Changeset 8a930c03


Ignore:
Timestamp:
Jun 12, 2023, 12:05:58 PM (3 years ago)
Author:
JiadaL <j82liang@…>
Branches:
master
Children:
fec8bd1
Parents:
2b78949 (diff), 38e266ca (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the (diff) links above to see all the changes relative to each parent.
Message:

Merge branch 'master' of plg.uwaterloo.ca:software/cfa/cfa-cc

Files:
33 added
4 deleted
97 edited
198 moved

Legend:

Unmodified
Added
Removed
  • Jenkinsfile

    r2b78949 r8a930c03  
    155155                        dir (BuildDir) {
    156156                                //Run the tests from the tests directory
    157                                 sh """make ${jopt} --no-print-directory -C tests timeouts="--timeout=600 --global-timeout=14400" tests debug=yes archiveerrors=${BuildDir}/tests/crashes/full-debug"""
     157                                sh """make ${jopt} --no-print-directory -C tests timeout=600 global-timeout=14400 tests debug=yes archive-errors=${BuildDir}/tests/crashes/full-debug"""
    158158                        }
    159159                }
     
    162162                        dir (BuildDir) {
    163163                                //Run the tests from the tests directory
    164                                 sh """make ${jopt} --no-print-directory -C tests timeouts="--timeout=600 --global-timeout=14400" tests debug=no archiveerrors=${BuildDir}/tests/crashes/full-nodebug"""
     164                                sh """make ${jopt} --no-print-directory -C tests timeout=600 global-timeout=14400 tests debug=no archive-errors=${BuildDir}/tests/crashes/full-nodebug"""
    165165                        }
    166166                }
  • benchmark/Makefile.am

    r2b78949 r8a930c03  
    1111## Created On       : Sun May 31 09:08:15 2015
    1212## Last Modified By : Peter A. Buhr
    13 ## Last Modified On : Tue Mar 10 11:41:18 2020
    14 ## Update Count     : 258
     13## Last Modified On : Fri May 26 12:13:48 2023
     14## Update Count     : 260
    1515###############################################################################
    1616
     
    374374## =========================================================================================================
    375375
    376 mutexStmt$(EXEEXT) :                \
    377         mutexStmt-cpp1.run                      \
    378         mutexStmt-cpp2.run                      \
    379         mutexStmt-cpp4.run                      \
    380         mutexStmt-cpp8.run                      \
    381         mutexStmt-java.run                      \
    382         mutexStmt-lock1.run                 \
    383         mutexStmt-lock2.run                 \
    384         mutexStmt-lock4.run                 \
    385         mutexStmt-lock8.run                 \
    386         mutexStmt-no-stmt-lock1.run \
    387         mutexStmt-no-stmt-lock2.run \
    388         mutexStmt-no-stmt-lock4.run \
    389         mutexStmt-no-stmt-lock8.run \
    390         mutexStmt-monitor1.run      \
    391         mutexStmt-monitor2.run      \
     376mutexStmt$(EXEEXT) :                    \
     377        mutexStmt-cpp1.run              \
     378        mutexStmt-cpp2.run              \
     379        mutexStmt-cpp4.run              \
     380        mutexStmt-cpp8.run              \
     381        mutexStmt-java.run              \
     382        mutexStmt-lock1.run             \
     383        mutexStmt-lock2.run             \
     384        mutexStmt-lock4.run             \
     385        mutexStmt-lock8.run             \
     386        mutexStmt-no-stmt-lock1.run     \
     387        mutexStmt-no-stmt-lock2.run     \
     388        mutexStmt-no-stmt-lock4.run     \
     389        mutexStmt-no-stmt-lock8.run     \
     390        mutexStmt-monitor1.run          \
     391        mutexStmt-monitor2.run          \
    392392        mutexStmt-monitor4.run
    393393
     
    567567        compile-array.make      \
    568568        compile-attributes.make \
    569         compile-empty.make      \
     569        compile-empty.make      \
    570570        compile-expression.make \
    571571        compile-io.make         \
     
    592592
    593593compile-monitor$(EXEEXT):
    594         $(CFACOMPILE) -DNO_COMPILED_PRAGMA -fsyntax-only -w $(testdir)/concurrent/monitor.cfa
     594        $(CFACOMPILE) -DNO_COMPILED_PRAGMA -fsyntax-only -w $(testdir)/concurrency/monitor.cfa
    595595
    596596compile-operators$(EXEEXT):
     
    598598
    599599compile-thread$(EXEEXT):
    600         $(CFACOMPILE) -DNO_COMPILED_PRAGMA -fsyntax-only -w $(testdir)/concurrent/thread.cfa
     600        $(CFACOMPILE) -DNO_COMPILED_PRAGMA -fsyntax-only -w $(testdir)/concurrency/thread.cfa
    601601
    602602compile-typeof$(EXEEXT):
  • doc/bibliography/pl.bib

    r2b78949 r8a930c03  
    12091209    year        = 2018,
    12101210    pages       = {2111-2146},
    1211     note        = {\href{http://dx.doi.org/10.1002/spe.2624}{http://\-dx.doi.org/\-10.1002/\-spe.2624}},
     1211    optnote     = {\href{http://dx.doi.org/10.1002/spe.2624}{http://\-dx.doi.org/\-10.1002/\-spe.2624}},
    12121212}
    12131213
     
    18701870    month       = sep,
    18711871    year        = 2020,
    1872     note        = {\href{https://plg.uwaterloo.ca/~usystem/pub/uSystem/uC++.pdf}{https://\-plg.uwaterloo.ca/\-$\sim$usystem/\-pub/\-uSystem/uC++.pdf}},
     1872    note        = {\url{https://plg.uwaterloo.ca/~usystem/pub/uSystem/uC++.pdf}},
    18731873}
    18741874
     
    20042004    number      = 5,
    20052005    pages       = {1005-1042},
    2006     note        = {\href{https://onlinelibrary.wiley.com/doi/10.1002/spe.2925}{https://\-onlinelibrary.wiley.com/\-doi/\-10.1002/\-spe.2925}},
     2006    optnote     = {\href{https://onlinelibrary.wiley.com/doi/10.1002/spe.2925}{https://\-onlinelibrary.wiley.com/\-doi/\-10.1002/\-spe.2925}},
    20072007}
    20082008
     
    42234223    title       = {Implementing Lock-Free Queues},
    42244224    booktitle   = {Seventh International Conference on Parallel and Distributed Computing Systems},
     4225    organization= {International Society for Computers and Their Applications},
    42254226    address     = {Las Vegas, Nevada, U.S.A.},
    42264227    year        = {1994},
     
    50865087}
    50875088
    5088 @manual{MMTk,
     5089@misc{MMTk,
    50895090    keywords    = {Java memory management},
    50905091    contributer = {pabuhr@plg},
     
    50935094    month       = sep,
    50945095    year        = 2006,
    5095     note        = {\href{http://cs.anu.edu.au/~Robin.Garner/mmtk-guide.pdf}
    5096                   {http://cs.anu.edu.au/\-$\sim$Robin.Garner/\-mmtk-guide.pdf}},
     5096    howpublished= {\url{http://cs.anu.edu.au/~Robin.Garner/mmtk-guide.pdf}},
    50975097}
    50985098
     
    74027402}
    74037403
     7404@misc{rpmalloc,
     7405    author      = {Mattias Jansson},
     7406    title       = {rpmalloc version 1.4.1},
     7407    month       = apr,
     7408    year        = 2022,
     7409    howpublished= {\href{https://github.com/mjansson/rpmalloc}{https://\-github.com/\-mjansson/\-rpmalloc}},
     7410}
     7411
    74047412@manual{Rust,
    74057413    keywords    = {Rust programming language},
     
    74567464    booktitle   = {PLDI '04: Proceedings of the ACM SIGPLAN 2004 Conference on Programming Language Design and Implementation},
    74577465    location    = {Washington DC, USA},
    7458     publisher   = {ACM},
     7466    organization= {ACM},
    74597467    address     = {New York, NY, USA},
    74607468    volume      = 39,
  • doc/papers/llheap/Paper.tex

    r2b78949 r8a930c03  
    252252Dynamic code/data memory is managed by the dynamic loader for libraries loaded at runtime, which is complex especially in a multi-threaded program~\cite{Huang06}.
    253253However, changes to the dynamic code/data space are typically infrequent, many occurring at program startup, and are largely outside of a program's control.
    254 Stack memory is managed by the program call/return-mechanism using a simple LIFO technique, which works well for sequential programs.
    255 For stackful coroutines and user threads, a new stack is commonly created in dynamic-allocation memory.
     254Stack memory is managed by the program call/return-mechanism using a LIFO technique, which works well for sequential programs.
     255For stackful coroutines and user threads, a new stack is commonly created in the dynamic-allocation memory.
    256256This work focuses solely on management of the dynamic-allocation memory.
    257257
     
    293293\begin{enumerate}[leftmargin=*,itemsep=0pt]
    294294\item
    295 Implementation of a new stand-alone concurrent low-latency memory-allocator ($\approx$1,200 lines of code) for C/\CC programs using kernel threads (1:1 threading), and specialized versions of the allocator for the programming languages \uC and \CFA using user-level threads running on multiple kernel threads (M:N threading).
    296 
    297 \item
    298 Extend the standard C heap functionality by preserving with each allocation: its request size plus the amount allocated, whether an allocation is zero fill, and allocation alignment.
     295Implementation of a new stand-alone concurrent low-latency memory-allocator ($\approx$1,200 lines of code) for C/\CC programs using kernel threads (1:1 threading), and specialized versions of the allocator for the programming languages \uC~\cite{uC++} and \CFA~\cite{Moss18,Delisle21} using user-level threads running on multiple kernel threads (M:N threading).
     296
     297\item
     298Extend the standard C heap functionality by preserving with each allocation: its request size plus the amount allocated, whether an allocation is zero fill and/or allocation alignment.
    299299
    300300\item
     
    365365
    366366The following discussion is a quick overview of the moving-pieces that affect the design of a memory allocator and its performance.
    367 It is assumed that dynamic allocates and deallocates acquire storage for a program variable, referred to as an \newterm{object}, through calls such as @malloc@ and @free@ in C, and @new@ and @delete@ in \CC.
     367Dynamic acquires and releases obtain storage for a program variable, called an \newterm{object}, through calls such as @malloc@ and @free@ in C, and @new@ and @delete@ in \CC.
    368368Space for each allocated object comes from the dynamic-allocation zone.
    369369
     
    378378
    379379Figure~\ref{f:AllocatorComponents} shows the two important data components for a memory allocator, management and storage, collectively called the \newterm{heap}.
    380 The \newterm{management data} is a data structure located at a known memory address and contains all information necessary to manage the storage data.
    381 The management data starts with fixed-sized information in the static-data memory that references components in the dynamic-allocation memory.
     380The \newterm{management data} is a data structure located at a known memory address and contains fixed-sized information in the static-data memory that references components in the dynamic-allocation memory.
    382381For multi-threaded programs, additional management data may exist in \newterm{thread-local storage} (TLS) for each kernel thread executing the program.
    383382The \newterm{storage data} is composed of allocated and freed objects, and \newterm{reserved memory}.
     
    385384\ie only the program knows the location of allocated storage not the memory allocator.
    386385Freed objects (white) represent memory deallocated by the program, which are linked into one or more lists facilitating easy location of new allocations.
    387 Reserved memory (dark grey) is one or more blocks of memory obtained from the operating system but not yet allocated to the program;
    388 if there are multiple reserved blocks, they are also chained together, usually internally.
     386Reserved memory (dark grey) is one or more blocks of memory obtained from the \newterm{operating system} (OS) but not yet allocated to the program;
     387if there are multiple reserved blocks, they are also chained together.
    389388
    390389\begin{figure}
     
    395394\end{figure}
    396395
    397 In most allocator designs, allocated objects have management data embedded within them.
     396In many allocator designs, allocated objects and reserved blocks have management data embedded within them (see also Section~\ref{s:ObjectContainers}).
    398397Figure~\ref{f:AllocatedObject} shows an allocated object with a header, trailer, and optional spacing around the object.
    399398The header contains information about the object, \eg size, type, etc.
     
    404403When padding and spacing are necessary, neither can be used to satisfy a future allocation request while the current allocation exists.
    405404
    406 A free object also contains management data, \eg size, pointers, etc.
     405A free object often contains management data, \eg size, pointers, etc.
    407406Often the free list is chained internally so it does not consume additional storage, \ie the link fields are placed at known locations in the unused memory blocks.
    408407For internal chaining, the amount of management data for a free node defines the minimum allocation size, \eg if 16 bytes are needed for a free-list node, allocation requests less than 16 bytes are rounded up.
    409 The information in an allocated or freed object is overwritten when it transitions from allocated to freed and vice-versa by new management information and/or program data.
     408The information in an allocated or freed object is overwritten when it transitions from allocated to freed and vice-versa by new program data and/or management information.
    410409
    411410\begin{figure}
     
    428427\label{s:Fragmentation}
    429428
    430 Fragmentation is memory requested from the operating system but not used by the program;
     429Fragmentation is memory requested from the OS but not used by the program;
    431430hence, allocated objects are not fragmentation.
    432431Figure~\ref{f:InternalExternalFragmentation} shows fragmentation is divided into two forms: internal or external.
     
    443442An allocator should strive to keep internal management information to a minimum.
    444443
    445 \newterm{External fragmentation} is all memory space reserved from the operating system but not allocated to the program~\cite{Wilson95,Lim98,Siebert00}, which includes all external management data, freed objects, and reserved memory.
     444\newterm{External fragmentation} is all memory space reserved from the OS but not allocated to the program~\cite{Wilson95,Lim98,Siebert00}, which includes all external management data, freed objects, and reserved memory.
    446445This memory is problematic in two ways: heap blowup and highly fragmented memory.
    447446\newterm{Heap blowup} occurs when freed memory cannot be reused for future allocations leading to potentially unbounded external fragmentation growth~\cite{Berger00}.
    448 Memory can become \newterm{highly fragmented} after multiple allocations and deallocations of objects, resulting in a checkerboard of adjacent allocated and free areas, where the free blocks have become very small.
     447Memory can become \newterm{highly fragmented} after multiple allocations and deallocations of objects, resulting in a checkerboard of adjacent allocated and free areas, where the free blocks have become to small to service requests.
    449448% Figure~\ref{f:MemoryFragmentation} shows an example of how a small block of memory fragments as objects are allocated and deallocated over time.
    450449Heap blowup can occur due to allocator policies that are too restrictive in reusing freed memory (the allocated size cannot use a larger free block) and/or no coalescing of free storage.
     
    452451% Memory is highly fragmented when most free blocks are unusable because of their sizes.
    453452% For example, Figure~\ref{f:Contiguous} and Figure~\ref{f:HighlyFragmented} have the same quantity of external fragmentation, but Figure~\ref{f:HighlyFragmented} is highly fragmented.
    454 % If there is a request to allocate a large object, Figure~\ref{f:Contiguous} is more likely to be able to satisfy it with existing free memory, while Figure~\ref{f:HighlyFragmented} likely has to request more memory from the operating system.
     453% If there is a request to allocate a large object, Figure~\ref{f:Contiguous} is more likely to be able to satisfy it with existing free memory, while Figure~\ref{f:HighlyFragmented} likely has to request more memory from the OS.
    455454
    456455% \begin{figure}
     
    475474The first approach is a \newterm{sequential-fit algorithm} with one list of free objects that is searched for a block large enough to fit a requested object size.
    476475Different search policies determine the free object selected, \eg the first free object large enough or closest to the requested size.
    477 Any storage larger than the request can become spacing after the object or be split into a smaller free object.
     476Any storage larger than the request can become spacing after the object or split into a smaller free object.
    478477% The cost of the search depends on the shape and quality of the free list, \eg a linear versus a binary-tree free-list, a sorted versus unsorted free-list.
    479478
     
    489488
    490489The third approach is \newterm{splitting} and \newterm{coalescing algorithms}.
    491 When an object is allocated, if there are no free objects of the requested size, a larger free object may be split into two smaller objects to satisfy the allocation request without obtaining more memory from the operating system.
    492 For example, in the \newterm{buddy system}, a block of free memory is split into two equal chunks, one of those chunks is again split into two equal chunks, and so on until a block just large enough to fit the requested object is created.
    493 When an object is deallocated it is coalesced with the objects immediately before and after it in memory, if they are free, turning them into one larger object.
     490When an object is allocated, if there are no free objects of the requested size, a larger free object is split into two smaller objects to satisfy the allocation request rather than obtaining more memory from the OS.
     491For example, in the \newterm{buddy system}, a block of free memory is split into equal chunks, one of those chunks is again split, and so on until a minimal block is created that fits the requested object.
     492When an object is deallocated, it is coalesced with the objects immediately before and after it in memory, if they are free, turning them into one larger block.
    494493Coalescing can be done eagerly at each deallocation or lazily when an allocation cannot be fulfilled.
    495 In all cases, coalescing increases allocation latency, hence some allocations can cause unbounded delays during coalescing.
     494In all cases, coalescing increases allocation latency, hence some allocations can cause unbounded delays.
    496495While coalescing does not reduce external fragmentation, the coalesced blocks improve fragmentation quality so future allocations are less likely to cause heap blowup.
    497496% Splitting and coalescing can be used with other algorithms to avoid highly fragmented memory.
     
    501500\label{s:Locality}
    502501
    503 The principle of locality recognizes that programs tend to reference a small set of data, called a working set, for a certain period of time, where a working set is composed of temporal and spatial accesses~\cite{Denning05}.
     502The principle of locality recognizes that programs tend to reference a small set of data, called a \newterm{working set}, for a certain period of time, composed of temporal and spatial accesses~\cite{Denning05}.
    504503% Temporal clustering implies a group of objects are accessed repeatedly within a short time period, while spatial clustering implies a group of objects physically close together (nearby addresses) are accessed repeatedly within a short time period.
    505504% Temporal locality commonly occurs during an iterative computation with a fixed set of disjoint variables, while spatial locality commonly occurs when traversing an array.
    506 Hardware takes advantage of temporal and spatial locality through multiple levels of caching, \ie memory hierarchy.
     505Hardware takes advantage of the working set through multiple levels of caching, \ie memory hierarchy.
    507506% When an object is accessed, the memory physically located around the object is also cached with the expectation that the current and nearby objects will be referenced within a short period of time.
    508 For example, entire cache lines are transferred between memory and cache and entire virtual-memory pages are transferred between disk and memory.
     507For example, entire cache lines are transferred between cache and memory, and entire virtual-memory pages are transferred between memory and disk.
    509508% A program exhibiting good locality has better performance due to fewer cache misses and page faults\footnote{With the advent of large RAM memory, paging is becoming less of an issue in modern programming.}.
    510509
     
    532531\label{s:MutualExclusion}
    533532
    534 \newterm{Mutual exclusion} provides sequential access to the shared management data of the heap.
     533\newterm{Mutual exclusion} provides sequential access to the shared-management data of the heap.
    535534There are two performance issues for mutual exclusion.
    536535First is the overhead necessary to perform (at least) a hardware atomic operation every time a shared resource is accessed.
    537536Second is when multiple threads contend for a shared resource simultaneously, and hence, some threads must wait until the resource is released.
    538537Contention can be reduced in a number of ways:
    539 1) Using multiple fine-grained locks versus a single lock, spreading the contention across a number of locks.
     5381) Using multiple fine-grained locks versus a single lock to spread the contention across a number of locks.
    5405392) Using trylock and generating new storage if the lock is busy, yielding a classic space versus time tradeoff.
    5415403) Using one of the many lock-free approaches for reducing contention on basic data-structure operations~\cite{Oyama99}.
     
    551550a memory allocator can only affect the latter two.
    552551
    553 Assume two objects, object$_1$ and object$_2$, share a cache line.
    554 \newterm{Program-induced false-sharing} occurs when thread$_1$ passes a reference to object$_2$ to thread$_2$, and then threads$_1$ modifies object$_1$ while thread$_2$ modifies object$_2$.
     552Specifically, assume two objects, O$_1$ and O$_2$, share a cache line, with threads, T$_1$ and T$_2$.
     553\newterm{Program-induced false-sharing} occurs when T$_1$ passes a reference to O$_2$ to T$_2$, and then T$_1$ modifies O$_1$ while T$_2$ modifies O$_2$.
    555554% Figure~\ref{f:ProgramInducedFalseSharing} shows when Thread$_1$ passes Object$_2$ to Thread$_2$, a false-sharing situation forms when Thread$_1$ modifies Object$_1$ and Thread$_2$ modifies Object$_2$.
    556555% Changes to Object$_1$ invalidate CPU$_2$'s cache line, and changes to Object$_2$ invalidate CPU$_1$'s cache line.
     
    574573% \label{f:FalseSharing}
    575574% \end{figure}
    576 \newterm{Allocator-induced active false-sharing}\label{s:AllocatorInducedActiveFalseSharing} occurs when object$_1$ and object$_2$ are heap allocated and their references are passed to thread$_1$ and thread$_2$, which modify the objects.
     575\newterm{Allocator-induced active false-sharing}\label{s:AllocatorInducedActiveFalseSharing} occurs when O$_1$ and O$_2$ are heap allocated and their references are passed to T$_1$ and T$_2$, which modify the objects.
    577576% For example, in Figure~\ref{f:AllocatorInducedActiveFalseSharing}, each thread allocates an object and loads a cache-line of memory into its associated cache.
    578577% Again, changes to Object$_1$ invalidate CPU$_2$'s cache line, and changes to Object$_2$ invalidate CPU$_1$'s cache line.
     
    580579% is another form of allocator-induced false-sharing caused by program-induced false-sharing.
    581580% When an object in a program-induced false-sharing situation is deallocated, a future allocation of that object may cause passive false-sharing.
    582 when thread$_1$ passes object$_2$ to thread$_2$, and thread$_2$ subsequently deallocates object$_2$, and then object$_2$ is reallocated to thread$_2$ while thread$_1$ is still using object$_1$.
     581when T$_1$ passes O$_2$ to T$_2$, and T$_2$ subsequently deallocates O$_2$, and then O$_2$ is reallocated to T$_2$ while T$_1$ is still using O$_1$.
    583582
    584583
     
    593592\label{s:MultiThreadedMemoryAllocatorFeatures}
    594593
    595 The following features are used in the construction of multi-threaded memory-allocators:
    596 \begin{enumerate}[itemsep=0pt]
    597 \item multiple heaps: with or without a global heap, or with or without heap ownership.
    598 \item object containers: with or without ownership, fixed or variable sized, global or local free-lists.
    599 \item hybrid private/public heap
    600 \item allocation buffer
    601 \item lock-free operations
    602 \end{enumerate}
     594The following features are used in the construction of multi-threaded memory-allocators: multiple heaps, user-level threading, ownership, object containers, allocation buffer, lock-free operations.
    603595The first feature, multiple heaps, pertains to different kinds of heaps.
    604596The second feature, object containers, pertains to the organization of objects within the storage area.
     
    606598
    607599
    608 \subsection{Multiple Heaps}
     600\subsubsection{Multiple Heaps}
    609601\label{s:MultipleHeaps}
    610602
    611603A multi-threaded allocator has potentially multiple threads and heaps.
    612604The multiple threads cause complexity, and multiple heaps are a mechanism for dealing with the complexity.
    613 The spectrum ranges from multiple threads using a single heap, denoted as T:1 (see Figure~\ref{f:SingleHeap}), to multiple threads sharing multiple heaps, denoted as T:H (see Figure~\ref{f:SharedHeaps}), to one thread per heap, denoted as 1:1 (see Figure~\ref{f:PerThreadHeap}), which is almost back to a single-threaded allocator.
     605The spectrum ranges from multiple threads using a single heap, denoted as T:1, to multiple threads sharing multiple heaps, denoted as T:H, to one thread per heap, denoted as 1:1, which is almost back to a single-threaded allocator.
    614606
    615607\begin{figure}
     
    635627\end{figure}
    636628
    637 \paragraph{T:1 model} where all threads allocate and deallocate objects from one heap.
    638 Memory is obtained from the freed objects, or reserved memory in the heap, or from the operating system (OS);
    639 the heap may also return freed memory to the operating system.
     629\paragraph{T:1 model (see Figure~\ref{f:SingleHeap})} where all threads allocate and deallocate objects from one heap.
     630Memory is obtained from the freed objects, or reserved memory in the heap, or from the OS;
     631the heap may also return freed memory to the OS.
    640632The arrows indicate the direction memory conceptually moves for each kind of operation: allocation moves memory along the path from the heap/operating-system to the user application, while deallocation moves memory along the path from the application back to the heap/operating-system.
    641633To safely handle concurrency, a single lock may be used for all heap operations or fine-grained locking for different operations.
    642634Regardless, a single heap may be a significant source of contention for programs with a large amount of memory allocation.
    643635
    644 \paragraph{T:H model} where each thread allocates storage from several heaps depending on certain criteria, with the goal of reducing contention by spreading allocations/deallocations across the heaps.
     636\paragraph{T:H model (see Figure~\ref{f:SharedHeaps})} where each thread allocates storage from several heaps depending on certain criteria, with the goal of reducing contention by spreading allocations/deallocations across the heaps.
    645637The decision on when to create a new heap and which heap a thread allocates from depends on the allocator design.
    646638To determine which heap to access, each thread must point to its associated heap in some way.
     
