \usepackage{graphicx} 8 \usepackage[hidelinks]{hyperref} 8 \usepackage{epic,eepic} 9 \usepackage{listings} % for code listings 9 10 \usepackage{glossaries} 10 11 \usepackage{textcomp} 11 \usepackage{geometry}12 13 12 % cfa macros used in the document 14 13 \input{common} 14 15 \setlist{topsep=6pt,parsep=0pt} % global reduce spacing between points 16 \newcommand{\uC}{$\mu$\CC} 17 \usepackage[hidelinks]{hyperref} 18 \setlength{\abovecaptionskip}{5pt plus 3pt minus 2pt} 19 \lstMakeShortInline$% % single-character for \lstinline 20 %\usepackage[margin=1in]{geometry} 21 %\usepackage{float} 22 15 23 \input{glossary} 16 24 … … 24 32 25 33 \author{ 26 \huge Thierry Delisle \ \27 \Large \ vspace*{0.1in} \texttt{tdelisle@uwaterloo.ca} \\34 \huge Thierry Delisle \vspace*{5pt} \\ 35 \Large \texttt{tdelisle@uwaterloo.ca} \vspace*{5pt} \\ 28 36 \Large Cheriton School of Computer Science \\ 29 37 \Large University of Waterloo … … 39 47 40 48 \newcommand{\cit}{\textsuperscript{[Citation Needed]}\xspace} 41 \newcommand{\TODO}{ ~\newline{\large\bf\color{red} TODO :}\xspace}49 \newcommand{\TODO}{{\large\bf\color{red} TODO: }\xspace} 42 50 43 51 % =============================================================================== … … 51 59 \section{Introduction} 52 60 \subsection{\CFA and the \CFA concurrency package} 53 \CFA\cit is a modern, polymorphic, non-object-oriented, backwards-compatible extension of the C programming language. It aims to add high productivity features while maintaning the predictible performance of C. As such concurrency in \CFA\cit aims to offer simple and safe high-level tools while still allowing performant code. Concurrent code is written in the syncrhonous programming paradigm but uses \glspl{uthrd} in order to achieve the simplicity and maintainability of synchronous programming without sacrificing the efficiency of asynchronous programing. As such the \CFA scheduler is a user-level scheduler that maps \glspl{uthrd} onto \glspl{kthrd}. 54 55 The goal of this research is to produce a scheduler that is simple to use and offers acceptable performance in all cases. Here simplicity does not refer to the API but to how much scheduling concerns programmers need to take into account when using the \CFA concurrency package. Therefore, the main goal of this proposal is as follows : 61 \CFA\cite{Moss18} is a modern, polymorphic, non-object-oriented, concurrent, backwards-compatible extension of the C programming language. 62 It aims to add high-productivity features while maintaining the predictable performance of C. 63 As such, concurrency in \CFA\cite{Delisle19} aims to offer simple and safe high-level tools while still allowing performant code. 64 \CFA concurrent code is written in the synchronous programming paradigm but uses \glspl{uthrd} in order to achieve the simplicity and maintainability of synchronous programming without sacrificing the efficiency of asynchronous programing. 65 As such, the \CFA \newterm{scheduler} is a preemptive user-level scheduler that maps \glspl{uthrd} onto \glspl{kthrd}. 66 67 \newterm{Scheduling} occurs when execution switches from one thread to another, where the second thread is implicitly chosen by the scheduler. 68 This scheduling is an indirect handoff, as opposed to generators and coroutines which explicitly switch to the next generator and coroutine respectively. 69 The cost of switching between two threads for an indirect handoff has two components: 70 \begin{enumerate} 71 \item 72 the cost of actually context-switching, \ie changing the relevant registers to move execution from one thread to the other, 73 \item 74 and the cost of scheduling, \ie deciding which thread to run next among all the threads ready to run. 75 \end{enumerate} 76 The first cost is generally constant and fixed\footnote{Affecting the constant context-switch cost is whether it is done in one step, after the scheduling, or in two steps, context-switching to a fixed third-thread before scheduling.}, while the scheduling cost can vary based on the system state. 77 Adding multiple \glspl{kthrd} does not fundamentally change the scheduler semantics or requirements, it simply adds new correctness requirements, \ie \newterm{linearizability}\footnote{Meaning however fast the CPU threads run, there is an equivalent sequential order that gives the same result.}, and a new dimension to performance: scalability, where scheduling cost now also depends on contention. 78 79 The more threads switch, the more the administration cost of scheduling becomes noticeable. 80 It is therefore important to build a scheduler with the lowest possible cost and latency. 81 Another important consideration is \newterm{fairness}. 82 In principle, scheduling should give the illusion of perfect fairness, where all threads ready to run are running \emph{simultaneously}. 83 While the illusion of simultaneity is easier to reason about, it can break down if the scheduler allows too much unfairness. 84 Therefore, the scheduler should offer as much fairness as needed to guarantee eventual progress, but use unfairness to help performance. 85 In practice, threads must wait in turn but there can be advantages to unfair scheduling, similar to the the express cash-register at a grocery store. 86 87 The goal of this research is to produce a scheduler that is simple for programmers to understand and offers good performance. 88 Here understandability does not refer to the API but to how much scheduling concerns programmers need to take into account when writing a \CFA concurrent package. 89 Therefore, the main goal of this proposal is : 56 90 \begin{quote} 57 The \CFA scheduler should be \emph{viable} for anyworkload.91 The \CFA scheduler should be \emph{viable} for \emph{any} workload. 58 92 \end{quote} 59 93 60 This objective includes producing a scheduling strategy with minimal fairness guarantees, creating an abstraction layer over the operating system to handle kernel-threads spinning unnecessarily and hide blocking I/O operations and, writing sufficient library tools to allow developpers to properly use the scheduler. 61 62 % =============================================================================== 63 % =============================================================================== 64 65 \section{Scheduling for \CFA} 66 While the \CFA concurrency package doesn't have any particular scheduling needs beyond those of any concurrency package which uses \glspl{uthrd}, it is important that the default \CFA Scheduler be viable in general. Indeed, since the \CFA Scheduler does not target any specific workloads, it is unrealistic to demand that it use the best scheduling strategy in all cases. However, it should offer a viable ``out of the box'' solution for most scheduling problems so that programmers can quickly write performant concurrent without needed to think about which scheduling strategy is more appropriate for their workload. Indeed, only programmers with exceptionnaly high performance requirements should need to write their own scheduler. More specifically, two broad types of schedulering strategies should be avoided in order to avoid penalizing certain types of workloads : feedback-based and priority schedulers. 94 For a general purpose scheduler, it is impossible to produce an optimal algorithm as it would require knowledge of the future behaviour of threads. 95 As such, scheduling performance is generally either defined by the best case scenario, \ie a workload to which the scheduler is tailored, or the worst case scenario, \ie the scheduler behaves no worst than \emph{X}. 96 For this proposal, the performance is evaluated using the second approach to allow \CFA programmers to rely on scheduling performance. 97 Because there is no optimal scheduler, ultimately \CFA may allow programmers to write their own scheduler; but that is not the subject of this proposal, which considers only the default scheduler. 98 As such, it is important that only programmers with exceptionally high performance requirements should need to write their own scheduler and replace the scheduler in this proposal. 99 100 To achieve the \CFA scheduling goal includes: 101 \begin{enumerate} 102 \item 103 producing a scheduling strategy with sufficient fairness guarantees, 104 \item 105 creating an abstraction layer over the operating system to handle kernel-threads spinning unnecessarily, 106 \item 107 scheduling blocking I/O operations, 108 \item 109 and writing sufficient library tools to allow developers to indirectly use the scheduler, either through tuning knobs or replacing the default scheduler. 110 \end{enumerate} 111 112 % =============================================================================== 113 % =============================================================================== 114 115 \section{\CFA Scheduling} 116 To schedule user-level threads across all workloads, the scheduler has a number of requirements: 117 118 \paragraph{Correctness} As with any other concurrent data structure or algorithm, the correctness requirement is paramount. 119 The scheduler cannot allow threads to be dropped from the ready queue, \ie scheduled but never run, or be executed multiple times when only being scheduled once. 120 Since \CFA concurrency has no spurious wakeup, this definition of correctness also means the scheduler should have no spurious wakeup. 121 The \CFA scheduler must be correct. 122 123 \paragraph{Performance} The performance of a scheduler can generally be measured in terms of scheduling cost, scalability and latency. 124 \newterm{Scheduling cost} is the cost to switch from one thread to another, as mentioned above. 125 For simple applications, where a single kernel thread does most of the scheduling, it is generally the dominating cost. 126 \newterm{Scalability} is the cost of adding multiple kernel threads because it increases the time for context switching because of contention by multiple threads accessing shared resources, \eg the ready queue. 127 Finally, \newterm{tail latency} is service delay and relates to thread fairness. 128 Specifically, latency measures how long a thread waits to run once scheduled and is evaluated in the worst case. 129 The \CFA scheduler should offer good performance for all three metrics. 130 131 \paragraph{Fairness} Like performance, this requirement has several aspect : eventual progress, predictability and performance reliability. 132 \newterm{Eventual progress} guarantees every scheduled thread is eventually run, \ie prevent starvation. 133 As a hard requirement, the \CFA scheduler must guarantee eventual progress, otherwise the above mentioned illusion of simultaneous execution is broken and the scheduler becomes much more complex to reason about. 134 \newterm{Predictability} and \newterm{reliability} means similar workloads achieve similar performance and programmer execution intuition is respected. 135 For example, a thread that yields aggressively should not run more often then other tasks. 136 While this is intuitive, it does not hold true for many work-stealing or feedback based schedulers. 137 The \CFA scheduler must guarantee eventual progress and should be predictable and offer reliable performance. 138 139 \paragraph{Efficiency} Finally, efficient usage of CPU resources is also an important requirement and is discussed in depth towards the end of the proposal. 140 \newterm{Efficiency} means avoiding using CPU cycles when there are no threads to run, and conversely, use all CPUs available when the workload can benefit from it. 141 Balancing these two states is where the complexity lies. 142 The \CFA scheduler should be efficient with respect to the underlying (shared) computer. 143 144 \bigskip To achieve these requirements, I can reject two broad types of scheduling strategies : feedback-based and priority schedulers. 67 145 68 146 \subsection{Feedback-Based Schedulers} 69 Many operating systems use schedulers based on feadback loops in some form, they measure how much CPU a particular thread has used\footnote{Different metrics can be used to here but it is not relevant to the discussion.} and schedule threads based on this metric. These strategies are sensible for operating systems but rely on two assumptions on the workload : 70 71 \begin{enumerate} 72 \item Threads live long enough to be scheduled many times. 73 \item Cooperation among all threads is not simply infeasible, it is a security risk. 74 \end{enumerate} 75 76 While these two assumptions generally hold for operating systems, they may not for \CFA programs. In fact, \CFA uses \glspl{uthrd} which have the explicit goal of reducing the cost of threading primitives to allow many smaller threads. This can naturally lead to have threads with much shorter lifetime and only being scheduled a few times. Scheduling strategies based on feadback loops cannot be effective in these cases because they will not have the opportunity to measure the metrics that underlay the algorithm. Note that the problem of feadback loop convergence (reacting too slowly to scheduling events) is not specific to short lived threads but can also occur with threads that show drastic changes in scheduling event, e.g., threads running for long periods of time and then suddenly blocking and unblocking quickly and repeatedly. 77 78 In the context of operating systems, these concerns can be overshadowed by a more pressing concern : security. When multiple users are involved, it is possible that some users are malevolent and try to exploit the scheduling strategy in order to achieve some nefarious objective. Security concerns mean that more precise and robust fairness metrics must be used. In the case of the \CFA scheduler, every thread runs in the same user-space and are controlled from the same user. It is then possible to safely ignore the possibility that threads are malevolent and assume that all threads will ignore or cooperate with each other. This allows for a much simpler fairness metric and in this proposal ``fairness'' will be considered as equal opportunities to run once scheduled. 79 80 Since feadback is not necessarily feasible within the lifetime of all threads and a simple fairness metric can be used, the scheduling strategy proposed for the \CFA runtime does not user per-threads feedback. Feedback loops in general are not rejected for secondary concerns like idle sleep, but no feedback loop is used to decide which thread to run next. 147 Many operating systems use schedulers based on feedback in some form, \eg measuring how much CPU a particular thread has used\footnote{Different metrics can be measured but it is not relevant to the discussion.} and schedule threads based on this metric. 148 These strategies are sensible for operating systems but rely on two assumptions for the workload: 149 150 \begin{enumerate} 151 \item Threads live long enough for useful feedback information to be to gathered. 152 \item Threads belong to multiple users so fairness across threads is insufficient. 153 \end{enumerate} 154 155 While these two assumptions generally hold for operating systems, they may not for user-level threading. 156 Since \CFA has the explicit goal of allowing many smaller threads, this can naturally lead to threads with much shorter lifetimes that are only scheduled a few times. 157 Scheduling strategies based on feedback cannot be effective in these cases because there is no opportunity to measure the metrics that underlie the algorithm. 158 Note, the problem of \newterm{feedback convergence} (reacting too slowly to scheduling events) is not specific to short lived threads but can also occur with threads that show drastic changes in scheduling, \eg threads running for long periods of time and then suddenly blocking and unblocking quickly and repeatedly. 159 160 In the context of operating systems, these concerns can be overshadowed by a more pressing concern : security. 161 When multiple users are involved, it is possible some users are malevolent and try to exploit the scheduling strategy to achieve some nefarious objective. 162 Security concerns mean more precise and robust fairness metrics must be used to guarantee fairness across processes created by users as well as threads created within a process. 163 In the case of the \CFA scheduler, every thread runs in the same user space and is controlled by the same user. 164 Fairness across users is therefore a given and it is then possible to safely ignore the possibility that threads are malevolent. 165 This approach allows for a much simpler fairness metric and in this proposal \emph{fairness} is defined as: when multiple threads are cycling through the system, the total ordering of threads being scheduled, \ie pushed onto the ready-queue, should not differ much from the total ordering of threads being executed, \ie popped from the ready-queue. 166 167 Since feedback is not necessarily feasible within the lifetime of all threads and a simple fairness metric can be used, the scheduling strategy proposed for the \CFA runtime does not use per-threads feedback. 168 Feedback in general is not rejected for secondary concerns like idle sleep for kernel threads, but no feedback is used to decide which thread to run next. 81 169 82 170 \subsection{Priority Schedulers} 83 Another broad category of schedulers are priority schedulers. In these scheduling strategies threads have priorities and the runtime schedules the threads with the highest priority before scheduling other threads. Threads with equal priority are scheduled using a secondary strategy, often something simple like round-robin or FIFO. These priority mean that, as long as there is a thread with a higher priority that desires to run, a thread with a lower priority will not run. This possible starving of threads can dramatically increase programming complexity since starving threads and priority inversion (prioritising a lower priority thread) can both lead to serious problems, leaving programmers between a rock and a hard place. 84 85 An important observation to make is that threads do not need to have explicit priorities for problems to be possible. Indeed, any system with multiple ready-queues and attempts to exhaust one queue before accessing the other queues, could encounter starvation problems. A popular scheduling strategy that suffers from implicit priorities is work-stealing. Work-stealing is generally presented as follows : 86 171 Another broad category of schedulers are priority schedulers. 172 In these scheduling strategies, threads have priorities and the runtime schedules the threads with the highest priority before scheduling other threads. 173 Threads with equal priority are scheduled using a secondary strategy, often something simple like round-robin or FIFO. 174 A consequence of priority is that, as long as there is a thread with a higher priority that desires to run, a thread with a lower priority does not run. 175 This possible starving of threads can dramatically increase programming complexity since starving threads and priority inversion (prioritizing a lower priority thread) can both lead to serious problems. 176 177 An important observation is that threads do not need to have explicit priorities for problems to occur. 178 Indeed, any system with multiple ready-queues that attempts to exhaust one queue before accessing the other queues, essentially provide implicit priority, which can encounter starvation problems. 179 For example, a popular scheduling strategy that suffers from implicit priorities is work stealing. 180 \newterm{Work stealing} is generally presented as follows: 181 \begin{enumerate} 182 \item Each processor has a list of ready threads. 183 \item Each processor runs threads from its ready queue first. 184 \item If a processor's ready queue is empty, attempt to run threads from some other processor's ready queue. 185 \end{enumerate} 186 187 In a loaded system\footnote{A \newterm{loaded system} is a system where threads are being run at the same rate they are scheduled.}, if a thread does not yield, block, or preempt for an extended period of time, threads on the same processor's list starve if no other processors exhaust their list. 188 189 Since priorities can be complex for programmers to incorporate into their execution intuition, the scheduling strategy proposed for the \CFA runtime does not use a strategy with either implicit or explicit thread priorities. 190 191 \subsection{Schedulers without feedback or priorities} 192 This proposal conjectures that is is possible to construct a default scheduler for the \CFA runtime that offers good scalability and a simple fairness guarantee that is easy for programmers to reason about. 193 The simplest fairness guarantee is FIFO ordering, \ie threads scheduled first run first. 194 However, enforcing FIFO ordering generally conflicts with scalability across multiple processors because of the additional synchronization. 195 Thankfully, strict FIFO is not needed for sufficient fairness. 196 Since concurrency is inherently non-deterministic, fairness concerns in scheduling are only a problem if a thread repeatedly runs before another thread can run. 197 Some relaxation is possible because non-determinism means programmers already handle ordering problems to produce correct code and hence rely on weak guarantees, \eg that a specific thread will \emph{eventually} run. 198 Since some reordering does not break correctness, the FIFO fairness guarantee can be significantly relaxed without causing problems. 199 For this proposal, the target guarantee is that the \CFA scheduler provides \emph{probable} FIFO ordering, which allows reordering but makes it improbable that threads are reordered far from their position in total ordering. 200 201 The \CFA scheduler fairness is defined as follows: 87 202 \begin{itemize} 88 \item Each processor has a list of threads.203 \item Given two threads $X$ and $Y$, the odds that thread $X$ runs $N$ times \emph{after} thread $Y$ is scheduled but \emph{before} it is run, decreases exponentially with regard to $N$. 89 204 \end{itemize} 90 \begin{enumerate} 91 \item Run threads from ``this'' processor's list. 92 \item If ``this'' processor's list is empty, run threads from some other processor's list. 93 \end{enumerate} 94 95 In a loaded system\footnote{A loaded system is a system where threads are being run at the same rate they are scheduled}, if a thread does not yield or block for an extended period of time, threads on the same processor list will starve if no other processors can exhaust their list. 96 97 Since priorities can be complex to handle for programmers, the scheduling strategy proposed for the \CFA runtime does not use a strategy with either implicit or explicit thread priorities. 98 99 \subsection{Schedulers without feadback or priorities} 100 I claim that the ideal default scheduler for the \CFA runtime is a scheduler that offers good scalability and a simple fairness guarantee that is easy for programmers to reason about. The simplest fairness guarantee is to guarantee FIFO ordering, i.e., threads scheduled first will run first. However, enforcing FIFO ordering generally conflicts with scalability across multiple processors because of the additionnal synchronization. Thankfully, strict FIFO is not needed for scheduling. Since concurrency is inherently non-deterministic, fairness concerns in scheduling are only a problem if a thread repeatedly runs before another thread can run\footnote{This is because the non-determinism means that programmers must already handle ordering problems in order to produce correct code and already must rely on weak guarantees, for example that a specific thread will \emph{eventually} run.}. This need for unfairness to persist before problems occur means that the FIFO fairness guarantee can be significantly relaxed without causing problems. For this proposal, the target guarantee is that the \CFA scheduler guarantees \emph{probable} FIFO ordering, which is defined as follows : 101 \begin{itemize} 102 \item Given two threads $X$ and $Y$, the odds that thread $X$ runs $N$ times \emph{after} thread $Y$ is scheduled but \emph{before} it is run, decreases exponentially with regards to $N$. 103 \end{itemize} 104 105 While this is not a strong guarantee, the probability that problems persist for long period of times decreases exponentially, making persisting problems virtually impossible. 106 107 \subsection{Real-Time} 108 While the objective of this proposed scheduler is similar to the objective of real-time scheduling, this proposal is not a proposal for real-time scheduler and as such makes no attempt to offer either soft or hard guarantees on scheduling delays. 109 110 % =============================================================================== 111 % =============================================================================== 112 \section{Proposal} 113 114 \subsection{Ready-Queue} 115 Using trevor's paper\cit as basis, it is simple to build a relaxed FIFO list that is fast and scalable for loaded or overloaded systems. The described queue uses an array of underlying strictly FIFO queue. Pushing new data is done by selecting one of these underlying queues at random, recording a timestamp for the push and pushing to the selected queue. Popping is done by selecting two queues at random and popping from the queue for which the head has the oldest timestamp. In loaded or overloaded systems, it is higly likely that the queues is far from empty, e.i., several tasks are on each of the underlying queues. This means that selecting a queue at random to pop from is higly likely to yield a queue that is not empty. 116 117 When the ready queue is "more empty", i.e., several of the inner queues are empty, selecting a random queue for popping is less likely to yield a valid selection and more attempts need to be made, resulting in a performance degradation. In cases, with few elements on the ready queue and few processors running, performance can be improved by adding information to help processors find which inner queues are used. Preliminary performance tests indicate that with few processors, a bitmask can be used to identify which inner queues are currently in use. This is especially effective in the single-thread case, where the bitmask will always be up-to-date. Furthermore, modern x86 CPUs have a BMI2 extension which allow using the bitmask with very little overhead over directly accessing the readyqueue offerring decent performance even in cases with many empty inner queues. This technique does not solve the problem completely, it randomly attempts to find a block of 64 queues where at least one is used, instead of attempting to find a used queue. For systems with a large number of cores this does not completely solve the problem, but it is a fixed improvement. The size of the blocks are limited by the maximum size atomic instruction can operate on, therefore atomic instructions on large words would increase the 64 queues per block limit. 118 119 \TODO double check the next sentence 120 Preliminary result indicate that the bitmask approach with the BMI2 extension can lead to multi-threaded performance that is contention agnostic in the worst case. 121 This result suggests that the contention penalty and the increase performance for additionnal thread cancel each other exactly. This may indicate that a relatively small reduction in contention may tip the performance into positive scalling even for the worst case. It can be noted that in cases of high-contention, the use of the bitmask to find queues that are not empty is much less reliable. Indeed, if contention on the bitmask is high, it means it probably changes significantly between the moment it is read and the actual operation on the queues it represents. Furthermore, the objective of the bitmask is to avoid probing queues that are empty. Therefore, in cases where the bitmask is highly contented, it may be preferrable to probe queues randomly, either until contention decreases or until a prior prefetch of the bitmask completes. Ideally, the scheduler would be able to observe that the bitmask is highly contented and adjust its behaviour appropriately. However, I am not aware of any mechanism to query whether a cacheline is in cache or to run other instructions until a cacheline is fetch without blocking on the cacheline. As such, an alternative that may have a similar impact would be for each thread to have their own bitmask, which would be updated both after each scheduler action and after a certain number of failed probing. If the bitmask has little contention, the local bitmask will be mostly up-to-date and several threads won't need to contend as much on the global bitmask. If the bitmask has significant contention, then fetching it becomes more expensive and threads may as well probe randomly. This solution claims that probing randomly or against an out-of-date bitmask is equivalent. 122 123 In cases where this is insufficient, another approach is to use a hiearchical data structure. Creating a tree of nodes to reduce contention has been shown to work in similar cases\cit(SNZI: Scalable NonZero Indicators)\footnote{This particular paper seems to be patented in the US. How does that affect \CFA? Can I use it in my work?}. However, this approach may lead to poorer single-threaded performance due to the inherent pointer chasing, as such, it was not considered as the first approach but as a fallback in case the bitmask approach does not satisfy the performance goals. 124 125 Part of this performance relies on contention being low when there are few threads on the readyqueue. However, this can be assumed reliably if the system handles putting idle processors to sleep, which is addressed in section \ref{sleep}. 205 While this is not a bounded guarantee, the probability that unfairness persist for long periods of times decreases exponentially, making persisting unfairness virtually impossible. 206 207 % =============================================================================== 208 % =============================================================================== 209 \section{Proposal Details} 210 211 \subsection{Central Ready Queue} \label{sec:queue} 212 A central ready queue can be built from a FIFO queue, where user threads are pushed onto the queue when they are ready to run, and processors (kernel-threads acting as virtual processors) pop the user threads from the queue and execute them. 213 Alistarh \etal~\cite{alistarh2018relaxed} show it is straightforward to build a relaxed FIFO list that is fast and scalable for loaded or overloaded systems. 214 The described queue uses an array of underlying strictly FIFO queues as shown in Figure~\ref{fig:base}\footnote{For this section, the number of underlying queues is assumed to be constant. 215 Section~\ref{sec:resize} discusses resizing the array.}. 216 Pushing new data is done by selecting one of these underlying queues at random, recording a timestamp for the operation and pushing to the selected queue. 217 Popping is done by selecting two queues at random and popping from the queue with the oldest timestamp. 218 A higher number of underlying queues leads to less contention on each queue and therefore better performance. 219 In a loaded system, it is highly likely the queues are non-empty, \ie several tasks are on each of the underlying queues. 220 This means that selecting a queue at random to pop from is highly likely to yield a queue with available items. 221 In Figure~\ref{fig:base}, ignoring the ellipsis, the chances of getting an empty queue is 2/7 per pick, meaning two random picks yield an item approximately 9 times out of 10. 222 223 \begin{figure} 224 \begin{center} 225 \input{base} 226 \end{center} 227 \caption{Relaxed FIFO list at the base of the scheduler: an array of strictly FIFO lists. 228 The timestamp is in all nodes and cell arrays.} 229 \label{fig:base} 230 \end{figure} 231 232 \begin{figure} 233 \begin{center} 234 \input{empty} 235 \end{center} 236 \caption{``More empty'' state of the queue: the array contains many empty cells.} 237 \label{fig:empty} 238 \end{figure} 239 240 When the ready queue is \emph{more empty}, \ie several of the queues are empty, selecting a random queue for popping is less likely to yield a successful selection and more attempts are needed, resulting in a performance degradation. 241 Figure~\ref{fig:empty} shows an example with fewer elements, where the chances of getting an empty queue is 5/7 per pick, meaning two random picks yield an item only half the time. 242 Since the ready queue is not empty, the pop operation \emph{must} find an element before returning and therefore must retry. 243 Note, the popping kernel thread has no work to do, but CPU cycles are wasted both for available user and kernel threads during the pop operation as the popping thread is using a CPU. 244 Overall performance is therefore influenced by the contention on the underlying queues and pop performance is influenced by the item density. 245 246 This leads to four performance cases for the centralized ready-queue, as depicted in Table~\ref{tab:perfcases}. 247 The number of processors (many or few) refers to the number of kernel threads \emph{actively} attempting to pop user threads from the queues, not the total number of kernel threads. 248 The number of threads (many or few) refers to the number of user threads ready to be run. 249 Many threads means they outnumber processors significantly and most underlying queues have items, few threads mean there are barely more threads than processors and most underlying queues are empty. 250 Cases with fewer threads than processors are discussed in Section~\ref{sec:sleep}. 251 252 \begin{table} 253 \begin{center} 254 \begin{tabular}{|r|l|l|} 255 \cline{2-3} 256 \multicolumn{1}{r|}{} & \multicolumn{1}{c|}{Many Processors} & \multicolumn{1}{c|}{Few Processors} \\ 257 \hline 258 Many Threads & A: good performance & B: good performance \\ 259 \hline 260 Few Threads & C: worst performance & D: poor performance \\ 261 \hline 262 \end{tabular} 263 \end{center} 264 \caption{Expected performance of the relaxed FIFO list in different cases.} 265 \label{tab:perfcases} 266 \end{table} 267 268 Performance can be improved in case~D (Table~\ref{tab:perfcases}) by adding information to help processors find which inner queues are used. 269 This addition aims to avoid the cost of retrying the pop operation but does not affect contention on the underlying queues and can incur some management cost for both push and pop operations. 270 The approach used to encode this information can vary in density and be either global or local. 271 \newterm{Density} means the information is either packed in a few cachelines or spread across several cachelines, and \newterm{local information} means each thread uses an independent copy instead of a single global, \ie common, source of information. 272 273 For example, Figure~\ref{fig:emptybit} shows a dense bitmask to identify which inner queues are currently in use. 274 This approach means processors can often find user threads in constant time, regardless of how many underlying queues are empty. 275 Furthermore, modern x86 CPUs have extended bit manipulation instructions (BMI2) that allow using the bitmask with very little overhead compared to the randomized selection approach for a filled ready queue, offering good performance even in cases with many empty inner queues. 276 However, this technique has its limits: with a single word\footnote{Word refers here to however many bits can be written atomically.} bitmask, the total number of underlying queues in the ready queue is limited to the number of bits in the word. 277 With a multi-word bitmask, this maximum limit can be increased arbitrarily, but it is not possible to check if the queue is empty by reading the bitmask atomically. 278 279 Finally, a dense bitmap, either single or multi-word, causes additional problems in case C (Table 1), because many processors are continuously scanning the bitmask to find the few available threads. 280 This increased contention on the bitmask(s) reduces performance because of cache misses after updates and the bitmask is updated more frequently by the scanning processors racing to read and/or update that information. 281 This increased update frequency means the information in the bitmask is more often stale before a processor can use it to find an item, \ie mask read says there are available user threads but none on queue. 282 283 \begin{figure} 284 \begin{center} 285 {\resizebox{0.8\textwidth}{!}{\input{emptybit}}} 286 \end{center} 287 \caption{``More empty'' queue with added bitmask to indicate which array cells have items.} 288 \label{fig:emptybit} 289 \end{figure} 290 291 Figure~\ref{fig:emptytree} shows another approach using a hierarchical tree data-structure to reduce contention and has been shown to work in similar cases~\cite{ellen2007snzi}\footnote{This particular paper seems to be patented in the US. 292 How does that affect \CFA? Can I use it in my work?}. 293 However, this approach may lead to poorer performance in case~B (Table~\ref{tab:perfcases}) due to the inherent pointer chasing cost and already low contention cost in that case. 294 295 \begin{figure} 296 \begin{center} 297 {\resizebox{0.8\textwidth}{!}{\input{emptytree}}} 298 \end{center} 299 \caption{``More empty'' queue with added binary search tree indicate which array cells have items.} 300 \label{fig:emptytree} 301 \end{figure} 302 303 Finally, a third approach is to use dense information, similar to the bitmap, but have each thread keep its own independent copy of it. 304 While this approach can offer good scalability \emph{and} low latency, the liveliness of the information can become a problem. 305 In the simple cases, local copies of which underlying queues are empty can become stale and end-up not being useful for the pop operation. 306 A more serious problem is that reliable information is necessary for some parts of this algorithm to be correct. 307 As mentioned in this section, processors must know \emph{reliably} whether the list is empty or not to decide if they can return \texttt{NULL} or if they must keep looking during a pop operation. 308 Section~\ref{sec:sleep} discusses another case where reliable information is required for the algorithm to be correct. 309 310 \begin{figure} 311 \begin{center} 312 \input{emptytls} 313 \end{center} 314 \caption{``More empty'' queue with added per processor bitmask to indicate which array cells have items.} 315 \label{fig:emptytls} 316 \end{figure} 317 318 There is a fundamental tradeoff among these approach. 319 Dense global information about empty underlying queues helps zero-contention cases at the cost of high-contention case. 320 Sparse global information helps high-contention cases but increases latency in zero-contention-cases, to read and ``aggregate'' the information\footnote{Hierarchical structures, \eg binary search tree, effectively aggregate information but follow pointer chains, learning information at each node. 321 Similarly, other sparse schemes need to read multiple cachelines to acquire all the information needed.}. 322 Finally, dense local information has both the advantages of low latency in zero-contention cases and scalability in high-contention cases, however the information can become stale making it difficult to use to ensure correctness. 323 The fact that these solutions have these fundamental limits suggest to me a better solution that attempts to combine these properties in an interesting ways. 324 Also, the lock discussed in Section~\ref{sec:resize} allows for solutions that adapt to the number of processors, which could also prove useful. 126 325 127 326 \paragraph{Objectives and Existing Work} 128 How much scalability is actually needed is highly debatable, libfibre\cit is has compared favorably to other schedulers in webserver tests\cit and uses a single atomic counter in its scheduling algorithm similarly to the proposed bitmask. As such the single atomic instruction on a shared cacheline may be sufficiently performant. 129 130 I have built a prototype of this ready-queue (including the bitmask and BMI2 usage, but not the sharded bitmask) and ran performance experiments on it but it is difficult to compare this prototype to a thread scheduler as the prototype is used as a data-queue. I have also integrated this prototype into the \CFA runtime, but have not yet created performance experiments to compare results. I believe that the bitmask approach is currently one of the larger risks of the proposal, early tests lead me to believe it may work but it is not clear that the contention problem can be overcome. The worst-case scenario is a case where the number of processors and the number of ready threads are similar, yet scheduling events are very frequent. Fewer threads should lead to the Idle Sleep mechanism reducing contention while having many threads ready leads to optimal performance. It is difficult to evaluate the likeliness of this worst-case scenario in real workloads. I believe, frequent scheduling events suggest a more ``bursty'' workload where new work is finely divided among many threads which race to completion. This type of workload would only see a peek of contention close to the end of the work, but no sustained contention. Very fine-grained pipelines are less ``bursty'', these may lead to more sustained contention. However, they could also easily benefit from a direct hand-off strategy which would circumvent the problem entirely. 131 132 \subsection{Dynamic Resizing} 133 The \CFA runtime system currently handles dynamically adding and removing processors from clusters at any time. Since this is part of the existing design, the proposed scheduler must also support this behaviour. However, dynamicly resizing the clusters is considered a rare event associated with setup, teardown and major configuration changes. This assumptions is made both in the design of the proposed scheduler as well as in the original design of the \CFA runtime system. As such, the proposed scheduler must honor the correctness of these behaviour but does not have any performance objectives with regards to resizing a cluster. How long adding or removing processors take and how much this disrupts the performance of other threads is considered a secondary concern since it should be amortized over long period of times. This description effectively matches with te description of a Reader-Writer lock, in frequent but invasive updates among frequent (mostly) read operations. In the case of the Ready-Queue described above, read operations are operations that push or pop from the ready-queue but do not invalidate any references to the ready queue data structures. Writes on the other-hand would add or remove inner queues, invalidating references to the array of inner queues in the process. Therefore, the current proposed approach to this problem is the add a per-cluster Reader Writer lock around the ready queue to prevent restructuring of the ready-queue data structure while threads are being pushed or popped. 134 135 There are possible alternatives to the Reader Writer lock solution. This problem is effectively a memory reclamation problem and as such there is a large body of research on the subject. However, the RWlock solution is simple and can be leveraged to solve other problems (e.g. processor ordering and memory reclamation of threads) which makes it an attractive solution. 327 328 How much scalability is actually needed is highly debatable. 329 \emph{libfibre}\cite{libfibre} has compared favorably to other schedulers in webserver tests\cite{karstenuser} and uses a single atomic counter in its scheduling algorithm similarly to the proposed bitmask. 330 As such, the single atomic instruction on a shared cacheline may be sufficiently performant. 331 332 I have built a prototype of this ready queue in the shape of a data queue, \ie nodes on the queue are structures with a single int representing a thread and intrusive data fields. 333 Using this prototype I ran preliminary performance experiments that confirm the expected performance in Table~\ref{tab:perfcases}. 334 However, these experiments only offer a hint at the actual performance of the scheduler since threads form more complex operations than simple integer nodes, \eg threads are not independent of each other, when a thread blocks some other thread must intervene to wake it. 335 336 I have also integrated this prototype into the \CFA runtime, but have not yet created performance experiments to compare results, as creating one-to-one comparisons between the prototype and the \CFA runtime will be complex. 337 338 \subsection{Dynamic Resizing} \label{sec:resize} 339 340 \begin{figure} 341 \begin{center} 342 \input{system} 343 \end{center} 344 \caption{Global structure of the \CFA runtime system.} 345 \label{fig:system} 346 \end{figure} 347 348 The \CFA runtime system groups processors together as \newterm{clusters}, as shown in Figure~\ref{fig:system}. 349 Threads on a cluster are always scheduled on one of the processors of the cluster. 350 Currently, the runtime handles dynamically adding and removing processors from clusters at any time. 351 Since this is part of the existing design, the proposed scheduler must also support this behaviour. 352 However, dynamically resizing a cluster is considered a rare event associated with setup, tear down and major configuration changes. 353 This assumption is made both in the design of the proposed scheduler as well as in the original design of the \CFA runtime system. 354 As such, the proposed scheduler must honour the correctness of this behaviour but does not have any performance objectives with regard to resizing a cluster. 355 How long adding or removing processors take and how much this disrupts the performance of other threads is considered a secondary concern since it should be amortized over long period of times. 356 However, as mentioned in Section~\ref{sec:queue}, contention on the underlying queues can have a direct impact on performance. 357 The number of underlying queues must therefore be adjusted as the number of processors grows or shrinks. 358 Since the underlying queues are stored in a dense array, changing the number of queues requires resizing the array and expanding the array requires moving it, which can introduce memory reclamation problems if not done correctly. 359 360 \begin{figure} 361 \begin{center} 362 \input{resize} 363 \end{center} 364 \caption{Copy of data structure shown in Figure~\ref{fig:base}.} 365 \label{fig:base2} 366 \end{figure} 367 368 It is important to note how the array is used in this case. 369 While the array cells are modified by every push and pop operation, the array itself, \ie the pointer that would change when resized, is only read during these operations. 370 Therefore the use of this pointer can be described as frequent reads and infrequent writes. 371 This description effectively matches with the description of a reader-writer lock, infrequent but invasive updates among frequent read operations. 372 In the case of the ready queue described above, read operations are operations that push or pop from the ready queue but do not invalidate any references to the ready queue data structures. 373 Writes on the other hand would add or remove inner queues, invalidating references to the array of inner queues in a process. 374 Therefore, the current proposed approach to this problem is to add a per-cluster reader-writer lock around the ready queue to prevent restructuring of the ready-queue data-structure while threads are being pushed or popped. 375 376 There are possible alternatives to the reader-writer lock solution. 377 This problem is effectively a memory reclamation problem and as such there is a large body of research on the subject\cite{michael2004hazard, brown2015reclaiming}. 378 However, the reader-write lock-solution is simple and can be leveraged to solve other problems (\eg processor ordering and memory reclamation of threads), which makes it an attractive solution. 136 379 137 380 \paragraph{Objectives and Existing Work} 138 The lock must offer scalability and performance on par with the actual ready-queue in order not to introduce a new bottle neck. I have already built a lock that fits the desired requirements and preliminary testing show scalability and performance that exceed the target. As such, I do not consider this lock to be a risk on this project. 139 140 \subsection{Idle Sleep} \label{sleep} 141 As mentionned above, idle sleep is the process of putting processors to sleep while they do not have threads to execute. In this context processors are kernel-threads and sleeping refers to asking the kernel to block a thread. This can be achieved with either thread synchronization operations like pthread\_cond\_wait or using signal operations like sigsuspend. 142 143 Support for idle sleep broadly involves calling the operating system to block the kernel thread but also handling the race between the sleeping and the waking up, and handling which kernel thread should sleep or wake-up. 144 145 When a processor decides to sleep, there is a race that occurs between it signalling that it will go to sleep (so other processors can find sleeping processors) and actually blocking the kernel thread. This is equivalent to the classic problem of missing signals when using condition variables, the ``sleepy'' processor indicates that it will sleep but has not yet gone to sleep, if another processor attempts to wake it up, the waking-up operation may claim nothing needs to be done and the signal will have been missed. In cases where threads are scheduled from processors on the current cluster, loosing signals is not necessarily critical, because at least some processors on the cluster are awake. Individual processors always finish shceduling threads before looking for new work, which means that the last processor to go to sleep cannot miss threads scheduled from inside the cluster (if they do, that demonstrates the ready-queue is not linearizable). However, this guarantee does not hold if threads are shceduled from outside the cluster, either due to an external event like timers and I/O, or due to a thread migrating from a different cluster. In this case, missed signals can lead to the cluster deadlocking where it should not\footnote{Clusters ``should'' never deadlock, but for this proposal, cases where \CFA users \emph{actually} wrote \CFA code that leads to a deadlock it is considered as a deadlock that ``should'' happen. }. Therefore, it is important that the scheduling of threads include a mechanism where signals \emph{cannot} be missed. For performance reasons, it can be advantageous to have a secondary mechanism that allows signals to be missed in cases where it cannot lead to a deadlock. To be safe, this process must include a ``handshake'' where it is guaranteed that either~: the sleepy processor notices that a thread was scheduled after it signalled its intent to block or code scheduling threads well see the intent to sleep before scheduling and be able to wake-up the processor. This matter is complicated by the fact that pthread offers few tools to implement this solution and offers no guarantee of ordering of threads waking up for most of these tools. 146 147 Another issues is trying to avoid kernel sleeping and waking frequently. A possible partial solution is to order the processors so that the one which most recently went to sleep is woken up. This allows other sleeping processors to reach deeper sleep state (when these are available) while keeping ``hot'' processors warmer. Note that while this generally means organising the processors in a stack, I believe that the unique index provided by the ReaderWriter lock can be reused to strictly order the waking order of processors, causing a LIFO like waking order. While a strict LIFO stack is probably better, using the processor index could proove useful and offer a sufficiently LIFO ordering. 148 149 Finally, another important aspect of Idle Sleep is when should processors make the decision to sleep and when it is appropriate for sleeping processors to be woken up. Processors that are unnecessarily awake lead to unnecessary contention and power consumption, while too many sleeping processors can lead to sub-optimal throughput. Furthermore, transitions from sleeping to awake and vice-versa also add unnecessary latency. There is already a wealth of research on the subject and I do not plan to implement a novel idea for the Idle Sleep heuristic in this project. 381 The lock must offer scalability and performance on par with the actual ready-queue in order not to introduce a new bottleneck. 382 I have already built a lock that fits the desired requirements and preliminary testing show scalability and performance that exceed the target. 383 As such, I do not consider this lock to be a risk for this project. 384 385 \subsection{Idle Sleep} \label{sec:sleep} 386 387 \newterm{Idle sleep} is the process of putting processors to sleep when they have no threads to execute. 388 In this context, processors are kernel threads and sleeping refers to asking the kernel to block a thread. 389 This operation can be achieved with either thread synchronization operations like $pthread_cond_wait$ or using signal operations like $sigsuspend$. 390 The goal of putting idle processors to sleep is: 391 \begin{enumerate} 392 \item 393 reduce contention on the ready queue, since the otherwise idle processors generally contend trying to pop items from the queue, 394 \item 395 give back unneeded CPU time associated with a process to other user processors executing on the computer, 396 \item 397 and reduce energy consumption in cases where more idle kernel-threads translate to idle CPUs, which can cycle down. 398 \end{enumerate} 399 Support for idle sleep broadly involves calling the operating system to block the kernel thread and handling the race between a blocking thread and the waking thread, and handling which kernel thread should sleep or wake up. 400 401 When a processor decides to sleep, there is a race that occurs between it signalling that is going to sleep (so other processors can find sleeping processors) and actually blocking the kernel thread. 402 This operation is equivalent to the classic problem of missing signals when using condition variables: the ``sleepy'' processor indicates its intention to block but has not yet gone to sleep when another processor attempts to wake it up. 403 The waking-up operation sees the blocked process and signals it, but the blocking process is racing to sleep so the signal is missed. 404 In cases where kernel threads are managed as processors on the current cluster, loosing signals is not necessarily critical, because at least some processors on the cluster are awake and may check for more processors eventually. 405 Individual processors always finish scheduling user threads before looking for new work, which means that the last processor to go to sleep cannot miss threads scheduled from inside the cluster (if they do, that demonstrates the ready queue is not linearizable). 406 However, this guarantee does not hold if threads are scheduled from outside the cluster, either due to an external event like timers and I/O, or due to a user (or kernel) thread migrating from a different cluster. 407 In this case, missed signals can lead to the cluster deadlocking\footnote{Clusters should only deadlock in cases where a \CFA programmer \emph{actually} write \CFA code that leads to a deadlock.}. 408 Therefore, it is important that the scheduling of threads include a mechanism where signals \emph{cannot} be missed. 409 For performance reasons, it can be advantageous to have a secondary mechanism that allows signals to be missed in cases where it cannot lead to a deadlock. 410 To be safe, this process must include a ``handshake'' where it is guaranteed that either~: the sleeping processor notices that a user thread is scheduled after the sleeping processor signalled its intent to block or code scheduling threads sees the intent to sleep before scheduling and be able to wake-up the processor. 411 This matter is complicated by the fact that pthreads and Linux offer few tools to implement this solution and no guarantee of ordering of threads waking up for most of these tools. 412 413 Another important issue is avoiding kernel threads sleeping and waking frequently because there is a significant operating-system cost. 414 This scenario happens when a program oscillates between high and low activity, needing most and then less processors. 