    673665An alternative implementation is for all heaps to share one reserved memory, which requires a separate lock for the reserved storage to ensure mutual exclusion when acquiring new memory.
    674666Because multiple threads can allocate/free/reallocate adjacent storage, all forms of false sharing may occur.
    675 Other storage-management options are to use @mmap@ to set aside (large) areas of virtual memory for each heap and suballocate each heap's storage within that area, pushing part of the storage management complexity back to the operating system.
     667Other storage-management options are to use @mmap@ to set aside (large) areas of virtual memory for each heap and suballocate each heap's storage within that area, pushing part of the storage management complexity back to the OS.
    676668
    677669% \begin{figure}
     
    684676Multiple heaps increase external fragmentation as the ratio of heaps to threads increases, which can lead to heap blowup.
    685677The external fragmentation experienced by a program with a single heap is now multiplied by the number of heaps, since each heap manages its own free storage and allocates its own reserved memory.
    686 Additionally, objects freed by one heap cannot be reused by other threads without increasing the cost of the memory operations, except indirectly by returning free memory to the operating system, which can be expensive.
    687 Depending on how the operating system provides dynamic storage to an application, returning storage may be difficult or impossible, \eg the contiguous @sbrk@ area in Unix.
    688 In the worst case, a program in which objects are allocated from one heap but deallocated to another heap means these freed objects are never reused.
     678Additionally, objects freed by one heap cannot be reused by other threads without increasing the cost of the memory operations, except indirectly by returning free memory to the OS (see Section~\ref{s:Ownership}).
     679Returning storage to the OS may be difficult or impossible, \eg the contiguous @sbrk@ area in Unix.
     680% In the worst case, a program in which objects are allocated from one heap but deallocated to another heap means these freed objects are never reused.
    689681
    690682Adding a \newterm{global heap} (G) attempts to reduce the cost of obtaining/returning memory among heaps (sharing) by buffering storage within the application address-space.
    691 Now, each heap obtains and returns storage to/from the global heap rather than the operating system.
     683Now, each heap obtains and returns storage to/from the global heap rather than the OS.
    692684Storage is obtained from the global heap only when a heap allocation cannot be fulfilled, and returned to the global heap when a heap's free memory exceeds some threshold.
    693 Similarly, the global heap buffers this memory, obtaining and returning storage to/from the operating system as necessary.
     685Similarly, the global heap buffers this memory, obtaining and returning storage to/from the OS as necessary.
    694686The global heap does not have its own thread and makes no internal allocation requests;
    695687instead, it uses the application thread, which called one of the multiple heaps and then the global heap, to perform operations.
    696688Hence, the worst-case cost of a memory operation includes all these steps.
    697 With respect to heap blowup, the global heap provides an indirect mechanism to move free memory among heaps, which usually has a much lower cost than interacting with the operating system to achieve the same goal and is independent of the mechanism used by the operating system to present dynamic memory to an address space.
    698 
     689With respect to heap blowup, the global heap provides an indirect mechanism to move free memory among heaps, which usually has a much lower cost than interacting with the OS to achieve the same goal and is independent of the mechanism used by the OS to present dynamic memory to an address space.
    699690However, since any thread may indirectly perform a memory operation on the global heap, it is a shared resource that requires locking.
    700691A single lock can be used to protect the global heap or fine-grained locking can be used to reduce contention.
    701692In general, the cost is minimal since the majority of memory operations are completed without the use of the global heap.
    702693
    703 
    704 \paragraph{1:1 model (thread heaps)} where each thread has its own heap eliminating most contention and locking because threads seldom access another thread's heap (see ownership in Section~\ref{s:Ownership}).
     694\paragraph{1:1 model (see Figure~\ref{f:PerThreadHeap})} where each thread has its own heap eliminating most contention and locking because threads seldom access another thread's heap (see Section~\ref{s:Ownership}).
    705695An additional benefit of thread heaps is improved locality due to better memory layout.
    706696As each thread only allocates from its heap, all objects are consolidated in the storage area for that heap, better utilizing each CPUs cache and accessing fewer pages.
     
    708698Thread heaps can also eliminate allocator-induced active false-sharing, if memory is acquired so it does not overlap at crucial boundaries with memory for another thread's heap.
    709699For example, assume page boundaries coincide with cache line boundaries, if a thread heap always acquires pages of memory then no two threads share a page or cache line unless pointers are passed among them.
    710 Hence, allocator-induced active false-sharing cannot occur because the memory for thread heaps never overlaps.
     700% Hence, allocator-induced active false-sharing cannot occur because the memory for thread heaps never overlaps.
    711701
    712702When a thread terminates, there are two options for handling its thread heap.
     
    720710
    721711It is possible to use any of the heap models with user-level (M:N) threading.
    722 However, an important goal of user-level threading is for fast operations (creation/termination/context-switching) by not interacting with the operating system, which allows the ability to create large numbers of high-performance interacting threads ($>$ 10,000).
     712However, an important goal of user-level threading is for fast operations (creation/termination/context-switching) by not interacting with the OS, which allows the ability to create large numbers of high-performance interacting threads ($>$ 10,000).
    723713It is difficult to retain this goal, if the user-threading model is directly involved with the heap model.
    724714Figure~\ref{f:UserLevelKernelHeaps} shows that virtually all user-level threading systems use whatever kernel-level heap-model is provided by the language runtime.
     
    732722\end{figure}
    733723
    734 Adopting this model results in a subtle problem with shared heaps.
    735 With kernel threading, an operation that is started by a kernel thread is always completed by that thread.
    736 For example, if a kernel thread starts an allocation/deallocation on a shared heap, it always completes that operation with that heap even if preempted, \ie any locking correctness associated with the shared heap is preserved across preemption.
     724Adopting user threading results in a subtle problem with shared heaps.
     725With kernel threading, an operation started by a kernel thread is always completed by that thread.
     726For example, if a kernel thread starts an allocation/deallocation on a shared heap, it always completes that operation with that heap, even if preempted, \ie any locking correctness associated with the shared heap is preserved across preemption.
    737727However, this correctness property is not preserved for user-level threading.
    738728A user thread can start an allocation/deallocation on one kernel thread, be preempted (time slice), and continue running on a different kernel thread to complete the operation~\cite{Dice02}.
    739729When the user thread continues on the new kernel thread, it may have pointers into the previous kernel-thread's heap and hold locks associated with it.
    740730To get the same kernel-thread safety, time slicing must be disabled/\-enabled around these operations, so the user thread cannot jump to another kernel thread.
    741 However, eagerly disabling/enabling time-slicing on the allocation/deallocation fast path is expensive, because preemption does not happen that frequently.
     731However, eagerly disabling/enabling time-slicing on the allocation/deallocation fast path is expensive, because preemption is infrequent (milliseconds).
    742732Instead, techniques exist to lazily detect this case in the interrupt handler, abort the preemption, and return to the operation so it can complete atomically.
    743 Occasionally ignoring a preemption should be benign, but a persistent lack of preemption can result in both short and long term starvation;
    744 techniques like rollforward can be used to force an eventual preemption.
     733Occasional ignoring of a preemption should be benign, but a persistent lack of preemption can result in starvation;
     734techniques like rolling forward the preemption to the next context switch can be used.
    745735
    746736
     
    800790% For example, in Figure~\ref{f:AllocatorInducedPassiveFalseSharing}, Object$_2$ may be deallocated to Thread$_2$'s heap initially.
    801791% If Thread$_2$ reallocates Object$_2$ before it is returned to its owner heap, then passive false-sharing may occur.
     792
     793For thread heaps with ownership, it is possible to combine these approaches into a hybrid approach with both private and public heaps.% (see~Figure~\ref{f:HybridPrivatePublicHeap}).
     794The main goal of the hybrid approach is to eliminate locking on thread-local allocation/deallocation, while providing ownership to prevent heap blowup.
     795In the hybrid approach, a thread first allocates from its private heap and second from its public heap if no free memory exists in the private heap.
     796Similarly, a thread first deallocates an object to its private heap, and second to the public heap.
     797Both private and public heaps can allocate/deallocate to/from the global heap if there is no free memory or excess free memory, although an implementation may choose to funnel all interaction with the global heap through one of the heaps.
     798% Note, deallocation from the private to the public (dashed line) is unlikely because there is no obvious advantages unless the public heap provides the only interface to the global heap.
     799Finally, when a thread frees an object it does not own, the object is either freed immediately to its owner's public heap or put in the freeing thread's private heap for delayed ownership, which does allows the freeing thread to temporarily reuse an object before returning it to its owner or batch objects for an owner heap into a single return.
     800
     801% \begin{figure}
     802% \centering
     803% \input{PrivatePublicHeaps.pstex_t}
     804% \caption{Hybrid Private/Public Heap for Per-thread Heaps}
     805% \label{f:HybridPrivatePublicHeap}
     806% \vspace{10pt}
     807% \input{RemoteFreeList.pstex_t}
     808% \caption{Remote Free-List}
     809% \label{f:RemoteFreeList}
     810% \end{figure}
     811
     812% As mentioned, an implementation may have only one heap interact with the global heap, so the other heap can be simplified.
     813% For example, if only the private heap interacts with the global heap, the public heap can be reduced to a lock-protected free-list of objects deallocated by other threads due to ownership, called a \newterm{remote free-list}.
     814% To avoid heap blowup, the private heap allocates from the remote free-list when it reaches some threshold or it has no free storage.
     815% Since the remote free-list is occasionally cleared during an allocation, this adds to that cost.
     816% Clearing the remote free-list is $O(1)$ if the list can simply be added to the end of the private-heap's free-list, or $O(N)$ if some action must be performed for each freed object.
     817 
     818% If only the public heap interacts with other threads and the global heap, the private heap can handle thread-local allocations and deallocations without locking.
     819% In this scenario, the private heap must deallocate storage after reaching a certain threshold to the public heap (and then eventually to the global heap from the public heap) or heap blowup can occur.
     820% If the public heap does the major management, the private heap can be simplified to provide high-performance thread-local allocations and deallocations.
     821 
     822% The main disadvantage of each thread having both a private and public heap is the complexity of managing two heaps and their interactions in an allocator.
     823% Interestingly, heap implementations often focus on either a private or public heap, giving the impression a single versus a hybrid approach is being used.
     824% In many case, the hybrid approach is actually being used, but the simpler heap is just folded into the complex heap, even though the operations logically belong in separate heaps.
     825% For example, a remote free-list is actually a simple public-heap, but may be implemented as an integral component of the complex private-heap in an allocator, masking the presence of a hybrid approach.
    802826
    803827
     
    817841
    818842
    819 \subsection{Object Containers}
     843\subsubsection{Object Containers}
    820844\label{s:ObjectContainers}
    821845
     
    827851\eg an object is accessed by the program after it is allocated, while the header is accessed by the allocator after it is free.
    828852
    829 The alternative factors common header data to a separate location in memory and organizes associated free storage into blocks called \newterm{object containers} (\newterm{superblocks} in~\cite{Berger00}), as in Figure~\ref{f:ObjectContainer}.
     853An alternative approach factors common header data to a separate location in memory and organizes associated free storage into blocks called \newterm{object containers} (\newterm{superblocks}~\cite{Berger00}), as in Figure~\ref{f:ObjectContainer}.
    830854The header for the container holds information necessary for all objects in the container;
    831855a trailer may also be used at the end of the container.
     
    862886
    863887
    864 \subsubsection{Container Ownership}
     888\paragraph{Container Ownership}
    865889\label{s:ContainerOwnership}
    866890
     
    894918
    895919Additional restrictions may be applied to the movement of containers to prevent active false-sharing.
    896 For example, if a container changes ownership through the global heap, then when a thread allocates an object from the newly acquired container it is actively false-sharing even though no objects are passed among threads.
     920For example, if a container changes ownership through the global heap, then a thread allocating from the newly acquired container is actively false-sharing even though no objects are passed among threads.
    897921Note, once the thread frees the object, no more false sharing can occur until the container changes ownership again.
    898922To prevent this form of false sharing, container movement may be restricted to when all objects in the container are free.
    899 One implementation approach that increases the freedom to return a free container to the operating system involves allocating containers using a call like @mmap@, which allows memory at an arbitrary address to be returned versus only storage at the end of the contiguous @sbrk@ area, again pushing storage management complexity back to the operating system.
     923One implementation approach that increases the freedom to return a free container to the OS involves allocating containers using a call like @mmap@, which allows memory at an arbitrary address to be returned versus only storage at the end of the contiguous @sbrk@ area, again pushing storage management complexity back to the OS.
    900924
    901925% \begin{figure}
     
    930954
    931955
    932 \subsubsection{Container Size}
     956\paragraph{Container Size}
    933957\label{s:ContainerSize}
    934958
     
    941965However, with more objects in a container, there may be more objects that are unallocated, increasing external fragmentation.
    942966With smaller containers, not only are there more containers, but a second new problem arises where objects are larger than the container.
    943 In general, large objects, \eg greater than 64\,KB, are allocated directly from the operating system and are returned immediately to the operating system to reduce long-term external fragmentation.
     967In general, large objects, \eg greater than 64\,KB, are allocated directly from the OS and are returned immediately to the OS to reduce long-term external fragmentation.
    944968If the container size is small, \eg 1\,KB, then a 1.5\,KB object is treated as a large object, which is likely to be inappropriate.
    945969Ideally, it is best to use smaller containers for smaller objects, and larger containers for medium objects, which leads to the issue of locating the container header.
     
    970994
    971995
    972 \subsubsection{Container Free-Lists}
     996\paragraph{Container Free-Lists}
    973997\label{s:containersfreelists}
    974998
     
    10051029
    10061030
    1007 \subsubsection{Hybrid Private/Public Heap}
    1008 \label{s:HybridPrivatePublicHeap}
    1009 
    1010 Section~\ref{s:Ownership} discusses advantages and disadvantages of public heaps (T:H model and with ownership) and private heaps (thread heaps with ownership).
    1011 For thread heaps with ownership, it is possible to combine these approaches into a hybrid approach with both private and public heaps (see~Figure~\ref{f:HybridPrivatePublicHeap}).
    1012 The main goal of the hybrid approach is to eliminate locking on thread-local allocation/deallocation, while providing ownership to prevent heap blowup.
    1013 In the hybrid approach, a thread first allocates from its private heap and second from its public heap if no free memory exists in the private heap.
    1014 Similarly, a thread first deallocates an object to its private heap, and second to the public heap.
    1015 Both private and public heaps can allocate/deallocate to/from the global heap if there is no free memory or excess free memory, although an implementation may choose to funnel all interaction with the global heap through one of the heaps.
    1016 Note, deallocation from the private to the public (dashed line) is unlikely because there is no obvious advantages unless the public heap provides the only interface to the global heap.
    1017 Finally, when a thread frees an object it does not own, the object is either freed immediately to its owner's public heap or put in the freeing thread's private heap for delayed ownership, which allows the freeing thread to temporarily reuse an object before returning it to its owner or batch objects for an owner heap into a single return.
    1018 
    1019 \begin{figure}
    1020 \centering
    1021 \input{PrivatePublicHeaps.pstex_t}
    1022 \caption{Hybrid Private/Public Heap for Per-thread Heaps}
    1023 \label{f:HybridPrivatePublicHeap}
    1024 % \vspace{10pt}
    1025 % \input{RemoteFreeList.pstex_t}
    1026 % \caption{Remote Free-List}
    1027 % \label{f:RemoteFreeList}
    1028 \end{figure}
    1029 
    1030 As mentioned, an implementation may have only one heap interact with the global heap, so the other heap can be simplified.
    1031 For example, if only the private heap interacts with the global heap, the public heap can be reduced to a lock-protected free-list of objects deallocated by other threads due to ownership, called a \newterm{remote free-list}.
    1032 To avoid heap blowup, the private heap allocates from the remote free-list when it reaches some threshold or it has no free storage.
    1033 Since the remote free-list is occasionally cleared during an allocation, this adds to that cost.
    1034 Clearing the remote free-list is $O(1)$ if the list can simply be added to the end of the private-heap's free-list, or $O(N)$ if some action must be performed for each freed object.
    1035 
    1036 If only the public heap interacts with other threads and the global heap, the private heap can handle thread-local allocations and deallocations without locking.
    1037 In this scenario, the private heap must deallocate storage after reaching a certain threshold to the public heap (and then eventually to the global heap from the public heap) or heap blowup can occur.
    1038 If the public heap does the major management, the private heap can be simplified to provide high-performance thread-local allocations and deallocations.
    1039 
    1040 The main disadvantage of each thread having both a private and public heap is the complexity of managing two heaps and their interactions in an allocator.
    1041 Interestingly, heap implementations often focus on either a private or public heap, giving the impression a single versus a hybrid approach is being used.
    1042 In many case, the hybrid approach is actually being used, but the simpler heap is just folded into the complex heap, even though the operations logically belong in separate heaps.
    1043 For example, a remote free-list is actually a simple public-heap, but may be implemented as an integral component of the complex private-heap in an allocator, masking the presence of a hybrid approach.
    1044 
    1045 
    1046 \subsection{Allocation Buffer}
     1031\subsubsection{Allocation Buffer}
    10471032\label{s:AllocationBuffer}
    10481033
    10491034An allocation buffer is reserved memory (see Section~\ref{s:AllocatorComponents}) not yet allocated to the program, and is used for allocating objects when the free list is empty.
    10501035That is, rather than requesting new storage for a single object, an entire buffer is requested from which multiple objects are allocated later.
    1051 Any heap may use an allocation buffer, resulting in allocation from the buffer before requesting objects (containers) from the global heap or operating system, respectively.
     1036Any heap may use an allocation buffer, resulting in allocation from the buffer before requesting objects (containers) from the global heap or OS, respectively.
    10521037The allocation buffer reduces contention and the number of global/operating-system calls.
    10531038For coalescing, a buffer is split into smaller objects by allocations, and recomposed into larger buffer areas during deallocations.
     
    10621047
    10631048Allocation buffers may increase external fragmentation, since some memory in the allocation buffer may never be allocated.
    1064 A smaller allocation buffer reduces the amount of external fragmentation, but increases the number of calls to the global heap or operating system.
     1049A smaller allocation buffer reduces the amount of external fragmentation, but increases the number of calls to the global heap or OS.
    10651050The allocation buffer also slightly increases internal fragmentation, since a pointer is necessary to locate the next free object in the buffer.
    10661051
     
    10681053For example, when a container is created, rather than placing all objects within the container on the free list, the objects form an allocation buffer and are allocated from the buffer as allocation requests are made.
    10691054This lazy method of constructing objects is beneficial in terms of paging and caching.
    1070 For example, although an entire container, possibly spanning several pages, is allocated from the operating system, only a small part of the container is used in the working set of the allocator, reducing the number of pages and cache lines that are brought into higher levels of cache.
    1071 
    1072 
    1073 \subsection{Lock-Free Operations}
     1055For example, although an entire container, possibly spanning several pages, is allocated from the OS, only a small part of the container is used in the working set of the allocator, reducing the number of pages and cache lines that are brought into higher levels of cache.
     1056
     1057
     1058\subsubsection{Lock-Free Operations}
    10741059\label{s:LockFreeOperations}
    10751060
     
    11941179% A sequence of code that is guaranteed to run to completion before being invoked to accept another input is called serially-reusable code.~\cite{SeriallyReusable}\label{p:SeriallyReusable}
    11951180% \end{quote}
    1196 % If a KT is preempted during an allocation operation, the operating system can schedule another KT on the same CPU, which can begin an allocation operation before the previous operation associated with this CPU has completed, invalidating heap correctness.
     1181% If a KT is preempted during an allocation operation, the OS can schedule another KT on the same CPU, which can begin an allocation operation before the previous operation associated with this CPU has completed, invalidating heap correctness.
    11971182% Note, the serially-reusable problem can occur in sequential programs with preemption, if the signal handler calls the preempted function, unless the function is serially reusable.
    1198 % Essentially, the serially-reusable problem is a race condition on an unprotected critical subsection, where the operating system is providing the second thread via the signal handler.
     1183% Essentially, the serially-reusable problem is a race condition on an unprotected critical subsection, where the OS is providing the second thread via the signal handler.
    11991184%
    12001185% Library @librseq@~\cite{librseq} was used to perform a fast determination of the CPU and to ensure all memory operations complete on one CPU using @librseq@'s restartable sequences, which restart the critical subsection after undoing its writes, if the critical subsection is preempted.
     
    12561241A sequence of code that is guaranteed to run to completion before being invoked to accept another input is called serially-reusable code.~\cite{SeriallyReusable}\label{p:SeriallyReusable}
    12571242\end{quote}
    1258 If a KT is preempted during an allocation operation, the operating system can schedule another KT on the same CPU, which can begin an allocation operation before the previous operation associated with this CPU has completed, invalidating heap correctness.
     1243If a KT is preempted during an allocation operation, the OS can schedule another KT on the same CPU, which can begin an allocation operation before the previous operation associated with this CPU has completed, invalidating heap correctness.
    12591244Note, the serially-reusable problem can occur in sequential programs with preemption, if the signal handler calls the preempted function, unless the function is serially reusable.
    1260 Essentially, the serially-reusable problem is a race condition on an unprotected critical subsection, where the operating system is providing the second thread via the signal handler.
     1245Essentially, the serially-reusable problem is a race condition on an unprotected critical subsection, where the OS is providing the second thread via the signal handler.
    12611246
    12621247Library @librseq@~\cite{librseq} was used to perform a fast determination of the CPU and to ensure all memory operations complete on one CPU using @librseq@'s restartable sequences, which restart the critical subsection after undoing its writes, if the critical subsection is preempted.
     
    12731258For the T:H=CPU and 1:1 models, locking is eliminated along the allocation fastpath.
    12741259However, T:H=CPU has poor operating-system support to determine the CPU id (heap id) and prevent the serially-reusable problem for KTs.
    1275 More operating system support is required to make this model viable, but there is still the serially-reusable problem with user-level threading.
     1260More OS support is required to make this model viable, but there is still the serially-reusable problem with user-level threading.
    12761261So the 1:1 model had no atomic actions along the fastpath and no special operating-system support requirements.
    12771262The 1:1 model still has the serially-reusable problem with user-level threading, which is addressed in Section~\ref{s:UserlevelThreadingSupport}, and the greatest potential for heap blowup for certain allocation patterns.
     
    13081293A primary goal of llheap is low latency, hence the name low-latency heap (llheap).
    13091294Two forms of latency are internal and external.
    1310 Internal latency is the time to perform an allocation, while external latency is time to obtain/return storage from/to the operating system.
     1295Internal latency is the time to perform an allocation, while external latency is time to obtain/return storage from/to the OS.
    13111296Ideally latency is $O(1)$ with a small constant.
    13121297
     
    13141299The mitigating factor is that most programs have well behaved allocation patterns, where the majority of allocation operations can be $O(1)$, and heap blowup does not occur without coalescing (although the allocation footprint may be slightly larger).
    13151300
    1316 To obtain $O(1)$ external latency means obtaining one large storage area from the operating system and subdividing it across all program allocations, which requires a good guess at the program storage high-watermark and potential large external fragmentation.
     1301To obtain $O(1)$ external latency means obtaining one large storage area from the OS and subdividing it across all program allocations, which requires a good guess at the program storage high-watermark and potential large external fragmentation.
    13171302Excluding real-time operating-systems, operating-system operations are unbounded, and hence some external latency is unavoidable.
    13181303The mitigating factor is that operating-system calls can often be reduced if a programmer has a sense of the storage high-watermark and the allocator is capable of using this information (see @malloc_expansion@ \pageref{p:malloc_expansion}).
     
    13291314headers per allocation versus containers,
    13301315no coalescing to minimize latency,
    1331 global heap memory (pool) obtained from the operating system using @mmap@ to create and reuse heaps needed by threads,
     1316global heap memory (pool) obtained from the OS using @mmap@ to create and reuse heaps needed by threads,
    13321317local reserved memory (pool) per heap obtained from global pool,
    1333 global reserved memory (pool) obtained from the operating system using @sbrk@ call,
     1318global reserved memory (pool) obtained from the OS using @sbrk@ call,
    13341319optional fast-lookup table for converting allocation requests into bucket sizes,
    13351320optional statistic-counters table for accumulating counts of allocation operations.
     
    13581343Each heap uses segregated free-buckets that have free objects distributed across 91 different sizes from 16 to 4M.
    13591344All objects in a bucket are of the same size.
    1360 The number of buckets used is determined dynamically depending on the crossover point from @sbrk@ to @mmap@ allocation using @mallopt( M_MMAP_THRESHOLD )@, \ie small objects managed by the program and large objects managed by the operating system.
     1345The number of buckets used is determined dynamically depending on the crossover point from @sbrk@ to @mmap@ allocation using @mallopt( M_MMAP_THRESHOLD )@, \ie small objects managed by the program and large objects managed by the OS.
    13611346Each free bucket of a specific size has two lists.
    136213471) A free stack used solely by the KT heap-owner, so push/pop operations do not require locking.
     
    13671352Algorithm~\ref{alg:heapObjectAlloc} shows the allocation outline for an object of size $S$.
    13681353First, the allocation is divided into small (@sbrk@) or large (@mmap@).
    1369 For large allocations, the storage is mapped directly from the operating system.
     1354For large allocations, the storage is mapped directly from the OS.
    13701355For small allocations, $S$ is quantized into a bucket size.
    13711356Quantizing is performed using a binary search over the ordered bucket array.
     
    13781363heap's local pool,
    13791364global pool,
    1380 operating system (@sbrk@).
     1365OS (@sbrk@).
    13811366
    13821367\begin{algorithm}
     
    14431428Algorithm~\ref{alg:heapObjectFreeOwn} shows the de-allocation (free) outline for an object at address $A$ with ownership.
    14441429First, the address is divided into small (@sbrk@) or large (@mmap@).
    1445 For large allocations, the storage is unmapped back to the operating system.
     1430For large allocations, the storage is unmapped back to the OS.
    14461431For small allocations, the bucket associated with the request size is retrieved.
    14471432If the bucket is local to the thread, the allocation is pushed onto the thread's associated bucket.
     
    30443029
    30453030\textsf{pt3} is the only memory allocator where the total dynamic memory goes down in the second half of the program lifetime when the memory is freed by the benchmark program.
    3046 It makes pt3 the only memory allocator that gives memory back to the operating system as it is freed by the program.
     3031It makes pt3 the only memory allocator that gives memory back to the OS as it is freed by the program.
    30473032
    30483033% FOR 1 THREAD
  • doc/papers/llheap/figures/AllocatorComponents.fig

    r2b78949 r8a930c03  
    88-2
    991200 2
    10 6 1275 2025 2700 2625
    11106 2400 2025 2700 2625
    12112 2 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 5
     
    14132 2 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 5
    1514         2700 2025 2700 2325 2400 2325 2400 2025 2700 2025
    16 -6
    17 4 2 0 50 -1 2 11 0.0000 2 165 1005 2325 2400 Management\001
    1815-6
    19162 2 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 5
     
    61582 2 0 1 0 7 60 -1 13 0.000 0 0 -1 0 0 5
    6259         3300 2700 6300 2700 6300 3000 3300 3000 3300 2700
    63 4 0 0 50 -1 2 11 0.0000 2 165 585 3300 1725 Storage\001
     604 0 0 50 -1 2 11 0.0000 2 165 1005 3300 1725 Storage Data\001
    64614 2 0 50 -1 0 11 0.0000 2 165 810 3000 1875 free objects\001
    65624 2 0 50 -1 0 11 0.0000 2 135 1140 3000 2850 reserve memory\001
    66634 1 0 50 -1 0 11 0.0000 2 120 795 2325 1500 Static Zone\001
    67644 1 0 50 -1 0 11 0.0000 2 165 1845 4800 1500 Dynamic-Allocation Zone\001
     654 2 0 50 -1 2 11 0.0000 2 165 1005 2325 2325 Management\001
     664 2 0 50 -1 2 11 0.0000 2 135 375 2325 2525 Data\001
  • doc/theses/colby_parsons_MMAth/Makefile

    r2b78949 r8a930c03  
    9898
    9999${BASE}.dvi : Makefile ${GRAPHS} ${PROGRAMS} ${PICTURES} ${FIGURES} ${SOURCES} ${DATA} \
    100                 style/style.tex ${Macros}/common.tex ${Macros}/indexstyle local.bib ../../bibliography/pl.bib | ${Build}
     100                glossary.tex style/style.tex ${Macros}/common.tex ${Macros}/indexstyle local.bib ../../bibliography/pl.bib | ${Build}
    101101        # Must have *.aux file containing citations for bibtex
    102102        if [ ! -r ${basename $@}.aux ] ; then ${LaTeX} ${basename $@}.tex ; fi
  • doc/theses/colby_parsons_MMAth/benchmarks/actors/cfa/balance.cfa

    r2b78949 r8a930c03  
    3131
    3232d_actor ** actor_arr;
    33 Allocation receive( d_actor & this, start_msg & msg ) with( this ) {
     33allocation receive( d_actor & this, start_msg & msg ) with( this ) {
    3434    for ( i; Set ) {
    3535        *actor_arr[i + gstart] << shared_msg;
     
    3838}
    3939
    40 Allocation receive( d_actor & this, d_msg & msg ) with( this ) {
     40allocation receive( d_actor & this, d_msg & msg ) with( this ) {
    4141    if ( recs == rounds ) return Delete;
    4242    if ( recs % Batch == 0 ) {
     
    5050}
    5151
    52 Allocation receive( filler & this, d_msg & msg ) { return Delete; }
     52allocation receive( filler & this, d_msg & msg ) { return Delete; }
    5353
    5454int main( int argc, char * argv[] ) {
  • doc/theses/colby_parsons_MMAth/benchmarks/actors/cfa/dynamic.cfa

    r2b78949 r8a930c03  
    2424
    2525uint64_t start_time;
    26 Allocation receive( derived_actor & receiver, derived_msg & msg ) {
     26allocation receive( derived_actor & receiver, derived_msg & msg ) {
    2727    if ( msg.cnt >= Times ) {
    2828        printf("%.2f\n", ((double)(bench_time() - start_time)) / ((double)Times) ); // ns
  • doc/theses/colby_parsons_MMAth/benchmarks/actors/cfa/executor.cfa

    r2b78949 r8a930c03  
    2525struct d_msg { inline message; } shared_msg;
    2626
    27 Allocation receive( d_actor & this, d_msg & msg ) with( this ) {
     27allocation receive( d_actor & this, d_msg & msg ) with( this ) {
    2828    if ( recs == rounds ) return Finished;
    2929    if ( recs % Batch == 0 ) {
  • doc/theses/colby_parsons_MMAth/benchmarks/actors/cfa/matrix.cfa

    r2b78949 r8a930c03  
    2424}
    2525
    26 Allocation receive( derived_actor & receiver, derived_msg & msg ) {
     26allocation receive( derived_actor & receiver, derived_msg & msg ) {
    2727    for ( unsigned int i = 0; i < yc; i += 1 ) { // multiply X_row by Y_col and sum products
    2828        msg.Z[i] = 0;
  • doc/theses/colby_parsons_MMAth/benchmarks/actors/cfa/repeat.cfa

    r2b78949 r8a930c03  
    4646
    4747Client * cl;
    48 Allocation receive( Server & this, IntMsg & msg ) { msg.val = 7; *cl << msg; return Nodelete; }
    49 Allocation receive( Server & this, CharMsg & msg ) { msg.val = 'x'; *cl << msg; return Nodelete; }
    50 Allocation receive( Server & this, StateMsg & msg ) { return Finished; }
     48allocation receive( Server & this, IntMsg & msg ) { msg.val = 7; *cl << msg; return Nodelete; }
     49allocation receive( Server & this, CharMsg & msg ) { msg.val = 'x'; *cl << msg; return Nodelete; }
     50allocation receive( Server & this, StateMsg & msg ) { return Finished; }
    5151
    5252void terminateServers( Client & this ) with(this) {
     
    5656}
    5757
    58 Allocation reset( Client & this ) with(this) {
     58allocation reset( Client & this ) with(this) {
    5959    times += 1;
    6060    if ( times == Times ) { terminateServers( this ); return Finished; }
     
    6464}
    6565
    66 Allocation process( Client & this ) with(this) {
     66allocation process( Client & this ) with(this) {
    6767    this.results++;
    6868    if ( results == 2 * Messages ) { return reset( this ); }
     
    7070}
    7171
    72 Allocation receive( Client & this, IntMsg & msg ) { return process( this ); }
    73 Allocation receive( Client & this, CharMsg & msg ) { return process( this ); }
    74 Allocation receive( Client & this, StateMsg & msg ) with(this) {
     72allocation receive( Client & this, IntMsg & msg ) { return process( this ); }
     73allocation receive( Client & this, CharMsg & msg ) { return process( this ); }
     74allocation receive( Client & this, StateMsg & msg ) with(this) {
    7575    for ( i; Messages ) {
    7676        servers[i] << intmsg[i];
  • doc/theses/colby_parsons_MMAth/benchmarks/actors/cfa/static.cfa

    r2b78949 r8a930c03  
    2323
    2424uint64_t start_time;
    25 Allocation receive( derived_actor & receiver, derived_msg & msg ) {
     25allocation receive( derived_actor & receiver, derived_msg & msg ) {
    2626    if ( msg.cnt >= Times ) {
    2727        printf("%.2f\n", ((double)(bench_time() - start_time)) / ((double)Times) ); // ns
  • doc/theses/colby_parsons_MMAth/benchmarks/actors/plotData.py

    r2b78949 r8a930c03  
    160160
    161161                if currVariant == numVariants:
    162                     fig, ax = plt.subplots()
     162                    fig, ax = plt.subplots(layout='constrained')
    163163                    plt.title(name + " Benchmark")
    164164                    plt.ylabel("Runtime (seconds)")
  • doc/theses/colby_parsons_MMAth/benchmarks/channels/plotData.py

    r2b78949 r8a930c03  
    124124
    125125            if currVariant == numVariants:
    126                 fig, ax = plt.subplots()
     126                fig, ax = plt.subplots(layout='constrained')
    127127                plt.title(name + " Benchmark")
    128128                plt.ylabel("Throughput (channel operations)")
  • doc/theses/colby_parsons_MMAth/benchmarks/mutex_stmt/plotData.py

    r2b78949 r8a930c03  
    9797
    9898            if currVariant == numVariants:
    99                 fig, ax = plt.subplots()
     99                fig, ax = plt.subplots(layout='constrained')
    100100                plt.title(name + " Benchmark: " + str(currLocks) + " Locks")
    101101                plt.ylabel("Throughput (entries)")
  • doc/theses/colby_parsons_MMAth/code/basic_actor_example.cfa

    r2b78949 r8a930c03  
    1919}
    2020
    21 Allocation receive( derived_actor & receiver, derived_msg & msg ) {
     21allocation receive( derived_actor & receiver, derived_msg & msg ) {
    2222    printf("The message contained the string: %s\n", msg.word);
    2323    return Finished; // Return allocation status of Finished now that the actor is done work
  • doc/theses/colby_parsons_MMAth/glossary.tex

    r2b78949 r8a930c03  
    3232% Examples from template above
    3333
    34 \newabbreviation{raii}{RAII}{Resource Acquisition Is Initialization}
    35 \newabbreviation{rtti}{RTTI}{Run-Time Type Information}
    36 \newabbreviation{fcfs}{FCFS}{First Come First Served}
    37 \newabbreviation{toctou}{TOCTOU}{time-of-check to time-of-use}
     34\newabbreviation{raii}{RAII}{\Newterm{resource acquisition is initialization}}
     35\newabbreviation{rtti}{RTTI}{\Newterm{run-time type information}}
     36\newabbreviation{fcfs}{FCFS}{\Newterm{first-come first-served}}
     37\newabbreviation{toctou}{TOCTOU}{\Newterm{time-of-check to time-of-use}}
    3838
    3939\newglossaryentry{actor}
  • doc/theses/colby_parsons_MMAth/local.bib

    r2b78949 r8a930c03  
    9595@misc{go:select,
    9696  author = "The Go Programming Language",
    97   title = "src/runtime/chan.go",
     97  title = "src/runtime/select.go",
    9898  howpublished = {\href{https://go.dev/src/runtime/select.go}},
    9999  note = "[Online; accessed 23-May-2023]"
    100100}
    101101
     102@misc{go:selectref,
     103  author = "The Go Programming Language Specification",
     104  title = "Select statements",
     105  howpublished = {\href{https://go.dev/ref/spec#Select\_statements}},
     106  note = "[Online; accessed 23-May-2023]"
     107}
     108
     109@misc{boost:channel,
     110  author = "Boost C++ Libraries",
     111  title = "experimental::basic\_concurrent\_channel",
     112  howpublished = {\href{https://www.boost.org/doc/libs/master/doc/html/boost\_asio/reference/experimental\__basic\_concurrent\_channel.html}},
     113  note = "[Online; accessed 23-May-2023]"
     114}
     115
     116@misc{rust:channel,
     117  author = "The Rust Standard Library",
     118  title = "std::sync::mpsc::sync\_channel",
     119  howpublished = {\href{https://doc.rust-lang.org/std/sync/mpsc/fn.sync\_channel.html}},
     120  note = "[Online; accessed 23-May-2023]"
     121}
     122
     123@misc{rust:select,
     124  author = "The Rust Standard Library",
     125  title = "Macro futures::select",
     126  howpublished = {\href{https://docs.rs/futures/latest/futures/macro.select.html}},
     127  note = "[Online; accessed 23-May-2023]"
     128}
     129
     130@misc{ocaml:channel,
     131  author = "The OCaml Manual",
     132  title = "OCaml library : Event",
     133  howpublished = {\href{https://v2.ocaml.org/api/Event.html}},
     134  note = "[Online; accessed 23-May-2023]"
     135}
     136
     137@misc{haskell:channel,
     138  author = "The Haskell Package Repository",
     139  title = "Control.Concurrent.Chan",
     140  howpublished = {\href{https://hackage.haskell.org/package/base-4.18.0.0/docs/Control-Concurrent-Chan.html}},
     141  note = "[Online; accessed 23-May-2023]"
     142}
     143
     144@misc{linux:select,
     145  author = "Linux man pages",
     146  title = "select(2) — Linux manual page",
     147  howpublished = {\href{https://man7.org/linux/man-pages/man2/select.2.html}},
     148  note = "[Online; accessed 23-May-2023]"
     149}
     150
     151@misc{linux:poll,
     152  author = "Linux man pages",
     153  title = "poll(2) — Linux manual page",
     154  howpublished = {\href{https://man7.org/linux/man-pages/man2/poll.2.html}},
     155  note = "[Online; accessed 23-May-2023]"
     156}
     157
     158@misc{linux:epoll,
     159  author = "Linux man pages",
     160  title = "epoll(7) — Linux manual page",
     161  howpublished = {\href{https://man7.org/linux/man-pages/man7/epoll.7.html}},
     162  note = "[Online; accessed 23-May-2023]"
     163}
     164
     165@article{Ichbiah79,
     166  title={Preliminary Ada reference manual},
     167  author={Ichbiah, Jean D},
     168  journal={ACM Sigplan Notices},
     169  volume={14},
     170  number={6a},
     171  pages={1--145},
     172  year={1979},
     173  publisher={ACM New York, NY, USA}
     174}
     175
     176@misc{cpp:whenany,
     177  author = "C++ reference",
     178  title = "std::experimental::when\_any",
     179  howpublished = {\href{https://en.cppreference.com/w/cpp/experimental/when\_any}},
     180  note = "[Online; accessed 23-May-2023]"
     181}
     182
     183
     184
  • doc/theses/colby_parsons_MMAth/style/style.tex

    r2b78949 r8a930c03  
    1515\newsavebox{\myboxB}
    1616
     17\lstnewenvironment{Golang}[1][]
     18{\lstset{language=Go,literate={<-}{\makebox[2ex][c]{\textless\raisebox{0.4ex}{\rule{0.8ex}{0.075ex}}}}2,
     19        moredelim=**[is][\protect\color{red}]{@}{@}}\lstset{#1}}
     20{}
     21
    1722\lstnewenvironment{java}[1][]
    1823{\lstset{language=java,moredelim=**[is][\protect\color{red}]{@}{@}}\lstset{#1}}
  • doc/theses/colby_parsons_MMAth/text/channels.tex

    r2b78949 r8a930c03  
    1717Additionally all channel operations in CSP are synchronous (no buffering).
    1818Advanced channels as a programming language feature has been popularized in recent years by the language Go~\cite{Go}, which encourages the use of channels as its fundamental concurrent feature.
    19 It was the popularity of Go channels that lead to their implemention in \CFA.
     19It was the popularity of Go channels that lead to their implementation in \CFA.
    2020Neither Go nor \CFA channels have the restrictions of the early channel-based concurrent systems.
     21
     22Other popular languages and libraries that provide channels include C++ Boost~\cite{boost:channel}, Rust~\cite{rust:channel}, Haskell~\cite{haskell:channel}, and OCaml~\cite{ocaml:channel}.
     23Boost channels only support asynchronous (non-blocking) operations, and Rust channels are limited to only having one consumer per channel.
     24Haskell channels are unbounded in size, and OCaml channels are zero-size.
     25These restrictions in Haskell and OCaml are likely due to their functional approach, which results in them both using a list as the underlying data structure for their channel.
     26These languages and libraries are not discussed further, as their channel implementation is not comparable to the bounded-buffer style channels present in Go and \CFA.
    2127
    2228\section{Producer-Consumer Problem}
     
    6167\section{Channel Implementation}
    6268Currently, only the Go programming language provides user-level threading where the primary communication mechanism is channels.
    63 Experiments were conducted that varied the producer-consumer problem algorithm and lock type used inside the channel.
     69Experiments were conducted that varied the producer-consumer algorithm and lock type used inside the channel.
    6470With the exception of non-\gls{fcfs} or non-FIFO algorithms, no algorithm or lock usage in the channel implementation was found to be consistently more performant that Go's choice of algorithm and lock implementation.
    6571Performance of channels can be improved by sharding the underlying buffer \cite{Dice11}.
    66 In doing so the FIFO property is lost, which is undesireable for user-facing channels.
     72However, the FIFO property is lost, which is undesirable for user-facing channels.
    6773Therefore, the low-level channel implementation in \CFA is largely copied from the Go implementation, but adapted to the \CFA type and runtime systems.
    6874As such the research contributions added by \CFA's channel implementation lie in the realm of safety and productivity features.
    6975
    70 The Go channel implementation utilitizes cooperation between threads to achieve good performance~\cite{go:chan}.
    71 The cooperation between threads only occurs when producers or consumers need to block due to the buffer being full or empty.
    72 In these cases the blocking thread stores their relevant data in a shared location and the signalling thread will complete their operation before waking them.
    73 This helps improve performance in a few ways.
    74 First, each thread interacting with the channel with only acquire and release the internal channel lock exactly once.
    75 This decreases contention on the internal lock, as only entering threads will compete for the lock since signalled threads never reacquire the lock.
    76 The other advantage of the cooperation approach is that it eliminates the potential bottleneck of waiting for signalled threads.
    77 The property of acquiring/releasing the lock only once can be achieved without cooperation by \Newterm{baton passing} the lock.
    78 Baton passing is when one thread acquires a lock but does not release it, and instead signals a thread inside the critical section conceptually "passing" the mutual exclusion to the signalled thread.
    79 While baton passing is useful in some algorithms, it results in worse performance than the cooperation approach in channel implementations since all entering threads then need to wait for the blocked thread to reach the front of the ready queue and run before other operations on the channel can proceed.
     76The Go channel implementation utilizes cooperation among threads to achieve good performance~\cite{go:chan}.
     77This cooperation only occurs when producers or consumers need to block due to the buffer being full or empty.
     78In these cases, a blocking thread stores their relevant data in a shared location and the signalling thread completes the blocking thread's operation before waking them;
     79\ie the blocking thread has no work to perform after it unblocks because the signalling threads has done this work.
     80This approach is similar to wait morphing for locks~\cite[p.~82]{Butenhof97} and improves performance in a few ways.
     81First, each thread interacting with the channel only acquires and releases the internal channel lock once.
     82As a result, contention on the internal lock is decreased, as only entering threads compete for the lock as unblocking threads do not reacquire the lock.
     83The other advantage of Go's wait-morphing approach is that it eliminates the bottleneck of waiting for signalled threads to run.
     84Note, the property of acquiring/releasing the lock only once can also be achieved with a different form of cooperation, called \Newterm{baton passing}.
     85Baton passing occurs when one thread acquires a lock but does not release it, and instead signals a thread inside the critical section, conceptually ``passing'' the mutual exclusion from the signalling thread to the signalled thread.
     86The baton-passing approach has threads cooperate to pass mutual exclusion without additional lock acquires or releases;
     87the wait-morphing approach has threads cooperate by completing the signalled thread's operation, thus removing a signalled thread's need for mutual exclusion after unblocking.
     88While baton passing is useful in some algorithms, it results in worse channel performance than the Go approach.
     89In the baton-passing approach, all threads need to wait for the signalled thread to reach the front of the ready queue, context switch, and run before other operations on the channel can proceed, since the signalled thread holds mutual exclusion;
     90in the wait-morphing approach, since the operation is completed before the signal, other threads can continue to operate on the channel without waiting for the signalled thread to run.
    8091
    8192In this work, all channel sizes \see{Sections~\ref{s:ChannelSize}} are implemented with bounded buffers.
     
    100111\subsection{Toggle-able Statistics}
    101112As discussed, a channel is a concurrent layer over a bounded buffer.
    102 To achieve efficient buffering users should aim for as few blocking operations on a channel as possible.
    103 Often to achieve this users may change the buffer size, shard a channel into multiple channels, or tweak the number of producer and consumer threads.
    104 Fo users to be able to make informed decisions when tuning channel usage, toggle-able channel statistics are provided.
    105 The statistics are toggled at compile time via the @CHAN_STATS@ macro to ensure that they are entirely elided when not used.
    106 When statistics are turned on, four counters are maintained per channel, two for producers and two for consumers.
     113To achieve efficient buffering, users should aim for as few blocking operations on a channel as possible.
     114Mechanisms to reduce blocking are: change the buffer size, shard a channel into multiple channels, or tweak the number of producer and consumer threads.
     115For users to be able to make informed decisions when tuning channel usage, toggle-able channel statistics are provided.
     116The statistics are toggled on during the \CFA build by defining the @CHAN_STATS@ macro, which guarantees zero cost when not using this feature.
     117When statistics are turned on, four counters are maintained per channel, two for inserting (producers) and two for removing (consumers).
    107118The two counters per type of operation track the number of blocking operations and total operations.
    108 In the channel destructor the counters are printed out aggregated and also per type of operation.
    109 An example use case of the counters follows.
    110 A user is buffering information between producer and consumer threads and wants to analyze channel performance.
    111 Via the statistics they see that producers block for a large percentage of their operations while consumers do not block often.
    112 They then can use this information to adjust their number of producers/consumers or channel size to achieve a larger percentage of non-blocking producer operations, thus increasing their channel throughput.
     119In the channel destructor, the counters are printed out aggregated and also per type of operation.
     120An example use case is noting that producer inserts are blocking often while consumer removes do not block often.
     121This information can be used to increase the number of consumers to decrease the blocking producer operations, thus increasing the channel throughput.
     122Whereas, increasing the channel size in this scenario is unlikely to produce a benefit because the consumers can never keep up with the producers.
    113123
    114124\subsection{Deadlock Detection}
    115 The deadlock detection in the \CFA channels is fairly basic.
    116 It only detects the case where threads are blocked on the channel during deallocation.
    117 This case is guaranteed to deadlock since the list holding the blocked thread is internal to the channel and will be deallocated.
    118 If a user maintained a separate reference to a thread and unparked it outside the channel they could avoid the deadlock, but would run into other runtime errors since the thread would access channel data after waking that is now deallocated.
    119 More robust deadlock detection surrounding channel usage would have to be implemented separate from the channel implementation since it would require knowledge about the threading system and other channel/thread state.
     125The deadlock detection in the \CFA channels is fairly basic but detects a very common channel mistake during termination.
     126That is, it detects the case where threads are blocked on the channel during channel deallocation.
     127This case is guaranteed to deadlock since there are no other threads to supply or consume values needed by the waiting threads.
     128Only if a user maintained a separate reference to the blocked threads and manually unblocks them outside the channel could the deadlock be avoid.
     129However, without special semantics, this unblocking would generate other runtime errors where the unblocked thread attempts to access non-existing channel data or even a deallocated channel.
     130More robust deadlock detection needs to be implemented separate from channels since it requires knowledge about the threading system and other channel/thread state.
    120131
    121132\subsection{Program Shutdown}
    122133Terminating concurrent programs is often one of the most difficult parts of writing concurrent code, particularly if graceful termination is needed.
    123 The difficulty of graceful termination often arises from the usage of synchronization primitives that need to be handled carefully during shutdown.
     134Graceful termination can be difficult to achieve with synchronization primitives that need to be handled carefully during shutdown.
    124135It is easy to deadlock during termination if threads are left behind on synchronization primitives.
    125136Additionally, most synchronization primitives are prone to \gls{toctou} issues where there is race between one thread checking the state of a concurrent object and another thread changing the state.
    126137\gls{toctou} issues with synchronization primitives often involve a race between one thread checking the primitive for blocked threads and another thread blocking on it.
    127138Channels are a particularly hard synchronization primitive to terminate since both sending and receiving to/from a channel can block.
    128 Thus, improperly handled \gls{toctou} issues with channels often result in deadlocks as threads trying to perform the termination may end up unexpectedly blocking in their attempt to help other threads exit the system.
    129 
    130 \paragraph{Go channels} provide a set of tools to help with concurrent shutdown~\cite{go:chan}.
    131 Channels in Go have a @close@ operation and a \Go{select} statement that both can be used to help threads terminate.
     139Thus, improperly handled \gls{toctou} issues with channels often result in deadlocks as threads performing the termination may end up unexpectedly blocking in their attempt to help other threads exit the system.
     140
     141\paragraph{Go channels} provide a set of tools to help with concurrent shutdown~\cite{go:chan} using a @close@ operation in conjunction with the \Go{select} statement.
    132142The \Go{select} statement is discussed in \ref{s:waituntil}, where \CFA's @waituntil@ statement is compared with the Go \Go{select} statement.
    133143
     
    143153Note, panics in Go can be caught, but it is not the idiomatic way to write Go programs.
    144154
    145 While Go's channel closing semantics are powerful enough to perform any concurrent termination needed by a program, their lack of ease of use leaves much to be desired.
     155While Go's channel-closing semantics are powerful enough to perform any concurrent termination needed by a program, their lack of ease of use leaves much to be desired.
    146156Since both closing and sending panic once a channel is closed, a user often has to synchronize the senders (producers) before the channel can be closed to avoid panics.
    147157However, in doing so it renders the @close@ operation nearly useless, as the only utilities it provides are the ability to ensure receivers no longer block on the channel and receive zero-valued elements.
    148158This functionality is only useful if the zero-typed element is recognized as a sentinel value, but if another sentinel value is necessary, then @close@ only provides the non-blocking feature.
    149159To avoid \gls{toctou} issues during shutdown, a busy wait with a \Go{select} statement is often used to add or remove elements from a channel.
    150 Due to Go's asymmetric approach to channel shutdown, separate synchronization between producers and consumers of a channel has to occur during shutdown.
     160Hence, due to Go's asymmetric approach to channel shutdown, separate synchronization between producers and consumers of a channel has to occur during shutdown.
    151161
    152162\paragraph{\CFA channels} have access to an extensive exception handling mechanism~\cite{Beach21}.
     
    161171When a channel in \CFA is closed, all subsequent calls to the channel raise a resumption exception at the caller.
    162172If the resumption is handled, the caller attempts to complete the channel operation.
    163 However, if channel operation would block, a termination exception is thrown.
     173However, if the channel operation would block, a termination exception is thrown.
    164174If the resumption is not handled, the exception is rethrown as a termination.
    165175These termination exceptions allow for non-local transfer that is used to great effect to eagerly and gracefully shut down a thread.
    166176When a channel is closed, if there are any blocked producers or consumers inside the channel, they are woken up and also have a resumption thrown at them.
    167 The resumption exception, @channel_closed@, has a couple fields to aid in handling the exception.
    168 The exception contains a pointer to the channel it was thrown from, and a pointer to an element.
    169 In exceptions thrown from remove the element pointer will be null.
    170 In the case of insert the element pointer points to the element that the thread attempted to insert.
     177The resumption exception, @channel_closed@, has internal fields to aid in handling the exception.
     178The exception contains a pointer to the channel it is thrown from and a pointer to a buffer element.
     179For exceptions thrown from @remove@, the buffer element pointer is null.
     180For exceptions thrown from @insert@, the element pointer points to the buffer element that the thread attempted to insert.
     181Utility routines @bool is_insert( channel_closed & e );@ and @bool is_remove( channel_closed & e );@ are provided for convenient checking of the element pointer.
    171182This element pointer allows the handler to know which operation failed and also allows the element to not be lost on a failed insert since it can be moved elsewhere in the handler.
    172 Furthermore, due to \CFA's powerful exception system, this data can be used to choose handlers based which channel and operation failed.
    173 Exception handlers in \CFA have an optional predicate after the exception type which can be used to optionally trigger or skip handlers based on the content of an exception.
    174 It is worth mentioning that the approach of exceptions for termination may incur a larger performance cost during termination that the approach used in Go.
    175 This should not be an issue, since termination is rarely an fast-path of an application and ensuring that termination can be implemented correctly with ease is the aim of the exception approach.
     183Furthermore, due to \CFA's powerful exception system, this data can be used to choose handlers based on which channel and operation failed.
     184For example, exception handlers in \CFA have an optional predicate which can be used to trigger or skip handlers based on the content of the matching exception.
     185It is worth mentioning that using exceptions for termination may incur a larger performance cost than the Go approach.
     186However, this should not be an issue, since termination is rarely on the fast-path of an application.
     187In contrast, ensuring termination can be easily implemented correctly is the aim of the exception approach.
    176188
    177189\section{\CFA / Go channel Examples}
    178 To highlight the differences between \CFA's and Go's close semantics, three examples will be presented.
     190To highlight the differences between \CFA's and Go's close semantics, three examples are presented.
    179191The first example is a simple shutdown case, where there are producer threads and consumer threads operating on a channel for a fixed duration.
    180 Once the duration ends, producers and consumers terminate without worrying about any leftover values in the channel.
    181 The second example extends the first example by requiring the channel to be empty upon shutdown.
     192Once the duration ends, producers and consumers terminate immediately leaving unprocessed elements in the channel.
     193The second example extends the first by requiring the channel to be empty after shutdown.
    182194Both the first and second example are shown in Figure~\ref{f:ChannelTermination}.
    183 
    184 
    185 First the Go solutions to these examples shown in Figure~\ref{l:go_chan_term} are discussed.
    186 Since some of the elements being passed through the channel are zero-valued, closing the channel in Go does not aid in communicating shutdown.
    187 Instead, a different mechanism to communicate with the consumers and producers needs to be used.
    188 This use of an additional flag or communication method is common in Go channel shutdown code, since to avoid panics on a channel, the shutdown of a channel often has to be communicated with threads before it occurs.
    189 In this example, a flag is used to communicate with producers and another flag is used for consumers.
    190 Producers and consumers need separate avenues of communication both so that producers terminate before the channel is closed to avoid panicking, and to avoid the case where all the consumers terminate first, which can result in a deadlock for producers if the channel is full.
    191 The producer flag is set first, then after producers terminate the consumer flag is set and the channel is closed.
    192 In the second example where all values need to be consumed, the main thread iterates over the closed channel to process any remaining values.
    193 
    194 
    195 In the \CFA solutions in Figure~\ref{l:cfa_chan_term}, shutdown is communicated directly to both producers and consumers via the @close@ call.
    196 In the first example where all values do not need to be consumed, both producers and consumers do not handle the resumption and finish once they receive the termination exception.
    197 The second \CFA example where all values must be consumed highlights how resumption is used with channel shutdown.
    198 The @Producer@ thread-main knows to stop producing when the @insert@ call on a closed channel raises exception @channel_closed@.
    199 The @Consumer@ thread-main knows to stop consuming after all elements of a closed channel are removed and the call to @remove@ would block.
    200 Hence, the consumer knows the moment the channel closes because a resumption exception is raised, caught, and ignored, and then control returns to @remove@ to return another item from the buffer.
    201 Only when the buffer is drained and the call to @remove@ would block, a termination exception is raised to stop consuming.
    202 The \CFA semantics allow users to communicate channel shutdown directly through the channel, without having to share extra state between threads.
    203 Additionally, when the channel needs to be drained, \CFA provides users with easy options for processing the leftover channel values in the main thread or in the consumer threads.
    204 If one wishes to consume the leftover values in the consumer threads in Go, extra synchronization between the main thread and the consumer threads is needed.
    205195
    206196\begin{figure}
     