415 A possible partial solution is to order the processors so that the one which most recently went to sleep is woken up. 416 This allows other sleeping processors to reach deeper sleep state (when these are available) while keeping ``hot'' processors warmer. 417 Note that while this generally means organizing the processors in a stack, I believe that the unique index provided in my reader-writer lock can be reused to strictly order the waking processors, causing a mostly LIFO order. 418 While a strict LIFO stack is probably better, the processor index could prove useful for other reasons, while still offering a sufficiently LIFO ordering. 419 420 A final important aspect of idle sleep is when should processors make the decision to sleep and when is it appropriate for sleeping processors to be woken up. 421 Processors that are unnecessarily unblocked lead to unnecessary contention, CPU usage, and power consumption, while too many sleeping processors can lead to sub-optimal throughput. 422 Furthermore, transitions from sleeping to awake and vice-versa also add unnecessary latency. 423 There is already a wealth of research on the subject\cite{schillings1996engineering, wiki:thunderherd} and I may use an existing approach for the idle-sleep heuristic in this project, \eg\cite{karstenuser}. 150 424 151 425 \subsection{Asynchronous I/O} 152 The final aspect of this proposal is asynchronous I/O. Without it, user threads that execute I/O operations will block the underlying kernel thread. This leads to poor throughput, it would be preferrable to block the user-thread and reuse the underlying kernel-thread to run other ready threads. This requires intercepting the user-threads' calls to I/O operations, redirecting them to an asynchronous I/O interface and handling the multiplexing between the synchronous and asynchronous API. As such, these are the three components needed to implemented to support asynchronous I/O : an OS abstraction layer over the asynchronous interface, an event-engine to (de)multiplex the operations and a synchronous interface for users to use. None of these components currently exist in \CFA and I will need to build all three for this project. 426 427 The final aspect of this proposal is asynchronous I/O. 428 Without it, user threads that execute I/O operations block the underlying kernel thread, which leads to poor throughput. 429 It is preferable to block the user thread performing the I/O and reuse the underlying kernel-thread to run other ready user threads. 430 This approach requires intercepting user-thread calls to I/O operations, redirecting them to an asynchronous I/O interface, and handling the multiplexing/demultiplexing between the synchronous and asynchronous API. 431 As such, there are three components needed to implemented support for asynchronous I/O: 432 \begin{enumerate} 433 \item 434 an OS abstraction layer over the asynchronous interface, 435 \item 436 an event-engine to (de)multiplex the operations, 437 \item 438 and a synchronous interface for users to use. 439 \end{enumerate} 440 None of these components currently exist in \CFA and I will need to build all three for this project. 153 441 154 442 \paragraph{OS Abstraction} 155 One of the fundamental part of this converting blocking I/O operations into non-blocking ones. This relies on having an underlying asynchronous I/O interface to which to direct the I/O operations. While there exists many different APIs for asynchronous I/O, it is not part of this proposal to create a novel API, simply to use an existing one that is sufficient. uC++ uses the \texttt{select} as its interface, which handles pipes and sockets. It entails significant complexity and has performances problems which make it a less interesting alternative. Another interface which is becoming popular recently\cit is \texttt{epoll}. However, epoll also does not handle file system and seems to have problem to linux pipes and \texttt{TTY}s\cit. A very recent alternative that must still be investigated is \texttt{io\_uring}. It claims to address some of the issues with \texttt{epoll} but is too recent to be confident that it does. Finally, a popular cross-platform alternative is \texttt{libuv}, which offers asynchronous sockets and asynchronous file system operations (among other features). However, as a full-featured library it includes much more than what is needed and could conflict with other features of \CFA unless significant efforts are made to merge them together. 156 157 \paragraph{Event-Engine} 158 Laying on top of the asynchronous interface layer is the event-engine. This engine is responsible for multiplexing (batching) the synchronous I/O requests into an asynchronous I/O request and demultiplexing the results onto appropriate blocked threads. This can be straightforward for the simple cases, but can become quite complex. Decisions that will need to be made include : whether to poll from a seperate kernel thread or a regularly scheduled user thread, what should be the ordering used when results satisfy many requests, how to handle threads waiting for multiple operations, etc. 443 One fundamental part for converting blocking I/O operations into non-blocking ones is having an underlying asynchronous I/O interface to direct the I/O operations. 444 While there exists many different APIs for asynchronous I/O, it is not part of this proposal to create a novel API. 445 It is sufficient to make one work in the complex context of the \CFA runtime. 446 \uC uses the $select$\cite{select} as its interface, which handles ttys, pipes and sockets, but not disk. 447 $select$ entails significant complexity and is being replaced in UNIX operating-systems, which make it a less interesting alternative. 448 Another popular interface is $epoll$\cite{epoll}, which is supposed to be cheaper than $select$. 449 However, $epoll$ also does not handle the file system and anectodal evidence suggest it has problem with linux pipes and $TTY$s. 450 A popular cross-platform alternative is $libuv$\cite{libuv}, which offers asynchronous sockets and asynchronous file system operations (among other features). 451 However, as a full-featured library it includes much more than I need and could conflict with other features of \CFA unless significant effort is made to merge them together. 452 A very recent alternative that I am investigating is $io_uring$\cite{io_uring}. 453 It claims to address some of the issues with $epoll$ and my early investigating suggest that the claim is accurate. 454 $io_uring$ uses a much more general approach where system calls are register to a queue and later executed by the kernel, rather than relying on system calls to return an error instead of blocking and subsequently waiting for changes on file descriptors. 455 I believe this approach allows for fewer problems, \eg the manpage for $open$\cite{open} states: 456 \begin{quote} 457 Note that [the $O_NONBLOCK$ flag] has no effect for regular files and block devices; 458 that is, I/O operations will (briefly) block when device activity is required, regardless of whether $O_NONBLOCK$ is set. 459 Since $O_NONBLOCK$ semantics might eventually be implemented, applications should not depend upon blocking behavior when specifying this flag for regular files and block devices. 460 \end{quote} 461 This makes approach based on $epoll$/$select$ less reliable since they may not work for every file descriptors. 462 For this reason, I plan to use $io_uring$ as the OS abstraction for the \CFA runtime, unless further work shows problems I haven't encountered yet. 463 However, only a small subset of the features are available in Ubuntu as of April 2020\cite{wiki:ubuntu-linux}, which will limit performance comparisons. 464 I do not believe this will affect the comparison result. 465 466 \paragraph{Event Engine} 467 Laying on top of the asynchronous interface layer is the event engine. 468 This engine is responsible for multiplexing (batching) the synchronous I/O requests into asynchronous I/O requests and demultiplexing the results to appropriate blocked user threads. 469 This step can be straightforward for simple cases, but becomes quite complex when there are thousands of user threads performing both reads and writes, possibly on overlapping file descriptors. 470 Decisions that need to be made include: 471 \begin{enumerate} 472 \item 473 whether to poll from a separate kernel thread or a regularly scheduled user thread, 474 \item 475 what should be the ordering used when results satisfy many requests, 476 \item 477 how to handle threads waiting for multiple operations, etc. 478 \end{enumerate} 159 479 160 480 \paragraph{Interface} 161 Finally, for these components to be available, it is necessary to expose them through a synchronous interface. This can be a novel interface but it is preferrable to attempt to intercept the existing POSIX interface in order to be compatible with existing code. This will allow C programs written using this interface to be transparently converted to \CFA with minimal effeort. Where this is not applicable, a novel interface will be created to fill the gaps. 481 Finally, for these non-blocking I/O components to be available, it is necessary to expose them through a synchronous interface because that is the \CFA concurrent programming style. 482 The interface can be novel but it is preferable to match the existing POSIX interface when possible to be compatible with existing code. 483 Matching allows C programs written using this interface to be transparently converted to \CFA with minimal effort. 484 Where new functionality is needed, I will create a novel interface to fill gaps and provide advanced features. 162 485 163 486 … … 165 488 % =============================================================================== 166 489 \section{Discussion} 167 490 I believe that runtime system and scheduling are still open topics. 491 Many ``state of the art'' production frameworks still use single threaded event-loops because of performance considerations, \eg \cite{nginx-design}, and, to my knowledge, no wideyl available system language offers modern threading facilities. 492 I believe the proposed work offers a novel runtime and scheduling package, where existing work only offers fragments that users must assemble themselves when possible. 168 493 169 494 % =============================================================================== 170 495 % =============================================================================== 171 496 \section{Timeline} 172 173 174 \cleardoublepage 497 \begin{center} 498 \begin{tabular}{ | r @{--} l | p{4in} | } 499 \hline May 2020 & October 2020 & Creation of the performance benchmark. \\ 500 \hline November 2020 & March 2021 & Completion of the implementation. \\ 501 \hline March 2021 & April 2021 & Final Performance experiments. \\ 502 \hline May 2021 & August 2021 & Thesis writing and defense. \\ 503 \hline 504 \end{tabular} 505 \end{center} 175 506 176 507 % B I B L I O G R A P H Y 177 508 % ----------------------------- 178 \addcontentsline{toc}{chapter}{Bibliography} 509 \cleardoublepage 510 \phantomsection % allows hyperref to link to the correct page 511 \addcontentsline{toc}{section}{\refname} 179 512 \bibliographystyle{plain} 180 513 \bibliography{pl,local} 514 515 % G L O S S A R Y 516 % ----------------------------- 181 517 \cleardoublepage 182 518 \phantomsection % allows hyperref to link to the correct page 183 184 % G L O S S A R Y 185 % ----------------------------- 186 \addcontentsline{toc}{chapter}{Glossary} 519 \addcontentsline{toc}{section}{Glossary} 187 520 \printglossary 188 \cleardoublepage189 \phantomsection % allows hyperref to link to the correct page190 521 191 522 \end{document} -
doc/theses/thierry_delisle_PhD/comp_II/local.bib
rb7d6a36 r6a490b2 76 76 77 77 @article{finkel1987dib, 78 title={DIB āa distributed implementation of backtracking},78 title={DIB-a distributed implementation of backtracking}, 79 79 author={Finkel, Raphael and Manber, Udi}, 80 80 journal={ACM Transactions on Programming Languages and Systems (TOPLAS)}, … … 221 221 organization={ACM} 222 222 } 223 224 % =============================================================================== 225 % Algorithms 226 % =============================================================================== 227 @article{michael2004hazard, 228 title={Hazard pointers: Safe memory reclamation for lock-free objects}, 229 author={Michael, Maged M}, 230 journal={IEEE Transactions on Parallel and Distributed Systems}, 231 volume={15}, 232 number={6}, 233 pages={491--504}, 234 year={2004}, 235 publisher={IEEE} 236 } 237 238 @inproceedings{brown2015reclaiming, 239 title={Reclaiming memory for lock-free data structures: There has to be a better way}, 240 author={Brown, Trevor Alexander}, 241 booktitle={Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing}, 242 pages={261--270}, 243 year={2015} 244 } 245 246 % Trevor's relaxed FIFO list 247 @inproceedings{alistarh2018relaxed, 248 title={Relaxed schedulers can efficiently parallelize iterative algorithms}, 249 author={Alistarh, Dan and Brown, Trevor and Kopinsky, Justin and Nadiradze, Giorgi}, 250 booktitle={Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing}, 251 pages={377--386}, 252 year={2018} 253 } 254 255 % Scalable counters which only support is !0 256 @inproceedings{ellen2007snzi, 257 title={SNZI: Scalable nonzero indicators}, 258 author={Ellen, Faith and Lev, Yossi and Luchangco, Victor and Moir, Mark}, 259 booktitle={Proceedings of the twenty-sixth annual ACM symposium on Principles of distributed computing}, 260 pages={13--22}, 261 year={2007} 262 } 263 264 % =============================================================================== 265 % Linux Man Pages 266 % =============================================================================== 267 @manual{open, 268 key = "open", 269 title = "open(2) Linux User's Manual", 270 year = "2020", 271 month = "February", 272 } 273 274 @manual{epoll, 275 key = "epoll", 276 title = "epoll(7) Linux User's Manual", 277 year = "2019", 278 month = "March", 279 } 280 281 @manual{select, 282 key = "select", 283 title = "select(7) Linux User's Manual", 284 year = "2019", 285 month = "March", 286 } 287 288 @misc{io_uring, 289 title = {Efficient IO with io\_uring}, 290 author = {Axboe, Jens}, 291 year = "2019", 292 month = "March", 293 version = {0,4}, 294 howpublished = {\url{https://kernel.dk/io_uring.pdf}} 295 } 296 297 @misc{libuv, 298 key = "libuv", 299 title = {libuv}, 300 howpublished = {\url{https://github.com/libuv/libuv}} 301 } 302 303 % =============================================================================== 304 % MISC 305 % =============================================================================== 306 307 @misc{nginx-design, 308 key = "nginx", 309 title={Inside {NGINX}: How We Designed for Performance \& Scale}, 310 howpublished= {\href{https://www.nginx.com/blog/inside-nginx-how-we-designed-for-performance-scale} 311 {https://\-www.nginx.com/\-blog/\-inside\--nginx\--how\--we\--designed\--for\--performance\--scale}}, 312 } 313 314 @article{schillings1996engineering, 315 title={Be engineering insights: Benaphores}, 316 author={Schillings, Benoit}, 317 journal={Be Newsletters}, 318 volume={1}, 319 number={26}, 320 year={1996} 321 } 322 323 @misc{wiki:thunderherd, 324 author = "{Wikipedia contributors}", 325 title = "Thundering herd problem --- {W}ikipedia{,} The Free Encyclopedia", 326 year = "2020", 327 howpublished = {\href{https://en.wikipedia.org/wiki/Thundering_herd_problem} 328 {https://\-en.wikipedia.org/\-wiki/\-Thundering\_herd\_problem}},}, 329 note = "[Online; accessed 14-April-2020]" 330 } 331 332 @misc{wiki:ubuntu-linux, 333 author = "{Wikipedia contributors}", 334 title = "Ubuntu version history : Table of versions --- {W}ikipedia{,} The Free Encyclopedia", 335 year = "2020", 336 howpublished = {\href{https://en.wikipedia.org/wiki/Ubuntu_version_history\#Table_of_versions} 337 {https://\-en.wikipedia.org/\-wiki/\-Ubuntu\_version\_history\#Table\_of\_versions}}, 338 note = "[Online; accessed 15-April-2020]" 339 } -
doc/user/user.tex
rb7d6a36 r6a490b2 11 11 %% Created On : Wed Apr 6 14:53:29 2016 12 12 %% Last Modified By : Peter A. Buhr 13 %% Last Modified On : Sat Jul 13 18:36:18 201914 %% Update Count : 3 87613 %% Last Modified On : Fri Mar 6 13:34:52 2020 14 %% Update Count : 3924 15 15 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 16 16 … … 211 211 Even with all its problems, C continues to be popular because it allows writing software at virtually any level in a computer system without restriction. 212 212 For system programming, where direct access to hardware, storage management, and real-time issues are a requirement, C is usually the only language of choice. 213 The TIOBE index~\cite{TIOBE} for July 2018 ranks the top five most \emph{popular} programming languages as \Index*{Java} 16\%, C 14\%, \Index*[C++]{\CC{}} 7.5\%, Python 6\%, Visual Basic 4\% = 47.5\%, where the next 50 languages are less than 4\% each, with a long tail.214 The top 3 rankings over the past 30years are:213 The TIOBE index~\cite{TIOBE} for February 2020 ranks the top six most \emph{popular} programming languages as \Index*{Java} 17.4\%, C 16.8\%, Python 9.3\%, \Index*[C++]{\CC{}} 6.2\%, \Csharp 5.9\%, Visual Basic 5.9\% = 61.5\%, where the next 50 languages are less than 2\% each, with a long tail. 214 The top 4 rankings over the past 35 years are: 215 215 \begin{center} 216 216 \setlength{\tabcolsep}{10pt} 217 \begin{tabular}{@{}rccccccc@{}} 218 & 2018 & 2013 & 2008 & 2003 & 1998 & 1993 & 1988 \\ \hline 219 Java & 1 & 2 & 1 & 1 & 16 & - & - \\ 220 \R{C} & \R{2} & \R{1} & \R{2} & \R{2} & \R{1} & \R{1} & \R{1} \\ 221 \CC & 3 & 4 & 3 & 3 & 2 & 2 & 5 \\ 217 \begin{tabular}{@{}rcccccccc@{}} 218 & 2020 & 2015 & 2010 & 2005 & 2000 & 1995 & 1990 & 1985 \\ \hline 219 Java & 1 & 2 & 1 & 2 & 3 & - & - & - \\ 220 \R{C} & \R{2} & \R{1} & \R{2} & \R{1} & \R{1} & \R{2} & \R{1} & \R{1} \\ 221 Python & 3 & 7 & 6 & 6 & 22 & 21 & - & - \\ 222 \CC & 4 & 4 & 4 & 3 & 2 & 1 & 2 & 12 \\ 222 223 \end{tabular} 223 224 \end{center} … … 512 513 Keyword clashes are accommodated by syntactic transformations using the \CFA backquote escape-mechanism: 513 514 \begin{cfa} 514 int Ā®` Ā®otypeĀ®`Ā®= 3; §\C{// make keyword an identifier}§515 double Ā®` Ā®forallĀ®`Ā®= 3.5;515 int Ā®``Ā®otype = 3; §\C{// make keyword an identifier}§ 516 double Ā®``Ā®forall = 3.5; 516 517 \end{cfa} 517 518 … … 524 525 // include file uses the CFA keyword "with". 525 526 #if ! defined( with ) §\C{// nesting ?}§ 526 #define with Ā®` Ā®withĀ®`®§\C{// make keyword an identifier}§527 #define with Ā®``Ā®with §\C{// make keyword an identifier}§ 527 528 #define __CFA_BFD_H__ 528 529 #endif 529 530 Ā®#include_next <bfdlink.h> §\C{// must have internal check for multiple expansion}§ 531 Ā® 530 §{\color{red}\#\textbf{include\_next} <bfdlink.h>}§ §\C{// must have internal check for multiple expansion}§ 532 531 #if defined( with ) && defined( __CFA_BFD_H__ ) §\C{// reset only if set}§ 533 532 #undef with … … 576 575 \section{Exponentiation Operator} 577 576 578 C, \CC, and Java (and many other programming languages) have no exponentiation operator\index{exponentiation!operator}\index{operator!exponentiation}, \ie $x^y$, and instead use a routine, like \Indexc{pow }, to perform the exponentiation operation.579 \CFA extends the basic operators with the exponentiation operator Ā©? \?Ā©\index{?\\?@Ā©?\?Ā©} and Ā©?\=?Ā©\index{?\\=?@Ā©\=?Ā©}, as in, Ā©x \ yĀ© and Ā©x \= yĀ©, which means $x^y$ and $x \leftarrow x^y$.577 C, \CC, and Java (and many other programming languages) have no exponentiation operator\index{exponentiation!operator}\index{operator!exponentiation}, \ie $x^y$, and instead use a routine, like \Indexc{pow(x,y)}, to perform the exponentiation operation. 578 \CFA extends the basic operators with the exponentiation operator Ā©?Ā®\Ā®?Ā©\index{?\\?@Ā©?Ā®\Ā®?Ā©} and Ā©?\=?Ā©\index{?\\=?@©®\Ā®=?Ā©}, as in, Ā©x Ā®\Ā® yĀ© and Ā©x Ā®\Ā®= yĀ©, which means $x^y$ and $x \leftarrow x^y$. 580 579 The priority of the exponentiation operator is between the cast and multiplicative operators, so that Ā©w * (int)x \ (int)y * zĀ© is parenthesized as Ā©((w * (((int)x) \ ((int)y))) * z)Ā©. 581 580 582 As for \Index{division}, there are exponentiation operators for integral and floating types, including the builtin \Index{complex} types.581 There are exponentiation operators for integral and floating types, including the builtin \Index{complex} types. 583 582 Integral exponentiation\index{exponentiation!unsigned integral} is performed with repeated multiplication\footnote{The multiplication computation is $O(\log y)$.} (or shifting if the exponent is 2). 584 Overflow f rom large exponents or negative exponents returnzero.583 Overflow for a large exponent or negative exponent returns zero. 585 584 Floating exponentiation\index{exponentiation!floating} is performed using \Index{logarithm}s\index{exponentiation!logarithm}, so the exponent cannot be negative. 586 585 \begin{cfa} … … 589 588 1 1 256 -64 125 Ā®0Ā® 3273344365508751233 Ā®0Ā® Ā®0Ā® -0.015625 18.3791736799526 0.264715-1.1922i 590 589 \end{cfa} 591 Note, Ā©5 Ā®\Ā® 32Ā© and Ā©5L Ā®\Ā® 64Ā© overflow, and Ā©-4 Ā®\Ā®-3Ā© is a fraction but stored in an integer so all three computations generate an integral zero.590 Note, Ā©5 \ 32Ā© and Ā©5L \ 64Ā© overflow, and Ā©-4 \ -3Ā© is a fraction but stored in an integer so all three computations generate an integral zero. 592 591 Parenthesis are necessary for complex constants or the expression is parsed as Ā©1.0f+Ā®(Ā®2.0fi \ 3.0fĀ®)Ā®+2.0fiĀ©. 593 592 The exponentiation operator is available for all the basic types, but for user-defined types, only the integral-computation version is available. … … 598 597 OT ?Ā®\Ā®?( OT ep, unsigned long int y ); 599 598 \end{cfa} 600 The user type Ā©TĀ© must define multiplication, one , Ā©1Ā©, and,Ā©*Ā©.599 The user type Ā©TĀ© must define multiplication, one (Ā©1Ā©), and Ā©*Ā©. 601 600 602 601 … … 626 625 627 626 628 \subsection{Loop Control} 629 630 The Ā©forĀ©/Ā©whileĀ©/Ā©do-whileĀ© loop-control allows empty or simplified ranges (see Figure~\ref{f:LoopControlExamples}). 631 \begin{itemize} 632 \item 633 An empty conditional implies Ā©1Ā©. 634 \item 635 The up-to range Ā©~Ā©\index{~@Ā©~Ā©} means exclusive range [M,N). 636 \item 637 The up-to range Ā©~=Ā©\index{~=@Ā©~=Ā©} means inclusive range [M,N]. 638 \item 639 The down-to range Ā©-~Ā©\index{-~@Ā©-~Ā©} means exclusive range [N,M). 640 \item 641 The down-to range Ā©-~=Ā©\index{-~=@Ā©-~=Ā©} means inclusive range [N,M]. 642 \item 643 Ā©@Ā© means put nothing in this field. 644 \item 645 Ā©0Ā© is the implicit start value; 646 \item 647 Ā©1Ā© is the implicit increment value. 648 \item 649 The up-to range uses Ā©+=Ā© for increment; 650 \item 651 The down-to range uses Ā©-=Ā© for decrement. 652 \item 653 The loop index is polymorphic in the type of the start value or comparison value when start is implicitly Ā©0Ā©. 654 \end{itemize} 655 656 \begin{figure} 627 %\section{\texorpdfstring{\protect\lstinline@case@ Clause}{case Clause}} 628 \subsection{\texorpdfstring{\LstKeywordStyle{case} Clause}{case Clause}} 629 630 C restricts the Ā©caseĀ© clause of a Ā©switchĀ© statement to a single value. 631 For multiple Ā©caseĀ© clauses associated with the same statement, it is necessary to have multiple Ā©caseĀ© clauses rather than multiple values. 632 Requiring a Ā©caseĀ© clause for each value does not seem to be in the spirit of brevity normally associated with C. 633 Therefore, the Ā©caseĀ© clause is extended with a list of values, as in: 657 634 \begin{cquote} 658 \begin{tabular}{@{}l|l@{}} 659 \multicolumn{1}{c|}{loop control} & \multicolumn{1}{c}{output} \\ 660 \hline 661 \begin{cfa} 662 sout | nlOff; 663 while Ā®()Ā® { sout | "empty"; break; } sout | nl; 664 do { sout | "empty"; break; } while Ā®()Ā®; sout | nl; 665 for Ā®()Ā® { sout | "empty"; break; } sout | nl; 666 for ( Ā®0Ā® ) { sout | "A"; } sout | "zero" | nl; 667 for ( Ā®1Ā® ) { sout | "A"; } sout | nl; 668 for ( Ā®10Ā® ) { sout | "A"; } sout | nl; 669 for ( Ā®1 ~= 10 ~ 2Ā® ) { sout | "B"; } sout | nl; 670 for ( Ā®10 -~= 1 ~ 2Ā® ) { sout | "C"; } sout | nl; 671 for ( Ā®0.5 ~ 5.5Ā® ) { sout | "D"; } sout | nl; 672 for ( Ā®5.5 -~ 0.5Ā® ) { sout | "E"; } sout | nl; 673 for ( Ā®i; 10Ā® ) { sout | i; } sout | nl; 674 for ( Ā®i; 1 ~= 10 ~ 2Ā® ) { sout | i; } sout | nl; 675 for ( Ā®i; 10 -~= 1 ~ 2Ā® ) { sout | i; } sout | nl; 676 for ( Ā®i; 0.5 ~ 5.5Ā® ) { sout | i; } sout | nl; 677 for ( Ā®i; 5.5 -~ 0.5Ā® ) { sout | i; } sout | nl; 678 for ( Ā®ui; 2u ~= 10u ~ 2uĀ® ) { sout | ui; } sout | nl; 679 for ( Ā®ui; 10u -~= 2u ~ 2uĀ® ) { sout | ui; } sout | nl; 680 enum { N = 10 }; 681 for ( Ā®NĀ® ) { sout | "N"; } sout | nl; 682 for ( Ā®i; NĀ® ) { sout | i; } sout | nl; 683 for ( Ā®i; N -~ 0Ā® ) { sout | i; } sout | nl; 684 const int start = 3, comp = 10, inc = 2; 685 for ( Ā®i; start ~ comp ~ inc + 1Ā® ) { sout | i; } sout | nl; 686 for ( Ā®i; 1 ~ @Ā® ) { if ( i > 10 ) break; 687 sout | i; } sout | nl; 688 for ( Ā®i; 10 -~ @Ā® ) { if ( i < 0 ) break; 689 sout | i; } sout | nl; 690 for ( Ā®i; 2 ~ @ ~ 2Ā® ) { if ( i > 10 ) break; 691 sout | i; } sout | nl; 692 for ( Ā®i; 2.1 ~ @ ~ @Ā® ) { if ( i > 10.5 ) break; 693 sout | i; i += 1.7; } sout | nl; 694 for ( Ā®i; 10 -~ @ ~ 2Ā® ) { if ( i < 0 ) break; 695 sout | i; } sout | nl; 696 for ( Ā®i; 12.1 ~ @ ~ @Ā® ) { if ( i < 2.5 ) break; 697 sout | i; i -= 1.7; } sout | nl; 698 for ( Ā®i; 5 : j; -5 ~ @Ā® ) { sout | i | j; } sout | nl; 699 for ( Ā®i; 5 : j; -5 -~ @Ā® ) { sout | i | j; } sout | nl; 700 for ( Ā®i; 5 : j; -5 ~ @ ~ 2Ā® ) { sout | i | j; } sout | nl; 701 for ( Ā®i; 5 : j; -5 -~ @ ~ 2Ā® ) { sout | i | j; } sout | nl; 702 for ( Ā®j; -5 ~ @ : i; 5Ā® ) { sout | i | j; } sout | nl; 703 for ( Ā®j; -5 -~ @ : i; 5Ā® ) { sout | i | j; } sout | nl; 704 for ( Ā®j; -5 ~ @ ~ 2 : i; 5Ā® ) { sout | i | j; } sout | nl; 705 for ( Ā®j; -5 -~ @ ~ 2 : i; 5Ā® ) { sout | i | j; } sout | nl; 706 for ( Ā®j; -5 -~ @ ~ 2 : i; 5 : k; 1.5 ~ @Ā® ) { 707 sout | i | j | k; } sout | nl; 708 for ( Ā®j; -5 -~ @ ~ 2 : k; 1.5 ~ @ : i; 5Ā® ) { 709 sout | i | j | k; } sout | nl; 710 for ( Ā®k; 1.5 ~ @ : j; -5 -~ @ ~ 2 : i; 5Ā® ) { 711 sout | i | j | k; } sout | nl; 635 \begin{tabular}{@{}l@{\hspace{3em}}l@{\hspace{2em}}l@{}} 636 \multicolumn{1}{c@{\hspace{3em}}}{\textbf{\CFA}} & \multicolumn{1}{c@{\hspace{2em}}}{\textbf{C}} \\ 637 \begin{cfa} 638 switch ( i ) { 639 case Ā®1, 3, 5Ā®: 640 ... 641 case Ā®2, 4, 6Ā®: 642 ... 643 } 712 644 \end{cfa} 713 645 & 714 646 \begin{cfa} 715 716 empty 717 empty 718 empty 719 zero 720 A 721 A A A A A A A A A A 722 B B B B B 723 C C C C C 724 D D D D D 725 E E E E E 726 0 1 2 3 4 5 6 7 8 9 727 1 3 5 7 9 728 10 8 6 4 2 729 0.5 1.5 2.5 3.5 4.5 730 5.5 4.5 3.5 2.5 1.5 731 2 4 6 8 10 732 10 8 6 4 2 733 734 N N N N N N N N N N 735 0 1 2 3 4 5 6 7 8 9 736 10 9 8 7 6 5 4 3 2 1 737 738 3 6 9 739 740 1 2 3 4 5 6 7 8 9 10 741 742 10 9 8 7 6 5 4 3 2 1 0 743 744 2 4 6 8 10 745 746 2.1 3.8 5.5 7.2 8.9 747 748 10 8 6 4 2 0 749 750 12.1 10.4 8.7 7 5.3 3.6 751 0 -5 1 -4 2 -3 3 -2 4 -1 752 0 -5 1 -6 2 -7 3 -8 4 -9 753 0 -5 1 -3 2 -1 3 1 4 3 754 0 -5 1 -7 2 -9 3 -11 4 -13 755 0 -5 1 -4 2 -3 3 -2 4 -1 756 0 -5 1 -6 2 -7 3 -8 4 -9 757 0 -5 1 -3 2 -1 3 1 4 3 758 0 -5 1 -7 2 -9 3 -11 4 -13 759 760 0 -5 1.5 1 -7 2.5 2 -9 3.5 3 -11 4.5 4 -13 5.5 761 762 0 -5 1.5 1 -7 2.5 2 -9 3.5 3 -11 4.5 4 -13 5.5 763 764 0 -5 1.5 1 -7 2.5 2 -9 3.5 3 -11 4.5 4 -13 5.5 647 switch ( i ) { 648 case 1: case 3 : case 5: 649 ... 650 case 2: case 4 : case 6: 651 ... 652 } 653 \end{cfa} 654 & 655 \begin{cfa} 656 657 // odd values 658 659 // even values 660 661 765 662 \end{cfa} 766 663 \end{tabular} 767 664 \end{cquote} 768 \caption{Loop Control Examples} 769 \label{f:LoopControlExamples} 770 \end{figure} 665 In addition, subranges are allowed to specify case values.\footnote{ 666 gcc has the same mechanism but awkward syntax, \lstinline@2 ...42@, because a space is required after a number, otherwise the period is a decimal point.} 667 \begin{cfa} 668 switch ( i ) { 669 case Ā®1~5:Ā® §\C{// 1, 2, 3, 4, 5}§ 670 ... 671 case Ā®10~15:Ā® §\C{// 10, 11, 12, 13, 14, 15}§ 672 ... 673 } 674 \end{cfa} 675 Lists of subranges are also allowed. 676 \begin{cfa} 677 case Ā®1~5, 12~21, 35~42Ā®: 678 \end{cfa} 771 679 772 680 … … 977 885 978 886 979 %\section{\texorpdfstring{\protect\lstinline@case@ Clause}{case Clause}} 980 \subsection{\texorpdfstring{\LstKeywordStyle{case} Statement}{case Statement}} 981 982 C restricts the Ā©caseĀ© clause of a Ā©switchĀ© statement to a single value. 983 For multiple Ā©caseĀ© clauses associated with the same statement, it is necessary to have multiple Ā©caseĀ© clauses rather than multiple values. 984 Requiring a Ā©caseĀ© clause for each value does not seem to be in the spirit of brevity normally associated with C. 985 Therefore, the Ā©caseĀ© clause is extended with a list of values, as in: 986 \begin{cquote} 987 \begin{tabular}{@{}l@{\hspace{3em}}l@{\hspace{2em}}l@{}} 988 \multicolumn{1}{c@{\hspace{3em}}}{\textbf{\CFA}} & \multicolumn{1}{c@{\hspace{2em}}}{\textbf{C}} \\ 989 \begin{cfa} 990 switch ( i ) { 991 case Ā®1, 3, 5Ā®: 887 \subsection{Non-terminating and Labelled \texorpdfstring{\LstKeywordStyle{fallthrough}}{Non-terminating and Labelled fallthrough}} 888 889 The Ā©fallthroughĀ© clause may be non-terminating within a Ā©caseĀ© clause or have a target label to common code from multiple case clauses. 890 \begin{center} 891 \begin{tabular}{@{}lll@{}} 892 \begin{cfa} 893 choose ( ... ) { 894 case 3: 895 if ( ... ) { 896 ... Ā®fallthru;Ā® // goto case 4 897 } else { 898 ... 899 } 900 // implicit break 901 case 4: 902 903 904 905 906 \end{cfa} 907 & 908 \begin{cfa} 909 choose ( ... ) { 910 case 3: 911 ... Ā®fallthrough common;Ā® 912 case 4: 913 ... Ā®fallthrough common;Ā® 914 915 Ā®common:Ā® // below fallthrough 916 // at case-clause level 917 ... // common code for cases 3/4 918 // implicit break 919 case 4: 920 921 922 \end{cfa} 923 & 924 \begin{cfa} 925 choose ( ... ) { 926 case 3: 927 choose ( ... ) { 928 case 4: 929 for ( ... ) { 930 // multi-level transfer 931 ... Ā®fallthru common;Ā® 932 } 933 ... 934 } 992 935 ... 993 case Ā®2, 4, 6Ā®: 994 ... 995 } 936 Ā®common:Ā® // below fallthrough 937 // at case-clause level 938 \end{cfa} 939 \end{tabular} 940 \end{center} 941 The target label must be below the Ā©fallthroughĀ© and may not be nested in a control structure, and 942 the target label must be at the same or higher level as the containing Ā©caseĀ© clause and located at 943 the same level as a Ā©caseĀ© clause; the target label may be case Ā©defaultĀ©, but only associated 944 with the current Ā©switchĀ©/Ā©chooseĀ© statement. 945 946 947 \subsection{Loop Control} 948 949 The Ā©forĀ©/Ā©whileĀ©/Ā©do-whileĀ© loop-control allows empty or simplified ranges (see Figure~\ref{f:LoopControlExamples}). 950 \begin{itemize} 951 \item 952 The loop index is polymorphic in the type of the comparison value N (when the start value is implicit) or the start value M. 953 \item 954 An empty conditional implies comparison value of Ā©1Ā© (true). 955 \item 956 A comparison N is implicit up-to exclusive range [0,N©®)®©. 957 \item 958 A comparison Ā©=Ā© N is implicit up-to inclusive range [0,N©®]®©. 959 \item 960 The up-to range M Ā©~Ā©\index{~@Ā©~Ā©} N means exclusive range [M,N©®)®©. 961 \item 962 The up-to range M Ā©~=Ā©\index{~=@Ā©~=Ā©} N means inclusive range [M,N©®]®©. 963 \item 964 The down-to range M Ā©-~Ā©\index{-~@Ā©-~Ā©} N means exclusive range [N,M©®)®©. 965 \item 966 The down-to range M Ā©-~=Ā©\index{-~=@Ā©-~=Ā©} N means inclusive range [N,M©®]®©. 967 \item 968 Ā©0Ā© is the implicit start value; 969 \item 970 Ā©1Ā© is the implicit increment value. 971 \item 972 The up-to range uses operator Ā©+=Ā© for increment; 973 \item 974 The down-to range uses operator Ā©-=Ā© for decrement. 975 \item 976 Ā©@Ā© means put nothing in this field. 977 \item 978 Ā©:Ā© means start another index. 979 \end{itemize} 980 981 \begin{figure} 982 \begin{tabular}{@{}l|l@{}} 983 \multicolumn{1}{c|}{loop control} & \multicolumn{1}{c}{output} \\ 984 \hline 985 \begin{cfa}[xleftmargin=0pt] 986 while Ā®()Ā® { sout | "empty"; break; } 987 do { sout | "empty"; break; } while Ā®()Ā®; 988 for Ā®()Ā® { sout | "empty"; break; } 989 for ( Ā®0Ā® ) { sout | "A"; } sout | "zero"; 990 for ( Ā®1Ā® ) { sout | "A"; } 991 for ( Ā®10Ā® ) { sout | "A"; } 992 for ( Ā®= 10Ā® ) { sout | "A"; } 993 for ( Ā®1 ~= 10 ~ 2Ā® ) { sout | "B"; } 994 for ( Ā®10 -~= 1 ~ 2Ā® ) { sout | "C"; } 995 for ( Ā®0.5 ~ 5.5Ā® ) { sout | "D"; } 996 for ( Ā®5.5 -~ 0.5Ā® ) { sout | "E"; } 997 for ( Ā®i; 10Ā® ) { sout | i; } 998 for ( Ā®i; = 10Ā® ) { sout | i; } 999 for ( Ā®i; 1 ~= 10 ~ 2Ā® ) { sout | i; } 1000 for ( Ā®i; 10 -~= 1 ~ 2Ā® ) { sout | i; } 1001 for ( Ā®i; 0.5 ~ 5.5Ā® ) { sout | i; } 1002 for ( Ā®i; 5.5 -~ 0.5Ā® ) { sout | i; } 1003 for ( Ā®ui; 2u ~= 10u ~ 2uĀ® ) { sout | ui; } 1004 for ( Ā®ui; 10u -~= 2u ~ 2uĀ® ) { sout | ui; } 1005 enum { N = 10 }; 1006 for ( Ā®NĀ® ) { sout | "N"; } 1007 for ( Ā®i; NĀ® ) { sout | i; } 1008 for ( Ā®i; N -~ 0Ā® ) { sout | i; } 1009 const int start = 3, comp = 10, inc = 2; 1010 for ( Ā®i; start ~ comp ~ inc + 1Ā® ) { sout | i; } 1011 for ( i; 1 ~ Ā®@Ā® ) { if ( i > 10 ) break; sout | i; } 1012 for ( i; 10 -~ Ā®@Ā® ) { if ( i < 0 ) break; sout | i; } 1013 for ( i; 2 ~ Ā®@Ā® ~ 2 ) { if ( i > 10 ) break; sout | i; } 1014 for ( i; 2.1 ~ Ā®@Ā® ~ Ā®@Ā® ) { if ( i > 10.5 ) break; sout | i; i += 1.7; } 1015 for ( i; 10 -~ Ā®@Ā® ~ 2 ) { if ( i < 0 ) break; sout | i; } 1016 for ( i; 12.1 ~ Ā®@Ā® ~ Ā®@Ā® ) { if ( i < 2.5 ) break; sout | i; i -= 1.7; } 1017 for ( i; 5 Ā®:Ā® j; -5 ~ @ ) { sout | i | j; } 1018 for ( i; 5 Ā®:Ā® j; -5 -~ @ ) { sout | i | j; } 1019 for ( i; 5 Ā®:Ā® j; -5 ~ @ ~ 2 ) { sout | i | j; } 1020 for ( i; 5 Ā®:Ā® j; -5 -~ @ ~ 2 ) { sout | i | j; } 1021 for ( i; 5 Ā®:Ā® j; -5 ~ @ ) { sout | i | j; } 1022 for ( i; 5 Ā®:Ā® j; -5 -~ @ ) { sout | i | j; } 1023 for ( i; 5 Ā®:Ā® j; -5 ~ @ ~ 2 ) { sout | i | j; } 1024 for ( i; 5 Ā®:Ā® j; -5 -~ @ ~ 2 ) { sout | i | j; } 1025 for ( i; 5 Ā®:Ā® j; -5 -~ @ ~ 2 Ā®:Ā® k; 1.5 ~ @ ) { sout | i | j | k; } 1026 for ( i; 5 Ā®:Ā® j; -5 -~ @ ~ 2 Ā®:Ā® k; 1.5 ~ @ ) { sout | i | j | k; } 1027 for ( i; 5 Ā®:Ā® k; 1.5 ~ @ Ā®:Ā® j; -5 -~ @ ~ 2 ) { sout | i | j | k; } 996 1028 \end{cfa} 997 1029 & 998 1030 \begin{cfa} 999 switch ( i ) { 1000 case 1: case 3 : case 5: 1001 ... 1002 case 2: case 4 : case 6: 1003 ... 1004 } 1005 \end{cfa} 1006 & 1007 \begin{cfa} 1008 1009 // odd values 1010 1011 // even values 1012 1013 1031 empty 1032 empty 1033 empty 1034 zero 1035 A 1036 A A A A A A A A A A 1037 A A A A A A A A A A A 1038 B B B B B 1039 C C C C C 1040 D D D D D 1041 E E E E E 1042 0 1 2 3 4 5 6 7 8 9 1043 0 1 2 3 4 5 6 7 8 9 10 1044 1 3 5 7 9 1045 10 8 6 4 2 1046 0.5 1.5 2.5 3.5 4.5 1047 5.5 4.5 3.5 2.5 1.5 1048 2 4 6 8 10 1049 10 8 6 4 2 1050 1051 N N N N N N N N N N 1052 0 1 2 3 4 5 6 7 8 9 1053 10 9 8 7 6 5 4 3 2 1 1054 1055 3 6 9 1056 1 2 3 4 5 6 7 8 9 10 1057 10 9 8 7 6 5 4 3 2 1 0 1058 2 4 6 8 10 1059 2.1 3.8 5.5 7.2 8.9 1060 10 8 6 4 2 0 1061 12.1 10.4 8.7 7. 5.3 3.6 1062 0 -5 1 -4 2 -3 3 -2 4 -1 1063 0 -5 1 -6 2 -7 3 -8 4 -9 1064 0 -5 1 -3 2 -1 3 1 4 3 1065 0 -5 1 -7 2 -9 3 -11 4 -13 1066 0 -5 1 -4 2 -3 3 -2 4 -1 1067 0 -5 1 -6 2 -7 3 -8 4 -9 1068 0 -5 1 -3 2 -1 3 1 4 3 1069 0 -5 1 -7 2 -9 3 -11 4 -13 1070 0 -5 1.5 1 -7 2.5 2 -9 3.5 3 -11 4.5 4 -13 5.5 1071 0 -5 1.5 1 -7 2.5 2 -9 3.5 3 -11 4.5 4 -13 5.5 1072 0 -5 1.5 1 -7 2.5 2 -9 3.5 3 -11 4.5 4 -13 5.5 1014 1073 \end{cfa} 1015 1074 \end{tabular} 1016 \end{cquote} 1017 In addition, subranges are allowed to specify case values.\footnote{ 1018 gcc has the same mechanism but awkward syntax, \lstinline@2 ...42@, because a space is required after a number, otherwise the period is a decimal point.} 1019 \begin{cfa} 1020 switch ( i ) { 1021 case Ā®1~5:Ā® §\C{// 1, 2, 3, 4, 5}§ 1022 ... 1023 case Ā®10~15:Ā® §\C{// 10, 11, 12, 13, 14, 15}§ 1024 ... 1025 } 1026 \end{cfa} 1027 Lists of subranges are also allowed. 1028 \begin{cfa} 1029 case Ā®1~5, 12~21, 35~42Ā®: 1030 \end{cfa} 1031 1075 \caption{Loop Control Examples} 1076 \label{f:LoopControlExamples} 1077 \end{figure} 1032 1078 1033 1079 % for () => for ( ;; ) … … 6547 6593 hence, names in these include files are not mangled\index{mangling!name} (see~\VRef{s:Interoperability}). 6548 6594 All other C header files must be explicitly wrapped in Ā©extern "C"Ā© to prevent name mangling. 6549 For \Index*[C++]{\CC{}}, the name-mangling issue is often handled internally in manyC header-files through checks for preprocessor variable Ā©__cplusplusĀ©, which adds appropriate Ā©extern "C"Ā© qualifiers.6595 This approach is different from \Index*[C++]{\CC{}} where the name-mangling issue is handled internally in C header-files through checks for preprocessor variable Ā©__cplusplusĀ©, which adds appropriate Ā©extern "C"Ā© qualifiers. 6550 6596 6551 6597 … … 6561 6607 The storage-management routines extend their C equivalents by overloading, alternate names, providing shallow type-safety, and removing the need to specify the allocation size for non-array types. 6562 6608 6563 Storage management provides the following capabilities:6609 C storage management provides the following capabilities: 6564 6610 \begin{description} 6565 \item[fill ]6566 after allocation the storage is filled with a specified character.6611 \item[filled] 6612 after allocation with a specified character or value. 6567 6613 \item[resize] 6568 an existing allocation is decreased or increased insize.6569 In either case, new storage may or may not be allocated and, if there is a new allocation, as much data from the existing allocation is copied .6614 an existing allocation to decreased or increased its size. 6615 In either case, new storage may or may not be allocated and, if there is a new allocation, as much data from the existing allocation is copied into the new allocation. 6570 6616 For an increase in storage size, new storage after the copied data may be filled. 6571 \item[align ment]6572 an allocation startson a specified memory boundary, \eg, an address multiple of 64 or 128 for cache-line purposes.6617 \item[align] 6618 an allocation on a specified memory boundary, \eg, an address multiple of 64 or 128 for cache-line purposes. 6573 6619 \item[array] 6574 6620 the allocation size is scaled to the specified number of array elements. 6575 6621 An array may be filled, resized, or aligned. 6576 6622 \end{description} 6577 The table shows allocation routines supporting different combinations of storage-management capabilities: 6578 \begin{center} 6579 \begin{tabular}{@{}r|r|l|l|l|l@{}} 6623 \VRef[Table]{t:AllocationVersusCapabilities} shows allocation routines supporting different combinations of storage-management capabilities. 6624 \begin{table} 6625 \centering 6626 \begin{minipage}{0.75\textwidth} 6627 \begin{tabular}{@{}r|l|l|l|l|l@{}} 6580 6628 \multicolumn{1}{c}{}& & \multicolumn{1}{c|}{fill} & resize & alignment & array \\ 6581 6629 \hline 6582 6630 C & Ā©mallocĀ© & no & no & no & no \\ 6583 6631 & Ā©callocĀ© & yes (0 only) & no & no & yes \\ 6584 & Ā©reallocĀ© & no/copy& yes & no & no \\6632 & Ā©reallocĀ© & copy & yes & no & no \\ 6585 6633 & Ā©memalignĀ© & no & no & yes & no \\ 6634 & Ā©aligned_allocĀ©\footnote{Same as Ā©memalignĀ© but size is an integral multiple of alignment, which is universally ignored.} 6635 & no & no & yes & no \\ 6586 6636 & Ā©posix_memalignĀ© & no & no & yes & no \\ 6637 & Ā©vallocĀ© & no & no & yes (page size)& no \\ 6638 & Ā©pvallocĀ©\footnote{Same as Ā©vallocĀ© but rounds size to multiple of page size.} 6639 & no & no & yes (page size)& no \\ 6587 6640 \hline 6588 C11 & Ā©aligned_allocĀ© & no & no & yes & no \\ 6589 \hline 6590 \CFA & Ā©allocĀ© & no/copy/yes & no/yes & no & yes \\ 6591 & Ā©align_allocĀ© & no/yes & no & yes & yes \\ 6641 \CFA & Ā©cmemalignĀ© & yes (0 only) & no & yes & yes \\ 6642 & Ā©reallocĀ© & copy & yes & yes & no \\ 6643 & Ā©allocĀ© & no & yes & no & yes \\ 6644 & Ā©alloc_setĀ© & yes & yes & no & yes \\ 6645 & Ā©alloc_alignĀ© & no & yes & yes & yes \\ 6646 & Ā©alloc_align_setĀ© & yes & yes & yes & yes \\ 6592 6647 \end{tabular} 6593 \end{center} 6594 It is impossible to resize with alignment because the underlying Ā©reallocĀ© allocates storage if more space is needed, and it does not honour alignment from the original allocation. 6648 \end{minipage} 6649 \caption{Allocation Routines versus Storage-Management Capabilities} 6650 \label{t:AllocationVersusCapabilities} 6651 \end{table} 6652 6653 \CFA memory management extends the type safety of all allocations by using the type of the left-hand-side type to determine the allocation size and return a matching type for the new storage. 6654 Type-safe allocation is provided for all C allocation routines and new \CFA allocation routines, \eg in 6655 \begin{cfa} 6656 int * ip = (int *)malloc( sizeof(int) ); §\C{// C}§ 6657 int * ip = malloc(); §\C{// \CFA type-safe version of C malloc}§ 6658 int * ip = alloc(); §\C{// \CFA type-safe uniform alloc}§ 6659 \end{cfa} 6660 the latter two allocations determine the allocation size from the type of Ā©pĀ© (Ā©intĀ©) and cast the pointer to the allocated storage to Ā©int *Ā©. 6661 6662 \CFA memory management extends allocation safety by implicitly honouring all alignment requirements, \eg in 6663 \begin{cfa} 6664 struct S { int i; } __attribute__(( aligned( 128 ) )); // cache-line alignment 6665 S * sp = malloc(); §\C{// honour type alignment}§ 6666 \end{cfa} 6667 the storage allocation is implicitly aligned to 128 rather than the default 16. 6668 The alignment check is performed at compile time so there is no runtime cost. 6669 6670 \CFA memory management extends the resize capability with the notion of \newterm{sticky properties}. 6671 Hence, initial allocation capabilities are remembered and maintained when resize requires copying. 6672 For example, an initial alignment and fill capability are preserved during a resize copy so the copy has the same alignment and extended storage is filled. 6673 Without sticky properties it is dangerous to use Ā©reallocĀ©, resulting in an idiom of manually performing the reallocation to maintain correctness. 6674 6675 \CFA memory management extends allocation to support constructors for initialization of allocated storage, \eg in 6676 \begin{cfa} 6677 struct S { int i; }; §\C{// cache-line aglinment}§ 6678 void ?{}( S & s, int i ) { s.i = i; } 6679 // assume ?|? operator for printing an S 6680 6681 S & sp = *Ā®newĀ®( 3 ); §\C{// call constructor after allocation}§ 6682 sout | sp.i; 6683 Ā®deleteĀ®( &sp ); 6684 6685 S * spa = Ā®anewĀ®( 10, 5 ); §\C{// allocate array and initialize each array element}§ 6686 for ( i; 10 ) sout | spa[i] | nonl; 6687 sout | nl; 6688 Ā®adeleteĀ®( 10, spa ); 6689 \end{cfa} 6690 Allocation routines Ā©newĀ©/Ā©anewĀ© allocate a variable/array and initialize storage using the allocated type's constructor. 6691 Note, the matching deallocation routines Ā©deleteĀ©/Ā©adeleteĀ©. 6595 6692 6596 6693 \leavevmode 6597 6694 \begin{cfa}[aboveskip=0pt,belowskip=0pt] 6598 // C unsafe allocation6599 6695 extern "C" { 6600 void * malloc( size_t size );§\indexc{memset}§ 6601 void * calloc( size_t dim, size_t size );§\indexc{calloc}§ 6602 void * realloc( void * ptr, size_t size );§\indexc{realloc}§ 6603 void * memalign( size_t align, size_t size );§\indexc{memalign}§ 6604 int posix_memalign( void ** ptr, size_t align, size_t size );§\indexc{posix_memalign}§ 6605 6606 // C unsafe initialization/copy 6607 void * memset( void * dest, int c, size_t size ); 6608 void * memcpy( void * dest, const void * src, size_t size ); 6609 } 6696 // C unsafe allocation 6697 void * malloc( size_t size );§\indexc{malloc}§ 6698 void * calloc( size_t dim, size_t size );§\indexc{calloc}§ 6699 void * realloc( void * ptr, size_t size );§\indexc{realloc}§ 6700 void * memalign( size_t align, size_t size );§\indexc{memalign}§ 6701 void * aligned_alloc( size_t align, size_t size );§\indexc{aligned_alloc}§ 6702 int posix_memalign( void ** ptr, size_t align, size_t size );§\indexc{posix_memalign}§ 6703 void * cmemalign( size_t alignment, size_t noOfElems, size_t elemSize );§\indexc{cmemalign}§ // CFA 6704 6705 // C unsafe initialization/copy 6706 void * memset( void * dest, int c, size_t size );§\indexc{memset}§ 6707 void * memcpy( void * dest, const void * src, size_t size );§\indexc{memcpy}§ 6708 } 6709 6710 void * realloc( void * oaddr, size_t nalign, size_t size ); // CFA heap 6610 6711 6611 6712 forall( dtype T | sized(T) ) { 6612 // §\CFA§ safe equivalents, i.e., implicit size specification6713 // §\CFA§ safe equivalents, i.e., implicit size specification 6613 6714 T * malloc( void ); 6614 6715 T * calloc( size_t dim ); 6615 6716 T * realloc( T * ptr, size_t size ); 6616 6717 T * memalign( size_t align ); 6718 T * cmemalign( size_t align, size_t dim ); 6617 6719 T * aligned_alloc( size_t align ); 6618 6720 int posix_memalign( T ** ptr, size_t align ); 6619 6721 6620 // §\CFA§ safe general allocation, fill, resize, array6722 // §\CFA§ safe general allocation, fill, resize, alignment, array 6621 6723 T * alloc( void );§\indexc{alloc}§ 6622 T * alloc( char fill );6623 6724 T * alloc( size_t dim ); 6624 T * alloc( size_t dim, char fill );6625 6725 T * alloc( T ptr[], size_t dim ); 6626 T * alloc( T ptr[], size_t dim, char fill ); 6627 6628 // §\CFA§ safe general allocation, align, fill, array 6629 T * align_alloc( size_t align ); 6630 T * align_alloc( size_t align, char fill ); 6631 T * align_alloc( size_t align, size_t dim ); 6632 T * align_alloc( size_t align, size_t dim, char fill ); 6633 6634 // §\CFA§ safe initialization/copy, i.e., implicit size specification 6635 T * memset( T * dest, char c );§\indexc{memset}§ 6726 T * alloc_set( char fill );§\indexc{alloc_set}§ 6727 T * alloc_set( T fill ); 6728 T * alloc_set( size_t dim, char fill ); 6729 T * alloc_set( size_t dim, T fill ); 6730 T * alloc_set( size_t dim, const T fill[] ); 6731 T * alloc_set( T ptr[], size_t dim, char fill ); 6732 6733 T * alloc_align( size_t align ); 6734 T * alloc_align( size_t align, size_t dim ); 6735 T * alloc_align( T ptr[], size_t align ); // aligned realloc array 6736 T * alloc_align( T ptr[], size_t align, size_t dim ); // aligned realloc array 6737 T * alloc_align_set( size_t align, char fill ); 6738 T * alloc_align_set( size_t align, T fill ); 6739 T * alloc_align_set( size_t align, size_t dim, char fill ); 6740 T * alloc_align_set( size_t align, size_t dim, T fill ); 6741 T * alloc_align_set( size_t align, size_t dim, const T fill[] ); 6742 T * alloc_align_set( T ptr[], size_t align, size_t dim, char fill ); 6743 6744 // §\CFA§ safe initialization/copy, i.e., implicit size specification 6745 T * memset( T * dest, char fill );§\indexc{memset}§ 6636 6746 T * memcpy( T * dest, const T * src );§\indexc{memcpy}§ 6637 6747 6638 // §\CFA§ safe initialization/copy array 6639 T * amemset( T dest[], char c, size_t dim );6748 // §\CFA§ safe initialization/copy, i.e., implicit size specification, array types 6749 T * amemset( T dest[], char fill, size_t dim ); 6640 6750 T * amemcpy( T dest[], const T src[], size_t dim ); 6641 6751 } 6642 6752 6643 // §\CFA§ allocation/deallocation and constructor/destructor 6644 forall( dtype T | sized(T), ttype Params | { void ?{}( T *, Params ); } ) T * new( Params p );§\indexc{new}§6645 forall( dtype T | { void ^?{}( T *); } ) void delete( T * ptr );§\indexc{delete}§6646 forall( dtype T, ttype Params | { void ^?{}( T *); void delete( Params ); } )6753 // §\CFA§ allocation/deallocation and constructor/destructor, non-array types 6754 forall( dtype T | sized(T), ttype Params | { void ?{}( T &, Params ); } ) T * new( Params p );§\indexc{new}§ 6755 forall( dtype T | sized(T) | { void ^?{}( T & ); } ) void delete( T * ptr );§\indexc{delete}§ 6756 forall( dtype T, ttype Params | sized(T) | { void ^?{}( T & ); void delete( Params ); } ) 6647 6757 void delete( T * ptr, Params rest ); 6648 6758 6649 // §\CFA§ allocation/deallocation and constructor/destructor, array 6650 forall( dtype T | sized(T), ttype Params | { void ?{}( T *, Params ); } ) T * anew( size_t dim, Params p );§\indexc{anew}§6651 forall( dtype T | sized(T) | { void ^?{}( T *); } ) void adelete( size_t dim, T arr[] );§\indexc{adelete}§6652 forall( dtype T | sized(T) | { void ^?{}( T *); }, ttype Params | { void adelete( Params ); } )6759 // §\CFA§ allocation/deallocation and constructor/destructor, array types 6760 forall( dtype T | sized(T), ttype Params | { void ?{}( T &, Params ); } ) T * anew( size_t dim, Params p );§\indexc{anew}§ 6761 forall( dtype T | sized(T) | { void ^?{}( T & ); } ) void adelete( size_t dim, T arr[] );§\indexc{adelete}§ 6762 forall( dtype T | sized(T) | { void ^?{}( T & ); }, ttype Params | { void adelete( Params ); } ) 6653 6763 void adelete( size_t dim, T arr[], Params rest ); 6654 6764 \end{cfa} -
driver/cfa.cc
rb7d6a36 r6a490b2 385 385 } // if 386 386 387 string preludedir; 387 388 switch(path) { 388 case Installed : Putenv( argv, "--prelude-dir=" + libdir ); break;389 case BuildTree : Putenv( argv, "--prelude-dir=" + libdir + "/prelude" ); break;390 case Distributed : Putenv( argv, "--prelude-dir=" + dir(argv[0])); break;389 case Installed : preludedir = libdir; break; 390 case BuildTree : preludedir = libdir + "/prelude"; break; 391 case Distributed : preludedir = dir(argv[0]); break; 391 392 } 393 394 Putenv( argv, "--prelude-dir=" + preludedir ); 395 args[nargs++] = "-include"; 396 args[nargs++] = (*new string(preludedir + "/defines.hfa")).c_str(); 392 397 393 398 for ( int i = 0; i < nlibs; i += 1 ) { // copy non-user libraries after all user libraries -
libcfa/Makefile.in
rb7d6a36 r6a490b2 106 106 configure.lineno config.status.lineno 107 107 mkinstalldirs = $(install_sh) -d 108 CONFIG_HEADER = $(top_builddir)/prelude/defines.hfa 108 109 CONFIG_CLEAN_FILES = 109 110 CONFIG_CLEAN_VPATH_FILES = -
libcfa/configure