    208198
    209199\begin{lrbox}{\myboxA}
     200\begin{Golang}[aboveskip=0pt,belowskip=0pt]
     201var channel chan int = make( chan int, 128 )
     202var prodJoin chan int = make( chan int, 4 )
     203var consJoin chan int = make( chan int, 4 )
     204var cons_done, prod_done bool = false, false;
     205func producer() {
     206        for {
     207                if prod_done { break }
     208                channel <- 5
     209        }
     210        prodJoin <- 0 // synch with main thd
     211}
     212
     213func consumer() {
     214        for {
     215                if cons_done { break }
     216                <- channel
     217        }
     218        consJoin <- 0 // synch with main thd
     219}
     220
     221
     222func main() {
     223        for j := 0; j < 4; j++ { go consumer() }
     224        for j := 0; j < 4; j++ { go producer() }
     225        time.Sleep( time.Second * 10 )
     226        prod_done = true
     227        for j := 0; j < 4 ; j++ { <- prodJoin }
     228        cons_done = true
     229        close(channel) // ensure no cons deadlock
     230        @for elem := range channel {@
     231                // process leftover values
     232        @}@
     233        for j := 0; j < 4; j++ { <- consJoin }
     234}
     235\end{Golang}
     236\end{lrbox}
     237
     238\begin{lrbox}{\myboxB}
    210239\begin{cfa}[aboveskip=0pt,belowskip=0pt]
    211 channel( size_t ) Channel{ ChannelSize };
    212 
     240channel( size_t ) chan{ 128 };
    213241thread Consumer {};
     242thread Producer {};
     243
     244void main( Producer & this ) {
     245        try {
     246                for ()
     247                        insert( chan, 5 );
     248        } catch( channel_closed * ) {
     249                // unhandled resume or full
     250        }
     251}
    214252void main( Consumer & this ) {
    215     try {
    216         for ( ;; )
    217             remove( Channel );
    218     @} catchResume( channel_closed * ) { @
    219     // handled resume => consume from chan
    220     } catch( channel_closed * ) {
    221         // empty or unhandled resume
    222     }
    223 }
    224 
    225 thread Producer {};
    226 void main( Producer & this ) {
    227     size_t count = 0;
    228     try {
    229         for ( ;; )
    230             insert( Channel, count++ );
    231     } catch ( channel_closed * ) {
    232         // unhandled resume or full
    233     }
    234 }
    235 
    236 int main( int argc, char * argv[] ) {
    237     Consumer c[Consumers];
    238     Producer p[Producers];
    239     sleep(Duration`s);
    240     close( Channel );
    241     return 0;
    242 }
     253        try {
     254                for () { int i = remove( chan ); }
     255        @} catchResume( channel_closed * ) {@
     256                // handled resume => consume from chan
     257        } catch( channel_closed * ) {
     258                // empty or unhandled resume
     259        }
     260}
     261int main() {
     262        Consumer c[4];
     263        Producer p[4];
     264        sleep( 10`s );
     265        close( chan );
     266}
     267
     268
     269
     270
     271
     272
     273
    243274\end{cfa}
    244275\end{lrbox}
    245276
    246 \begin{lrbox}{\myboxB}
    247 \begin{cfa}[aboveskip=0pt,belowskip=0pt]
    248 var cons_done, prod_done bool = false, false;
    249 var prodJoin chan int = make(chan int, Producers)
    250 var consJoin chan int = make(chan int, Consumers)
    251 
    252 func consumer( channel chan uint64 ) {
    253     for {
    254         if cons_done { break }
    255         <-channel
    256     }
    257     consJoin <- 0 // synch with main thd
    258 }
    259 
    260 func producer( channel chan uint64 ) {
    261     var count uint64 = 0
    262     for {
    263         if prod_done { break }
    264         channel <- count++
    265     }
    266     prodJoin <- 0 // synch with main thd
    267 }
    268 
    269 func main() {
    270     channel = make(chan uint64, ChannelSize)
    271     for j := 0; j < Consumers; j++ {
    272         go consumer( channel )
    273     }
    274     for j := 0; j < Producers; j++ {
    275         go producer( channel )
    276     }
    277     time.Sleep(time.Second * Duration)
    278     prod_done = true
    279     for j := 0; j < Producers ; j++ {
    280         <-prodJoin // wait for prods
    281     }
    282     cons_done = true
    283     close(channel) // ensure no cons deadlock
    284     @for elem := range channel { @
    285         // process leftover values
    286     @}@
    287     for j := 0; j < Consumers; j++{
    288         <-consJoin // wait for cons
    289     }
    290 }
    291 \end{cfa}
    292 \end{lrbox}
    293 
    294 \subfloat[\CFA style]{\label{l:cfa_chan_term}\usebox\myboxA}
     277\subfloat[Go style]{\label{l:go_chan_term}\usebox\myboxA}
    295278\hspace*{3pt}
    296279\vrule
    297280\hspace*{3pt}
    298 \subfloat[Go style]{\label{l:go_chan_term}\usebox\myboxB}
     281\subfloat[\CFA style]{\label{l:cfa_chan_term}\usebox\myboxB}
    299282\caption{Channel Termination Examples 1 and 2. Code specific to example 2 is highlighted.}
    300283\label{f:ChannelTermination}
    301284\end{figure}
    302285
    303 The final shutdown example uses channels to implement a barrier.
    304 It is shown in Figure~\ref{f:ChannelBarrierTermination}.
    305 The problem of implementing a barrier is chosen since threads are both producers and consumers on the barrier-internal channels, which removes the ability to easily synchronize producers before consumers during shutdown.
    306 As such, while the shutdown details will be discussed with this problem in mind, they are also applicable to other problems taht have individual threads both producing and consuming from channels.
    307 Both of these examples are implemented using \CFA syntax so that they can be easily compared.
    308 Figure~\ref{l:cfa_chan_bar} uses \CFA-style channel close semantics and Figure~\ref{l:go_chan_bar} uses Go-style close semantics.
    309 In this example it is infeasible to use the Go @close@ call since all threads are both potentially producers and consumers, causing panics on close to be unavoidable without complex synchronization.
    310 As such in Figure~\ref{l:go_chan_bar} to implement a flush routine for the buffer, a sentinel value of @-1@ has to be used to indicate to threads that they need to leave the barrier.
    311 This sentinel value has to be checked at two points.
     286Figure~\ref{l:go_chan_term} shows the Go solution.
     287Since some of the elements being passed through the channel are zero-valued, closing the channel in Go does not aid in communicating shutdown.
     288Instead, a different mechanism to communicate with the consumers and producers needs to be used.
     289Flag variables are common in Go-channel shutdown-code to avoid panics on a channel, meaning the channel shutdown has to be communicated with threads before it occurs.
     290Hence, the two flags @cons_done@ and @prod_done@ are used to communicate with the producers and consumers, respectively.
     291Furthermore, producers and consumers need to shutdown separately to ensure that producers terminate before the channel is closed to avoid panicking, and to avoid the case where all the consumers terminate first, which can result in a deadlock for producers if the channel is full.
     292The producer flag is set first;
     293then after all producers terminate, the consumer flag is set and the channel is closed leaving elements in the buffer.
     294To purge the buffer, a loop is added (red) that iterates over the closed channel to process any remaining values.
     295
     296Figure~\ref{l:cfa_chan_term} shows the \CFA solution.
     297Here, shutdown is communicated directly to both producers and consumers via the @close@ call.
     298A @Producer@ thread knows to stop producing when the @insert@ call on a closed channel raises exception @channel_closed@.
     299If a @Consumer@ thread ignores the first resumption exception from the @close@, the exception is reraised as a termination exception and elements are left in the buffer.
     300If a @Consumer@ thread handles the resumptions exceptions (red), control returns to complete the remove.
     301A @Consumer@ thread knows to stop consuming after all elements of a closed channel are removed and the consumer would block, which causes a termination raise of @channel_closed@.
     302The \CFA semantics allow users to communicate channel shutdown directly through the channel, without having to share extra state between threads.
     303Additionally, when the channel needs to be drained, \CFA provides users with easy options for processing the leftover channel values in the main thread or in the consumer threads.
     304
     305Figure~\ref{f:ChannelBarrierTermination} shows a final shutdown example using channels to implement a barrier.
     306A Go and \CFA style solution are presented but both are implemented using \CFA syntax so they can be easily compared.
     307Implementing a barrier is interesting because threads are both producers and consumers on the barrier-internal channels, @entryWait@ and @barWait@.
     308The outline for the barrier implementation starts by initially filling the @entryWait@ channel with $N$ tickets in the barrier constructor, allowing $N$ arriving threads to remove these values and enter the barrier.
     309After @entryWait@ is empty, arriving threads block when removing.
     310However, the arriving threads that entered the barrier cannot leave the barrier until $N$ threads have arrived.
     311Hence, the entering threads block on the empty @barWait@ channel until the $N$th arriving thread inserts $N-1$ elements into @barWait@ to unblock the $N-1$ threads calling @remove@.
     312The race between these arriving threads blocking on @barWait@ and the $N$th thread inserting values into @barWait@ does not affect correctness;
     313\ie an arriving thread may or may not block on channel @barWait@ to get its value.
     314Finally, the last thread to remove from @barWait@ with ticket $N-2$, refills channel @entryWait@ with $N$ values to start the next group into the barrier.
     315
     316Now, the two channels makes termination synchronization between producers and consumers difficult.
     317Interestingly, the shutdown details for this problem are also applicable to other problems with threads producing and consuming from the same channel.
     318The Go-style solution cannot use the Go @close@ call since all threads are both potentially producers and consumers, causing panics on close to be unavoidable without complex synchronization.
     319As such in Figure \ref{l:go_chan_bar}, a flush routine is needed to insert a sentinel value, @-1@, to inform threads waiting in the buffer they need to leave the barrier.
     320This sentinel value has to be checked at two points along the fast-path and sentinel values daisy-chained into the buffers.
    312321Furthermore, an additional flag @done@ is needed to communicate to threads once they have left the barrier that they are done.
    313 
    314 In the \CFA version~\ref{l:cfa_chan_bar}, the barrier shutdown results in an exception being thrown at threads operating on it, which informs the threads that they must terminate.
     322Also note that in the Go version~\ref{l:go_chan_bar}, the size of the barrier channels has to be larger than in the \CFA version to ensure that the main thread does not block when attempting to clear the barrier.
     323For The \CFA solution~\ref{l:cfa_chan_bar}, the barrier shutdown results in an exception being thrown at threads operating on it, to inform waiting threads they must leave the barrier.
    315324This avoids the need to use a separate communication method other than the barrier, and avoids extra conditional checks on the fast path of the barrier implementation.
    316 Also note that in the Go version~\ref{l:go_chan_bar}, the size of the barrier channels has to be larger than in the \CFA version to ensure that the main thread does not block when attempting to clear the barrier.
    317325
    318326\begin{figure}
     
    320328
    321329\begin{lrbox}{\myboxA}
     330\begin{cfa}[aboveskip=0pt,belowskip=0pt]
     331struct barrier {
     332        channel( int ) barWait, entryWait;
     333        int size;
     334};
     335void ?{}( barrier & this, int size ) with(this) {
     336        barWait{size + 1};   entryWait{size + 1};
     337        this.size = size;
     338        for ( i; size )
     339                insert( entryWait, i );
     340}
     341void wait( barrier & this ) with(this) {
     342        int ticket = remove( entryWait );
     343        @if ( ticket == -1 ) { insert( entryWait, -1 ); return; }@
     344        if ( ticket == size - 1 ) {
     345                for ( i; size - 1 )
     346                        insert( barWait, i );
     347                return;
     348        }
     349        ticket = remove( barWait );
     350        @if ( ticket == -1 ) { insert( barWait, -1 ); return; }@
     351        if ( size == 1 || ticket == size - 2 ) { // last ?
     352                for ( i; size )
     353                        insert( entryWait, i );
     354        }
     355}
     356void flush(barrier & this) with(this) {
     357        @insert( entryWait, -1 );   insert( barWait, -1 );@
     358}
     359enum { Threads = 4 };
     360barrier b{Threads};
     361@bool done = false;@
     362thread Thread {};
     363void main( Thread & this ) {
     364        for () {
     365          @if ( done ) break;@
     366                wait( b );
     367        }
     368}
     369int main() {
     370        Thread t[Threads];
     371        sleep(10`s);
     372        done = true;
     373        flush( b );
     374} // wait for threads to terminate
     375\end{cfa}
     376\end{lrbox}
     377
     378\begin{lrbox}{\myboxB}
    322379\begin{cfa}[aboveskip=0pt,belowskip=0pt]
    323380struct barrier {
     
    368425\end{lrbox}
    369426
    370 \begin{lrbox}{\myboxB}
    371 \begin{cfa}[aboveskip=0pt,belowskip=0pt]
    372 struct barrier {
    373         channel( int ) barWait, entryWait;
    374         int size;
    375 };
    376 void ?{}( barrier & this, int size ) with(this) {
    377         barWait{size + 1};   entryWait{size + 1};
    378         this.size = size;
    379         for ( i; size )
    380                 insert( entryWait, i );
    381 }
    382 void wait( barrier & this ) with(this) {
    383         int ticket = remove( entryWait );
    384         @if ( ticket == -1 ) { insert( entryWait, -1 ); return; }@
    385         if ( ticket == size - 1 ) {
    386                 for ( i; size - 1 )
    387                         insert( barWait, i );
    388                 return;
    389         }
    390         ticket = remove( barWait );
    391         @if ( ticket == -1 ) { insert( barWait, -1 ); return; }@
    392         if ( size == 1 || ticket == size - 2 ) { // last ?
    393                 for ( i; size )
    394                         insert( entryWait, i );
    395         }
    396 }
    397 void flush(barrier & this) with(this) {
    398         @insert( entryWait, -1 );   insert( barWait, -1 );@
    399 }
    400 enum { Threads = 4 };
    401 barrier b{Threads};
    402 @bool done = false;@
    403 thread Thread {};
    404 void main( Thread & this ) {
    405         for () {
    406           @if ( done ) break;@
    407                 wait( b );
    408         }
    409 }
    410 int main() {
    411         Thread t[Threads];
    412         sleep(10`s);
    413         done = true;
    414         flush( b );
    415 } // wait for threads to terminate
    416 \end{cfa}
    417 \end{lrbox}
    418 
    419 \subfloat[\CFA style]{\label{l:cfa_chan_bar}\usebox\myboxA}
     427\subfloat[Go style]{\label{l:go_chan_bar}\usebox\myboxA}
    420428\hspace*{3pt}
    421429\vrule
    422430\hspace*{3pt}
    423 \subfloat[Go style]{\label{l:go_chan_bar}\usebox\myboxB}
     431\subfloat[\CFA style]{\label{l:cfa_chan_bar}\usebox\myboxB}
    424432\caption{Channel Barrier Termination}
    425433\label{f:ChannelBarrierTermination}
  • doc/theses/colby_parsons_MMAth/text/waituntil.tex

    r2b78949 r8a930c03  
    1414The ability to wait for the first stall available without spinning can be done with concurrent tools that provide \gls{synch_multiplex}, the ability to wait synchronously for a resource or set of resources.
    1515
    16 % C_TODO: fill in citations in following section
    1716\section{History of Synchronous Multiplexing}
    1817There is a history of tools that provide \gls{synch_multiplex}.
    19 Some of the most well known include the set or unix system utilities signal(2)\cite{}, poll(2)\cite{}, and epoll(7)\cite{}, and the select statement provided by Go\cite{}.
     18Some of the most well known include the set of unix system utilities: select(2)\cite{linux:select}, poll(2)\cite{linux:poll}, and epoll(7)\cite{linux:epoll}, and the select statement provided by Go\cite{go:selectref}.
    2019
    2120Before one can examine the history of \gls{synch_multiplex} implementations in detail, the preceding theory must be discussed.
     
    2726If a guard is false then the resource it guards is considered to not be in the set of resources being waited on.
    2827Guards can be simulated using if statements, but to do so requires \[2^N\] if cases, where @N@ is the number of guards.
    29 This transformation from guards to if statements will be discussed further in Section~\ref{}. % C_TODO: fill ref when writing semantics section later
     28The equivalence between guards and exponential if statements comes from an Occam ALT statement rule~\cite{Roscoe88}, which is presented in \CFA syntax in Figure~\ref{f:wu_if}.
     29Providing guards allows for easy toggling of waituntil clauses without introducing repeated code.
     30
     31\begin{figure}
     32\begin{cfa}
     33when( predicate ) waituntil( A ) {}
     34or waituntil( B ) {}
     35// ===
     36if ( predicate ) {
     37    waituntil( A ) {}
     38    or waituntil( B ) {}
     39} else {
     40    waituntil( B ) {}
     41}
     42\end{cfa}
     43\caption{Occam's guard to if statement equivalence shown in \CFA syntax.}
     44\label{f:wu_if}
     45\end{figure}
    3046
    3147Switching to implementations, it is important to discuss the resources being multiplexed.
     
    4460It is worth noting these \gls{synch_multiplex} tools mentioned so far interact directly with the operating system and are often used to communicate between processes.
    4561Later \gls{synch_multiplex} started to appear in user-space to support fast multiplexed concurrent communication between threads.
    46 An early example of \gls{synch_multiplex} is the select statement in Ada.
     62An early example of \gls{synch_multiplex} is the select statement in Ada~\cite[\S~9.7]{Ichbiah79}.
    4763The select statement in Ada allows a task to multiplex over some subset of its own methods that it would like to @accept@ calls to.
    4864Tasks in Ada can be thought of as threads which are an object of a specific class, and as such have methods, fields, etc.
     
    5369The @else@ changes the synchronous multiplexing to asynchronous multiplexing.
    5470If an @else@ clause is in a select statement and no calls to the @accept@ed methods are immediately available the code block associated with the @else@ is run and the task does not block.
    55 The most popular example of user-space \gls{synch_multiplex} is Go with their select statement.
     71
     72A popular example of user-space \gls{synch_multiplex} is Go with their select statement~\cite{go:selectref}.
    5673Go's select statement operates on channels and has the same exclusive-or semantics as the ALT primitive from Occam, and has associated code blocks for each clause like ALT and Ada.
    5774However, unlike Ada and ALT, Go does not provide any guards for their select statement cases.
    5875Go provides a timeout utility and also provides a @default@ clause which has the same semantics as Ada's @else@ clause.
     76
     77\uC provides \gls{synch_multiplex} over futures with their @_Select@ statement and Ada-style \gls{synch_multiplex} over monitor methods with their @_Accept@ statement~\cite{uC++}.
     78Their @_Accept@ statement builds upon the select statement offered by Ada, by offering both @and@ and @or@ semantics, which can be used together in the same statement.
     79These semantics are also supported for \uC's @_Select@ statement.
     80This enables fully expressive \gls{synch_multiplex} predicates.
     81
     82There are many other languages that provide \gls{synch_multiplex}, including Rust's @select!@ over futures~\cite{rust:select}, OCaml's @select@ over channels~\cite{ocaml:channe}, and C++14's @when_any@ over futures~\cite{cpp:whenany}.
     83Note that while C++14 and Rust provide \gls{synch_multiplex}, their implemetations leave much to be desired as they both rely on busy-waiting polling to wait on multiple resources.
    5984
    6085\section{Other Approaches to Synchronous Multiplexing}
     
    6994If the requests for the other resources need to be retracted, the burden falls on the programmer to determine how to synchronize appropriately to ensure that only one resource is delivered.
    7095
    71 
    7296\section{\CFA's Waituntil Statement}
    73 
    74 
    75 
     97The new \CFA \gls{synch_multiplex} utility introduced in this work is the @waituntil@ statement.
     98There is a @waitfor@ statement in \CFA that supports Ada-style \gls{synch_multiplex} over monitor methods, so this @waituntil@ focuses on synchronizing over other resources.
     99All of the \gls{synch_multiplex} features mentioned so far are monomorphic, only supporting one resource to wait on, select(2) supports file descriptors, Go's select supports channel operations, \uC's select supports futures, and Ada's select supports monitor method calls.
     100The waituntil statement in \CFA is polymorphic and provides \gls{synch_multiplex} over any objects that satisfy the trait in Figure~\ref{f:wu_trait}.
     101
     102\begin{figure}
     103\begin{cfa}
     104forall(T & | sized(T))
     105trait is_selectable {
     106    // For registering a waituntil stmt on a selectable type
     107    bool register_select( T &, select_node & );
     108
     109    // For unregistering a waituntil stmt from a selectable type
     110    bool unregister_select( T &, select_node & );
     111
     112    // on_selected is run on the selecting thread prior to executing the statement associated with the select_node
     113    void on_selected( T &, select_node & );
     114};
     115\end{cfa}
     116\caption{Trait for types that can be passed into \CFA's waituntil statement.}
     117\label{f:wu_trait}
     118\end{figure}
     119
     120Currently locks, channels, futures and timeouts are supported by the waituntil statement, but this will be expanded as other use cases arise.
     121The waituntil statement supports guarded clauses, like Ada, and Occam, supports both @or@, and @and@ semantics, like \uC, and provides an @else@ for asynchronous multiplexing. An example of \CFA waituntil usage is shown in Figure~\ref{f:wu_example}. In Figure~\ref{f:wu_example} the waituntil statement is waiting for either @Lock@ to be available or for a value to be read from @Channel@ into @i@ and for @Future@ to be fulfilled. The semantics of the waituntil statement will be discussed in detail in the next section.
     122
     123\begin{figure}
     124\begin{cfa}
     125future(int) Future;
     126channel(int) Channel;
     127owner_lock Lock;
     128int i = 0;
     129
     130waituntil( Lock ) { ... }
     131or when( i == 0 ) waituntil( i << Channel ) { ... }
     132and waituntil( Future ) { ... }
     133\end{cfa}
     134\caption{Example of \CFA's waituntil statement}
     135\label{f:wu_example}
     136\end{figure}
     137
     138\section{Waituntil Semantics}
     139There are two parts of the waituntil semantics to discuss, the semantics of the statement itself, \ie @and@, @or@, @when@ guards, and @else@ semantics, and the semantics of how the waituntil interacts with types like channels, locks and futures.
     140To start, the semantics of the statement itself will be discussed.
     141
     142\subsection{Waituntil Statement Semantics}
     143The @or@ semantics are the most straightforward and nearly match those laid out in the ALT statement from Occam, the clauses have an exclusive-or relationship where the first one to be available will be run and only one clause is run.
     144\CFA's @or@ semantics differ from ALT semantics in one respect, instead of randomly picking a clause when multiple are available, the clause that appears first in the order of clauses will be picked.
     145\eg in the following example, if @foo@ and @bar@ are both available, @foo@ will always be selected since it comes first in the order of waituntil clauses.
     146\begin{cfa}
     147future(int) bar;
     148future(int) foo;
     149waituntil( foo ) { ... }
     150or waituntil( bar ) { ... }
     151\end{cfa}
     152
     153The @and@ semantics match the @and@ semantics used by \uC.
     154When multiple clauses are joined by @and@, the waituntil will make a thread wait for all to be available, but will run the corresponding code blocks \emph{as they become available}.
     155As @and@ clauses are made available, the thread will be woken to run those clauses' code blocks and then the thread will wait again until all clauses have been run.
     156This allows work to be done in parallel while synchronizing over a set of resources, and furthermore gives a good reason to use the @and@ operator.
     157If the @and@ operator waited for all clauses to be available before running, it would not provide much more use that just acquiring those resources one by one in subsequent lines of code.
     158The @and@ operator binds more tightly than the @or@ operator.
     159To give an @or@ operator higher precedence brackets can be used.
     160\eg the following waituntil unconditionally waits for @C@ and one of either @A@ or @B@, since the @or@ is given higher precendence via brackets.
     161\begin{cfa}
     162(waituntil( A ) { ... }
     163or waituntil( B ) { ... } )
     164and waituntil( C ) { ... }
     165\end{cfa}
     166
     167The guards in the waituntil statement are called @when@ clauses.
     168The @when@ clause is passed a boolean expression.
     169All the @when@ boolean expressions are evaluated before the waituntil statement is run.
     170The guards in Occam's ALT effectively toggle clauses on and off, where a clause will only be evaluated and waited on if the corresponding guard is @true@.
     171The guards in the waituntil statement operate the same way, but require some nuance since both @and@ and @or@ operators are supported.
     172When a guard is false and a clause is removed, it can be thought of as removing that clause and its preceding operator from the statement.
     173\eg in the following example the two waituntil statements are semantically the same.
     174\begin{cfa}
     175when(true) waituntil( A ) { ... }
     176or when(false) waituntil( B ) { ... }
     177and waituntil( C ) { ... }
     178// ===
     179waituntil( A ) { ... }
     180and waituntil( C ) { ... }
     181\end{cfa}
     182
     183The @else@ clause on the waituntil has identical semantics to the @else@ clause in Ada.
     184If all resources are not immediately available and there is an @else@ clause, the @else@ clause is run and the thread will not block.
     185
     186\subsection{Waituntil Type Semantics}
     187As described earlier, to support interaction with the waituntil statement a type must support the trait shown in Figure~\ref{f:wu_trait}.
     188The waituntil statement expects types to register and unregister themselves via calls to @register_select@ and @unregister_select@ respectively.
     189When a resource becomes available, @on_selected@ is run.
     190Many types may not need @on_selected@, but it is provided since some types may need to check and set things before the resource can be accessed in the code block.
     191The register/unregister routines in the trait return booleans.
     192The return value of @register_select@ is @true@ if the resource is immediately available, and @false@ otherwise.
     193The return value of @unregister_select@ is @true@ if the corresponding code block should be run after unregistration and @false@ otherwise.
     194The routine @on_selected@, and the return value of @unregister_select@ were needed to support channels as a resource.
     195More detail on channels and their interaction with waituntil will be discussed in Section~\ref{s:wu_chans}.
     196
     197\section{Waituntil Implementation}
     198The waituntil statement is not inherently complex, and can be described as a few steps.
     199The complexity of the statement comes from the consideration of race conditions and synchronization needed when supporting various primitives.
     200The basic steps that the waituntil statement follows are the following.
     201
     202First the waituntil statement creates a @select_node@ per resource that is being waited on.
     203The @select_node@ is an object that stores the waituntil data pertaining to one of the resources.
     204Then, each @select_node@ is then registered with the corresponding resource.
     205The thread executing the waituntil then enters a loop that will loop until the entire waituntil statement being satisfied.
     206In each iteration of the loop the thread attempts to block.
     207If any clauses are satified the block will fail and the thread will proceed, otherwise the block succeeds.
     208After proceeding past the block all clauses are checked for completion and the completed clauses have their code blocks run.
     209Once the thread escapes the loop, the @select_nodes@ are unregistered from the resources.
     210In the case where the block suceeds, the thread will be woken by the thread that marks one of the resources as available.
     211Pseudocode detailing these steps is presented in the following code block.
     212
     213\begin{cfa}
     214select_nodes s[N]; // N select nodes
     215for ( node in s )
     216    register_select( resource, node );
     217while( statement not satisfied ) {
     218    // try to block
     219    for ( resource in waituntil statement )
     220        if ( resource is avail ) run code block
     221}
     222for ( node in s )
     223    unregister_select( resource, node );
     224\end{cfa}
     225
     226These steps give a basic, but mildly inaccurate overview of how the statement works.
     227Digging into some parts of the implementation will shed light on more of the specifics and provide some accuracy.
     228
     229\subsection{Locks}
     230Locks are one of the resources supported in the waituntil statement.
     231When a thread waits on multiple locks via a waituntil, it enqueues a @select_node@ in each of the lock's waiting queues.
     232When a @select_node@ reaches the front of the queue and gains ownership of a lock, the blocked thread is notified.
     233The lock will be held until the node is unregistered.
     234To prevent the waiting thread from holding many locks at once and potentially introducing a deadlock, the node is unregistered right after the corresponding code block is executed.
     235This prevents deadlocks since the waiting thread will never hold a lock while waiting on another resource.
     236As such the only nodes unregistered at the end are the ones that have not run.
     237
     238\subsection{Timeouts}
     239Timeouts in the waituntil take the form of a duration being passed to a @sleep@ or @timeout@ call.
     240An example is shown in the following code.
     241
     242\begin{cfa}
     243waituntil( sleep( 1`ms ) ) {}
     244waituntil( timeout( 1`s ) ) {} or waituntil( timeout( 2`s ) ) {}
     245waituntil( timeout( 1`ns ) ) {} and waituntil( timeout( 2`s ) ) {}
     246\end{cfa}
     247
     248The timeout implementation highlights a key part of the waituntil semantics, the expression is evaluated before the waituntil runs.
     249As such calls to @sleep@ and @timeout@ do not block, but instead return a type that supports the @is_selectable@ trait.
     250This mechanism is needed for types that want to support multiple operations such as channels that support reading and writing.
     251
     252\subsection{Channels}\label{s:wu_chans}
     253To support both waiting on both reading and writing to channels, the opperators @?<<?@ and @?>>?@ are used to show reading and writing to a channel respectively, where the lefthand operand is the value and the righthand operand is the channel.
     254Channels require significant complexity to wait on for a few reasons.
     255The first reason is that reading or writing to a channel is a mutating operation.
     256What this means is that if a read or write to a channel occurs, the state of the channel has changed.
     257In comparison, for standard locks and futures, if a lock is acquired then released or a future is ready but not accessed, the states of the lock and the future are not modified.
     258In this way if a waituntil over locks or futures have some resources available that were not consumed, it is not an issue.
     259However, if a thread modifies a channel on behalf of a thread blocked on a waituntil statement, it is important that the corresponding waituntil code block is run, otherwise there is a potentially erroneous mismatch between the channel state and associated side effects.
     260As such, the @unregister_select@ routine has a boolean return that is used by channels to indicate when the operation was completed but the block was not run yet.
     261As such some channel code blocks may be run as part of the unregister.
     262Furthermore if there are both @and@ and @or@ operators, the @or@ operators stop behaving like exclusive-or semantics since this race between operations and unregisters exists.
     263
     264It was deemed important that exclusive-or semantics were maintained when only @or@ operators were used, so this situation has been special-cased, and is handled by having all clauses race to set a value \emph{before} operating on the channel.
     265This approach is infeasible in the case where @and@ and @or@ operators are used.
     266To show this consider the following waituntil statement.
     267
     268\begin{cfa}
     269waituntil( i >> A ) {} and waituntil( i >> B ) {}
     270or waituntil( i >> C ) {} and waituntil( i >> D ) {}
     271\end{cfa}
     272
     273If exclusive-or semantics were followed, this waituntil would only run the code blocks for @A@ and @B@, or the code blocks for @C@ and @D@.
     274However, to race before operation completion in this case introduces a race whose complexity increases with the size of the waituntil statement.
     275In the example above, for @i@ to be inserted into @C@, to ensure the exclusive-or it must be ensured that @i@ can also be inserted into @D@.
     276Furthermore, the race for the @or@ would also need to be won.
     277However, due to TOCTOU issues, one cannot know that all resources are available without acquiring all the internal locks of channels in the subtree.
     278This is not a good solution for two reasons.
     279It is possible that once all the locks are acquired that the subtree is not satisfied and they must all be released.
     280This would incur high cost for signalling threads and also heavily increase contention on internal channel locks.
     281Furthermore, the waituntil statement is polymorphic and can support resources that do not have internal locks, which also makes this approach infeasible.
     282As such, the exclusive-or semantics are lost when using both @and@ and @or@ operators since they can not be supported without significant complexity and hits to waituntil statement performance.
     283
     284The mechanism by which the predicate of the waituntil is checked is discussed in more detail in Section~\ref{s:wu_guards}.
     285
     286Another consideration introduced by channels is that supporting both reading and writing to a channel in a waituntil means that one waituntil clause may be the notifier for another waituntil clause.
     287This becomes a problem when dealing with the special-cased @or@ where the clauses need to win a race to operate on a channel.
     288When you have both a special-case @or@ inserting on one thread and another special-case @or@ consuming is blocked on another thread there is not one but two races that need to be consolidated by the inserting thread.
     289(The race can occur in the opposite case with a blocked producer and signalling consumer too.)
     290For them to know that the insert succeeded, they need to win the race for their own waituntil and win the race for the other waituntil.
     291Go solves this problem in their select statement by acquiring the internal locks of all channels before registering the select on the channels.
     292This eliminates the race since no other threads can operate on the blocked channel since its lock will be held.
     293
     294This approach is not used in \CFA since the waituntil is polymorphic.
     295Not all types in a waituntil have an internal lock, and when using non-channel types acquiring all the locks incurs extra uneeded overhead.
     296Instead this race is consolidated in \CFA in two phases by having an intermediate pending status value for the race.
     297This case is detectable, and if detected the thread attempting to signal will first race to set the race flag to be pending.
     298If it succeeds, it then attempts to set the consumer's race flag to its success value.
     299If the producer successfully sets the consumer race flag, then the operation can proceed, if not the signalling thread will set its own race flag back to the initial value.
     300If any other threads attempt to set the producer's flag and see a pending value, they will wait until the value changes before proceeding to ensure that in the case that the producer fails, the signal will not be lost.
     301This protocol ensures that signals will not be lost and that the two races can be resolved in a safe manner.
     302
     303Channels in \CFA have exception based shutdown mechanisms that the waituntil statement needs to support.
     304These exception mechanisms were what brought in the @on_selected@ routine.
     305This routine is needed by channels to detect if they are closed upon waking from a waituntil statement, to ensure that the appropriate behaviour is taken.
     306
     307\subsection{Guards and Statement Predicate}\label{s:wu_guards}
     308Checking for when a synchronous multiplexing utility is done is trivial when it has an or/xor relationship, since any resource becoming available means that the blocked thread can proceed.
     309In \uC and \CFA, their \gls{synch_multiplex} utilities involve both an @and@ and @or@ operator, which make the problem of checking for completion of the statement more difficult.
     310
     311In the \uC @_Select@ statement, they solve this problem by constructing a tree of the resources, where the internal nodes are operators and the leafs are the resources.
     312The internal nodes also store the status of each of the subtrees beneath them.
     313When resources become available, their status is modified and the status of the leaf nodes percolate into the internal nodes update the state of the statement.
     314Once the root of the tree has both subtrees marked as @true@ then the statement is complete.
     315As an optimization, when the internal nodes are updated, their subtrees marked as @true@ are effectively pruned and are not touched again.
     316To support \uC's @_Select@ statement guards, the tree prunes the branch if the guard is false.
     317
     318The \CFA waituntil statement blocks a thread until a set of resources have become available that satisfy the underlying predicate.
     319The waiting condition of the waituntil statement can be represented as a predicate over the resources, joined by the waituntil operators, where a resource is @true@ if it is available, and @false@ otherwise.
     320In \CFA, this representation is used as the mechanism to check if a thread is done waiting on the waituntil.
     321Leveraging the compiler, a routine is generated per waituntil that is passed the statuses of the resources and returns a boolean that is @true@ when the waituntil is done, and false otherwise.
     322To support guards on the \CFA waituntil statement, the status of a resource disabled by a guard is set to ensure that the predicate function behaves as if that resource is no longer part of the predicate.
     323
     324In \uC's @_Select@, it supports operators both inside and outside the clauses of their statement.
     325\eg in the following example the code blocks will run once their corresponding predicate inside the round braces is satisfied.
     326
     327% C_TODO put this is uC++ code style not cfa-style
     328\begin{cfa}
     329Future_ISM<int> A, B, C, D;
     330_Select( A || B && C ) { ... }
     331and _Select( D && E ) { ... }
     332\end{cfa}
     333
     334This is more expressive that the waituntil statement in \CFA.
     335In \CFA, since the waituntil statement supports more resources than just futures, implmenting operators inside clauses was avoided for a few reasons.
     336As an example, suppose \CFA supported operators inside clauses and consider the code snippet in Figure~\ref{f:wu_inside_op}.
     337
     338\begin{figure}
     339\begin{cfa}
     340owner_lock A, B, C, D;
     341waituntil( A && B ) { ... }
     342or waituntil( C && D ) { ... }
     343\end{cfa}
     344\caption{Example of unsupported operators inside clauses in \CFA.}
     345\label{f:wu_inside_op}
     346\end{figure}
     347
     348If the waituntil in Figure~\ref{f:wu_inside_op} works with the same semantics as described and acquires each lock as it becomes available, it opens itself up to possible deadlocks since it is now holding locks and waiting on other resources.
     349As such other semantics would be needed to ensure that this operation is safe.
     350One possibility is to use \CC's @scoped_lock@ approach that was described in Section~\ref{s:DeadlockAvoidance}, however the potential for livelock leaves much to be desired.
     351Another possibility would be to use resource ordering similar to \CFA's @mutex@ statement, but that alone is not sufficient if the resource ordering is not used everywhere.
     352Additionally, using resource ordering could conflict with other semantics of the waituntil statement.
     353To show this conflict, consider if the locks in Figure~\ref{f:wu_inside_op} were ordered @D@, @B@, @C@, @A@.
     354If all the locks are available, it becomes complex to both respect the ordering of the waituntil in Figure~\ref{f:wu_inside_op} when choosing which code block to run and also respect the lock ordering of @D@, @B@, @C@, @A@ at the same time.
     355One other way this could be implemented is to wait until all resources for a given clause are available before proceeding to acquire them, but this also quickly becomes a poor approach.
     356This approach won't work due to TOCTOU issues, as it is not possible to ensure that the full set resources are available without holding them all first.
     357Operators inside clauses in \CFA could potentially be implemented with careful circumvention of the problems involved, but it was not deemed an important feature when taking into account the runtime cost that would need to be paid to handle these situations.
     358The problem of operators inside clauses also becomes a difficult issue to handle when supporting channels.
     359If internal operators were supported, it would require some way to ensure that channels with internal operators are modified on if and only if the corresponding code block is run, but that is not feasible due to reasons described in the exclusive-or portion of Section~\ref{s:wu_chans}.
     360
     361\section{Waituntil Performance}
     362The two \gls{synch_multiplex} utilities that are in the realm of comparability with the \CFA waituntil statement are the Go @select@ statement and the \uC @_Select@ statement.
     363As such, two microbenchmarks are presented, one for Go and one for \uC to contrast the systems.
     364The similar utilities discussed at the start of this chapter in C, Ada, Rust, \CC, and OCaml are either not meaningful or feasible to benchmark against.
     365The select(2) and related utilities in C are not comparable since they are system calls that go into the kernel and operate on file descriptors, whereas the waituntil exists solely in userspace.
     366Ada's @select@ only operates on methods, which is done in \CFA via the @waitfor@ utility so it is not feasible to benchmark against the @waituntil@, which cannot wait on the same resource.
     367Rust and \CC only offer a busy-wait based approach which is not meaningly comparable to a blocking approach.
     368OCaml's @select@ waits on channels that are not comparable with \CFA and Go channels, which makes the OCaml @select@ infeasible to compare it with Go's @select@ and \CFA's @waituntil@.
     369Given the differences in features, polymorphism, and expressibility between the waituntil and @select@, and @_Select@, the aim of the microbenchmarking in this chapter is to show that these implementations lie in the same realm of performance, not to pick a winner.
     370
     371\subsection{Channel Benchmark}
     372The channel microbenchmark compares \CFA's waituntil and Go's select, where the resource being waited on is a set of channels.
     373
     374%C_TODO explain benchmark
     375
     376%C_TODO show results
     377
     378%C_TODO discuss results
     379
     380\subsection{Future Benchmark}
     381The future benchmark compares \CFA's waituntil with \uC's @_Select@, with both utilities waiting on futures.
     382
     383%C_TODO explain benchmark
     384
     385%C_TODO show results
     386
     387%C_TODO discuss results
  • doc/theses/colby_parsons_MMAth/thesis.tex

    r2b78949 r8a930c03  
    111111    colorlinks=true,        % false: boxed links; true: colored links
    112112    linkcolor=blue,         % color of internal links
    113     citecolor=blue,        % color of links to bibliography
     113    citecolor=blue,         % color of links to bibliography
    114114    filecolor=magenta,      % color of file links
    115     urlcolor=cyan           % color of external links
     115    urlcolor=cyan,          % color of external links
     116    breaklinks=true
    116117}
    117118\ifthenelse{\boolean{PrintVersion}}{   % for improved print quality, change some hyperref options
     
    126127% \usepackage[acronym]{glossaries}
    127128\usepackage[automake,toc,abbreviations]{glossaries-extra} % Exception to the rule of hyperref being the last add-on package
     129\renewcommand*{\glstextformat}[1]{\textcolor{black}{#1}}
    128130% If glossaries-extra is not in your LaTeX distribution, get it from CTAN (http://ctan.org/pkg/glossaries-extra),
    129131% although it's supposed to be in both the TeX Live and MikTeX distributions. There are also documentation and
  • doc/user/figures/EHMHierarchy.fig

    r2b78949 r8a930c03  
    2929        1 1 1.00 60.00 90.00
    3030         4950 1950 4950 1725
    31 4 1 0 50 -1 0 13 0.0000 2 135 225 1950 1650 IO\001
    32 4 1 0 50 -1 0 13 0.0000 2 135 915 4950 1650 Arithmetic\001
    33 4 1 0 50 -1 0 13 0.0000 2 150 330 1350 2100 File\001
    34 4 1 0 50 -1 0 13 0.0000 2 135 735 2550 2100 Network\001
    35 4 1 0 50 -1 0 13 0.0000 2 180 1215 3750 2100 DivideByZero\001
    36 4 1 0 50 -1 0 13 0.0000 2 150 810 4950 2100 Overflow\001
    37 4 1 0 50 -1 0 13 0.0000 2 150 915 6000 2100 Underflow\001
    38 4 1 0 50 -1 0 13 0.0000 2 180 855 3450 1200 Exception\001
     314 1 0 50 -1 0 12 0.0000 2 135 225 1950 1650 IO\001
     324 1 0 50 -1 0 12 0.0000 2 135 915 4950 1650 Arithmetic\001
     334 1 0 50 -1 0 12 0.0000 2 150 330 1350 2100 File\001
     344 1 0 50 -1 0 12 0.0000 2 135 735 2550 2100 Network\001
     354 1 0 50 -1 0 12 0.0000 2 180 1215 3750 2100 DivideByZero\001
     364 1 0 50 -1 0 12 0.0000 2 150 810 4950 2100 Overflow\001
     374 1 0 50 -1 0 12 0.0000 2 150 915 6000 2100 Underflow\001
     384 1 0 50 -1 0 12 0.0000 2 180 855 3450 1200 Exception\001
  • doc/user/user.tex

    r2b78949 r8a930c03  
    1111%% Created On       : Wed Apr  6 14:53:29 2016
    1212%% Last Modified By : Peter A. Buhr
    13 %% Last Modified On : Mon Aug 22 23:43:30 2022
    14 %% Update Count     : 5503
     13%% Last Modified On : Mon Jun  5 21:18:29 2023
     14%% Update Count     : 5521
    1515%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    1616
     
    108108\huge \CFA Team (past and present) \medskip \\
    109109\Large Andrew Beach, Richard Bilson, Michael Brooks, Peter A. Buhr, Thierry Delisle, \smallskip \\
    110 \Large Glen Ditchfield, Rodolfo G. Esteves, Aaron Moss, Colby Parsons, Rob Schluntz, \smallskip \\
    111 \Large Fangren Yu, Mubeen Zulfiqar
     110\Large Glen Ditchfield, Rodolfo G. Esteves, Jiada Liang, Aaron Moss, Colby Parsons \smallskip \\
     111\Large Rob Schluntz, Fangren Yu, Mubeen Zulfiqar
    112112}% author
    113113
     
    169169Like \Index*[C++]{\CC{}}, there may be both old and new ways to achieve the same effect.
    170170For example, the following programs compare the C, \CFA, and \CC I/O mechanisms, where the programs output the same result.
    171 \begin{flushleft}
    172 \begin{tabular}{@{}l@{\hspace{1em}}l@{\hspace{1em}}l@{}}
    173 \multicolumn{1}{@{}c@{\hspace{1em}}}{\textbf{C}}        & \multicolumn{1}{c}{\textbf{\CFA}}     & \multicolumn{1}{c@{}}{\textbf{\CC}}   \\
     171\begin{center}
     172\begin{tabular}{@{}lll@{}}
     173\multicolumn{1}{@{}c}{\textbf{C}}       & \multicolumn{1}{c}{\textbf{\CFA}}     & \multicolumn{1}{c@{}}{\textbf{\CC}}   \\
    174174\begin{cfa}[tabsize=3]
    175175#include <stdio.h>$\indexc{stdio.h}$
     
    199199\end{cfa}
    200200\end{tabular}
    201 \end{flushleft}
     201\end{center}
    202202While \CFA I/O \see{\VRef{s:StreamIOLibrary}} looks similar to \Index*[C++]{\CC{}}, there are important differences, such as automatic spacing between variables and an implicit newline at the end of the expression list, similar to \Index*{Python}~\cite{Python}.
    203203
     
    856856still works.
    857857Nevertheless, reversing the default action would have a non-trivial effect on case actions that compound, such as the above example of processing shell arguments.
    858 Therefore, to preserve backwards compatibility, it is necessary to introduce a new kind of ©switch© statement, called \Indexc{choose}, with no implicit fall-through semantics and an explicit fall-through if the last statement of a case-clause ends with the new keyword \Indexc{fallthrough}/\Indexc{fallthru}, \eg:
     858Therefore, to preserve backwards compatibility, it is necessary to introduce a new kind of ©switch© statement, called \Indexc{choose}, with no implicit fall-through semantics and an explicit fall-through if the last statement of a case-clause ends with the new keyword \Indexc{fallthrough}/\-\Indexc{fallthru}, \eg:
    859859\begin{cfa}
    860860®choose® ( i ) {
     
    11671167\end{cfa}
    11681168\end{itemize}
    1169 \R{Warning}: specifying the down-to range maybe unexcepted because the loop control \emph{implicitly} switches the L and H values (and toggles the increment/decrement for I):
     1169\R{Warning}: specifying the down-to range maybe unexpected because the loop control \emph{implicitly} switches the L and H values (and toggles the increment/decrement for I):
    11701170\begin{cfa}
    11711171for ( i; 1 ~ 10 )       ${\C[1.5in]{// up range}$
     
    11731173for ( i; ®10 -~ 1® )    ${\C{// \R{WRONG down range!}}\CRT}$
    11741174\end{cfa}
    1175 The reason for this sematics is that the range direction can be toggled by adding/removing the minus, ©'-'©, versus interchanging the L and H expressions, which has a greater chance of introducing errors.
     1175The reason for this semantics is that the range direction can be toggled by adding/removing the minus, ©'-'©, versus interchanging the L and H expressions, which has a greater chance of introducing errors.
    11761176
    11771177
     
    22562256Days days = Mon; // enumeration type declaration and initialization
    22572257\end{cfa}
    2258 The set of enums are injected into the variable namespace at the definition scope.
    2259 Hence, enums may be overloaded with enum/variable/function names.
    2260 \begin{cfa}
     2258The set of enums is injected into the variable namespace at the definition scope.
     2259Hence, enums may be overloaded with variable, enum, and function names.
     2260\begin{cfa}
     2261int Foo;                        $\C{// type/variable separate namespaces}$
    22612262enum Foo { Bar };
    22622263enum Goo { Bar };       $\C[1.75in]{// overload Foo.Bar}$
    2263 int Foo;                        $\C{// type/variable separate namespace}$
    22642264double Bar;                     $\C{// overload Foo.Bar, Goo.Bar}\CRT$
    22652265\end{cfa}
     
    23012301Hence, the value of enum ©Mon© is 0, ©Tue© is 1, ...\,, ©Sun© is 6.
    23022302If an enum value is specified, numbering continues by one from that value for subsequent unnumbered enums.
    2303 If an enum value is an expression, the compiler performs constant-folding to obtain a constant value.
     2303If an enum value is a \emph{constant} expression, the compiler performs constant-folding to obtain a constant value.
    23042304
    23052305\CFA allows other integral types with associated values.
     
    23132313\begin{cfa}
    23142314// non-integral numeric
    2315 enum( ®double® ) Math { PI_2 = 1.570796, PI = 3.141597,  E = 2.718282 }
     2315enum( ®double® ) Math { PI_2 = 1.570796, PI = 3.141597, E = 2.718282 }
    23162316// pointer
    2317 enum( ®char *® ) Name { Fred = "Fred",  Mary = "Mary",  Jane = "Jane" };
     2317enum( ®char *® ) Name { Fred = "Fred",  Mary = "Mary", Jane = "Jane" };
    23182318int i, j, k;
    23192319enum( ®int *® ) ptr { I = &i,  J = &j,  K = &k };
    2320 enum( ®int &® ) ref { I = i,  J = j,  K = k };
     2320enum( ®int &® ) ref { I = i,   J = j,   K = k };
    23212321// tuple
    23222322enum( ®[int, int]® ) { T = [ 1, 2 ] };
     
    23612361\begin{cfa}
    23622362enum( char * ) Name2 { ®inline Name®, Jack = "Jack", Jill = "Jill" };
    2363 enum ®/* inferred */®  Name3 { ®inline Name2®, Sue = "Sue", Tom = "Tom" };
     2363enum ®/* inferred */® Name3 { ®inline Name2®, Sue = "Sue", Tom = "Tom" };
    23642364\end{cfa}
    23652365Enumeration ©Name2© inherits all the enums and their values from enumeration ©Name© by containment, and a ©Name© enumeration is a subtype of enumeration ©Name2©.
     
    38183818                                   "[ output-file (default stdout) ] ]";
    38193819                } // choose
    3820         } catch( ®Open_Failure® * ex; ex->istream == &in ) {
     3820        } catch( ®open_failure® * ex; ex->istream == &in ) { $\C{// input file errors}$
    38213821                ®exit® | "Unable to open input file" | argv[1];
    3822         } catch( ®Open_Failure® * ex; ex->ostream == &out ) {
     3822        } catch( ®open_failure® * ex; ex->ostream == &out ) { $\C{// output file errors}$
    38233823                ®close®( in );                                          $\C{// optional}$
    38243824                ®exit® | "Unable to open output file" | argv[2];
     
    40384038
    40394039\item
    4040 \Indexc{sepDisable}\index{manipulator!sepDisable@©sepDisable©} and \Indexc{sepEnable}\index{manipulator!sepEnable@©sepEnable©} toggle printing the separator.
     4040\Indexc{sepDisable}\index{manipulator!sepDisable@©sepDisable©} and \Indexc{sepEnable}\index{manipulator!sepEnable@©sepEnable©} globally toggle printing the separator.
    40414041\begin{cfa}[belowskip=0pt]
    40424042sout | sepDisable | 1 | 2 | 3; $\C{// turn off implicit separator}$
     
    40534053
    40544054\item
    4055 \Indexc{sepOn}\index{manipulator!sepOn@©sepOn©} and \Indexc{sepOff}\index{manipulator!sepOff@©sepOff©} toggle printing the separator with respect to the next printed item, and then return to the global separator setting.
     4055\Indexc{sepOn}\index{manipulator!sepOn@©sepOn©} and \Indexc{sepOff}\index{manipulator!sepOff@©sepOff©} locally toggle printing the separator with respect to the next printed item, and then return to the global separator setting.
    40564056\begin{cfa}[belowskip=0pt]
    40574057sout | 1 | sepOff | 2 | 3; $\C{// turn off implicit separator for the next item}$
     
    412941296
    41304130\end{cfa}
    4131 Note, a terminating ©nl© is merged (overrides) with the implicit newline at the end of the ©sout© expression, otherwise it is impossible to to print a single newline
     4131Note, a terminating ©nl© is merged (overrides) with the implicit newline at the end of the ©sout© expression, otherwise it is impossible to print a single newline
    41324132\item
    41334133\Indexc{nlOn}\index{manipulator!nlOn@©nlOn©} implicitly prints a newline at the end of each output expression.
  • driver/cc1.cc

    r2b78949 r8a930c03  
    1010// Created On       : Fri Aug 26 14:23:51 2005
    1111// Last Modified By : Peter A. Buhr
    12 // Last Modified On : Thu Feb 17 18:04:23 2022
    13 // Update Count     : 422
     12// Last Modified On : Fri Jun  9 11:36:44 2023
     13// Update Count     : 423
    1414//
    1515
     
    385385                                // strip inappropriate flags with an argument
    386386
    387                         } else if ( arg == "-auxbase" || arg == "-auxbase-strip" || arg == "-dumpbase" || arg == "-dumpdir" ) {
     387                        } else if ( arg == "-auxbase" || arg == "-auxbase-strip" ||
     388                                                arg == "-dumpbase" || arg == "-dumpbase-ext" || arg == "-dumpdir" ) {
    388389                                i += 1;
    389390                                #ifdef __DEBUG_H__
  • driver/cfa.cc

    r2b78949 r8a930c03  
    1010// Created On       : Tue Aug 20 13:44:49 2002
    1111// Last Modified By : Peter A. Buhr
    12 // Last Modified On : Tue May 23 16:22:47 2023
    13 // Update Count     : 477
     12// Last Modified On : Tue May 30 10:47:52 2023
     13// Update Count     : 478
    1414//
    1515
     