rb7d6a36 r6a490b2 790 790 enable_distcc 791 791 with_cfa_name 792 enable_static 792 793 enable_shared 793 enable_static794 794 with_pic 795 795 enable_fast_install … … 1452 1452 --disable-silent-rules verbose build output (undo: "make V=0") 1453 1453 --enable-distcc whether or not to enable distributed compilation 1454 --enable-static[=PKGS] build static libraries [default=no] 1454 1455 --enable-shared[=PKGS] build shared libraries [default=yes] 1455 --enable-static[=PKGS] build static libraries [default=yes]1456 1456 --enable-fast-install[=PKGS] 1457 1457 optimize for fast installation [default=yes] … … 1960 1960 1961 1961 } # ac_fn_cxx_try_link 1962 1963 # ac_fn_c_check_header_mongrel LINENO HEADER VAR INCLUDES 1964 # ------------------------------------------------------- 1965 # Tests whether HEADER exists, giving a warning if it cannot be compiled using 1966 # the include files in INCLUDES and setting the cache variable VAR 1967 # accordingly. 1968 ac_fn_c_check_header_mongrel () 1969 { 1970 as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack 1971 if eval \${$3+:} false; then : 1972 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $2" >&5 1973 $as_echo_n "checking for $2... " >&6; } 1974 if eval \${$3+:} false; then : 1975 $as_echo_n "(cached) " >&6 1976 fi 1977 eval ac_res=\$$3 1978 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_res" >&5 1979 $as_echo "$ac_res" >&6; } 1980 else 1981 # Is the header compilable? 1982 { $as_echo "$as_me:${as_lineno-$LINENO}: checking $2 usability" >&5 1983 $as_echo_n "checking $2 usability... " >&6; } 1984 cat confdefs.h - <<_ACEOF >conftest.$ac_ext 1985 /* end confdefs.h. */ 1986 $4 1987 #include <$2> 1988 _ACEOF 1989 if ac_fn_c_try_compile "$LINENO"; then : 1990 ac_header_compiler=yes 1991 else 1992 ac_header_compiler=no 1993 fi 1994 rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext 1995 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_header_compiler" >&5 1996 $as_echo "$ac_header_compiler" >&6; } 1997 1998 # Is the header present? 1999 { $as_echo "$as_me:${as_lineno-$LINENO}: checking $2 presence" >&5 2000 $as_echo_n "checking $2 presence... " >&6; } 2001 cat confdefs.h - <<_ACEOF >conftest.$ac_ext 2002 /* end confdefs.h. */ 2003 #include <$2> 2004 _ACEOF 2005 if ac_fn_c_try_cpp "$LINENO"; then : 2006 ac_header_preproc=yes 2007 else 2008 ac_header_preproc=no 2009 fi 2010 rm -f conftest.err conftest.i conftest.$ac_ext 2011 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_header_preproc" >&5 2012 $as_echo "$ac_header_preproc" >&6; } 2013 2014 # So? What about this header? 2015 case $ac_header_compiler:$ac_header_preproc:$ac_c_preproc_warn_flag in #(( 2016 yes:no: ) 2017 { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $2: accepted by the compiler, rejected by the preprocessor!" >&5 2018 $as_echo "$as_me: WARNING: $2: accepted by the compiler, rejected by the preprocessor!" >&2;} 2019 { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $2: proceeding with the compiler's result" >&5 2020 $as_echo "$as_me: WARNING: $2: proceeding with the compiler's result" >&2;} 2021 ;; 2022 no:yes:* ) 2023 { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $2: present but cannot be compiled" >&5 2024 $as_echo "$as_me: WARNING: $2: present but cannot be compiled" >&2;} 2025 { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $2: check for missing prerequisite headers?" >&5 2026 $as_echo "$as_me: WARNING: $2: check for missing prerequisite headers?" >&2;} 2027 { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $2: see the Autoconf documentation" >&5 2028 $as_echo "$as_me: WARNING: $2: see the Autoconf documentation" >&2;} 2029 { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $2: section \"Present But Cannot Be Compiled\"" >&5 2030 $as_echo "$as_me: WARNING: $2: section \"Present But Cannot Be Compiled\"" >&2;} 2031 { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $2: proceeding with the compiler's result" >&5 2032 $as_echo "$as_me: WARNING: $2: proceeding with the compiler's result" >&2;} 2033 ( $as_echo "## --------------------------------------- ## 2034 ## Report this to cforall@plg.uwaterloo.ca ## 2035 ## --------------------------------------- ##" 2036 ) | sed "s/^/$as_me: WARNING: /" >&2 2037 ;; 2038 esac 2039 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $2" >&5 2040 $as_echo_n "checking for $2... " >&6; } 2041 if eval \${$3+:} false; then : 2042 $as_echo_n "(cached) " >&6 2043 else 2044 eval "$3=\$ac_header_compiler" 2045 fi 2046 eval ac_res=\$$3 2047 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_res" >&5 2048 $as_echo "$ac_res" >&6; } 2049 fi 2050 eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno 2051 2052 } # ac_fn_c_check_header_mongrel 1962 2053 cat >config.log <<_ACEOF 1963 2054 This file contains any messages produced by compilers while … … 7939 8030 7940 8031 # Set options 8032 # Check whether --enable-static was given. 8033 if test "${enable_static+set}" = set; then : 8034 enableval=$enable_static; p=${PACKAGE-default} 8035 case $enableval in 8036 yes) enable_static=yes ;; 8037 no) enable_static=no ;; 8038 *) 8039 enable_static=no 8040 # Look at the argument we got. We use all the common list separators. 8041 lt_save_ifs=$IFS; IFS=$IFS$PATH_SEPARATOR, 8042 for pkg in $enableval; do 8043 IFS=$lt_save_ifs 8044 if test "X$pkg" = "X$p"; then 8045 enable_static=yes 8046 fi 8047 done 8048 IFS=$lt_save_ifs 8049 ;; 8050 esac 8051 else 8052 enable_static=no 8053 fi 8054 8055 8056 8057 8058 8059 8060 7941 8061 7942 8062 … … 7971 8091 fi 7972 8092 7973 7974 7975 7976 7977 7978 7979 7980 7981 # Check whether --enable-static was given.7982 if test "${enable_static+set}" = set; then :7983 enableval=$enable_static; p=${PACKAGE-default}7984 case $enableval in7985 yes) enable_static=yes ;;7986 no) enable_static=no ;;7987 *)7988 enable_static=no7989 # Look at the argument we got. We use all the common list separators.7990 lt_save_ifs=$IFS; IFS=$IFS$PATH_SEPARATOR,7991 for pkg in $enableval; do7992 IFS=$lt_save_ifs7993 if test "X$pkg" = "X$p"; then7994 enable_static=yes7995 fi7996 done7997 IFS=$lt_save_ifs7998 ;;7999 esac8000 else8001 enable_static=yes8002 fi8003 8093 8004 8094 … … 16859 16949 16860 16950 16951 for ac_header in linux/io_uring.h 16952 do : 16953 ac_fn_c_check_header_mongrel "$LINENO" "linux/io_uring.h" "ac_cv_header_linux_io_uring_h" "$ac_includes_default" 16954 if test "x$ac_cv_header_linux_io_uring_h" = xyes; then : 16955 cat >>confdefs.h <<_ACEOF 16956 #define HAVE_LINUX_IO_URING_H 1 16957 _ACEOF 16958 16959 fi 16960 16961 done 16962 16963 for ac_func in preadv2 pwritev2 16964 do : 16965 as_ac_var=`$as_echo "ac_cv_func_$ac_func" | $as_tr_sh` 16966 ac_fn_c_check_func "$LINENO" "$ac_func" "$as_ac_var" 16967 if eval test \"x\$"$as_ac_var"\" = x"yes"; then : 16968 cat >>confdefs.h <<_ACEOF 16969 #define `$as_echo "HAVE_$ac_func" | $as_tr_cpp` 1 16970 _ACEOF 16971 16972 fi 16973 done 16974 16975 16861 16976 ac_config_files="$ac_config_files Makefile src/Makefile prelude/Makefile" 16977 16978 16979 ac_config_headers="$ac_config_headers prelude/defines.hfa" 16862 16980 16863 16981 … … 16952 17070 test "x$exec_prefix" = xNONE && exec_prefix='${prefix}' 16953 17071 16954 # Transform confdefs.h into DEFS. 16955 # Protect against shell expansion while executing Makefile rules. 16956 # Protect against Makefile macro expansion. 16957 # 16958 # If the first sed substitution is executed (which looks for macros that 16959 # take arguments), then branch to the quote section. Otherwise, 16960 # look for a macro that doesn't take arguments. 16961 ac_script=' 16962 :mline 16963 /\\$/{ 16964 N 16965 s,\\\n,, 16966 b mline 16967 } 16968 t clear 16969 :clear 16970 s/^[ ]*#[ ]*define[ ][ ]*\([^ (][^ (]*([^)]*)\)[ ]*\(.*\)/-D\1=\2/g 16971 t quote 16972 s/^[ ]*#[ ]*define[ ][ ]*\([^ ][^ ]*\)[ ]*\(.*\)/-D\1=\2/g 16973 t quote 16974 b any 16975 :quote 16976 s/[ `~#$^&*(){}\\|;'\''"<>?]/\\&/g 16977 s/\[/\\&/g 16978 s/\]/\\&/g 16979 s/\$/$$/g 16980 H 16981 :any 16982 ${ 16983 g 16984 s/^\n// 16985 s/\n/ /g 16986 p 16987 } 16988 ' 16989 DEFS=`sed -n "$ac_script" confdefs.h` 16990 17072 DEFS=-DHAVE_CONFIG_H 16991 17073 16992 17074 ac_libobjs= … … 17466 17548 esac 17467 17549 17550 case $ac_config_headers in *" 17551 "*) set x $ac_config_headers; shift; ac_config_headers=$*;; 17552 esac 17468 17553 17469 17554 … … 17471 17556 # Files that config.status was made for. 17472 17557 config_files="$ac_config_files" 17558 config_headers="$ac_config_headers" 17473 17559 config_commands="$ac_config_commands" 17474 17560 … … 17492 17578 --file=FILE[:TEMPLATE] 17493 17579 instantiate the configuration file FILE 17580 --header=FILE[:TEMPLATE] 17581 instantiate the configuration header FILE 17494 17582 17495 17583 Configuration files: 17496 17584 $config_files 17585 17586 Configuration headers: 17587 $config_headers 17497 17588 17498 17589 Configuration commands: … … 17562 17653 as_fn_append CONFIG_FILES " '$ac_optarg'" 17563 17654 ac_need_defaults=false;; 17564 --he | --h | --help | --hel | -h ) 17655 --header | --heade | --head | --hea ) 17656 $ac_shift 17657 case $ac_optarg in 17658 *\'*) ac_optarg=`$as_echo "$ac_optarg" | sed "s/'/'\\\\\\\\''/g"` ;; 17659 esac 17660 as_fn_append CONFIG_HEADERS " '$ac_optarg'" 17661 ac_need_defaults=false;; 17662 --he | --h) 17663 # Conflict between --help and --header 17664 as_fn_error $? "ambiguous option: \`$1' 17665 Try \`$0 --help' for more information.";; 17666 --help | --hel | -h ) 17565 17667 $as_echo "$ac_cs_usage"; exit ;; 17566 17668 -q | -quiet | --quiet | --quie | --qui | --qu | --q \ … … 17625 17727 macro_version='`$ECHO "$macro_version" | $SED "$delay_single_quote_subst"`' 17626 17728 macro_revision='`$ECHO "$macro_revision" | $SED "$delay_single_quote_subst"`' 17729 enable_static='`$ECHO "$enable_static" | $SED "$delay_single_quote_subst"`' 17627 17730 enable_shared='`$ECHO "$enable_shared" | $SED "$delay_single_quote_subst"`' 17628 enable_static='`$ECHO "$enable_static" | $SED "$delay_single_quote_subst"`'17629 17731 pic_mode='`$ECHO "$pic_mode" | $SED "$delay_single_quote_subst"`' 17630 17732 enable_fast_install='`$ECHO "$enable_fast_install" | $SED "$delay_single_quote_subst"`' … … 18009 18111 "src/Makefile") CONFIG_FILES="$CONFIG_FILES src/Makefile" ;; 18010 18112 "prelude/Makefile") CONFIG_FILES="$CONFIG_FILES prelude/Makefile" ;; 18113 "prelude/defines.hfa") CONFIG_HEADERS="$CONFIG_HEADERS prelude/defines.hfa" ;; 18011 18114 18012 18115 *) as_fn_error $? "invalid argument: \`$ac_config_target'" "$LINENO" 5;; … … 18021 18124 if $ac_need_defaults; then 18022 18125 test "${CONFIG_FILES+set}" = set || CONFIG_FILES=$config_files 18126 test "${CONFIG_HEADERS+set}" = set || CONFIG_HEADERS=$config_headers 18023 18127 test "${CONFIG_COMMANDS+set}" = set || CONFIG_COMMANDS=$config_commands 18024 18128 fi … … 18209 18313 fi # test -n "$CONFIG_FILES" 18210 18314 18211 18212 eval set X " :F $CONFIG_FILES :C $CONFIG_COMMANDS" 18315 # Set up the scripts for CONFIG_HEADERS section. 18316 # No need to generate them if there are no CONFIG_HEADERS. 18317 # This happens for instance with `./config.status Makefile'. 18318 if test -n "$CONFIG_HEADERS"; then 18319 cat >"$ac_tmp/defines.awk" <<\_ACAWK || 18320 BEGIN { 18321 _ACEOF 18322 18323 # Transform confdefs.h into an awk script `defines.awk', embedded as 18324 # here-document in config.status, that substitutes the proper values into 18325 # config.h.in to produce config.h. 18326 18327 # Create a delimiter string that does not exist in confdefs.h, to ease 18328 # handling of long lines. 18329 ac_delim='%!_!# ' 18330 for ac_last_try in false false :; do 18331 ac_tt=`sed -n "/$ac_delim/p" confdefs.h` 18332 if test -z "$ac_tt"; then 18333 break 18334 elif $ac_last_try; then 18335 as_fn_error $? "could not make $CONFIG_HEADERS" "$LINENO" 5 18336 else 18337 ac_delim="$ac_delim!$ac_delim _$ac_delim!! " 18338 fi 18339 done 18340 18341 # For the awk script, D is an array of macro values keyed by name, 18342 # likewise P contains macro parameters if any. Preserve backslash 18343 # newline sequences. 18344 18345 ac_word_re=[_$as_cr_Letters][_$as_cr_alnum]* 18346 sed -n ' 18347 s/.\{148\}/&'"$ac_delim"'/g 18348 t rset 18349 :rset 18350 s/^[ ]*#[ ]*define[ ][ ]*/ / 18351 t def 18352 d 18353 :def 18354 s/\\$// 18355 t bsnl 18356 s/["\\]/\\&/g 18357 s/^ \('"$ac_word_re"'\)\(([^()]*)\)[ ]*\(.*\)/P["\1"]="\2"\ 18358 D["\1"]=" \3"/p 18359 s/^ \('"$ac_word_re"'\)[ ]*\(.*\)/D["\1"]=" \2"/p 18360 d 18361 :bsnl 18362 s/["\\]/\\&/g 18363 s/^ \('"$ac_word_re"'\)\(([^()]*)\)[ ]*\(.*\)/P["\1"]="\2"\ 18364 D["\1"]=" \3\\\\\\n"\\/p 18365 t cont 18366 s/^ \('"$ac_word_re"'\)[ ]*\(.*\)/D["\1"]=" \2\\\\\\n"\\/p 18367 t cont 18368 d 18369 :cont 18370 n 18371 s/.\{148\}/&'"$ac_delim"'/g 18372 t clear 18373 :clear 18374 s/\\$// 18375 t bsnlc 18376 s/["\\]/\\&/g; s/^/"/; s/$/"/p 18377 d 18378 :bsnlc 18379 s/["\\]/\\&/g; s/^/"/; s/$/\\\\\\n"\\/p 18380 b cont 18381 ' <confdefs.h | sed ' 18382 s/'"$ac_delim"'/"\\\ 18383 "/g' >>$CONFIG_STATUS || ac_write_fail=1 18384 18385 cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 18386 for (key in D) D_is_set[key] = 1 18387 FS = "" 18388 } 18389 /^[\t ]*#[\t ]*(define|undef)[\t ]+$ac_word_re([\t (]|\$)/ { 18390 line = \$ 0 18391 split(line, arg, " ") 18392 if (arg[1] == "#") { 18393 defundef = arg[2] 18394 mac1 = arg[3] 18395 } else { 18396 defundef = substr(arg[1], 2) 18397 mac1 = arg[2] 18398 } 18399 split(mac1, mac2, "(") #) 18400 macro = mac2[1] 18401 prefix = substr(line, 1, index(line, defundef) - 1) 18402 if (D_is_set[macro]) { 18403 # Preserve the white space surrounding the "#". 18404 print prefix "define", macro P[macro] D[macro] 18405 next 18406 } else { 18407 # Replace #undef with comments. This is necessary, for example, 18408 # in the case of _POSIX_SOURCE, which is predefined and required 18409 # on some systems where configure will not decide to define it. 18410 if (defundef == "undef") { 18411 print "/*", prefix defundef, macro, "*/" 18412 next 18413 } 18414 } 18415 } 18416 { print } 18417 _ACAWK 18418 _ACEOF 18419 cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 18420 as_fn_error $? "could not setup config headers machinery" "$LINENO" 5 18421 fi # test -n "$CONFIG_HEADERS" 18422 18423 18424 eval set X " :F $CONFIG_FILES :H $CONFIG_HEADERS :C $CONFIG_COMMANDS" 18213 18425 shift 18214 18426 for ac_tag … … 18429 18641 || as_fn_error $? "could not create $ac_file" "$LINENO" 5 18430 18642 ;; 18431 18643 :H) 18644 # 18645 # CONFIG_HEADER 18646 # 18647 if test x"$ac_file" != x-; then 18648 { 18649 $as_echo "/* $configure_input */" \ 18650 && eval '$AWK -f "$ac_tmp/defines.awk"' "$ac_file_inputs" 18651 } >"$ac_tmp/config.h" \ 18652 || as_fn_error $? "could not create $ac_file" "$LINENO" 5 18653 if diff "$ac_file" "$ac_tmp/config.h" >/dev/null 2>&1; then 18654 { $as_echo "$as_me:${as_lineno-$LINENO}: $ac_file is unchanged" >&5 18655 $as_echo "$as_me: $ac_file is unchanged" >&6;} 18656 else 18657 rm -f "$ac_file" 18658 mv "$ac_tmp/config.h" "$ac_file" \ 18659 || as_fn_error $? "could not create $ac_file" "$LINENO" 5 18660 fi 18661 else 18662 $as_echo "/* $configure_input */" \ 18663 && eval '$AWK -f "$ac_tmp/defines.awk"' "$ac_file_inputs" \ 18664 || as_fn_error $? "could not create -" "$LINENO" 5 18665 fi 18666 # Compute "$ac_file"'s index in $config_headers. 18667 _am_arg="$ac_file" 18668 _am_stamp_count=1 18669 for _am_header in $config_headers :; do 18670 case $_am_header in 18671 $_am_arg | $_am_arg:* ) 18672 break ;; 18673 * ) 18674 _am_stamp_count=`expr $_am_stamp_count + 1` ;; 18675 esac 18676 done 18677 echo "timestamp for $_am_arg" >`$as_dirname -- "$_am_arg" || 18678 $as_expr X"$_am_arg" : 'X\(.*[^/]\)//*[^/][^/]*/*$' \| \ 18679 X"$_am_arg" : 'X\(//\)[^/]' \| \ 18680 X"$_am_arg" : 'X\(//\)$' \| \ 18681 X"$_am_arg" : 'X\(/\)' \| . 2>/dev/null || 18682 $as_echo X"$_am_arg" | 18683 sed '/^X\(.*[^/]\)\/\/*[^/][^/]*\/*$/{ 18684 s//\1/ 18685 q 18686 } 18687 /^X\(\/\/\)[^/].*/{ 18688 s//\1/ 18689 q 18690 } 18691 /^X\(\/\/\)$/{ 18692 s//\1/ 18693 q 18694 } 18695 /^X\(\/\).*/{ 18696 s//\1/ 18697 q 18698 } 18699 s/.*/./; q'`/stamp-h$_am_stamp_count 18700 ;; 18432 18701 18433 18702 :C) { $as_echo "$as_me:${as_lineno-$LINENO}: executing $ac_file commands" >&5 … … 18587 18856 macro_revision=$macro_revision 18588 18857 18858 # Whether or not to build static libraries. 18859 build_old_libs=$enable_static 18860 18589 18861 # Whether or not to build shared libraries. 18590 18862 build_libtool_libs=$enable_shared 18591 18592 # Whether or not to build static libraries.18593 build_old_libs=$enable_static18594 18863 18595 18864 # What type of objects to build. -
libcfa/configure.ac
rb7d6a36 r6a490b2 109 109 110 110 # Checks for programs. 111 LT_INIT 111 LT_INIT([disable-static]) 112 112 113 113 AC_PROG_CXX … … 118 118 AC_PROG_MAKE_SET 119 119 120 AC_CHECK_HEADERS([linux/io_uring.h]) 121 AC_CHECK_FUNCS([preadv2 pwritev2]) 122 120 123 AC_CONFIG_FILES([ 121 124 Makefile … … 124 127 ]) 125 128 129 AC_CONFIG_HEADERS(prelude/defines.hfa) 130 126 131 AC_OUTPUT() 127 132 -
libcfa/prelude/Makefile.am
rb7d6a36 r6a490b2 21 21 # put into lib for now 22 22 cfalibdir = ${CFA_LIBDIR} 23 cfalib_DATA = gcc-builtins.cf builtins.cf extras.cf prelude.cfa bootloader.c 23 cfalib_DATA = gcc-builtins.cf builtins.cf extras.cf prelude.cfa bootloader.c defines.hfa 24 24 25 25 CC = @LOCAL_CFACC@ -
libcfa/prelude/Makefile.in
rb7d6a36 r6a490b2 1 # Makefile.in generated by automake 1.1 6.1from Makefile.am.1 # Makefile.in generated by automake 1.15 from Makefile.am. 2 2 # @configure_input@ 3 3 4 # Copyright (C) 1994-201 8Free Software Foundation, Inc.4 # Copyright (C) 1994-2014 Free Software Foundation, Inc. 5 5 6 6 # This Makefile.in is free software; the Free Software Foundation … … 104 104 DIST_COMMON = $(srcdir)/Makefile.am $(am__DIST_COMMON) 105 105 mkinstalldirs = $(install_sh) -d 106 CONFIG_HEADER = defines.hfa 106 107 CONFIG_CLEAN_FILES = 107 108 CONFIG_CLEAN_VPATH_FILES = … … 154 155 am__installdirs = "$(DESTDIR)$(cfalibdir)" 155 156 DATA = $(cfalib_DATA) 156 am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) 157 am__DIST_COMMON = $(srcdir)/Makefile.in 157 am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) \ 158 $(LISP)defines.hfa.in 159 # Read a list of newline-separated strings from the standard input, 160 # and print each of them once, without duplicates. Input order is 161 # *not* preserved. 162 am__uniquify_input = $(AWK) '\ 163 BEGIN { nonempty = 0; } \ 164 { items[$$0] = 1; nonempty = 1; } \ 165 END { if (nonempty) { for (i in items) print i; }; } \ 166 ' 167 # Make sure the list of sources is unique. This is necessary because, 168 # e.g., the same source file might be shared among _SOURCES variables 169 # for different programs/libraries. 170 am__define_uniq_tagged_files = \ 171 list='$(am__tagged_files)'; \ 172 unique=`for i in $$list; do \ 173 if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ 174 done | $(am__uniquify_input)` 175 ETAGS = etags 176 CTAGS = ctags 177 am__DIST_COMMON = $(srcdir)/Makefile.in $(srcdir)/defines.hfa.in 158 178 DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) 159 179 ACLOCAL = @ACLOCAL@ … … 306 326 # put into lib for now 307 327 cfalibdir = ${CFA_LIBDIR} 308 cfalib_DATA = gcc-builtins.cf builtins.cf extras.cf prelude.cfa bootloader.c 328 cfalib_DATA = gcc-builtins.cf builtins.cf extras.cf prelude.cfa bootloader.c defines.hfa 309 329 AM_CFLAGS = -g -Wall -Wno-unused-function -fPIC @ARCH_FLAGS@ @CONFIG_CFLAGS@ 310 330 AM_CFAFLAGS = @CONFIG_CFAFLAGS@ 311 331 MOSTLYCLEANFILES = bootloader.c builtins.cf extras.cf gcc-builtins.c gcc-builtins.cf prelude.cfa 312 332 MAINTAINERCLEANFILES = ${addprefix ${libdir}/,${cfalib_DATA}} ${addprefix ${libdir}/,${lib_LIBRARIES}} 313 all: all-am 333 all: defines.hfa 334 $(MAKE) $(AM_MAKEFLAGS) all-am 314 335 315 336 .SUFFIXES: … … 331 352 cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ 332 353 *) \ 333 echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__ maybe_remake_depfiles)'; \334 cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__ maybe_remake_depfiles);; \354 echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ 355 cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ 335 356 esac; 336 357 … … 343 364 cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh 344 365 $(am__aclocal_m4_deps): 366 367 defines.hfa: stamp-h1 368 @test -f $@ || rm -f stamp-h1 369 @test -f $@ || $(MAKE) $(AM_MAKEFLAGS) stamp-h1 370 371 stamp-h1: $(srcdir)/defines.hfa.in $(top_builddir)/config.status 372 @rm -f stamp-h1 373 cd $(top_builddir) && $(SHELL) ./config.status prelude/defines.hfa 374 $(srcdir)/defines.hfa.in: $(am__configure_deps) 375 ($(am__cd) $(top_srcdir) && $(AUTOHEADER)) 376 rm -f stamp-h1 377 touch $@ 378 379 distclean-hdr: 380 -rm -f defines.hfa stamp-h1 345 381 346 382 mostlyclean-libtool: … … 370 406 files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ 371 407 dir='$(DESTDIR)$(cfalibdir)'; $(am__uninstall_files_from_dir) 372 tags TAGS: 373 374 ctags CTAGS: 375 376 cscope cscopelist: 377 378 379 distdir: $(BUILT_SOURCES) 380 $(MAKE) $(AM_MAKEFLAGS) distdir-am 381 382 distdir-am: $(DISTFILES) 408 409 ID: $(am__tagged_files) 410 $(am__define_uniq_tagged_files); mkid -fID $$unique 411 tags: tags-am 412 TAGS: tags 413 414 tags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) 415 set x; \ 416 here=`pwd`; \ 417 $(am__define_uniq_tagged_files); \ 418 shift; \ 419 if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \ 420 test -n "$$unique" || unique=$$empty_fix; \ 421 if test $$# -gt 0; then \ 422 $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ 423 "$$@" $$unique; \ 424 else \ 425 $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ 426 $$unique; \ 427 fi; \ 428 fi 429 ctags: ctags-am 430 431 CTAGS: ctags 432 ctags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) 433 $(am__define_uniq_tagged_files); \ 434 test -z "$(CTAGS_ARGS)$$unique" \ 435 || $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \ 436 $$unique 437 438 GTAGS: 439 here=`$(am__cd) $(top_builddir) && pwd` \ 440 && $(am__cd) $(top_srcdir) \ 441 && gtags -i $(GTAGS_ARGS) "$$here" 442 cscopelist: cscopelist-am 443 444 cscopelist-am: $(am__tagged_files) 445 list='$(am__tagged_files)'; \ 446 case "$(srcdir)" in \ 447 [\\/]* | ?:[\\/]*) sdir="$(srcdir)" ;; \ 448 *) sdir=$(subdir)/$(srcdir) ;; \ 449 esac; \ 450 for i in $$list; do \ 451 if test -f "$$i"; then \ 452 echo "$(subdir)/$$i"; \ 453 else \ 454 echo "$$sdir/$$i"; \ 455 fi; \ 456 done >> $(top_builddir)/cscope.files 457 458 distclean-tags: 459 -rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags 460 461 distdir: $(DISTFILES) 383 462 @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ 384 463 topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ … … 412 491 check-am: all-am 413 492 check: check-am 414 all-am: Makefile $(DATA) 493 all-am: Makefile $(DATA) defines.hfa 415 494 installdirs: 416 495 for dir in "$(DESTDIR)$(cfalibdir)"; do \ … … 455 534 distclean: distclean-am 456 535 -rm -f Makefile 457 distclean-am: clean-am distclean-generic 536 distclean-am: clean-am distclean-generic distclean-hdr distclean-tags 458 537 459 538 dvi: dvi-am … … 516 595 uninstall-am: uninstall-cfalibDATA 517 596 518 .MAKE: install-am install-strip 519 520 .PHONY: all all-am check check-am clean clean-generic clean-libtool \ 521 cscopelist-am ctags-am distclean distclean-generic \ 522 distclean-libtool distdir dvi dvi-am html html-am info info-am \ 597 .MAKE: all install-am install-strip 598 599 .PHONY: CTAGS GTAGS TAGS all all-am check check-am clean clean-generic \ 600 clean-libtool cscopelist-am ctags ctags-am distclean \ 601 distclean-generic distclean-hdr distclean-libtool \ 602 distclean-tags distdir dvi dvi-am html html-am info info-am \ 523 603 install install-am install-cfalibDATA install-data \ 524 604 install-data-am install-dvi install-dvi-am install-exec \ … … 529 609 maintainer-clean-generic maintainer-clean-local mostlyclean \ 530 610 mostlyclean-generic mostlyclean-libtool pdf pdf-am ps ps-am \ 531 tags -am uninstall uninstall-am uninstall-cfalibDATA611 tags tags-am uninstall uninstall-am uninstall-cfalibDATA 532 612 533 613 .PRECIOUS: Makefile -
libcfa/prelude/builtins.c
rb7d6a36 r6a490b2 48 48 void exit( int status, const char fmt[], ... ) __attribute__ (( format(printf, 2, 3), __nothrow__, __leaf__, __noreturn__ )); 49 49 void abort( const char fmt[], ... ) __attribute__ (( format(printf, 1, 2), __nothrow__, __leaf__, __noreturn__ )); 50 51 forall(dtype T) 52 static inline T & identity(T & i) { 53 return i; 54 } 55 56 // generator support 57 struct $generator { 58 inline int; 59 }; 60 61 static inline void ?{}($generator & this) { ((int&)this) = 0; } 62 static inline void ^?{}($generator &) {} 63 64 trait is_generator(dtype T) { 65 void main(T & this); 66 $generator * get_generator(T & this); 67 }; 68 69 forall(dtype T | is_generator(T)) 70 static inline T & resume(T & gen) { 71 main(gen); 72 return gen; 73 } 50 74 51 75 // implicit increment, decrement if += defined, and implicit not if != defined -
libcfa/src/Makefile.am
rb7d6a36 r6a490b2 11 11 ## Created On : Sun May 31 08:54:01 2015 12 12 ## Last Modified By : Peter A. Buhr 13 ## Last Modified On : Mon Jul 15 22:43:27 201914 ## Update Count : 24 113 ## Last Modified On : Mon Mar 16 18:07:59 2020 14 ## Update Count : 242 15 15 ############################################################################### 16 16 … … 33 33 # The built sources must not depend on the installed headers 34 34 AM_CFAFLAGS = -quiet -cfalib -I$(srcdir)/stdhdr $(if $(findstring ${gdbwaittarget}, ${@}), -XCFA --gdb) @CONFIG_CFAFLAGS@ 35 AM_CFLAGS = -g -Wall -Wno-unused-function -fPIC - pthread @ARCH_FLAGS@ @CONFIG_CFLAGS@35 AM_CFLAGS = -g -Wall -Wno-unused-function -fPIC -fexceptions -pthread @ARCH_FLAGS@ @CONFIG_CFLAGS@ 36 36 AM_CCASFLAGS = -g -Wall -Wno-unused-function @ARCH_FLAGS@ @CONFIG_CFLAGS@ 37 37 CFACC = @CFACC@ … … 39 39 #---------------------------------------------------------------------------------------------------------------- 40 40 if BUILDLIB 41 headers_nosrc = math.hfa gmp.hfa time_t.hfa bits/align.hfa bits/containers.hfa bits/defs.hfa bits/debug.hfa bits/locks.hfa41 headers_nosrc = bitmanip.hfa math.hfa gmp.hfa time_t.hfa bits/align.hfa bits/containers.hfa bits/defs.hfa bits/debug.hfa bits/locks.hfa containers/list.hfa 42 42 headers = fstream.hfa iostream.hfa iterator.hfa limits.hfa rational.hfa time.hfa stdlib.hfa common.hfa \ 43 43 containers/maybe.hfa containers/pair.hfa containers/result.hfa containers/vector.hfa … … 48 48 thread_headers_nosrc = concurrency/invoke.h 49 49 thread_headers = concurrency/coroutine.hfa concurrency/thread.hfa concurrency/kernel.hfa concurrency/monitor.hfa concurrency/mutex.hfa 50 thread_libsrc = concurrency/CtxSwitch-@ARCHITECTURE@.S concurrency/alarm.cfa concurrency/invoke.c concurrency/ preemption.cfa concurrency/ready_queue.cfa ${thread_headers:.hfa=.cfa}50 thread_libsrc = concurrency/CtxSwitch-@ARCHITECTURE@.S concurrency/alarm.cfa concurrency/invoke.c concurrency/io.cfa concurrency/preemption.cfa concurrency/ready_queue.cfa ${thread_headers:.hfa=.cfa} 51 51 else 52 52 headers = -
libcfa/src/Makefile.in
rb7d6a36 r6a490b2 105 105 $(am__nobase_cfa_include_HEADERS_DIST) $(am__DIST_COMMON) 106 106 mkinstalldirs = $(install_sh) -d 107 CONFIG_HEADER = $(top_builddir)/prelude/defines.hfa 107 108 CONFIG_CLEAN_FILES = 108 109 CONFIG_CLEAN_VPATH_FILES = … … 164 165 am__libcfathread_la_SOURCES_DIST = \ 165 166 concurrency/CtxSwitch-@ARCHITECTURE@.S concurrency/alarm.cfa \ 166 concurrency/invoke.c concurrency/preemption.cfa \ 167 concurrency/ready_queue.cfa concurrency/coroutine.cfa \ 168 concurrency/thread.cfa concurrency/kernel.cfa \ 169 concurrency/monitor.cfa concurrency/mutex.cfa 167 concurrency/invoke.c concurrency/io.cfa \ 168 concurrency/preemption.cfa concurrency/ready_queue.cfa \ 169 concurrency/coroutine.cfa concurrency/thread.cfa \ 170 concurrency/kernel.cfa concurrency/monitor.cfa \ 171 concurrency/mutex.cfa 170 172 @BUILDLIB_TRUE@am__objects_3 = concurrency/coroutine.lo \ 171 173 @BUILDLIB_TRUE@ concurrency/thread.lo concurrency/kernel.lo \ … … 174 176 @BUILDLIB_TRUE@ concurrency/CtxSwitch-@ARCHITECTURE@.lo \ 175 177 @BUILDLIB_TRUE@ concurrency/alarm.lo concurrency/invoke.lo \ 176 @BUILDLIB_TRUE@ concurrency/ preemption.lo \178 @BUILDLIB_TRUE@ concurrency/io.lo concurrency/preemption.lo \ 177 179 @BUILDLIB_TRUE@ concurrency/ready_queue.lo $(am__objects_3) 178 180 am_libcfathread_la_OBJECTS = $(am__objects_4) … … 194 196 am__v_at_0 = @ 195 197 am__v_at_1 = 196 DEFAULT_INCLUDES = -I.@am__isrc@ 198 DEFAULT_INCLUDES = -I.@am__isrc@ -I$(top_builddir)/prelude 197 199 depcomp = $(SHELL) $(top_srcdir)/automake/depcomp 198 200 am__depfiles_maybe = depfiles … … 238 240 limits.hfa rational.hfa time.hfa stdlib.hfa common.hfa \ 239 241 containers/maybe.hfa containers/pair.hfa containers/result.hfa \ 240 containers/vector.hfa math.hfa gmp.hfa time_t.hfa \242 containers/vector.hfa bitmanip.hfa math.hfa gmp.hfa time_t.hfa \ 241 243 bits/align.hfa bits/containers.hfa bits/defs.hfa \ 242 bits/debug.hfa bits/locks.hfa con currency/coroutine.hfa \243 concurrency/ thread.hfa concurrency/kernel.hfa \244 concurrency/ monitor.hfa concurrency/mutex.hfa \245 concurrency/ invoke.h244 bits/debug.hfa bits/locks.hfa containers/list.hfa \ 245 concurrency/coroutine.hfa concurrency/thread.hfa \ 246 concurrency/kernel.hfa concurrency/monitor.hfa \ 247 concurrency/mutex.hfa concurrency/invoke.h 246 248 HEADERS = $(nobase_cfa_include_HEADERS) 247 249 am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) … … 433 435 am__v_GOC_0 = @echo " GOC " $@; 434 436 am__v_GOC_1 = 437 AM_V_PY = $(am__v_PY_@AM_V@) 438 am__v_PY_ = $(am__v_PY_@AM_DEFAULT_V@) 439 am__v_PY_0 = @echo " PYTHON " $@; 440 am__v_PY_1 = 435 441 AM_V_RUST = $(am__v_RUST_@AM_V@) 436 442 am__v_RUST_ = $(am__v_RUST_@AM_DEFAULT_V@) 437 am__v_RUST_0 = @echo " RUST 443 am__v_RUST_0 = @echo " RUST " $@; 438 444 am__v_RUST_1 = 439 445 AM_V_NODEJS = $(am__v_NODEJS_@AM_V@) 440 446 am__v_NODEJS_ = $(am__v_NODEJS_@AM_DEFAULT_V@) 441 am__v_NODEJS_0 = @echo " NODEJS 447 am__v_NODEJS_0 = @echo " NODEJS " $@; 442 448 am__v_NODEJS_1 = 443 449 AM_V_JAVAC = $(am__v_JAVAC_@AM_V@) … … 453 459 # The built sources must not depend on the installed headers 454 460 AM_CFAFLAGS = -quiet -cfalib -I$(srcdir)/stdhdr $(if $(findstring ${gdbwaittarget}, ${@}), -XCFA --gdb) @CONFIG_CFAFLAGS@ 455 AM_CFLAGS = -g -Wall -Wno-unused-function -fPIC - pthread @ARCH_FLAGS@ @CONFIG_CFLAGS@461 AM_CFLAGS = -g -Wall -Wno-unused-function -fPIC -fexceptions -pthread @ARCH_FLAGS@ @CONFIG_CFLAGS@ 456 462 AM_CCASFLAGS = -g -Wall -Wno-unused-function @ARCH_FLAGS@ @CONFIG_CFLAGS@ 457 463 @BUILDLIB_FALSE@headers_nosrc = 458 464 459 465 #---------------------------------------------------------------------------------------------------------------- 460 @BUILDLIB_TRUE@headers_nosrc = math.hfa gmp.hfa time_t.hfa bits/align.hfa bits/containers.hfa bits/defs.hfa bits/debug.hfa bits/locks.hfa466 @BUILDLIB_TRUE@headers_nosrc = bitmanip.hfa math.hfa gmp.hfa time_t.hfa bits/align.hfa bits/containers.hfa bits/defs.hfa bits/debug.hfa bits/locks.hfa containers/list.hfa 461 467 @BUILDLIB_FALSE@headers = 462 468 @BUILDLIB_TRUE@headers = fstream.hfa iostream.hfa iterator.hfa limits.hfa rational.hfa time.hfa stdlib.hfa common.hfa \ … … 471 477 @BUILDLIB_FALSE@thread_headers = 472 478 @BUILDLIB_TRUE@thread_headers = concurrency/coroutine.hfa concurrency/thread.hfa concurrency/kernel.hfa concurrency/monitor.hfa concurrency/mutex.hfa 473 @BUILDLIB_TRUE@thread_libsrc = concurrency/CtxSwitch-@ARCHITECTURE@.S concurrency/alarm.cfa concurrency/invoke.c concurrency/ preemption.cfa concurrency/ready_queue.cfa ${thread_headers:.hfa=.cfa}479 @BUILDLIB_TRUE@thread_libsrc = concurrency/CtxSwitch-@ARCHITECTURE@.S concurrency/alarm.cfa concurrency/invoke.c concurrency/io.cfa concurrency/preemption.cfa concurrency/ready_queue.cfa ${thread_headers:.hfa=.cfa} 474 480 475 481 #---------------------------------------------------------------------------------------------------------------- … … 605 611 concurrency/$(DEPDIR)/$(am__dirstamp) 606 612 concurrency/invoke.lo: concurrency/$(am__dirstamp) \ 613 concurrency/$(DEPDIR)/$(am__dirstamp) 614 concurrency/io.lo: concurrency/$(am__dirstamp) \ 607 615 concurrency/$(DEPDIR)/$(am__dirstamp) 608 616 concurrency/preemption.lo: concurrency/$(am__dirstamp) \ -
libcfa/src/bits/containers.hfa
rb7d6a36 r6a490b2 146 146 static inline forall( dtype T | is_node(T) ) { 147 147 void ?{}( __queue(T) & this ) with( this ) { 148 head{ 0p };148 head{ 1p }; 149 149 tail{ &head }; 150 verify(*tail == 1p); 150 151 } 151 152 152 153 void append( __queue(T) & this, T * val ) with( this ) { 153 154 verify(tail != 0p); 155 verify(*tail == 1p); 154 156 *tail = val; 155 157 tail = &get_next( *val ); 158 *tail = 1p; 156 159 } 157 160 158 161 T * pop_head( __queue(T) & this ) { 162 verify(*this.tail == 1p); 159 163 T * head = this.head; 160 if( head ) {164 if( head != 1p ) { 161 165 this.head = get_next( *head ); 162 if( !get_next( *head )) {166 if( get_next( *head ) == 1p ) { 163 167 this.tail = &this.head; 164 168 } 165 169 get_next( *head ) = 0p; 166 } 167 return head; 170 verify(*this.tail == 1p); 171 verify( get_next(*head) == 0p ); 172 return head; 173 } 174 verify(*this.tail == 1p); 175 return 0p; 168 176 } 169 177 … … 180 188 get_next( *val ) = 0p; 181 189 182 verify( (head == 0p) == (&head == tail) );183 verify( *tail == 0p );190 verify( (head == 1p) == (&head == tail) ); 191 verify( *tail == 1p ); 184 192 return val; 185 193 } … … 266 274 return this.head != 0; 267 275 } 276 277 void move_to_front( __dllist(T) & src, __dllist(T) & dst, T & node ) { 278 remove (src, node); 279 push_front(dst, node); 280 } 268 281 } 269 282 #undef next -
libcfa/src/bits/debug.hfa
rb7d6a36 r6a490b2 9 9 // Author : Thierry Delisle 10 10 // Created On : Mon Nov 28 12:27:26 2016 11 // Last Modified By : Peter A. Buhr12 // Last Modified On : Tue Feb 4 12:29:21202013 // Update Count : 911 // Last Modified By : Andrew Beach 12 // Last Modified On : Mon Apr 27 10:15:00 2020 13 // Update Count : 10 14 14 // 15 15 … … 23 23 #define __cfaabi_dbg_ctx_param const char caller[] 24 24 #define __cfaabi_dbg_ctx_param2 , const char caller[] 25 #define __cfaabi_dbg_ctx_fwd caller 26 #define __cfaabi_dbg_ctx_fwd2 , caller 25 27 #else 26 28 #define __cfaabi_dbg_debug_do(...) … … 30 32 #define __cfaabi_dbg_ctx_param 31 33 #define __cfaabi_dbg_ctx_param2 34 #define __cfaabi_dbg_ctx_fwd 35 #define __cfaabi_dbg_ctx_fwd2 32 36 #endif 33 37 … … 36 40 #endif 37 41 #include <stdarg.h> 38 #include <stdio.h>39 #include <unistd.h>40 42 41 43 extern void __cfaabi_bits_write( int fd, const char buffer[], int len ); … … 46 48 extern void __cfaabi_bits_print_vararg( int fd, const char fmt[], va_list arg ); 47 49 extern void __cfaabi_bits_print_buffer( int fd, char buffer[], int buffer_size, const char fmt[], ... ) __attribute__(( format(printf, 4, 5) )); 50 51 #if defined(__CFA_DEBUG_PRINT__) \ 52 || defined(__CFA_DEBUG_PRINT_IO__) || defined(__CFA_DEBUG_PRINT_IO_CORE__) \ 53 || defined(__CFA_DEBUG_PRINT_MONITOR__) || defined(__CFA_DEBUG_PRINT_PREEMPTION__) \ 54 || defined(__CFA_DEBUG_PRINT_RUNTIME_CORE__) || defined(__CFA_DEBUG_PRINT_EXCEPTION__) 55 #include <stdio.h> 56 #include <unistd.h> 57 #endif 48 58 #ifdef __cforall 49 59 } 50 60 #endif 51 61 52 // #define __CFA_DEBUG_PRINT__ 53 62 // Deprecated: Use the versions with the new module names. 54 63 #ifdef __CFA_DEBUG_PRINT__ 55 64 #define __cfaabi_dbg_write( buffer, len ) __cfaabi_bits_write( STDERR_FILENO, buffer, len ) 56 65 #define __cfaabi_dbg_acquire() __cfaabi_bits_acquire() 57 66 #define __cfaabi_dbg_release() __cfaabi_bits_release() 58 #define __cfaabi_dbg_print_safe(...) __cfaabi_bits_print_safe ( STDERR_FILENO, __VA_ARGS__ )59 #define __cfaabi_dbg_print_nolock(...) __cfaabi_bits_print_nolock ( STDERR_FILENO, __VA_ARGS__ )60 #define __cfaabi_dbg_print_buffer(...) __cfaabi_bits_print_buffer ( STDERR_FILENO, __VA_ARGS__ )67 #define __cfaabi_dbg_print_safe(...) __cfaabi_bits_print_safe ( STDERR_FILENO, __VA_ARGS__ ) 68 #define __cfaabi_dbg_print_nolock(...) __cfaabi_bits_print_nolock ( STDERR_FILENO, __VA_ARGS__ ) 69 #define __cfaabi_dbg_print_buffer(...) __cfaabi_bits_print_buffer ( STDERR_FILENO, __VA_ARGS__ ) 61 70 #define __cfaabi_dbg_print_buffer_decl(...) char __dbg_text[256]; int __dbg_len = snprintf( __dbg_text, 256, __VA_ARGS__ ); __cfaabi_bits_write( STDERR_FILENO, __dbg_text, __dbg_len ); 62 #define __cfaabi_dbg_print_buffer_local(...) __dbg_len = snprintf( __dbg_text, 256, __VA_ARGS__ ); __cfaabi_ bits_write( STDERR_FILENO, __dbg_text, __dbg_len );71 #define __cfaabi_dbg_print_buffer_local(...) __dbg_len = snprintf( __dbg_text, 256, __VA_ARGS__ ); __cfaabi_dbg_write( STDERR_FILENO, __dbg_text, __dbg_len ); 63 72 #else 64 73 #define __cfaabi_dbg_write(...) ((void)0) … … 72 81 #endif 73 82 83 // Debug print functions and statements: 84 // Most are wrappers around the bits printing function but are not always used. 85 // If they are used depends if the group (first argument) is active or not. The group must be one 86 // defined belowe. The other arguments depend on the wrapped function. 87 #define __cfadbg_write(group, buffer, len) \ 88 __CFADBG_PRINT_GROUP_##group(__cfaabi_bits_write(STDERR_FILENO, buffer, len)) 89 #define __cfadbg_acquire(group) \ 90 __CFADBG_PRINT_GROUP_##group(__cfaabi_bits_acquire()) 91 #define __cfadbg_release(group) \ 92 __CFADBG_PRINT_GROUP_##group(__cfaabi_bits_release()) 93 #define __cfadbg_print_safe(group, ...) \ 94 __CFADBG_PRINT_GROUP_##group(__cfaabi_bits_print_safe(STDERR_FILENO, __VA_ARGS__)) 95 #define __cfadbg_print_nolock(group, ...) \ 96 __CFADBG_PRINT_GROUP_##group(__cfaabi_bits_print_nolock(STDERR_FILENO, __VA_ARGS__)) 97 #define __cfadbg_print_buffer(group, ...) \ 98 __CFADBG_PRINT_GROUP_##group(__cfaabi_bits_print_buffer(STDERR_FILENO, __VA_ARGS__)) 99 #define __cfadbg_print_buffer_decl(group, ...) \ 100 __CFADBG_PRINT_GROUP_##group(char __dbg_text[256]; int __dbg_len = snprintf( __dbg_text, 256, __VA_ARGS__ ); __cfaabi_bits_write( __dbg_text, __dbg_len )) 101 #define __cfadbg_print_buffer_local(group, ...) \ 102 __CFADBG_PRINT_GROUP_##group(__dbg_len = snprintf( __dbg_text, 256, __VA_ARGS__ ); __cfaabi_bits_write(STDERR_FILENO, __dbg_text, __dbg_len)) 103 104 // The debug print groups: 105 #if defined(__CFA_DEBUG_PRINT__) || defined(__CFA_DEBUG_PRINT_IO__) 106 # define __CFADBG_PRINT_GROUP_io(...) __VA_ARGS__ 107 #else 108 # define __CFADBG_PRINT_GROUP_io(...) ((void)0) 109 #endif 110 #if defined(__CFA_DEBUG_PRINT__) || defined(__CFA_DEBUG_PRINT_IO__) || defined(__CFA_DEBUG_PRINT_IO_CORE__) 111 # define __CFADBG_PRINT_GROUP_io_core(...) __VA_ARGS__ 112 #else 113 # define __CFADBG_PRINT_GROUP_io_core(...) ((void)0) 114 #endif 115 #if defined(__CFA_DEBUG_PRINT__) || defined(__CFA_DEBUG_PRINT_MONITOR__) 116 # define __CFADBG_PRINT_GROUP_monitor(...) __VA_ARGS__ 117 #else 118 # define __CFADBG_PRINT_GROUP_monitor(...) ((void)0) 119 #endif 120 #if defined(__CFA_DEBUG_PRINT__) || defined(__CFA_DEBUG_PRINT_PREEMPTION__) 121 # define __CFADBG_PRINT_GROUP_preemption(...) __VA_ARGS__ 122 #else 123 # define __CFADBG_PRINT_GROUP_preemption(...) ((void)0) 124 #endif 125 #if defined(__CFA_DEBUG_PRINT__) || defined(__CFA_DEBUG_PRINT_RUNTIME_CORE__) 126 # define __CFADBG_PRINT_GROUP_runtime_core(...) __VA_ARGS__ 127 #else 128 # define __CFADBG_PRINT_GROUP_runtime_core(...) ((void)0) 129 #endif 130 #if defined(__CFA_DEBUG_PRINT__) || defined(__CFA_DEBUG_PRINT_READY_QUEUE__) 131 # define __CFADBG_PRINT_GROUP_ready_queue(...) __VA_ARGS__ 132 #else 133 # define __CFADBG_PRINT_GROUP_ready_queue(...) ((void)0) 134 #endif 135 #if defined(__CFA_DEBUG_PRINT__) || defined(__CFA_DEBUG_PRINT_EXCEPTION__) 136 # define __CFADBG_PRINT_GROUP_exception(...) __VA_ARGS__ 137 #else 138 # define __CFADBG_PRINT_GROUP_exception(...) ((void)0) 139 #endif 140 74 141 // Local Variables: // 75 142 // mode: c // -
libcfa/src/bits/locks.hfa
rb7d6a36 r6a490b2 54 54 55 55 #ifdef __CFA_DEBUG__ 56 void __cfaabi_dbg_record (__spinlock_t & this, const char prev_name[]);56 void __cfaabi_dbg_record_lock(__spinlock_t & this, const char prev_name[]); 57 57 #else 58 #define __cfaabi_dbg_record (x, y)58 #define __cfaabi_dbg_record_lock(x, y) 59 59 #endif 60 60 } 61 62 extern void yield( unsigned int );63 61 64 62 static inline void ?{}( __spinlock_t & this ) { … … 68 66 // Lock the spinlock, return false if already acquired 69 67 static inline bool try_lock ( __spinlock_t & this __cfaabi_dbg_ctx_param2 ) { 68 disable_interrupts(); 70 69 bool result = (this.lock == 0) && (__atomic_test_and_set( &this.lock, __ATOMIC_ACQUIRE ) == 0); 71 70 if( result ) { 72 disable_interrupts(); 73 __cfaabi_dbg_record( this, caller ); 71 __cfaabi_dbg_record_lock( this, caller ); 72 } else { 73 enable_interrupts_noPoll(); 74 74 } 75 75 return result; … … 83 83 #endif 84 84 85 disable_interrupts(); 85 86 for ( unsigned int i = 1;; i += 1 ) { 86 87 if ( (this.lock == 0) && (__atomic_test_and_set( &this.lock, __ATOMIC_ACQUIRE ) == 0) ) break; … … 98 99 #endif 99 100 } 100 disable_interrupts(); 101 __cfaabi_dbg_record( this, caller ); 101 __cfaabi_dbg_record_lock( this, caller ); 102 102 } 103 103 104 104 static inline void unlock( __spinlock_t & this ) { 105 __atomic_clear( &this.lock, __ATOMIC_RELEASE ); 105 106 enable_interrupts_noPoll(); 106 __atomic_clear( &this.lock, __ATOMIC_RELEASE );107 107 } 108 108 … … 112 112 #endif 113 113 114 extern "C" { 115 char * strerror(int); 116 } 117 #define CHECKED(x) { int err = x; if( err != 0 ) abort("KERNEL ERROR: Operation \"" #x "\" return error %d - %s\n", err, strerror(err)); } 118 114 119 struct __bin_sem_t { 115 bool signaled;116 120 pthread_mutex_t lock; 117 121 pthread_cond_t cond; 122 int val; 118 123 }; 119 124 120 125 static inline void ?{}(__bin_sem_t & this) with( this ) { 121 signaled = false; 122 pthread_mutex_init(&lock, NULL); 123 pthread_cond_init (&cond, NULL); 126 // Create the mutex with error checking 127 pthread_mutexattr_t mattr; 128 pthread_mutexattr_init( &mattr ); 129 pthread_mutexattr_settype( &mattr, PTHREAD_MUTEX_ERRORCHECK_NP); 130 pthread_mutex_init(&lock, &mattr); 131 132 pthread_cond_init (&cond, 0p); 133 val = 0; 124 134 } 125 135 126 136 static inline void ^?{}(__bin_sem_t & this) with( this ) { 127 pthread_mutex_destroy(&lock);128 pthread_cond_destroy (&cond);137 CHECKED( pthread_mutex_destroy(&lock) ); 138 CHECKED( pthread_cond_destroy (&cond) ); 129 139 } 130 140 131 141 static inline void wait(__bin_sem_t & this) with( this ) { 132 142 verify(__cfaabi_dbg_in_kernel()); 133 pthread_mutex_lock(&lock);134 if(!signaled) { // this must be a loop, not if!143 CHECKED( pthread_mutex_lock(&lock) ); 144 while(val < 1) { 135 145 pthread_cond_wait(&cond, &lock); 136 146 } 137 signaled = false;138 pthread_mutex_unlock(&lock);147 val -= 1; 148 CHECKED( pthread_mutex_unlock(&lock) ); 139 149 } 140 150 141 static inline voidpost(__bin_sem_t & this) with( this ) {142 verify(__cfaabi_dbg_in_kernel());151 static inline bool post(__bin_sem_t & this) with( this ) { 152 bool needs_signal = false; 143 153 144 pthread_mutex_lock(&lock); 145 bool needs_signal = !signaled; 146 signaled = true; 147 pthread_mutex_unlock(&lock); 154 CHECKED( pthread_mutex_lock(&lock) ); 155 if(val < 1) { 156 val += 1; 157 pthread_cond_signal(&cond); 158 needs_signal = true; 159 } 160 CHECKED( pthread_mutex_unlock(&lock) ); 148 161 149 if (needs_signal) 150 pthread_cond_signal(&cond); 162 return needs_signal; 151 163 } 164 165 #undef CHECKED 152 166 #endif -
libcfa/src/bits/signal.hfa
rb7d6a36 r6a490b2 54 54 sig, handler, flags, errno, strerror( errno ) 55 55 ); 56 _ exit( EXIT_FAILURE );56 _Exit( EXIT_FAILURE ); 57 57 } // if 58 58 } -
libcfa/src/concurrency/CtxSwitch-arm.S
rb7d6a36 r6a490b2 13 13 .text 14 14 .align 2 15 .global CtxSwitch16 .type CtxSwitch, %function15 .global __cfactx_switch 16 .type __cfactx_switch, %function 17 17 18 CtxSwitch:18 __cfactx_switch: 19 19 @ save callee-saved registers: r4-r8, r10, r11, r13(sp) (plus r9 depending on platform specification) 20 20 @ I've seen reference to 31 registers on 64-bit, if this is the case, more need to be saved … … 52 52 mov r15, r14 53 53 #endif // R9_SPECIAL 54 54 55 55 .text 56 56 .align 2 57 .global CtxInvokeStub58 .type CtxInvokeStub, %function57 .global __cfactx_invoke_stub 58 .type __cfactx_invoke_stub, %function 59 59 60 CtxInvokeStub:60 __cfactx_invoke_stub: 61 61 ldmfd r13!, {r0-r1} 62 62 mov r15, r1 -
libcfa/src/concurrency/CtxSwitch-i386.S
rb7d6a36 r6a490b2 43 43 .text 44 44 .align 2 45 .globl CtxSwitch46 .type CtxSwitch, @function47 CtxSwitch:45 .globl __cfactx_switch 46 .type __cfactx_switch, @function 47 __cfactx_switch: 48 48 49 49 // Copy the "from" context argument from the stack to register eax … … 83 83 84 84 ret 85 .size CtxSwitch, .-CtxSwitch85 .size __cfactx_switch, .-__cfactx_switch 86 86 87 87 // Local Variables: // -
libcfa/src/concurrency/CtxSwitch-x86_64.S
rb7d6a36 r6a490b2 44 44 .text 45 45 .align 2 46 .globl CtxSwitch47 .type CtxSwitch, @function48 CtxSwitch:46 .globl __cfactx_switch 47 .type __cfactx_switch, @function 48 __cfactx_switch: 49 49 50 50 // Save volatile registers on the stack. … … 77 77 78 78 ret 79 .size CtxSwitch, .-CtxSwitch79 .size __cfactx_switch, .-__cfactx_switch 80 80 81 81 //----------------------------------------------------------------------------- … … 83 83 .text 84 84 .align 2 85 .globl CtxInvokeStub86 .type CtxInvokeStub, @function87 CtxInvokeStub:85 .globl __cfactx_invoke_stub 86 .type __cfactx_invoke_stub, @function 87 __cfactx_invoke_stub: 88 88 movq %rbx, %rdi 89 89 movq %r12, %rsi 90 90 jmp *%r13 91 .size CtxInvokeStub, .-CtxInvokeStub91 .size __cfactx_invoke_stub, .-__cfactx_invoke_stub 92 92 93 93 // Local Variables: // -
libcfa/src/concurrency/alarm.cfa
rb7d6a36 r6a490b2 47 47 //============================================================================================= 48 48 49 void ?{}( alarm_node_t & this, thread_desc* thrd, Time alarm, Duration period ) with( this ) {49 void ?{}( alarm_node_t & this, $thread * thrd, Time alarm, Duration period ) with( this ) { 50 50 this.thrd = thrd; 51 51 this.alarm = alarm; 52 52 this.period = period; 53 next = 0;54 53 set = false; 55 54 kernel_alarm = false; … … 60 59 this.alarm = alarm; 61 60 this.period = period; 62 next = 0;63 61 set = false; 64 62 kernel_alarm = true; … … 71 69 } 72 70 73 #if !defined(NDEBUG) && (defined(__CFA_DEBUG__) || defined(__CFA_VERIFY__)) 74 bool validate( alarm_list_t * this ) { 75 alarm_node_t ** it = &this->head; 76 while( (*it) ) { 77 it = &(*it)->next; 71 void insert( alarm_list_t * this, alarm_node_t * n ) { 72 alarm_node_t * it = & (*this)`first; 73 while( it && (n->alarm > it->alarm) ) { 74 it = & (*it)`next; 75 } 76 if ( it ) { 77 insert_before( *it, *n ); 78 } else { 79 insert_last(*this, *n); 78 80 } 79 81 80 return it == this->tail; 81 } 82 #endif 83 84 static inline void insert_at( alarm_list_t * this, alarm_node_t * n, __alarm_it_t p ) { 85 verify( !n->next ); 86 if( p == this->tail ) { 87 this->tail = &n->next; 88 } 89 else { 90 n->next = *p; 91 } 92 *p = n; 93 94 verify( validate( this ) ); 95 } 96 97 void insert( alarm_list_t * this, alarm_node_t * n ) { 98 alarm_node_t ** it = &this->head; 99 while( (*it) && (n->alarm > (*it)->alarm) ) { 100 it = &(*it)->next; 101 } 102 103 insert_at( this, n, it ); 104 105 verify( validate( this ) ); 82 verify( validate( *this ) ); 106 83 } 107 84 108 85 alarm_node_t * pop( alarm_list_t * this ) { 109 alarm_node_t * head = this->head; 86 verify( validate( *this ) ); 87 alarm_node_t * head = & (*this)`first; 110 88 if( head ) { 111 this->head = head->next; 112 if( !head->next ) { 113 this->tail = &this->head; 114 } 115 head->next = 0p; 89 remove(*head); 116 90 } 117 verify( validate( this ) );91 verify( validate( *this ) ); 118 92 return head; 119 93 } 120 94 121 static inline void remove_at( alarm_list_t * this, alarm_node_t * n, __alarm_it_t it ) {122 verify( it );123 verify( (*it) == n );124 125 (*it) = n->next;126 if( !n-> next ) {127 this->tail = it;128 }129 n->next = 0p;130 131 verify( validate( this ) );132 }133 134 static inline void remove( alarm_list_t * this, alarm_node_t * n ) {135 alarm_node_t ** it = &this->head;136 while( (*it) && (*it) != n ) {137 it = &(*it)->next;138 }139 140 verify( validate( this ) );141 142 if( *it ) { remove_at( this, n, it ); }143 144 verify( validate( this ) );145 }146 147 95 void register_self( alarm_node_t * this ) { 148 alarm_list_t * alarms = &event_kernel->alarms;96 alarm_list_t & alarms = event_kernel->alarms; 149 97 150 98 disable_interrupts(); … … 152 100 { 153 101 verify( validate( alarms ) ); 154 bool first = ! alarms->head;102 bool first = ! & alarms`first; 155 103 156 insert( alarms, this );104 insert( &alarms, this ); 157 105 if( first ) { 158 __kernel_set_timer( alarms ->head->alarm - __kernel_get_time() );106 __kernel_set_timer( alarms`first.alarm - __kernel_get_time() ); 159 107 } 160 108 } … … 168 116 lock( event_kernel->lock __cfaabi_dbg_ctx2 ); 169 117 { 170 verify( validate( &event_kernel->alarms ) );171 remove( &event_kernel->alarms,this );118 verify( validate( event_kernel->alarms ) ); 119 remove( *this ); 172 120 } 173 121 unlock( event_kernel->lock ); … … 176 124 } 177 125 126 //============================================================================================= 127 // Utilities 128 //============================================================================================= 129 130 void sleep( Duration duration ) { 131 alarm_node_t node = { active_thread(), __kernel_get_time() + duration, 0`s }; 132 133 register_self( &node ); 134 park( __cfaabi_dbg_ctx ); 135 136 /* paranoid */ verify( !node.set ); 137 /* paranoid */ verify( & node`next == 0p ); 138 /* paranoid */ verify( & node`prev == 0p ); 139 } 140 178 141 // Local Variables: // 179 142 // mode: c // -
libcfa/src/concurrency/alarm.hfa
rb7d6a36 r6a490b2 23 23 #include "time.hfa" 24 24 25 struct thread_desc; 25 #include <containers/list.hfa> 26 27 struct $thread; 26 28 struct processor; 27 29 … … 40 42 Time alarm; // time when alarm goes off 41 43 Duration period; // if > 0 => period of alarm 42 alarm_node_t * next; // intrusive link list field 44 45 DLISTED_MGD_IMPL_IN(alarm_node_t) 43 46 44 47 union { 45 thread_desc* thrd; // thrd who created event48 $thread * thrd; // thrd who created event 46 49 processor * proc; // proc who created event 47 50 }; … … 50 53 bool kernel_alarm :1; // true if this is not a user defined alarm 51 54 }; 55 DLISTED_MGD_IMPL_OUT(alarm_node_t) 52 56 53 typedef alarm_node_t ** __alarm_it_t; 54 55 void ?{}( alarm_node_t & this, thread_desc * thrd, Time alarm, Duration period ); 57 void ?{}( alarm_node_t & this, $thread * thrd, Time alarm, Duration period ); 56 58 void ?{}( alarm_node_t & this, processor * proc, Time alarm, Duration period ); 57 59 void ^?{}( alarm_node_t & this ); 58 60 59 struct alarm_list_t { 60 alarm_node_t * head; 61 __alarm_it_t tail; 62 }; 63 64 static inline void ?{}( alarm_list_t & this ) with( this ) { 65 head = 0; 66 tail = &head; 67 } 61 typedef dlist(alarm_node_t, alarm_node_t) alarm_list_t; 68 62 69 63 void insert( alarm_list_t * this, alarm_node_t * n ); -
libcfa/src/concurrency/coroutine.cfa
rb7d6a36 r6a490b2 37 37 38 38 extern "C" { 39 void _CtxCoroutine_Unwind(struct _Unwind_Exception * storage, struct coroutine_desc*) __attribute__ ((__noreturn__));39 void _CtxCoroutine_Unwind(struct _Unwind_Exception * storage, struct $coroutine *) __attribute__ ((__noreturn__)); 40 40 static void _CtxCoroutine_UnwindCleanup(_Unwind_Reason_Code, struct _Unwind_Exception *) __attribute__ ((__noreturn__)); 41 41 static void _CtxCoroutine_UnwindCleanup(_Unwind_Reason_Code, struct _Unwind_Exception *) { … … 89 89 } 90 90 91 void ?{}( coroutine_desc& this, const char name[], void * storage, size_t storageSize ) with( this ) {91 void ?{}( $coroutine & this, const char name[], void * storage, size_t storageSize ) with( this ) { 92 92 (this.context){0p, 0p}; 93 93 (this.stack){storage, storageSize}; … … 99 99 } 100 100 101 void ^?{}( coroutine_desc& this) {101 void ^?{}($coroutine& this) { 102 102 if(this.state != Halted && this.state != Start && this.state != Primed) { 103 coroutine_desc* src = TL_GET( this_thread )->curr_cor;104 coroutine_desc* dst = &this;103 $coroutine * src = TL_GET( this_thread )->curr_cor; 104 $coroutine * dst = &this; 105 105 106 106 struct _Unwind_Exception storage; … … 115 115 } 116 116 117 CoroutineCtxSwitch( src, dst );117 $ctx_switch( src, dst ); 118 118 } 119 119 } … … 123 123 forall(dtype T | is_coroutine(T)) 124 124 void prime(T& cor) { 125 coroutine_desc* this = get_coroutine(cor);125 $coroutine* this = get_coroutine(cor); 126 126 assert(this->state == Start); 127 127 … … 187 187 // is not inline (We can't inline Cforall in C) 188 188 extern "C" { 189 void __ leave_coroutine( struct coroutine_desc* src ) {190 coroutine_desc* starter = src->cancellation != 0 ? src->last : src->starter;189 void __cfactx_cor_leave( struct $coroutine * src ) { 190 $coroutine * starter = src->cancellation != 0 ? src->last : src->starter; 191 191 192 192 src->state = Halted; … … 201 201 src->name, src, starter->name, starter ); 202 202 203 CoroutineCtxSwitch( src, starter );204 } 205 206 struct coroutine_desc * __finish_coroutine(void) {207 struct coroutine_desc* cor = kernelTLS.this_thread->curr_cor;203 $ctx_switch( src, starter ); 204 } 205 206 struct $coroutine * __cfactx_cor_finish(void) { 207 struct $coroutine * cor = kernelTLS.this_thread->curr_cor; 208 208 209 209 if(cor->state == Primed) { 210 suspend();210 __cfactx_suspend(); 211 211 } 212 212 -
libcfa/src/concurrency/coroutine.hfa
rb7d6a36 r6a490b2 25 25 trait is_coroutine(dtype T) { 26 26 void main(T & this); 27 coroutine_desc* get_coroutine(T & this);27 $coroutine * get_coroutine(T & this); 28 28 }; 29 29 30 #define DECL_COROUTINE(X) static inline coroutine_desc* get_coroutine(X& this) { return &this.__cor; } void main(X& this)30 #define DECL_COROUTINE(X) static inline $coroutine* get_coroutine(X& this) { return &this.__cor; } void main(X& this) 31 31 32 32 //----------------------------------------------------------------------------- … … 35 35 // void ^?{}( coStack_t & this ); 36 36 37 void ?{}( coroutine_desc& this, const char name[], void * storage, size_t storageSize );38 void ^?{}( coroutine_desc& this );37 void ?{}( $coroutine & this, const char name[], void * storage, size_t storageSize ); 38 void ^?{}( $coroutine & this ); 39 39 40 static inline void ?{}( coroutine_desc& this) { this{ "Anonymous Coroutine", 0p, 0 }; }41 static inline void ?{}( coroutine_desc& this, size_t stackSize) { this{ "Anonymous Coroutine", 0p, stackSize }; }42 static inline void ?{}( coroutine_desc& this, void * storage, size_t storageSize ) { this{ "Anonymous Coroutine", storage, storageSize }; }43 static inline void ?{}( coroutine_desc& this, const char name[]) { this{ name, 0p, 0 }; }44 static inline void ?{}( coroutine_desc& this, const char name[], size_t stackSize ) { this{ name, 0p, stackSize }; }40 static inline void ?{}( $coroutine & this) { this{ "Anonymous Coroutine", 0p, 0 }; } 41 static inline void ?{}( $coroutine & this, size_t stackSize) { this{ "Anonymous Coroutine", 0p, stackSize }; } 42 static inline void ?{}( $coroutine & this, void * storage, size_t storageSize ) { this{ "Anonymous Coroutine", storage, storageSize }; } 43 static inline void ?{}( $coroutine & this, const char name[]) { this{ name, 0p, 0 }; } 44 static inline void ?{}( $coroutine & this, const char name[], size_t stackSize ) { this{ name, 0p, stackSize }; } 45 45 46 46 //----------------------------------------------------------------------------- 47 47 // Public coroutine API 48 static inline void suspend(void);49 50 forall(dtype T | is_coroutine(T))51 static inline T & resume(T & cor);52 53 48 forall(dtype T | is_coroutine(T)) 54 49 void prime(T & cor); 55 50 56 static inline struct coroutine_desc* active_coroutine() { return TL_GET( this_thread )->curr_cor; }51 static inline struct $coroutine * active_coroutine() { return TL_GET( this_thread )->curr_cor; } 57 52 58 53 //----------------------------------------------------------------------------- … … 61 56 // Start coroutine routines 62 57 extern "C" { 63 void CtxInvokeCoroutine(void (*main)(void *), void * this);58 void __cfactx_invoke_coroutine(void (*main)(void *), void * this); 64 59 65 60 forall(dtype T) 66 void CtxStart(void (*main)(T &), struct coroutine_desc* cor, T & this, void (*invoke)(void (*main)(void *), void *));61 void __cfactx_start(void (*main)(T &), struct $coroutine * cor, T & this, void (*invoke)(void (*main)(void *), void *)); 67 62 68 extern void _ CtxCoroutine_Unwind(struct _Unwind_Exception * storage, struct coroutine_desc*) __attribute__ ((__noreturn__));63 extern void __cfactx_coroutine_unwind(struct _Unwind_Exception * storage, struct $coroutine *) __attribute__ ((__noreturn__)); 69 64 70 extern void CtxSwitch( struct __stack_context_t * from, struct __stack_context_t * to ) asm ("CtxSwitch");65 extern void __cfactx_switch( struct __stack_context_t * from, struct __stack_context_t * to ) asm ("__cfactx_switch"); 71 66 } 72 67 73 68 // Private wrappers for context switch and stack creation 74 69 // Wrapper for co 75 static inline void CoroutineCtxSwitch(coroutine_desc* src, coroutine_desc* dst) {70 static inline void $ctx_switch( $coroutine * src, $coroutine * dst ) __attribute__((nonnull (1, 2))) { 76 71 // set state of current coroutine to inactive 77 src->state = src->state == Halted ? Halted : Inactive;72 src->state = src->state == Halted ? Halted : Blocked; 78 73 79 74 // set new coroutine that task is executing … … 82 77 // context switch to specified coroutine 83 78 verify( dst->context.SP ); 84 CtxSwitch( &src->context, &dst->context );85 // when CtxSwitch returns we are back in the src coroutine79 __cfactx_switch( &src->context, &dst->context ); 80 // when __cfactx_switch returns we are back in the src coroutine 86 81 87 82 // set state of new coroutine to active … … 89 84 90 85 if( unlikely(src->cancellation != 0p) ) { 91 _ CtxCoroutine_Unwind(src->cancellation, src);86 __cfactx_coroutine_unwind(src->cancellation, src); 92 87 } 93 88 } … … 96 91 97 92 // Suspend implementation inlined for performance 98 static inline void suspend(void) { 99 // optimization : read TLS once and reuse it 100 // Safety note: this is preemption safe since if 101 // preemption occurs after this line, the pointer 102 // will also migrate which means this value will 103 // stay in syn with the TLS 104 coroutine_desc * src = TL_GET( this_thread )->curr_cor; 93 extern "C" { 94 static inline void __cfactx_suspend(void) { 95 // optimization : read TLS once and reuse it 96 // Safety note: this is preemption safe since if 97 // preemption occurs after this line, the pointer 98 // will also migrate which means this value will 99 // stay in syn with the TLS 100 $coroutine * src = TL_GET( this_thread )->curr_cor; 105 101 106 assertf( src->last != 0,107 "Attempt to suspend coroutine \"%.256s\" (%p) that has never been resumed.\n"108 "Possible cause is a suspend executed in a member called by a coroutine user rather than by the coroutine main.",109 src->name, src );110 assertf( src->last->state != Halted,111 "Attempt by coroutine \"%.256s\" (%p) to suspend back to terminated coroutine \"%.256s\" (%p).\n"112 "Possible cause is terminated coroutine's main routine has already returned.",113 src->name, src, src->last->name, src->last );102 assertf( src->last != 0, 103 "Attempt to suspend coroutine \"%.256s\" (%p) that has never been resumed.\n" 104 "Possible cause is a suspend executed in a member called by a coroutine user rather than by the coroutine main.", 105 src->name, src ); 106 assertf( src->last->state != Halted, 107 "Attempt by coroutine \"%.256s\" (%p) to suspend back to terminated coroutine \"%.256s\" (%p).\n" 108 "Possible cause is terminated coroutine's main routine has already returned.", 109 src->name, src, src->last->name, src->last ); 114 110 115 CoroutineCtxSwitch( src, src->last ); 111 $ctx_switch( src, src->last ); 112 } 116 113 } 117 114 … … 124 121 // will also migrate which means this value will 125 122 // stay in syn with the TLS 126 coroutine_desc* src = TL_GET( this_thread )->curr_cor;127 coroutine_desc* dst = get_coroutine(cor);123 $coroutine * src = TL_GET( this_thread )->curr_cor; 124 $coroutine * dst = get_coroutine(cor); 128 125 129 126 if( unlikely(dst->context.SP == 0p) ) { 130 127 TL_GET( this_thread )->curr_cor = dst; 131 128 __stack_prepare(&dst->stack, 65000); 132 CtxStart(main, dst, cor, CtxInvokeCoroutine);129 __cfactx_start(main, dst, cor, __cfactx_invoke_coroutine); 133 130 TL_GET( this_thread )->curr_cor = src; 134 131 } … … 147 144 148 145 // always done for performance testing 149 CoroutineCtxSwitch( src, dst );146 $ctx_switch( src, dst ); 150 147 151 148 return cor; 152 149 } 153 150 154 static inline void resume( coroutine_desc * dst) {151 static inline void resume( $coroutine * dst ) __attribute__((nonnull (1))) { 155 152 // optimization : read TLS once and reuse it 156 153 // Safety note: this is preemption safe since if … … 158 155 // will also migrate which means this value will 159 156 // stay in syn with the TLS 160 coroutine_desc* src = TL_GET( this_thread )->curr_cor;157 $coroutine * src = TL_GET( this_thread )->curr_cor; 161 158 162 159 // not resuming self ? … … 172 169 173 170 // always done for performance testing 174 CoroutineCtxSwitch( src, dst );171 $ctx_switch( src, dst ); 175 172 } 176 173 -
libcfa/src/concurrency/invoke.c
rb7d6a36 r6a490b2 29 29 // Called from the kernel when starting a coroutine or task so must switch back to user mode. 30 30 31 extern void __leave_coroutine ( struct coroutine_desc * ); 32 extern struct coroutine_desc * __finish_coroutine(void); 33 extern void __leave_thread_monitor(); 31 extern struct $coroutine * __cfactx_cor_finish(void); 32 extern void __cfactx_cor_leave ( struct $coroutine * ); 33 extern void __cfactx_thrd_leave(); 34 34 35 extern void disable_interrupts() OPTIONAL_THREAD; 35 36 extern void enable_interrupts( __cfaabi_dbg_ctx_param ); 36 37 37 void CtxInvokeCoroutine(38 void __cfactx_invoke_coroutine( 38 39 void (*main)(void *), 39 40 void *this 40 41 ) { 41 42 // Finish setting up the coroutine by setting its state 42 struct coroutine_desc * cor = __finish_coroutine();43 struct $coroutine * cor = __cfactx_cor_finish(); 43 44 44 45 // Call the main of the coroutine … … 46 47 47 48 //Final suspend, should never return 48 __ leave_coroutine( cor );49 __cfactx_cor_leave( cor ); 49 50 __cabi_abort( "Resumed dead coroutine" ); 50 51 } 51 52 52 static _Unwind_Reason_Code _ CtxCoroutine_UnwindStop(53 static _Unwind_Reason_Code __cfactx_coroutine_unwindstop( 53 54 __attribute((__unused__)) int version, 54 55 _Unwind_Action actions, … … 61 62 // We finished unwinding the coroutine, 62 63 // leave it 63 __ leave_coroutine( param );64 __cfactx_cor_leave( param ); 64 65 __cabi_abort( "Resumed dead coroutine" ); 65 66 } … … 69 70 } 70 71 71 void _ CtxCoroutine_Unwind(struct _Unwind_Exception * storage, struct coroutine_desc* cor) __attribute__ ((__noreturn__));72 void _ CtxCoroutine_Unwind(struct _Unwind_Exception * storage, struct coroutine_desc* cor) {73 _Unwind_Reason_Code ret = _Unwind_ForcedUnwind( storage, _ CtxCoroutine_UnwindStop, cor );72 void __cfactx_coroutine_unwind(struct _Unwind_Exception * storage, struct $coroutine * cor) __attribute__ ((__noreturn__)); 73 void __cfactx_coroutine_unwind(struct _Unwind_Exception * storage, struct $coroutine * cor) { 74 _Unwind_Reason_Code ret = _Unwind_ForcedUnwind( storage, __cfactx_coroutine_unwindstop, cor ); 74 75 printf("UNWIND ERROR %d after force unwind\n", ret); 75 76 abort(); 76 77 } 77 78 78 void CtxInvokeThread(79 void __cfactx_invoke_thread( 79 80 void (*main)(void *), 80 81 void *this … … 93 94 // The order of these 4 operations is very important 94 95 //Final suspend, should never return 95 __ leave_thread_monitor();96 __cfactx_thrd_leave(); 96 97 __cabi_abort( "Resumed dead thread" ); 97 98 } 98 99 99 void CtxStart(100 void __cfactx_start( 100 101 void (*main)(void *), 101 struct coroutine_desc* cor,102 struct $coroutine * cor, 102 103 void *this, 103 104 void (*invoke)(void *) … … 139 140 140 141 fs->dummyReturn = NULL; 141 fs->rturn = CtxInvokeStub;142 fs->rturn = __cfactx_invoke_stub; 142 143 fs->fixedRegisters[0] = main; 143 144 fs->fixedRegisters[1] = this; … … 157 158 struct FakeStack *fs = (struct FakeStack *)cor->context.SP; 158 159 159 fs->intRegs[8] = CtxInvokeStub;160 fs->intRegs[8] = __cfactx_invoke_stub; 160 161 fs->arg[0] = this; 161 162 fs->arg[1] = invoke; -
libcfa/src/concurrency/invoke.h
rb7d6a36 r6a490b2 47 47 extern "Cforall" { 48 48 extern __attribute__((aligned(128))) thread_local struct KernelThreadData { 49 struct thread_desc* volatile this_thread;49 struct $thread * volatile this_thread; 50 50 struct processor * volatile this_processor; 51 51 … … 92 92 }; 93 93 94 enum coroutine_state { Halted, Start, Inactive, Active, Primed }; 95 96 struct coroutine_desc { 97 // context that is switch during a CtxSwitch 94 enum coroutine_state { Halted, Start, Primed, Blocked, Ready, Active, Rerun }; 95 enum __Preemption_Reason { __NO_PREEMPTION, __ALARM_PREEMPTION, __POLL_PREEMPTION, __MANUAL_PREEMPTION }; 96 97 struct $coroutine { 98 // context that is switch during a __cfactx_switch 98 99 struct __stack_context_t context; 99 100 … … 108 109 109 110 // first coroutine to resume this one 110 struct coroutine_desc* starter;111 struct $coroutine * starter; 111 112 112 113 // last coroutine to resume this one 113 struct coroutine_desc* last;114 struct $coroutine * last; 114 115 115 116 // If non-null stack must be unwound with this exception … … 117 118 118 119 }; 120 121 static inline struct __stack_t * __get_stack( struct $coroutine * cor ) { return (struct __stack_t*)(((uintptr_t)cor->stack.storage) & ((uintptr_t)-2)); } 119 122 120 123 // struct which calls the monitor is accepting … … 127 130 }; 128 131 129 struct monitor_desc{132 struct $monitor { 130 133 // spinlock to protect internal data 131 134 struct __spinlock_t lock; 132 135 133 136 // current owner of the monitor 134 struct thread_desc* owner;137 struct $thread * owner; 135 138 136 139 // queue of threads that are blocked waiting for the monitor 137 __queue_t(struct thread_desc) entry_queue;140 __queue_t(struct $thread) entry_queue; 138 141 139 142 // stack of conditions to run next once we exit the monitor … … 152 155 struct __monitor_group_t { 153 156 // currently held monitors 154 __cfa_anonymous_object( __small_array_t( monitor_desc*) );157 __cfa_anonymous_object( __small_array_t($monitor*) ); 155 158 156 159 // last function that acquired monitors … … 161 164 // instrusive link field for threads 162 165 struct __thread_desc_link { 163 struct thread_desc* next;164 struct thread_desc* prev;166 struct $thread * next; 167 struct $thread * prev; 165 168 unsigned long long ts; 166 169 }; 167 170 168 struct thread_desc{171 struct $thread { 169 172 // Core threading fields 170 // context that is switch during a CtxSwitch173 // context that is switch during a __cfactx_switch 171 174 struct __stack_context_t context; 172 175 173 176 // current execution status for coroutine 174 enum coroutine_state state; 177 volatile int state; 178 enum __Preemption_Reason preempted; 175 179 176 180 //SKULLDUGGERY errno is not save in the thread data structure because returnToKernel appears to be the only function to require saving and restoring it 177 181 178 182 // coroutine body used to store context 179 struct coroutine_descself_cor;183 struct $coroutine self_cor; 180 184 181 185 // current active context 182 struct coroutine_desc* curr_cor;186 struct $coroutine * curr_cor; 183 187 184 188 // monitor body used for mutual exclusion 185 struct monitor_descself_mon;189 struct $monitor self_mon; 186 190 187 191 // pointer to monitor with sufficient lifetime for current monitors 188 struct monitor_desc* self_mon_p;192 struct $monitor * self_mon_p; 189 193 190 194 // pointer to the cluster on which the thread is running … … 199 203 200 204 struct { 201 struct thread_desc* next;202 struct thread_desc* prev;205 struct $thread * next; 206 struct $thread * prev; 203 207 } node; 204 }; 208 209 #ifdef __CFA_DEBUG__ 210 // previous function to park/unpark the thread 211 const char * park_caller; 212 enum coroutine_state park_result; 213 bool park_stale; 214 const char * unpark_caller; 215 enum coroutine_state unpark_result; 216 bool unpark_stale; 217 #endif 218 }; 219 220 #ifdef __CFA_DEBUG__ 221 void __cfaabi_dbg_record_thrd($thread & this, bool park, const char prev_name[]); 222 #else 223 #define __cfaabi_dbg_record_thrd(x, y, z) 224 #endif 205 225 206 226 #ifdef __cforall 207 227 extern "Cforall" { 208 static inline thread_desc *& get_next( thread_desc & this ) { 228 229 static inline $thread *& get_next( $thread & this ) __attribute__((const)) { 209 230 return this.link.next; 210 231 } 211 232 212 static inline [ thread_desc *&, thread_desc *& ] __get( thread_desc & this) {233 static inline [$thread *&, $thread *& ] __get( $thread & this ) __attribute__((const)) { 213 234 return this.node.[next, prev]; 214 235 } … … 220 241 } 221 242 222 static inline void ?{}(__monitor_group_t & this, struct monitor_desc** data, __lock_size_t size, fptr_t func) {243 static inline void ?{}(__monitor_group_t & this, struct $monitor ** data, __lock_size_t size, fptr_t func) { 223 244 (this.data){data}; 224 245 (this.size){size}; … … 226 247 } 227 248 228 static inline bool ?==?( const __monitor_group_t & lhs, const __monitor_group_t & rhs ) {249 static inline bool ?==?( const __monitor_group_t & lhs, const __monitor_group_t & rhs ) __attribute__((const)) { 229 250 if( (lhs.data != 0) != (rhs.data != 0) ) return false; 230 251 if( lhs.size != rhs.size ) return false; … … 260 281 261 282 // assembler routines that performs the context switch 262 extern void CtxInvokeStub( void );263 extern void CtxSwitch( struct __stack_context_t * from, struct __stack_context_t * to ) asm ("CtxSwitch");283 extern void __cfactx_invoke_stub( void ); 284 extern void __cfactx_switch( struct __stack_context_t * from, struct __stack_context_t * to ) asm ("__cfactx_switch"); 264 285 // void CtxStore ( void * this ) asm ("CtxStore"); 265 286 // void CtxRet ( void * dst ) asm ("CtxRet"); -
libcfa/src/concurrency/kernel.cfa
rb7d6a36 r6a490b2 15 15 16 16 #define __cforall_thread__ 17 // #define __CFA_DEBUG_PRINT_RUNTIME_CORE__ 17 18 18 19 //C Includes … … 40 41 #include "invoke.h" 41 42 43 42 44 //----------------------------------------------------------------------------- 43 45 // Some assembly required … … 110 112 //----------------------------------------------------------------------------- 111 113 //Start and stop routine for the kernel, declared first to make sure they run first 112 static void kernel_startup(void) __attribute__(( constructor( STARTUP_PRIORITY_KERNEL ) )); 113 static void kernel_shutdown(void) __attribute__(( destructor ( STARTUP_PRIORITY_KERNEL ) )); 114 static void __kernel_startup (void) __attribute__(( constructor( STARTUP_PRIORITY_KERNEL ) )); 115 static void __kernel_shutdown(void) __attribute__(( destructor ( STARTUP_PRIORITY_KERNEL ) )); 116 117 //----------------------------------------------------------------------------- 118 // Kernel Scheduling logic 119 static $thread * __next_thread(cluster * this); 120 static void __run_thread(processor * this, $thread * dst); 121 static $thread * __halt(processor * this); 122 static bool __wake_one(cluster * cltr, bool was_empty); 123 static bool __wake_proc(processor *); 114 124 115 125 //----------------------------------------------------------------------------- … … 117 127 KERNEL_STORAGE(cluster, mainCluster); 118 128 KERNEL_STORAGE(processor, mainProcessor); 119 KERNEL_STORAGE( thread_desc, mainThread);129 KERNEL_STORAGE($thread, mainThread); 120 130 KERNEL_STORAGE(__stack_t, mainThreadCtx); 121 131 122 132 cluster * mainCluster; 123 133 processor * mainProcessor; 124 thread_desc* mainThread;134 $thread * mainThread; 125 135 126 136 extern "C" { … … 164 174 // Main thread construction 165 175 166 void ?{}( coroutine_desc& this, current_stack_info_t * info) with( this ) {176 void ?{}( $coroutine & this, current_stack_info_t * info) with( this ) { 167 177 stack.storage = info->storage; 168 178 with(*stack.storage) { … … 179 189 } 180 190 181 void ?{}( thread_desc& this, current_stack_info_t * info) with( this ) {191 void ?{}( $thread & this, current_stack_info_t * info) with( this ) { 182 192 state = Start; 183 193 self_cor{ info }; … … 209 219 } 210 220 211 static void start(processor * this); 221 static void * __invoke_processor(void * arg); 222 212 223 void ?{}(processor & this, const char name[], cluster & cltr) with( this ) { 213 224 this.name = name; … … 215 226 id = -1u; 216 227 terminated{ 0 }; 228 destroyer = 0p; 217 229 do_terminate = false; 218 230 preemption_alarm = 0p; … … 220 232 runner.proc = &this; 221 233 222 idleLock{}; 223 224 start( &this ); 234 idle{}; 235 236 __cfadbg_print_safe(runtime_core, "Kernel : Starting core %p\n", &this); 237 238 this.stack = __create_pthread( &this.kernel_thread, __invoke_processor, (void *)&this ); 239 240 __cfadbg_print_safe(runtime_core, "Kernel : core %p created\n", &this); 225 241 } 226 242 227 243 void ^?{}(processor & this) with( this ){ 228 244 if( ! __atomic_load_n(&do_terminate, __ATOMIC_ACQUIRE) ) { 229 __cfa abi_dbg_print_safe("Kernel : core %p signaling termination\n", &this);245 __cfadbg_print_safe(runtime_core, "Kernel : core %p signaling termination\n", &this); 230 246 231 247 __atomic_store_n(&do_terminate, true, __ATOMIC_RELAXED); 232 wake( &this );248 __wake_proc( &this ); 233 249 234 250 P( terminated ); … … 236 252 } 237 253 238 pthread_join( kernel_thread, 0p ); 254 int err = pthread_join( kernel_thread, 0p ); 255 if( err != 0 ) abort("KERNEL ERROR: joining processor %p caused error %s\n", &this, strerror(err)); 256 239 257 free( this.stack ); 240 258 } 241 259 242 void ?{}(cluster & this, const char name[], Duration preemption_rate ) with( this ) {260 void ?{}(cluster & this, const char name[], Duration preemption_rate, int io_flags) with( this ) { 243 261 this.name = name; 244 262 this.preemption_rate = preemption_rate; … … 246 264 ready_lock{}; 247 265 266 #if !defined(__CFA_NO_STATISTICS__) 267 print_stats = false; 268 #endif 269 270 procs{ __get }; 248 271 idles{ __get }; 249 272 threads{ __get }; 250 273 274 __kernel_io_startup( this, io_flags, &this == mainCluster ); 275 251 276 doregister(this); 252 277 } 253 278 254 279 void ^?{}(cluster & this) { 280 __kernel_io_shutdown( this, &this == mainCluster ); 281 255 282 unregister(this); 256 283 } … … 259 286 // Kernel Scheduling logic 260 287 //============================================================================================= 261 static void runThread(processor * this, thread_desc * dst);262 static void finishRunning(processor * this);263 static void halt(processor * this);264 265 288 //Main of the processor contexts 266 289 void main(processorCtx_t & runner) { … … 272 295 verify(this); 273 296 274 __cfa abi_dbg_print_safe("Kernel : core %p starting\n", this);297 __cfadbg_print_safe(runtime_core, "Kernel : core %p starting\n", this); 275 298 276 299 // register the processor unless it's the main thread which is handled in the boot sequence … … 285 308 preemption_scope scope = { this }; 286 309 287 __cfa abi_dbg_print_safe("Kernel : core %p started\n", this);288 289 thread_desc* readyThread = 0p;310 __cfadbg_print_safe(runtime_core, "Kernel : core %p started\n", this); 311 312 $thread * readyThread = 0p; 290 313 for( unsigned int spin_count = 0; ! __atomic_load_n(&this->do_terminate, __ATOMIC_SEQ_CST); spin_count++ ) { 291 readyThread = nextThread( this->cltr ); 292 293 if(readyThread) { 294 verify( ! kernelTLS.preemption_state.enabled ); 295 296 runThread(this, readyThread); 297 298 verify( ! kernelTLS.preemption_state.enabled ); 299 300 //Some actions need to be taken from the kernel 301 finishRunning(this); 302 303 spin_count = 0; 304 } else { 305 // spin(this, &spin_count); 306 halt(this); 314 // Try to get the next thread 315 readyThread = __next_thread( this->cltr ); 316 317 // If no ready thread 318 if( readyThread == 0p ) { 319 // Block until a thread is ready 320 readyThread = __halt(this); 321 } 322 323 // Check if we actually found a thread 324 if( readyThread ) { 325 /* paranoid */ verify( ! kernelTLS.preemption_state.enabled ); 326 /* paranoid */ verifyf( readyThread->state == Ready || readyThread->preempted != __NO_PREEMPTION, "state : %d, preempted %d\n", readyThread->state, readyThread->preempted); 327 /* paranoid */ verifyf( readyThread->next == 0p, "Expected null got %p", readyThread->next ); 328 329 // We found a thread run it 330 __run_thread(this, readyThread); 331 332 /* paranoid */ verify( ! kernelTLS.preemption_state.enabled ); 307 333 } 308 334 } 309 335 310 __cfa abi_dbg_print_safe("Kernel : core %p stopping\n", this);336 __cfadbg_print_safe(runtime_core, "Kernel : core %p stopping\n", this); 311 337 } 312 338 313 339 V( this->terminated ); 314 315 340 316 341 // unregister the processor unless it's the main thread which is handled in the boot sequence … … 319 344 unregister(this->cltr, this); 320 345 } 321 322 __cfaabi_dbg_print_safe("Kernel : core %p terminated\n", this); 346 else { 347 // HACK : the coroutine context switch expects this_thread to be set 348 // and it make sense for it to be set in all other cases except here 349 // fake it 350 kernelTLS.this_thread = mainThread; 351 } 352 353 __cfadbg_print_safe(runtime_core, "Kernel : core %p terminated\n", this); 323 354 324 355 stats_tls_tally(this->cltr); … … 331 362 // runThread runs a thread by context switching 332 363 // from the processor coroutine to the target thread 333 static void runThread(processor * this, thread_desc * thrd_dst) { 334 coroutine_desc * proc_cor = get_coroutine(this->runner); 335 336 // Reset the terminating actions here 337 this->finish.action_code = No_Action; 364 static void __run_thread(processor * this, $thread * thrd_dst) { 365 $coroutine * proc_cor = get_coroutine(this->runner); 338 366 339 367 // Update global state 340 368 kernelTLS.this_thread = thrd_dst; 341 369 342 // set state of processor coroutine to inactive and the thread to active 343 proc_cor->state = proc_cor->state == Halted ? Halted : Inactive; 344 thrd_dst->state = Active; 345 346 // set context switch to the thread that the processor is executing 347 verify( thrd_dst->context.SP ); 348 CtxSwitch( &proc_cor->context, &thrd_dst->context ); 349 // when CtxSwitch returns we are back in the processor coroutine 350 351 // set state of processor coroutine to active and the thread to inactive 352 thrd_dst->state = thrd_dst->state == Halted ? Halted : Inactive; 370 // set state of processor coroutine to inactive 371 verify(proc_cor->state == Active); 372 proc_cor->state = Blocked; 373 374 // Actually run the thread 375 RUNNING: while(true) { 376 if(unlikely(thrd_dst->preempted)) { 377 thrd_dst->preempted = __NO_PREEMPTION; 378 verify(thrd_dst->state == Active || thrd_dst->state == Rerun); 379 } else { 380 verify(thrd_dst->state == Blocked || thrd_dst->state == Ready); // Ready means scheduled normally, blocked means rerun 381 thrd_dst->state = Active; 382 } 383 384 __cfaabi_dbg_debug_do( 385 thrd_dst->park_stale = true; 386 thrd_dst->unpark_stale = true; 387 ) 388 389 /* paranoid */ verify( ! kernelTLS.preemption_state.enabled ); 390 /* paranoid */ verify( kernelTLS.this_thread == thrd_dst ); 391 /* paranoid */ verifyf( ((uintptr_t)thrd_dst->context.SP) < ((uintptr_t)__get_stack(thrd_dst->curr_cor)->base ) || thrd_dst->curr_cor == proc_cor, "ERROR : Destination $thread %p has been corrupted.\n StackPointer too small.\n", thrd_dst ); // add escape condition if we are setting up the processor 392 /* paranoid */ verifyf( ((uintptr_t)thrd_dst->context.SP) > ((uintptr_t)__get_stack(thrd_dst->curr_cor)->limit) || thrd_dst->curr_cor == proc_cor, "ERROR : Destination $thread %p has been corrupted.\n StackPointer too large.\n", thrd_dst ); // add escape condition if we are setting up the processor 393 394 // set context switch to the thread that the processor is executing 395 verify( thrd_dst->context.SP ); 396 __cfactx_switch( &proc_cor->context, &thrd_dst->context ); 397 // when __cfactx_switch returns we are back in the processor coroutine 398 399 /* paranoid */ verifyf( ((uintptr_t)thrd_dst->context.SP) > ((uintptr_t)__get_stack(thrd_dst->curr_cor)->limit), "ERROR : Destination $thread %p has been corrupted.\n StackPointer too large.\n", thrd_dst ); 400 /* paranoid */ verifyf( ((uintptr_t)thrd_dst->context.SP) < ((uintptr_t)__get_stack(thrd_dst->curr_cor)->base ), "ERROR : Destination $thread %p has been corrupted.\n StackPointer too small.\n", thrd_dst ); 401 /* paranoid */ verify( kernelTLS.this_thread == thrd_dst ); 402 /* paranoid */ verify( ! kernelTLS.preemption_state.enabled ); 403 404 405 // We just finished running a thread, there are a few things that could have happened. 406 // 1 - Regular case : the thread has blocked and now one has scheduled it yet. 407 // 2 - Racy case : the thread has blocked but someone has already tried to schedule it. 408 // 4 - Preempted 409 // In case 1, we may have won a race so we can't write to the state again. 410 // In case 2, we lost the race so we now own the thread. 411 412 if(unlikely(thrd_dst->preempted != __NO_PREEMPTION)) { 413 // The thread was preempted, reschedule it and reset the flag 414 __schedule_thread( thrd_dst ); 415 break RUNNING; 416 } 417 418 // set state of processor coroutine to active and the thread to inactive 419 static_assert(sizeof(thrd_dst->state) == sizeof(int)); 420 enum coroutine_state old_state = __atomic_exchange_n(&thrd_dst->state, Blocked, __ATOMIC_SEQ_CST); 421 __cfaabi_dbg_debug_do( thrd_dst->park_result = old_state; ) 422 switch(old_state) { 423 case Halted: 424 // The thread has halted, it should never be scheduled/run again, leave it back to Halted and move on 425 thrd_dst->state = Halted; 426 427 // We may need to wake someone up here since 428 unpark( this->destroyer __cfaabi_dbg_ctx2 ); 429 this->destroyer = 0p; 430 break RUNNING; 431 case Active: 432 // This is case 1, the regular case, nothing more is needed 433 break RUNNING; 434 case Rerun: 435 // This is case 2, the racy case, someone tried to run this thread before it finished blocking 436 // In this case, just run it again. 437 continue RUNNING; 438 default: 439 // This makes no sense, something is wrong abort 440 abort("Finished running a thread that was Blocked/Start/Primed %d\n", old_state); 441 } 442 } 443 444 // Just before returning to the processor, set the processor coroutine to active 353 445 proc_cor->state = Active; 446 kernelTLS.this_thread = 0p; 354 447 } 355 448 356 449 // KERNEL_ONLY 357 static void returnToKernel() { 358 coroutine_desc * proc_cor = get_coroutine(kernelTLS.this_processor->runner); 359 thread_desc * thrd_src = kernelTLS.this_thread; 360 361 // set state of current coroutine to inactive 362 thrd_src->state = thrd_src->state == Halted ? Halted : Inactive; 363 proc_cor->state = Active; 364 int local_errno = *__volatile_errno(); 365 #if defined( __i386 ) || defined( __x86_64 ) 366 __x87_store; 367 #endif 368 369 // set new coroutine that the processor is executing 370 // and context switch to it 371 verify( proc_cor->context.SP ); 372 CtxSwitch( &thrd_src->context, &proc_cor->context ); 373 374 // set state of new coroutine to active 375 proc_cor->state = proc_cor->state == Halted ? Halted : Inactive; 376 thrd_src->state = Active; 377 378 #if defined( __i386 ) || defined( __x86_64 ) 379 __x87_load; 380 #endif 381 *__volatile_errno() = local_errno; 382 } 383 384 // KERNEL_ONLY 385 // Once a thread has finished running, some of 386 // its final actions must be executed from the kernel 387 static void finishRunning(processor * this) with( this->finish ) { 388 verify( ! kernelTLS.preemption_state.enabled ); 389 choose( action_code ) { 390 case No_Action: 391 break; 392 case Release: 393 unlock( *lock ); 394 case Schedule: 395 ScheduleThread( thrd ); 396 case Release_Schedule: 397 unlock( *lock ); 398 ScheduleThread( thrd ); 399 case Release_Multi: 400 for(int i = 0; i < lock_count; i++) { 401 unlock( *locks[i] ); 402 } 403 case Release_Multi_Schedule: 404 for(int i = 0; i < lock_count; i++) { 405 unlock( *locks[i] ); 406 } 407 for(int i = 0; i < thrd_count; i++) { 408 ScheduleThread( thrds[i] ); 409 } 410 case Callback: 411 callback(); 412 default: 413 abort("KERNEL ERROR: Unexpected action to run after thread"); 414 } 450 void returnToKernel() { 451 /* paranoid */ verify( ! kernelTLS.preemption_state.enabled ); 452 $coroutine * proc_cor = get_coroutine(kernelTLS.this_processor->runner); 453 $thread * thrd_src = kernelTLS.this_thread; 454 455 // Run the thread on this processor 456 { 457 int local_errno = *__volatile_errno(); 458 #if defined( __i386 ) || defined( __x86_64 ) 459 __x87_store; 460 #endif 461 verify( proc_cor->context.SP ); 462 __cfactx_switch( &thrd_src->context, &proc_cor->context ); 463 #if defined( __i386 ) || defined( __x86_64 ) 464 __x87_load; 465 #endif 466 *__volatile_errno() = local_errno; 467 } 468 469 /* paranoid */ verify( ! kernelTLS.preemption_state.enabled ); 470 /* paranoid */ verifyf( ((uintptr_t)thrd_src->context.SP) < ((uintptr_t)__get_stack(thrd_src->curr_cor)->base ), "ERROR : Returning $thread %p has been corrupted.\n StackPointer too small.\n", thrd_src ); 471 /* paranoid */ verifyf( ((uintptr_t)thrd_src->context.SP) > ((uintptr_t)__get_stack(thrd_src->curr_cor)->limit), "ERROR : Returning $thread %p has been corrupted.\n StackPointer too large.\n", thrd_src ); 415 472 } 416 473 … … 419 476 // This is the entry point for processors (kernel threads) 420 477 // It effectively constructs a coroutine by stealing the pthread stack 421 static void * CtxInvokeProcessor(void * arg) {478 static void * __invoke_processor(void * arg) { 422 479 processor * proc = (processor *) arg; 423 480 kernelTLS.this_processor = proc; … … 438 495 439 496 //We now have a proper context from which to schedule threads 440 __cfa abi_dbg_print_safe("Kernel : core %p created (%p, %p)\n", proc, &proc->runner, &ctx);497 __cfadbg_print_safe(runtime_core, "Kernel : core %p created (%p, %p)\n", proc, &proc->runner, &ctx); 441 498 442 499 // SKULLDUGGERY: Since the coroutine doesn't have its own stack, we can't … … 449 506 450 507 // Main routine of the core returned, the core is now fully terminated 451 __cfa abi_dbg_print_safe("Kernel : core %p main ended (%p)\n", proc, &proc->runner);508 __cfadbg_print_safe(runtime_core, "Kernel : core %p main ended (%p)\n", proc, &proc->runner); 452 509 453 510 return 0p; … … 460 517 } // Abort 461 518 462 void * create_pthread( pthread_t * pthread, void * (*start)(void *), void * arg ) {519 void * __create_pthread( pthread_t * pthread, void * (*start)(void *), void * arg ) { 463 520 pthread_attr_t attr; 464 521 … … 488 545 } 489 546 490 static void start(processor * this) {491 __cfaabi_dbg_print_safe("Kernel : Starting core %p\n", this);492 493 this->stack = create_pthread( &this->kernel_thread, CtxInvokeProcessor, (void *)this );494 495 __cfaabi_dbg_print_safe("Kernel : core %p started\n", this);496 }497 498 547 // KERNEL_ONLY 499 voidkernel_first_resume( processor * this ) {500 thread_desc* src = mainThread;501 coroutine_desc* dst = get_coroutine(this->runner);548 static void __kernel_first_resume( processor * this ) { 549 $thread * src = mainThread; 550 $coroutine * dst = get_coroutine(this->runner); 502 551 503 552 verify( ! kernelTLS.preemption_state.enabled ); … … 505 554 kernelTLS.this_thread->curr_cor = dst; 506 555 __stack_prepare( &dst->stack, 65000 ); 507 CtxStart(main, dst, this->runner, CtxInvokeCoroutine);556 __cfactx_start(main, dst, this->runner, __cfactx_invoke_coroutine); 508 557 509 558 verify( ! kernelTLS.preemption_state.enabled ); … … 512 561 dst->starter = dst->starter ? dst->starter : &src->self_cor; 513 562 514 // set state of current coroutine to inactive515 src->state = src->state == Halted ? Halted : Inactive;563 // make sure the current state is still correct 564 /* paranoid */ verify(src->state == Ready); 516 565 517 566 // context switch to specified coroutine 518 567 verify( dst->context.SP ); 519 CtxSwitch( &src->context, &dst->context );520 // when CtxSwitch returns we are back in the src coroutine568 __cfactx_switch( &src->context, &dst->context ); 569 // when __cfactx_switch returns we are back in the src coroutine 521 570 522 571 mainThread->curr_cor = &mainThread->self_cor; 523 572 524 // set state of new coroutine to active525 src->state = Active;573 // make sure the current state has been update 574 /* paranoid */ verify(src->state == Active); 526 575 527 576 verify( ! kernelTLS.preemption_state.enabled ); … … 529 578 530 579 // KERNEL_ONLY 531 voidkernel_last_resume( processor * this ) {532 coroutine_desc* src = &mainThread->self_cor;533 coroutine_desc* dst = get_coroutine(this->runner);580 static void __kernel_last_resume( processor * this ) { 581 $coroutine * src = &mainThread->self_cor; 582 $coroutine * dst = get_coroutine(this->runner); 534 583 535 584 verify( ! kernelTLS.preemption_state.enabled ); … … 537 586 verify( dst->context.SP ); 538 587 588 // SKULLDUGGERY in debug the processors check that the 589 // stack is still within the limit of the stack limits after running a thread. 590 // that check doesn't make sense if we context switch to the processor using the 591 // coroutine semantics. Since this is a special case, use the current context 592 // info to populate these fields. 593 __cfaabi_dbg_debug_do( 594 __stack_context_t ctx; 595 CtxGet( ctx ); 596 mainThread->context.SP = ctx.SP; 597 mainThread->context.FP = ctx.FP; 598 ) 599 539 600 // context switch to the processor 540 CtxSwitch( &src->context, &dst->context );601 __cfactx_switch( &src->context, &dst->context ); 541 602 } 542 603 543 604 //----------------------------------------------------------------------------- 544 605 // Scheduler routines 545 546 606 // KERNEL ONLY 547 void ScheduleThread( thread_desc * thrd ) { 548 verify( thrd ); 549 verify( thrd->state != Halted ); 550 551 verify( ! kernelTLS.preemption_state.enabled ); 552 553 verifyf( thrd->link.next == 0p, "Expected null got %p", thrd->link.next ); 554 607 void __schedule_thread( $thread * thrd ) { 608 /* paranoid */ verify( thrd ); 609 /* paranoid */ verify( thrd->state != Halted ); 610 /* paranoid */ verify( ! kernelTLS.preemption_state.enabled ); 611 /* paranoid */ #if defined( __CFA_WITH_VERIFY__ ) 612 /* paranoid */ if( thrd->state == Blocked || thrd->state == Start ) assertf( thrd->preempted == __NO_PREEMPTION, 613 "Error inactive thread marked as preempted, state %d, preemption %d\n", thrd->state, thrd->preempted ); 614 /* paranoid */ if( thrd->preempted != __NO_PREEMPTION ) assertf(thrd->state == Active || thrd->state == Rerun, 615 "Error preempted thread marked as not currently running, state %d, preemption %d\n", thrd->state, thrd->preempted ); 616 /* paranoid */ #endif 617 /* paranoid */ verifyf( thrd->link.next == 0p, "Expected null got %p", thrd->link.next ); 618 619 if (thrd->preempted == __NO_PREEMPTION) thrd->state = Ready; 555 620 556 621 ready_schedule_lock(thrd->curr_cluster, kernelTLS.this_processor); … … 558 623 ready_schedule_unlock(thrd->curr_cluster, kernelTLS.this_processor); 559 624 560 with( *thrd->curr_cluster ) { 561 // if(was_empty) { 562 // lock (proc_list_lock __cfaabi_dbg_ctx2); 563 // if(idles) { 564 // wake_fast(idles.head); 565 // } 566 // unlock (proc_list_lock); 567 // } 568 // else if( struct processor * idle = idles.head ) { 569 // wake_fast(idle); 570 // } 571 } 572 573 verify( ! kernelTLS.preemption_state.enabled ); 625 __wake_one(thrd->curr_cluster, was_empty); 626 627 /* paranoid */ verify( ! kernelTLS.preemption_state.enabled ); 574 628 } 575 629 576 630 // KERNEL ONLY 577 thread_desc * nextThread(cluster * this) with( *this ) {578 verify( ! kernelTLS.preemption_state.enabled );631 static $thread * __next_thread(cluster * this) with( *this ) { 632 /* paranoid */ verify( ! kernelTLS.preemption_state.enabled ); 579 633 580 634 ready_schedule_lock(this, kernelTLS.this_processor); 581 thread_desc* head = pop( this );635 $thread * head = pop( this ); 582 636 ready_schedule_unlock(this, kernelTLS.this_processor); 583 637 584 verify( ! kernelTLS.preemption_state.enabled );638 /* paranoid */ verify( ! kernelTLS.preemption_state.enabled ); 585 639 return head; 586 640 } 587 641 588 void BlockInternal() { 642 // KERNEL ONLY unpark with out disabling interrupts 643 void __unpark( $thread * thrd __cfaabi_dbg_ctx_param2 ) { 644 static_assert(sizeof(thrd->state) == sizeof(int)); 645 646 // record activity 647 __cfaabi_dbg_record_thrd( *thrd, false, caller ); 648 649 enum coroutine_state old_state = __atomic_exchange_n(&thrd->state, Rerun, __ATOMIC_SEQ_CST); 650 __cfaabi_dbg_debug_do( thrd->unpark_result = old_state; ) 651 switch(old_state) { 652 case Active: 653 // Wake won the race, the thread will reschedule/rerun itself 654 break; 655 case Blocked: 656 /* paranoid */ verify( ! thrd->preempted != __NO_PREEMPTION ); 657 658 // Wake lost the race, 659 thrd->state = Blocked; 660 __schedule_thread( thrd ); 661 break; 662 case Rerun: 663 abort("More than one thread attempted to schedule thread %p\n", thrd); 664 break; 665 case Halted: 666 case Start: 667 case Primed: 668 default: 669 // This makes no sense, something is wrong abort 670 abort(); 671 } 672 } 673 674 void unpark( $thread * thrd __cfaabi_dbg_ctx_param2 ) { 675 if( !thrd ) return; 676 589 677 disable_interrupts(); 590 verify( ! kernelTLS.preemption_state.enabled ); 678 __unpark( thrd __cfaabi_dbg_ctx_fwd2 ); 679 enable_interrupts( __cfaabi_dbg_ctx ); 680 } 681 682 void park( __cfaabi_dbg_ctx_param ) { 683 /* paranoid */ verify( kernelTLS.preemption_state.enabled ); 684 disable_interrupts(); 685 /* paranoid */ verify( ! kernelTLS.preemption_state.enabled ); 686 /* paranoid */ verify( kernelTLS.this_thread->preempted == __NO_PREEMPTION ); 687 688 // record activity 689 __cfaabi_dbg_record_thrd( *kernelTLS.this_thread, true, caller ); 690 591 691 returnToKernel(); 592 verify( ! kernelTLS.preemption_state.enabled ); 692 693 /* paranoid */ verify( ! kernelTLS.preemption_state.enabled ); 593 694 enable_interrupts( __cfaabi_dbg_ctx ); 594 } 595 596 void BlockInternal( __spinlock_t * lock ) { 695 /* paranoid */ verify( kernelTLS.preemption_state.enabled ); 696 697 } 698 699 // KERNEL ONLY 700 void __leave_thread() { 701 /* paranoid */ verify( ! kernelTLS.preemption_state.enabled ); 702 returnToKernel(); 703 abort(); 704 } 705 706 // KERNEL ONLY 707 bool force_yield( __Preemption_Reason reason ) { 708 /* paranoid */ verify( kernelTLS.preemption_state.enabled ); 597 709 disable_interrupts(); 598 with( *kernelTLS.this_processor ) { 599 finish.action_code = Release; 600 finish.lock = lock; 601 } 602 603 verify( ! kernelTLS.preemption_state.enabled ); 604 returnToKernel(); 605 verify( ! kernelTLS.preemption_state.enabled ); 606 607 enable_interrupts( __cfaabi_dbg_ctx ); 608 } 609 610 void BlockInternal( thread_desc * thrd ) { 611 disable_interrupts(); 612 with( * kernelTLS.this_processor ) { 613 finish.action_code = Schedule; 614 finish.thrd = thrd; 615 } 616 617 verify( ! kernelTLS.preemption_state.enabled ); 618 returnToKernel(); 619 verify( ! kernelTLS.preemption_state.enabled ); 620 621 enable_interrupts( __cfaabi_dbg_ctx ); 622 } 623 624 void BlockInternal( __spinlock_t * lock, thread_desc * thrd ) { 625 assert(thrd); 626 disable_interrupts(); 627 with( * kernelTLS.this_processor ) { 628 finish.action_code = Release_Schedule; 629 finish.lock = lock; 630 finish.thrd = thrd; 631 } 632 633 verify( ! kernelTLS.preemption_state.enabled ); 634 returnToKernel(); 635 verify( ! kernelTLS.preemption_state.enabled ); 636 637 enable_interrupts( __cfaabi_dbg_ctx ); 638 } 639 640 void BlockInternal(__spinlock_t * locks [], unsigned short count) { 641 disable_interrupts(); 642 with( * kernelTLS.this_processor ) { 643 finish.action_code = Release_Multi; 644 finish.locks = locks; 645 finish.lock_count = count; 646 } 647 648 verify( ! kernelTLS.preemption_state.enabled ); 649 returnToKernel(); 650 verify( ! kernelTLS.preemption_state.enabled ); 651 652 enable_interrupts( __cfaabi_dbg_ctx ); 653 } 654 655 void BlockInternal(__spinlock_t * locks [], unsigned short lock_count, thread_desc * thrds [], unsigned short thrd_count) { 656 disable_interrupts(); 657 with( *kernelTLS.this_processor ) { 658 finish.action_code = Release_Multi_Schedule; 659 finish.locks = locks; 660 finish.lock_count = lock_count; 661 finish.thrds = thrds; 662 finish.thrd_count = thrd_count; 663 } 664 665 verify( ! kernelTLS.preemption_state.enabled ); 666 returnToKernel(); 667 verify( ! kernelTLS.preemption_state.enabled ); 668 669 enable_interrupts( __cfaabi_dbg_ctx ); 670 } 671 672 void BlockInternal(__finish_callback_fptr_t callback) { 673 disable_interrupts(); 674 with( *kernelTLS.this_processor ) { 675 finish.action_code = Callback; 676 finish.callback = callback; 677 } 678 679 verify( ! kernelTLS.preemption_state.enabled ); 680 returnToKernel(); 681 verify( ! kernelTLS.preemption_state.enabled ); 682 683 enable_interrupts( __cfaabi_dbg_ctx ); 684 } 685 686 // KERNEL ONLY 687 void LeaveThread(__spinlock_t * lock, thread_desc * thrd) { 688 verify( ! kernelTLS.preemption_state.enabled ); 689 with( * kernelTLS.this_processor ) { 690 finish.action_code = thrd ? Release_Schedule : Release; 691 finish.lock = lock; 692 finish.thrd = thrd; 693 } 694 695 returnToKernel(); 710 /* paranoid */ verify( ! kernelTLS.preemption_state.enabled ); 711 712 $thread * thrd = kernelTLS.this_thread; 713 /* paranoid */ verify(thrd->state == Active || thrd->state == Rerun); 714 715 // SKULLDUGGERY: It is possible that we are preempting this thread just before 716 // it was going to park itself. If that is the case and it is already using the 717 // intrusive fields then we can't use them to preempt the thread 718 // If that is the case, abandon the preemption. 719 bool preempted = false; 720 if(thrd->next == 0p) { 721 preempted = true; 722 thrd->preempted = reason; 723 returnToKernel(); 724 } 725 726 /* paranoid */ verify( ! kernelTLS.preemption_state.enabled ); 727 enable_interrupts_noPoll(); 728 /* paranoid */ verify( kernelTLS.preemption_state.enabled ); 729 730 return preempted; 696 731 } 697 732 … … 701 736 //----------------------------------------------------------------------------- 702 737 // Kernel boot procedures 703 static void kernel_startup(void) {738 static void __kernel_startup(void) { 704 739 verify( ! kernelTLS.preemption_state.enabled ); 705 __cfa abi_dbg_print_safe("Kernel : Starting\n");740 __cfadbg_print_safe(runtime_core, "Kernel : Starting\n"); 706 741 707 742 __page_size = sysconf( _SC_PAGESIZE ); … … 714 749 (*mainCluster){"Main Cluster"}; 715 750 716 __cfa abi_dbg_print_safe("Kernel : Main cluster ready\n");751 __cfadbg_print_safe(runtime_core, "Kernel : Main cluster ready\n"); 717 752 718 753 // Start by initializing the main thread 719 754 // SKULLDUGGERY: the mainThread steals the process main thread 720 755 // which will then be scheduled by the mainProcessor normally 721 mainThread = ( thread_desc*)&storage_mainThread;756 mainThread = ($thread *)&storage_mainThread; 722 757 current_stack_info_t info; 723 758 info.storage = (__stack_t*)&storage_mainThreadCtx; 724 759 (*mainThread){ &info }; 725 760 726 __cfa abi_dbg_print_safe("Kernel : Main thread ready\n");761 __cfadbg_print_safe(runtime_core, "Kernel : Main thread ready\n"); 727 762 728 763 … … 746 781 747 782 runner{ &this }; 748 __cfa abi_dbg_print_safe("Kernel : constructed main processor context %p\n", &runner);783 __cfadbg_print_safe(runtime_core, "Kernel : constructed main processor context %p\n", &runner); 749 784 } 750 785 … … 765 800 // Add the main thread to the ready queue 766 801 // once resume is called on mainProcessor->runner the mainThread needs to be scheduled like any normal thread 767 ScheduleThread(mainThread);802 __schedule_thread(mainThread); 768 803 769 804 // SKULLDUGGERY: Force a context switch to the main processor to set the main thread's context to the current UNIX 770 // context. Hence, the main thread does not begin through CtxInvokeThread, like all other threads. The trick here is that805 // context. Hence, the main thread does not begin through __cfactx_invoke_thread, like all other threads. The trick here is that 771 806 // mainThread is on the ready queue when this call is made. 772 kernel_first_resume( kernelTLS.this_processor ); 773 807 __kernel_first_resume( kernelTLS.this_processor ); 774 808 775 809 776 810 // THE SYSTEM IS NOW COMPLETELY RUNNING 777 __cfaabi_dbg_print_safe("Kernel : Started\n--------------------------------------------------\n\n"); 811 812 813 // Now that the system is up, finish creating systems that need threading 814 __kernel_io_finish_start( *mainCluster ); 815 816 817 __cfadbg_print_safe(runtime_core, "Kernel : Started\n--------------------------------------------------\n\n"); 778 818 779 819 verify( ! kernelTLS.preemption_state.enabled ); … … 782 822 } 783 823 784 static void kernel_shutdown(void) { 785 __cfaabi_dbg_print_safe("\n--------------------------------------------------\nKernel : Shutting down\n"); 786 787 verify( TL_GET( preemption_state.enabled ) ); 824 static void __kernel_shutdown(void) { 825 //Before we start shutting things down, wait for systems that need threading to shutdown 826 __kernel_io_prepare_stop( *mainCluster ); 827 828 /* paranoid */ verify( TL_GET( preemption_state.enabled ) ); 788 829 disable_interrupts(); 789 verify( ! kernelTLS.preemption_state.enabled ); 830 /* paranoid */ verify( ! kernelTLS.preemption_state.enabled ); 831 832 __cfadbg_print_safe(runtime_core, "\n--------------------------------------------------\nKernel : Shutting down\n"); 790 833 791 834 // SKULLDUGGERY: Notify the mainProcessor it needs to terminates. … … 793 836 // which is currently here 794 837 __atomic_store_n(&mainProcessor->do_terminate, true, __ATOMIC_RELEASE); 795 kernel_last_resume( kernelTLS.this_processor );838 __kernel_last_resume( kernelTLS.this_processor ); 796 839 mainThread->self_cor.state = Halted; 797 840 … … 805 848 // Destroy the main processor and its context in reverse order of construction 806 849 // These were manually constructed so we need manually destroy them 807 void ^?{}(processor & this) with( this ) 808 / /don't join the main thread here, that wouldn't make any sense850 void ^?{}(processor & this) with( this ){ 851 /* paranoid */ verify( this.do_terminate == true ); 809 852 __cfaabi_dbg_print_safe("Kernel : destroyed main processor context %p\n", &runner); 810 853 } … … 813 856 814 857 // Final step, destroy the main thread since it is no longer needed 815 // Since we provided a stack to this task it will not destroy anything 858 859 // Since we provided a stack to this taxk it will not destroy anything 860 /* paranoid */ verify(mainThread->self_cor.stack.storage == (__stack_t*)(((uintptr_t)&storage_mainThreadCtx)| 0x1)); 816 861 ^(*mainThread){}; 817 862 … … 821 866 ^(__cfa_dbg_global_clusters.lock){}; 822 867 823 __cfa abi_dbg_print_safe("Kernel : Shutdown complete\n");868 __cfadbg_print_safe(runtime_core, "Kernel : Shutdown complete\n"); 824 869 } 825 870 826 871 //============================================================================================= 827 // Kernel Quiescing872 // Kernel Idle Sleep 828 873 //============================================================================================= 829 static void halt(processor * this) with( *this ) { 830 // // verify( ! __atomic_load_n(&do_terminate, __ATOMIC_SEQ_CST) ); 831 832 // with( *cltr ) { 833 // lock (proc_list_lock __cfaabi_dbg_ctx2); 834 // push_front(idles, *this); 835 // unlock (proc_list_lock); 836 // } 837 838 // __cfaabi_dbg_print_safe("Kernel : Processor %p ready to sleep\n", this); 839 840 // wait( idleLock ); 841 842 // __cfaabi_dbg_print_safe("Kernel : Processor %p woke up and ready to run\n", this); 843 844 // with( *cltr ) { 845 // lock (proc_list_lock __cfaabi_dbg_ctx2); 846 // remove (idles, *this); 847 // unlock (proc_list_lock); 848 // } 874 static $thread * __halt(processor * this) with( *this ) { 875 if( do_terminate ) return 0p; 876 877 // First, lock the cluster idle 878 lock( cltr->idle_lock __cfaabi_dbg_ctx2 ); 879 880 // Check if we can find a thread 881 if( $thread * found = __next_thread( cltr ) ) { 882 unlock( cltr->idle_lock ); 883 return found; 884 } 885 886 // Move this processor from the active list to the idle list 887 move_to_front(cltr->procs, cltr->idles, *this); 888 889 // Unlock the idle lock so we don't go to sleep with a lock 890 unlock (cltr->idle_lock); 891 892 // We are ready to sleep 893 __cfadbg_print_safe(runtime_core, "Kernel : Processor %p ready to sleep\n", this); 894 wait( idle ); 895 896 // We have woken up 897 __cfadbg_print_safe(runtime_core, "Kernel : Processor %p woke up and ready to run\n", this); 898 899 // Get ourself off the idle list 900 with( *cltr ) { 901 lock (idle_lock __cfaabi_dbg_ctx2); 902 move_to_front(idles, procs, *this); 903 unlock(idle_lock); 904 } 905 906 // Don't check the ready queue again, we may not be in a position to run a thread 907 return 0p; 908 } 909 910 // Wake a thread from the front if there are any 911 static bool __wake_one(cluster * this, __attribute__((unused)) bool force) { 912 // if we don't want to force check if we know it's false 913 // if( !this->idles.head && !force ) return false; 914 915 // First, lock the cluster idle 916 lock( this->idle_lock __cfaabi_dbg_ctx2 ); 917 918 // Check if there is someone to wake up 919 if( !this->idles.head ) { 920 // Nope unlock and return false 921 unlock( this->idle_lock ); 922 return false; 923 } 924 925 // Wake them up 926 __cfadbg_print_safe(runtime_core, "Kernel : waking Processor %p\n", this->idles.head); 927 /* paranoid */ verify( ! kernelTLS.preemption_state.enabled ); 928 post( this->idles.head->idle ); 929 930 // Unlock and return true 931 unlock( this->idle_lock ); 932 return true; 933 } 934 935 // Unconditionnaly wake a thread 936 static bool __wake_proc(processor * this) { 937 __cfadbg_print_safe(runtime_core, "Kernel : waking Processor %p\n", this); 938 939 disable_interrupts(); 940 /* paranoid */ verify( ! kernelTLS.preemption_state.enabled ); 941 bool ret = post( this->idle ); 942 enable_interrupts( __cfaabi_dbg_ctx ); 943 944 return ret; 849 945 } 850 946 … … 880 976 881 977 void kernel_abort_msg( void * kernel_data, char * abort_text, int abort_text_size ) { 882 thread_desc* thrd = kernel_data;978 $thread * thrd = kernel_data; 883 979 884 980 if(thrd) { … … 928 1024 void ^?{}(semaphore & this) {} 929 1025 930 voidP(semaphore & this) with( this ){1026 bool P(semaphore & this) with( this ){ 931 1027 lock( lock __cfaabi_dbg_ctx2 ); 932 1028 count -= 1; … … 936 1032 937 1033 // atomically release spin lock and block 938 BlockInternal( &lock ); 1034 unlock( lock ); 1035 park( __cfaabi_dbg_ctx ); 1036 return true; 939 1037 } 940 1038 else { 941 1039 unlock( lock ); 942 } 943 } 944 945 void V(semaphore & this) with( this ) { 946 thread_desc * thrd = 0p; 1040 return false; 1041 } 1042 } 1043 1044 bool V(semaphore & this) with( this ) { 1045 $thread * thrd = 0p; 947 1046 lock( lock __cfaabi_dbg_ctx2 ); 948 1047 count += 1; … … 955 1054 956 1055 // make new owner 957 WakeThread( thrd ); 1056 unpark( thrd __cfaabi_dbg_ctx2 ); 1057 1058 return thrd != 0p; 1059 } 1060 1061 bool V(semaphore & this, unsigned diff) with( this ) { 1062 $thread * thrd = 0p; 1063 lock( lock __cfaabi_dbg_ctx2 ); 1064 int release = max(-count, (int)diff); 1065 count += diff; 1066 for(release) { 1067 unpark( pop_head( waiting ) __cfaabi_dbg_ctx2 ); 1068 } 1069 1070 unlock( lock ); 1071 1072 return thrd != 0p; 958 1073 } 959 1074 … … 972 1087 } 973 1088 974 void doregister( cluster * cltr, thread_desc& thrd ) {1089 void doregister( cluster * cltr, $thread & thrd ) { 975 1090 lock (cltr->thread_list_lock __cfaabi_dbg_ctx2); 976 1091 cltr->nthreads += 1; … … 979 1094 } 980 1095 981 void unregister( cluster * cltr, thread_desc& thrd ) {1096 void unregister( cluster * cltr, $thread & thrd ) { 982 1097 lock (cltr->thread_list_lock __cfaabi_dbg_ctx2); 983 1098 remove(cltr->threads, thrd ); … … 990 1105 __cfaabi_dbg_debug_do( 991 1106 extern "C" { 992 void __cfaabi_dbg_record (__spinlock_t & this, const char prev_name[]) {1107 void __cfaabi_dbg_record_lock(__spinlock_t & this, const char prev_name[]) { 993 1108 this.prev_name = prev_name; 994 1109 this.prev_thrd = kernelTLS.this_thread; 995 1110 } 1111 1112 void __cfaabi_dbg_record_thrd($thread & this, bool park, const char prev_name[]) { 1113 if(park) { 1114 this.park_caller = prev_name; 1115 this.park_stale = false; 1116 } 1117 else { 1118 this.unpark_caller = prev_name; 1119 this.unpark_stale = false; 1120 } 1121 } 996 1122 } 997 1123 ) … … 999 1125 //----------------------------------------------------------------------------- 1000 1126 // Debug 1001 bool threading_enabled(void) {1127 bool threading_enabled(void) __attribute__((const)) { 1002 1128 return true; 1003 1129 } -
libcfa/src/concurrency/kernel.hfa
rb7d6a36 r6a490b2 17 17 18 18 #include <stdbool.h> 19 #include <stdint.h> 19 20 20 21 #include "invoke.h" … … 32 33 __spinlock_t lock; 33 34 int count; 34 __queue_t( thread_desc) waiting;35 __queue_t($thread) waiting; 35 36 }; 36 37 37 38 void ?{}(semaphore & this, int count = 1); 38 39 void ^?{}(semaphore & this); 39 void P (semaphore & this); 40 void V (semaphore & this); 40 bool P (semaphore & this); 41 bool V (semaphore & this); 42 bool V (semaphore & this, unsigned count); 41 43 42 44 … … 44 46 // Processor 45 47 extern struct cluster * mainCluster; 46 47 enum FinishOpCode { No_Action, Release, Schedule, Release_Schedule, Release_Multi, Release_Multi_Schedule, Callback };48 49 typedef void (*__finish_callback_fptr_t)(void);50 51 //TODO use union, many of these fields are mutually exclusive (i.e. MULTI vs NOMULTI)52 struct FinishAction {53 FinishOpCode action_code;54 /*55 // Union of possible actions56 union {57 // Option 1 : locks and threads58 struct {59 // 1 thread or N thread60 union {61 thread_desc * thrd;62 struct {63 thread_desc ** thrds;64 unsigned short thrd_count;65 };66 };67 // 1 lock or N lock68 union {69 __spinlock_t * lock;70 struct {71 __spinlock_t ** locks;72 unsigned short lock_count;73 };74 };75 };76 // Option 2 : action pointer77 __finish_callback_fptr_t callback;78 };79 /*/80 thread_desc * thrd;81 thread_desc ** thrds;82 unsigned short thrd_count;83 __spinlock_t * lock;84 __spinlock_t ** locks;85 unsigned short lock_count;86 __finish_callback_fptr_t callback;87 //*/88 };89 static inline void ?{}(FinishAction & this) {90 this.action_code = No_Action;91 this.thrd = 0p;92 this.lock = 0p;93 }94 static inline void ^?{}(FinishAction &) {}95 48 96 49 // Processor … … 117 70 // RunThread data 118 71 // Action to do after a thread is ran 119 struct FinishAction finish;72 $thread * destroyer; 120 73 121 74 // Preemption data … … 126 79 bool pending_preemption; 127 80 128 // Idle lock 129 __bin_sem_t idle Lock;81 // Idle lock (kernel semaphore) 82 __bin_sem_t idle; 130 83 131 84 // Termination … … 133 86 volatile bool do_terminate; 134 87 135 // Termination synchronisation 88 // Termination synchronisation (user semaphore) 136 89 semaphore terminated; 137 90 … … 158 111 static inline void ?{}(processor & this, const char name[]) { this{name, *mainCluster }; } 159 112 160 static inline [processor *&, processor *& ] __get( processor & this ) { 161 return this.node.[next, prev]; 162 } 113 static inline [processor *&, processor *& ] __get( processor & this ) __attribute__((const)) { return this.node.[next, prev]; } 114 115 //----------------------------------------------------------------------------- 116 // I/O 117 struct __io_data; 118 119 #define CFA_CLUSTER_IO_POLLER_USER_THREAD 1 << 0 120 // #define CFA_CLUSTER_IO_POLLER_KERNEL_SIDE 1 << 1 163 121 164 122 … … 333 291 // List of threads 334 292 __spinlock_t thread_list_lock; 335 __dllist_t(struct thread_desc) threads;293 __dllist_t(struct $thread) threads; 336 294 unsigned int nthreads; 337 295 … … 341 299 cluster * prev; 342 300 } node; 301 302 struct __io_data * io; 303 304 #if !defined(__CFA_NO_STATISTICS__) 305 bool print_stats; 306 #endif 343 307 }; 344 308 extern Duration default_preemption(); 345 309 346 void ?{} (cluster & this, const char name[], Duration preemption_rate );310 void ?{} (cluster & this, const char name[], Duration preemption_rate, int flags); 347 311 void ^?{}(cluster & this); 348 312 349 static inline void ?{} (cluster & this) { this{"Anonymous Cluster", default_preemption()}; } 350 static inline void ?{} (cluster & this, Duration preemption_rate) { this{"Anonymous Cluster", preemption_rate}; } 351 static inline void ?{} (cluster & this, const char name[]) { this{name, default_preemption()}; } 352 353 static inline [cluster *&, cluster *& ] __get( cluster & this ) { 354 return this.node.[next, prev]; 355 } 313 static inline void ?{} (cluster & this) { this{"Anonymous Cluster", default_preemption(), 0}; } 314 static inline void ?{} (cluster & this, Duration preemption_rate) { this{"Anonymous Cluster", preemption_rate, 0}; } 315 static inline void ?{} (cluster & this, const char name[]) { this{name, default_preemption(), 0}; } 316 static inline void ?{} (cluster & this, int flags) { this{"Anonymous Cluster", default_preemption(), flags}; } 317 static inline void ?{} (cluster & this, Duration preemption_rate, int flags) { this{"Anonymous Cluster", preemption_rate, flags}; } 318 static inline void ?{} (cluster & this, const char name[], int flags) { this{name, default_preemption(), flags}; } 319 320 static inline [cluster *&, cluster *& ] __get( cluster & this ) __attribute__((const)) { return this.node.[next, prev]; } 356 321 357 322 static inline struct processor * active_processor() { return TL_GET( this_processor ); } // UNSAFE 358 323 static inline struct cluster * active_cluster () { return TL_GET( this_processor )->cltr; } 324 325 #if !defined(__CFA_NO_STATISTICS__) 326 static inline void print_stats_at_exit( cluster & this ) { 327 this.print_stats = true; 328 } 329 #endif 359 330 360 331 // Local Variables: // -
libcfa/src/concurrency/kernel_private.hfa
rb7d6a36 r6a490b2 31 31 } 32 32 33 void ScheduleThread( thread_desc * ); 34 static inline void WakeThread( thread_desc * thrd ) { 35 if( !thrd ) return; 36 37 verify(thrd->state == Inactive); 38 39 disable_interrupts(); 40 ScheduleThread( thrd ); 41 enable_interrupts( __cfaabi_dbg_ctx ); 42 } 43 thread_desc * nextThread(cluster * this); 33 void __schedule_thread( $thread * ) __attribute__((nonnull (1))); 44 34 45 35 //Block current thread and release/wake-up the following resources 46 void BlockInternal(void); 47 void BlockInternal(__spinlock_t * lock); 48 void BlockInternal(thread_desc * thrd); 49 void BlockInternal(__spinlock_t * lock, thread_desc * thrd); 50 void BlockInternal(__spinlock_t * locks [], unsigned short count); 51 void BlockInternal(__spinlock_t * locks [], unsigned short count, thread_desc * thrds [], unsigned short thrd_count); 52 void BlockInternal(__finish_callback_fptr_t callback); 53 void LeaveThread(__spinlock_t * lock, thread_desc * thrd); 36 void __leave_thread() __attribute__((noreturn)); 54 37 55 38 //----------------------------------------------------------------------------- … … 57 40 void main(processorCtx_t *); 58 41 59 void * create_pthread( pthread_t *, void * (*)(void *), void * ); 60 61 static inline void wake_fast(processor * this) { 62 __cfaabi_dbg_print_safe("Kernel : Waking up processor %p\n", this); 63 post( this->idleLock ); 64 } 65 66 static inline void wake(processor * this) { 67 disable_interrupts(); 68 wake_fast(this); 69 enable_interrupts( __cfaabi_dbg_ctx ); 70 } 42 void * __create_pthread( pthread_t *, void * (*)(void *), void * ); 43 44 71 45 72 46 struct event_kernel_t { … … 85 59 extern volatile thread_local __cfa_kernel_preemption_state_t preemption_state __attribute__ ((tls_model ( "initial-exec" ))); 86 60 61 extern cluster * mainCluster; 62 87 63 //----------------------------------------------------------------------------- 88 64 // Threads 89 65 extern "C" { 90 void CtxInvokeThread(void (*main)(void *), void * this); 91 } 92 93 extern void ThreadCtxSwitch(coroutine_desc * src, coroutine_desc * dst); 66 void __cfactx_invoke_thread(void (*main)(void *), void * this); 67 } 94 68 95 69 __cfaabi_dbg_debug_do( 96 extern void __cfaabi_dbg_thread_register ( thread_desc* thrd );97 extern void __cfaabi_dbg_thread_unregister( thread_desc* thrd );70 extern void __cfaabi_dbg_thread_register ( $thread * thrd ); 71 extern void __cfaabi_dbg_thread_unregister( $thread * thrd ); 98 72 ) 73 74 // KERNEL ONLY unpark with out disabling interrupts 75 void __unpark( $thread * thrd __cfaabi_dbg_ctx_param2 ); 76 77 //----------------------------------------------------------------------------- 78 // I/O 79 void __kernel_io_startup ( cluster &, int, bool ); 80 void __kernel_io_finish_start( cluster & ); 81 void __kernel_io_prepare_stop( cluster & ); 82 void __kernel_io_shutdown ( cluster &, bool ); 99 83 100 84 //----------------------------------------------------------------------------- … … 102 86 #define KERNEL_STORAGE(T,X) __attribute((aligned(__alignof__(T)))) static char storage_##X[sizeof(T)] 103 87 104 static inline uint32_t tls_rand() {88 static inline uint32_t __tls_rand() { 105 89 kernelTLS.rand_seed ^= kernelTLS.rand_seed << 6; 106 90 kernelTLS.rand_seed ^= kernelTLS.rand_seed >> 21; … … 113 97 void unregister( struct cluster & cltr ); 114 98 115 void doregister( struct cluster * cltr, struct thread_desc& thrd );116 void unregister( struct cluster * cltr, struct thread_desc& thrd );99 void doregister( struct cluster * cltr, struct $thread & thrd ); 100 void unregister( struct cluster * cltr, struct $thread & thrd ); 117 101 118 102 //======================================================================= -
libcfa/src/concurrency/monitor.cfa