    329329        #endif // __x86_64__
    330330
     331        // ARM -mno-outline-atomics => use LL/SC instead of calls to atomic routines: __aarch64_swp_acq_rel, __aarch64_cas8_acq_rel
     332        // ARM -march=armv8.2-a+lse => generate Arm LSE extension instructions SWAP and CAS
     333        // https://community.arm.com/developer/tools-software/tools/b/tools-software-ides-blog/posts/making-the-most-of-the-arm-architecture-in-gcc-10
    331334        #ifdef __ARM_ARCH
    332335        args[nargs++] = "-mno-outline-atomics";                         // use ARM LL/SC instructions for atomics
  • libcfa/src/Makefile.am

    r2b78949 r8a930c03  
    1111## Created On       : Sun May 31 08:54:01 2015
    1212## Last Modified By : Peter A. Buhr
    13 ## Last Modified On : Fri Jul 16 16:00:40 2021
    14 ## Update Count     : 255
     13## Last Modified On : Thu May 25 15:20:04 2023
     14## Update Count     : 259
    1515###############################################################################
    1616
     
    5959        bits/queue.hfa \
    6060        bits/sequence.hfa \
     61        concurrency/atomic.hfa \
    6162        concurrency/iofwd.hfa \
    6263        concurrency/barrier.hfa \
     
    115116        concurrency/kernel/fwd.hfa \
    116117        concurrency/mutex_stmt.hfa \
    117     concurrency/channel.hfa \
    118     concurrency/actor.hfa
     118        concurrency/channel.hfa \
     119        concurrency/actor.hfa
    119120
    120121inst_thread_headers_src = \
     
    127128        concurrency/monitor.hfa \
    128129        concurrency/mutex.hfa \
    129     concurrency/select.hfa \
     130        concurrency/select.hfa \
    130131        concurrency/thread.hfa
    131132
  • libcfa/src/bits/weakso_locks.cfa

    r2b78949 r8a930c03  
    3030bool register_select( blocking_lock & this, select_node & node ) { return false; }
    3131bool unregister_select( blocking_lock & this, select_node & node ) { return false; }
    32 bool on_selected( blocking_lock & this, select_node & node ) { return true; }
     32void on_selected( blocking_lock & this, select_node & node ) {}
    3333
  • libcfa/src/bits/weakso_locks.hfa

    r2b78949 r8a930c03  
    6262bool register_select( blocking_lock & this, select_node & node ) OPTIONAL_THREAD;
    6363bool unregister_select( blocking_lock & this, select_node & node ) OPTIONAL_THREAD;
    64 bool on_selected( blocking_lock & this, select_node & node ) OPTIONAL_THREAD;
     64void on_selected( blocking_lock & this, select_node & node ) OPTIONAL_THREAD;
    6565
    6666//----------
     
    8080static inline bool   register_select( multiple_acquisition_lock & this, select_node & node ) { return register_select( (blocking_lock &)this, node ); }
    8181static inline bool   unregister_select( multiple_acquisition_lock & this, select_node & node ) { return unregister_select( (blocking_lock &)this, node ); }
    82 static inline bool   on_selected( multiple_acquisition_lock & this, select_node & node ) { return on_selected( (blocking_lock &)this, node ); }
     82static inline void   on_selected( multiple_acquisition_lock & this, select_node & node ) { on_selected( (blocking_lock &)this, node ); }
  • libcfa/src/concurrency/actor.hfa

    r2b78949 r8a930c03  
    1313#endif // CFA_DEBUG
    1414
     15#define DEBUG_ABORT( cond, string ) CFA_DEBUG( if ( cond ) abort( string ) )
     16
    1517// Define the default number of processors created in the executor. Must be greater than 0.
    1618#define __DEFAULT_EXECUTOR_PROCESSORS__ 2
     
    4244struct executor;
    4345
    44 enum Allocation { Nodelete, Delete, Destroy, Finished }; // allocation status
    45 
    46 typedef Allocation (*__receive_fn)(actor &, message &);
     46enum allocation { Nodelete, Delete, Destroy, Finished }; // allocation status
     47
     48typedef allocation (*__receive_fn)(actor &, message &);
    4749struct request {
    4850    actor * receiver;
     
    393395struct actor {
    394396    size_t ticket;                                          // executor-queue handle
    395     Allocation allocation_;                                         // allocation action
     397    allocation allocation_;                                         // allocation action
    396398    inline virtual_dtor;
    397399};
     
    400402    // Once an actor is allocated it must be sent a message or the actor system cannot stop. Hence, its receive
    401403    // member must be called to end it
    402     verifyf( __actor_executor_, "Creating actor before calling start_actor_system() can cause undefined behaviour.\n" );
     404    DEBUG_ABORT( __actor_executor_ == 0p, "Creating actor before calling start_actor_system() can cause undefined behaviour.\n" );
    403405    allocation_ = Nodelete;
    404406    ticket = __get_next_ticket( *__actor_executor_ );
     
    430432
    431433struct message {
    432     Allocation allocation_;                     // allocation action
     434    allocation allocation_;                     // allocation action
    433435    inline virtual_dtor;
    434436};
     
    437439    this.allocation_ = Nodelete;
    438440}
    439 static inline void ?{}( message & this, Allocation allocation ) {
    440     memcpy( &this.allocation_, &allocation, sizeof(allocation) ); // optimization to elide ctor
    441     verifyf( this.allocation_ != Finished, "The Finished Allocation status is not supported for message types.\n");
     441static inline void ?{}( message & this, allocation alloc ) {
     442    memcpy( &this.allocation_, &alloc, sizeof(allocation) ); // optimization to elide ctor
     443    DEBUG_ABORT( this.allocation_ == Finished, "The Finished allocation status is not supported for message types.\n" );
    442444}
    443445static inline void ^?{}( message & this ) with(this) {
     
    453455    } // switch
    454456}
    455 static inline void set_allocation( message & this, Allocation state ) {
     457static inline void set_allocation( message & this, allocation state ) {
    456458    this.allocation_ = state;
    457459}
    458460
    459461static inline void deliver_request( request & this ) {
     462    DEBUG_ABORT( this.receiver->ticket == (unsigned long int)MAX, "Attempted to send message to deleted/dead actor\n" );
    460463    this.receiver->allocation_ = this.fn( *this.receiver, *this.msg );
    461464    check_message( *this.msg );
     
    631634
    632635static inline void send( actor & this, request & req ) {
    633     verifyf( this.ticket != (unsigned long int)MAX, "Attempted to send message to deleted/dead actor\n" );
     636    DEBUG_ABORT( this.ticket == (unsigned long int)MAX, "Attempted to send message to deleted/dead actor\n" );
    634637    send( *__actor_executor_, req, this.ticket );
    635638}
     
    680683// assigned at creation to __base_msg_finished to avoid unused message warning
    681684message __base_msg_finished @= { .allocation_ : Finished };
    682 struct __DeleteMsg { inline message; } DeleteMsg = __base_msg_finished;
    683 struct __DestroyMsg { inline message; } DestroyMsg = __base_msg_finished;
    684 struct __FinishedMsg { inline message; } FinishedMsg = __base_msg_finished;
    685 
    686 Allocation receive( actor & this, __DeleteMsg & msg ) { return Delete; }
    687 Allocation receive( actor & this, __DestroyMsg & msg ) { return Destroy; }
    688 Allocation receive( actor & this, __FinishedMsg & msg ) { return Finished; }
    689 
     685struct __delete_msg_t { inline message; } delete_msg = __base_msg_finished;
     686struct __destroy_msg_t { inline message; } destroy_msg = __base_msg_finished;
     687struct __finished_msg_t { inline message; } finished_msg = __base_msg_finished;
     688
     689allocation receive( actor & this, __delete_msg_t & msg ) { return Delete; }
     690allocation receive( actor & this, __destroy_msg_t & msg ) { return Destroy; }
     691allocation receive( actor & this, __finished_msg_t & msg ) { return Finished; }
     692
  • libcfa/src/concurrency/channel.hfa

    r2b78949 r8a930c03  
    5151vtable(channel_closed) channel_closed_vt;
    5252
     53static inline bool is_insert( channel_closed & e ) { return e.elem != 0p; }
     54static inline bool is_remove( channel_closed & e ) { return e.elem == 0p; }
     55
    5356// #define CHAN_STATS // define this to get channel stats printed in dtor
    5457
     
    341344}
    342345
     346// special case of __handle_waituntil_OR, that does some work to avoid starvation/deadlock case
     347static inline bool __handle_pending( dlist( select_node ) & queue, select_node & mine ) {
     348    while ( !queue`isEmpty ) {
     349        // if node not a special OR case or if we win the special OR case race break
     350        if ( !queue`first.clause_status || queue`first.park_counter || __pending_set_other( queue`first, mine, ((unsigned long int)(&(queue`first))) ) )
     351            return true;
     352       
     353        // our node lost the race when toggling in __pending_set_other
     354        if ( *mine.clause_status != __SELECT_PENDING )
     355            return false;
     356
     357        // otherwise we lost the special OR race so discard node
     358        try_pop_front( queue );
     359    }
     360    return false;
     361}
     362
    343363// type used by select statement to capture a chan read as the selected operation
    344364struct chan_read {
     
    374394                return false;
    375395            }
    376            
    377             if ( __handle_waituntil_OR( prods ) ) {
     396
     397            if ( __handle_pending( prods, node ) ) {
    378398                __prods_handoff( chan, ret );
    379399                __make_select_node_sat( node ); // need to to mark SAT now that we know operation is done or else threads could get stuck in __mark_select_node
     
    381401                return true;
    382402            }
    383             __make_select_node_unsat( node );
     403            if ( *node.clause_status == __SELECT_PENDING )
     404                __make_select_node_unsat( node );
    384405        }
    385406        // check if we can complete operation. If so race to establish winner in special OR case
     
    423444}
    424445static inline bool unregister_select( chan_read(T) & this, select_node & node ) { return unregister_chan( this.chan, node ); }
    425 static inline bool on_selected( chan_read(T) & this, select_node & node ) with(this) {
     446static inline void on_selected( chan_read(T) & this, select_node & node ) with(this) {
    426447    if ( node.extra == 0p ) // check if woken up due to closed channel
    427448        __closed_remove( chan, ret );
    428449    // This is only reachable if not closed or closed exception was handled
    429     return true;
    430450}
    431451
     
    464484                return false;
    465485            }
    466            
    467             if ( __handle_waituntil_OR( cons ) ) {
     486
     487            if ( __handle_pending( cons, node ) ) {
    468488                __cons_handoff( chan, elem );
    469489                __make_select_node_sat( node ); // need to to mark SAT now that we know operation is done or else threads could get stuck in __mark_select_node
     
    471491                return true;
    472492            }
    473             __make_select_node_unsat( node );
     493            if ( *node.clause_status == __SELECT_PENDING )
     494                __make_select_node_unsat( node );
    474495        }
    475496        // check if we can complete operation. If so race to establish winner in special OR case
     
    515536static inline bool unregister_select( chan_write(T) & this, select_node & node ) { return unregister_chan( this.chan, node ); }
    516537
    517 static inline bool on_selected( chan_write(T) & this, select_node & node ) with(this) {
     538static inline void on_selected( chan_write(T) & this, select_node & node ) with(this) {
    518539    if ( node.extra == 0p ) // check if woken up due to closed channel
    519540        __closed_insert( chan, elem );
    520541
    521542    // This is only reachable if not closed or closed exception was handled
    522     return true;
    523543}
    524544
  • libcfa/src/concurrency/future.hfa

    r2b78949 r8a930c03  
    7070                // check if the future is available
    7171        // currently no mutual exclusion because I can't see when you need this call to be synchronous or protected
    72                 bool available( future(T) & this ) { return this.state; }
     72                bool available( future(T) & this ) { return __atomic_load_n( &this.state, __ATOMIC_RELAXED ); }
    7373
    7474
     
    180180        }
    181181               
    182         bool on_selected( future(T) & this, select_node & node ) { return true; }
     182        void on_selected( future(T) & this, select_node & node ) {}
    183183        }
    184184}
    185185
    186186//--------------------------------------------------------------------------------------------------------
    187 // These futures below do not support select statements so they may not be as useful as 'future'
     187// These futures below do not support select statements so they may not have as many features as 'future'
    188188//  however the 'single_future' is cheap and cheerful and is most likely more performant than 'future'
    189189//  since it uses raw atomics and no locks
  • libcfa/src/concurrency/locks.cfa

    r2b78949 r8a930c03  
    239239}
    240240
    241 bool on_selected( blocking_lock & this, select_node & node ) { return true; }
     241void on_selected( blocking_lock & this, select_node & node ) {}
    242242
    243243//-----------------------------------------------------------------------------
  • libcfa/src/concurrency/locks.hfa

    r2b78949 r8a930c03  
    3232#include "select.hfa"
    3333
    34 #include <fstream.hfa>
    35 
    3634// futex headers
    3735#include <linux/futex.h>      /* Definition of FUTEX_* constants */
     
    114112static inline bool   register_select( single_acquisition_lock & this, select_node & node ) { return register_select( (blocking_lock &)this, node ); }
    115113static inline bool   unregister_select( single_acquisition_lock & this, select_node & node ) { return unregister_select( (blocking_lock &)this, node ); }
    116 static inline bool   on_selected( single_acquisition_lock & this, select_node & node ) { return on_selected( (blocking_lock &)this, node ); }
     114static inline void   on_selected( single_acquisition_lock & this, select_node & node ) { on_selected( (blocking_lock &)this, node ); }
    117115
    118116//----------
     
    131129static inline bool   register_select( owner_lock & this, select_node & node ) { return register_select( (blocking_lock &)this, node ); }
    132130static inline bool   unregister_select( owner_lock & this, select_node & node ) { return unregister_select( (blocking_lock &)this, node ); }
    133 static inline bool   on_selected( owner_lock & this, select_node & node ) { return on_selected( (blocking_lock &)this, node ); }
     131static inline void   on_selected( owner_lock & this, select_node & node ) { on_selected( (blocking_lock &)this, node ); }
    134132
    135133//-----------------------------------------------------------------------------
     
    621619}
    622620
    623 static inline bool on_selected( simple_owner_lock & this, select_node & node ) { return true; }
     621static inline void on_selected( simple_owner_lock & this, select_node & node ) {}
    624622
    625623
  • libcfa/src/concurrency/select.cfa

    r2b78949 r8a930c03  
    4949    return false;
    5050}
    51 bool on_selected( select_timeout_node & this, select_node & node ) { return true; }
     51void on_selected( select_timeout_node & this, select_node & node ) {}
    5252
    5353// Gateway routine to wait on duration
  • libcfa/src/concurrency/select.hfa

    r2b78949 r8a930c03  
    9191    // For unregistering a select stmt on a selectable concurrency primitive
    9292    // If true is returned then the corresponding code block is run (only in non-special OR case and only if node status is not RUN)
    93     bool unregister_select( T &, select_node &  );
     93    bool unregister_select( T &, select_node & );
    9494
    9595    // This routine is run on the selecting thread prior to executing the statement corresponding to the select_node
    9696    //    passed as an arg to this routine
    9797    // If on_selected returns false, the statement is not run, if it returns true it is run.
    98     bool on_selected( T &, select_node & );
     98    void on_selected( T &, select_node & );
    9999};
    100100
     
    102102// Waituntil Helpers
    103103//=============================================================================================
     104
     105static inline void __make_select_node_unsat( select_node & this ) with( this ) {
     106    __atomic_store_n( clause_status, __SELECT_UNSAT, __ATOMIC_SEQ_CST );
     107}
     108static inline void __make_select_node_sat( select_node & this ) with( this ) {
     109    __atomic_store_n( clause_status, __SELECT_SAT, __ATOMIC_SEQ_CST );
     110}
    104111
    105112// used for the 2-stage avail needed by the special OR case
     
    116123}
    117124
    118 static inline void __make_select_node_unsat( select_node & this ) with( this ) {
    119     __atomic_store_n( clause_status, __SELECT_UNSAT, __ATOMIC_SEQ_CST );
    120 }
    121 static inline void __make_select_node_sat( select_node & this ) with( this ) {
    122     __atomic_store_n( clause_status, __SELECT_SAT, __ATOMIC_SEQ_CST );
     125// used for the 2-stage avail by the thread who owns a pending node
     126static inline bool __pending_set_other( select_node & other, select_node & mine, unsigned long int val ) with( other ) {
     127    /* paranoid */ verify( park_counter == 0p );
     128    /* paranoid */ verify( clause_status != 0p );
     129
     130    unsigned long int cmp_status = __SELECT_UNSAT;
     131    while( !__atomic_compare_exchange_n( clause_status, &cmp_status, val, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST ) ) {
     132        if ( cmp_status != __SELECT_PENDING )
     133            return false;
     134
     135        // toggle current status flag to avoid starvation/deadlock
     136        __make_select_node_unsat( mine );
     137        cmp_status = __SELECT_UNSAT;
     138        if ( !__atomic_compare_exchange_n( mine.clause_status, &cmp_status, __SELECT_PENDING, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST ) )
     139            return false;
     140        cmp_status = __SELECT_UNSAT;
     141    }
     142    return true;
    123143}
    124144
     
    188208bool register_select( select_timeout_node & this, select_node & node );
    189209bool unregister_select( select_timeout_node & this, select_node & node );
    190 bool on_selected( select_timeout_node & this, select_node & node );
     210void on_selected( select_timeout_node & this, select_node & node );
    191211
    192212// Gateway routines to waituntil on duration
  • libcfa/src/containers/lockfree.hfa

    r2b78949 r8a930c03  
    199199
    200200forall( T & )
     201struct LinkData {
     202        T * volatile top;                                                               // pointer to stack top
     203        uintptr_t count;                                                                // count each push
     204};
     205
     206forall( T & )
    201207union Link {
    202         struct {                                                                                        // 32/64-bit x 2
    203                 T * volatile top;                                                               // pointer to stack top
    204                 uintptr_t count;                                                                // count each push
    205         };
     208        LinkData(T) data;
    206209        #if __SIZEOF_INT128__ == 16
    207210        __int128                                                                                        // gcc, 128-bit integer
     
    220223                void ?{}( StackLF(T) & this ) with(this) { stack.atom = 0; }
    221224
    222                 T * top( StackLF(T) & this ) with(this) { return stack.top; }
     225                T * top( StackLF(T) & this ) with(this) { return stack.data.top; }
    223226
    224227                void push( StackLF(T) & this, T & n ) with(this) {
    225228                        *( &n )`next = stack;                                           // atomic assignment unnecessary, or use CAA
    226229                        for () {                                                                        // busy wait
    227                           if ( __atomic_compare_exchange_n( &stack.atom, &( &n )`next->atom, (Link(T))@{ {&n, ( &n )`next->count + 1} }.atom, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST ) ) break; // attempt to update top node
     230                                if ( __atomic_compare_exchange_n( &stack.atom, &( &n )`next->atom, (Link(T))@{ (LinkData(T))@{ &n, ( &n )`next->data.count + 1} }.atom, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST ) ) break; // attempt to update top node
    228231                        } // for
    229232                } // push
     
    232235                        Link(T) t @= stack;                                                     // atomic assignment unnecessary, or use CAA
    233236                        for () {                                                                        // busy wait
    234                           if ( t.top == 0p ) return 0p;                         // empty stack ?
    235                           if ( __atomic_compare_exchange_n( &stack.atom, &t.atom, (Link(T))@{ {( t.top )`next->top, t.count} }.atom, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST ) ) return t.top; // attempt to update top node
     237                                if ( t.data.top == 0p ) return 0p;                              // empty stack ?
     238                                Link(T) * next = ( t.data.top )`next;
     239                                if ( __atomic_compare_exchange_n( &stack.atom, &t.atom, (Link(T))@{ (LinkData(T))@{ next->data.top, t.data.count } }.atom, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST ) ) return t.data.top; // attempt to update top node
    236240                        } // for
    237241                } // pop
     
    239243                bool unsafe_remove( StackLF(T) & this, T * node ) with(this) {
    240244                        Link(T) * link = &stack;
    241                         for() {
    242                                 T * next = link->top;
    243                                 if( next == node ) {
    244                                         link->top = ( node )`next->top;
     245                        for () {
     246                                // TODO: Avoiding some problems with double fields access.
     247                                LinkData(T) * data = &link->data;
     248                                T * next = (T *)&(*data).top;
     249                                if ( next == node ) {
     250                                        data->top = ( node )`next->data.top;
    245251                                        return true;
    246252                                }
    247                                 if( next == 0p ) return false;
     253                                if ( next == 0p ) return false;
    248254                                link = ( next )`next;
    249255                        }
  • libcfa/src/fstream.cfa

    r2b78949 r8a930c03  
    1010// Created On       : Wed May 27 17:56:53 2015
    1111// Last Modified By : Peter A. Buhr
    12 // Last Modified On : Sat Apr  9 14:55:54 2022
    13 // Update Count     : 515
     12// Last Modified On : Mon Jun  5 22:00:23 2023
     13// Update Count     : 518
    1414//
    1515
     
    117117    } // for
    118118        if ( file == 0p ) {
    119                 throw (Open_Failure){ os };
     119                throw (open_failure){ os };
    120120                // abort | IO_MSG "open output file \"" | name | "\"" | nl | strerror( errno );
    121121        } // if
     
    137137    } // for
    138138        if ( ret == EOF ) {
    139                 throw (Close_Failure){ os };
     139                throw (close_failure){ os };
    140140                // abort | IO_MSG "close output" | nl | strerror( errno );
    141141        } // if
     
    145145ofstream & write( ofstream & os, const char data[], size_t size ) {
    146146        if ( fail( os ) ) {
    147                 throw (Write_Failure){ os };
     147                throw (write_failure){ os };
    148148                // abort | IO_MSG "attempt write I/O on failed stream";
    149149        } // if
    150150
    151151        if ( fwrite( data, 1, size, (FILE *)(os.file$) ) != size ) {
    152                 throw (Write_Failure){ os };
     152                throw (write_failure){ os };
    153153                // abort | IO_MSG "write" | nl | strerror( errno );
    154154        } // if
     
    240240    } // for
    241241        if ( file == 0p ) {
    242                 throw (Open_Failure){ is };
     242                throw (open_failure){ is };
    243243                // abort | IO_MSG "open input file \"" | name | "\"" | nl | strerror( errno );
    244244        } // if
     
    260260    } // for
    261261        if ( ret == EOF ) {
    262                 throw (Close_Failure){ is };
     262                throw (close_failure){ is };
    263263                // abort | IO_MSG "close input" | nl | strerror( errno );
    264264        } // if
     
    268268ifstream & read( ifstream & is, char data[], size_t size ) {
    269269        if ( fail( is ) ) {
    270                 throw (Read_Failure){ is };
     270                throw (read_failure){ is };
    271271                // abort | IO_MSG "attempt read I/O on failed stream";
    272272        } // if
    273273
    274274        if ( fread( data, size, 1, (FILE *)(is.file$) ) == 0 ) {
    275                 throw (Read_Failure){ is };
     275                throw (read_failure){ is };
    276276                // abort | IO_MSG "read" | nl | strerror( errno );
    277277        } // if
     
    318318
    319319
    320 static vtable(Open_Failure) Open_Failure_vt;
     320static vtable(open_failure) open_failure_vt;
    321321
    322322// exception I/O constructors
    323 void ?{}( Open_Failure & ex, ofstream & ostream ) with(ex) {
    324         virtual_table = &Open_Failure_vt;
     323void ?{}( open_failure & ex, ofstream & ostream ) with(ex) {
     324        virtual_table = &open_failure_vt;
    325325        ostream = &ostream;
    326326        tag = 1;
    327327} // ?{}
    328328
    329 void ?{}( Open_Failure & ex, ifstream & istream ) with(ex) {
    330         virtual_table = &Open_Failure_vt;
     329void ?{}( open_failure & ex, ifstream & istream ) with(ex) {
     330        virtual_table = &open_failure_vt;
    331331        istream = &istream;
    332332        tag = 0;
     
    334334
    335335
    336 static vtable(Close_Failure) Close_Failure_vt;
     336static vtable(close_failure) close_failure_vt;
    337337
    338338// exception I/O constructors
    339 void ?{}( Close_Failure & ex, ofstream & ostream ) with(ex) {
    340         virtual_table = &Close_Failure_vt;
     339void ?{}( close_failure & ex, ofstream & ostream ) with(ex) {
     340        virtual_table = &close_failure_vt;
    341341        ostream = &ostream;
    342342        tag = 1;
    343343} // ?{}
    344344
    345 void ?{}( Close_Failure & ex, ifstream & istream ) with(ex) {
    346         virtual_table = &Close_Failure_vt;
     345void ?{}( close_failure & ex, ifstream & istream ) with(ex) {
     346        virtual_table = &close_failure_vt;
    347347        istream = &istream;
    348348        tag = 0;
     
    350350
    351351
    352 static vtable(Write_Failure) Write_Failure_vt;
     352static vtable(write_failure) write_failure_vt;
    353353
    354354// exception I/O constructors
    355 void ?{}( Write_Failure & ex, ofstream & ostream ) with(ex) {
    356         virtual_table = &Write_Failure_vt;
     355void ?{}( write_failure & ex, ofstream & ostream ) with(ex) {
     356        virtual_table = &write_failure_vt;
    357357        ostream = &ostream;
    358358        tag = 1;
    359359} // ?{}
    360360
    361 void ?{}( Write_Failure & ex, ifstream & istream ) with(ex) {
    362         virtual_table = &Write_Failure_vt;
     361void ?{}( write_failure & ex, ifstream & istream ) with(ex) {
     362        virtual_table = &write_failure_vt;
    363363        istream = &istream;
    364364        tag = 0;
     
    366366
    367367
    368 static vtable(Read_Failure) Read_Failure_vt;
     368static vtable(read_failure) read_failure_vt;
    369369
    370370// exception I/O constructors
    371 void ?{}( Read_Failure & ex, ofstream & ostream ) with(ex) {
    372         virtual_table = &Read_Failure_vt;
     371void ?{}( read_failure & ex, ofstream & ostream ) with(ex) {
     372        virtual_table = &read_failure_vt;
    373373        ostream = &ostream;
    374374        tag = 1;
    375375} // ?{}
    376376
    377 void ?{}( Read_Failure & ex, ifstream & istream ) with(ex) {
    378         virtual_table = &Read_Failure_vt;
     377void ?{}( read_failure & ex, ifstream & istream ) with(ex) {
     378        virtual_table = &read_failure_vt;
    379379        istream = &istream;
    380380        tag = 0;
    381381} // ?{}
    382382
    383 // void throwOpen_Failure( ofstream & ostream ) {
    384 //      Open_Failure exc = { ostream };
     383// void throwopen_failure( ofstream & ostream ) {
     384//      open_failure exc = { ostream };
    385385// }
    386386
    387 // void throwOpen_Failure( ifstream & istream ) {
    388 //      Open_Failure exc = { istream };
     387// void throwopen_failure( ifstream & istream ) {
     388//      open_failure exc = { istream };
    389389// }
    390390
  • libcfa/src/fstream.hfa

    r2b78949 r8a930c03  
    1010// Created On       : Wed May 27 17:56:53 2015
    1111// Last Modified By : Peter A. Buhr
    12 // Last Modified On : Sun Oct 10 09:37:32 2021
    13 // Update Count     : 243
     12// Last Modified On : Mon Jun  5 22:00:20 2023
     13// Update Count     : 246
    1414//
    1515
     
    137137
    138138
    139 exception Open_Failure {
     139exception open_failure {
    140140        union {
    141141                ofstream * ostream;
     