rb7d6a36 r6a490b2 5 5 // file "LICENCE" distributed with Cforall. 6 6 // 7 // monitor_desc.c --7 // $monitor.c -- 8 8 // 9 9 // Author : Thierry Delisle … … 27 27 //----------------------------------------------------------------------------- 28 28 // Forward declarations 29 static inline void set_owner ( monitor_desc * this, thread_desc* owner );30 static inline void set_owner ( monitor_desc * storage [], __lock_size_t count, thread_desc* owner );31 static inline void set_mask ( monitor_desc* storage [], __lock_size_t count, const __waitfor_mask_t & mask );32 static inline void reset_mask( monitor_desc* this );33 34 static inline thread_desc * next_thread( monitor_desc* this );35 static inline bool is_accepted( monitor_desc* this, const __monitor_group_t & monitors );29 static inline void __set_owner ( $monitor * this, $thread * owner ); 30 static inline void __set_owner ( $monitor * storage [], __lock_size_t count, $thread * owner ); 31 static inline void set_mask ( $monitor * storage [], __lock_size_t count, const __waitfor_mask_t & mask ); 32 static inline void reset_mask( $monitor * this ); 33 34 static inline $thread * next_thread( $monitor * this ); 35 static inline bool is_accepted( $monitor * this, const __monitor_group_t & monitors ); 36 36 37 37 static inline void lock_all ( __spinlock_t * locks [], __lock_size_t count ); 38 static inline void lock_all ( monitor_desc* source [], __spinlock_t * /*out*/ locks [], __lock_size_t count );38 static inline void lock_all ( $monitor * source [], __spinlock_t * /*out*/ locks [], __lock_size_t count ); 39 39 static inline void unlock_all( __spinlock_t * locks [], __lock_size_t count ); 40 static inline void unlock_all( monitor_desc* locks [], __lock_size_t count );41 42 static inline void save ( monitor_desc* ctx [], __lock_size_t count, __spinlock_t * locks [], unsigned int /*out*/ recursions [], __waitfor_mask_t /*out*/ masks [] );43 static inline void restore( monitor_desc* ctx [], __lock_size_t count, __spinlock_t * locks [], unsigned int /*in */ recursions [], __waitfor_mask_t /*in */ masks [] );44 45 static inline void init ( __lock_size_t count, monitor_desc* monitors [], __condition_node_t & waiter, __condition_criterion_t criteria [] );46 static inline void init_push( __lock_size_t count, monitor_desc* monitors [], __condition_node_t & waiter, __condition_criterion_t criteria [] );47 48 static inline thread_desc* check_condition ( __condition_criterion_t * );40 static inline void unlock_all( $monitor * locks [], __lock_size_t count ); 41 42 static inline void save ( $monitor * ctx [], __lock_size_t count, __spinlock_t * locks [], unsigned int /*out*/ recursions [], __waitfor_mask_t /*out*/ masks [] ); 43 static inline void restore( $monitor * ctx [], __lock_size_t count, __spinlock_t * locks [], unsigned int /*in */ recursions [], __waitfor_mask_t /*in */ masks [] ); 44 45 static inline void init ( __lock_size_t count, $monitor * monitors [], __condition_node_t & waiter, __condition_criterion_t criteria [] ); 46 static inline void init_push( __lock_size_t count, $monitor * monitors [], __condition_node_t & waiter, __condition_criterion_t criteria [] ); 47 48 static inline $thread * check_condition ( __condition_criterion_t * ); 49 49 static inline void brand_condition ( condition & ); 50 static inline [ thread_desc *, int] search_entry_queue( const __waitfor_mask_t &, monitor_desc* monitors [], __lock_size_t count );50 static inline [$thread *, int] search_entry_queue( const __waitfor_mask_t &, $monitor * monitors [], __lock_size_t count ); 51 51 52 52 forall(dtype T | sized( T )) 53 53 static inline __lock_size_t insert_unique( T * array [], __lock_size_t & size, T * val ); 54 54 static inline __lock_size_t count_max ( const __waitfor_mask_t & mask ); 55 static inline __lock_size_t aggregate ( monitor_desc* storage [], const __waitfor_mask_t & mask );55 static inline __lock_size_t aggregate ( $monitor * storage [], const __waitfor_mask_t & mask ); 56 56 57 57 //----------------------------------------------------------------------------- … … 68 68 69 69 #define monitor_ctx( mons, cnt ) /* Define that create the necessary struct for internal/external scheduling operations */ \ 70 monitor_desc** monitors = mons; /* Save the targeted monitors */ \70 $monitor ** monitors = mons; /* Save the targeted monitors */ \ 71 71 __lock_size_t count = cnt; /* Save the count to a local variable */ \ 72 72 unsigned int recursions[ count ]; /* Save the current recursion levels to restore them later */ \ … … 80 80 //----------------------------------------------------------------------------- 81 81 // Enter/Leave routines 82 83 84 extern "C" { 85 // Enter single monitor 86 static void __enter_monitor_desc( monitor_desc * this, const __monitor_group_t & group ) { 87 // Lock the monitor spinlock 88 lock( this->lock __cfaabi_dbg_ctx2 ); 89 // Interrupts disable inside critical section 90 thread_desc * thrd = kernelTLS.this_thread; 91 92 __cfaabi_dbg_print_safe( "Kernel : %10p Entering mon %p (%p)\n", thrd, this, this->owner); 93 94 if( !this->owner ) { 95 // No one has the monitor, just take it 96 set_owner( this, thrd ); 97 98 __cfaabi_dbg_print_safe( "Kernel : mon is free \n" ); 99 } 100 else if( this->owner == thrd) { 101 // We already have the monitor, just note how many times we took it 102 this->recursion += 1; 103 104 __cfaabi_dbg_print_safe( "Kernel : mon already owned \n" ); 105 } 106 else if( is_accepted( this, group) ) { 107 // Some one was waiting for us, enter 108 set_owner( this, thrd ); 109 110 // Reset mask 111 reset_mask( this ); 112 113 __cfaabi_dbg_print_safe( "Kernel : mon accepts \n" ); 114 } 115 else { 116 __cfaabi_dbg_print_safe( "Kernel : blocking \n" ); 117 118 // Some one else has the monitor, wait in line for it 119 append( this->entry_queue, thrd ); 120 121 BlockInternal( &this->lock ); 122 123 __cfaabi_dbg_print_safe( "Kernel : %10p Entered mon %p\n", thrd, this); 124 125 // BlockInternal will unlock spinlock, no need to unlock ourselves 126 return; 127 } 82 // Enter single monitor 83 static void __enter( $monitor * this, const __monitor_group_t & group ) { 84 // Lock the monitor spinlock 85 lock( this->lock __cfaabi_dbg_ctx2 ); 86 // Interrupts disable inside critical section 87 $thread * thrd = kernelTLS.this_thread; 88 89 __cfaabi_dbg_print_safe( "Kernel : %10p Entering mon %p (%p)\n", thrd, this, this->owner); 90 91 if( !this->owner ) { 92 // No one has the monitor, just take it 93 __set_owner( this, thrd ); 94 95 __cfaabi_dbg_print_safe( "Kernel : mon is free \n" ); 96 } 97 else if( this->owner == thrd) { 98 // We already have the monitor, just note how many times we took it 99 this->recursion += 1; 100 101 __cfaabi_dbg_print_safe( "Kernel : mon already owned \n" ); 102 } 103 else if( is_accepted( this, group) ) { 104 // Some one was waiting for us, enter 105 __set_owner( this, thrd ); 106 107 // Reset mask 108 reset_mask( this ); 109 110 __cfaabi_dbg_print_safe( "Kernel : mon accepts \n" ); 111 } 112 else { 113 __cfaabi_dbg_print_safe( "Kernel : blocking \n" ); 114 115 // Some one else has the monitor, wait in line for it 116 /* paranoid */ verify( thrd->next == 0p ); 117 append( this->entry_queue, thrd ); 118 /* paranoid */ verify( thrd->next == 1p ); 119 120 unlock( this->lock ); 121 park( __cfaabi_dbg_ctx ); 128 122 129 123 __cfaabi_dbg_print_safe( "Kernel : %10p Entered mon %p\n", thrd, this); 130 124 131 // Release the lock and leave 125 /* paranoid */ verifyf( kernelTLS.this_thread == this->owner, "Expected owner to be %p, got %p (r: %i, m: %p)", kernelTLS.this_thread, this->owner, this->recursion, this ); 126 return; 127 } 128 129 __cfaabi_dbg_print_safe( "Kernel : %10p Entered mon %p\n", thrd, this); 130 131 /* paranoid */ verifyf( kernelTLS.this_thread == this->owner, "Expected owner to be %p, got %p (r: %i, m: %p)", kernelTLS.this_thread, this->owner, this->recursion, this ); 132 /* paranoid */ verify( this->lock.lock ); 133 134 // Release the lock and leave 135 unlock( this->lock ); 136 return; 137 } 138 139 static void __dtor_enter( $monitor * this, fptr_t func ) { 140 // Lock the monitor spinlock 141 lock( this->lock __cfaabi_dbg_ctx2 ); 142 // Interrupts disable inside critical section 143 $thread * thrd = kernelTLS.this_thread; 144 145 __cfaabi_dbg_print_safe( "Kernel : %10p Entering dtor for mon %p (%p)\n", thrd, this, this->owner); 146 147 148 if( !this->owner ) { 149 __cfaabi_dbg_print_safe( "Kernel : Destroying free mon %p\n", this); 150 151 // No one has the monitor, just take it 152 __set_owner( this, thrd ); 153 154 verifyf( kernelTLS.this_thread == this->owner, "Expected owner to be %p, got %p (r: %i, m: %p)", kernelTLS.this_thread, this->owner, this->recursion, this ); 155 132 156 unlock( this->lock ); 133 157 return; 134 158 } 135 136 static void __enter_monitor_dtor( monitor_desc * this, fptr_t func ) { 137 // Lock the monitor spinlock 138 lock( this->lock __cfaabi_dbg_ctx2 ); 139 // Interrupts disable inside critical section 140 thread_desc * thrd = kernelTLS.this_thread; 141 142 __cfaabi_dbg_print_safe( "Kernel : %10p Entering dtor for mon %p (%p)\n", thrd, this, this->owner); 143 144 145 if( !this->owner ) { 146 __cfaabi_dbg_print_safe( "Kernel : Destroying free mon %p\n", this); 147 148 // No one has the monitor, just take it 149 set_owner( this, thrd ); 150 151 unlock( this->lock ); 152 return; 159 else if( this->owner == thrd) { 160 // We already have the monitor... but where about to destroy it so the nesting will fail 161 // Abort! 162 abort( "Attempt to destroy monitor %p by thread \"%.256s\" (%p) in nested mutex.", this, thrd->self_cor.name, thrd ); 163 } 164 165 __lock_size_t count = 1; 166 $monitor ** monitors = &this; 167 __monitor_group_t group = { &this, 1, func }; 168 if( is_accepted( this, group) ) { 169 __cfaabi_dbg_print_safe( "Kernel : mon accepts dtor, block and signal it \n" ); 170 171 // Wake the thread that is waiting for this 172 __condition_criterion_t * urgent = pop( this->signal_stack ); 173 /* paranoid */ verify( urgent ); 174 175 // Reset mask 176 reset_mask( this ); 177 178 // Create the node specific to this wait operation 179 wait_ctx_primed( thrd, 0 ) 180 181 // Some one else has the monitor, wait for him to finish and then run 182 unlock( this->lock ); 183 184 // Release the next thread 185 /* paranoid */ verifyf( urgent->owner->waiting_thread == this->owner, "Expected owner to be %p, got %p (r: %i, m: %p)", kernelTLS.this_thread, this->owner, this->recursion, this ); 186 unpark( urgent->owner->waiting_thread __cfaabi_dbg_ctx2 ); 187 188 // Park current thread waiting 189 park( __cfaabi_dbg_ctx ); 190 191 // Some one was waiting for us, enter 192 /* paranoid */ verifyf( kernelTLS.this_thread == this->owner, "Expected owner to be %p, got %p (r: %i, m: %p)", kernelTLS.this_thread, this->owner, this->recursion, this ); 193 } 194 else { 195 __cfaabi_dbg_print_safe( "Kernel : blocking \n" ); 196 197 wait_ctx( thrd, 0 ) 198 this->dtor_node = &waiter; 199 200 // Some one else has the monitor, wait in line for it 201 /* paranoid */ verify( thrd->next == 0p ); 202 append( this->entry_queue, thrd ); 203 /* paranoid */ verify( thrd->next == 1p ); 204 unlock( this->lock ); 205 206 // Park current thread waiting 207 park( __cfaabi_dbg_ctx ); 208 209 /* paranoid */ verifyf( kernelTLS.this_thread == this->owner, "Expected owner to be %p, got %p (r: %i, m: %p)", kernelTLS.this_thread, this->owner, this->recursion, this ); 210 return; 211 } 212 213 __cfaabi_dbg_print_safe( "Kernel : Destroying %p\n", this); 214 215 } 216 217 // Leave single monitor 218 void __leave( $monitor * this ) { 219 // Lock the monitor spinlock 220 lock( this->lock __cfaabi_dbg_ctx2 ); 221 222 __cfaabi_dbg_print_safe( "Kernel : %10p Leaving mon %p (%p)\n", kernelTLS.this_thread, this, this->owner); 223 224 /* paranoid */ verifyf( kernelTLS.this_thread == this->owner, "Expected owner to be %p, got %p (r: %i, m: %p)", kernelTLS.this_thread, this->owner, this->recursion, this ); 225 226 // Leaving a recursion level, decrement the counter 227 this->recursion -= 1; 228 229 // If we haven't left the last level of recursion 230 // it means we don't need to do anything 231 if( this->recursion != 0) { 232 __cfaabi_dbg_print_safe( "Kernel : recursion still %d\n", this->recursion); 233 unlock( this->lock ); 234 return; 235 } 236 237 // Get the next thread, will be null on low contention monitor 238 $thread * new_owner = next_thread( this ); 239 240 // Check the new owner is consistent with who we wake-up 241 // new_owner might be null even if someone owns the monitor when the owner is still waiting for another monitor 242 /* paranoid */ verifyf( !new_owner || new_owner == this->owner, "Expected owner to be %p, got %p (m: %p)", new_owner, this->owner, this ); 243 244 // We can now let other threads in safely 245 unlock( this->lock ); 246 247 //We need to wake-up the thread 248 /* paranoid */ verifyf( !new_owner || new_owner == this->owner, "Expected owner to be %p, got %p (m: %p)", new_owner, this->owner, this ); 249 unpark( new_owner __cfaabi_dbg_ctx2 ); 250 } 251 252 // Leave single monitor for the last time 253 void __dtor_leave( $monitor * this ) { 254 __cfaabi_dbg_debug_do( 255 if( TL_GET( this_thread ) != this->owner ) { 256 abort( "Destroyed monitor %p has inconsistent owner, expected %p got %p.\n", this, TL_GET( this_thread ), this->owner); 153 257 } 154 else if( this->owner == thrd) { 155 // We already have the monitor... but where about to destroy it so the nesting will fail 156 // Abort! 157 abort( "Attempt to destroy monitor %p by thread \"%.256s\" (%p) in nested mutex.", this, thrd->self_cor.name, thrd ); 258 if( this->recursion != 1 ) { 259 abort( "Destroyed monitor %p has %d outstanding nested calls.\n", this, this->recursion - 1); 158 260 } 159 160 __lock_size_t count = 1; 161 monitor_desc ** monitors = &this; 162 __monitor_group_t group = { &this, 1, func }; 163 if( is_accepted( this, group) ) { 164 __cfaabi_dbg_print_safe( "Kernel : mon accepts dtor, block and signal it \n" ); 165 166 // Wake the thread that is waiting for this 167 __condition_criterion_t * urgent = pop( this->signal_stack ); 168 verify( urgent ); 169 170 // Reset mask 171 reset_mask( this ); 172 173 // Create the node specific to this wait operation 174 wait_ctx_primed( thrd, 0 ) 175 176 // Some one else has the monitor, wait for him to finish and then run 177 BlockInternal( &this->lock, urgent->owner->waiting_thread ); 178 179 // Some one was waiting for us, enter 180 set_owner( this, thrd ); 181 } 182 else { 183 __cfaabi_dbg_print_safe( "Kernel : blocking \n" ); 184 185 wait_ctx( thrd, 0 ) 186 this->dtor_node = &waiter; 187 188 // Some one else has the monitor, wait in line for it 189 append( this->entry_queue, thrd ); 190 BlockInternal( &this->lock ); 191 192 // BlockInternal will unlock spinlock, no need to unlock ourselves 193 return; 194 } 195 196 __cfaabi_dbg_print_safe( "Kernel : Destroying %p\n", this); 197 198 } 199 200 // Leave single monitor 201 void __leave_monitor_desc( monitor_desc * this ) { 202 // Lock the monitor spinlock 203 lock( this->lock __cfaabi_dbg_ctx2 ); 204 205 __cfaabi_dbg_print_safe( "Kernel : %10p Leaving mon %p (%p)\n", kernelTLS.this_thread, this, this->owner); 206 207 verifyf( kernelTLS.this_thread == this->owner, "Expected owner to be %p, got %p (r: %i, m: %p)", kernelTLS.this_thread, this->owner, this->recursion, this ); 208 209 // Leaving a recursion level, decrement the counter 210 this->recursion -= 1; 211 212 // If we haven't left the last level of recursion 213 // it means we don't need to do anything 214 if( this->recursion != 0) { 215 __cfaabi_dbg_print_safe( "Kernel : recursion still %d\n", this->recursion); 216 unlock( this->lock ); 217 return; 218 } 219 220 // Get the next thread, will be null on low contention monitor 221 thread_desc * new_owner = next_thread( this ); 222 223 // We can now let other threads in safely 224 unlock( this->lock ); 225 226 //We need to wake-up the thread 227 WakeThread( new_owner ); 228 } 229 230 // Leave single monitor for the last time 231 void __leave_dtor_monitor_desc( monitor_desc * this ) { 232 __cfaabi_dbg_debug_do( 233 if( TL_GET( this_thread ) != this->owner ) { 234 abort( "Destroyed monitor %p has inconsistent owner, expected %p got %p.\n", this, TL_GET( this_thread ), this->owner); 235 } 236 if( this->recursion != 1 ) { 237 abort( "Destroyed monitor %p has %d outstanding nested calls.\n", this, this->recursion - 1); 238 } 239 ) 240 } 241 261 ) 262 } 263 264 extern "C" { 242 265 // Leave the thread monitor 243 266 // last routine called by a thread. 244 267 // Should never return 245 void __ leave_thread_monitor() {246 thread_desc* thrd = TL_GET( this_thread );247 monitor_desc* this = &thrd->self_mon;268 void __cfactx_thrd_leave() { 269 $thread * thrd = TL_GET( this_thread ); 270 $monitor * this = &thrd->self_mon; 248 271 249 272 // Lock the monitor now … … 252 275 disable_interrupts(); 253 276 254 thrd->s elf_cor.state = Halted;255 256 verifyf( thrd == this->owner, "Expected owner to be %p, got %p (r: %i, m: %p)", thrd, this->owner, this->recursion, this );277 thrd->state = Halted; 278 279 /* paranoid */ verifyf( thrd == this->owner, "Expected owner to be %p, got %p (r: %i, m: %p)", thrd, this->owner, this->recursion, this ); 257 280 258 281 // Leaving a recursion level, decrement the counter … … 264 287 265 288 // Fetch the next thread, can be null 266 thread_desc * new_owner = next_thread( this ); 267 268 // Leave the thread, this will unlock the spinlock 269 // Use leave thread instead of BlockInternal which is 270 // specialized for this case and supports null new_owner 271 LeaveThread( &this->lock, new_owner ); 289 $thread * new_owner = next_thread( this ); 290 291 // Release the monitor lock 292 unlock( this->lock ); 293 294 // Unpark the next owner if needed 295 /* paranoid */ verifyf( !new_owner || new_owner == this->owner, "Expected owner to be %p, got %p (m: %p)", new_owner, this->owner, this ); 296 /* paranoid */ verify( ! kernelTLS.preemption_state.enabled ); 297 /* paranoid */ verify( ! kernelTLS.this_processor->destroyer ); 298 /* paranoid */ verify( thrd->state == Halted ); 299 300 kernelTLS.this_processor->destroyer = new_owner; 301 302 // Leave the thread 303 __leave_thread(); 272 304 273 305 // Control flow should never reach here! … … 279 311 static inline void enter( __monitor_group_t monitors ) { 280 312 for( __lock_size_t i = 0; i < monitors.size; i++) { 281 __enter _monitor_desc( monitors[i], monitors );313 __enter( monitors[i], monitors ); 282 314 } 283 315 } … … 285 317 // Leave multiple monitor 286 318 // relies on the monitor array being sorted 287 static inline void leave( monitor_desc* monitors [], __lock_size_t count) {319 static inline void leave($monitor * monitors [], __lock_size_t count) { 288 320 for( __lock_size_t i = count - 1; i >= 0; i--) { 289 __leave _monitor_desc( monitors[i] );321 __leave( monitors[i] ); 290 322 } 291 323 } … … 293 325 // Ctor for monitor guard 294 326 // Sorts monitors before entering 295 void ?{}( monitor_guard_t & this, monitor_desc* m [], __lock_size_t count, fptr_t func ) {296 thread_desc* thrd = TL_GET( this_thread );327 void ?{}( monitor_guard_t & this, $monitor * m [], __lock_size_t count, fptr_t func ) { 328 $thread * thrd = TL_GET( this_thread ); 297 329 298 330 // Store current array … … 334 366 // Ctor for monitor guard 335 367 // Sorts monitors before entering 336 void ?{}( monitor_dtor_guard_t & this, monitor_desc* m [], fptr_t func ) {368 void ?{}( monitor_dtor_guard_t & this, $monitor * m [], fptr_t func ) { 337 369 // optimization 338 thread_desc* thrd = TL_GET( this_thread );370 $thread * thrd = TL_GET( this_thread ); 339 371 340 372 // Store current array … … 347 379 (thrd->monitors){m, 1, func}; 348 380 349 __ enter_monitor_dtor( this.m, func );381 __dtor_enter( this.m, func ); 350 382 } 351 383 … … 353 385 void ^?{}( monitor_dtor_guard_t & this ) { 354 386 // Leave the monitors in order 355 __ leave_dtor_monitor_desc( this.m );387 __dtor_leave( this.m ); 356 388 357 389 // Restore thread context … … 361 393 //----------------------------------------------------------------------------- 362 394 // Internal scheduling types 363 void ?{}(__condition_node_t & this, thread_desc* waiting_thread, __lock_size_t count, uintptr_t user_info ) {395 void ?{}(__condition_node_t & this, $thread * waiting_thread, __lock_size_t count, uintptr_t user_info ) { 364 396 this.waiting_thread = waiting_thread; 365 397 this.count = count; … … 375 407 } 376 408 377 void ?{}(__condition_criterion_t & this, monitor_desc* target, __condition_node_t & owner ) {409 void ?{}(__condition_criterion_t & this, $monitor * target, __condition_node_t & owner ) { 378 410 this.ready = false; 379 411 this.target = target; … … 400 432 // Append the current wait operation to the ones already queued on the condition 401 433 // We don't need locks for that since conditions must always be waited on inside monitor mutual exclusion 434 /* paranoid */ verify( waiter.next == 0p ); 402 435 append( this.blocked, &waiter ); 436 /* paranoid */ verify( waiter.next == 1p ); 403 437 404 438 // Lock all monitors (aggregates the locks as well) … … 407 441 // Find the next thread(s) to run 408 442 __lock_size_t thread_count = 0; 409 thread_desc* threads[ count ];443 $thread * threads[ count ]; 410 444 __builtin_memset( threads, 0, sizeof( threads ) ); 411 445 … … 415 449 // Remove any duplicate threads 416 450 for( __lock_size_t i = 0; i < count; i++) { 417 thread_desc* new_owner = next_thread( monitors[i] );451 $thread * new_owner = next_thread( monitors[i] ); 418 452 insert_unique( threads, thread_count, new_owner ); 419 453 } 420 454 455 // Unlock the locks, we don't need them anymore 456 for(int i = 0; i < count; i++) { 457 unlock( *locks[i] ); 458 } 459 460 // Wake the threads 461 for(int i = 0; i < thread_count; i++) { 462 unpark( threads[i] __cfaabi_dbg_ctx2 ); 463 } 464 421 465 // Everything is ready to go to sleep 422 BlockInternal( locks, count, threads, thread_count);466 park( __cfaabi_dbg_ctx ); 423 467 424 468 // We are back, restore the owners and recursions … … 435 479 //Some more checking in debug 436 480 __cfaabi_dbg_debug_do( 437 thread_desc* this_thrd = TL_GET( this_thread );481 $thread * this_thrd = TL_GET( this_thread ); 438 482 if ( this.monitor_count != this_thrd->monitors.size ) { 439 483 abort( "Signal on condition %p made with different number of monitor(s), expected %zi got %zi", &this, this.monitor_count, this_thrd->monitors.size ); … … 489 533 490 534 //Find the thread to run 491 thread_desc* signallee = pop_head( this.blocked )->waiting_thread;492 set_owner( monitors, count, signallee );535 $thread * signallee = pop_head( this.blocked )->waiting_thread; 536 __set_owner( monitors, count, signallee ); 493 537 494 538 __cfaabi_dbg_print_buffer_decl( "Kernel : signal_block condition %p (s: %p)\n", &this, signallee ); 495 539 540 // unlock all the monitors 541 unlock_all( locks, count ); 542 543 // unpark the thread we signalled 544 unpark( signallee __cfaabi_dbg_ctx2 ); 545 496 546 //Everything is ready to go to sleep 497 BlockInternal( locks, count, &signallee, 1);547 park( __cfaabi_dbg_ctx ); 498 548 499 549 … … 536 586 // Create one! 537 587 __lock_size_t max = count_max( mask ); 538 monitor_desc* mon_storage[max];588 $monitor * mon_storage[max]; 539 589 __builtin_memset( mon_storage, 0, sizeof( mon_storage ) ); 540 590 __lock_size_t actual_count = aggregate( mon_storage, mask ); … … 554 604 { 555 605 // Check if the entry queue 556 thread_desc* next; int index;606 $thread * next; int index; 557 607 [next, index] = search_entry_queue( mask, monitors, count ); 558 608 … … 564 614 verifyf( accepted.size == 1, "ERROR: Accepted dtor has more than 1 mutex parameter." ); 565 615 566 monitor_desc* mon2dtor = accepted[0];616 $monitor * mon2dtor = accepted[0]; 567 617 verifyf( mon2dtor->dtor_node, "ERROR: Accepted monitor has no dtor_node." ); 568 618 … … 590 640 591 641 // Set the owners to be the next thread 592 set_owner( monitors, count, next ); 593 594 // Everything is ready to go to sleep 595 BlockInternal( locks, count, &next, 1 ); 642 __set_owner( monitors, count, next ); 643 644 // unlock all the monitors 645 unlock_all( locks, count ); 646 647 // unpark the thread we signalled 648 unpark( next __cfaabi_dbg_ctx2 ); 649 650 //Everything is ready to go to sleep 651 park( __cfaabi_dbg_ctx ); 596 652 597 653 // We are back, restore the owners and recursions … … 631 687 } 632 688 689 // unlock all the monitors 690 unlock_all( locks, count ); 691 633 692 //Everything is ready to go to sleep 634 BlockInternal( locks, count);693 park( __cfaabi_dbg_ctx ); 635 694 636 695 … … 649 708 // Utilities 650 709 651 static inline void set_owner( monitor_desc * this, thread_desc* owner ) {652 / / __cfaabi_dbg_print_safe( "Kernal : Setting owner of %p to %p ( was %p)\n", this, owner, this->owner);710 static inline void __set_owner( $monitor * this, $thread * owner ) { 711 /* paranoid */ verify( this->lock.lock ); 653 712 654 713 //Pass the monitor appropriately … … 659 718 } 660 719 661 static inline void set_owner( monitor_desc * monitors [], __lock_size_t count, thread_desc * owner ) { 662 monitors[0]->owner = owner; 663 monitors[0]->recursion = 1; 720 static inline void __set_owner( $monitor * monitors [], __lock_size_t count, $thread * owner ) { 721 /* paranoid */ verify ( monitors[0]->lock.lock ); 722 /* paranoid */ verifyf( monitors[0]->owner == kernelTLS.this_thread, "Expected owner to be %p, got %p (r: %i, m: %p)", kernelTLS.this_thread, monitors[0]->owner, monitors[0]->recursion, monitors[0] ); 723 monitors[0]->owner = owner; 724 monitors[0]->recursion = 1; 664 725 for( __lock_size_t i = 1; i < count; i++ ) { 665 monitors[i]->owner = owner; 666 monitors[i]->recursion = 0; 667 } 668 } 669 670 static inline void set_mask( monitor_desc * storage [], __lock_size_t count, const __waitfor_mask_t & mask ) { 726 /* paranoid */ verify ( monitors[i]->lock.lock ); 727 /* paranoid */ verifyf( monitors[i]->owner == kernelTLS.this_thread, "Expected owner to be %p, got %p (r: %i, m: %p)", kernelTLS.this_thread, monitors[i]->owner, monitors[i]->recursion, monitors[i] ); 728 monitors[i]->owner = owner; 729 monitors[i]->recursion = 0; 730 } 731 } 732 733 static inline void set_mask( $monitor * storage [], __lock_size_t count, const __waitfor_mask_t & mask ) { 671 734 for( __lock_size_t i = 0; i < count; i++) { 672 735 storage[i]->mask = mask; … … 674 737 } 675 738 676 static inline void reset_mask( monitor_desc* this ) {739 static inline void reset_mask( $monitor * this ) { 677 740 this->mask.accepted = 0p; 678 741 this->mask.data = 0p; … … 680 743 } 681 744 682 static inline thread_desc * next_thread( monitor_desc* this ) {745 static inline $thread * next_thread( $monitor * this ) { 683 746 //Check the signaller stack 684 747 __cfaabi_dbg_print_safe( "Kernel : mon %p AS-stack top %p\n", this, this->signal_stack.top); … … 688 751 //regardless of if we are ready to baton pass, 689 752 //we need to set the monitor as in use 690 set_owner( this, urgent->owner->waiting_thread ); 753 /* paranoid */ verifyf( !this->owner || kernelTLS.this_thread == this->owner, "Expected owner to be %p, got %p (r: %i, m: %p)", kernelTLS.this_thread, this->owner, this->recursion, this ); 754 __set_owner( this, urgent->owner->waiting_thread ); 691 755 692 756 return check_condition( urgent ); … … 695 759 // No signaller thread 696 760 // Get the next thread in the entry_queue 697 thread_desc * new_owner = pop_head( this->entry_queue ); 698 set_owner( this, new_owner ); 761 $thread * new_owner = pop_head( this->entry_queue ); 762 /* paranoid */ verifyf( !this->owner || kernelTLS.this_thread == this->owner, "Expected owner to be %p, got %p (r: %i, m: %p)", kernelTLS.this_thread, this->owner, this->recursion, this ); 763 /* paranoid */ verify( !new_owner || new_owner->next == 0p ); 764 __set_owner( this, new_owner ); 699 765 700 766 return new_owner; 701 767 } 702 768 703 static inline bool is_accepted( monitor_desc* this, const __monitor_group_t & group ) {769 static inline bool is_accepted( $monitor * this, const __monitor_group_t & group ) { 704 770 __acceptable_t * it = this->mask.data; // Optim 705 771 __lock_size_t count = this->mask.size; … … 723 789 } 724 790 725 static inline void init( __lock_size_t count, monitor_desc* monitors [], __condition_node_t & waiter, __condition_criterion_t criteria [] ) {791 static inline void init( __lock_size_t count, $monitor * monitors [], __condition_node_t & waiter, __condition_criterion_t criteria [] ) { 726 792 for( __lock_size_t i = 0; i < count; i++) { 727 793 (criteria[i]){ monitors[i], waiter }; … … 731 797 } 732 798 733 static inline void init_push( __lock_size_t count, monitor_desc* monitors [], __condition_node_t & waiter, __condition_criterion_t criteria [] ) {799 static inline void init_push( __lock_size_t count, $monitor * monitors [], __condition_node_t & waiter, __condition_criterion_t criteria [] ) { 734 800 for( __lock_size_t i = 0; i < count; i++) { 735 801 (criteria[i]){ monitors[i], waiter }; … … 747 813 } 748 814 749 static inline void lock_all( monitor_desc* source [], __spinlock_t * /*out*/ locks [], __lock_size_t count ) {815 static inline void lock_all( $monitor * source [], __spinlock_t * /*out*/ locks [], __lock_size_t count ) { 750 816 for( __lock_size_t i = 0; i < count; i++ ) { 751 817 __spinlock_t * l = &source[i]->lock; … … 761 827 } 762 828 763 static inline void unlock_all( monitor_desc* locks [], __lock_size_t count ) {829 static inline void unlock_all( $monitor * locks [], __lock_size_t count ) { 764 830 for( __lock_size_t i = 0; i < count; i++ ) { 765 831 unlock( locks[i]->lock ); … … 768 834 769 835 static inline void save( 770 monitor_desc* ctx [],836 $monitor * ctx [], 771 837 __lock_size_t count, 772 838 __attribute((unused)) __spinlock_t * locks [], … … 781 847 782 848 static inline void restore( 783 monitor_desc* ctx [],849 $monitor * ctx [], 784 850 __lock_size_t count, 785 851 __spinlock_t * locks [], … … 799 865 // 2 - Checks if all the monitors are ready to run 800 866 // if so return the thread to run 801 static inline thread_desc* check_condition( __condition_criterion_t * target ) {867 static inline $thread * check_condition( __condition_criterion_t * target ) { 802 868 __condition_node_t * node = target->owner; 803 869 unsigned short count = node->count; … … 822 888 823 889 static inline void brand_condition( condition & this ) { 824 thread_desc* thrd = TL_GET( this_thread );890 $thread * thrd = TL_GET( this_thread ); 825 891 if( !this.monitors ) { 826 892 // __cfaabi_dbg_print_safe( "Branding\n" ); … … 828 894 this.monitor_count = thrd->monitors.size; 829 895 830 this.monitors = ( monitor_desc**)malloc( this.monitor_count * sizeof( *this.monitors ) );896 this.monitors = ($monitor **)malloc( this.monitor_count * sizeof( *this.monitors ) ); 831 897 for( int i = 0; i < this.monitor_count; i++ ) { 832 898 this.monitors[i] = thrd->monitors[i]; … … 835 901 } 836 902 837 static inline [ thread_desc *, int] search_entry_queue( const __waitfor_mask_t & mask, monitor_desc* monitors [], __lock_size_t count ) {838 839 __queue_t( thread_desc) & entry_queue = monitors[0]->entry_queue;903 static inline [$thread *, int] search_entry_queue( const __waitfor_mask_t & mask, $monitor * monitors [], __lock_size_t count ) { 904 905 __queue_t($thread) & entry_queue = monitors[0]->entry_queue; 840 906 841 907 // For each thread in the entry-queue 842 for( thread_desc** thrd_it = &entry_queue.head;908 for( $thread ** thrd_it = &entry_queue.head; 843 909 *thrd_it; 844 910 thrd_it = &(*thrd_it)->link.next … … 884 950 } 885 951 886 static inline __lock_size_t aggregate( monitor_desc* storage [], const __waitfor_mask_t & mask ) {952 static inline __lock_size_t aggregate( $monitor * storage [], const __waitfor_mask_t & mask ) { 887 953 __lock_size_t size = 0; 888 954 for( __lock_size_t i = 0; i < mask.size; i++ ) { -
libcfa/src/concurrency/monitor.hfa
rb7d6a36 r6a490b2 23 23 24 24 trait is_monitor(dtype T) { 25 monitor_desc* get_monitor( T & );25 $monitor * get_monitor( T & ); 26 26 void ^?{}( T & mutex ); 27 27 }; 28 28 29 static inline void ?{}( monitor_desc& this) with( this ) {29 static inline void ?{}($monitor & this) with( this ) { 30 30 lock{}; 31 31 entry_queue{}; … … 39 39 } 40 40 41 static inline void ^?{}( monitor_desc& ) {}41 static inline void ^?{}($monitor & ) {} 42 42 43 43 struct monitor_guard_t { 44 monitor_desc** m;44 $monitor ** m; 45 45 __lock_size_t count; 46 46 __monitor_group_t prev; 47 47 }; 48 48 49 void ?{}( monitor_guard_t & this, monitor_desc** m, __lock_size_t count, void (*func)() );49 void ?{}( monitor_guard_t & this, $monitor ** m, __lock_size_t count, void (*func)() ); 50 50 void ^?{}( monitor_guard_t & this ); 51 51 52 52 struct monitor_dtor_guard_t { 53 monitor_desc* m;53 $monitor * m; 54 54 __monitor_group_t prev; 55 55 }; 56 56 57 void ?{}( monitor_dtor_guard_t & this, monitor_desc** m, void (*func)() );57 void ?{}( monitor_dtor_guard_t & this, $monitor ** m, void (*func)() ); 58 58 void ^?{}( monitor_dtor_guard_t & this ); 59 59 … … 72 72 73 73 // The monitor this criterion concerns 74 monitor_desc* target;74 $monitor * target; 75 75 76 76 // The parent node to which this criterion belongs … … 87 87 struct __condition_node_t { 88 88 // Thread that needs to be woken when all criteria are met 89 thread_desc* waiting_thread;89 $thread * waiting_thread; 90 90 91 91 // Array of criteria (Criterions are contiguous in memory) … … 106 106 } 107 107 108 void ?{}(__condition_node_t & this, thread_desc* waiting_thread, __lock_size_t count, uintptr_t user_info );108 void ?{}(__condition_node_t & this, $thread * waiting_thread, __lock_size_t count, uintptr_t user_info ); 109 109 void ?{}(__condition_criterion_t & this ); 110 void ?{}(__condition_criterion_t & this, monitor_desc* target, __condition_node_t * owner );110 void ?{}(__condition_criterion_t & this, $monitor * target, __condition_node_t * owner ); 111 111 112 112 struct condition { … … 115 115 116 116 // Array of monitor pointers (Monitors are NOT contiguous in memory) 117 monitor_desc** monitors;117 $monitor ** monitors; 118 118 119 119 // Number of monitors in the array … … 133 133 bool signal ( condition & this ); 134 134 bool signal_block( condition & this ); 135 static inline bool is_empty ( condition & this ) { return !this.blocked.head; }135 static inline bool is_empty ( condition & this ) { return this.blocked.head == 1p; } 136 136 uintptr_t front ( condition & this ); 137 137 -
libcfa/src/concurrency/mutex.cfa
rb7d6a36 r6a490b2 40 40 if( is_locked ) { 41 41 append( blocked_threads, kernelTLS.this_thread ); 42 BlockInternal( &lock ); 42 unlock( lock ); 43 park( __cfaabi_dbg_ctx ); 43 44 } 44 45 else { … … 62 63 lock( this.lock __cfaabi_dbg_ctx2 ); 63 64 this.is_locked = (this.blocked_threads != 0); 64 WakeThread(65 pop_head( this.blocked_threads ) 65 unpark( 66 pop_head( this.blocked_threads ) __cfaabi_dbg_ctx2 66 67 ); 67 68 unlock( this.lock ); … … 94 95 else { 95 96 append( blocked_threads, kernelTLS.this_thread ); 96 BlockInternal( &lock ); 97 unlock( lock ); 98 park( __cfaabi_dbg_ctx ); 97 99 } 98 100 } … … 118 120 recursion_count--; 119 121 if( recursion_count == 0 ) { 120 thread_desc* thrd = pop_head( blocked_threads );122 $thread * thrd = pop_head( blocked_threads ); 121 123 owner = thrd; 122 124 recursion_count = (thrd ? 1 : 0); 123 WakeThread( thrd);125 unpark( thrd __cfaabi_dbg_ctx2 ); 124 126 } 125 127 unlock( lock ); … … 138 140 void notify_one(condition_variable & this) with(this) { 139 141 lock( lock __cfaabi_dbg_ctx2 ); 140 WakeThread(141 pop_head( this.blocked_threads ) 142 unpark( 143 pop_head( this.blocked_threads ) __cfaabi_dbg_ctx2 142 144 ); 143 145 unlock( lock ); … … 147 149 lock( lock __cfaabi_dbg_ctx2 ); 148 150 while(this.blocked_threads) { 149 WakeThread(150 pop_head( this.blocked_threads ) 151 unpark( 152 pop_head( this.blocked_threads ) __cfaabi_dbg_ctx2 151 153 ); 152 154 } … … 157 159 lock( this.lock __cfaabi_dbg_ctx2 ); 158 160 append( this.blocked_threads, kernelTLS.this_thread ); 159 BlockInternal( &this.lock ); 161 unlock( this.lock ); 162 park( __cfaabi_dbg_ctx ); 160 163 } 161 164 … … 164 167 lock( this.lock __cfaabi_dbg_ctx2 ); 165 168 append( this.blocked_threads, kernelTLS.this_thread ); 166 void __unlock(void) { 167 unlock(l); 168 unlock(this.lock); 169 } 170 BlockInternal( __unlock ); 169 unlock(l); 170 unlock(this.lock); 171 park( __cfaabi_dbg_ctx ); 171 172 lock(l); 172 173 } -
libcfa/src/concurrency/mutex.hfa
rb7d6a36 r6a490b2 36 36 37 37 // List of blocked threads 38 __queue_t(struct thread_desc) blocked_threads;38 __queue_t(struct $thread) blocked_threads; 39 39 40 40 // Locked flag … … 55 55 56 56 // List of blocked threads 57 __queue_t(struct thread_desc) blocked_threads;57 __queue_t(struct $thread) blocked_threads; 58 58 59 59 // Current thread owning the lock 60 struct thread_desc* owner;60 struct $thread * owner; 61 61 62 62 // Number of recursion level … … 83 83 84 84 // List of blocked threads 85 __queue_t(struct thread_desc) blocked_threads;85 __queue_t(struct $thread) blocked_threads; 86 86 }; 87 87 -
libcfa/src/concurrency/preemption.cfa
rb7d6a36 r6a490b2 39 39 // FwdDeclarations : timeout handlers 40 40 static void preempt( processor * this ); 41 static void timeout( thread_desc* this );41 static void timeout( $thread * this ); 42 42 43 43 // FwdDeclarations : Signal handlers 44 44 static void sigHandler_ctxSwitch( __CFA_SIGPARMS__ ); 45 static void sigHandler_alarm ( __CFA_SIGPARMS__ ); 45 46 static void sigHandler_segv ( __CFA_SIGPARMS__ ); 46 47 static void sigHandler_ill ( __CFA_SIGPARMS__ ); … … 83 84 // Get next expired node 84 85 static inline alarm_node_t * get_expired( alarm_list_t * alarms, Time currtime ) { 85 if( ! alarms->head) return 0p; // If no alarms return null86 if( alarms->head->alarm >= currtime ) return 0p; // If alarms head not expired return null86 if( ! & (*alarms)`first ) return 0p; // If no alarms return null 87 if( (*alarms)`first.alarm >= currtime ) return 0p; // If alarms head not expired return null 87 88 return pop(alarms); // Otherwise just pop head 88 89 } … … 97 98 while( node = get_expired( alarms, currtime ) ) { 98 99 // __cfaabi_dbg_print_buffer_decl( " KERNEL: preemption tick.\n" ); 100 Duration period = node->period; 101 if( period == 0) { 102 node->set = false; // Node is one-shot, just mark it as not pending 103 } 99 104 100 105 // Check if this is a kernel … … 107 112 108 113 // Check if this is a periodic alarm 109 Duration period = node->period;110 114 if( period > 0 ) { 111 115 // __cfaabi_dbg_print_buffer_local( " KERNEL: alarm period is %lu.\n", period.tv ); … … 113 117 insert( alarms, node ); // Reinsert the node for the next time it triggers 114 118 } 115 else {116 node->set = false; // Node is one-shot, just mark it as not pending117 }118 119 } 119 120 120 121 // If there are still alarms pending, reset the timer 121 if( alarms->head) {122 // __cfaabi_dbg_print_buffer_decl(" KERNEL: @%ju(%ju) resetting alarm to %ju.\n", currtime.tv, __kernel_get_time().tv, (alarms->head->alarm - currtime).tv);123 Duration delta = alarms->head->alarm - currtime;124 Duration cap ed = max(delta, 50`us);122 if( & (*alarms)`first ) { 123 __cfadbg_print_buffer_decl(preemption, " KERNEL: @%ju(%ju) resetting alarm to %ju.\n", currtime.tv, __kernel_get_time().tv, (alarms->head->alarm - currtime).tv); 124 Duration delta = (*alarms)`first.alarm - currtime; 125 Duration capped = max(delta, 50`us); 125 126 // itimerval tim = { caped }; 126 127 // __cfaabi_dbg_print_buffer_local( " Values are %lu, %lu, %lu %lu.\n", delta.tv, caped.tv, tim.it_value.tv_sec, tim.it_value.tv_usec); 127 128 128 __kernel_set_timer( cap ed );129 __kernel_set_timer( capped ); 129 130 } 130 131 } … … 184 185 185 186 // Enable interrupts by decrementing the counter 186 // If counter reaches 0, execute any pending CtxSwitch187 // If counter reaches 0, execute any pending __cfactx_switch 187 188 void enable_interrupts( __cfaabi_dbg_ctx_param ) { 188 189 processor * proc = kernelTLS.this_processor; // Cache the processor now since interrupts can start happening after the atomic store 189 thread_desc * thrd = kernelTLS.this_thread; // Cache the thread now since interrupts can start happening after the atomic store190 190 191 191 with( kernelTLS.preemption_state ){ … … 209 209 if( proc->pending_preemption ) { 210 210 proc->pending_preemption = false; 211 BlockInternal( thrd);211 force_yield( __POLL_PREEMPTION ); 212 212 } 213 213 } … … 219 219 220 220 // Disable interrupts by incrementint the counter 221 // Don't execute any pending CtxSwitch even if counter reaches 0221 // Don't execute any pending __cfactx_switch even if counter reaches 0 222 222 void enable_interrupts_noPoll() { 223 223 unsigned short prev = kernelTLS.preemption_state.disable_count; … … 257 257 258 258 if ( pthread_sigmask( SIG_BLOCK, &mask, 0p ) == -1 ) { 259 259 abort( "internal error, pthread_sigmask" ); 260 260 } 261 261 } … … 268 268 269 269 // reserved for future use 270 static void timeout( thread_desc* this ) {271 //TODO : implement waking threads270 static void timeout( $thread * this ) { 271 __unpark( this __cfaabi_dbg_ctx2 ); 272 272 } 273 273 274 274 // KERNEL ONLY 275 // Check if a CtxSwitch signal handler shoud defer275 // Check if a __cfactx_switch signal handler shoud defer 276 276 // If true : preemption is safe 277 277 // If false : preemption is unsafe and marked as pending … … 303 303 304 304 // Setup proper signal handlers 305 __cfaabi_sigaction( SIGUSR1, sigHandler_ctxSwitch, SA_SIGINFO | SA_RESTART ); // CtxSwitch handler 305 __cfaabi_sigaction( SIGUSR1, sigHandler_ctxSwitch, SA_SIGINFO | SA_RESTART ); // __cfactx_switch handler 306 __cfaabi_sigaction( SIGALRM, sigHandler_alarm , SA_SIGINFO | SA_RESTART ); // debug handler 306 307 307 308 signal_block( SIGALRM ); 308 309 309 alarm_stack = create_pthread( &alarm_thread, alarm_loop, 0p );310 alarm_stack = __create_pthread( &alarm_thread, alarm_loop, 0p ); 310 311 } 311 312 … … 394 395 // Preemption can occur here 395 396 396 BlockInternal( kernelTLS.this_thread ); // Do the actual CtxSwitch 397 force_yield( __ALARM_PREEMPTION ); // Do the actual __cfactx_switch 398 } 399 400 static void sigHandler_alarm( __CFA_SIGPARMS__ ) { 401 abort("SIGALRM should never reach the signal handler"); 397 402 } 398 403 -
libcfa/src/concurrency/thread.cfa
rb7d6a36 r6a490b2 23 23 #include "invoke.h" 24 24 25 extern "C" {26 #include <fenv.h>27 #include <stddef.h>28 }29 30 //extern volatile thread_local processor * this_processor;31 32 25 //----------------------------------------------------------------------------- 33 26 // Thread ctors and dtors 34 void ?{}( thread_desc& this, const char * const name, cluster & cl, void * storage, size_t storageSize ) with( this ) {27 void ?{}($thread & this, const char * const name, cluster & cl, void * storage, size_t storageSize ) with( this ) { 35 28 context{ 0p, 0p }; 36 29 self_cor{ name, storage, storageSize }; 37 30 state = Start; 31 preempted = __NO_PREEMPTION; 38 32 curr_cor = &self_cor; 39 33 self_mon.owner = &this; … … 51 45 } 52 46 53 void ^?{}( thread_desc& this) with( this ) {47 void ^?{}($thread& this) with( this ) { 54 48 unregister(curr_cluster, this); 55 49 ^self_cor{}; 56 50 } 57 51 52 //----------------------------------------------------------------------------- 53 // Starting and stopping threads 54 forall( dtype T | is_thread(T) ) 55 void __thrd_start( T & this, void (*main_p)(T &) ) { 56 $thread * this_thrd = get_thread(this); 57 58 disable_interrupts(); 59 __cfactx_start(main_p, get_coroutine(this), this, __cfactx_invoke_thread); 60 61 this_thrd->context.[SP, FP] = this_thrd->self_cor.context.[SP, FP]; 62 verify( this_thrd->context.SP ); 63 64 __schedule_thread(this_thrd); 65 enable_interrupts( __cfaabi_dbg_ctx ); 66 } 67 68 //----------------------------------------------------------------------------- 69 // Support for threads that don't ues the thread keyword 58 70 forall( dtype T | sized(T) | is_thread(T) | { void ?{}(T&); } ) 59 71 void ?{}( scoped(T)& this ) with( this ) { … … 73 85 } 74 86 75 //-----------------------------------------------------------------------------76 // Starting and stopping threads77 forall( dtype T | is_thread(T) )78 void __thrd_start( T & this, void (*main_p)(T &) ) {79 thread_desc * this_thrd = get_thread(this);80 81 disable_interrupts();82 CtxStart(main_p, get_coroutine(this), this, CtxInvokeThread);83 84 this_thrd->context.[SP, FP] = this_thrd->self_cor.context.[SP, FP];85 verify( this_thrd->context.SP );86 87 ScheduleThread(this_thrd);88 enable_interrupts( __cfaabi_dbg_ctx );89 }90 91 void yield( void ) {92 // Safety note : This could cause some false positives due to preemption93 verify( TL_GET( preemption_state.enabled ) );94 BlockInternal( TL_GET( this_thread ) );95 // Safety note : This could cause some false positives due to preemption96 verify( TL_GET( preemption_state.enabled ) );97 }98 99 void yield( unsigned times ) {100 for( unsigned i = 0; i < times; i++ ) {101 yield();102 }103 }104 105 87 // Local Variables: // 106 88 // mode: c // -
libcfa/src/concurrency/thread.hfa
rb7d6a36 r6a490b2 28 28 void ^?{}(T& mutex this); 29 29 void main(T& this); 30 thread_desc* get_thread(T& this);30 $thread* get_thread(T& this); 31 31 }; 32 32 33 #define DECL_THREAD(X) thread_desc* get_thread(X& this) { return &this.__thrd; } void main(X& this) 33 // define that satisfies the trait without using the thread keyword 34 #define DECL_THREAD(X) $thread* get_thread(X& this) __attribute__((const)) { return &this.__thrd; } void main(X& this) 35 36 // Inline getters for threads/coroutines/monitors 37 forall( dtype T | is_thread(T) ) 38 static inline $coroutine* get_coroutine(T & this) __attribute__((const)) { return &get_thread(this)->self_cor; } 34 39 35 40 forall( dtype T | is_thread(T) ) 36 static inline coroutine_desc* get_coroutine(T & this) { 37 return &get_thread(this)->self_cor; 38 } 41 static inline $monitor * get_monitor (T & this) __attribute__((const)) { return &get_thread(this)->self_mon; } 39 42 40 forall( dtype T | is_thread(T) ) 41 static inline monitor_desc* get_monitor(T & this) { 42 return &get_thread(this)->self_mon; 43 } 43 static inline $coroutine* get_coroutine($thread * this) __attribute__((const)) { return &this->self_cor; } 44 static inline $monitor * get_monitor ($thread * this) __attribute__((const)) { return &this->self_mon; } 44 45 45 static inline coroutine_desc* get_coroutine(thread_desc * this) { 46 return &this->self_cor; 47 } 48 49 static inline monitor_desc* get_monitor(thread_desc * this) { 50 return &this->self_mon; 51 } 52 46 //----------------------------------------------------------------------------- 47 // forward declarations needed for threads 53 48 extern struct cluster * mainCluster; 54 49 … … 58 53 //----------------------------------------------------------------------------- 59 54 // Ctors and dtors 60 void ?{}( thread_desc& this, const char * const name, struct cluster & cl, void * storage, size_t storageSize );61 void ^?{}( thread_desc& this);55 void ?{}($thread & this, const char * const name, struct cluster & cl, void * storage, size_t storageSize ); 56 void ^?{}($thread & this); 62 57 63 static inline void ?{}( thread_desc& this) { this{ "Anonymous Thread", *mainCluster, 0p, 65000 }; }64 static inline void ?{}( thread_desc& this, size_t stackSize ) { this{ "Anonymous Thread", *mainCluster, 0p, stackSize }; }65 static inline void ?{}( thread_desc& this, void * storage, size_t storageSize ) { this{ "Anonymous Thread", *mainCluster, storage, storageSize }; }66 static inline void ?{}( thread_desc& this, struct cluster & cl ) { this{ "Anonymous Thread", cl, 0p, 65000 }; }67 static inline void ?{}( thread_desc& this, struct cluster & cl, size_t stackSize ) { this{ "Anonymous Thread", cl, 0p, stackSize }; }68 static inline void ?{}( thread_desc& this, struct cluster & cl, void * storage, size_t storageSize ) { this{ "Anonymous Thread", cl, storage, storageSize }; }69 static inline void ?{}( thread_desc& this, const char * const name) { this{ name, *mainCluster, 0p, 65000 }; }70 static inline void ?{}( thread_desc& this, const char * const name, struct cluster & cl ) { this{ name, cl, 0p, 65000 }; }71 static inline void ?{}( thread_desc& this, const char * const name, struct cluster & cl, size_t stackSize ) { this{ name, cl, 0p, stackSize }; }58 static inline void ?{}($thread & this) { this{ "Anonymous Thread", *mainCluster, 0p, 65000 }; } 59 static inline void ?{}($thread & this, size_t stackSize ) { this{ "Anonymous Thread", *mainCluster, 0p, stackSize }; } 60 static inline void ?{}($thread & this, void * storage, size_t storageSize ) { this{ "Anonymous Thread", *mainCluster, storage, storageSize }; } 61 static inline void ?{}($thread & this, struct cluster & cl ) { this{ "Anonymous Thread", cl, 0p, 65000 }; } 62 static inline void ?{}($thread & this, struct cluster & cl, size_t stackSize ) { this{ "Anonymous Thread", cl, 0p, stackSize }; } 63 static inline void ?{}($thread & this, struct cluster & cl, void * storage, size_t storageSize ) { this{ "Anonymous Thread", cl, storage, storageSize }; } 64 static inline void ?{}($thread & this, const char * const name) { this{ name, *mainCluster, 0p, 65000 }; } 65 static inline void ?{}($thread & this, const char * const name, struct cluster & cl ) { this{ name, cl, 0p, 65000 }; } 66 static inline void ?{}($thread & this, const char * const name, struct cluster & cl, size_t stackSize ) { this{ name, cl, 0p, stackSize }; } 72 67 73 68 //----------------------------------------------------------------------------- … … 88 83 void ^?{}( scoped(T)& this ); 89 84 90 void yield(); 91 void yield( unsigned times ); 85 //----------------------------------------------------------------------------- 86 // Thread getters 87 static inline struct $thread * active_thread () { return TL_GET( this_thread ); } 92 88 93 static inline struct thread_desc * active_thread () { return TL_GET( this_thread ); } 89 //----------------------------------------------------------------------------- 90 // Scheduler API 91 92 //---------- 93 // Park thread: block until corresponding call to unpark, won't block if unpark is already called 94 void park( __cfaabi_dbg_ctx_param ); 95 96 //---------- 97 // Unpark a thread, if the thread is already blocked, schedule it 98 // if the thread is not yet block, signal that it should rerun immediately 99 void unpark( $thread * this __cfaabi_dbg_ctx_param2 ); 100 101 forall( dtype T | is_thread(T) ) 102 static inline void unpark( T & this __cfaabi_dbg_ctx_param2 ) { if(!&this) return; unpark( get_thread( this ) __cfaabi_dbg_ctx_fwd2 );} 103 104 //---------- 105 // Yield: force thread to block and be rescheduled 106 bool force_yield( enum __Preemption_Reason ); 107 108 static inline void yield() { 109 force_yield(__MANUAL_PREEMPTION); 110 } 111 112 // Yield: yield N times 113 static inline void yield( unsigned times ) { 114 for( times ) { 115 yield(); 116 } 117 } 118 119 //---------- 120 // sleep: force thread to block and be rescheduled after Duration duration 121 void sleep( Duration duration ); 94 122 95 123 // Local Variables: // -
libcfa/src/exception.c