    146146};
    147147
    148 void ?{}( Open_Failure & this, ofstream & );
    149 void ?{}( Open_Failure & this, ifstream & );
     148void ?{}( open_failure & this, ofstream & );
     149void ?{}( open_failure & this, ifstream & );
    150150
    151 exception Close_Failure {
     151exception close_failure {
    152152        union {
    153153                ofstream * ostream;
     
    158158};
    159159
    160 void ?{}( Close_Failure & this, ofstream & );
    161 void ?{}( Close_Failure & this, ifstream & );
     160void ?{}( close_failure & this, ofstream & );
     161void ?{}( close_failure & this, ifstream & );
    162162
    163 exception Write_Failure {
     163exception write_failure {
    164164        union {
    165165                ofstream * ostream;
     
    170170};
    171171
    172 void ?{}( Write_Failure & this, ofstream & );
    173 void ?{}( Write_Failure & this, ifstream & );
     172void ?{}( write_failure & this, ofstream & );
     173void ?{}( write_failure & this, ifstream & );
    174174
    175 exception Read_Failure {
     175exception read_failure {
    176176        union {
    177177                ofstream * ostream;
     
    182182};
    183183
    184 void ?{}( Read_Failure & this, ofstream & );
    185 void ?{}( Read_Failure & this, ifstream & );
     184void ?{}( read_failure & this, ofstream & );
     185void ?{}( read_failure & this, ifstream & );
    186186
    187187// Local Variables: //
  • libcfa/src/math.trait.hfa

    r2b78949 r8a930c03  
    1010// Created On       : Fri Jul 16 15:40:52 2021
    1111// Last Modified By : Peter A. Buhr
    12 // Last Modified On : Thu Feb  2 11:36:56 2023
    13 // Update Count     : 20
     12// Last Modified On : Tue Jun  6 07:59:17 2023
     13// Update Count     : 24
    1414//
    1515
     
    1717
    1818forall( U )
    19 trait Not {
     19trait not {
    2020        void ?{}( U &, zero_t );
    2121        int !?( U );
    22 }; // Not
     22}; // not
    2323
    24 forall( T | Not( T ) )
    25 trait Equality {
     24forall( T | not( T ) )
     25trait equality {
    2626        int ?==?( T, T );
    2727        int ?!=?( T, T );
    28 }; // Equality
     28}; // equality
    2929
    30 forall( U | Equality( U ) )
    31 trait Relational {
     30forall( U | equality( U ) )
     31trait relational {
    3232        int ?<?( U, U );
    3333        int ?<=?( U, U );
    3434        int ?>?( U, U );
    3535        int ?>=?( U, U );
    36 }; // Relational
     36}; // relational
    3737
    3838forall ( T )
    39 trait Signed {
     39trait Signed {  // must be capitalized, conflict with keyword signed
    4040        T +?( T );
    4141        T -?( T );
     
    4444
    4545forall( U | Signed( U ) )
    46 trait Additive {
     46trait additive {
    4747        U ?+?( U, U );
    4848        U ?-?( U, U );
    4949        U ?+=?( U &, U );
    5050        U ?-=?( U &, U );
    51 }; // Additive
     51}; // additive
    5252
    53 forall( T | Additive( T ) )
    54 trait Incdec {
     53forall( T | additive( T ) )
     54trait inc_dec {
    5555        void ?{}( T &, one_t );
    5656        // T ?++( T & );
     
    5858        // T ?--( T & );
    5959        // T --?( T & );
    60 }; // Incdec
     60}; // inc_dec
    6161
    62 forall( U | Incdec( U ) )
    63 trait Multiplicative {
     62forall( U | inc_dec( U ) )
     63trait multiplicative {
    6464        U ?*?( U, U );
    6565        U ?/?( U, U );
    6666        U ?%?( U, U );
    6767        U ?/=?( U &, U );
    68 }; // Multiplicative
     68}; // multiplicative
    6969
    70 forall( T | Relational( T ) | Multiplicative( T ) )
    71 trait Arithmetic {
    72 }; // Arithmetic
     70forall( T | relational( T ) | multiplicative( T ) )
     71trait arithmetic {
     72}; // arithmetic
    7373
    7474// Local Variables: //
  • libcfa/src/parseconfig.cfa

    r2b78949 r8a930c03  
    144144                        in | nl;                                                                // ignore remainder of line
    145145                } // for
    146         } catch( Open_Failure * ex; ex->istream == &in ) {
     146        } catch( open_failure * ex; ex->istream == &in ) {
    147147                delete( kv_pairs );
    148148                throw *ex;
     
    203203
    204204
    205 forall(T | Relational( T ))
     205forall(T | relational( T ))
    206206[ bool ] is_nonnegative( & T value ) {
    207207        T zero_val = 0;
     
    209209}
    210210
    211 forall(T | Relational( T ))
     211forall(T | relational( T ))
    212212[ bool ] is_positive( & T value ) {
    213213        T zero_val = 0;
     
    215215}
    216216
    217 forall(T | Relational( T ))
     217forall(T | relational( T ))
    218218[ bool ] is_nonpositive( & T value ) {
    219219        T zero_val = 0;
     
    221221}
    222222
    223 forall(T | Relational( T ))
     223forall(T | relational( T ))
    224224[ bool ] is_negative( & T value ) {
    225225        T zero_val = 0;
  • libcfa/src/parseconfig.hfa

    r2b78949 r8a930c03  
    107107
    108108
    109 forall(T | Relational( T ))
     109forall(T | relational( T ))
    110110[ bool ] is_nonnegative( & T );
    111111
    112 forall(T | Relational( T ))
     112forall(T | relational( T ))
    113113[ bool ] is_positive( & T );
    114114
    115 forall(T | Relational( T ))
     115forall(T | relational( T ))
    116116[ bool ] is_nonpositive( & T );
    117117
    118 forall(T | Relational( T ))
     118forall(T | relational( T ))
    119119[ bool ] is_negative( & T );
    120120
  • libcfa/src/rational.cfa

    r2b78949 r8a930c03  
    1010// Created On       : Wed Apr  6 17:54:28 2016
    1111// Last Modified By : Peter A. Buhr
    12 // Last Modified On : Thu Aug 25 18:09:58 2022
    13 // Update Count     : 194
     12// Last Modified On : Mon Jun  5 22:49:06 2023
     13// Update Count     : 196
    1414//
    1515
     
    2020#pragma GCC visibility push(default)
    2121
    22 forall( T | Arithmetic( T ) ) {
     22forall( T | arithmetic( T ) ) {
    2323        // helper routines
    2424
     
    3939                        abort | "Invalid rational number construction: denominator cannot be equal to 0.";
    4040                } // exit
    41                 if ( d < (T){0} ) { d = -d; n = -n; } // move sign to numerator
     41                if ( d < (T){0} ) { d = -d; n = -n; }                   // move sign to numerator
    4242                return gcd( abs( n ), d );                                              // simplify
    43         } // Rationalnumber::simplify
     43        } // simplify
    4444
    4545        // constructors
    4646
    47         void ?{}( Rational(T) & r, zero_t ) {
     47        void ?{}( rational(T) & r, zero_t ) {
    4848                r{ (T){0}, (T){1} };
    4949        } // rational
    5050
    51         void ?{}( Rational(T) & r, one_t ) {
     51        void ?{}( rational(T) & r, one_t ) {
    5252                r{ (T){1}, (T){1} };
    5353        } // rational
    5454
    55         void ?{}( Rational(T) & r ) {
     55        void ?{}( rational(T) & r ) {
    5656                r{ (T){0}, (T){1} };
    5757        } // rational
    5858
    59         void ?{}( Rational(T) & r, T n ) {
     59        void ?{}( rational(T) & r, T n ) {
    6060                r{ n, (T){1} };
    6161        } // rational
    6262
    63         void ?{}( Rational(T) & r, T n, T d ) {
    64                 T t = simplify( n, d );                         // simplify
     63        void ?{}( rational(T) & r, T n, T d ) {
     64                T t = simplify( n, d );                                                 // simplify
    6565                r.[numerator, denominator] = [n / t, d / t];
    6666        } // rational
     
    6868        // getter for numerator/denominator
    6969
    70         T numerator( Rational(T) r ) {
     70        T numerator( rational(T) r ) {
    7171                return r.numerator;
    7272        } // numerator
    7373
    74         T denominator( Rational(T) r ) {
     74        T denominator( rational(T) r ) {
    7575                return r.denominator;
    7676        } // denominator
    7777
    78         [ T, T ] ?=?( & [ T, T ] dest, Rational(T) src ) {
     78        [ T, T ] ?=?( & [ T, T ] dest, rational(T) src ) {
    7979                return dest = src.[ numerator, denominator ];
    8080        } // ?=?
     
    8282        // setter for numerator/denominator
    8383
    84         T numerator( Rational(T) r, T n ) {
     84        T numerator( rational(T) r, T n ) {
    8585                T prev = r.numerator;
    86                 T t = gcd( abs( n ), r.denominator ); // simplify
     86                T t = gcd( abs( n ), r.denominator );                   // simplify
    8787                r.[numerator, denominator] = [n / t, r.denominator / t];
    8888                return prev;
    8989        } // numerator
    9090
    91         T denominator( Rational(T) r, T d ) {
     91        T denominator( rational(T) r, T d ) {
    9292                T prev = r.denominator;
    93                 T t = simplify( r.numerator, d );       // simplify
     93                T t = simplify( r.numerator, d );                               // simplify
    9494                r.[numerator, denominator] = [r.numerator / t, d / t];
    9595                return prev;
     
    9898        // comparison
    9999
    100         int ?==?( Rational(T) l, Rational(T) r ) {
     100        int ?==?( rational(T) l, rational(T) r ) {
    101101                return l.numerator * r.denominator == l.denominator * r.numerator;
    102102        } // ?==?
    103103
    104         int ?!=?( Rational(T) l, Rational(T) r ) {
     104        int ?!=?( rational(T) l, rational(T) r ) {
    105105                return ! ( l == r );
    106106        } // ?!=?
    107107
    108         int ?!=?( Rational(T) l, zero_t ) {
    109                 return ! ( l == (Rational(T)){ 0 } );
     108        int ?!=?( rational(T) l, zero_t ) {
     109                return ! ( l == (rational(T)){ 0 } );
    110110        } // ?!=?
    111111
    112         int ?<?( Rational(T) l, Rational(T) r ) {
     112        int ?<?( rational(T) l, rational(T) r ) {
    113113                return l.numerator * r.denominator < l.denominator * r.numerator;
    114114        } // ?<?
    115115
    116         int ?<=?( Rational(T) l, Rational(T) r ) {
     116        int ?<=?( rational(T) l, rational(T) r ) {
    117117                return l.numerator * r.denominator <= l.denominator * r.numerator;
    118118        } // ?<=?
    119119
    120         int ?>?( Rational(T) l, Rational(T) r ) {
     120        int ?>?( rational(T) l, rational(T) r ) {
    121121                return ! ( l <= r );
    122122        } // ?>?
    123123
    124         int ?>=?( Rational(T) l, Rational(T) r ) {
     124        int ?>=?( rational(T) l, rational(T) r ) {
    125125                return ! ( l < r );
    126126        } // ?>=?
     
    128128        // arithmetic
    129129
    130         Rational(T) +?( Rational(T) r ) {
    131                 return (Rational(T)){ r.numerator, r.denominator };
     130        rational(T) +?( rational(T) r ) {
     131                return (rational(T)){ r.numerator, r.denominator };
    132132        } // +?
    133133
    134         Rational(T) -?( Rational(T) r ) {
    135                 return (Rational(T)){ -r.numerator, r.denominator };
     134        rational(T) -?( rational(T) r ) {
     135                return (rational(T)){ -r.numerator, r.denominator };
    136136        } // -?
    137137
    138         Rational(T) ?+?( Rational(T) l, Rational(T) r ) {
     138        rational(T) ?+?( rational(T) l, rational(T) r ) {
    139139                if ( l.denominator == r.denominator ) {                 // special case
    140                         return (Rational(T)){ l.numerator + r.numerator, l.denominator };
     140                        return (rational(T)){ l.numerator + r.numerator, l.denominator };
    141141                } else {
    142                         return (Rational(T)){ l.numerator * r.denominator + l.denominator * r.numerator, l.denominator * r.denominator };
     142                        return (rational(T)){ l.numerator * r.denominator + l.denominator * r.numerator, l.denominator * r.denominator };
    143143                } // if
    144144        } // ?+?
    145145
    146         Rational(T) ?+=?( Rational(T) & l, Rational(T) r ) {
     146        rational(T) ?+=?( rational(T) & l, rational(T) r ) {
    147147                l = l + r;
    148148                return l;
    149149        } // ?+?
    150150
    151         Rational(T) ?+=?( Rational(T) & l, one_t ) {
    152                 l = l + (Rational(T)){ 1 };
     151        rational(T) ?+=?( rational(T) & l, one_t ) {
     152                l = l + (rational(T)){ 1 };
    153153                return l;
    154154        } // ?+?
    155155
    156         Rational(T) ?-?( Rational(T) l, Rational(T) r ) {
     156        rational(T) ?-?( rational(T) l, rational(T) r ) {
    157157                if ( l.denominator == r.denominator ) {                 // special case
    158                         return (Rational(T)){ l.numerator - r.numerator, l.denominator };
     158                        return (rational(T)){ l.numerator - r.numerator, l.denominator };
    159159                } else {
    160                         return (Rational(T)){ l.numerator * r.denominator - l.denominator * r.numerator, l.denominator * r.denominator };
     160                        return (rational(T)){ l.numerator * r.denominator - l.denominator * r.numerator, l.denominator * r.denominator };
    161161                } // if
    162162        } // ?-?
    163163
    164         Rational(T) ?-=?( Rational(T) & l, Rational(T) r ) {
     164        rational(T) ?-=?( rational(T) & l, rational(T) r ) {
    165165                l = l - r;
    166166                return l;
    167167        } // ?-?
    168168
    169         Rational(T) ?-=?( Rational(T) & l, one_t ) {
    170                 l = l - (Rational(T)){ 1 };
     169        rational(T) ?-=?( rational(T) & l, one_t ) {
     170                l = l - (rational(T)){ 1 };
    171171                return l;
    172172        } // ?-?
    173173
    174         Rational(T) ?*?( Rational(T) l, Rational(T) r ) {
    175                 return (Rational(T)){ l.numerator * r.numerator, l.denominator * r.denominator };
     174        rational(T) ?*?( rational(T) l, rational(T) r ) {
     175                return (rational(T)){ l.numerator * r.numerator, l.denominator * r.denominator };
    176176        } // ?*?
    177177
    178         Rational(T) ?*=?( Rational(T) & l, Rational(T) r ) {
     178        rational(T) ?*=?( rational(T) & l, rational(T) r ) {
    179179                return l = l * r;
    180180        } // ?*?
    181181
    182         Rational(T) ?/?( Rational(T) l, Rational(T) r ) {
     182        rational(T) ?/?( rational(T) l, rational(T) r ) {
    183183                if ( r.numerator < (T){0} ) {
    184184                        r.[numerator, denominator] = [-r.numerator, -r.denominator];
    185185                } // if
    186                 return (Rational(T)){ l.numerator * r.denominator, l.denominator * r.numerator };
     186                return (rational(T)){ l.numerator * r.denominator, l.denominator * r.numerator };
    187187        } // ?/?
    188188
    189         Rational(T) ?/=?( Rational(T) & l, Rational(T) r ) {
     189        rational(T) ?/=?( rational(T) & l, rational(T) r ) {
    190190                return l = l / r;
    191191        } // ?/?
     
    194194
    195195        forall( istype & | istream( istype ) | { istype & ?|?( istype &, T & ); } )
    196         istype & ?|?( istype & is, Rational(T) & r ) {
     196        istype & ?|?( istype & is, rational(T) & r ) {
    197197                is | r.numerator | r.denominator;
    198198                T t = simplify( r.numerator, r.denominator );
     
    203203
    204204        forall( ostype & | ostream( ostype ) | { ostype & ?|?( ostype &, T ); } ) {
    205                 ostype & ?|?( ostype & os, Rational(T) r ) {
     205                ostype & ?|?( ostype & os, rational(T) r ) {
    206206                        return os | r.numerator | '/' | r.denominator;
    207207                } // ?|?
    208208
    209                 void ?|?( ostype & os, Rational(T) r ) {
     209                void ?|?( ostype & os, rational(T) r ) {
    210210                        (ostype &)(os | r); ends( os );
    211211                } // ?|?
     
    213213} // distribution
    214214
    215 forall( T | Arithmetic( T ) | { T ?\?( T, unsigned long ); } ) {
    216         Rational(T) ?\?( Rational(T) x, long int y ) {
     215forall( T | arithmetic( T ) | { T ?\?( T, unsigned long ); } ) {
     216        rational(T) ?\?( rational(T) x, long int y ) {
    217217                if ( y < 0 ) {
    218                         return (Rational(T)){ x.denominator \ -y, x.numerator \ -y };
     218                        return (rational(T)){ x.denominator \ -y, x.numerator \ -y };
    219219                } else {
    220                         return (Rational(T)){ x.numerator \ y, x.denominator \ y };
     220                        return (rational(T)){ x.numerator \ y, x.denominator \ y };
    221221                } // if
    222222        } // ?\?
    223223
    224         Rational(T) ?\=?( Rational(T) & x, long int y ) {
     224        rational(T) ?\=?( rational(T) & x, long int y ) {
    225225                return x = x \ y;
    226226        } // ?\?
     
    229229// conversion
    230230
    231 forall( T | Arithmetic( T ) | { double convert( T ); } )
    232 double widen( Rational(T) r ) {
     231forall( T | arithmetic( T ) | { double convert( T ); } )
     232double widen( rational(T) r ) {
    233233        return convert( r.numerator ) / convert( r.denominator );
    234234} // widen
    235235
    236 forall( T | Arithmetic( T ) | { double convert( T ); T convert( double ); } )
    237 Rational(T) narrow( double f, T md ) {
     236forall( T | arithmetic( T ) | { double convert( T ); T convert( double ); } )
     237rational(T) narrow( double f, T md ) {
    238238        // http://www.ics.uci.edu/~eppstein/numth/frap.c
    239         if ( md <= (T){1} ) {                                   // maximum fractional digits too small?
    240                 return (Rational(T)){ convert( f ), (T){1}}; // truncate fraction
     239        if ( md <= (T){1} ) {                                                           // maximum fractional digits too small?
     240                return (rational(T)){ convert( f ), (T){1}};    // truncate fraction
    241241        } // if
    242242
     
    260260          if ( f > (double)0x7FFFFFFF ) break;                          // representation failure
    261261        } // for
    262         return (Rational(T)){ m00, m10 };
     262        return (rational(T)){ m00, m10 };
    263263} // narrow
    264264
  • libcfa/src/rational.hfa

    r2b78949 r8a930c03  
    1212// Created On       : Wed Apr  6 17:56:25 2016
    1313// Last Modified By : Peter A. Buhr
    14 // Last Modified On : Tue Jul 20 17:45:29 2021
    15 // Update Count     : 118
     14// Last Modified On : Mon Jun  5 22:49:05 2023
     15// Update Count     : 119
    1616//
    1717
     
    1919
    2020#include "iostream.hfa"
    21 #include "math.trait.hfa"                                                               // Arithmetic
     21#include "math.trait.hfa"                                                               // arithmetic
    2222
    2323// implementation
    2424
    25 forall( T | Arithmetic( T ) ) {
    26         struct Rational {
     25forall( T | arithmetic( T ) ) {
     26        struct rational {
    2727                T numerator, denominator;                                               // invariant: denominator > 0
    28         }; // Rational
     28        }; // rational
    2929
    3030        // constructors
    3131
    32         void ?{}( Rational(T) & r );
    33         void ?{}( Rational(T) & r, zero_t );
    34         void ?{}( Rational(T) & r, one_t );
    35         void ?{}( Rational(T) & r, T n );
    36         void ?{}( Rational(T) & r, T n, T d );
     32        void ?{}( rational(T) & r );
     33        void ?{}( rational(T) & r, zero_t );
     34        void ?{}( rational(T) & r, one_t );
     35        void ?{}( rational(T) & r, T n );
     36        void ?{}( rational(T) & r, T n, T d );
    3737
    3838        // numerator/denominator getter
    3939
    40         T numerator( Rational(T) r );
    41         T denominator( Rational(T) r );
    42         [ T, T ] ?=?( & [ T, T ] dest, Rational(T) src );
     40        T numerator( rational(T) r );
     41        T denominator( rational(T) r );
     42        [ T, T ] ?=?( & [ T, T ] dest, rational(T) src );
    4343
    4444        // numerator/denominator setter
    4545
    46         T numerator( Rational(T) r, T n );
    47         T denominator( Rational(T) r, T d );
     46        T numerator( rational(T) r, T n );
     47        T denominator( rational(T) r, T d );
    4848
    4949        // comparison
    5050
    51         int ?==?( Rational(T) l, Rational(T) r );
    52         int ?!=?( Rational(T) l, Rational(T) r );
    53         int ?!=?( Rational(T) l, zero_t );                                      // => !
    54         int ?<?( Rational(T) l, Rational(T) r );
    55         int ?<=?( Rational(T) l, Rational(T) r );
    56         int ?>?( Rational(T) l, Rational(T) r );
    57         int ?>=?( Rational(T) l, Rational(T) r );
     51        int ?==?( rational(T) l, rational(T) r );
     52        int ?!=?( rational(T) l, rational(T) r );
     53        int ?!=?( rational(T) l, zero_t );                                      // => !
     54        int ?<?( rational(T) l, rational(T) r );
     55        int ?<=?( rational(T) l, rational(T) r );
     56        int ?>?( rational(T) l, rational(T) r );
     57        int ?>=?( rational(T) l, rational(T) r );
    5858
    5959        // arithmetic
    6060
    61         Rational(T) +?( Rational(T) r );
    62         Rational(T) -?( Rational(T) r );
    63         Rational(T) ?+?( Rational(T) l, Rational(T) r );
    64         Rational(T) ?+=?( Rational(T) & l, Rational(T) r );
    65         Rational(T) ?+=?( Rational(T) & l, one_t );                     // => ++?, ?++
    66         Rational(T) ?-?( Rational(T) l, Rational(T) r );
    67         Rational(T) ?-=?( Rational(T) & l, Rational(T) r );
    68         Rational(T) ?-=?( Rational(T) & l, one_t );                     // => --?, ?--
    69         Rational(T) ?*?( Rational(T) l, Rational(T) r );
    70         Rational(T) ?*=?( Rational(T) & l, Rational(T) r );
    71         Rational(T) ?/?( Rational(T) l, Rational(T) r );
    72         Rational(T) ?/=?( Rational(T) & l, Rational(T) r );
     61        rational(T) +?( rational(T) r );
     62        rational(T) -?( rational(T) r );
     63        rational(T) ?+?( rational(T) l, rational(T) r );
     64        rational(T) ?+=?( rational(T) & l, rational(T) r );
     65        rational(T) ?+=?( rational(T) & l, one_t );                     // => ++?, ?++
     66        rational(T) ?-?( rational(T) l, rational(T) r );
     67        rational(T) ?-=?( rational(T) & l, rational(T) r );
     68        rational(T) ?-=?( rational(T) & l, one_t );                     // => --?, ?--
     69        rational(T) ?*?( rational(T) l, rational(T) r );
     70        rational(T) ?*=?( rational(T) & l, rational(T) r );
     71        rational(T) ?/?( rational(T) l, rational(T) r );
     72        rational(T) ?/=?( rational(T) & l, rational(T) r );
    7373
    7474        // I/O
    7575        forall( istype & | istream( istype ) | { istype & ?|?( istype &, T & ); } )
    76         istype & ?|?( istype &, Rational(T) & );
     76        istype & ?|?( istype &, rational(T) & );
    7777
    7878        forall( ostype & | ostream( ostype ) | { ostype & ?|?( ostype &, T ); } ) {
    79                 ostype & ?|?( ostype &, Rational(T) );
    80                 void ?|?( ostype &, Rational(T) );
     79                ostype & ?|?( ostype &, rational(T) );
     80                void ?|?( ostype &, rational(T) );
    8181        } // distribution
    8282} // distribution
    8383
    84 forall( T | Arithmetic( T ) | { T ?\?( T, unsigned long ); } ) {
    85         Rational(T) ?\?( Rational(T) x, long int y );
    86         Rational(T) ?\=?( Rational(T) & x, long int y );
     84forall( T | arithmetic( T ) | { T ?\?( T, unsigned long ); } ) {
     85        rational(T) ?\?( rational(T) x, long int y );
     86        rational(T) ?\=?( rational(T) & x, long int y );
    8787} // distribution
    8888
    8989// conversion
    90 forall( T | Arithmetic( T ) | { double convert( T ); } )
    91 double widen( Rational(T) r );
    92 forall( T | Arithmetic( T ) | { double convert( T );  T convert( double );} )
    93 Rational(T) narrow( double f, T md );
     90forall( T | arithmetic( T ) | { double convert( T ); } )
     91double widen( rational(T) r );
     92forall( T | arithmetic( T ) | { double convert( T );  T convert( double );} )
     93rational(T) narrow( double f, T md );
    9494
    9595// Local Variables: //
  • src/AST/DeclReplacer.hpp

    r2b78949 r8a930c03  
    1818#include <unordered_map>
    1919
    20 #include "Node.hpp"
     20namespace ast {
     21        class DeclWithType;
     22        class Expr;
     23        class Node;
     24        class TypeDecl;
     25}
    2126
    2227namespace ast {
    23         class DeclWithType;
    24         class TypeDecl;
    25         class Expr;
    2628
    27         namespace DeclReplacer {
    28                 using DeclMap = std::unordered_map< const DeclWithType *, const DeclWithType * >;
    29                 using TypeMap = std::unordered_map< const TypeDecl *, const TypeDecl * >;
    30                 using ExprMap = std::unordered_map< const DeclWithType *, const Expr * >;
     29namespace DeclReplacer {
    3130
    32                 const Node * replace( const Node * node, const DeclMap & declMap, bool debug = false );
    33                 const Node * replace( const Node * node, const TypeMap & typeMap, bool debug = false );
    34                 const Node * replace( const Node * node, const DeclMap & declMap, const TypeMap & typeMap, bool debug = false );
    35                 const Node * replace( const Node * node, const ExprMap & exprMap);
    36         }
     31using DeclMap = std::unordered_map< const DeclWithType *, const DeclWithType * >;
     32using TypeMap = std::unordered_map< const TypeDecl *, const TypeDecl * >;
     33using ExprMap = std::unordered_map< const DeclWithType *, const Expr * >;
     34
     35const Node * replace( const Node * node, const DeclMap & declMap, bool debug = false );
     36const Node * replace( const Node * node, const TypeMap & typeMap, bool debug = false );
     37const Node * replace( const Node * node, const DeclMap & declMap, const TypeMap & typeMap, bool debug = false );
     38const Node * replace( const Node * node, const ExprMap & exprMap);
     39
     40}
     41
    3742}
    3843
  • src/AST/Pass.hpp

    r2b78949 r8a930c03  
    414414};
    415415
    416 /// Use when the templated visitor should update the symbol table
     416/// Use when the templated visitor should update the symbol table,
     417/// that is, when your pass core needs to query the symbol table.
     418/// Expected setups:
     419/// - For master passes that kick off at the compilation unit
     420///   - before resolver: extend WithSymbolTableX<IgnoreErrors>
     421///   - after resolver: extend WithSymbolTable and use defaults
     422///   - (FYI, for completeness, the resolver's main pass uses ValidateOnAdd when it kicks off)
     423/// - For helper passes that kick off at arbitrary points in the AST:
     424///   - take an existing symbol table as a parameter, extend WithSymbolTable,
     425///     and construct with WithSymbolTable(const SymbolTable &)
    417426struct WithSymbolTable {
    418         SymbolTable symtab;
     427        WithSymbolTable(const ast::SymbolTable & from) : symtab(from) {}
     428        WithSymbolTable(ast::SymbolTable::ErrorDetection errorMode = ast::SymbolTable::ErrorDetection::AssertClean) : symtab(errorMode) {}
     429        ast::SymbolTable symtab;
     430};
     431template <ast::SymbolTable::ErrorDetection errorMode>
     432struct WithSymbolTableX : WithSymbolTable {
     433        WithSymbolTableX() : WithSymbolTable(errorMode) {}
    419434};
    420435
  • src/AST/Pass.impl.hpp

    r2b78949 r8a930c03  
    2020#include <unordered_map>
    2121
     22#include "AST/Copy.hpp"
    2223#include "AST/TranslationUnit.hpp"
    2324#include "AST/TypeSubstitution.hpp"
     