rb7d6a36 r6a490b2 9 9 // Author : Andrew Beach 10 10 // Created On : Mon Jun 26 15:13:00 2017 11 // Last Modified By : Peter A. Buhr12 // Last Modified On : T hu Feb 22 18:17:34 201813 // Update Count : 1 111 // Last Modified By : Andrew Beach 12 // Last Modified On : Tue Apr 14 12:01:00 2020 13 // Update Count : 18 14 14 // 15 15 16 // Normally we would get this from the CFA prelude. 16 17 #include <stddef.h> // for size_t 17 18 18 19 #include "exception.h" 19 20 20 // Implementation of the secret header. 21 // Implementation of the secret header is hardware dependent. 22 #if !( defined( __x86_64 ) || defined( __i386 ) ) 23 #error Exception Handling: No known architecture detected. 24 #endif 21 25 22 26 #include <stdlib.h> … … 24 28 #include <unwind.h> 25 29 #include <bits/debug.hfa> 30 #include "stdhdr/assert.h" 26 31 27 32 // FIX ME: temporary hack to keep ARM build working 28 33 #ifndef _URC_FATAL_PHASE1_ERROR 29 #define _URC_FATAL_PHASE1_ERROR 234 #define _URC_FATAL_PHASE1_ERROR 3 30 35 #endif // ! _URC_FATAL_PHASE1_ERROR 31 36 #ifndef _URC_FATAL_PHASE2_ERROR … … 35 40 #include "lsda.h" 36 41 42 /* The exception class for our exceptions. Because of the vendor component 43 * its value would not be standard. 44 * Vendor: UWPL 45 * Language: CFA\0 46 */ 47 const _Unwind_Exception_Class __cfaehm_exception_class = 0x4c50575500414643; 37 48 38 49 // Base exception vtable is abstract, you should not have base exceptions. 39 struct __cfa abi_ehm__base_exception_t_vtable40 ___cfa abi_ehm__base_exception_t_vtable_instance = {50 struct __cfaehm_base_exception_t_vtable 51 ___cfaehm_base_exception_t_vtable_instance = { 41 52 .parent = NULL, 42 53 .size = 0, … … 49 60 // Temperary global exception context. Does not work with concurency. 50 61 struct exception_context_t { 51 struct __cfaabi_ehm__try_resume_node * top_resume; 52 struct __cfaabi_ehm__try_resume_node * current_resume; 53 54 exception_t * current_exception; 55 int current_handler_index; 56 } shared_stack = {NULL, NULL, 0, 0}; 62 struct __cfaehm_try_resume_node * top_resume; 63 64 exception_t * current_exception; 65 int current_handler_index; 66 } static shared_stack = {NULL, NULL, 0}; 57 67 58 68 // Get the current exception context. … … 62 72 return &shared_stack; 63 73 } 64 //#define SAVE_EXCEPTION_CONTEXT(to_name)65 //struct exception_context_t * to_name = this_exception_context();66 //exception * this_exception() {67 // return this_exception_context()->current_exception;68 //}69 70 71 // This macro should be the only thing that needs to change across machines.72 // Used in the personality function, way down in termination.73 // struct _Unwind_Context * -> _Unwind_Reason_Code(*)(exception_t *)74 #define MATCHER_FROM_CONTEXT(ptr_to_context) \75 (*(_Unwind_Reason_Code(**)(exception_t *))(_Unwind_GetCFA(ptr_to_context) + 8))76 74 77 75 78 76 // RESUMPTION ================================================================ 79 77 80 void __cfaabi_ehm__throw_resume(exception_t * except) { 81 82 __cfaabi_dbg_print_safe("Throwing resumption exception\n"); 83 84 struct __cfaabi_ehm__try_resume_node * original_head = shared_stack.current_resume; 85 struct __cfaabi_ehm__try_resume_node * current = 86 (original_head) ? original_head->next : shared_stack.top_resume; 78 static void reset_top_resume(struct __cfaehm_try_resume_node ** store) { 79 this_exception_context()->top_resume = *store; 80 } 81 82 void __cfaehm_throw_resume(exception_t * except) { 83 struct exception_context_t * context = this_exception_context(); 84 85 __cfadbg_print_safe(exception, "Throwing resumption exception\n"); 86 87 __attribute__((cleanup(reset_top_resume))) 88 struct __cfaehm_try_resume_node * original_head = context->top_resume; 89 struct __cfaehm_try_resume_node * current = context->top_resume; 87 90 88 91 for ( ; current ; current = current->next) { 89 shared_stack.current_resume = current;92 context->top_resume = current->next; 90 93 if (current->handler(except)) { 91 shared_stack.current_resume = original_head;92 94 return; 93 95 } 94 96 } 95 97 96 __cfaabi_dbg_print_safe("Unhandled exception\n"); 97 shared_stack.current_resume = original_head; 98 __cfadbg_print_safe(exception, "Unhandled exception\n"); 98 99 99 100 // Fall back to termination: 100 __cfa abi_ehm__throw_terminate(except);101 __cfaehm_throw_terminate(except); 101 102 // TODO: Default handler for resumption. 102 103 } … … 106 107 // be added after the node is built but before it is made the top node. 107 108 108 void __cfa abi_ehm__try_resume_setup(struct __cfaabi_ehm__try_resume_node * node,109 void __cfaehm_try_resume_setup(struct __cfaehm_try_resume_node * node, 109 110 _Bool (*handler)(exception_t * except)) { 110 node->next = shared_stack.top_resume; 111 struct exception_context_t * context = this_exception_context(); 112 node->next = context->top_resume; 111 113 node->handler = handler; 112 shared_stack.top_resume = node; 113 } 114 115 void __cfaabi_ehm__try_resume_cleanup(struct __cfaabi_ehm__try_resume_node * node) { 116 shared_stack.top_resume = node->next; 114 context->top_resume = node; 115 } 116 117 void __cfaehm_try_resume_cleanup(struct __cfaehm_try_resume_node * node) { 118 struct exception_context_t * context = this_exception_context(); 119 context->top_resume = node->next; 117 120 } 118 121 … … 123 126 // May have to move to cfa for constructors and destructors (references). 124 127 125 struct __cfaabi_ehm__node { 126 struct __cfaabi_ehm__node * next; 128 // How to clean up an exception in various situations. 129 static void __cfaehm_exception_cleanup( 130 _Unwind_Reason_Code reason, 131 struct _Unwind_Exception * exception) { 132 switch (reason) { 133 case _URC_FOREIGN_EXCEPTION_CAUGHT: 134 // This one we could clean-up to allow cross-language exceptions. 135 case _URC_FATAL_PHASE1_ERROR: 136 case _URC_FATAL_PHASE2_ERROR: 137 default: 138 abort(); 139 } 140 } 141 142 // We need a piece of storage to raise the exception, for now its a single 143 // piece. 144 static struct _Unwind_Exception this_exception_storage; 145 146 struct __cfaehm_node { 147 struct __cfaehm_node * next; 127 148 }; 128 149 129 150 #define NODE_TO_EXCEPT(node) ((exception_t *)(1 + (node))) 130 #define EXCEPT_TO_NODE(except) ((struct __cfa abi_ehm__node *)(except) - 1)151 #define EXCEPT_TO_NODE(except) ((struct __cfaehm_node *)(except) - 1) 131 152 132 153 // Creates a copy of the indicated exception and sets current_exception to it. 133 static void __cfa abi_ehm__allocate_exception( exception_t * except ) {154 static void __cfaehm_allocate_exception( exception_t * except ) { 134 155 struct exception_context_t * context = this_exception_context(); 135 156 136 157 // Allocate memory for the exception. 137 struct __cfa abi_ehm__node * store = malloc(138 sizeof( struct __cfa abi_ehm__node ) + except->virtual_table->size );158 struct __cfaehm_node * store = malloc( 159 sizeof( struct __cfaehm_node ) + except->virtual_table->size ); 139 160 140 161 if ( ! store ) { … … 149 170 // Copy the exception to storage. 150 171 except->virtual_table->copy( context->current_exception, except ); 172 173 // Set up the exception storage. 174 this_exception_storage.exception_class = __cfaehm_exception_class; 175 this_exception_storage.exception_cleanup = __cfaehm_exception_cleanup; 151 176 } 152 177 153 178 // Delete the provided exception, unsetting current_exception if relivant. 154 static void __cfa abi_ehm__delete_exception( exception_t * except ) {179 static void __cfaehm_delete_exception( exception_t * except ) { 155 180 struct exception_context_t * context = this_exception_context(); 156 181 157 __cfa abi_dbg_print_safe("Deleting Exception\n");182 __cfadbg_print_safe(exception, "Deleting Exception\n"); 158 183 159 184 // Remove the exception from the list. 160 struct __cfa abi_ehm__node * to_free = EXCEPT_TO_NODE(except);161 struct __cfa abi_ehm__node * node;185 struct __cfaehm_node * to_free = EXCEPT_TO_NODE(except); 186 struct __cfaehm_node * node; 162 187 163 188 if ( context->current_exception == except ) { … … 167 192 node = EXCEPT_TO_NODE(context->current_exception); 168 193 // It may always be in the first or second position. 169 while ( to_free != node->next ) {194 while ( to_free != node->next ) { 170 195 node = node->next; 171 196 } … … 179 204 180 205 // If this isn't a rethrow (*except==0), delete the provided exception. 181 void __cfaabi_ehm__cleanup_terminate( void * except ) { 182 if ( *(void**)except ) __cfaabi_ehm__delete_exception( *(exception_t **)except ); 183 } 184 185 186 // We need a piece of storage to raise the exception 187 struct _Unwind_Exception this_exception_storage; 206 void __cfaehm_cleanup_terminate( void * except ) { 207 if ( *(void**)except ) __cfaehm_delete_exception( *(exception_t **)except ); 208 } 188 209 189 210 // Function needed by force unwind … … 192 213 int version, 193 214 _Unwind_Action actions, 194 _Unwind_Exception_Class exception Class,215 _Unwind_Exception_Class exception_class, 195 216 struct _Unwind_Exception * unwind_exception, 196 struct _Unwind_Context * context, 197 void * some_param) { 198 if( actions & _UA_END_OF_STACK ) exit(1); 199 if( actions & _UA_CLEANUP_PHASE ) return _URC_NO_REASON; 200 201 return _URC_FATAL_PHASE2_ERROR; 217 struct _Unwind_Context * unwind_context, 218 void * stop_param) { 219 // Verify actions follow the rules we expect. 220 verify((actions & _UA_CLEANUP_PHASE) && (actions & _UA_FORCE_UNWIND)); 221 verify(!(actions & (_UA_SEARCH_PHASE | _UA_HANDER_FRAME))); 222 223 if ( actions & _UA_END_OF_STACK ) { 224 exit(1); 225 } else { 226 return _URC_NO_REASON; 227 } 202 228 } 203 229 204 230 // The exception that is being thrown must already be stored. 205 __attribute__((noreturn)) void __cfaabi_ehm__begin_unwind(void) {231 static __attribute__((noreturn)) void __cfaehm_begin_unwind(void) { 206 232 if ( ! this_exception_context()->current_exception ) { 207 233 printf("UNWIND ERROR missing exception in begin unwind\n"); 208 234 abort(); 209 235 } 210 211 236 212 237 // Call stdlibc to raise the exception … … 220 245 // the whole stack. 221 246 222 if ( ret == _URC_END_OF_STACK ) {247 if ( ret == _URC_END_OF_STACK ) { 223 248 // No proper handler was found. This can be handled in many ways, C++ calls std::terminate. 224 249 // Here we force unwind the stack, basically raising a cancellation. … … 235 260 } 236 261 237 void __cfaabi_ehm__throw_terminate( exception_t * val ) { 238 __cfaabi_dbg_print_safe("Throwing termination exception\n"); 239 240 __cfaabi_ehm__allocate_exception( val ); 241 __cfaabi_ehm__begin_unwind(); 242 } 243 244 void __cfaabi_ehm__rethrow_terminate(void) { 245 __cfaabi_dbg_print_safe("Rethrowing termination exception\n"); 246 247 __cfaabi_ehm__begin_unwind(); 248 } 249 250 #pragma GCC push_options 251 #pragma GCC optimize("O0") 262 void __cfaehm_throw_terminate( exception_t * val ) { 263 __cfadbg_print_safe(exception, "Throwing termination exception\n"); 264 265 __cfaehm_allocate_exception( val ); 266 __cfaehm_begin_unwind(); 267 } 268 269 void __cfaehm_rethrow_terminate(void) { 270 __cfadbg_print_safe(exception, "Rethrowing termination exception\n"); 271 272 __cfaehm_begin_unwind(); 273 } 252 274 253 275 // This is our personality routine. For every stack frame annotated with 254 276 // ".cfi_personality 0x3,__gcfa_personality_v0" this function will be called twice when unwinding. 255 277 // Once in the search phase and once in the cleanup phase. 256 _Unwind_Reason_Code __gcfa_personality_v0 ( 257 int version, _Unwind_Action actions, unsigned long long exceptionClass, 258 struct _Unwind_Exception* unwind_exception, 259 struct _Unwind_Context* context) 278 _Unwind_Reason_Code __gcfa_personality_v0( 279 int version, 280 _Unwind_Action actions, 281 unsigned long long exception_class, 282 struct _Unwind_Exception * unwind_exception, 283 struct _Unwind_Context * unwind_context) 260 284 { 261 285 262 //__cfaabi_dbg_print_safe("CFA: 0x%lx\n", _Unwind_GetCFA(context)); 263 __cfaabi_dbg_print_safe("Personality function (%d, %x, %llu, %p, %p):", 264 version, actions, exceptionClass, unwind_exception, context); 265 266 // If we've reached the end of the stack then there is nothing much we can do... 267 if( actions & _UA_END_OF_STACK ) return _URC_END_OF_STACK; 268 286 //__cfadbg_print_safe(exception, "CFA: 0x%lx\n", _Unwind_GetCFA(context)); 287 __cfadbg_print_safe(exception, "Personality function (%d, %x, %llu, %p, %p):", 288 version, actions, exception_class, unwind_exception, unwind_context); 289 290 // Verify that actions follow the rules we expect. 291 // This function should never be called at the end of the stack. 292 verify(!(actions & _UA_END_OF_STACK)); 293 // Either only the search phase flag is set or... 269 294 if (actions & _UA_SEARCH_PHASE) { 270 __cfaabi_dbg_print_safe(" lookup phase"); 271 } 272 else if (actions & _UA_CLEANUP_PHASE) { 273 __cfaabi_dbg_print_safe(" cleanup phase"); 274 } 275 // Just in case, probably can't actually happen 276 else { 277 printf(" error\n"); 278 return _URC_FATAL_PHASE1_ERROR; 295 verify(actions == _UA_SEARCH_PHASE); 296 __cfadbg_print_safe(exception, " lookup phase"); 297 // ... we are in clean-up phase. 298 } else { 299 verify(actions & _UA_CLEANUP_PHASE); 300 __cfadbg_print_safe(exception, " cleanup phase"); 301 // We shouldn't be the handler frame during forced unwind. 302 if (actions & _UA_HANDLER_FRAME) { 303 verify(!(actions & _UA_FORCE_UNWIND)); 304 __cfadbg_print_safe(exception, " (handler frame)"); 305 } else if (actions & _UA_FORCE_UNWIND) { 306 __cfadbg_print_safe(exception, " (force unwind)"); 307 } 279 308 } 280 309 281 310 // Get a pointer to the language specific data from which we will read what we need 282 const unsigned char * lsd = (const unsigned char*) _Unwind_GetLanguageSpecificData(context );283 284 if ( !lsd ) { //Nothing to do, keep unwinding311 const unsigned char * lsd = _Unwind_GetLanguageSpecificData( unwind_context ); 312 313 if ( !lsd ) { //Nothing to do, keep unwinding 285 314 printf(" no LSD"); 286 315 goto UNWIND; … … 289 318 // Get the instuction pointer and a reading pointer into the exception table 290 319 lsda_header_info lsd_info; 291 const unsigned char * cur_ptr = parse_lsda_header(context, lsd, &lsd_info); 292 _Unwind_Ptr instruction_ptr = _Unwind_GetIP( context ); 320 const unsigned char * cur_ptr = parse_lsda_header(unwind_context, lsd, &lsd_info); 321 _Unwind_Ptr instruction_ptr = _Unwind_GetIP(unwind_context); 322 323 struct exception_context_t * context = this_exception_context(); 293 324 294 325 // Linearly search the table for stuff to do 295 while ( cur_ptr < lsd_info.action_table ) {326 while ( cur_ptr < lsd_info.action_table ) { 296 327 _Unwind_Ptr callsite_start; 297 328 _Unwind_Ptr callsite_len; … … 306 337 307 338 // Have we reach the correct frame info yet? 308 if ( lsd_info.Start + callsite_start + callsite_len < instruction_ptr ) {339 if ( lsd_info.Start + callsite_start + callsite_len < instruction_ptr ) { 309 340 #ifdef __CFA_DEBUG_PRINT__ 310 341 void * ls = (void*)lsd_info.Start; … … 314 345 void * ep = (void*)lsd_info.Start + callsite_start + callsite_len; 315 346 void * ip = (void*)instruction_ptr; 316 __cfa abi_dbg_print_safe("\nfound %p - %p (%p, %p, %p), looking for %p\n",347 __cfadbg_print_safe(exception, "\nfound %p - %p (%p, %p, %p), looking for %p\n", 317 348 bp, ep, ls, cs, cl, ip); 318 349 #endif // __CFA_DEBUG_PRINT__ … … 321 352 322 353 // Have we gone too far? 323 if ( lsd_info.Start + callsite_start > instruction_ptr ) {354 if ( lsd_info.Start + callsite_start > instruction_ptr ) { 324 355 printf(" gone too far"); 325 356 break; 326 357 } 327 358 328 // Something to do? 329 if( callsite_landing_pad ) { 330 // Which phase are we in 331 if (actions & _UA_SEARCH_PHASE) { 332 // In search phase, these means we found a potential handler we must check. 333 334 // We have arbitrarily decided that 0 means nothing to do and 1 means there is 335 // a potential handler. This doesn't seem to conflict the gcc default behavior. 336 if (callsite_action != 0) { 337 // Now we want to run some code to see if the handler matches 338 // This is the tricky part where we want to the power to run arbitrary code 339 // However, generating a new exception table entry and try routine every time 340 // is way more expansive than we might like 341 // The information we have is : 342 // - The GR (Series of registers) 343 // GR1=GP Global Pointer of frame ref by context 344 // - The instruction pointer 345 // - The instruction pointer info (???) 346 // - The CFA (Canonical Frame Address) 347 // - The BSP (Probably the base stack pointer) 348 349 350 // The current apprach uses one exception table entry per try block 351 _uleb128_t imatcher; 352 // Get the relative offset to the {...}? 353 cur_ptr = read_uleb128(cur_ptr, &imatcher); 354 355 _Unwind_Reason_Code (*matcher)(exception_t *) = 356 MATCHER_FROM_CONTEXT(context); 357 int index = matcher(shared_stack.current_exception); 358 _Unwind_Reason_Code ret = (0 == index) 359 ? _URC_CONTINUE_UNWIND : _URC_HANDLER_FOUND; 360 shared_stack.current_handler_index = index; 361 362 // Based on the return value, check if we matched the exception 363 if( ret == _URC_HANDLER_FOUND) { 364 __cfaabi_dbg_print_safe(" handler found\n"); 365 } else { 366 __cfaabi_dbg_print_safe(" no handler\n"); 367 } 368 return ret; 359 // Check for what we must do: 360 if ( 0 == callsite_landing_pad ) { 361 // Nothing to do, move along 362 __cfadbg_print_safe(exception, " no landing pad"); 363 } else if (actions & _UA_SEARCH_PHASE) { 364 // In search phase, these means we found a potential handler we must check. 365 366 // We have arbitrarily decided that 0 means nothing to do and 1 means there is 367 // a potential handler. This doesn't seem to conflict the gcc default behavior. 368 if (callsite_action != 0) { 369 // Now we want to run some code to see if the handler matches 370 // This is the tricky part where we want to the power to run arbitrary code 371 // However, generating a new exception table entry and try routine every time 372 // is way more expansive than we might like 373 // The information we have is : 374 // - The GR (Series of registers) 375 // GR1=GP Global Pointer of frame ref by context 376 // - The instruction pointer 377 // - The instruction pointer info (???) 378 // - The CFA (Canonical Frame Address) 379 // - The BSP (Probably the base stack pointer) 380 381 // The current apprach uses one exception table entry per try block 382 _uleb128_t imatcher; 383 // Get the relative offset to the {...}? 384 cur_ptr = read_uleb128(cur_ptr, &imatcher); 385 386 # if defined( __x86_64 ) 387 _Unwind_Word match_pos = _Unwind_GetCFA(unwind_context) + 8; 388 # elif defined( __i386 ) 389 _Unwind_Word match_pos = _Unwind_GetCFA(unwind_context) + 24; 390 # endif 391 int (*matcher)(exception_t *) = *(int(**)(exception_t *))match_pos; 392 393 int index = matcher(context->current_exception); 394 _Unwind_Reason_Code ret = (0 == index) 395 ? _URC_CONTINUE_UNWIND : _URC_HANDLER_FOUND; 396 context->current_handler_index = index; 397 398 // Based on the return value, check if we matched the exception 399 if (ret == _URC_HANDLER_FOUND) { 400 __cfadbg_print_safe(exception, " handler found\n"); 401 } else { 402 __cfadbg_print_safe(exception, " no handler\n"); 369 403 } 370 371 // This is only a cleanup handler, ignore it 372 __cfaabi_dbg_print_safe(" no action"); 404 return ret; 373 405 } 374 else if (actions & _UA_CLEANUP_PHASE) { 375 376 if( (callsite_action != 0) && !(actions & _UA_HANDLER_FRAME) ){ 377 // If this is a potential exception handler 378 // but not the one that matched the exception in the seach phase, 379 // just ignore it 380 goto UNWIND; 381 } 382 383 // We need to run some clean-up or a handler 384 // These statment do the right thing but I don't know any specifics at all 385 _Unwind_SetGR( context, __builtin_eh_return_data_regno(0), (_Unwind_Ptr) unwind_exception ); 386 _Unwind_SetGR( context, __builtin_eh_return_data_regno(1), 0 ); 387 388 // I assume this sets the instruction pointer to the adress of the landing pad 389 // It doesn't actually set it, it only state the value that needs to be set once we return _URC_INSTALL_CONTEXT 390 _Unwind_SetIP( context, ((lsd_info.LPStart) + (callsite_landing_pad)) ); 391 392 __cfaabi_dbg_print_safe(" action\n"); 393 394 // Return have some action to run 395 return _URC_INSTALL_CONTEXT; 406 407 // This is only a cleanup handler, ignore it 408 __cfadbg_print_safe(exception, " no action"); 409 } else { 410 // In clean-up phase, no destructors here but this could be the handler. 411 412 if ( (callsite_action != 0) && !(actions & _UA_HANDLER_FRAME) ){ 413 // If this is a potential exception handler 414 // but not the one that matched the exception in the seach phase, 415 // just ignore it 416 goto UNWIND; 396 417 } 418 419 // We need to run some clean-up or a handler 420 // These statment do the right thing but I don't know any specifics at all 421 _Unwind_SetGR( unwind_context, __builtin_eh_return_data_regno(0), 422 (_Unwind_Ptr)unwind_exception ); 423 _Unwind_SetGR( unwind_context, __builtin_eh_return_data_regno(1), 0 ); 424 425 // I assume this sets the instruction pointer to the adress of the landing pad 426 // It doesn't actually set it, it only state the value that needs to be set once we 427 // return _URC_INSTALL_CONTEXT 428 _Unwind_SetIP( unwind_context, ((lsd_info.LPStart) + (callsite_landing_pad)) ); 429 430 __cfadbg_print_safe(exception, " action\n"); 431 432 // Return have some action to run 433 return _URC_INSTALL_CONTEXT; 397 434 } 398 399 // Nothing to do, move along400 __cfaabi_dbg_print_safe(" no landing pad");401 435 } 402 436 // No handling found 403 __cfa abi_dbg_print_safe(" table end reached\n");437 __cfadbg_print_safe(exception, " table end reached"); 404 438 405 439 UNWIND: 406 __cfa abi_dbg_print_safe(" unwind\n");440 __cfadbg_print_safe(exception, " unwind\n"); 407 441 408 442 // Keep unwinding the stack 409 443 return _URC_CONTINUE_UNWIND; 410 444 } 445 446 #pragma GCC push_options 447 #pragma GCC optimize(0) 411 448 412 449 // Try statements are hoisted out see comments for details. While this could probably be unique 413 450 // and simply linked from libcfa but there is one problem left, see the exception table for details 414 451 __attribute__((noinline)) 415 void __cfa abi_ehm__try_terminate(void (*try_block)(),452 void __cfaehm_try_terminate(void (*try_block)(), 416 453 void (*catch_block)(int index, exception_t * except), 417 454 __attribute__((unused)) int (*match_block)(exception_t * except)) { … … 419 456 //! printf("%p %p %p %p\n", &try_block, &catch_block, &match_block, &xy); 420 457 421 // Setup statments: These 2 statments won't actually result in any code, they only setup global tables.422 // However, they clobber gcc cancellation support from gcc. We can replace the personality routine but423 // replacing the exception table gcc generates is not really doable, it generates labels based on how the424 // assembly works.425 426 458 // Setup the personality routine and exception table. 459 // Unforturnately these clobber gcc cancellation support which means we can't get access to 460 // the attribute cleanup tables at the same time. We would have to inspect the assembly to 461 // create a new set ourselves. 427 462 #ifdef __PIC__ 428 463 asm volatile (".cfi_personality 0x9b,CFA.ref.__gcfa_personality_v0"); … … 449 484 // Label which defines the end of the area for which the handler is setup. 450 485 asm volatile (".TRYEND:"); 451 // Label which defines the start of the exception landing pad. Basically what is called when the exception is452 // caught. Note, if multiple handlers are given, the multiplexing should be done by the generated code, not the453 // exception runtime.486 // Label which defines the start of the exception landing pad. Basically what is called when 487 // the exception is caught. Note, if multiple handlers are given, the multiplexing should be 488 // done by the generated code, not the exception runtime. 454 489 asm volatile (".CATCH:"); 455 490 456 491 // Exception handler 457 catch_block( shared_stack.current_handler_index, 458 shared_stack.current_exception ); 492 // Note: Saving the exception context on the stack breaks termination exceptions. 493 catch_block( this_exception_context()->current_handler_index, 494 this_exception_context()->current_exception ); 459 495 } 460 496 … … 464 500 465 501 #ifdef __PIC__ 466 #if defined( __i386 ) || defined( __x86_64 )467 502 asm ( 468 503 // HEADER … … 481 516 // handler landing pad offset and 1 (action code, gcc seems to use 0). 482 517 ".LLSDACSBCFA2:\n" 483 " .uleb128 .TRYSTART-__cfa abi_ehm__try_terminate\n"518 " .uleb128 .TRYSTART-__cfaehm_try_terminate\n" 484 519 " .uleb128 .TRYEND-.TRYSTART\n" 485 " .uleb128 .CATCH-__cfa abi_ehm__try_terminate\n"520 " .uleb128 .CATCH-__cfaehm_try_terminate\n" 486 521 " .uleb128 1\n" 487 522 ".LLSDACSECFA2:\n" 488 523 // TABLE FOOTER 489 524 " .text\n" 490 " .size __cfa abi_ehm__try_terminate, .-__cfaabi_ehm__try_terminate\n"525 " .size __cfaehm_try_terminate, .-__cfaehm_try_terminate\n" 491 526 ); 492 527 … … 507 542 " .quad __gcfa_personality_v0\n" 508 543 #else // then __i386 509 " 544 " .long __gcfa_personality_v0\n" 510 545 #endif 511 546 ); 512 #else513 #error Exception Handling: unknown architecture for position independent code.514 #endif // __i386 || __x86_64515 547 #else // __PIC__ 516 #if defined( __i386 ) || defined( __x86_64 )517 548 asm ( 518 549 // HEADER … … 529 560 ".LLSDACSBCFA2:\n" 530 561 // Handled area start (relative to start of function) 531 " .uleb128 .TRYSTART-__cfa abi_ehm__try_terminate\n"562 " .uleb128 .TRYSTART-__cfaehm_try_terminate\n" 532 563 // Handled area length 533 564 " .uleb128 .TRYEND-.TRYSTART\n" 534 565 // Handler landing pad address (relative to start of function) 535 " .uleb128 .CATCH-__cfa abi_ehm__try_terminate\n"566 " .uleb128 .CATCH-__cfaehm_try_terminate\n" 536 567 // Action code, gcc seems to always use 0. 537 568 " .uleb128 1\n" … … 539 570 ".LLSDACSECFA2:\n" 540 571 " .text\n" 541 " .size __cfa abi_ehm__try_terminate, .-__cfaabi_ehm__try_terminate\n"572 " .size __cfaehm_try_terminate, .-__cfaehm_try_terminate\n" 542 573 " .ident \"GCC: (Ubuntu 6.2.0-3ubuntu11~16.04) 6.2.0 20160901\"\n" 543 574 " .section .note.GNU-stack,\"x\",@progbits\n" 544 575 ); 545 #else546 #error Exception Handling: unknown architecture for position dependent code.547 #endif // __i386 || __x86_64548 576 #endif // __PIC__ 549 577 -
libcfa/src/exception.h
rb7d6a36 r6a490b2 9 9 // Author : Andrew Beach 10 10 // Created On : Mon Jun 26 15:11:00 2017 11 // Last Modified By : Peter A. Buhr12 // Last Modified On : Thu Feb 22 18:11:15 201813 // Update Count : 811 // Last Modified By : Andrew Beach 12 // Last Modified On : Fri Mar 27 10:16:00 2020 13 // Update Count : 9 14 14 // 15 15 … … 21 21 #endif 22 22 23 struct __cfa abi_ehm__base_exception_t;24 typedef struct __cfa abi_ehm__base_exception_t exception_t;25 struct __cfa abi_ehm__base_exception_t_vtable {26 const struct __cfa abi_ehm__base_exception_t_vtable * parent;23 struct __cfaehm_base_exception_t; 24 typedef struct __cfaehm_base_exception_t exception_t; 25 struct __cfaehm_base_exception_t_vtable { 26 const struct __cfaehm_base_exception_t_vtable * parent; 27 27 size_t size; 28 void (*copy)(struct __cfa abi_ehm__base_exception_t *this,29 struct __cfa abi_ehm__base_exception_t * other);30 void (*free)(struct __cfa abi_ehm__base_exception_t *this);31 const char * (*msg)(struct __cfa abi_ehm__base_exception_t *this);28 void (*copy)(struct __cfaehm_base_exception_t *this, 29 struct __cfaehm_base_exception_t * other); 30 void (*free)(struct __cfaehm_base_exception_t *this); 31 const char * (*msg)(struct __cfaehm_base_exception_t *this); 32 32 }; 33 struct __cfa abi_ehm__base_exception_t {34 struct __cfa abi_ehm__base_exception_t_vtable const * virtual_table;33 struct __cfaehm_base_exception_t { 34 struct __cfaehm_base_exception_t_vtable const * virtual_table; 35 35 }; 36 extern struct __cfa abi_ehm__base_exception_t_vtable37 ___cfa abi_ehm__base_exception_t_vtable_instance;36 extern struct __cfaehm_base_exception_t_vtable 37 ___cfaehm_base_exception_t_vtable_instance; 38 38 39 39 40 40 // Used in throw statement translation. 41 void __cfa abi_ehm__throw_terminate(exception_t * except) __attribute__((noreturn));42 void __cfa abi_ehm__rethrow_terminate() __attribute__((noreturn));43 void __cfa abi_ehm__throw_resume(exception_t * except);41 void __cfaehm_throw_terminate(exception_t * except) __attribute__((noreturn)); 42 void __cfaehm_rethrow_terminate() __attribute__((noreturn)); 43 void __cfaehm_throw_resume(exception_t * except); 44 44 45 45 // Function catches termination exceptions. 46 void __cfa abi_ehm__try_terminate(46 void __cfaehm_try_terminate( 47 47 void (*try_block)(), 48 48 void (*catch_block)(int index, exception_t * except), … … 50 50 51 51 // Clean-up the exception in catch blocks. 52 void __cfa abi_ehm__cleanup_terminate(void * except);52 void __cfaehm_cleanup_terminate(void * except); 53 53 54 54 // Data structure creates a list of resume handlers. 55 struct __cfa abi_ehm__try_resume_node {56 struct __cfa abi_ehm__try_resume_node * next;55 struct __cfaehm_try_resume_node { 56 struct __cfaehm_try_resume_node * next; 57 57 _Bool (*handler)(exception_t * except); 58 58 }; 59 59 60 60 // These act as constructor and destructor for the resume node. 61 void __cfa abi_ehm__try_resume_setup(62 struct __cfa abi_ehm__try_resume_node * node,61 void __cfaehm_try_resume_setup( 62 struct __cfaehm_try_resume_node * node, 63 63 _Bool (*handler)(exception_t * except)); 64 void __cfa abi_ehm__try_resume_cleanup(65 struct __cfa abi_ehm__try_resume_node * node);64 void __cfaehm_try_resume_cleanup( 65 struct __cfaehm_try_resume_node * node); 66 66 67 67 // Check for a standard way to call fake deconstructors. 68 struct __cfa abi_ehm__cleanup_hook {};68 struct __cfaehm_cleanup_hook {}; 69 69 70 70 #ifdef __cforall -
libcfa/src/heap.cfa
rb7d6a36 r6a490b2 10 10 // Created On : Tue Dec 19 21:58:35 2017 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Tue Feb 4 10:04:51202013 // Update Count : 64812 // Last Modified On : Wed May 6 17:29:26 2020 13 // Update Count : 727 14 14 // 15 15 … … 19 19 #include <errno.h> // errno 20 20 #include <string.h> // memset, memcpy 21 #include <limits.h> // ULONG_MAX 21 22 extern "C" { 22 23 #include <sys/mman.h> // mmap, munmap 23 24 } // extern "C" 24 25 25 // #comment TD : Many of these should be merged into math I believe26 26 #include "bits/align.hfa" // libPow2 27 27 #include "bits/defs.hfa" // likely, unlikely … … 30 30 //#include "stdlib.hfa" // bsearchl 31 31 #include "malloc.h" 32 #include "bitmanip.hfa" // ceiling 32 33 33 34 #define MIN(x, y) (y > x ? x : y) … … 81 82 }; 82 83 84 size_t default_heap_expansion() __attribute__(( weak )) { 85 return __CFA_DEFAULT_HEAP_EXPANSION__; 86 } // default_heap_expansion 87 83 88 size_t default_mmap_start() __attribute__(( weak )) { 84 89 return __CFA_DEFAULT_MMAP_START__; 85 90 } // default_mmap_start 86 87 size_t default_heap_expansion() __attribute__(( weak )) {88 return __CFA_DEFAULT_HEAP_EXPANSION__;89 } // default_heap_expansion90 91 91 92 … … 150 151 union { 151 152 // FreeHeader * home; // allocated block points back to home locations (must overlay alignment) 153 // 2nd low-order bit => zero filled 152 154 void * home; // allocated block points back to home locations (must overlay alignment) 153 155 size_t blockSize; // size for munmap (must overlay alignment) … … 169 171 struct FakeHeader { 170 172 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 171 uint32_t alignment; // low-order bits of home/blockSize used for tricks 173 // 1st low-order bit => fake header & alignment 174 uint32_t alignment; 172 175 #endif // __ORDER_LITTLE_ENDIAN__ 173 176 … … 179 182 } fake; // FakeHeader 180 183 } kind; // Kind 184 size_t size; // allocation size in bytes 181 185 } header; // Header 182 186 char pad[libAlign() - sizeof( Header )]; … … 262 266 static unsigned long long int free_storage; 263 267 static unsigned int free_calls; 268 static unsigned long long int aalloc_storage; 269 static unsigned int aalloc_calls; 264 270 static unsigned long long int calloc_storage; 265 271 static unsigned int calloc_calls; 266 272 static unsigned long long int memalign_storage; 267 273 static unsigned int memalign_calls; 274 static unsigned long long int amemalign_storage; 275 static unsigned int amemalign_calls; 268 276 static unsigned long long int cmemalign_storage; 269 277 static unsigned int cmemalign_calls; 278 static unsigned long long int resize_storage; 279 static unsigned int resize_calls; 270 280 static unsigned long long int realloc_storage; 271 281 static unsigned int realloc_calls; … … 275 285 // Use "write" because streams may be shutdown when calls are made. 276 286 static void printStats() { 277 char helpText[ 512];287 char helpText[1024]; 278 288 __cfaabi_bits_print_buffer( STDERR_FILENO, helpText, sizeof(helpText), 279 289 "\nHeap statistics:\n" 280 290 " malloc: calls %u / storage %llu\n" 291 " aalloc: calls %u / storage %llu\n" 281 292 " calloc: calls %u / storage %llu\n" 282 293 " memalign: calls %u / storage %llu\n" 294 " amemalign: calls %u / storage %llu\n" 283 295 " cmemalign: calls %u / storage %llu\n" 296 " resize: calls %u / storage %llu\n" 284 297 " realloc: calls %u / storage %llu\n" 285 298 " free: calls %u / storage %llu\n" … … 288 301 " sbrk: calls %u / storage %llu\n", 289 302 malloc_calls, malloc_storage, 303 aalloc_calls, calloc_storage, 290 304 calloc_calls, calloc_storage, 291 305 memalign_calls, memalign_storage, 306 amemalign_calls, amemalign_storage, 292 307 cmemalign_calls, cmemalign_storage, 308 resize_calls, resize_storage, 293 309 realloc_calls, realloc_storage, 294 310 free_calls, free_storage, … … 300 316 301 317 static int printStatsXML( FILE * stream ) { // see malloc_info 302 char helpText[ 512];318 char helpText[1024]; 303 319 int len = snprintf( helpText, sizeof(helpText), 304 320 "<malloc version=\"1\">\n" … … 307 323 "</sizes>\n" 308 324 "<total type=\"malloc\" count=\"%u\" size=\"%llu\"/>\n" 325 "<total type=\"aalloc\" count=\"%u\" size=\"%llu\"/>\n" 309 326 "<total type=\"calloc\" count=\"%u\" size=\"%llu\"/>\n" 310 327 "<total type=\"memalign\" count=\"%u\" size=\"%llu\"/>\n" 328 "<total type=\"amemalign\" count=\"%u\" size=\"%llu\"/>\n" 311 329 "<total type=\"cmemalign\" count=\"%u\" size=\"%llu\"/>\n" 330 "<total type=\"resize\" count=\"%u\" size=\"%llu\"/>\n" 312 331 "<total type=\"realloc\" count=\"%u\" size=\"%llu\"/>\n" 313 332 "<total type=\"free\" count=\"%u\" size=\"%llu\"/>\n" … … 317 336 "</malloc>", 318 337 malloc_calls, malloc_storage, 338 aalloc_calls, aalloc_storage, 319 339 calloc_calls, calloc_storage, 320 340 memalign_calls, memalign_storage, 341 amemalign_calls, amemalign_storage, 321 342 cmemalign_calls, cmemalign_storage, 343 resize_calls, resize_storage, 322 344 realloc_calls, realloc_storage, 323 345 free_calls, free_storage, … … 339 361 340 362 341 static inline void checkAlign( size_t alignment ) {342 if ( alignment < libAlign() || ! libPow2( alignment ) ) {343 abort( "Alignment %zu for memory allocation is less than %d and/or not a power of 2.", alignment, libAlign() );344 } // if345 } // checkAlign346 347 348 static inline bool setHeapExpand( size_t value ) {349 if ( heapExpand < pageSize ) return true;350 heapExpand = value;351 return false;352 } // setHeapExpand353 354 355 363 // thunk problem 356 364 size_t Bsearchl( unsigned int key, const unsigned int * vals, size_t dim ) { … … 369 377 370 378 static inline bool setMmapStart( size_t value ) { // true => mmapped, false => sbrk 371 if ( value < pageSize || bucketSizes[NoBucketSizes - 1] < value ) return true;379 if ( value < pageSize || bucketSizes[NoBucketSizes - 1] < value ) return false; 372 380 mmapStart = value; // set global 373 381 … … 376 384 assert( maxBucketsUsed < NoBucketSizes ); // subscript failure ? 377 385 assert( mmapStart <= bucketSizes[maxBucketsUsed] ); // search failure ? 378 return false;386 return true; 379 387 } // setMmapStart 388 389 390 // <-------+----------------------------------------------------> bsize (bucket size) 391 // |header |addr 392 //================================================================================== 393 // align/offset | 394 // <-----------------<------------+-----------------------------> bsize (bucket size) 395 // |fake-header | addr 396 #define headerAddr( addr ) ((HeapManager.Storage.Header *)( (char *)addr - sizeof(HeapManager.Storage) )) 397 #define realHeader( header ) ((HeapManager.Storage.Header *)((char *)header - header->kind.fake.offset)) 398 399 // <-------<<--------------------- dsize ---------------------->> bsize (bucket size) 400 // |header |addr 401 //================================================================================== 402 // align/offset | 403 // <------------------------------<<---------- dsize --------->>> bsize (bucket size) 404 // |fake-header |addr 405 #define dataStorage( bsize, addr, header ) (bsize - ( (char *)addr - (char *)header )) 406 407 408 static inline void checkAlign( size_t alignment ) { 409 if ( alignment < libAlign() || ! libPow2( alignment ) ) { 410 abort( "Alignment %zu for memory allocation is less than %d and/or not a power of 2.", alignment, libAlign() ); 411 } // if 412 } // checkAlign 380 413 381 414 … … 391 424 static inline void fakeHeader( HeapManager.Storage.Header *& header, size_t & alignment ) { 392 425 if ( unlikely( (header->kind.fake.alignment & 1) == 1 ) ) { // fake header ? 393 size_t offset = header->kind.fake.offset;394 426 alignment = header->kind.fake.alignment & -2; // remove flag from value 395 427 #ifdef __CFA_DEBUG__ 396 428 checkAlign( alignment ); // check alignment 397 429 #endif // __CFA_DEBUG__ 398 header = (HeapManager.Storage.Header *)((char *)header - offset);430 header = realHeader( header ); // backup from fake to real header 399 431 } // if 400 432 } // fakeHeader 401 402 403 // <-------+----------------------------------------------------> bsize (bucket size)404 // |header |addr405 //==================================================================================406 // | alignment407 // <-----------------<------------+-----------------------------> bsize (bucket size)408 // |fake-header | addr409 #define headerAddr( addr ) ((HeapManager.Storage.Header *)( (char *)addr - sizeof(HeapManager.Storage) ))410 411 // <-------<<--------------------- dsize ---------------------->> bsize (bucket size)412 // |header |addr413 //==================================================================================414 // | alignment415 // <------------------------------<<---------- dsize --------->>> bsize (bucket size)416 // |fake-header |addr417 #define dataStorage( bsize, addr, header ) (bsize - ( (char *)addr - (char *)header ))418 433 419 434 … … 428 443 429 444 #ifdef __CFA_DEBUG__ 430 checkHeader( addr < heapBegin || header < (HeapManager.Storage.Header *)heapBegin, name, addr );// bad low address ?445 checkHeader( addr < heapBegin, name, addr ); // bad low address ? 431 446 #endif // __CFA_DEBUG__ 432 447 … … 487 502 // along with the block and is a multiple of the alignment size. 488 503 489 if ( unlikely( size > ~0ul- sizeof(HeapManager.Storage) ) ) return 0p;504 if ( unlikely( size > ULONG_MAX - sizeof(HeapManager.Storage) ) ) return 0p; 490 505 size_t tsize = size + sizeof(HeapManager.Storage); 491 506 if ( likely( tsize < mmapStart ) ) { // small size => sbrk … … 539 554 block->header.kind.real.home = freeElem; // pointer back to free list of apropriate size 540 555 } else { // large size => mmap 541 if ( unlikely( size > ~0ul- pageSize ) ) return 0p;556 if ( unlikely( size > ULONG_MAX - pageSize ) ) return 0p; 542 557 tsize = libCeiling( tsize, pageSize ); // must be multiple of page size 543 558 #ifdef __STATISTICS__ … … 557 572 } // if 558 573 574 block->header.size = size; // store allocation size 559 575 void * addr = &(block->data); // adjust off header to user bytes 560 576 … … 680 696 #endif // FASTLOOKUP 681 697 682 if ( setMmapStart( default_mmap_start() ) ) {698 if ( ! setMmapStart( default_mmap_start() ) ) { 683 699 abort( "HeapManager : internal error, mmap start initialization failure." ); 684 700 } // if … … 686 702 687 703 char * end = (char *)sbrk( 0 ); 688 sbrk( (char *)libCeiling( (long unsigned int)end, libAlign() ) - end ); // move start of heap to multiple of alignment 689 heapBegin = heapEnd = sbrk( 0 ); // get new start point 704 heapBegin = heapEnd = sbrk( (char *)libCeiling( (long unsigned int)end, libAlign() ) - end ); // move start of heap to multiple of alignment 690 705 } // HeapManager 691 706 … … 713 728 //assert( heapManager.heapBegin != 0 ); 714 729 //heapManager{}; 715 if ( heapManager.heapBegin == 0p ) heapManager{}; 730 if ( heapManager.heapBegin == 0p ) heapManager{}; // sanity check 716 731 } // memory_startup 717 732 … … 725 740 //assert( heapManager.heapBegin != 0 ); 726 741 if ( unlikely( heapManager.heapBegin == 0p ) ) heapManager{}; // called before memory_startup ? 742 #if __SIZEOF_POINTER__ == 8 743 verify( size < ((typeof(size_t))1 << 48) ); 744 #endif // __SIZEOF_POINTER__ == 8 727 745 void * addr = doMalloc( size ); 728 746 if ( unlikely( addr == 0p ) ) errno = ENOMEM; // POSIX … … 731 749 732 750 733 static inline void * callocNoStats( size_t noOfElems, size_t elemSize ) {734 size_t size = noOfElems* elemSize;751 static inline void * callocNoStats( size_t dim, size_t elemSize ) { 752 size_t size = dim * elemSize; 735 753 char * addr = (char *)mallocNoStats( size ); 736 754 if ( unlikely( addr == 0p ) ) return 0p; … … 790 808 791 809 792 static inline void * cmemalignNoStats( size_t alignment, size_t noOfElems, size_t elemSize ) {793 size_t size = noOfElems* elemSize;810 static inline void * cmemalignNoStats( size_t alignment, size_t dim, size_t elemSize ) { 811 size_t size = dim * elemSize; 794 812 char * addr = (char *)memalignNoStats( alignment, size ); 795 813 if ( unlikely( addr == 0p ) ) return 0p; … … 803 821 #endif // __CFA_DEBUG__ 804 822 memset( addr, '\0', dataStorage( bsize, addr, header ) ); // set to zeros 805 header->kind.real.blockSize |= 2; // mark as zero filled 806 823 824 header->kind.real.blockSize |= 2; // mark as zero filled 807 825 return addr; 808 826 } // cmemalignNoStats … … 819 837 820 838 extern "C" { 821 // The malloc() function allocates size bytes and returns a pointer to the allocated memory. The memory is not 822 // initialized. If size is 0, then malloc() returns either 0p, or a unique pointer value that can later be 823 // successfully passed to free(). 839 // Allocates size bytes and returns a pointer to the allocated memory. The contents are undefined. If size is 0, 840 // then malloc() returns a unique pointer value that can later be successfully passed to free(). 824 841 void * malloc( size_t size ) { 825 842 #ifdef __STATISTICS__ … … 831 848 } // malloc 832 849 833 // The calloc() function allocates memory for an array of nmemb elements of size bytes each and returns a pointer to 834 // the allocated memory. The memory is set to zero. If nmemb or size is 0, then calloc() returns either 0p, or a 835 // unique pointer value that can later be successfully passed to free(). 836 void * calloc( size_t noOfElems, size_t elemSize ) { 850 851 // Same as malloc() except size bytes is an array of dim elements each of elemSize bytes. 852 void * aalloc( size_t dim, size_t elemSize ) { 853 #ifdef __STATISTICS__ 854 __atomic_add_fetch( &aalloc_calls, 1, __ATOMIC_SEQ_CST ); 855 __atomic_add_fetch( &aalloc_storage, dim * elemSize, __ATOMIC_SEQ_CST ); 856 #endif // __STATISTICS__ 857 858 return mallocNoStats( dim * elemSize ); 859 } // aalloc 860 861 862 // Same as aalloc() with memory set to zero. 863 void * calloc( size_t dim, size_t elemSize ) { 837 864 #ifdef __STATISTICS__ 838 865 __atomic_add_fetch( &calloc_calls, 1, __ATOMIC_SEQ_CST ); 839 __atomic_add_fetch( &calloc_storage, noOfElems* elemSize, __ATOMIC_SEQ_CST );840 #endif // __STATISTICS__ 841 842 return callocNoStats( noOfElems, elemSize );866 __atomic_add_fetch( &calloc_storage, dim * elemSize, __ATOMIC_SEQ_CST ); 867 #endif // __STATISTICS__ 868 869 return callocNoStats( dim, elemSize ); 843 870 } // calloc 844 871 845 // The realloc() function changes the size of the memory block pointed to by ptr to size bytes. The contents will be 846 // unchanged in the range from the start of the region up to the minimum of the old and new sizes. If the new size 847 // is larger than the old size, the added memory will not be initialized. If ptr is 0p, then the call is 848 // equivalent to malloc(size), for all values of size; if size is equal to zero, and ptr is not 0p, then the call 849 // is equivalent to free(ptr). Unless ptr is 0p, it must have been returned by an earlier call to malloc(), 850 // calloc() or realloc(). If the area pointed to was moved, a free(ptr) is done. 872 // Change the size of the memory block pointed to by oaddr to size bytes. The contents are undefined. If oaddr is 873 // 0p, then the call is equivalent to malloc(size), for all values of size; if size is equal to zero, and oaddr is 874 // not 0p, then the call is equivalent to free(oaddr). Unless oaddr is 0p, it must have been returned by an earlier 875 // call to malloc(), alloc(), calloc() or realloc(). If the area pointed to was moved, a free(oaddr) is done. 876 void * resize( void * oaddr, size_t size ) { 877 #ifdef __STATISTICS__ 878 __atomic_add_fetch( &resize_calls, 1, __ATOMIC_SEQ_CST ); 879 __atomic_add_fetch( &resize_storage, size, __ATOMIC_SEQ_CST ); 880 #endif // __STATISTICS__ 881 882 // If size is equal to 0, either NULL or a pointer suitable to be passed to free() is returned. 883 if ( unlikely( size == 0 ) ) { free( oaddr ); return mallocNoStats( size ); } // special cases 884 if ( unlikely( oaddr == 0p ) ) return mallocNoStats( size ); 885 886 HeapManager.Storage.Header * header; 887 HeapManager.FreeHeader * freeElem; 888 size_t bsize, oalign = 0; 889 headers( "resize", oaddr, header, freeElem, bsize, oalign ); 890 891 size_t odsize = dataStorage( bsize, oaddr, header ); // data storage available in bucket 892 // same size, DO NOT preserve STICKY PROPERTIES. 893 if ( oalign == 0 && size <= odsize && odsize <= size * 2 ) { // allow 50% wasted storage for smaller size 894 header->kind.real.blockSize &= -2; // no alignment and turn off 0 fill 895 return oaddr; 896 } // if 897 898 // change size, DO NOT preserve STICKY PROPERTIES. 899 free( oaddr ); 900 void * naddr = mallocNoStats( size ); // create new area 901 return naddr; 902 } // resize 903 904 905 // Same as resize() but the contents are unchanged in the range from the start of the region up to the minimum of 906 // the old and new sizes. 851 907 void * realloc( void * oaddr, size_t size ) { 852 908 #ifdef __STATISTICS__ 853 909 __atomic_add_fetch( &realloc_calls, 1, __ATOMIC_SEQ_CST ); 910 __atomic_add_fetch( &realloc_storage, size, __ATOMIC_SEQ_CST ); 854 911 #endif // __STATISTICS__ 855 912 … … 867 924 // Do not know size of original allocation => cannot do 0 fill for any additional space because do not know 868 925 // where to start filling, i.e., do not overwrite existing values in space. 869 //870 // This case does not result in a new profiler entry because the previous one still exists and it must match with871 // the free for this memory. Hence, this realloc does not appear in the profiler output.872 926 return oaddr; 873 927 } // if 874 875 #ifdef __STATISTICS__876 __atomic_add_fetch( &realloc_storage, size, __ATOMIC_SEQ_CST );877 #endif // __STATISTICS__878 928 879 929 // change size and copy old content to new storage … … 903 953 } // realloc 904 954 905 // The obsolete function memalign() allocates size bytes and returns a pointer to the allocated memory. The memory 906 // address will be a multiple of alignment, which must be a power of two. 955 // Same as malloc() except the memory address is a multiple of alignment, which must be a power of two. (obsolete) 907 956 void * memalign( size_t alignment, size_t size ) { 908 957 #ifdef __STATISTICS__ … … 915 964 916 965 917 // The cmemalign() function is the same as calloc() with memory alignment.918 void * cmemalign( size_t alignment, size_t noOfElems, size_t elemSize ) {966 // Same as aalloc() with memory alignment. 967 void * amemalign( size_t alignment, size_t dim, size_t elemSize ) { 919 968 #ifdef __STATISTICS__ 920 969 __atomic_add_fetch( &cmemalign_calls, 1, __ATOMIC_SEQ_CST ); 921 __atomic_add_fetch( &cmemalign_storage, noOfElems * elemSize, __ATOMIC_SEQ_CST ); 922 #endif // __STATISTICS__ 923 924 return cmemalignNoStats( alignment, noOfElems, elemSize ); 970 __atomic_add_fetch( &cmemalign_storage, dim * elemSize, __ATOMIC_SEQ_CST ); 971 #endif // __STATISTICS__ 972 973 return memalignNoStats( alignment, dim * elemSize ); 974 } // amemalign 975 976 977 // Same as calloc() with memory alignment. 978 void * cmemalign( size_t alignment, size_t dim, size_t elemSize ) { 979 #ifdef __STATISTICS__ 980 __atomic_add_fetch( &cmemalign_calls, 1, __ATOMIC_SEQ_CST ); 981 __atomic_add_fetch( &cmemalign_storage, dim * elemSize, __ATOMIC_SEQ_CST ); 982 #endif // __STATISTICS__ 983 984 return cmemalignNoStats( alignment, dim, elemSize ); 925 985 } // cmemalign 926 986 927 // The function aligned_alloc() is the same as memalign(), except for the added restriction that size should be a928 // multiple of alignment.987 // Same as memalign(), but ISO/IEC 2011 C11 Section 7.22.2 states: the value of size shall be an integral multiple 988 // of alignment. This requirement is universally ignored. 929 989 void * aligned_alloc( size_t alignment, size_t size ) { 930 990 return memalign( alignment, size ); … … 932 992 933 993 934 // The function posix_memalign() allocates size bytes and places the address of the allocated memory in *memptr. The935 // address of the allocated memory will be a multiple of alignment, which must be a power of two and a multiple of936 // sizeof(void *). If size is 0, then posix_memalign() returns either 0p, or a unique pointer value that can later937 // be successfully passed tofree(3).994 // Allocates size bytes and places the address of the allocated memory in *memptr. The address of the allocated 995 // memory shall be a multiple of alignment, which must be a power of two and a multiple of sizeof(void *). If size 996 // is 0, then posix_memalign() returns either 0p, or a unique pointer value that can later be successfully passed to 997 // free(3). 938 998 int posix_memalign( void ** memptr, size_t alignment, size_t size ) { 939 999 if ( alignment < sizeof(void *) || ! libPow2( alignment ) ) return EINVAL; // check alignment … … 943 1003 } // posix_memalign 944 1004 945 // The obsolete function valloc() allocates size bytes and returns a pointer to the allocated memory. The memory946 // address will be a multiple of thepage size. It is equivalent to memalign(sysconf(_SC_PAGESIZE),size).1005 // Allocates size bytes and returns a pointer to the allocated memory. The memory address shall be a multiple of the 1006 // page size. It is equivalent to memalign(sysconf(_SC_PAGESIZE),size). 947 1007 void * valloc( size_t size ) { 948 1008 return memalign( pageSize, size ); … … 950 1010 951 1011 952 // The free() function frees the memory space pointed to by ptr, which must have been returned by a previous call to 953 // malloc(), calloc() or realloc(). Otherwise, or if free(ptr) has already been called before, undefined behavior 954 // occurs. If ptr is 0p, no operation is performed. 1012 // Same as valloc but rounds size to multiple of page size. 1013 void * pvalloc( size_t size ) { 1014 return memalign( pageSize, libCeiling( size, pageSize ) ); 1015 } // pvalloc 1016 1017 1018 // Frees the memory space pointed to by ptr, which must have been returned by a previous call to malloc(), calloc() 1019 // or realloc(). Otherwise, or if free(ptr) has already been called before, undefined behaviour occurs. If ptr is 1020 // 0p, no operation is performed. 955 1021 void free( void * addr ) { 956 1022 #ifdef __STATISTICS__ … … 973 1039 974 1040 975 // The malloc_alignment() function returns the alignment of theallocation.1041 // Returns the alignment of an allocation. 976 1042 size_t malloc_alignment( void * addr ) { 977 1043 if ( unlikely( addr == 0p ) ) return libAlign(); // minimum alignment … … 980 1046 return header->kind.fake.alignment & -2; // remove flag from value 981 1047 } else { 982 return libAlign 1048 return libAlign(); // minimum alignment 983 1049 } // if 984 1050 } // malloc_alignment 985 1051 986 987 // The malloc_zero_fill() function returns true if the allocation is zero filled, i.e., initially allocated by calloc(). 1052 // Set the alignment for an the allocation and return previous alignment or 0 if no alignment. 1053 size_t $malloc_alignment_set( void * addr, size_t alignment ) { 1054 if ( unlikely( addr == 0p ) ) return libAlign(); // minimum alignment 1055 size_t ret; 1056 HeapManager.Storage.Header * header = headerAddr( addr ); 1057 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ? 1058 ret = header->kind.fake.alignment & -2; // remove flag from old value 1059 header->kind.fake.alignment = alignment | 1; // add flag to new value 1060 } else { 1061 ret = 0; // => no alignment to change 1062 } // if 1063 return ret; 1064 } // $malloc_alignment_set 1065 1066 1067 // Returns true if the allocation is zero filled, e.g., allocated by calloc(). 988 1068 bool malloc_zero_fill( void * addr ) { 989 1069 if ( unlikely( addr == 0p ) ) return false; // null allocation is not zero fill 990 1070 HeapManager.Storage.Header * header = headerAddr( addr ); 991 1071 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ? 992 header = (HeapManager.Storage.Header *)((char *)header - header->kind.fake.offset);993 } // if 994 return (header->kind.real.blockSize & 2) != 0; // zero filled (calloc/cmemalign)?1072 header = realHeader( header ); // backup from fake to real header 1073 } // if 1074 return (header->kind.real.blockSize & 2) != 0; // zero filled ? 995 1075 } // malloc_zero_fill 996 1076 997 998 // The malloc_usable_size() function returns the number of usable bytes in the block pointed to by ptr, a pointer to 999 // a block of memory allocated by malloc(3) or a related function. 1077 // Set allocation is zero filled and return previous zero filled. 1078 bool $malloc_zero_fill_set( void * addr ) { 1079 if ( unlikely( addr == 0p ) ) return false; // null allocation is not zero fill 1080 HeapManager.Storage.Header * header = headerAddr( addr ); 1081 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ? 1082 header = realHeader( header ); // backup from fake to real header 1083 } // if 1084 bool ret = (header->kind.real.blockSize & 2) != 0; // zero filled ? 1085 header->kind.real.blockSize |= 2; // mark as zero filled 1086 return ret; 1087 } // $malloc_zero_fill_set 1088 1089 1090 // Returns original total allocation size (not bucket size) => array size is dimension * sizeif(T). 1091 size_t malloc_size( void * addr ) { 1092 if ( unlikely( addr == 0p ) ) return false; // null allocation is not zero fill 1093 HeapManager.Storage.Header * header = headerAddr( addr ); 1094 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ? 1095 header = realHeader( header ); // backup from fake to real header 1096 } // if 1097 return header->size; 1098 } // malloc_size 1099 1100 // Set allocation size and return previous size. 1101 size_t $malloc_size_set( void * addr, size_t size ) { 1102 if ( unlikely( addr == 0p ) ) return false; // null allocation is not zero fill 1103 HeapManager.Storage.Header * header = headerAddr( addr ); 1104 if ( (header->kind.fake.alignment & 1) == 1 ) { // fake header ? 1105 header = realHeader( header ); // backup from fake to real header 1106 } // if 1107 size_t ret = header->size; 1108 header->size = size; 1109 return ret; 1110 } // $malloc_size_set 1111 1112 1113 // Returns the number of usable bytes in the block pointed to by ptr, a pointer to a block of memory allocated by 1114 // malloc or a related function. 1000 1115 size_t malloc_usable_size( void * addr ) { 1001 1116 if ( unlikely( addr == 0p ) ) return 0; // null allocation has 0 size … … 1009 1124 1010 1125 1011 // The malloc_stats() function prints (on default standard error) statistics about memory allocated by malloc(3) and 1012 // related functions. 1126 // Prints (on default standard error) statistics about memory allocated by malloc and related functions. 1013 1127 void malloc_stats( void ) { 1014 1128 #ifdef __STATISTICS__ … … 1018 1132 } // malloc_stats 1019 1133 1020 // The malloc_stats_fd() function changes the file descripter where malloc_stats() writes thestatistics.1134 // Changes the file descripter where malloc_stats() writes statistics. 1021 1135 int malloc_stats_fd( int fd __attribute__(( unused )) ) { 1022 1136 #ifdef __STATISTICS__ … … 1030 1144 1031 1145 1032 // The mallopt() function adjusts parameters that control the behavior of the memory-allocation functions (see 1033 // malloc(3)). The param argument specifies the parameter to be modified, and value specifies the new value for that 1034 // parameter. 1146 // Adjusts parameters that control the behaviour of the memory-allocation functions (see malloc). The param argument 1147 // specifies the parameter to be modified, and value specifies the new value for that parameter. 1035 1148 int mallopt( int option, int value ) { 1036 1149 choose( option ) { 1037 1150 case M_TOP_PAD: 1038 if ( setHeapExpand( value ) )return 1;1151 heapExpand = ceiling( value, pageSize ); return 1; 1039 1152 case M_MMAP_THRESHOLD: 1040 1153 if ( setMmapStart( value ) ) return 1; 1154 break; 1041 1155 } // switch 1042 1156 return 0; // error, unsupported 1043 1157 } // mallopt 1044 1158 1045 // The malloc_trim() function attempts to release free memory at the top of the heap (by calling sbrk(2) with a 1046 // suitable argument). 1159 // Attempt to release free memory at the top of the heap (by calling sbrk with a suitable argument). 1047 1160 int malloc_trim( size_t ) { 1048 1161 return 0; // => impossible to release memory … … 1050 1163 1051 1164 1052 // The malloc_info() function exports an XML string that describes the current state of the memory-allocation1053 // implementation in the caller. The string is printed on the file stream stream. The exported string includes1054 // information about all arenas (see malloc(3)).1165 // Exports an XML string that describes the current state of the memory-allocation implementation in the caller. 1166 // The string is printed on the file stream stream. The exported string includes information about all arenas (see 1167 // malloc). 1055 1168 int malloc_info( int options, FILE * stream ) { 1056 1169 if ( options != 0 ) { errno = EINVAL; return -1; } … … 1059 1172 1060 1173 1061 // The malloc_get_state() function records the current state of all malloc(3) internal bookkeeping variables (but1062 // not the actual contents of the heap or the state of malloc_hook(3) functions pointers). The state is recorded in1063 // a system-dependent opaque data structure dynamically allocated via malloc(3), and a pointer to that data1064 // structure is returned as the function result. (It is the caller's responsibility to free(3)this memory.)1174 // Records the current state of all malloc internal bookkeeping variables (but not the actual contents of the heap 1175 // or the state of malloc_hook functions pointers). The state is recorded in a system-dependent opaque data 1176 // structure dynamically allocated via malloc, and a pointer to that data structure is returned as the function 1177 // result. (The caller must free this memory.) 1065 1178 void * malloc_get_state( void ) { 1066 1179 return 0p; // unsupported … … 1068 1181 1069 1182 1070 // The malloc_set_state() function restores the state of all malloc(3) internal bookkeeping variables to the values1071 // recorded in the opaque datastructure pointed to by state.1183 // Restores the state of all malloc internal bookkeeping variables to the values recorded in the opaque data 1184 // structure pointed to by state. 1072 1185 int malloc_set_state( void * ptr ) { 1073 1186 return 0; // unsupported … … 1077 1190 1078 1191 // Must have CFA linkage to overload with C linkage realloc. 1079 void * re alloc( void * oaddr, size_t nalign, size_t size ) {1192 void * resize( void * oaddr, size_t nalign, size_t size ) { 1080 1193 #ifdef __STATISTICS__ 1081 __atomic_add_fetch( &realloc_calls, 1, __ATOMIC_SEQ_CST ); 1194 __atomic_add_fetch( &resize_calls, 1, __ATOMIC_SEQ_CST ); 1195 __atomic_add_fetch( &resize_storage, size, __ATOMIC_SEQ_CST ); 1082 1196 #endif // __STATISTICS__ 1083 1197 1084 1198 // If size is equal to 0, either NULL or a pointer suitable to be passed to free() is returned. 1085 if ( unlikely( size == 0 ) ) { free( oaddr ); return mallocNoStats( size ); } // special cases 1086 if ( unlikely( oaddr == 0p ) ) return mallocNoStats( size ); 1199 if ( unlikely( size == 0 ) ) { free( oaddr ); return memalignNoStats( nalign, size ); } // special cases 1200 if ( unlikely( oaddr == 0p ) ) return memalignNoStats( nalign, size ); 1201 1087 1202 1088 1203 if ( unlikely( nalign == 0 ) ) nalign = libAlign(); // reset alignment to minimum … … 1095 1210 HeapManager.FreeHeader * freeElem; 1096 1211 size_t bsize, oalign = 0; 1097 headers( "re alloc", oaddr, header, freeElem, bsize, oalign );1212 headers( "resize", oaddr, header, freeElem, bsize, oalign ); 1098 1213 size_t odsize = dataStorage( bsize, oaddr, header ); // data storage available in bucket 1099 1214 1100 if ( oalign != 0 && (uintptr_t)oaddr % nalign == 0 ) { // has alignment and just happens to work out 1101 headerAddr( oaddr )->kind.fake.alignment = nalign | 1; // update alignment (could be the same) 1102 return realloc( oaddr, size ); 1103 } // if 1104 1105 #ifdef __STATISTICS__ 1106 __atomic_add_fetch( &realloc_storage, size, __ATOMIC_SEQ_CST ); 1107 #endif // __STATISTICS__ 1108 1109 // change size and copy old content to new storage 1215 if ( oalign <= nalign && (uintptr_t)oaddr % nalign == 0 ) { // <= alignment and new alignment happens to match 1216 if ( oalign >= libAlign() ) { // fake header ? 1217 headerAddr( oaddr )->kind.fake.alignment = nalign | 1; // update alignment (could be the same) 1218 } // if 1219 if ( size <= odsize && odsize <= size * 2 ) { // allow 50% wasted storage for smaller size 1220 header->kind.real.blockSize &= -2; // turn off 0 fill 1221 return oaddr; 1222 } // if 1223 } // if 1224 1225 // change size 1110 1226 1111 1227 void * naddr; … … 1116 1232 } // if 1117 1233 1234 free( oaddr ); 1235 return naddr; 1236 } // resize 1237 1238 1239 void * realloc( void * oaddr, size_t nalign, size_t size ) { 1240 if ( unlikely( nalign == 0 ) ) nalign = libAlign(); // reset alignment to minimum 1241 #ifdef __CFA_DEBUG__ 1242 else 1243 checkAlign( nalign ); // check alignment 1244 #endif // __CFA_DEBUG__ 1245 1246 HeapManager.Storage.Header * header; 1247 HeapManager.FreeHeader * freeElem; 1248 size_t bsize, oalign = 0; 1249 headers( "realloc", oaddr, header, freeElem, bsize, oalign ); 1250 size_t odsize = dataStorage( bsize, oaddr, header ); // data storage available in bucket 1251 1252 if ( oalign <= nalign && (uintptr_t)oaddr % nalign == 0 ) { // <= alignment and new alignment happens to match 1253 if ( oalign >= libAlign() ) { // fake header ? 1254 headerAddr( oaddr )->kind.fake.alignment = nalign | 1; // update alignment (could be the same) 1255 } // if 1256 return realloc( oaddr, size ); 1257 } // if 1258 1259 // change size and copy old content to new storage 1260 1261 #ifdef __STATISTICS__ 1262 __atomic_add_fetch( &realloc_calls, 1, __ATOMIC_SEQ_CST ); 1263 __atomic_add_fetch( &realloc_storage, size, __ATOMIC_SEQ_CST ); 1264 #endif // __STATISTICS__ 1265 1266 // If size is equal to 0, either NULL or a pointer suitable to be passed to free() is returned. 1267 if ( unlikely( size == 0 ) ) { free( oaddr ); return memalignNoStats( nalign, size ); } // special cases 1268 if ( unlikely( oaddr == 0p ) ) return memalignNoStats( nalign, size ); 1269 1270 void * naddr; 1271 if ( unlikely( header->kind.real.blockSize & 2 ) ) { // previous request zero fill 1272 naddr = cmemalignNoStats( nalign, 1, size ); // create new aligned area 1273 } else { 1274 naddr = memalignNoStats( nalign, size ); // create new aligned area 1275 } // if 1276 1118 1277 headers( "realloc", naddr, header, freeElem, bsize, oalign ); 1119 size_t ndsize = dataStorage( bsize, naddr, header ); // data storage av ilable in bucket1278 size_t ndsize = dataStorage( bsize, naddr, header ); // data storage available in bucket 1120 1279 // To preserve prior fill, the entire bucket must be copied versus the size. 1121 1280 memcpy( naddr, oaddr, MIN( odsize, ndsize ) ); // copy bytes -
libcfa/src/interpose.cfa
rb7d6a36 r6a490b2 10 10 // Created On : Wed Mar 29 16:10:31 2017 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Mon Feb 17 10:18:53202013 // Update Count : 1 6612 // Last Modified On : Fri Mar 13 17:35:37 2020 13 // Update Count : 178 14 14 // 15 15 16 16 #include <stdarg.h> // va_start, va_end 17 #include <stdio.h> 17 18 #include <string.h> // strlen 18 19 #include <unistd.h> // _exit, getpid … … 143 144 void abort( const char fmt[], ... ) __attribute__(( format(printf, 1, 2), __nothrow__, __leaf__, __noreturn__ )); 144 145 void abort( bool signalAbort, const char fmt[], ... ) __attribute__(( format(printf, 2, 3), __nothrow__, __leaf__, __noreturn__ )); 146 void __abort( bool signalAbort, const char fmt[], va_list args ) __attribute__(( __nothrow__, __leaf__, __noreturn__ )); 145 147 146 148 extern "C" { … … 152 154 va_list argp; 153 155 va_start( argp, fmt ); 154 abort( false, fmt, argp );156 __abort( false, fmt, argp ); 155 157 va_end( argp ); 156 158 } … … 218 220 } 219 221 220 void abort( bool signalAbort, const char fmt[], ... ) { 222 // Cannot forward va_list. 223 void __abort( bool signalAbort, const char fmt[], va_list args ) { 221 224 void * kernel_data = kernel_abort(); // must be done here to lock down kernel 222 225 int len; … … 228 231 229 232 assert( fmt ); 230 va_list args;231 va_start( args, fmt );232 233 233 len = vsnprintf( abort_text, abort_text_size, fmt, args ); 234 va_end( args );235 234 __cfaabi_bits_write( STDERR_FILENO, abort_text, len ); 236 235 237 236 if ( fmt[strlen( fmt ) - 1] != '\n' ) { // add optional newline if missing at the end of the format text 238 __cfaabi_ dbg_write("\n", 1 );237 __cfaabi_bits_write( STDERR_FILENO, "\n", 1 ); 239 238 } // if 240 239 kernel_abort_msg( kernel_data, abort_text, abort_text_size ); … … 248 247 va_list args; 249 248 va_start( args, fmt ); 250 abort( false, fmt, args ); 249 __abort( false, fmt, args ); 250 // CONTROL NEVER REACHES HERE! 251 251 va_end( args ); 252 } 253 254 void abort( bool signalAbort, const char fmt[], ... ) { 255 va_list args; 256 va_start( args, fmt ); 257 __abort( signalAbort, fmt, args ); 258 // CONTROL NEVER REACHES HERE! 259 va_end( args ); 252 260 } 253 261 -
libcfa/src/iostream.cfa
rb7d6a36 r6a490b2 10 10 // Created On : Wed May 27 17:56:53 2015 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Thu Feb 20 15:53:23202013 // Update Count : 82912 // Last Modified On : Sat May 2 18:30:25 2020 13 // Update Count : 1017 14 14 // 15 15 … … 29 29 #include <complex.h> // creal, cimag 30 30 } // extern "C" 31 32 #include <bitmanip.hfa> // fms 31 33 32 34 … … 459 461 \ 460 462 if ( f.base == 'b' || f.base == 'B' ) { /* bespoke binary format */ \ 461 int bits; \ 462 if ( f.val == (T){0} ) bits = 1; /* force at least one bit to print */ \ 463 else bits = sizeof(long long int) * 8 - __builtin_clzll( f.val ); /* position of most significant bit */ \ 464 bits = bits > sizeof(f.val) * 8 ? sizeof(f.val) * 8 : bits; \ 465 int spaces = f.wd - bits; /* can be negative */ \ 466 if ( ! f.flags.nobsdp ) { spaces -= 2; } /* base prefix takes space */ \ 467 /* printf( "%d %d\n", bits, spaces ); */ \ 463 int bits = high1( f.val ); /* position of most significant bit */ \ 464 if ( bits == 0 ) bits = 1; /* 0 value => force one bit to print */ \ 465 int spaces; \ 468 466 if ( ! f.flags.left ) { /* right justified ? */ \ 469 467 /* Note, base prefix then zero padding or spacing then prefix. */ \ 470 if ( f.flags.pad0 || f.flags.pc ) { \ 468 if ( f.flags.pc ) { \ 469 spaces = f.wd - f.pc; \ 470 if ( ! f.flags.nobsdp ) { spaces -= 2; } /* base prefix takes space */ \ 471 if ( spaces > 0 ) fmt( os, "%*s", spaces, " " ); /* space pad */ \ 471 472 if ( ! f.flags.nobsdp ) { fmt( os, "0%c", f.base ); } \ 472 if ( f.flags.pc )spaces = f.pc - bits; \473 spaces = f.pc - bits; \ 473 474 if ( spaces > 0 ) fmt( os, "%0*d", spaces, 0 ); /* zero pad */ \ 474 475 } else { \ 475 if ( spaces > 0 ) fmt( os, "%*s", spaces, " " ); /* space pad */ \ 476 if ( ! f.flags.nobsdp ) { fmt( os, "0%c", f.base ); } \ 476 spaces = f.wd - bits; \ 477 if ( ! f.flags.nobsdp ) { spaces -= 2; } /* base prefix takes space */ \ 478 if ( f.flags.pad0 ) { \ 479 if ( ! f.flags.nobsdp ) { fmt( os, "0%c", f.base ); } \ 480 if ( spaces > 0 ) fmt( os, "%0*d", spaces, 0 ); /* zero pad */ \ 481 } else { \ 482 if ( spaces > 0 ) fmt( os, "%*s", spaces, " " ); /* space pad */ \ 483 if ( ! f.flags.nobsdp ) { fmt( os, "0%c", f.base ); } \ 484 } /* if */ \ 477 485 } /* if */ \ 478 } else if ( ! f.flags.nobsdp ) { \ 479 fmt( os, "0%c", f.base ); \ 486 } else { \ 487 if ( ! f.flags.nobsdp ) fmt( os, "0%c", f.base ); \ 488 if ( f.flags.pc ) { \ 489 spaces = f.pc - bits; \ 490 if ( spaces > 0 ) fmt( os, "%0*d", spaces, 0 ); /* zero pad */ \ 491 spaces = f.wd - f.pc; \ 492 } else { /* pad0 flag ignored with left flag */ \ 493 spaces = f.wd - bits; \ 494 } /* if */ \ 495 if ( ! f.flags.nobsdp ) { spaces -= 2; } /* base prefix takes space */ \ 480 496 } /* if */ \ 481 int shift = (bits - 1) / 4 * 4; /* floor( bits - 1, 4 ) */\497 int shift = floor( bits - 1, 4 ); \ 482 498 typeof( f.val ) temp = f.val; \ 483 499 fmt( os, "%s", shortbin[(temp >> shift) & 0xf] ); \ … … 534 550 #define IntegralFMTImpl128( T, SIGNED, CODE, IFMTNP, IFMTP ) \ 535 551 forall( dtype ostype | ostream( ostype ) ) \ 536 static void base10_128( ostype & os, _Ostream_Manip(T) fmt ) { \ 537 if ( fmt.val > UINT64_MAX ) { \ 538 fmt.val /= P10_UINT64; \ 539 base10_128( os, fmt ); /* recursive */ \ 540 _Ostream_Manip(unsigned long long int) fmt2 @= { (uint64_t)(fmt.val % P10_UINT64), 0, 19, 'u', { .all : 0 } }; \ 541 fmt2.flags.nobsdp = true; \ 542 printf( "fmt2 %c %lld %d\n", fmt2.base, fmt2.val, fmt2.all ); \ 552 static void base10_128( ostype & os, _Ostream_Manip(T) f ) { \ 553 if ( f.val > UINT64_MAX ) { \ 554 unsigned long long int lsig = f.val % P10_UINT64; \ 555 f.val /= P10_UINT64; /* msig */ \ 556 base10_128( os, f ); /* recursion */ \ 557 _Ostream_Manip(unsigned long long int) fmt @= { lsig, 0, 19, 'u', { .all : 0 } }; \ 558 fmt.flags.nobsdp = true; \ 559 /* printf( "fmt1 %c %lld %d\n", fmt.base, fmt.val, fmt.all ); */ \ 543 560 sepOff( os ); \ 544 (ostype &)(os | fmt 2); \561 (ostype &)(os | fmt); \ 545 562 } else { \ 546 printf( "fmt %c %lld %d\n", fmt.base, fmt.val, fmt.all ); \ 563 /* printf( "fmt2 %c %lld %d\n", f.base, (unsigned long long int)f.val, f.all ); */ \ 564 _Ostream_Manip(SIGNED long long int) fmt @= { (SIGNED long long int)f.val, f.wd, f.pc, f.base, { .all : f.all } }; \ 547 565 (ostype &)(os | fmt); \ 548 566 } /* if */ \ 549 } /* base10_128 */ 567 } /* base10_128 */ \ 550 568 forall( dtype ostype | ostream( ostype ) ) { \ 551 569 ostype & ?|?( ostype & os, _Ostream_Manip(T) f ) { \ 552 570 if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) ); \ 553 571 \ 554 if ( f.base == 'b' | f.base == ' o' | f.base == 'x' | f.base == 'X' ) { \572 if ( f.base == 'b' | f.base == 'B' | f.base == 'o' | f.base == 'x' | f.base == 'X' ) { \ 555 573 unsigned long long int msig = (unsigned long long int)(f.val >> 64); \ 556 574 unsigned long long int lsig = (unsigned long long int)(f.val); \ … … 562 580 } else { \ 563 581 fmt2.flags.pad0 = fmt2.flags.nobsdp = true; \ 564 if ( f.base == 'b' ) { \ 565 if ( f.wd > 64 ) fmt.wd = f.wd - 64; \ 566 fmt2.wd = 64; \ 582 if ( f.base == 'b' | f.base == 'B' ) { \ 583 if ( fmt.flags.pc && fmt.pc > 64 ) fmt.pc -= 64; else { fmt.flags.pc = false; fmt.pc = 0; } \ 584 if ( fmt.flags.left ) { \ 585 fmt.flags.left = false; \ 586 fmt.wd = 0; \ 587 /* printf( "L %llo %llo %llo %d %d '%c' %x\n", msig, lsig, fmt.val, fmt.wd, fmt.pc, fmt.base, fmt.all ); */ \ 588 fmt2.flags.left = true; \ 589 int msigd = high1( msig ); \ 590 fmt2.wd = f.wd - (fmt.pc > msigd ? fmt.pc : msigd); \ 591 if ( ! fmt.flags.nobsdp ) fmt2.wd -= 2; /* compensate for 0b base specifier */ \ 592 if ( (int)fmt2.wd < 64 ) fmt2.wd = 64; /* cast deals with negative value */ \ 593 fmt2.flags.pc = true; fmt2.pc = 64; \ 594 } else { \ 595 if ( fmt.wd > 64 ) fmt.wd -= 64; \ 596 else fmt.wd = 1; \ 597 /* printf( "R %llo %llo %llo %d %d '%c' %x\n", msig, lsig, fmt.val, fmt.wd, fmt.pc, fmt.base, fmt.all ); */ \ 598 fmt2.wd = 64; \ 599 } /* if */ \ 600 /* printf( "C %llo %d %d '%c' %x\n", fmt2.val, fmt2.wd, fmt2.pc, fmt2.base, fmt2.all ); */ \ 567 601 (ostype &)(os | fmt | "" | fmt2); \ 568 602 } else if ( f.base == 'o' ) { \ 603 if ( fmt.flags.pc && fmt.pc > 22 ) fmt.pc -= 22; else { fmt.flags.pc = false; fmt.pc = 0; } \ 569 604 fmt.val = (unsigned long long int)fmt.val >> 2; \ 570 if ( f.wd > 21 ) fmt.wd = f.wd - 21; \ 571 fmt2.wd = 1; \ 572 fmt2.val = ((msig & 0x3) << 1) + 1; \ 573 (ostype &)(os | fmt | "" | fmt2); \ 574 sepOff( os ); \ 575 fmt2.wd = 21; \ 576 fmt2.val = lsig & 0x7fffffffffffffff; \ 605 fmt2.val = ((msig & 0x3) << 1) + ((lsig & 0x8000000000000000U) != 0); \ 606 if ( fmt.flags.left ) { \ 607 fmt.flags.left = false; \ 608 fmt.wd = 0; \ 609 /* printf( "L %llo %llo %llo %d %d '%c' %x %llo %d %d '%c' %x\n", msig, lsig, fmt.val, fmt.wd, fmt.pc, fmt.base, fmt.all, fmt2.val, fmt2.wd, fmt2.pc, fmt2.base, fmt2.all ); */ \ 610 (ostype &)(os | fmt | "" | fmt2); \ 611 sepOff( os ); \ 612 fmt2.flags.left = true; \ 613 int msigd = ceiling( high1( fmt.val ), 3 ); \ 614 fmt2.wd = f.wd - (fmt.pc > msigd ? fmt.pc : msigd); \ 615 if ( ! fmt.flags.nobsdp ) fmt2.wd -= 1; /* compensate for 0 base specifier */ \ 616 if ( (int)fmt2.wd < 21 ) fmt2.wd = 21; /* cast deals with negative value */ \ 617 fmt2.flags.pc = true; fmt2.pc = 21; \ 618 } else { \ 619 if ( fmt.wd > 22 ) fmt.wd -= 22; \ 620 else fmt.wd = 1; \ 621 /* printf( "R %llo %llo %llo %d %d '%c' %x %llo %d %d '%c' %x\n", msig, lsig, fmt.val, fmt.wd, fmt.pc, fmt.base, fmt.all, fmt2.val, fmt2.wd, fmt2.pc, fmt2.base, fmt2.all ); */ \ 622 (ostype &)(os | fmt | "" | fmt2); \ 623 sepOff( os ); \ 624 fmt2.wd = 21; \ 625 } /* if */ \ 626 fmt2.val = lsig & 0x7fffffffffffffffU; \ 627 /* printf( "\nC %llo %d %d '%c' %x\n", fmt2.val, fmt2.wd, fmt2.pc, fmt2.base, fmt2.all ); */ \ 577 628 (ostype &)(os | fmt2); \ 578 } else { \ 579 if ( f.flags.left ) { \ 580 if ( f.wd > 16 ) fmt2.wd = f.wd - 16; \ 581 fmt.wd = 16; \ 629 } else { /* f.base == 'x' | f.base == 'X' */ \ 630 if ( fmt.flags.pc && fmt.pc > 16 ) fmt.pc -= 16; else { fmt.flags.pc = false; fmt.pc = 0; } \ 631 if ( fmt.flags.left ) { \ 632 fmt.flags.left = false; \ 633 fmt.wd = 0; \ 634 /* printf( "L %llo %llo %llo %d %d '%c' %x\n", msig, lsig, fmt.val, fmt.wd, fmt.pc, fmt.base, fmt.all ); */ \ 635 fmt2.flags.left = true; \ 636 int msigd = high1( msig ); \ 637 fmt2.wd = f.wd - (fmt.pc > msigd ? fmt.pc : msigd); \ 638 if ( ! fmt.flags.nobsdp ) fmt2.wd -= 2; /* compensate for 0x base specifier */ \ 639 if ( (int)fmt2.wd < 16 ) fmt2.wd = 16; /* cast deals with negative value */ \ 640 fmt2.flags.pc = true; fmt2.pc = 16; \ 582 641 } else { \ 583 if ( f.wd > 16 ) fmt.wd = f.wd - 16; \ 584 fmt2.wd = 16; \ 642 if ( fmt.wd > 16 ) fmt.wd -= 16; \ 643 else fmt.wd = 1; \ 644 /* printf( "R %llo %llo %llo %d %d '%c' %x\n", msig, lsig, fmt.val, fmt.wd, fmt.pc, fmt.base, fmt.all ); */ \ 645 fmt2.wd = 16; \ 585 646 } /* if */ \ 647 /* printf( "C %llo %d %d '%c' %x\n", fmt2.val, fmt2.wd, fmt2.pc, fmt2.base, fmt2.all ); */ \ 586 648 (ostype &)(os | fmt | "" | fmt2); \ 587 649 } /* if */ \ 588 650 } /* if */ \ 589 651 } else { \ 652 if ( CODE == 'd' ) { \ 653 if ( f.val < 0 ) { fmt( os, "-" ); sepOff( os ); f.val = -f.val; f.flags.sign = false; } \ 654 } /* if */ \ 590 655 base10_128( os, f ); \ 591 656 } /* if */ \ -
libcfa/src/startup.cfa
rb7d6a36 r6a490b2 14 14 // 15 15 16 #include <time.h> // tzset 16 #include <time.h> // tzset 17 #include <locale.h> // setlocale 17 18 #include "startup.hfa" 18 19 … … 21 22 void __cfaabi_appready_startup( void ) { 22 23 tzset(); // initialize time global variables 24 setlocale(LC_NUMERIC, ""); 23 25 #ifdef __CFA_DEBUG__ 24 26 extern void heapAppStart(); … … 41 43 struct __spinlock_t; 42 44 extern "C" { 43 void __cfaabi_dbg_record (struct __spinlock_t & this, const char prev_name[]) __attribute__(( weak )) {}45 void __cfaabi_dbg_record_lock(struct __spinlock_t & this, const char prev_name[]) __attribute__(( weak )) {} 44 46 } 45 47 -
libcfa/src/stdhdr/malloc.h
rb7d6a36 r6a490b2 10 10 // Created On : Thu Jul 20 15:58:16 2017 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Sat Aug 11 09:06:31 201813 // Update Count : 1 012 // Last Modified On : Thu Apr 16 22:44:06 2020 13 // Update Count : 13 14 14 // 15 15 … … 31 31 32 32 extern "C" { 33 void * aalloc( size_t noOfElems, size_t elemSize ); 34 void * amemalign( size_t alignment, size_t noOfElems, size_t elemSize ); 35 void * cmemalign( size_t alignment, size_t noOfElems, size_t elemSize ); 33 36 size_t malloc_alignment( void * ); 34 37 bool malloc_zero_fill( void * ); 38 size_t malloc_size( void * ); 35 39 int malloc_stats_fd( int fd ); 36 void * cmemalign( size_t alignment, size_t noOfElems, size_t elemSize );37 40 } // extern "C" 38 41 -
libcfa/src/stdlib.cfa
rb7d6a36 r6a490b2 10 10 // Created On : Thu Jan 28 17:10:29 2016 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : T ue Feb 4 08:27:08202013 // Update Count : 4 8612 // Last Modified On : Thu Apr 16 22:43:33 2020 13 // Update Count : 498 14 14 // 15 15 … … 20 20 #define _XOPEN_SOURCE 600 // posix_memalign, *rand48 21 21 #include <string.h> // memcpy, memset 22 #include <malloc.h> // malloc_usable_size23 22 //#include <math.h> // fabsf, fabs, fabsl 24 23 #include <complex.h> // _Complex_I … … 38 37 } // alloc_set 39 38 39 T * alloc_set( T ptr[], size_t dim, T fill ) { // realloc array with fill 40 size_t olen = malloc_usable_size( ptr ); // current allocation 41 void * nptr = (void *)realloc( (void *)ptr, dim * sizeof(T) ); // C realloc 42 size_t nlen = malloc_usable_size( nptr ); // new allocation 43 if ( nlen > olen ) { // larger ? 44 for ( i; malloc_size( ptr ) / sizeof(T) ~ dim ) { 45 memcpy( &ptr[i], &fill, sizeof(T) ); // initialize with fill value 46 } // for 47 } // if 48 return (T *)nptr; 49 } // alloc_align_set 50 40 51 T * alloc_align_set( T ptr[], size_t align, char fill ) { // aligned realloc with fill 41 52 size_t olen = malloc_usable_size( ptr ); // current allocation … … 45 56 if ( nlen > olen ) { // larger ? 46 57 memset( (char *)nptr + olen, (int)fill, nlen - olen ); // initialize added storage 58 } // if 59 return (T *)nptr; 60 } // alloc_align_set 61 62 T * alloc_align_set( T ptr[], size_t align, size_t dim, T fill ) { // aligned realloc with fill 63 size_t olen = malloc_usable_size( ptr ); // current allocation 64 void * nptr = (void *)realloc( (void *)ptr, align, sizeof(T) ); // CFA realloc 65 // char * nptr = alloc_align( ptr, align ); 66 size_t nlen = malloc_usable_size( nptr ); // new allocation 67 if ( nlen > olen ) { // larger ? 68 for ( i; dim ) { memcpy( &ptr[i], &fill, sizeof(T) ); } // initialize with fill value 47 69 } // if 48 70 return (T *)nptr; -
libcfa/src/stdlib.hfa
rb7d6a36 r6a490b2 10 10 // Created On : Thu Jan 28 17:12:35 2016 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : T ue Feb 4 08:27:01202013 // Update Count : 4 0112 // Last Modified On : Thu Apr 16 22:44:05 2020 13 // Update Count : 432 14 14 // 15 15 … … 21 21 #include <stdlib.h> // *alloc, strto*, ato* 22 22 23 // Reduce includes by explicitly defining these routines. 23 24 extern "C" { 24 25 void * memalign( size_t align, size_t size ); // malloc.h 26 size_t malloc_usable_size( void * ptr ); // malloc.h 27 size_t malloc_size( void * addr ); // CFA heap 28 void * cmemalign( size_t alignment, size_t noOfElems, size_t elemSize ); // CFA heap 25 29 void * memset( void * dest, int fill, size_t size ); // string.h 26 30 void * memcpy( void * dest, const void * src, size_t size ); // string.h 27 void * cmemalign( size_t alignment, size_t noOfElems, size_t elemSize );// CFA heap31 void * resize( void * oaddr, size_t size ); // CFA heap 28 32 } // extern "C" 29 33 34 void * resize( void * oaddr, size_t nalign, size_t size ); // CFA heap 30 35 void * realloc( void * oaddr, size_t nalign, size_t size ); // CFA heap 31 36 … … 40 45 41 46 static inline forall( dtype T | sized(T) ) { 42 // C dynamic allocation47 // Cforall safe equivalents, i.e., implicit size specification 43 48 44 49 T * malloc( void ) { … … 71 76 return posix_memalign( (void **)ptr, align, sizeof(T) ); // C posix_memalign 72 77 } // posix_memalign 73 74 // Cforall dynamic allocation 78 } // distribution 79 80 static inline forall( dtype T | sized(T) ) { 81 // Cforall safe general allocation, fill, resize, array 75 82 76 83 T * alloc( void ) { … … 83 90 } // alloc 84 91 85 T * alloc( T ptr[], size_t dim ) { // realloc 86 return (T *)(void *)realloc( (void *)ptr, dim * sizeof(T) ); // C realloc 92 forall( dtype S | sized(S) ) 93 T * alloc( S ptr[], size_t dim = 1 ) { // singleton/array resize 94 size_t len = malloc_usable_size( ptr ); // current bucket size 95 if ( sizeof(T) * dim > len ) { // not enough space ? 96 T * temp = alloc( dim ); // new storage 97 free( ptr ); // free old storage 98 return temp; 99 } else { 100 return (T *)ptr; 101 } // if 102 } // alloc 103 104 T * alloc( T ptr[], size_t dim, bool copy = true ) { 105 if ( copy ) { // realloc 106 return (T *)(void *)realloc( (void *)ptr, dim * sizeof(T) ); // C realloc 107 } else { 108 struct __Unknown {}; 109 return alloc( (__Unknown *)ptr, dim ); // reuse, cheat making T/S different types 110 } // if 87 111 } // alloc 88 112 … … 112 136 forall( dtype T | sized(T) ) { 113 137 T * alloc_set( T ptr[], size_t dim, char fill ); // realloc array with fill 138 T * alloc_set( T ptr[], size_t dim, T fill ); // realloc array with fill 114 139 } // distribution 115 140 … … 125 150 T * alloc_align( T ptr[], size_t align ) { // aligned realloc array 126 151 return (T *)(void *)realloc( (void *)ptr, align, sizeof(T) ); // CFA realloc 152 } // alloc_align 153 154 forall( dtype S | sized(S) ) 155 T * alloc_align( S ptr[], size_t align ) { // aligned reuse array 156 return (T *)(void *)resize( (void *)ptr, align, sizeof(T) ); // CFA realloc 127 157 } // alloc_align 128 158 … … 155 185 156 186 forall( dtype T | sized(T) ) { 187 T * alloc_align_set( T ptr[], size_t align, char fill ); // aligned realloc with fill 188 T * alloc_align_set( T ptr[], size_t align, T fill ); // aligned realloc with fill 157 189 T * alloc_align_set( T ptr[], size_t align, size_t dim, char fill ); // aligned realloc array with fill 158 } // distribution 159 160 static inline forall( dtype T | sized(T) ) { 161 // data, non-array types 190 T * alloc_align_set( T ptr[], size_t align, size_t dim, T fill ); // aligned realloc array with fill 191 } // distribution 192 193 static inline forall( dtype T | sized(T) ) { 194 // Cforall safe initialization/copy, i.e., implicit size specification, non-array types 162 195 T * memset( T * dest, char fill ) { 163 196 return (T *)memset( dest, fill, sizeof(T) ); … … 170 203 171 204 static inline forall( dtype T | sized(T) ) { 172 // data, array types205 // Cforall safe initialization/copy, i.e., implicit size specification, array types 173 206 T * amemset( T dest[], char fill, size_t dim ) { 174 207 return (T *)(void *)memset( dest, fill, dim * sizeof(T) ); // C memset … … 180 213 } // distribution 181 214 182 // allocation/deallocation and constructor/destructor, non-array types215 // Cforall allocation/deallocation and constructor/destructor, non-array types 183 216 forall( dtype T | sized(T), ttype Params | { void ?{}( T &, Params ); } ) T * new( Params p ); 184 217 forall( dtype T | sized(T) | { void ^?{}( T & ); } ) void delete( T * ptr ); 185 218 forall( dtype T, ttype Params | sized(T) | { void ^?{}( T & ); void delete( Params ); } ) void delete( T * ptr, Params rest ); 186 219 187 // allocation/deallocation and constructor/destructor, array types220 // Cforall allocation/deallocation and constructor/destructor, array types 188 221 forall( dtype T | sized(T), ttype Params | { void ?{}( T &, Params ); } ) T * anew( size_t dim, Params p ); 189 222 forall( dtype T | sized(T) | { void ^?{}( T & ); } ) void adelete( size_t dim, T arr[] ); -
src/AST/Convert.cpp
rb7d6a36 r6a490b2 493 493 } 494 494 495 const ast::Stmt * visit(const ast::SuspendStmt * node ) override final { 496 if ( inCache( node ) ) return nullptr; 497 auto stmt = new SuspendStmt(); 498 stmt->then = get<CompoundStmt>().accept1( node->then ); 499 switch(node->type) { 500 case ast::SuspendStmt::None : stmt->type = SuspendStmt::None ; break; 501 case ast::SuspendStmt::Coroutine: stmt->type = SuspendStmt::Coroutine; break; 502 case ast::SuspendStmt::Generator: stmt->type = SuspendStmt::Generator; break; 503 } 504 return stmtPostamble( stmt, node ); 505 } 506 495 507 const ast::Stmt * visit( const ast::WaitForStmt * node ) override final { 496 508 if ( inCache( node ) ) return nullptr; … … 1859 1871 } 1860 1872 1873 virtual void visit( const SuspendStmt * old ) override final { 1874 if ( inCache( old ) ) return; 1875 ast::SuspendStmt::Type type; 1876 switch (old->type) { 1877 case SuspendStmt::Coroutine: type = ast::SuspendStmt::Coroutine; break; 1878 case SuspendStmt::Generator: type = ast::SuspendStmt::Generator; break; 1879 case SuspendStmt::None : type = ast::SuspendStmt::None ; break; 1880 default: abort(); 1881 } 1882 this->node = new ast::SuspendStmt( 1883 old->location, 1884 GET_ACCEPT_1(then , CompoundStmt), 1885 type, 1886 GET_LABELS_V(old->labels) 1887 ); 1888 cache.emplace( old, this->node ); 1889 } 1890 1861 1891 virtual void visit( const WaitForStmt * old ) override final { 1862 1892 if ( inCache( old ) ) return; -
src/AST/Decl.hpp
rb7d6a36 r6a490b2 259 259 260 260 bool is_coroutine() { return kind == Coroutine; } 261 bool is_monitor() { return kind == Monitor; } 262 bool is_thread() { return kind == Thread; } 261 bool is_generator() { return kind == Generator; } 262 bool is_monitor () { return kind == Monitor ; } 263 bool is_thread () { return kind == Thread ; } 263 264 264 265 const Decl * accept( Visitor & v ) const override { return v.visit( this ); } -
src/AST/Fwd.hpp
rb7d6a36 r6a490b2 53 53 class CatchStmt; 54 54 class FinallyStmt; 55 class SuspendStmt; 55 56 class WaitForStmt; 56 57 class WithStmt; -
src/AST/Pass.hpp
rb7d6a36 r6a490b2 111 111 const ast::Stmt * visit( const ast::CatchStmt * ) override final; 112 112 const ast::Stmt * visit( const ast::FinallyStmt * ) override final; 113 const ast::Stmt * visit( const ast::SuspendStmt * ) override final; 113 114 const ast::Stmt * visit( const ast::WaitForStmt * ) override final; 114 115 const ast::Decl * visit( const ast::WithStmt * ) override final; -
src/AST/Pass.impl.hpp
rb7d6a36 r6a490b2 823 823 824 824 //-------------------------------------------------------------------------- 825 // FinallyStmt 826 template< typename pass_t > 827 const ast::Stmt * ast::Pass< pass_t >::visit( const ast::SuspendStmt * node ) { 828 VISIT_START( node ); 829 830 VISIT( 831 maybe_accept( node, &SuspendStmt::then ); 832 ) 833 834 VISIT_END( Stmt, node ); 835 } 836 837 //-------------------------------------------------------------------------- 825 838 // WaitForStmt 826 839 template< typename pass_t > -
src/AST/Print.cpp
rb7d6a36 r6a490b2 674 674 safe_print( node->body ); 675 675 --indent; 676 677 return node; 678 } 679 680 virtual const ast::Stmt * visit( const ast::SuspendStmt * node ) override final { 681 os << "Suspend Statement"; 682 switch (node->type) { 683 case ast::SuspendStmt::None : os << " with implicit target"; break; 684 case ast::SuspendStmt::Generator: os << " for generator"; break; 685 case ast::SuspendStmt::Coroutine: os << " for coroutine"; break; 686 } 687 os << endl; 688 689 ++indent; 690 if(node->then) { 691 os << indent << " with post statement :" << endl; 692 safe_print( node->then ); 693 } 694 ++indent; 676 695 677 696 return node; -
src/AST/Stmt.hpp
rb7d6a36 r6a490b2 342 342 }; 343 343 344 /// Suspend statement 345 class SuspendStmt final : public Stmt { 346 public: 347 ptr<CompoundStmt> then; 348 enum Type { None, Coroutine, Generator } type = None; 349 350 SuspendStmt( const CodeLocation & loc, const CompoundStmt * then, Type type, std::vector<Label> && labels = {} ) 351 : Stmt(loc, std::move(labels)), then(then), type(type) {} 352 353 const Stmt * accept( Visitor & v ) const override { return v.visit( this ); } 354 private: 355 SuspendStmt * clone() const override { return new SuspendStmt{ *this }; } 356 MUTATE_FRIEND 357 }; 358 344 359 /// Wait for concurrency statement `when (...) waitfor (... , ...) ... timeout(...) ... else ...` 345 360 class WaitForStmt final : public Stmt { -
src/AST/Visitor.hpp
rb7d6a36 r6a490b2 47 47 virtual const ast::Stmt * visit( const ast::CatchStmt * ) = 0; 48 48 virtual const ast::Stmt * visit( const ast::FinallyStmt * ) = 0; 49 virtual const ast::Stmt * visit( const ast::SuspendStmt * ) = 0; 49 50 virtual const ast::Stmt * visit( const ast::WaitForStmt * ) = 0; 50 51 virtual const ast::Decl * visit( const ast::WithStmt * ) = 0; -
src/Common/PassVisitor.h
rb7d6a36 r6a490b2 110 110 virtual void visit( FinallyStmt * finallyStmt ) override final; 111 111 virtual void visit( const FinallyStmt * finallyStmt ) override final; 112 virtual void visit( SuspendStmt * suspendStmt ) override final; 113 virtual void visit( const SuspendStmt * suspendStmt ) override final; 112 114 virtual void visit( WaitForStmt * waitforStmt ) override final; 113 115 virtual void visit( const WaitForStmt * waitforStmt ) override final; … … 276 278 virtual Statement * mutate( CatchStmt * catchStmt ) override final; 277 279 virtual Statement * mutate( FinallyStmt * finallyStmt ) override final; 280 virtual Statement * mutate( SuspendStmt * suspendStmt ) override final; 278 281 virtual Statement * mutate( WaitForStmt * waitforStmt ) override final; 279 282 virtual Declaration * mutate( WithStmt * withStmt ) override final; -
src/Common/PassVisitor.impl.h
rb7d6a36 r6a490b2 1522 1522 1523 1523 //-------------------------------------------------------------------------- 1524 // SuspendStmt 1525 template< typename pass_type > 1526 void PassVisitor< pass_type >::visit( SuspendStmt * node ) { 1527 VISIT_START( node ); 1528 1529 maybeAccept_impl( node->then , *this ); 1530 1531 VISIT_END( node ); 1532 } 1533 1534 template< typename pass_type > 1535 void PassVisitor< pass_type >::visit( const SuspendStmt * node ) { 1536 VISIT_START( node ); 1537 1538 maybeAccept_impl( node->then , *this ); 1539 1540 VISIT_END( node ); 1541 } 1542 1543 template< typename pass_type > 1544 Statement * PassVisitor< pass_type >::mutate( SuspendStmt * node ) { 1545 MUTATE_START( node ); 1546 1547 maybeMutate_impl( node->then , *this ); 1548 1549 MUTATE_END( Statement, node ); 1550 } 1551 1552 //-------------------------------------------------------------------------- 1524 1553 // WaitForStmt 1525 1554 template< typename pass_type > -
src/CompilationState.cc
rb7d6a36 r6a490b2 27 27 nopreludep = false, 28 28 genproto = false, 29 deterministic_output = false, 29 30 nomainp = false, 30 31 parsep = false, -
src/CompilationState.h
rb7d6a36 r6a490b2 28 28 nopreludep, 29 29 genproto, 30 deterministic_output, 30 31 nomainp, 31 32 parsep, -
src/Concurrency/Keywords.cc
rb7d6a36 r6a490b2 16 16 #include "Concurrency/Keywords.h" 17 17 18 #include <cassert> // for assert 19 #include <string> // for string, operator== 20 21 #include "Common/PassVisitor.h" // for PassVisitor 22 #include "Common/SemanticError.h" // for SemanticError 23 #include "Common/utility.h" // for deleteAll, map_range 24 #include "CodeGen/OperatorTable.h" // for isConstructor 25 #include "InitTweak/InitTweak.h" // for getPointerBase 26 #include "SynTree/LinkageSpec.h" // for Cforall 27 #include "SynTree/Constant.h" // for Constant 28 #include "SynTree/Declaration.h" // for StructDecl, FunctionDecl, ObjectDecl 29 #include "SynTree/Expression.h" // for VariableExpr, ConstantExpr, Untype... 30 #include "SynTree/Initializer.h" // for SingleInit, ListInit, Initializer ... 31 #include "SynTree/Label.h" // for Label 32 #include "SynTree/Statement.h" // for CompoundStmt, DeclStmt, ExprStmt 33 #include "SynTree/Type.h" // for StructInstType, Type, PointerType 34 #include "SynTree/Visitor.h" // for Visitor, acceptAll 18 #include <cassert> // for assert 19 #include <string> // for string, operator== 20 21 #include "Common/PassVisitor.h" // for PassVisitor 22 #include "Common/SemanticError.h" // for SemanticError 23 #include "Common/utility.h" // for deleteAll, map_range 24 #include "CodeGen/OperatorTable.h" // for isConstructor 25 #include "ControlStruct/LabelGenerator.h" // for LebelGenerator 26 #include "InitTweak/InitTweak.h" // for getPointerBase 27 #include "SynTree/LinkageSpec.h" // for Cforall 28 #include "SynTree/Constant.h" // for Constant 29 #include "SynTree/Declaration.h" // for StructDecl, FunctionDecl, ObjectDecl 30 #include "SynTree/Expression.h" // for VariableExpr, ConstantExpr, Untype... 31 #include "SynTree/Initializer.h" // for SingleInit, ListInit, Initializer ... 32 #include "SynTree/Label.h" // for Label 33 #include "SynTree/Statement.h" // for CompoundStmt, DeclStmt, ExprStmt 34 #include "SynTree/Type.h" // for StructInstType, Type, PointerType 35 #include "SynTree/Visitor.h" // for Visitor, acceptAll 35 36 36 37 class Attribute; … … 88 89 // int data; int data; 89 90 // a_struct_t more_data; a_struct_t more_data; 90 // => thread_desc__thrd_d;91 // => $thread __thrd_d; 91 92 // }; }; 92 // static inline thread_desc* get_thread( MyThread * this ) { return &this->__thrd_d; }93 // static inline $thread * get_thread( MyThread * this ) { return &this->__thrd_d; } 93 94 // 94 95 class ThreadKeyword final : public ConcurrentSueKeyword { … … 96 97 97 98 ThreadKeyword() : ConcurrentSueKeyword( 98 " thread_desc",99 "$thread", 99 100 "__thrd", 100 101 "get_thread", … … 120 121 // int data; int data; 121 122 // a_struct_t more_data; a_struct_t more_data; 122 // => coroutine_desc__cor_d;123 // => $coroutine __cor_d; 123 124 // }; }; 124 // static inline coroutine_desc* get_coroutine( MyCoroutine * this ) { return &this->__cor_d; }125 // static inline $coroutine * get_coroutine( MyCoroutine * this ) { return &this->__cor_d; } 125 126 // 126 127 class CoroutineKeyword final : public ConcurrentSueKeyword { … … 128 129 129 130 CoroutineKeyword() : ConcurrentSueKeyword( 130 " coroutine_desc",131 "$coroutine", 131 132 "__cor", 132 133 "get_coroutine", … … 147 148 }; 148 149 150 151 149 152 //----------------------------------------------------------------------------- 150 153 //Handles monitor type declarations : … … 152 155 // int data; int data; 153 156 // a_struct_t more_data; a_struct_t more_data; 154 // => monitor_desc__mon_d;157 // => $monitor __mon_d; 155 158 // }; }; 156 // static inline monitor_desc* get_coroutine( MyMonitor * this ) { return &this->__cor_d; }159 // static inline $monitor * get_coroutine( MyMonitor * this ) { return &this->__cor_d; } 157 160 // 158 161 class MonitorKeyword final : public ConcurrentSueKeyword { … … 160 163 161 164 MonitorKeyword() : ConcurrentSueKeyword( 162 " monitor_desc",165 "$monitor", 163 166 "__mon", 164 167 "get_monitor", … … 180 183 181 184 //----------------------------------------------------------------------------- 185 //Handles generator type declarations : 186 // generator MyGenerator { struct MyGenerator { 187 // int data; int data; 188 // a_struct_t more_data; a_struct_t more_data; 189 // => int __gen_next; 190 // }; }; 191 // 192 class GeneratorKeyword final : public ConcurrentSueKeyword { 193 public: 194 195 GeneratorKeyword() : ConcurrentSueKeyword( 196 "$generator", 197 "__generator_state", 198 "get_generator", 199 "Unable to find builtin type $generator\n", 200 true, 201 AggregateDecl::Generator 202 ) 203 {} 204 205 virtual ~GeneratorKeyword() {} 206 207 virtual bool is_target( StructDecl * decl ) override final { return decl->is_generator(); } 208 209 static void implement( std::list< Declaration * > & translationUnit ) { 210 PassVisitor< GeneratorKeyword > impl; 211 mutateAll( translationUnit, impl ); 212 } 213 }; 214 215 216 //----------------------------------------------------------------------------- 217 class SuspendKeyword final : public WithStmtsToAdd, public WithGuards { 218 public: 219 SuspendKeyword() = default; 220 virtual ~SuspendKeyword() = default; 221 222 void premutate( FunctionDecl * ); 223 DeclarationWithType * postmutate( FunctionDecl * ); 224 225 Statement * postmutate( SuspendStmt * ); 226 227 static void implement( std::list< Declaration * > & translationUnit ) { 228 PassVisitor< SuspendKeyword > impl; 229 mutateAll( translationUnit, impl ); 230 } 231 232 private: 233 DeclarationWithType * is_main( FunctionDecl * ); 234 bool is_real_suspend( FunctionDecl * ); 235 236 Statement * make_generator_suspend( SuspendStmt * ); 237 Statement * make_coroutine_suspend( SuspendStmt * ); 238 239 struct LabelPair { 240 Label obj; 241 int idx; 242 }; 243 244 LabelPair make_label() { 245 labels.push_back( gen.newLabel("generator") ); 246 return { labels.back(), int(labels.size()) }; 247 } 248 249 DeclarationWithType * in_generator = nullptr; 250 FunctionDecl * decl_suspend = nullptr; 251 std::vector<Label> labels; 252 ControlStruct::LabelGenerator & gen = *ControlStruct::LabelGenerator::getGenerator(); 253 }; 254 255 //----------------------------------------------------------------------------- 182 256 //Handles mutex routines definitions : 183 257 // void foo( A * mutex a, B * mutex b, int i ) { void foo( A * a, B * b, int i ) { 184 // monitor_desc* __monitors[] = { get_monitor(a), get_monitor(b) };258 // $monitor * __monitors[] = { get_monitor(a), get_monitor(b) }; 185 259 // monitor_guard_t __guard = { __monitors, 2 }; 186 260 // /*Some code*/ => /*Some code*/ … … 221 295 //Handles mutex routines definitions : 222 296 // void foo( A * mutex a, B * mutex b, int i ) { void foo( A * a, B * b, int i ) { 223 // monitor_desc* __monitors[] = { get_monitor(a), get_monitor(b) };297 // $monitor * __monitors[] = { get_monitor(a), get_monitor(b) }; 224 298 // monitor_guard_t __guard = { __monitors, 2 }; 225 299 // /*Some code*/ => /*Some code*/ … … 251 325 CoroutineKeyword ::implement( translationUnit ); 252 326 MonitorKeyword ::implement( translationUnit ); 327 GeneratorKeyword ::implement( translationUnit ); 328 SuspendKeyword ::implement( translationUnit ); 253 329 } 254 330 … … 306 382 Expression * ConcurrentSueKeyword::postmutate( KeywordCastExpr * cast ) { 307 383 if ( cast_target == cast->target ) { 308 // convert (thread &)t to ( thread_desc&)*get_thread(t), etc.384 // convert (thread &)t to ($thread &)*get_thread(t), etc. 309 385 if( !type_decl ) SemanticError( cast, context_error ); 310 386 if( !dtor_decl ) SemanticError( cast, context_error ); … … 377 453 get_type, 378 454 nullptr, 379 noAttributes,455 { new Attribute("const") }, 380 456 Type::Inline 381 457 ); … … 446 522 447 523 declsToAddAfter.push_back( get_decl ); 448 449 // get_decl->fixUniqueId(); 450 } 524 } 525 526 //============================================================================================= 527 // Suspend keyword implementation 528 //============================================================================================= 529 DeclarationWithType * SuspendKeyword::is_main( FunctionDecl * func) { 530 if(func->name != "main") return nullptr; 531 if(func->type->parameters.size() != 1) return nullptr; 532 533 auto param = func->type->parameters.front(); 534 535 auto type = dynamic_cast<ReferenceType * >(param->get_type()); 536 if(!type) return nullptr; 537 538 auto obj = dynamic_cast<StructInstType *>(type->base); 539 if(!obj) return nullptr; 540 541 if(!obj->baseStruct->is_generator()) return nullptr; 542 543 return param; 544 } 545 546 bool SuspendKeyword::is_real_suspend( FunctionDecl * func ) { 547 if(isMangled(func->linkage)) return false; // the real suspend isn't mangled 548 if(func->name != "__cfactx_suspend") return false; // the real suspend has a specific name 549 if(func->type->parameters.size() != 0) return false; // Too many parameters 550 if(func->type->returnVals.size() != 0) return false; // Too many return values 551 552 return true; 553 } 554 555 void SuspendKeyword::premutate( FunctionDecl * func ) { 556 GuardValue(in_generator); 557 in_generator = nullptr; 558 559 // Is this the real suspend? 560 if(is_real_suspend(func)) { 561 decl_suspend = decl_suspend ? decl_suspend : func; 562 return; 563 } 564 565 // Is this the main of a generator? 566 auto param = is_main( func ); 567 if(!param) return; 568 569 if(func->type->returnVals.size() != 0) SemanticError(func->location, "Generator main must return void"); 570 571 in_generator = param; 572 GuardValue(labels); 573 labels.clear(); 574 } 575 576 DeclarationWithType * SuspendKeyword::postmutate( FunctionDecl * func ) { 577 if( !func->statements ) return func; // Not the actual definition, don't do anything 578 if( !in_generator ) return func; // Not in a generator, don't do anything 579 if( labels.empty() ) return func; // Generator has no states, nothing to do, could throw a warning 580 581 // This is a generator main, we need to add the following code to the top 582 // static void * __generator_labels[] = {&&s0, &&s1, ...}; 583 // goto * __generator_labels[gen.__generator_state]; 584 const auto & loc = func->location; 585 586 const auto first_label = gen.newLabel("generator"); 587 588 // for each label add to declaration 589 std::list<Initializer*> inits = { new SingleInit( new LabelAddressExpr( first_label ) ) }; 590 for(const auto & label : labels) { 591 inits.push_back( 592 new SingleInit( 593 new LabelAddressExpr( label ) 594 ) 595 ); 596 } 597 auto init = new ListInit(std::move(inits), noDesignators, true); 598 labels.clear(); 599 600 // create decl 601 auto decl = new ObjectDecl( 602 "__generator_labels", 603 Type::StorageClasses( Type::Static ), 604 LinkageSpec::AutoGen, 605 nullptr, 606 new ArrayType( 607 Type::Qualifiers(), 608 new PointerType( 609 Type::Qualifiers(), 610 new VoidType( Type::Qualifiers() ) 611 ), 612 nullptr, 613 false, false 614 ), 615 init 616 ); 617 618 // create the goto 619 assert(in_generator); 620 621 auto go_decl = new ObjectDecl( 622 "__generator_label", 623 noStorageClasses, 624 LinkageSpec::AutoGen, 625 nullptr, 626 new PointerType( 627 Type::Qualifiers(), 628 new VoidType( Type::Qualifiers() ) 629 ), 630 new SingleInit( 631 new UntypedExpr( 632 new NameExpr("?[?]"), 633 { 634 new NameExpr("__generator_labels"), 635 new UntypedMemberExpr( 636 new NameExpr("__generator_state"), 637 new VariableExpr( in_generator ) 638 ) 639 } 640 ) 641 ) 642 ); 643 go_decl->location = loc; 644 645 auto go = new BranchStmt( 646 new VariableExpr( go_decl ), 647 BranchStmt::Goto 648 ); 649 go->location = loc; 650 go->computedTarget->location = loc; 651 652 auto noop = new NullStmt({ first_label }); 653 noop->location = loc; 654 655 // wrap everything in a nice compound 656 auto body = new CompoundStmt({ 657 new DeclStmt( decl ), 658 new DeclStmt( go_decl ), 659 go, 660 noop, 661 func->statements 662 }); 663 body->location = loc; 664 func->statements = body; 665 666 return func; 667 } 668 669 Statement * SuspendKeyword::postmutate( SuspendStmt * stmt ) { 670 SuspendStmt::Type type = stmt->type; 671 if(type == SuspendStmt::None) { 672 // This suspend has a implicit target, find it 673 type = in_generator ? SuspendStmt::Generator : SuspendStmt::Coroutine; 674 } 675 676 // Check that the target makes sense 677 if(!in_generator && type == SuspendStmt::Generator) SemanticError( stmt->location, "'suspend generator' must be used inside main of generator type."); 678 679 // Act appropriately 680 switch(type) { 681 case SuspendStmt::Generator: return make_generator_suspend(stmt); 682 case SuspendStmt::Coroutine: return make_coroutine_suspend(stmt); 683 default: abort(); 684 } 685 } 686 687 Statement * SuspendKeyword::make_generator_suspend( SuspendStmt * stmt ) { 688 assert(in_generator); 689 // Target code is : 690 // gen.__generator_state = X; 691 // { THEN } 692 // return; 693 // __gen_X:; 694 695 // Save the location and delete the old statement, we only need the location from this point on 696 auto loc = stmt->location; 697 698 // Build the label and get its index 699 auto label = make_label(); 700 701 // Create the context saving statement 702 auto save = new ExprStmt( new UntypedExpr( 703 new NameExpr( "?=?" ), 704 { 705 new UntypedMemberExpr( 706 new NameExpr("__generator_state"), 707 new VariableExpr( in_generator ) 708 ), 709 new ConstantExpr( 710 Constant::from_int( label.idx ) 711 ) 712 } 713 )); 714 assert(save->expr); 715 save->location = loc; 716 stmtsToAddBefore.push_back( save ); 717 718 // if we have a then add it here 719 auto then = stmt->then; 720 stmt->then = nullptr; 721 delete stmt; 722 if(then) stmtsToAddBefore.push_back( then ); 723 724 // Create the return statement 725 auto ret = new ReturnStmt( nullptr ); 726 ret->location = loc; 727 stmtsToAddBefore.push_back( ret ); 728 729 // Create the null statement with the created label 730 auto noop = new NullStmt({ label.obj }); 731 noop->location = loc; 732 733 // Return the null statement to take the place of the previous statement 734 return noop; 735 } 736 737 Statement * SuspendKeyword::make_coroutine_suspend( SuspendStmt * stmt ) { 738 if(stmt->then) SemanticError( stmt->location, "Compound statement following coroutines is not implemented."); 739 740 // Save the location and delete the old statement, we only need the location from this point on 741 auto loc = stmt->location; 742 delete stmt; 743 744 // Create the call expression 745 if(!decl_suspend) SemanticError( loc, "suspend keyword applied to coroutines requires coroutines to be in scope, add #include <coroutine.hfa>\n"); 746 auto expr = new UntypedExpr( VariableExpr::functionPointer( decl_suspend ) ); 747 expr->location = loc; 748 749 // Change this statement into a regular expr 750 assert(expr); 751 auto nstmt = new ExprStmt( expr ); 752 nstmt->location = loc; 753 return nstmt; 754 } 755 451 756 452 757 //============================================================================================= … … 516 821 void MutexKeyword::postvisit(StructDecl* decl) { 517 822 518 if( decl->name == " monitor_desc" && decl->body ) {823 if( decl->name == "$monitor" && decl->body ) { 519 824 assert( !monitor_decl ); 520 825 monitor_decl = decl; … … 612 917 ); 613 918 614 // monitor_desc* __monitors[] = { get_monitor(a), get_monitor(b) };919 //$monitor * __monitors[] = { get_monitor(a), get_monitor(b) }; 615 920 body->push_front( new DeclStmt( monitors) ); 616 921 } … … 673 978 ); 674 979 675 // monitor_desc* __monitors[] = { get_monitor(a), get_monitor(b) };980 //$monitor * __monitors[] = { get_monitor(a), get_monitor(b) }; 676 981 body->push_front( new DeclStmt( monitors) ); 677 982 } … … 681 986 //============================================================================================= 682 987 void ThreadStarter::previsit( StructDecl * decl ) { 683 if( decl->name == " thread_desc" && decl->body ) {988 if( decl->name == "$thread" && decl->body ) { 684 989 assert( !thread_decl ); 685 990 thread_decl = decl; -
src/Concurrency/Waitfor.cc
rb7d6a36 r6a490b2 244 244 decl_mask = decl; 245 245 } 246 else if( decl->name == " monitor_desc" ) {246 else if( decl->name == "$monitor" ) { 247 247 assert( !decl_monitor ); 248 248 decl_monitor = decl; -
src/ControlStruct/ExceptTranslate.cc
rb7d6a36 r6a490b2 9 9 // Author : Andrew Beach 10 10 // Created On : Wed Jun 14 16:49:00 2017 11 // Last Modified By : Peter A. Buhr12 // Last Modified On : Fri Dec 13 23:40:15 201913 // Update Count : 1 211 // Last Modified By : Andrew Beach 12 // Last Modified On : Fri Mar 27 11:58:00 2020 13 // Update Count : 13 14 14 // 15 15 … … 211 211 ThrowStmt *throwStmt ) { 212 212 // __throw_terminate( `throwStmt->get_name()` ); } 213 return create_given_throw( "__cfa abi_ehm__throw_terminate", throwStmt );213 return create_given_throw( "__cfaehm_throw_terminate", throwStmt ); 214 214 } 215 215 … … 232 232 ) ) ); 233 233 result->push_back( new ExprStmt( 234 new UntypedExpr( new NameExpr( "__cfa abi_ehm__rethrow_terminate" ) )234 new UntypedExpr( new NameExpr( "__cfaehm_rethrow_terminate" ) ) 235 235 ) ); 236 236 delete throwStmt; … … 241 241 ThrowStmt *throwStmt ) { 242 242 // __throw_resume( `throwStmt->get_name` ); 243 return create_given_throw( "__cfa abi_ehm__throw_resume", throwStmt );243 return create_given_throw( "__cfaehm_throw_resume", throwStmt ); 244 244 } 245 245 … … 309 309 local_except->get_attributes().push_back( new Attribute( 310 310 "cleanup", 311 { new NameExpr( "__cfa abi_ehm__cleanup_terminate" ) }311 { new NameExpr( "__cfaehm_cleanup_terminate" ) } 312 312 ) ); 313 313 … … 429 429 FunctionDecl * terminate_catch, 430 430 FunctionDecl * terminate_match ) { 431 // { __cfa abi_ehm__try_terminate(`try`, `catch`, `match`); }431 // { __cfaehm_try_terminate(`try`, `catch`, `match`); } 432 432 433 433 UntypedExpr * caller = new UntypedExpr( new NameExpr( 434 "__cfa abi_ehm__try_terminate" ) );434 "__cfaehm_try_terminate" ) ); 435 435 std::list<Expression *>& args = caller->get_args(); 436 436 args.push_back( nameOf( try_wrapper ) ); … … 486 486 487 487 // struct __try_resume_node __resume_node 488 // __attribute__((cleanup( __cfa abi_ehm__try_resume_cleanup )));488 // __attribute__((cleanup( __cfaehm_try_resume_cleanup ))); 489 489 // ** unwinding of the stack here could cause problems ** 490 490 // ** however I don't think that can happen currently ** 491 // __cfa abi_ehm__try_resume_setup( &__resume_node, resume_handler );491 // __cfaehm_try_resume_setup( &__resume_node, resume_handler ); 492 492 493 493 std::list< Attribute * > attributes; … … 495 495 std::list< Expression * > attr_params; 496 496 attr_params.push_back( new NameExpr( 497 "__cfa abi_ehm__try_resume_cleanup" ) );497 "__cfaehm_try_resume_cleanup" ) ); 498 498 attributes.push_back( new Attribute( "cleanup", attr_params ) ); 499 499 } … … 514 514 515 515 UntypedExpr *setup = new UntypedExpr( new NameExpr( 516 "__cfa abi_ehm__try_resume_setup" ) );516 "__cfaehm_try_resume_setup" ) ); 517 517 setup->get_args().push_back( new AddressExpr( nameOf( obj ) ) ); 518 518 setup->get_args().push_back( nameOf( resume_handler ) ); … … 539 539 ObjectDecl * ExceptionMutatorCore::create_finally_hook( 540 540 FunctionDecl * finally_wrapper ) { 541 // struct __cfa abi_ehm__cleanup_hook __finally_hook541 // struct __cfaehm_cleanup_hook __finally_hook 542 542 // __attribute__((cleanup( finally_wrapper ))); 543 543 … … 593 593 // Skip children? 594 594 return; 595 } else if ( structDecl->get_name() == "__cfa abi_ehm__base_exception_t" ) {595 } else if ( structDecl->get_name() == "__cfaehm_base_exception_t" ) { 596 596 assert( nullptr == except_decl ); 597 597 except_decl = structDecl; 598 598 init_func_types(); 599 } else if ( structDecl->get_name() == "__cfa abi_ehm__try_resume_node" ) {599 } else if ( structDecl->get_name() == "__cfaehm_try_resume_node" ) { 600 600 assert( nullptr == node_decl ); 601 601 node_decl = structDecl; 602 } else if ( structDecl->get_name() == "__cfa abi_ehm__cleanup_hook" ) {602 } else if ( structDecl->get_name() == "__cfaehm_cleanup_hook" ) { 603 603 assert( nullptr == hook_decl ); 604 604 hook_decl = structDecl; -
src/Parser/ParseNode.h
rb7d6a36 r6a490b2 428 428 Statement * build_asm( bool voltile, Expression * instruction, ExpressionNode * output = nullptr, ExpressionNode * input = nullptr, ExpressionNode * clobber = nullptr, LabelNode * gotolabels = nullptr ); 429 429 Statement * build_directive( std::string * directive ); 430 SuspendStmt * build_suspend( StatementNode *, SuspendStmt::Type = SuspendStmt::None); 430 431 WaitForStmt * build_waitfor( ExpressionNode * target, StatementNode * stmt, ExpressionNode * when ); 431 432 WaitForStmt * build_waitfor( ExpressionNode * target, StatementNode * stmt, ExpressionNode * when, WaitForStmt * existing ); -
src/Parser/StatementNode.cc
rb7d6a36 r6a490b2 249 249 } // build_finally 250 250 251 SuspendStmt * build_suspend( StatementNode * then, SuspendStmt::Type type ) { 252 auto node = new SuspendStmt(); 253 254 node->type = type; 255 256 std::list< Statement * > stmts; 257 buildMoveList< Statement, StatementNode >( then, stmts ); 258 if(!stmts.empty()) { 259 assert( stmts.size() == 1 ); 260 node->then = dynamic_cast< CompoundStmt * >( stmts.front() ); 261 } 262 263 return node; 264 } 265 251 266 WaitForStmt * build_waitfor( ExpressionNode * targetExpr, StatementNode * stmt, ExpressionNode * when ) { 252 267 auto node = new WaitForStmt(); -
src/Parser/TypeData.cc
rb7d6a36 r6a490b2 769 769 case AggregateDecl::Struct: 770 770 case AggregateDecl::Coroutine: 771 case AggregateDecl::Generator: 771 772 case AggregateDecl::Monitor: 772 773 case AggregateDecl::Thread: -
src/Parser/lex.ll
rb7d6a36 r6a490b2 65 65 #define FLOATXX(v) KEYWORD_RETURN(v); 66 66 #else 67 #define FLOATXX(v) IDENTIFIER_RETURN(); 67 #define FLOATXX(v) IDENTIFIER_RETURN(); 68 68 #endif // HAVE_KEYWORDS_FLOATXX 69 69 … … 301 301 _Static_assert { KEYWORD_RETURN(STATICASSERT); } // C11 302 302 struct { KEYWORD_RETURN(STRUCT); } 303 /* suspend { KEYWORD_RETURN(SUSPEND); } // CFA */ 303 suspend { KEYWORD_RETURN(SUSPEND); } // CFA 304 304 switch { KEYWORD_RETURN(SWITCH); } 305 305 thread { KEYWORD_RETURN(THREAD); } // C11 -
src/Parser/parser.yy
rb7d6a36 r6a490b2 10 10 // Created On : Sat Sep 1 20:22:55 2001 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Sun Feb 16 08:22:14202013 // Update Count : 44 6112 // Last Modified On : Mon Apr 27 12:25:42 2020 13 // Update Count : 4483 14 14 // 15 15 … … 278 278 %token OTYPE FTYPE DTYPE TTYPE TRAIT // CFA 279 279 %token SIZEOF OFFSETOF 280 // %token SUSPEND RESUME // CFA 280 // %token RESUME // CFA 281 %token SUSPEND // CFA 281 282 %token ATTRIBUTE EXTENSION // GCC 282 283 %token IF ELSE SWITCH CASE DEFAULT DO WHILE FOR BREAK CONTINUE GOTO RETURN … … 918 919 conditional_expression 919 920 | unary_expression assignment_operator assignment_expression 920 { $$ = new ExpressionNode( build_binary_val( $2, $1, $3 ) ); } 921 { 922 if ( $2 == OperKinds::AtAssn ) { 923 SemanticError( yylloc, "C @= assignment is currently unimplemented." ); $$ = nullptr; 924 } else { 925 $$ = new ExpressionNode( build_binary_val( $2, $1, $3 ) ); 926 } // if 927 } 921 928 | unary_expression '=' '{' initializer_list_opt comma_opt '}' 922 929 { SemanticError( yylloc, "Initializer assignment is currently unimplemented." ); $$ = nullptr; } … … 959 966 960 967 tuple_expression_list: 961 assignment_expression_opt 962 | tuple_expression_list ',' assignment_expression_opt 968 assignment_expression 969 | '@' // CFA 970 { SemanticError( yylloc, "Eliding tuple element with '@' is currently unimplemented." ); $$ = nullptr; } 971 | tuple_expression_list ',' assignment_expression 963 972 { $$ = (ExpressionNode *)($1->set_last( $3 )); } 973 | tuple_expression_list ',' '@' 974 { SemanticError( yylloc, "Eliding tuple element with '@' is currently unimplemented." ); $$ = nullptr; } 964 975 ; 965 976 … … 1259 1270 | RETURN '{' initializer_list_opt comma_opt '}' ';' 1260 1271 { SemanticError( yylloc, "Initializer return is currently unimplemented." ); $$ = nullptr; } 1261 // | SUSPEND ';' 1262 // { SemanticError( yylloc, "Suspend expression is currently unimplemented." ); $$ = nullptr; } 1263 // | SUSPEND compound_statement ';' 1264 // { SemanticError( yylloc, "Suspend expression is currently unimplemented." ); $$ = nullptr; } 1272 | SUSPEND ';' 1273 { $$ = new StatementNode( build_suspend( nullptr ) ); } 1274 | SUSPEND compound_statement 1275 { $$ = new StatementNode( build_suspend( $2 ) ); } 1276 | SUSPEND COROUTINE ';' 1277 { $$ = new StatementNode( build_suspend( nullptr, SuspendStmt::Coroutine ) ); } 1278 | SUSPEND COROUTINE compound_statement 1279 { $$ = new StatementNode( build_suspend( $3, SuspendStmt::Coroutine ) ); } 1280 | SUSPEND GENERATOR ';' 1281 { $$ = new StatementNode( build_suspend( nullptr, SuspendStmt::Generator ) ); } 1282 | SUSPEND GENERATOR compound_statement 1283 { $$ = new StatementNode( build_suspend( $3, SuspendStmt::Generator ) ); } 1265 1284 | THROW assignment_expression_opt ';' // handles rethrow 1266 1285 { $$ = new StatementNode( build_throw( $2 ) ); } … … 1589 1608 // type_specifier can resolve to just TYPEDEFname (e.g., typedef int T; int f( T );). Therefore this must be 1590 1609 // flattened to allow lookahead to the '(' without having to reduce identifier_or_type_name. 1591 cfa_abstract_tuple identifier_or_type_name '(' push cfa_parameter_ellipsis_list_opt pop ')' 1610 cfa_abstract_tuple identifier_or_type_name '(' push cfa_parameter_ellipsis_list_opt pop ')' attribute_list_opt 1592 1611 // To obtain LR(1 ), this rule must be factored out from function return type (see cfa_abstract_declarator). 1593 { $$ = DeclarationNode::newFunction( $2, $1, $5, 0 ) ; }1594 | cfa_function_return identifier_or_type_name '(' push cfa_parameter_ellipsis_list_opt pop ')' 1595 { $$ = DeclarationNode::newFunction( $2, $1, $5, 0 ) ; }1612 { $$ = DeclarationNode::newFunction( $2, $1, $5, 0 )->addQualifiers( $8 ); } 1613 | cfa_function_return identifier_or_type_name '(' push cfa_parameter_ellipsis_list_opt pop ')' attribute_list_opt 1614 { $$ = DeclarationNode::newFunction( $2, $1, $5, 0 )->addQualifiers( $8 ); } 1596 1615 ; 1597 1616 … … 2077 2096 aggregate_control: // CFA 2078 2097 GENERATOR 2079 { yyy = true; $$ = AggregateDecl::Coroutine; } 2098 { yyy = true; $$ = AggregateDecl::Generator; } 2099 | MONITOR GENERATOR 2100 { SemanticError( yylloc, "monitor generator is currently unimplemented." ); $$ = AggregateDecl::NoAggregate; } 2080 2101 | COROUTINE 2081 2102 { yyy = true; $$ = AggregateDecl::Coroutine; } 2082 2103 | MONITOR 2083 2104 { yyy = true; $$ = AggregateDecl::Monitor; } 2105 | MONITOR COROUTINE 2106 { SemanticError( yylloc, "monitor coroutine is currently unimplemented." ); $$ = AggregateDecl::NoAggregate; } 2084 2107 | THREAD 2085 2108 { yyy = true; $$ = AggregateDecl::Thread; } 2109 | MONITOR THREAD 2110 { SemanticError( yylloc, "monitor thread is currently unimplemented." ); $$ = AggregateDecl::NoAggregate; } 2086 2111 ; 2087 2112 -
src/ResolvExpr/AlternativeFinder.cc
rb7d6a36 r6a490b2 1292 1292 1293 1293 try { 1294 // Attempt 1 : turn (thread&)X into ( thread_desc&)X.__thrd1294 // Attempt 1 : turn (thread&)X into ($thread&)X.__thrd 1295 1295 // Clone is purely for memory management 1296 1296 std::unique_ptr<Expression> tech1 { new UntypedMemberExpr(new NameExpr(castExpr->concrete_target.field), castExpr->arg->clone()) }; … … 1303 1303 } catch(SemanticErrorException & ) {} 1304 1304 1305 // Fallback : turn (thread&)X into ( thread_desc&)get_thread(X)1305 // Fallback : turn (thread&)X into ($thread&)get_thread(X) 1306 1306 std::unique_ptr<Expression> fallback { UntypedExpr::createDeref( new UntypedExpr(new NameExpr(castExpr->concrete_target.getter), { castExpr->arg->clone() })) }; 1307 1307 // don't prune here, since it's guaranteed all alternatives will have the same type -
src/ResolvExpr/Resolver.cc
rb7d6a36 r6a490b2 9 9 // Author : Aaron B. Moss 10 10 // Created On : Sun May 17 12:17:01 2015 11 // Last Modified By : A aron B. Moss12 // Last Modified On : Wed May 29 11:00:00 201913 // Update Count : 24 111 // Last Modified By : Andrew Beach 12 // Last Modified On : Fri Mar 27 11:58:00 2020 13 // Update Count : 242 14 14 // 15 15 … … 560 560 // TODO: Replace *exception type with &exception type. 561 561 if ( throwStmt->get_expr() ) { 562 const StructDecl * exception_decl = indexer.lookupStruct( "__cfa abi_ehm__base_exception_t" );562 const StructDecl * exception_decl = indexer.lookupStruct( "__cfaehm_base_exception_t" ); 563 563 assert( exception_decl ); 564 564 Type * exceptType = new PointerType( noQualifiers, new StructInstType( noQualifiers, const_cast<StructDecl *>(exception_decl) ) ); … … 1477 1477 if ( throwStmt->expr ) { 1478 1478 const ast::StructDecl * exceptionDecl = 1479 symtab.lookupStruct( "__cfa abi_ehm__base_exception_t" );1479 symtab.lookupStruct( "__cfaehm_base_exception_t" ); 1480 1480 assert( exceptionDecl ); 1481 1481 ast::ptr< ast::Type > exceptType = -
src/ResolvExpr/TypeEnvironment.cc
rb7d6a36 r6a490b2 20 20 #include <utility> // for pair, move 21 21 22 #include "CompilationState.h" // for deterministic_output 22 23 #include "Common/utility.h" // for maybeClone 23 24 #include "SynTree/Type.h" // for Type, FunctionType, Type::Fora... … … 106 107 107 108 void EqvClass::print( std::ostream &os, Indenter indent ) const { 108 os << "( "; 109 std::copy( vars.begin(), vars.end(), std::ostream_iterator< std::string >( os, " " ) ); 110 os << ")"; 109 if( !deterministic_output ) { 110 os << "( "; 111 std::copy( vars.begin(), vars.end(), std::ostream_iterator< std::string >( os, " " ) ); 112 os << ")"; 113 } 111 114 if ( type ) { 112 115 os << " -> "; … … 235 238 // check safely bindable 236 239 if ( r.type && occursIn( r.type, s.vars.begin(), s.vars.end(), *this ) ) return false; 237 240 238 241 // merge classes in 239 242 r.vars.insert( s.vars.begin(), s.vars.end() ); -
src/SynTree/Declaration.h
rb7d6a36 r6a490b2 302 302 303 303 bool is_coroutine() { return kind == Coroutine; } 304 bool is_monitor() { return kind == Monitor; } 305 bool is_thread() { return kind == Thread; } 304 bool is_generator() { return kind == Generator; } 305 bool is_monitor () { return kind == Monitor ; } 306 bool is_thread () { return kind == Thread ; } 306 307 307 308 virtual StructDecl * clone() const override { return new StructDecl( *this ); } -
src/SynTree/LinkageSpec.cc
rb7d6a36 r6a490b2 9 9 // Author : Rodolfo G. Esteves 10 10 // Created On : Sat May 16 13:22:09 2015 11 // Last Modified By : Peter A. Buhr12 // Last Modified On : Mon Dec 16 15:02:29 201913 // Update Count : 2 811 // Last Modified By : Andrew Beach 12 // Last Modified On : Mon Mar 2 16:13:00 2020 13 // Update Count : 29 14 14 // 15 15 … … 20 20 21 21 #include "LinkageSpec.h" 22 #include "Common/CodeLocation.h" 22 23 #include "Common/SemanticError.h" 23 24 -
src/SynTree/LinkageSpec.h
rb7d6a36 r6a490b2 9 9 // Author : Rodolfo G. Esteves 10 10 // Created On : Sat May 16 13:24:28 2015 11 // Last Modified By : Peter A. Buhr12 // Last Modified On : Mon Dec 16 15:03:43 201913 // Update Count : 2 011 // Last Modified By : Andrew Beach 12 // Last Modified On : Mon Mar 2 16:13:00 2020 13 // Update Count : 21 14 14 // 15 15 … … 18 18 #include <string> 19 19 20 #include "Common/CodeLocation.h" 20 struct CodeLocation; 21 21 22 22 namespace LinkageSpec { -
src/SynTree/Mutator.h
rb7d6a36 r6a490b2 51 51 virtual Statement * mutate( CatchStmt * catchStmt ) = 0; 52 52 virtual Statement * mutate( FinallyStmt * catchStmt ) = 0; 53 virtual Statement * mutate( SuspendStmt * suspendStmt ) = 0; 53 54 virtual Statement * mutate( WaitForStmt * waitforStmt ) = 0; 54 55 virtual Declaration * mutate( WithStmt * withStmt ) = 0; -
src/SynTree/Statement.cc
rb7d6a36 r6a490b2 420 420 } 421 421 422 SuspendStmt::SuspendStmt( const SuspendStmt & other ) 423 : Statement( other ) 424 , then( maybeClone(other.then) ) 425 {} 426 427 SuspendStmt::~SuspendStmt() { 428 delete then; 429 } 430 431 void SuspendStmt::print( std::ostream & os, Indenter indent ) const { 432 os << "Suspend Statement"; 433 switch (type) { 434 case None : os << " with implicit target"; break; 435 case Generator: os << " for generator" ; break; 436 case Coroutine: os << " for coroutine" ; break; 437 } 438 os << endl; 439 indent += 1; 440 441 if(then) { 442 os << indent << " with post statement :" << endl; 443 then->print( os, indent + 1); 444 } 445 } 446 422 447 WaitForStmt::WaitForStmt() : Statement() { 423 448 timeout.time = nullptr; -
src/SynTree/Statement.h
rb7d6a36 r6a490b2 422 422 }; 423 423 424 class SuspendStmt : public Statement { 425 public: 426 CompoundStmt * then = nullptr; 427 enum Type { None, Coroutine, Generator } type = None; 428 429 SuspendStmt() = default; 430 SuspendStmt( const SuspendStmt & ); 431 virtual ~SuspendStmt(); 432 433 virtual SuspendStmt * clone() const override { return new SuspendStmt( *this ); } 434 virtual void accept( Visitor & v ) override { v.visit( this ); } 435 virtual void accept( Visitor & v ) const override { v.visit( this ); } 436 virtual Statement * acceptMutator( Mutator & m ) override { return m.mutate( this ); } 437 virtual void print( std::ostream & os, Indenter indent = {} ) const override; 438 }; 439 424 440 class WaitForStmt : public Statement { 425 441 public: -
src/SynTree/SynTree.h
rb7d6a36 r6a490b2 54 54 class CatchStmt; 55 55 class FinallyStmt; 56 class SuspendStmt; 56 57 class WaitForStmt; 57 58 class WithStmt; -
src/SynTree/Visitor.h
rb7d6a36 r6a490b2 78 78 virtual void visit( FinallyStmt * node ) { visit( const_cast<const FinallyStmt *>(node) ); } 79 79 virtual void visit( const FinallyStmt * finallyStmt ) = 0; 80 virtual void visit( SuspendStmt * node ) { visit( const_cast<const SuspendStmt *>(node) ); } 81 virtual void visit( const SuspendStmt * suspendStmt ) = 0; 80 82 virtual void visit( WaitForStmt * node ) { visit( const_cast<const WaitForStmt *>(node) ); } 81 83 virtual void visit( const WaitForStmt * waitforStmt ) = 0; -
src/main.cc
rb7d6a36 r6a490b2 443 443 444 444 445 static const char optstring[] = ":c:ghlLmNnp P:S:twW:D:";445 static const char optstring[] = ":c:ghlLmNnpdP:S:twW:D:"; 446 446 447 447 enum { PreludeDir = 128 }; … … 456 456 { "no-prelude", no_argument, nullptr, 'n' }, 457 457 { "prototypes", no_argument, nullptr, 'p' }, 458 { "deterministic-out", no_argument, nullptr, 'd' }, 458 459 { "print", required_argument, nullptr, 'P' }, 459 460 { "prelude-dir", required_argument, nullptr, PreludeDir }, … … 476 477 "do not read prelude", // -n 477 478 "generate prototypes for prelude functions", // -p 479 "don't print output that isn't deterministic", // -d 478 480 "print", // -P 479 481 "<directory> prelude directory for debug/nodebug", // no flag … … 580 582 genproto = true; 581 583 break; 584 case 'd': // don't print non-deterministic output 585 deterministic_output = true; 586 break; 582 587 case 'P': // print options 583 588 for ( int i = 0;; i += 1 ) { -
tests/.expect/alloc-ERROR.txt
rb7d6a36 r6a490b2 1 alloc.cfa:3 10:1 error: No reasonable alternatives for expression Applying untyped:1 alloc.cfa:362:1 error: No reasonable alternatives for expression Applying untyped: 2 2 Name: ?=? 3 3 ...to: 4 Name: p4 Name: ip 5 5 Applying untyped: 6 6 Name: realloc … … 19 19 20 20 21 alloc.cfa:3 11:1 error: No reasonable alternatives for expression Applying untyped:21 alloc.cfa:363:1 error: No reasonable alternatives for expression Applying untyped: 22 22 Name: ?=? 23 23 ...to: 24 Name: p 25 Applying untyped: 26 Name: alloc 27 ...to: 28 Name: stp 29 Applying untyped: 30 Name: ?*? 31 ...to: 32 Name: dim 33 Sizeof Expression on: Applying untyped: 34 Name: *? 35 ...to: 36 Name: stp 37 38 39 40 41 alloc.cfa:312:1 error: No reasonable alternatives for expression Applying untyped: 42 Name: ?=? 43 ...to: 44 Name: p 24 Name: ip 45 25 Applying untyped: 46 26 Name: memset … … 50 30 51 31 52 alloc.cfa:3 13:1 error: No reasonable alternatives for expression Applying untyped:32 alloc.cfa:364:1 error: No reasonable alternatives for expression Applying untyped: 53 33 Name: ?=? 54 34 ...to: 55 Name: p35 Name: ip 56 36 Applying untyped: 57 37 Name: memcpy -
tests/.expect/alloc.txt
rb7d6a36 r6a490b2 23 23 0xefefefef 0xefefefef 0xefefefef 0xefefefef 0xefefefef 0xefefefef 0xefefefef 0xefefefef 0xefefefef 0xefefefef 0x1010101 0x1010101 0x1010101 0x1010101 0x1010101 0x1010101 0x1010101 0x1010101 0x1010101 0x1010101 24 24 25 CFA re sizearray alloc25 CFA realloc array alloc 26 26 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 27 CFA re sizearray alloc27 CFA realloc array alloc 28 28 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0x1010101 0x1010101 0x1010101 0x1010101 0x1010101 0x1010101 0x1010101 0x1010101 0x1010101 0x1010101 29 CFA re sizearray alloc29 CFA realloc array alloc 30 30 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 31 CFA re size array alloc31 CFA realloc array alloc, fill 32 32 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0x1010101 0x1010101 0x1010101 0x1010101 0x1010101 0x1010101 0x1010101 0x1010101 0x1010101 0x1010101 0xdededede 0xdededede 0xdededede 0xdededede 0xdededede 0xdededede 0xdededede 0xdededede 0xdededede 0xdededede 33 CFA re size array alloc33 CFA realloc array alloc, fill 34 34 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 35 CFA re sizearray alloc, fill35 CFA realloc array alloc, fill 36 36 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0x1010101 0x1010101 0x1010101 0x1010101 0x1010101 0x1010101 0xdededede 0xdededede 0xdededede 0xdededede 0xdededede 0xdededede 0xdededede 0xdededede 0xdededede 0xdededede 0xdededede 0xdededede 0xdededede 0xdededede 37 37 -
tests/Makefile.am
rb7d6a36 r6a490b2 41 41 -quiet @CFA_FLAGS@ \ 42 42 -DIN_DIR="${abs_srcdir}/.in/" 43 44 AM_CFAFLAGS = -XCFA --deterministic-out 43 45 44 46 # get the desired cfa to test -
tests/Makefile.in
rb7d6a36 r6a490b2 408 408 -DIN_DIR="${abs_srcdir}/.in/" 409 409 410 AM_CFAFLAGS = -XCFA --deterministic-out 410 411 411 412 # get the desired cfa to test -
tests/alloc.cfa
rb7d6a36 r6a490b2 10 10 // Created On : Wed Feb 3 07:56:22 2016 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Sun Feb 16 09:21:13 202013 // Update Count : 4 0512 // Last Modified On : Mon Apr 6 21:08:23 2020 13 // Update Count : 428 14 14 // 15 15 … … 28 28 size_t dim = 10; 29 29 char fill = '\xde'; 30 int * p, *p1;30 int * ip, * ip1; 31 31 32 32 // allocation, non-array types 33 33 34 p = (int *)malloc( sizeof(*p) ); // C malloc, type unsafe35 * p = 0xdeadbeef;36 printf( "C malloc %#x\n", * p );37 free( p );38 39 p = malloc();// CFA malloc, type safe40 * p = 0xdeadbeef;41 printf( "CFA malloc %#x\n", * p );42 free( p );43 44 p = alloc();// CFA alloc, type safe45 * p = 0xdeadbeef;46 printf( "CFA alloc %#x\n", * p );47 free( p );48 49 p = alloc_set( fill ); // CFA alloc, fill50 printf( "CFA alloc, fill %08x\n", * p );51 free( p );52 53 p = alloc_set( 3 );// CFA alloc, fill54 printf( "CFA alloc, fill %d\n", * p );55 free( p );34 ip = (int *)malloc( sizeof(*ip) ); // C malloc, type unsafe 35 *ip = 0xdeadbeef; 36 printf( "C malloc %#x\n", *ip ); 37 free( ip ); 38 39 ip = malloc(); // CFA malloc, type safe 40 *ip = 0xdeadbeef; 41 printf( "CFA malloc %#x\n", *ip ); 42 free( ip ); 43 44 ip = alloc(); // CFA alloc, type safe 45 *ip = 0xdeadbeef; 46 printf( "CFA alloc %#x\n", *ip ); 47 free( ip ); 48 49 ip = alloc_set( fill ); // CFA alloc, fill 50 printf( "CFA alloc, fill %08x\n", *ip ); 51 free( ip ); 52 53 ip = alloc_set( 3 ); // CFA alloc, fill 54 printf( "CFA alloc, fill %d\n", *ip ); 55 free( ip ); 56 56 57 57 … … 59 59 printf( "\n" ); 60 60 61 p = (int *)calloc( dim, sizeof( *p ) );// C array calloc, type unsafe61 ip = (int *)calloc( dim, sizeof( *ip ) ); // C array calloc, type unsafe 62 62 printf( "C array calloc, fill 0\n" ); 63 for ( i; dim ) { printf( "%#x ", p[i] ); }64 printf( "\n" ); 65 free( p );66 67 p = calloc( dim );// CFA array calloc, type safe63 for ( i; dim ) { printf( "%#x ", ip[i] ); } 64 printf( "\n" ); 65 free( ip ); 66 67 ip = calloc( dim ); // CFA array calloc, type safe 68 68 printf( "CFA array calloc, fill 0\n" ); 69 for ( i; dim ) { printf( "%#x ", p[i] ); }70 printf( "\n" ); 71 free( p );72 73 p = alloc( dim );// CFA array alloc, type safe74 for ( i; dim ) { p[i] = 0xdeadbeef; }69 for ( i; dim ) { printf( "%#x ", ip[i] ); } 70 printf( "\n" ); 71 free( ip ); 72 73 ip = alloc( dim ); // CFA array alloc, type safe 74 for ( i; dim ) { ip[i] = 0xdeadbeef; } 75 75 printf( "CFA array alloc, no fill\n" ); 76 for ( i; dim ) { printf( "%#x ", p[i] ); }77 printf( "\n" ); 78 free( p );79 80 p = alloc_set( 2 * dim, fill );// CFA array alloc, fill76 for ( i; dim ) { printf( "%#x ", ip[i] ); } 77 printf( "\n" ); 78 free( ip ); 79 80 ip = alloc_set( 2 * dim, fill ); // CFA array alloc, fill 81 81 printf( "CFA array alloc, fill %#hhx\n", fill ); 82 for ( i; 2 * dim ) { printf( "%#x ", p[i] ); }83 printf( "\n" ); 84 free( p );85 86 p = alloc_set( 2 * dim, 0xdeadbeef ); // CFA array alloc, fill82 for ( i; 2 * dim ) { printf( "%#x ", ip[i] ); } 83 printf( "\n" ); 84 free( ip ); 85 86 ip = alloc_set( 2 * dim, 0xdeadbeef ); // CFA array alloc, fill 87 87 printf( "CFA array alloc, fill %#hhx\n", 0xdeadbeef ); 88 for ( i; 2 * dim ) { printf( "%#x ", p[i] ); }89 printf( "\n" ); 90 // do not free 91 92 p1 = alloc_set( 2 * dim,p ); // CFA array alloc, fill88 for ( i; 2 * dim ) { printf( "%#x ", ip[i] ); } 89 printf( "\n" ); 90 // do not free 91 92 ip1 = alloc_set( 2 * dim, ip ); // CFA array alloc, fill 93 93 printf( "CFA array alloc, fill from array\n" ); 94 for ( i; 2 * dim ) { printf( "%#x %#x, ", p[i], p1[i] ); } 95 free( p1 ); 96 printf( "\n" ); 97 94 for ( i; 2 * dim ) { printf( "%#x %#x, ", ip[i], ip1[i] ); } 95 free( ip1 ); 96 printf( "\n" ); 97 98 99 // realloc, non-array types 100 printf( "\n" ); 101 102 ip = (int *)realloc( ip, dim * sizeof(*ip) ); // C realloc 103 printf( "C realloc\n" ); 104 for ( i; dim ) { printf( "%#x ", ip[i] ); } 105 printf( "\n" ); 106 // do not free 107 108 ip = realloc( ip, 2 * dim * sizeof(*ip) ); // CFA realloc 109 for ( i; dim ~ 2 * dim ) { ip[i] = 0x1010101; } 110 printf( "CFA realloc\n" ); 111 for ( i; 2 * dim ) { printf( "%#x ", ip[i] ); } 112 printf( "\n" ); 113 // do not free 114 115 116 // realloc, array types 117 printf( "\n" ); 118 119 ip = alloc( ip, dim ); // CFA realloc array alloc 120 for ( i; dim ) { ip[i] = 0xdeadbeef; } 121 printf( "CFA realloc array alloc\n" ); 122 for ( i; dim ) { printf( "%#x ", ip[i] ); } 123 printf( "\n" ); 124 // do not free 125 126 ip = alloc( ip, 2 * dim ); // CFA realloc array alloc 127 for ( i; dim ~ 2 * dim ) { ip[i] = 0x1010101; } // fill upper part 128 printf( "CFA realloc array alloc\n" ); 129 for ( i; 2 * dim ) { printf( "%#x ", ip[i] ); } 130 printf( "\n" ); 131 // do not free 132 133 ip = alloc( ip, dim ); // CFA realloc array alloc 134 printf( "CFA realloc array alloc\n" ); 135 for ( i; dim ) { printf( "%#x ", ip[i] ); } 136 printf( "\n" ); 137 // do not free 138 139 ip = alloc_set( ip, 3 * dim, fill ); // CFA realloc array alloc, fill 140 printf( "CFA realloc array alloc, fill\n" ); 141 for ( i; 3 * dim ) { printf( "%#x ", ip[i] ); } 142 printf( "\n" ); 143 // do not free 144 145 ip = alloc_set( ip, dim, fill ); // CFA realloc array alloc, fill 146 printf( "CFA realloc array alloc, fill\n" ); 147 for ( i; dim ) { printf( "%#x ", ip[i] ); } 148 printf( "\n" ); 149 // do not free 150 151 ip = alloc_set( ip, 3 * dim, fill ); // CFA realloc array alloc, fill 152 printf( "CFA realloc array alloc, fill\n" ); 153 for ( i; 3 * dim ) { printf( "%#x ", ip[i] ); } 154 printf( "\n" ); 155 // do not free 156 #if 0 // FIX ME 157 ip = alloc_set( ip, 5 * dim, 5 ); // CFA realloc array alloc, 5 158 printf( "CFA realloc array alloc, 5\n" ); 159 for ( i; 5 * dim ) { printf( "%#x ", ip[i] ); } 160 printf( "\n" ); 161 // do not free 162 163 ip = alloc_set( ip, dim, 5 ); // CFA realloc array alloc, 5 164 printf( "CFA realloc array alloc, 5\n" ); 165 for ( i; dim ) { printf( "%#x ", ip[i] ); } 166 printf( "\n" ); 167 // do not free 168 169 ip = alloc_set( ip, 5 * dim, 5 ); // CFA realloc array alloc, 5 170 printf( "CFA realloc array alloc, 5\n" ); 171 for ( i; 5 * dim ) { printf( "%#x ", ip[i] ); } 172 printf( "\n" ); 173 #endif // 0 174 free( ip ); 98 175 99 176 // resize, non-array types 100 printf( "\n" ); 101 102 p = (int *)realloc( p, dim * sizeof(*p) ); // C realloc103 printf( "C realloc\n" );104 for ( i; dim ) { printf( "%#x ", p[i] ); } 105 printf( "\n");106 // do not free107 108 p = realloc( p, 2 * dim * sizeof(*p) ); // CFA realloc109 for ( i; dim ~ 2 * dim ) { p[i] = 0x1010101; } 110 printf( "CFA realloc\n" );111 for ( i; 2 * dim ) { printf( "%#x ", p[i] ); } 112 printf( "\n" );113 // do not free 177 178 struct S { 179 int a[5]; 180 }; 181 182 ip = alloc(); 183 *ip = 5; 184 double * dp = alloc( ip ); 185 *dp = 5.5; 186 S * sp = alloc( dp ); 187 *sp = (S){ {0, 1, 2, 3, 4} }; 188 ip = alloc( sp ); 189 *ip = 3; 190 free( ip ); 114 191 115 192 116 193 // resize, array types 117 printf( "\n" ); 118 119 p = alloc( p, dim ); // CFA resize array alloc 120 for ( i; dim ) { p[i] = 0xdeadbeef; } 121 printf( "CFA resize array alloc\n" ); 122 for ( i; dim ) { printf( "%#x ", p[i] ); } 123 printf( "\n" ); 124 // do not free 125 126 p = alloc( p, 2 * dim ); // CFA resize array alloc 127 for ( i; dim ~ 2 * dim ) { p[i] = 0x1010101; } // fill upper part 128 printf( "CFA resize array alloc\n" ); 129 for ( i; 2 * dim ) { printf( "%#x ", p[i] ); } 130 printf( "\n" ); 131 // do not free 132 133 p = alloc( p, dim ); // CFA resize array alloc 134 printf( "CFA resize array alloc\n" ); 135 for ( i; dim ) { printf( "%#x ", p[i] ); } 136 printf( "\n" ); 137 // do not free 138 139 p = alloc_set( p, 3 * dim, fill ); // CFA resize array alloc, fill 140 printf( "CFA resize array alloc\n" ); 141 for ( i; 3 * dim ) { printf( "%#x ", p[i] ); } 142 printf( "\n" ); 143 // do not free 144 145 p = alloc_set( p, dim, fill ); // CFA resize array alloc, fill 146 printf( "CFA resize array alloc\n" ); 147 for ( i; dim ) { printf( "%#x ", p[i] ); } 148 printf( "\n" ); 149 // do not free 150 151 p = alloc_set( p, 3 * dim, fill ); // CFA resize array alloc, fill 152 printf( "CFA resize array alloc, fill\n" ); 153 for ( i; 3 * dim ) { printf( "%#x ", p[i] );; } 154 printf( "\n" ); 155 free( p ); 194 195 ip = alloc( 5 ); 196 for ( i; 5 ) { ip[i] = 5; } 197 dp = alloc( ip, 5 ); 198 for ( i; 5 ) { dp[i] = 5.5; } 199 sp = alloc( dp, 5 ); 200 for ( i; 5 ) { sp[i] = (S){ {0, 1, 2, 3, 4} }; } 201 ip = alloc( sp, 3 ); 202 for ( i; 3 ) { ip[i] = 3; } 203 ip = alloc( ip, 7 ); 204 for ( i; 7 ) { ip[i] = 7; } 205 ip = alloc( ip, 7, false ); 206 for ( i; 7 ) { ip[i] = 7; } 207 free( ip ); 156 208 157 209 … … 168 220 free( stp ); 169 221 170 stp = &(*memalign( Alignment )){ 42, 42.5 }; 222 stp = &(*memalign( Alignment )){ 42, 42.5 }; // CFA memalign 171 223 assert( (uintptr_t)stp % Alignment == 0 ); 172 224 printf( "CFA memalign %d %g\n", stp->x, stp->y ); … … 300 352 free( fp - 1 ); 301 353 302 p = foo( bar( baz( malloc(), 0 ), 0 ), 0 );303 * p = 0xdeadbeef;304 printf( "CFA deep malloc %#x\n", * p );305 free( p );354 ip = foo( bar( baz( malloc(), 0 ), 0 ), 0 ); 355 *ip = 0xdeadbeef; 356 printf( "CFA deep malloc %#x\n", *ip ); 357 free( ip ); 306 358 307 359 #ifdef ERR1 308 360 stp = malloc(); 309 361 printf( "\nSHOULD FAIL\n" ); 310 p = realloc( stp, dim * sizeof( *stp ) ); 311 p = alloc( stp, dim * sizeof( *stp ) ); 312 p = memset( stp, 10 ); 313 p = memcpy( &st1, &st ); 362 ip = realloc( stp, dim * sizeof( *stp ) ); 363 ip = memset( stp, 10 ); 364 ip = memcpy( &st1, &st ); 314 365 #endif 315 366 } // main -
tests/concurrent/.expect/monitor.txt
rb7d6a36 r6a490b2 1 40000001 3000000 -
tests/concurrent/coroutineYield.cfa
rb7d6a36 r6a490b2 33 33 sout | "Coroutine 2"; 34 34 #endif 35 suspend ();35 suspend; 36 36 } 37 37 } -
tests/concurrent/monitor.cfa
rb7d6a36 r6a490b2 29 29 30 30 void main( MyThread & this ) { 31 for(int i = 0; i < 1_000_000; i++) {31 for(int i = 0; i < 750_000; i++) { 32 32 increment( global ); 33 33 } -
tests/concurrent/multi-monitor.cfa
rb7d6a36 r6a490b2 11 11 12 12 void increment( monitor_t & mutex p1, monitor_t & mutex p2, int & value ) { 13 assert(active_thread() == get_monitor(p1)->owner); 14 assert(active_thread() == get_monitor(p2)->owner); 13 15 value += 1; 16 assert(active_thread() == get_monitor(p1)->owner); 17 assert(active_thread() == get_monitor(p2)->owner); 14 18 } 15 19 -
tests/concurrent/signal/block.cfa
rb7d6a36 r6a490b2 33 33 34 34 monitor global_data_t { 35 thread_desc* last_thread;36 thread_desc* last_signaller;35 $thread * last_thread; 36 $thread * last_signaller; 37 37 }; 38 38 … … 82 82 if( !is_empty( cond ) ) { 83 83 84 thread_desc* next = front( cond );84 $thread * next = front( cond ); 85 85 86 86 if( ! signal_block( cond ) ) { -
tests/concurrent/suspend_then.cfa
rb7d6a36 r6a490b2 1 1 #include <fstream.hfa> 2 2 #include <kernel.hfa> 3 #include <monitor.hfa>4 3 #include <thread.hfa> 5 4 #include <time.hfa> … … 10 9 #include "long_tests.hfa" 11 10 12 #ifndef PREEMPTION_RATE13 #define PREEMPTION_RATE 10`ms14 #endif15 16 11 Duration default_preemption() { 17 return PREEMPTION_RATE;12 return 0; 18 13 } 19 14 … … 26 21 #if !defined(TEST_FOREVER) 27 22 static inline void print(const char * const text ) { 28 write( STD ERR_FILENO, text, strlen(text) );23 write( STDOUT_FILENO, text, strlen(text) ); 29 24 } 30 25 #else … … 32 27 #endif 33 28 34 coroutine Coroutine {};29 generator Coroutine { int i; }; 35 30 36 31 volatile bool done = false; … … 49 44 50 45 void main(Coroutine& this) { 51 suspend(); 52 for(int i = 0; TEST(i < N); i++) { 46 this.i = 0; 47 suspend; 48 for(;TEST(this.i < N); this.i++) { 53 49 54 print("C - Suspending ");55 void publish(){56 print("C - Publishing ");50 print("C - Suspending\n"); 51 suspend{ 52 print("C - Publishing\n"); 57 53 assert(!the_cor); 58 54 store( this ); 59 55 } 60 suspend_then(publish);61 56 assert(!the_cor); 62 print("C oroutine 2");57 print("C - Back\n"); 63 58 KICK_WATCHDOG; 64 59 yield(); 65 60 } 66 61 done = true; 67 suspend ();62 suspend; 68 63 } 69 64 … … 77 72 if(!mine) continue; 78 73 79 print("T - took ");74 print("T - took\n"); 80 75 resume(*mine); 81 print("T - back");82 76 } 83 77 } -
tests/coroutine/.expect/fmtLines.txt
rb7d6a36 r6a490b2 48 48 { // f or n ewli 49 49 ne c hara cter s su 50 spen d (); if ( fm51 t.ch != '\n' ) b reak52 ; / / ig nore new line53 } // for sout54 | f mt.c h; //55 prin t ch arac ter }56 // f or sou t | " "57 ; // prin t bl58 ock sepa rato r } //59 for sou t | nl;60 // p rint gro up s61 epar ator } / / fo r} /62 / ma invo id p rt( Form63 at & fmt , ch ar c h )64 { fmt .ch = ch ;65 res ume( fmt );} //66 prti nt m ain( ) { Form67 at f mt; char ch; for68 ( ; ; ) { s in | ch;69 // rea d on70 e ch arac ter if ( e71 of( sin ) ) brea k;72 // eof ? p rt(73 fmt, ch ); } // for}74 // main // L ocal Var75 iabl es: //// tab -wid76 th: 4 // // c ompi le-c77 omma nd: "cfa fmt Line78 s.cf a" / /// End: //50 spen d; i f ( fmt. 51 ch ! = '\ n' ) bre ak; 52 // igno re n ewli ne 53 } // f or so ut | 54 fmt .ch; / / pr 55 int char acte r } // 56 for s out | " "; 57 / / pr int bloc 58 k se para tor } / / fo 59 r s out | nl ; 60 // pri nt g roup sep 61 arat or } // for} // 62 main void prt ( Fo rmat 63 & f mt, char ch ) { 64 f mt.c h = ch; r 65 esum e( f mt ) ;} / / pr 66 tint mai n() { Fo rmat 67 fmt ; ch ar c h; f or ( 68 ;; ) { sin | c h; 69 // r ead one 70 char acte r if ( eof 71 ( si n ) ) br eak; 72 / / eo f ? prt ( fm 73 t, c h ); } / / fo r} / 74 / ma in// Loc al V aria 75 bles : // // t ab-w idth 76 : 4 //// com pile -com 77 mand : "c fa f mtLi nes. 78 cfa" /// / En d: / / -
tests/coroutine/.in/fmtLines.txt
rb7d6a36 r6a490b2 35 35 for ( fmt.b = 0; fmt.b < 4; fmt.b += 1 ) { // blocks of 4 characters 36 36 for ( ;; ) { // for newline characters 37 suspend ();37 suspend; 38 38 if ( fmt.ch != '\n' ) break; // ignore newline 39 39 } // for -
tests/coroutine/cntparens.cfa
rb7d6a36 r6a490b2 1 // 1 // 2 2 // Cforall Version 1.0.0 Copyright (C) 2017 University of Waterloo 3 3 // 4 4 // The contents of this file are covered under the licence agreement in the 5 5 // file "LICENCE" distributed with Cforall. 6 // 6 // 7 7 // cntparens.cfa -- match left/right parenthesis 8 // 8 // 9 9 // Author : Peter A. Buhr 10 10 // Created On : Sat Apr 20 11:04:45 2019 … … 12 12 // Last Modified On : Sat Apr 20 11:06:21 2019 13 13 // Update Count : 1 14 // 14 // 15 15 16 16 #include <fstream.hfa> … … 26 26 void main( CntParens & cpns ) with( cpns ) { 27 27 for ( ; ch == '('; cnt += 1 ) { // left parenthesis 28 suspend ();28 suspend; 29 29 } 30 30 for ( ; ch == ')' && cnt > 1; cnt -= 1 ) { // right parenthesis 31 suspend ();31 suspend; 32 32 } 33 33 status = ch == ')' ? Match : Error; 34 34 } // main 35 35 36 36 void ?{}( CntParens & cpns ) with( cpns ) { status = Cont; cnt = 0; } 37 37 -
tests/coroutine/devicedriver.cfa
rb7d6a36 r6a490b2 1 // 1 // 2 2 // Cforall Version 1.0.0 Copyright (C) 2017 University of Waterloo 3 3 // 4 4 // The contents of this file are covered under the licence agreement in the 5 5 // file "LICENCE" distributed with Cforall. 6 // 7 // devicedriver.cfa -- 8 // 6 // 7 // devicedriver.cfa -- 8 // 9 9 // Author : Peter A. Buhr 10 10 // Created On : Sat Mar 16 15:30:34 2019 … … 12 12 // Last Modified On : Sat Apr 20 09:07:19 2019 13 13 // Update Count : 90 14 // 14 // 15 15 16 16 #include <fstream.hfa> … … 29 29 30 30 void checkCRC( Driver & d, unsigned int sum ) with( d ) { 31 suspend ();31 suspend; 32 32 unsigned short int crc = byte << 8; // sign extension over written 33 suspend ();33 suspend; 34 34 // prevent sign extension for signed char 35 35 status = (crc | (unsigned char)byte) == sum ? MSG : ECRC; … … 41 41 status = CONT; 42 42 unsigned int lnth = 0, sum = 0; 43 while ( byte != STX ) suspend ();43 while ( byte != STX ) suspend; 44 44 emsg: for () { 45 suspend ();45 suspend; 46 46 choose ( byte ) { // process byte 47 47 case STX: 48 status = ESTX; suspend (); continue msg;48 status = ESTX; suspend; continue msg; 49 49 case ETX: 50 50 break emsg; 51 51 case ESC: 52 suspend ();52 suspend; 53 53 } // choose 54 54 if ( lnth >= MaxMsg ) { // buffer full ? 55 status = ELNTH; suspend (); continue msg;55 status = ELNTH; suspend; continue msg; 56 56 } // if 57 57 msg[lnth++] = byte; … … 60 60 msg[lnth] = '\0'; // terminate string 61 61 checkCRC( d, sum ); // refactor CRC check 62 suspend ();62 suspend; 63 63 } // for 64 64 } // main -
tests/coroutine/fibonacci.cfa
rb7d6a36 r6a490b2 22 22 int fn1, fn2; // retained between resumes 23 23 fn = 0; fn1 = fn; // 1st case 24 suspend (); // restart last resume24 suspend; // restart last resume 25 25 fn = 1; fn2 = fn1; fn1 = fn; // 2nd case 26 suspend (); // restart last resume26 suspend; // restart last resume 27 27 for () { 28 28 fn = fn1 + fn2; fn2 = fn1; fn1 = fn; // general case 29 suspend (); // restart last resume29 suspend; // restart last resume 30 30 } // for 31 31 } -
tests/coroutine/fibonacci_1.cfa
rb7d6a36 r6a490b2 12 12 // Last Modified On : Thu Mar 21 08:10:45 2019 13 13 // Update Count : 25 14 // 14 // 15 15 16 16 #include <fstream.hfa> … … 23 23 [fn1, fn] = [0, 1]; // precompute first two states 24 24 for () { 25 suspend (); // restart last resume25 suspend; // restart last resume 26 26 [fn1, fn] = [fn, fn1 + fn]; // general case 27 27 } // for -
tests/coroutine/fmtLines.cfa
rb7d6a36 r6a490b2 27 27 for ( b = 0; b < 4; b += 1 ) { // blocks of 4 characters 28 28 for () { // for newline characters 29 suspend ();29 suspend; 30 30 if ( ch != '\n' ) break; // ignore newline 31 31 } // for -
tests/coroutine/raii.cfa
rb7d6a36 r6a490b2 39 39 Raii raii = { "Coroutine" }; 40 40 sout | "Before Suspend"; 41 suspend ();41 suspend; 42 42 sout | "After Suspend"; 43 43 } -
tests/coroutine/runningTotal.cfa
rb7d6a36 r6a490b2 25 25 void update( RunTotal & rntl, int input ) with( rntl ) { // helper 26 26 total += input; // remember between activations 27 suspend (); // inactivate on stack27 suspend; // inactivate on stack 28 28 } 29 29 -
tests/coroutine/suspend_then.cfa
rb7d6a36 r6a490b2 15 15 16 16 #include <fstream.hfa> 17 #include <coroutine.hfa>18 17 19 void then() { 20 sout | "Then!"; 21 } 22 23 coroutine Fibonacci { int fn; }; // used for communication 18 generator Fibonacci { 19 int fn; // used for communication 20 int fn1, fn2; // retained between resumes 21 }; 24 22 25 23 void main( Fibonacci & fib ) with( fib ) { // called on first resume 26 int fn1, fn2; // retained between resumes27 24 fn = 0; fn1 = fn; // 1st case 28 suspend _then(then);// restart last resume25 suspend { sout | "Then!"; } // restart last resume 29 26 fn = 1; fn2 = fn1; fn1 = fn; // 2nd case 30 suspend _then(then);// restart last resume27 suspend { sout | "Then!"; } // restart last resume 31 28 for () { 32 29 fn = fn1 + fn2; fn2 = fn1; fn1 = fn; // general case 33 suspend _then(then);// restart last resume30 suspend { sout | "Then!"; } // restart last resume 34 31 } // for 35 32 } -
tests/errors/.expect/completeType.txt
rb7d6a36 r6a490b2 27 27 void 28 28 ) 29 Environment: ( _83_4_DT )-> instance of struct A with body 0 (no widening)29 Environment: -> instance of struct A with body 0 (no widening) 30 30 31 31 … … 50 50 void 51 51 ) 52 Environment: ( _83_4_DT )-> instance of struct B with body 1 (no widening)52 Environment: -> instance of struct B with body 1 (no widening) 53 53 54 54 … … 127 127 void 128 128 ) 129 Environment: ( _102_0_T )-> instance of type T (not function type) (no widening)129 Environment: -> instance of type T (not function type) (no widening) 130 130 131 131 Could not satisfy assertion: 132 132 ?=?: pointer to function 133 133 ... with parameters 134 reference to instance of type _10 2_0_T (not function type)135 instance of type _10 2_0_T (not function type)134 reference to instance of type _104_0_T (not function type) 135 instance of type _104_0_T (not function type) 136 136 ... returning 137 _retval__operator_assign: instance of type _10 2_0_T (not function type)137 _retval__operator_assign: instance of type _104_0_T (not function type) 138 138 ... with attributes: 139 139 Attribute with name: unused -
tests/manipulatorsOutput1.cfa
rb7d6a36 r6a490b2 7 7 // Created On : Sat Jun 8 18:04:11 2019 8 8 // Last Modified By : Peter A. Buhr 9 // Last Modified On : Mon Jun 10 12:37:28 201910 // Update Count : 89 // Last Modified On : Fri May 1 11:51:44 2020 10 // Update Count : 9 11 11 // 12 12 … … 17 17 signed char sc = -12; 18 18 printf( "%hhd %2hhd %5.2hhd %-5.2hhd %hho %#hho %hhx %#hhx %#8hhx %#8.10hhx %#8.3hhX %+-8.3hhd %08hhd\n", sc, sc, sc, sc, sc, sc, sc, sc, sc, sc, sc, sc, sc ); 19 sout | sc | wd(2,sc) | wd(5,2,sc) | left(wd(5,2,sc)) | nobase(oct(sc)) | oct(sc) | nobase(hex(sc)) | hex(sc) | wd(8,hex(sc)) | wd(8,10,hex(sc)) | upcase(wd(8,3,hex(sc))) | left(sign(upcase(wd(8,3,sc)))) | pad0(wd(8,sc)); 19 sout | sc | wd(2,sc) | wd(5,2,sc) | left(wd(5,2,sc)) | nobase(oct(sc)) | oct(sc) | nonl; 20 sout | nobase(hex(sc)) | hex(sc) | wd(8,hex(sc)) | wd(8,10,hex(sc)) | upcase(wd(8,3,hex(sc))) | nonl; 21 sout | left(sign(upcase(wd(8,3,sc)))) | pad0(wd(8,sc)); 20 22 21 23 sout | "unsigned char"; 22 24 unsigned char usc = 12; 23 25 printf( "%hhu %2hhu %5.2hhu %-5.2hhu %hho %#hho %hhx %#hhx %#8hhx %#8.10hhx %#8.3hhX %-8.3hhu %08hhu\n", usc, usc, usc, usc, usc, usc, usc, usc, usc, usc, usc, usc, usc ); 24 sout | usc | wd(2,usc) | wd(5,2,usc) | left(wd(5,2,usc)) | nobase(oct(usc)) | oct(usc) | nobase(hex(usc)) | hex(usc) | wd(8,hex(usc)) | wd(8,10,hex(usc)) | upcase(wd(8,3,hex(usc))) | left(upcase(wd(8,3,usc))) | pad0(wd(8,usc)); 26 sout | usc | wd(2,usc) | wd(5,2,usc) | left(wd(5,2,usc)) | nobase(oct(usc)) | oct(usc) | nonl; 27 sout | nobase(hex(usc)) | hex(usc) | wd(8,hex(usc)) | wd(8,10,hex(usc)) | upcase(wd(8,3,hex(usc))) | nonl; 28 sout | left(upcase(wd(8,3,usc))) | pad0(wd(8,usc)); 25 29 26 30 sout | "signed short int"; 27 31 signed short int si = -12; 28 32 printf( "%hd %2hd %5.2hd %-5.2hd %ho %#ho %hx %#hx %#8hx %#8.10hx %#8.3hX %+-8.3hd %08hd\n", si, si, si, si, si, si, si, si, si, si, si, si, si ); 29 sout | si | wd(2,si) | wd(5,2,si) | left(wd(5,2,si)) | nobase(oct(si)) | oct(si) | nobase(hex(si)) | hex(si) | wd(8,hex(si)) | wd(8,10,hex(si)) | upcase(wd(8,3,hex(si))) | left(sign(upcase(wd(8,3,si)))) | pad0(wd(8,si)); 33 sout | si | wd(2,si) | wd(5,2,si) | left(wd(5,2,si)) | nobase(oct(si)) | oct(si) | nonl; 34 sout | nobase(hex(si)) | hex(si) | wd(8,hex(si)) | wd(8,10,hex(si)) | upcase(wd(8,3,hex(si))) | nonl; 35 sout | left(sign(upcase(wd(8,3,si)))) | pad0(wd(8,si)); 30 36 31 37 sout | "unsigned short int"; 32 38 unsigned short int usi = 12; 33 39 printf( "%hu %2hu %5.2hu %-5.2hu %ho %#ho %hx %#hx %#8hx %#8.10hx %#8.3hX %-8.3hu %08hu\n", usi, usi, usi, usi, usi, usi, usi, usi, usi, usi, usi, usi, usi ); 34 sout | usi | wd(2,usi) | wd(5,2,usi) | left(wd(5,2,usi)) | nobase(oct(usi)) | oct(usi) | nobase(hex(usi)) | hex(usi) | wd(8,hex(usi)) | wd(8,10,hex(usi)) | upcase(wd(8,3,hex(usi))) | left(upcase(wd(8,3,usi))) | pad0(wd(8,usi)); 40 sout | usi | wd(2,usi) | wd(5,2,usi) | left(wd(5,2,usi)) | nobase(oct(usi)) | oct(usi) | nonl; 41 sout | nobase(hex(usi)) | hex(usi) | wd(8,hex(usi)) | wd(8,10,hex(usi)) | upcase(wd(8,3,hex(usi))) | nonl; 42 sout | left(upcase(wd(8,3,usi))) | pad0(wd(8,usi)); 35 43 36 44 sout | "signed int"; 37 45 signed int i = -12; 38 46 printf( "%d %2d %5.2d %-5.2d %o %#o %x %#x %#8x %#8.10x %#8.3X %+-8.3d %08d\n", i, i, i, i, i, i, i, i, i, i, i, i, i ); 39 sout | i | wd(2,i) | wd(5,2,i) | left(wd(5,2,i)) | nobase(oct(i)) | oct(i) | nobase(hex(i)) | hex(i) | wd(8,hex(i)) | wd(8,10,hex(i)) | upcase(wd(8,3,hex(i))) | left(sign(upcase(wd(8,3,i)))) | pad0(wd(8,i)); 47 sout | i | wd(2,i) | wd(5,2,i) | left(wd(5,2,i)) | nobase(oct(i)) | oct(i) | nonl; 48 sout | nobase(hex(i)) | hex(i) | wd(8,hex(i)) | wd(8,10,hex(i)) | upcase(wd(8,3,hex(i))) | nonl; 49 sout | left(sign(upcase(wd(8,3,i)))) | pad0(wd(8,i)); 40 50 41 51 sout | "unsigned int"; 42 52 unsigned int ui = 12; 43 53 printf( "%u %2u %5.2u %-5.2u %o %#o %x %#x %#8x %#8.10x %#8.3X %-8.3u %08u\n", ui, ui, ui, ui, ui, ui, ui, ui, ui, ui, ui, ui, ui ); 44 sout | ui | wd(2,ui) | wd(5,2,ui) | left(wd(5,2,ui)) | nobase(oct(ui)) | oct(ui) | nobase(hex(ui)) | hex(ui) | wd(8,hex(ui)) | wd(8,10,hex(ui)) | upcase(wd(8,3,hex(ui))) | left(upcase(wd(8,3,ui))) | pad0(wd(8,ui)); 54 sout | ui | wd(2,ui) | wd(5,2,ui) | left(wd(5,2,ui)) | nobase(oct(ui)) | oct(ui) | nonl; 55 sout | nobase(hex(ui)) | hex(ui) | wd(8,hex(ui)) | wd(8,10,hex(ui)) | upcase(wd(8,3,hex(ui))) | nonl; 56 sout | left(upcase(wd(8,3,ui))) | pad0(wd(8,ui)); 45 57 46 58 sout | "signed long long int"; 47 59 signed long long int lli = -12; 48 60 printf( "%lld %2lld %5.2lld %-5.2lld %llo %#llo %llx %#llx %#8llx %#8.10llx %#8.3llX %+-8.3lld %08lld\n", lli, lli, lli, lli, lli, lli, lli, lli, lli, lli, lli, lli, lli ); 49 sout | lli | wd(2,lli) | wd(5,2,lli) | left(wd(5,2,lli)) | nobase(oct(lli)) | oct(lli) | nobase(hex(lli)) | hex(lli) | wd(8,hex(lli)) | wd(8,10,hex(lli)) | upcase(wd(8,3,hex(lli))) | left(sign(upcase(wd(8,3,lli)))) | pad0(wd(8,lli)); 61 sout | lli | wd(2,lli) | wd(5,2,lli) | left(wd(5,2,lli)) | nobase(oct(lli)) | oct(lli) | nonl; 62 sout | nobase(hex(lli)) | hex(lli) | wd(8,hex(lli)) | wd(8,10,hex(lli)) | upcase(wd(8,3,hex(lli))) | nonl; 63 sout | left(sign(upcase(wd(8,3,lli)))) | pad0(wd(8,lli)); 50 64 51 65 sout | "unsigned long long int"; 52 66 unsigned long long int ulli = 12; 53 67 printf( "%llu %2llu %5.2llu %-5.2llu %llo %#llo %llx %#llx %#8llx %#8.10llx %#8.3llX %-8.3llu %08llu\n", ulli, ulli, ulli, ulli, ulli, ulli, ulli, ulli, ulli, ulli, ulli, ulli, ulli ); 54 sout | ulli | wd(2,ulli) | wd(5,2,ulli) | left(wd(5,2,ulli)) | nobase(oct(ulli)) | oct(ulli) | nobase(hex(ulli)) | hex(ulli) | wd(8,hex(ulli)) | wd(8,10,hex(ulli)) | upcase(wd(8,3,hex(ulli))) | left(upcase(wd(8,3,ulli))) | pad0(wd(8,ulli)); 68 sout | ulli | wd(2,ulli) | wd(5,2,ulli) | left(wd(5,2,ulli)) | nobase(oct(ulli)) | oct(ulli) | nonl; 69 sout | nobase(hex(ulli)) | hex(ulli) | wd(8,hex(ulli)) | wd(8,10,hex(ulli)) | upcase(wd(8,3,hex(ulli))) | nonl; 70 sout | left(upcase(wd(8,3,ulli))) | pad0(wd(8,ulli)); 55 71 56 72 sout | nl | "binary integral"; 57 sout | bin(0) | bin(13) | upcase(bin(13)) | nobase(bin(13)) | left(wd(8,bin(13))) | wd(8,bin(13)) | pad0(left(wd(8,bin(13)))) | pad0(wd(8,bin(13))) | pad0(wd(8,10,bin(13))) | pad0(wd(8,6,bin(13))); 73 sout | bin(0) | bin(13) | upcase(bin(13)) | nobase(bin(13)) | left(wd(8,bin(13))) | wd(8,bin(13)) | nonl; 74 sout | pad0(left(wd(8,bin(13)))) | pad0(wd(8,bin(13))) | pad0(wd(8,10,bin(13))) | pad0(wd(8,6,bin(13))); 58 75 59 76 … … 62 79 printf( "%g %8g %#8g %g %8g %8.0g %#8.0g %8.2g %#8.2g %-8.2g %-8.2g %-#8.2g %-+8.2g %-+#8.2g %08.2g %8.2E %8.2a %#8.2A %#8.2e\n", 63 80 0.0,3.0F,3.0F, f, f, f, f, f, f, 3.0F, f, f, f, f, f, f, f, f, f ); 64 sout | 0.0 | wd(8, 3.0F) | nodp(wd(8, 3.0F)) | f | wd(8, f) | ws(8,0, f) | nodp(ws(8,0, f)) | ws(8,2, f) | nodp(ws(8,2, f)) | left(ws(8,2, 3.0F)) | left(ws(8,2, f)) | left(nodp(ws(8,2, f))) | left(sign(ws(8,2, f))) | left(sign(nodp(ws(8,2, f)))) | pad0(ws(8,2, f)) | upcase(wd(8,2, sci(f))) | wd(8,2, hex(f)) | upcase(wd(8,2, hex(f))) | nodp(wd(8,2, sci(f))); 81 sout | 0.0 | wd(8, 3.0F) | nodp(wd(8, 3.0F)) | f | wd(8, f) | ws(8,0, f) | nodp(ws(8,0, f)) | ws(8,2, f) | nodp(ws(8,2, f)) | nonl; 82 sout | left(ws(8,2, 3.0F)) | left(ws(8,2, f)) | left(nodp(ws(8,2, f))) | left(sign(ws(8,2, f))) | left(sign(nodp(ws(8,2, f)))) | nonl; 83 sout | pad0(ws(8,2, f)) | upcase(wd(8,2, sci(f))) | wd(8,2, hex(f)) | upcase(wd(8,2, hex(f))) | nodp(wd(8,2, sci(f))); 65 84 66 85 sout | "double"; … … 68 87 printf( "%g %#8f %g %8f %#8.0f %8.0f %8.2f %-8.2f %-+#8.2f %08.2F %8.2E %8.2a %8.2A %8.2e\n", 69 88 0.0, 3.0, d, d, d, d, d, d, d, d, d, d, d, d ); 70 sout | 0.0 | wd(8, 3.0) | d | wd(8, d) | nodp(wd(8,0, d)) | wd(8,0, d) | wd(8,2, d) | left(wd(8,2, d)) | left(sign(wd(8,2, d))) | pad0(upcase(wd(8,2, d))) | upcase(wd(8,2, sci(d))) | wd(8,2, hex(d)) | upcase(wd(8,2, hex(d))) | wd(8,2, sci(d)); 89 sout | 0.0 | wd(8, 3.0) | d | wd(8, d) | nodp(wd(8,0, d)) | wd(8,0, d) | wd(8,2, d) | nonl; 90 sout | left(wd(8,2, d)) | left(sign(wd(8,2, d))) | pad0(upcase(wd(8,2, d))) | upcase(wd(8,2, sci(d))) | wd(8,2, hex(d)) | upcase(wd(8,2, hex(d))) | wd(8,2, sci(d)); 71 91 72 92 sout | "long double"; … … 74 94 printf( "%Lg %#8Lf %Lg %8Lf %#8.0Lf %8.0Lf %8.2Lf %-8.2Lf %-+#8.2Lf %08.2LF %8.2LE %8.2La %8.2LA %8.2Le\n", 75 95 0.0L, 3.0L, ld, ld, ld, ld, ld, ld, ld, ld, ld, ld, ld, ld ); 76 sout | 0.0L | wd(8, 3.0L) | ld | wd(8, ld) | nodp(wd(8,0, ld)) | wd(8,0, ld) | wd(8,2, ld) | left(wd(8,2, ld)) | left(sign(wd(8,2, ld))) | pad0(upcase(wd(8,2, ld))) | upcase(wd(8,2, sci(ld))) | wd(8,2, hex(ld)) | upcase(wd(8,2, hex(ld))) | wd(8,2, sci(ld)); 96 sout | 0.0L | wd(8, 3.0L) | ld | wd(8, ld) | nodp(wd(8,0, ld)) | wd(8,0, ld) | wd(8,2, ld) | nonl; 97 sout | left(wd(8,2, ld)) | left(sign(wd(8,2, ld))) | pad0(upcase(wd(8,2, ld))) | upcase(wd(8,2, sci(ld))) | wd(8,2, hex(ld)) | upcase(wd(8,2, hex(ld))) | wd(8,2, sci(ld)); 77 98 78 99 … … 80 101 char c = 'a'; 81 102 printf( "%c %2c %5c %-5c %hho %#hho %hhx %#hhx %#8hhx %#8hhX %-8c %8c\n", c, c, c, c, c, c, c, c, c, c, c, c ); 82 sout | c | ' ' | wd(2,c) | wd(5,c) | left(wd(5,c)) | nobase(oct(c)) | oct(c) | nobase(hex(c)) | hex(c) | wd(8,hex(c)) | upcase(wd(8,hex(c))) | left(wd(8,c)) | wd(8,c); 103 sout | c | ' ' | wd(2,c) | wd(5,c) | left(wd(5,c)) | nobase(oct(c)) | oct(c) | nonl; 104 sout | nobase(hex(c)) | hex(c) | wd(8,hex(c)) | upcase(wd(8,hex(c))) | left(wd(8,c)) | wd(8,c); 83 105 84 106 sout | nl | "string"; -
tests/pybin/settings.py
rb7d6a36 r6a490b2 23 23 class Architecture: 24 24 KnownArchitectures = { 25 'x64' 26 'x86-64' 27 'x86_64' 28 'x86' 29 'aarch64' 30 'i386' 31 'i486' 32 'i686' 33 'Intel 80386' 34 'arm' 35 'ARM' 25 'x64' : 'x64', 26 'x86-64' : 'x64', 27 'x86_64' : 'x64', 28 'x86' : 'x86', 29 'aarch64' : 'arm', 30 'i386' : 'x86', 31 'i486' : 'x86', 32 'i686' : 'x86', 33 'Intel 80386' : 'x86', 34 'arm' : 'arm', 35 'ARM' : 'arm', 36 36 } 37 37 … … 77 77 print("updated to %s" % self.target) 78 78 79 def match(self, arch): 79 def filter(self, tests): 80 return [test for test in tests if not test.arch or self.target == test.arch] 80 81 return True if not arch else self.target == arch 81 82 82 @ classmethod83 def make_canonical( _,arch):83 @staticmethod 84 def make_canonical(arch): 84 85 return Architecture.KnownArchitectures[arch] 85 86 … … 104 105 self.total = Timeouts.check(tg) 105 106 106 @ classmethod107 def check( _,value):107 @staticmethod 108 def check(value): 108 109 if value < 1: 109 110 print("Timeouts must be at least 1 second", file=sys.stderr) … … 113 114 114 115 def init( options ): 116 global all_arch 117 global all_debug 118 global all_install 115 119 global arch 116 120 global archive 121 global continue_ 117 122 global debug 118 global distcc119 123 global dry_run 120 124 global generating … … 123 127 global output_width 124 128 global timeout 129 global timeout2gdb 125 130 126 arch = Architecture(options.arch) 131 all_arch = [Architecture(o) for o in list(dict.fromkeys(options.arch ))] if options.arch else [Architecture(None)] 132 all_debug = [Debug(o) for o in list(dict.fromkeys(options.debug ))] 133 all_install = [Install(o) for o in list(dict.fromkeys(options.install))] 127 134 archive = os.path.abspath(os.path.join(original_path, options.archive_errors)) if options.archive_errors else None 128 debug = Debug(options.debug)135 continue_ = options.continue_ 129 136 dry_run = options.dry_run # must be called before tools.config_hash() 130 distcc = "DISTCC_CFA_PATH=~/.cfadistcc/%s/cfa" % tools.config_hash()131 137 generating = options.regenerate_expected 132 install = Install(options.install)133 138 make = ['make'] 134 139 output_width = 24 135 140 timeout = Timeouts(options.timeout, options.global_timeout) 141 timeout2gdb = options.timeout_with_gdb 136 142 137 143 # if we distribute, distcc errors will fail tests, use log file for distcc … … 146 152 147 153 def validate(): 154 """Validate the current configuration and update globals""" 155 156 global distcc 157 distcc = "DISTCC_CFA_PATH=~/.cfadistcc/%s/cfa" % tools.config_hash() 148 158 errf = os.path.join(BUILDDIR, ".validate.err") 149 159 make_ret, out = tools.make( ".validate", error_file = errf, output_file=subprocess.DEVNULL, error=subprocess.DEVNULL ) -
tests/pybin/test_run.py
rb7d6a36 r6a490b2 40 40 return os.path.normpath( os.path.join(settings.BUILDDIR, self.path, self.name) ) 41 41 42 @ classmethod43 def valid_name( _,name):42 @staticmethod 43 def valid_name(name): 44 44 return not name.endswith( ('.c', '.cc', '.cpp', '.cfa') ) 45 45 46 @ classmethod47 def from_target(_, target):46 @staticmethod 47 def new_target(target, arch): 48 48 test = Test() 49 49 test.name = os.path.basename(target) 50 50 test.path = os.path.relpath (os.path.dirname(target), settings.SRCDIR) 51 test.arch = settings.arch.target if settings.arch.cross_compileelse ''51 test.arch = arch.target if arch else '' 52 52 return test 53 53 … … 72 72 return text 73 73 74 @ classmethod75 def fmtDur( cls,duration ):74 @staticmethod 75 def fmtDur( duration ): 76 76 if duration : 77 77 hours, rem = divmod(duration, 3600) -
tests/pybin/tools.py
rb7d6a36 r6a490b2 75 75 return proc.returncode, out.decode("utf-8") if out else None 76 76 except subprocess.TimeoutExpired: 77 proc.send_signal(signal.SIGABRT) 78 proc.communicate() 79 return 124, str(None) 77 if settings.timeout2gdb: 78 print("Process {} timeout".format(proc.pid)) 79 proc.communicate() 80 return 124, str(None) 81 else: 82 proc.send_signal(signal.SIGABRT) 83 proc.communicate() 84 return 124, str(None) 80 85 81 86 except Exception as ex: … … 322 327 raise argparse.ArgumentTypeError(msg) 323 328 329 # Convert a function that converts a string to one that converts comma separated string. 330 def comma_separated(elements): 331 return lambda string: [elements(part) for part in string.split(',')] 332 324 333 def fancy_print(text): 325 334 column = which('column') -
tests/test.py
rb7d6a36 r6a490b2 6 6 7 7 import argparse 8 import itertools 8 9 import re 9 10 import sys … … 29 30 test.path = match.group(1) 30 31 test.arch = match.group(3)[1:] if match.group(3) else None 31 if settings.arch.match(test.arch): 32 expected.append(test) 32 expected.append(test) 33 33 34 34 path_walk( match_test ) … … 53 53 ] 54 54 55 # sort the test alphabetically for convenience 56 test_list.sort(key=lambda t: ('~' if t.arch else '') + t.target() + (t.arch if t.arch else '')) 57 55 58 return test_list 56 59 … … 64 67 for testname in options.tests : 65 68 testname = canonical_path( testname ) 69 # first check if this is a valid name to regenerate 66 70 if Test.valid_name(testname): 71 # this is a valid name, let's check if it already exists 67 72 found = [test for test in all_tests if canonical_path( test.target() ) == testname] 68 tests.append( found[0] if len(found) == 1 else Test.from_target(testname) ) 73 if not found: 74 # it's a new name, create it according to the name and specified architecture 75 if options.arch: 76 # user specified one or multiple architectures, assume the tests will have architecture specific results 77 tests.extend( [Test.new_target(testname, arch) for arch in settings.all_arch] ) 78 else: 79 # user didn't specify an architecture, just create a cross platform test 80 tests.append( Test.new_target( testname, None ) ) 81 elif len(found) == 1 and not found[0].arch: 82 # we found a single test, the user better be wanting to create a cross platform test 83 if options.arch: 84 print('ERROR: "%s", test has no specified architecture but --arch was specified, ignoring it' % testname, file=sys.stderr) 85 else: 86 tests.append( found[0] ) 87 else: 88 # this test is already cross platform, just add a test for each platform the user asked 89 tests.extend( [Test.new_target(testname, arch) for arch in settings.all_arch] ) 90 91 # print a warning if it users didn't ask for a specific architecture 92 if not options.arch: 93 print('WARNING: "%s", test has architecture specific expected files but --arch was not specified, regenerating only for current host' % testname, file=sys.stderr) 94 69 95 else : 70 96 print('ERROR: "%s", tests are not allowed to end with a C/C++/CFA extension, ignoring it' % testname, file=sys.stderr) … … 76 102 77 103 if test : 78 tests. append( test[0])104 tests.extend( test ) 79 105 else : 80 106 print('ERROR: No expected file for test %s, ignoring it' % testname, file=sys.stderr) … … 86 112 # create a parser with the arguments for the tests script 87 113 parser = argparse.ArgumentParser(description='Script which runs cforall tests') 88 parser.add_argument('--debug', help='Run all tests in debug or release', type=yes_no, default='yes') 89 parser.add_argument('--install', help='Run all tests based on installed binaries or tree binaries', type=yes_no, default='no') 90 parser.add_argument('--arch', help='Test for specific architecture', type=str, default='') 114 parser.add_argument('--debug', help='Run all tests in debug or release', type=comma_separated(yes_no), default='yes') 115 parser.add_argument('--install', help='Run all tests based on installed binaries or tree binaries', type=comma_separated(yes_no), default='no') 116 parser.add_argument('--arch', help='Test for specific architecture', type=comma_separated(str), default=None) 117 parser.add_argument('--continue', help='When multiple specifications are passed (debug/install/arch), sets whether or not to continue if the last specification failed', type=yes_no, default='yes', dest='continue_') 91 118 parser.add_argument('--timeout', help='Maximum duration in seconds after a single test is considered to have timed out', type=int, default=60) 92 119 parser.add_argument('--global-timeout', help='Maximum cumulative duration in seconds after the ALL tests are considered to have timed out', type=int, default=7200) 120 parser.add_argument('--timeout-with-gdb', help='Instead of killing the command when it times out, orphan it and print process id to allow gdb to attach', type=yes_no, default="no") 93 121 parser.add_argument('--dry-run', help='Don\'t run the tests, only output the commands', action='store_true') 94 122 parser.add_argument('--list', help='List all test available', action='store_true') … … 178 206 179 207 else: 180 with open (out_file, "r") as myfile: 181 error = myfile.read() 208 if os.stat(out_file).st_size < 1048576: 209 with open (out_file, "r") as myfile: 210 error = myfile.read() 211 else: 212 error = "Output log can't be read, file is bigger than 1MB, see {} for actual error\n".format(out_file) 182 213 183 214 ret, info = core_info(exe_file) … … 215 246 return False, "" 216 247 except Exception as ex: 217 print("Unexpected error in worker thread : %s" % ex, file=sys.stderr)248 print("Unexpected error in worker thread running {}: {}".format(t.target(), ex), file=sys.stderr) 218 249 sys.stderr.flush() 219 250 return False, "" … … 278 309 make('clean', output_file=subprocess.DEVNULL, error=subprocess.DEVNULL) 279 310 280 return 1 if failed else 0311 return failed 281 312 282 313 … … 292 323 settings.init( options ) 293 324 294 # fetch the liest of all valid tests295 all_tests = list_tests( options.include, options.exclude )296 297 298 # if user wants all tests than no other treatement of the test list is required299 if options.all or options.list or options.list_comp or options.include :300 tests = all_tests301 302 #otherwise we need to validate that the test list that was entered is valid303 else :304 tests = valid_tests( options )305 306 # make sure we have at least some test to run307 if not tests :308 print('ERROR: No valid test to run', file=sys.stderr)309 sys.exit(1)310 311 312 # sort the test alphabetically for convenience313 tests.sort(key=lambda t: (t.arch if t.arch else '') + t.target())314 315 325 # users may want to simply list the tests 316 326 if options.list_comp : 317 print("-h --help --debug --dry-run --list --arch --all --regenerate-expected --archive-errors --install --timeout --global-timeout -j --jobs ", end='') 327 # fetch the liest of all valid tests 328 tests = list_tests( None, None ) 329 330 # print the possible options 331 print("-h --help --debug --dry-run --list --arch --all --regenerate-expected --archive-errors --install --timeout --global-timeout --timeout-with-gdb -j --jobs -I --include -E --exclude --continue ", end='') 318 332 print(" ".join(map(lambda t: "%s" % (t.target()), tests))) 319 333 320 334 elif options.list : 321 print("Listing for %s:%s"% (settings.arch.string, settings.debug.string)) 335 # fetch the liest of all valid tests 336 tests = list_tests( options.include, options.exclude ) 337 338 # print the available tests 322 339 fancy_print("\n".join(map(lambda t: t.toString(), tests))) 323 340 324 341 else : 325 # check the build configuration works 342 # fetch the liest of all valid tests 343 all_tests = list_tests( options.include, options.exclude ) 344 345 # if user wants all tests than no other treatement of the test list is required 346 if options.all or options.include : 347 tests = all_tests 348 349 #otherwise we need to validate that the test list that was entered is valid 350 else : 351 tests = valid_tests( options ) 352 353 # make sure we have at least some test to run 354 if not tests : 355 print('ERROR: No valid test to run', file=sys.stderr) 356 sys.exit(1) 357 358 # prep invariants 326 359 settings.prep_output(tests) 327 settings.validate() 328 329 options.jobs, forceJobs = job_count( options, tests ) 330 settings.update_make_cmd(forceJobs, options.jobs) 331 332 print('%s %i tests on %i cores (%s:%s)' % ( 333 'Regenerating' if settings.generating else 'Running', 334 len(tests), 335 options.jobs, 336 settings.arch.string, 337 settings.debug.string 338 )) 339 340 # otherwise run all tests and make sure to return the correct error code 341 sys.exit( run_tests(tests, options.jobs) ) 360 failed = 0 361 362 # for each build configurations, run the test 363 for arch, debug, install in itertools.product(settings.all_arch, settings.all_debug, settings.all_install): 364 settings.arch = arch 365 settings.debug = debug 366 settings.install = install 367 368 # filter out the tests for a different architecture 369 # tests are the same across debug/install 370 local_tests = settings.arch.filter( tests ) 371 options.jobs, forceJobs = job_count( options, local_tests ) 372 settings.update_make_cmd(forceJobs, options.jobs) 373 374 # check the build configuration works 375 settings.validate() 376 377 # print configuration 378 print('%s %i tests on %i cores (%s:%s)' % ( 379 'Regenerating' if settings.generating else 'Running', 380 len(local_tests), 381 options.jobs, 382 settings.arch.string, 383 settings.debug.string 384 )) 385 386 # otherwise run all tests and make sure to return the correct error code 387 failed = run_tests(local_tests, options.jobs) 388 if failed: 389 result = 1 390 if not settings.continue_: 391 break 392 393 394 sys.exit( failed ) -
tests/vector.cfa
rb7d6a36 r6a490b2 14 14 // 15 15 16 #include <vector.hfa> 16 17 #include <fstream.hfa> 17 #include <vector.hfa>18 18 19 19 #undef assert … … 28 28 int main() { 29 29 vector( int ) iv; 30 31 assert( ((uintptr_t)&iv.storage.storage ) == (((uintptr_t)&iv)) ); 32 assert( ((uintptr_t)&iv.storage.capacity) == (((uintptr_t)&iv) + sizeof(void *)) ); 33 assert( ((uintptr_t)&iv.size ) == (((uintptr_t)&iv) + sizeof(void *) + sizeof(size_t)) ); 30 34 31 35 assert( empty( &iv ) ); -
tools/build/push2dist.sh
rb7d6a36 r6a490b2 19 19 # echo "Copying to machines : ${hosts} (hash=${hash})" 20 20 21 files="../../../driver/cfa ../../../driver/cfa-cpp ../../../driver/cc1 ../../../driver/as $(find . -name '*.c*' | tr '\n' ' ')"21 files="../../../driver/cfa ../../../driver/cfa-cpp ../../../driver/cc1 ../../../driver/as defines.hfa $(find . -name '*.c*' | tr '\n' ' ')" 22 22 # echo "Files ${files}" 23 23 -
tools/cfa.nanorc
rb7d6a36 r6a490b2 14 14 15 15 # Declarations 16 color brightgreen "\<(struct|union|typedef|trait|coroutine| monitor|thread)\>"17 color brightgreen "\<( with)\>"16 color brightgreen "\<(struct|union|typedef|trait|coroutine|generator)\>" 17 color brightgreen "\<(monitor|thread|with)\>" 18 18 19 19 # Control Flow Structures 20 20 color brightyellow "\<(if|else|while|do|for|switch|choose|case|default)\>" 21 color brightyellow "\<(disable|enable|waitfor|when|timeout )\>"21 color brightyellow "\<(disable|enable|waitfor|when|timeout|suspend)\>" 22 22 color brightyellow "\<(try|catch(Resume)?|finally)\>" 23 23 … … 26 26 27 27 # Escaped Keywords, now Identifiers. 28 color white "` \w+`"28 color white "``\w+" 29 29 30 30 # Operator Names … … 37 37 ## Update/Redistribute 38 38 # GCC builtins 39 color cyan "__attribute__[[:space:]]*\(\( [^()]*(\([^()]*\)[^()]*)*\)\)"39 color cyan "__attribute__[[:space:]]*\(\(([^)]|[^)]\))*\)\)" 40 40 ##color cyan "__(aligned|asm|builtin|hidden|inline|packed|restrict|section|typeof|weak)__" 41 41 -
tools/vscode/uwaterloo.cforall-0.1.0/package.json
rb7d6a36 r6a490b2 2 2 "name": "cforall", 3 3 "version": "0.1.0", 4 "displayName": "C forallLanguage Support",4 "displayName": "Cā (C-for-all) Language Support", 5 5 "description": "Cforall - colorizer, grammar and snippets.", 6 6 "publisher": "uwaterloo", … … 9 9 "vscode": "^1.5.0" 10 10 }, 11 "icon": "images/icon. svg",11 "icon": "images/icon.png", 12 12 "categories": [ 13 " Languages",13 "Programming Languages", 14 14 "Linters", 15 15 "Other" 16 16 ], 17 "activationEvents": [ 18 "onLanguage:cforall" 19 ], 20 "main": "./client/main.js", 17 21 "contributes": { 18 22 "languages": [ … … 21 25 "aliases": [ 22 26 "Cā", 27 "CForAll", 23 28 "Cforall", 24 "CForAll",25 29 "cforall" 26 30 ], 27 31 "extensions": [ 28 ".cf" 32 ".cfa", 33 ".hfa", 34 ".ifa" 29 35 ], 30 36 "configuration": "./cforall.configuration.json" … … 34 40 { 35 41 "language": "cforall", 36 "scopeName": "source.cf ",37 "path": "./syntaxes/cfa.tmLanguage "42 "scopeName": "source.cfa", 43 "path": "./syntaxes/cfa.tmLanguage.json" 38 44 } 39 ] 45 ], 46 "configuration": { 47 "type": "object", 48 "title": "Example configuration", 49 "properties": { 50 "cforall.maxNumberOfProblems": { 51 "scope": "resource", 52 "type": "number", 53 "default": 100, 54 "description": "Controls the maximum number of problems produced by the server." 55 }, 56 "cforall.trace.server": { 57 "scope": "window", 58 "type": "string", 59 "enum": [ 60 "off", 61 "messages", 62 "verbose" 63 ], 64 "default": "off", 65 "description": "Traces the communication between VS Code and the language server." 66 } 67 } 68 } 69 }, 70 "dependencies": { 71 "vscode-languageclient": "^4.1.4" 72 }, 73 "devDependencies": { 74 "vscode-languageclient": "^4.1.4" 40 75 } 41 76 }
Note:
See TracChangeset
for help on using the changeset viewer.