    4546
    4647#ifdef PEDANTIC_PASS_ASSERT
    47 #define __pedantic_pass_assert(...) assert (__VA_ARGS__)
     48#define __pedantic_pass_assert(...) assert(__VA_ARGS__)
    4849#define __pedantic_pass_assertf(...) assertf(__VA_ARGS__)
    4950#else
     
    7172                template<typename it_t, template <class...> class container_t>
    7273                static inline void take_all( it_t it, container_t<ast::ptr<ast::Decl>> * decls, bool * mutated = nullptr ) {
    73                         if(empty(decls)) return;
     74                        if ( empty( decls ) ) return;
    7475
    7576                        std::transform(decls->begin(), decls->end(), it, [](const ast::Decl * decl) -> auto {
     
    7778                                });
    7879                        decls->clear();
    79                         if(mutated) *mutated = true;
     80                        if ( mutated ) *mutated = true;
    8081                }
    8182
    8283                template<typename it_t, template <class...> class container_t>
    8384                static inline void take_all( it_t it, container_t<ast::ptr<ast::Stmt>> * stmts, bool * mutated = nullptr ) {
    84                         if(empty(stmts)) return;
     85                        if ( empty( stmts ) ) return;
    8586
    8687                        std::move(stmts->begin(), stmts->end(), it);
    8788                        stmts->clear();
    88                         if(mutated) *mutated = true;
     89                        if ( mutated ) *mutated = true;
    8990                }
    9091
     
    9293                /// Check if should be skipped, different for pointers and containers
    9394                template<typename node_t>
    94                 bool skip( const ast::ptr<node_t> & val) {
     95                bool skip( const ast::ptr<node_t> & val ) {
    9596                        return !val;
    9697                }
     
    109110
    110111                template<typename node_t>
    111                 const node_t & get( const node_t & val, long) {
     112                const node_t & get( const node_t & val, long ) {
    112113                        return val;
    113114                }
     
    125126                }
    126127        }
    127 
    128         template< typename core_t >
    129         template< typename node_t >
    130         auto ast::Pass< core_t >::call_accept( const node_t * node )
    131                 -> typename ast::Pass< core_t >::template generic_call_accept_result<node_t>::type
    132         {
    133                 __pedantic_pass_assert( __visit_children() );
    134                 __pedantic_pass_assert( node );
    135 
    136                 static_assert( !std::is_base_of<ast::Expr, node_t>::value, "ERROR");
    137                 static_assert( !std::is_base_of<ast::Stmt, node_t>::value, "ERROR");
    138 
    139                 auto nval = node->accept( *this );
    140                 __pass::result1<
    141                         typename std::remove_pointer< decltype( node->accept(*this) ) >::type
    142                 > res;
    143                 res.differs = nval != node;
    144                 res.value = nval;
    145                 return res;
    146         }
    147 
    148         template< typename core_t >
    149         __pass::template result1<ast::Expr> ast::Pass< core_t >::call_accept( const ast::Expr * expr ) {
    150                 __pedantic_pass_assert( __visit_children() );
    151                 __pedantic_pass_assert( expr );
    152 
    153                 auto nval = expr->accept( *this );
    154                 return { nval != expr, nval };
    155         }
    156 
    157         template< typename core_t >
    158         __pass::template result1<ast::Stmt> ast::Pass< core_t >::call_accept( const ast::Stmt * stmt ) {
    159                 __pedantic_pass_assert( __visit_children() );
    160                 __pedantic_pass_assert( stmt );
    161 
    162                 const ast::Stmt * nval = stmt->accept( *this );
    163                 return { nval != stmt, nval };
    164         }
    165 
    166         template< typename core_t >
    167         __pass::template result1<ast::Expr> ast::Pass< core_t >::call_accept_top( const ast::Expr * expr ) {
    168                 __pedantic_pass_assert( __visit_children() );
    169                 __pedantic_pass_assert( expr );
    170 
    171                 const ast::TypeSubstitution ** typeSubs_ptr = __pass::typeSubs( core, 0 );
    172                 if ( typeSubs_ptr && expr->env ) {
    173                         *typeSubs_ptr = expr->env;
    174                 }
    175 
    176                 auto nval = expr->accept( *this );
    177                 return { nval != expr, nval };
    178         }
    179 
    180         template< typename core_t >
    181         __pass::template result1<ast::Stmt> ast::Pass< core_t >::call_accept_as_compound( const ast::Stmt * stmt ) {
    182                 __pedantic_pass_assert( __visit_children() );
    183                 __pedantic_pass_assert( stmt );
    184 
    185                 // add a few useful symbols to the scope
    186                 using __pass::empty;
    187 
    188                 // get the stmts/decls that will need to be spliced in
    189                 auto stmts_before = __pass::stmtsToAddBefore( core, 0 );
    190                 auto stmts_after  = __pass::stmtsToAddAfter ( core, 0 );
    191                 auto decls_before = __pass::declsToAddBefore( core, 0 );
    192                 auto decls_after  = __pass::declsToAddAfter ( core, 0 );
    193 
    194                 // These may be modified by subnode but most be restored once we exit this statemnet.
    195                 ValueGuardPtr< const ast::TypeSubstitution * > __old_env         ( __pass::typeSubs( core, 0 ) );
    196                 ValueGuardPtr< typename std::remove_pointer< decltype(stmts_before) >::type > __old_decls_before( stmts_before );
    197                 ValueGuardPtr< typename std::remove_pointer< decltype(stmts_after ) >::type > __old_decls_after ( stmts_after  );
    198                 ValueGuardPtr< typename std::remove_pointer< decltype(decls_before) >::type > __old_stmts_before( decls_before );
    199                 ValueGuardPtr< typename std::remove_pointer< decltype(decls_after ) >::type > __old_stmts_after ( decls_after  );
    200 
    201                 // Now is the time to actually visit the node
    202                 const ast::Stmt * nstmt = stmt->accept( *this );
    203 
    204                 // If the pass doesn't want to add anything then we are done
    205                 if( empty(stmts_before) && empty(stmts_after) && empty(decls_before) && empty(decls_after) ) {
    206                         return { nstmt != stmt, nstmt };
    207                 }
    208 
    209                 // Make sure that it is either adding statements or declartions but not both
    210                 // this is because otherwise the order would be awkward to predict
    211                 assert(( empty( stmts_before ) && empty( stmts_after ))
    212                     || ( empty( decls_before ) && empty( decls_after )) );
    213 
    214                 // Create a new Compound Statement to hold the new decls/stmts
    215                 ast::CompoundStmt * compound = new ast::CompoundStmt( stmt->location );
    216 
    217                 // Take all the declarations that go before
    218                 __pass::take_all( std::back_inserter( compound->kids ), decls_before );
    219                 __pass::take_all( std::back_inserter( compound->kids ), stmts_before );
    220 
    221                 // Insert the original declaration
    222                 compound->kids.emplace_back( nstmt );
    223 
    224                 // Insert all the declarations that go before
    225                 __pass::take_all( std::back_inserter( compound->kids ), decls_after );
    226                 __pass::take_all( std::back_inserter( compound->kids ), stmts_after );
    227 
    228                 return {true, compound};
    229         }
    230 
    231         template< typename core_t >
    232         template< template <class...> class container_t >
    233         __pass::template resultNstmt<container_t> ast::Pass< core_t >::call_accept( const container_t< ptr<Stmt> > & statements ) {
    234                 __pedantic_pass_assert( __visit_children() );
    235                 if( statements.empty() ) return {};
    236 
    237                 // We are going to aggregate errors for all these statements
    238                 SemanticErrorException errors;
    239 
    240                 // add a few useful symbols to the scope
    241                 using __pass::empty;
    242 
    243                 // get the stmts/decls that will need to be spliced in
    244                 auto stmts_before = __pass::stmtsToAddBefore( core, 0 );
    245                 auto stmts_after  = __pass::stmtsToAddAfter ( core, 0 );
    246                 auto decls_before = __pass::declsToAddBefore( core, 0 );
    247                 auto decls_after  = __pass::declsToAddAfter ( core, 0 );
    248 
    249                 // These may be modified by subnode but most be restored once we exit this statemnet.
    250                 ValueGuardPtr< typename std::remove_pointer< decltype(stmts_before) >::type > __old_decls_before( stmts_before );
    251                 ValueGuardPtr< typename std::remove_pointer< decltype(stmts_after ) >::type > __old_decls_after ( stmts_after  );
    252                 ValueGuardPtr< typename std::remove_pointer< decltype(decls_before) >::type > __old_stmts_before( decls_before );
    253                 ValueGuardPtr< typename std::remove_pointer< decltype(decls_after ) >::type > __old_stmts_after ( decls_after  );
    254 
    255                 // update pass statitistics
    256                 pass_visitor_stats.depth++;
    257                 pass_visitor_stats.max->push(pass_visitor_stats.depth);
    258                 pass_visitor_stats.avg->push(pass_visitor_stats.depth);
    259 
    260                 __pass::resultNstmt<container_t> new_kids;
    261                 for( auto value : enumerate( statements ) ) {
    262                         try {
    263                                 size_t i = value.idx;
    264                                 const Stmt * stmt = value.val;
    265                                 __pedantic_pass_assert( stmt );
    266                                 const ast::Stmt * new_stmt = stmt->accept( *this );
    267                                 assert( new_stmt );
    268                                 if(new_stmt != stmt ) { new_kids.differs = true; }
    269 
    270                                 // Make sure that it is either adding statements or declartions but not both
    271                                 // this is because otherwise the order would be awkward to predict
    272                                 assert(( empty( stmts_before ) && empty( stmts_after ))
    273                                     || ( empty( decls_before ) && empty( decls_after )) );
    274 
    275                                 // Take all the statements which should have gone after, N/A for first iteration
    276                                 new_kids.take_all( decls_before );
    277                                 new_kids.take_all( stmts_before );
    278 
    279                                 // Now add the statement if there is one
    280                                 if(new_stmt != stmt) {
    281                                         new_kids.values.emplace_back( new_stmt, i, false );
    282                                 } else {
    283                                         new_kids.values.emplace_back( nullptr, i, true );
    284                                 }
    285 
    286                                 // Take all the declarations that go before
    287                                 new_kids.take_all( decls_after );
    288                                 new_kids.take_all( stmts_after );
     128}
     129
     130template< typename core_t >
     131template< typename node_t >
     132auto ast::Pass< core_t >::call_accept( const node_t * node ) ->
     133        typename ast::Pass< core_t >::template generic_call_accept_result<node_t>::type
     134{
     135        __pedantic_pass_assert( __visit_children() );
     136        __pedantic_pass_assert( node );
     137
     138        static_assert( !std::is_base_of<ast::Expr, node_t>::value, "ERROR" );
     139        static_assert( !std::is_base_of<ast::Stmt, node_t>::value, "ERROR" );
     140
     141        auto nval = node->accept( *this );
     142        __pass::result1<
     143                typename std::remove_pointer< decltype( node->accept(*this) ) >::type
     144        > res;
     145        res.differs = nval != node;
     146        res.value = nval;
     147        return res;
     148}
     149
     150template< typename core_t >
     151ast::__pass::template result1<ast::Expr> ast::Pass< core_t >::call_accept( const ast::Expr * expr ) {
     152        __pedantic_pass_assert( __visit_children() );
     153        __pedantic_pass_assert( expr );
     154
     155        auto nval = expr->accept( *this );
     156        return { nval != expr, nval };
     157}
     158
     159template< typename core_t >
     160ast::__pass::template result1<ast::Stmt> ast::Pass< core_t >::call_accept( const ast::Stmt * stmt ) {
     161        __pedantic_pass_assert( __visit_children() );
     162        __pedantic_pass_assert( stmt );
     163
     164        const ast::Stmt * nval = stmt->accept( *this );
     165        return { nval != stmt, nval };
     166}
     167
     168template< typename core_t >
     169ast::__pass::template result1<ast::Expr> ast::Pass< core_t >::call_accept_top( const ast::Expr * expr ) {
     170        __pedantic_pass_assert( __visit_children() );
     171        __pedantic_pass_assert( expr );
     172
     173        const ast::TypeSubstitution ** typeSubs_ptr = __pass::typeSubs( core, 0 );
     174        if ( typeSubs_ptr && expr->env ) {
     175                *typeSubs_ptr = expr->env;
     176        }
     177
     178        auto nval = expr->accept( *this );
     179        return { nval != expr, nval };
     180}
     181
     182template< typename core_t >
     183ast::__pass::template result1<ast::Stmt> ast::Pass< core_t >::call_accept_as_compound( const ast::Stmt * stmt ) {
     184        __pedantic_pass_assert( __visit_children() );
     185        __pedantic_pass_assert( stmt );
     186
     187        // add a few useful symbols to the scope
     188        using __pass::empty;
     189
     190        // get the stmts/decls that will need to be spliced in
     191        auto stmts_before = __pass::stmtsToAddBefore( core, 0 );
     192        auto stmts_after  = __pass::stmtsToAddAfter ( core, 0 );
     193        auto decls_before = __pass::declsToAddBefore( core, 0 );
     194        auto decls_after  = __pass::declsToAddAfter ( core, 0 );
     195
     196        // These may be modified by subnode but most be restored once we exit this statemnet.
     197        ValueGuardPtr< const ast::TypeSubstitution * > __old_env         ( __pass::typeSubs( core, 0 ) );
     198        ValueGuardPtr< typename std::remove_pointer< decltype(stmts_before) >::type > __old_decls_before( stmts_before );
     199        ValueGuardPtr< typename std::remove_pointer< decltype(stmts_after ) >::type > __old_decls_after ( stmts_after  );
     200        ValueGuardPtr< typename std::remove_pointer< decltype(decls_before) >::type > __old_stmts_before( decls_before );
     201        ValueGuardPtr< typename std::remove_pointer< decltype(decls_after ) >::type > __old_stmts_after ( decls_after  );
     202
     203        // Now is the time to actually visit the node
     204        const ast::Stmt * nstmt = stmt->accept( *this );
     205
     206        // If the pass doesn't want to add anything then we are done
     207        if ( empty(stmts_before) && empty(stmts_after) && empty(decls_before) && empty(decls_after) ) {
     208                return { nstmt != stmt, nstmt };
     209        }
     210
     211        // Make sure that it is either adding statements or declartions but not both
     212        // this is because otherwise the order would be awkward to predict
     213        assert(( empty( stmts_before ) && empty( stmts_after ))
     214            || ( empty( decls_before ) && empty( decls_after )) );
     215
     216        // Create a new Compound Statement to hold the new decls/stmts
     217        ast::CompoundStmt * compound = new ast::CompoundStmt( stmt->location );
     218
     219        // Take all the declarations that go before
     220        __pass::take_all( std::back_inserter( compound->kids ), decls_before );
     221        __pass::take_all( std::back_inserter( compound->kids ), stmts_before );
     222
     223        // Insert the original declaration
     224        compound->kids.emplace_back( nstmt );
     225
     226        // Insert all the declarations that go before
     227        __pass::take_all( std::back_inserter( compound->kids ), decls_after );
     228        __pass::take_all( std::back_inserter( compound->kids ), stmts_after );
     229
     230        return { true, compound };
     231}
     232
     233template< typename core_t >
     234template< template <class...> class container_t >
     235ast::__pass::template resultNstmt<container_t> ast::Pass< core_t >::call_accept( const container_t< ptr<Stmt> > & statements ) {
     236        __pedantic_pass_assert( __visit_children() );
     237        if ( statements.empty() ) return {};
     238
     239        // We are going to aggregate errors for all these statements
     240        SemanticErrorException errors;
     241
     242        // add a few useful symbols to the scope
     243        using __pass::empty;
     244
     245        // get the stmts/decls that will need to be spliced in
     246        auto stmts_before = __pass::stmtsToAddBefore( core, 0 );
     247        auto stmts_after  = __pass::stmtsToAddAfter ( core, 0 );
     248        auto decls_before = __pass::declsToAddBefore( core, 0 );
     249        auto decls_after  = __pass::declsToAddAfter ( core, 0 );
     250
     251        // These may be modified by subnode but most be restored once we exit this statemnet.
     252        ValueGuardPtr< typename std::remove_pointer< decltype(stmts_before) >::type > __old_decls_before( stmts_before );
     253        ValueGuardPtr< typename std::remove_pointer< decltype(stmts_after ) >::type > __old_decls_after ( stmts_after  );
     254        ValueGuardPtr< typename std::remove_pointer< decltype(decls_before) >::type > __old_stmts_before( decls_before );
     255        ValueGuardPtr< typename std::remove_pointer< decltype(decls_after ) >::type > __old_stmts_after ( decls_after  );
     256
     257        // update pass statitistics
     258        pass_visitor_stats.depth++;
     259        pass_visitor_stats.max->push(pass_visitor_stats.depth);
     260        pass_visitor_stats.avg->push(pass_visitor_stats.depth);
     261
     262        __pass::resultNstmt<container_t> new_kids;
     263        for ( auto value : enumerate( statements ) ) {
     264                try {
     265                        size_t i = value.idx;
     266                        const Stmt * stmt = value.val;
     267                        __pedantic_pass_assert( stmt );
     268                        const ast::Stmt * new_stmt = stmt->accept( *this );
     269                        assert( new_stmt );
     270                        if ( new_stmt != stmt ) { new_kids.differs = true; }
     271
     272                        // Make sure that it is either adding statements or declartions but not both
     273                        // this is because otherwise the order would be awkward to predict
     274                        assert(( empty( stmts_before ) && empty( stmts_after ))
     275                            || ( empty( decls_before ) && empty( decls_after )) );
     276
     277                        // Take all the statements which should have gone after, N/A for first iteration
     278                        new_kids.take_all( decls_before );
     279                        new_kids.take_all( stmts_before );
     280
     281                        // Now add the statement if there is one
     282                        if ( new_stmt != stmt ) {
     283                                new_kids.values.emplace_back( new_stmt, i, false );
     284                        } else {
     285                                new_kids.values.emplace_back( nullptr, i, true );
    289286                        }
    290                         catch ( SemanticErrorException &e ) {
    291                                 errors.append( e );
     287
     288                        // Take all the declarations that go before
     289                        new_kids.take_all( decls_after );
     290                        new_kids.take_all( stmts_after );
     291                } catch ( SemanticErrorException &e ) {
     292                        errors.append( e );
     293                }
     294        }
     295        pass_visitor_stats.depth--;
     296        if ( !errors.isEmpty() ) { throw errors; }
     297
     298        return new_kids;
     299}
     300
     301template< typename core_t >
     302template< template <class...> class container_t, typename node_t >
     303ast::__pass::template resultN<container_t, node_t> ast::Pass< core_t >::call_accept( const container_t< ast::ptr<node_t> > & container ) {
     304        __pedantic_pass_assert( __visit_children() );
     305        if ( container.empty() ) return {};
     306        SemanticErrorException errors;
     307
     308        pass_visitor_stats.depth++;
     309        pass_visitor_stats.max->push(pass_visitor_stats.depth);
     310        pass_visitor_stats.avg->push(pass_visitor_stats.depth);
     311
     312        bool mutated = false;
     313        container_t<ptr<node_t>> new_kids;
     314        for ( const node_t * node : container ) {
     315                try {
     316                        __pedantic_pass_assert( node );
     317                        const node_t * new_stmt = strict_dynamic_cast< const node_t * >( node->accept( *this ) );
     318                        if ( new_stmt != node ) {
     319                                mutated = true;
     320                                new_kids.emplace_back( new_stmt );
     321                        } else {
     322                                new_kids.emplace_back( nullptr );
    292323                        }
    293                 }
    294                 pass_visitor_stats.depth--;
    295                 if ( !errors.isEmpty() ) { throw errors; }
    296 
    297                 return new_kids;
    298         }
    299 
    300         template< typename core_t >
    301         template< template <class...> class container_t, typename node_t >
    302         __pass::template resultN<container_t, node_t> ast::Pass< core_t >::call_accept( const container_t< ast::ptr<node_t> > & container ) {
    303                 __pedantic_pass_assert( __visit_children() );
    304                 if( container.empty() ) return {};
    305                 SemanticErrorException errors;
    306 
    307                 pass_visitor_stats.depth++;
    308                 pass_visitor_stats.max->push(pass_visitor_stats.depth);
    309                 pass_visitor_stats.avg->push(pass_visitor_stats.depth);
    310 
    311                 bool mutated = false;
    312                 container_t<ptr<node_t>> new_kids;
    313                 for ( const node_t * node : container ) {
    314                         try {
    315                                 __pedantic_pass_assert( node );
    316                                 const node_t * new_stmt = strict_dynamic_cast< const node_t * >( node->accept( *this ) );
    317                                 if(new_stmt != node ) {
    318                                         mutated = true;
    319                                         new_kids.emplace_back( new_stmt );
    320                                 } else {
    321                                         new_kids.emplace_back( nullptr );
    322                                 }
    323 
    324                         }
    325                         catch( SemanticErrorException &e ) {
    326                                 errors.append( e );
    327                         }
    328                 }
    329 
    330                 __pedantic_pass_assert( new_kids.size() == container.size() );
    331                 pass_visitor_stats.depth--;
    332                 if ( ! errors.isEmpty() ) { throw errors; }
    333 
    334                 return ast::__pass::resultN<container_t, node_t>{ mutated, new_kids };
    335         }
    336 
    337         template< typename core_t >
    338         template<typename node_t, typename super_t, typename field_t>
    339         void ast::Pass< core_t >::maybe_accept(
    340                 const node_t * & parent,
    341                 field_t super_t::*field
    342         ) {
    343                 static_assert( std::is_base_of<super_t, node_t>::value, "Error deducing member object" );
    344 
    345                 if(__pass::skip(parent->*field)) return;
    346                 const auto & old_val = __pass::get(parent->*field, 0);
    347 
    348                 static_assert( !std::is_same<const ast::Node * &, decltype(old_val)>::value, "ERROR");
    349 
    350                 auto new_val = call_accept( old_val );
    351 
    352                 static_assert( !std::is_same<const ast::Node *, decltype(new_val)>::value /* || std::is_same<int, decltype(old_val)>::value */, "ERROR");
    353 
    354                 if( new_val.differs ) {
    355                         auto new_parent = __pass::mutate<core_t>(parent);
    356                         new_val.apply(new_parent, field);
    357                         parent = new_parent;
    358                 }
    359         }
    360 
    361         template< typename core_t >
    362         template<typename node_t, typename super_t, typename field_t>
    363         void ast::Pass< core_t >::maybe_accept_top(
    364                 const node_t * & parent,
    365                 field_t super_t::*field
    366         ) {
    367                 static_assert( std::is_base_of<super_t, node_t>::value, "Error deducing member object" );
    368 
    369                 if(__pass::skip(parent->*field)) return;
    370                 const auto & old_val = __pass::get(parent->*field, 0);
    371 
    372                 static_assert( !std::is_same<const ast::Node * &, decltype(old_val)>::value, "ERROR");
    373 
    374                 auto new_val = call_accept_top( old_val );
    375 
    376                 static_assert( !std::is_same<const ast::Node *, decltype(new_val)>::value /* || std::is_same<int, decltype(old_val)>::value */, "ERROR");
    377 
    378                 if( new_val.differs ) {
    379                         auto new_parent = __pass::mutate<core_t>(parent);
    380                         new_val.apply(new_parent, field);
    381                         parent = new_parent;
    382                 }
    383         }
    384 
    385         template< typename core_t >
    386         template<typename node_t, typename super_t, typename field_t>
    387         void ast::Pass< core_t >::maybe_accept_as_compound(
    388                 const node_t * & parent,
    389                 field_t super_t::*child
    390         ) {
    391                 static_assert( std::is_base_of<super_t, node_t>::value, "Error deducing member object" );
    392 
    393                 if(__pass::skip(parent->*child)) return;
    394                 const auto & old_val = __pass::get(parent->*child, 0);
    395 
    396                 static_assert( !std::is_same<const ast::Node * &, decltype(old_val)>::value, "ERROR");
    397 
    398                 auto new_val = call_accept_as_compound( old_val );
    399 
    400                 static_assert( !std::is_same<const ast::Node *, decltype(new_val)>::value || std::is_same<int, decltype(old_val)>::value, "ERROR");
    401 
    402                 if( new_val.differs ) {
    403                         auto new_parent = __pass::mutate<core_t>(parent);
    404                         new_val.apply( new_parent, child );
    405                         parent = new_parent;
    406                 }
    407         }
    408 
     324                } catch ( SemanticErrorException &e ) {
     325                        errors.append( e );
     326                }
     327        }
     328
     329        __pedantic_pass_assert( new_kids.size() == container.size() );
     330        pass_visitor_stats.depth--;
     331        if ( !errors.isEmpty() ) { throw errors; }
     332
     333        return ast::__pass::resultN<container_t, node_t>{ mutated, new_kids };
     334}
     335
     336template< typename core_t >
     337template<typename node_t, typename super_t, typename field_t>
     338void ast::Pass< core_t >::maybe_accept(
     339        const node_t * & parent,
     340        field_t super_t::*field
     341) {
     342        static_assert( std::is_base_of<super_t, node_t>::value, "Error deducing member object" );
     343
     344        if ( __pass::skip( parent->*field ) ) return;
     345        const auto & old_val = __pass::get(parent->*field, 0);
     346
     347        static_assert( !std::is_same<const ast::Node * &, decltype(old_val)>::value, "ERROR" );
     348
     349        auto new_val = call_accept( old_val );
     350
     351        static_assert( !std::is_same<const ast::Node *, decltype(new_val)>::value /* || std::is_same<int, decltype(old_val)>::value */, "ERROR" );
     352
     353        if ( new_val.differs ) {
     354                auto new_parent = __pass::mutate<core_t>(parent);
     355                new_val.apply(new_parent, field);
     356                parent = new_parent;
     357        }
     358}
     359
     360template< typename core_t >
     361template<typename node_t, typename super_t, typename field_t>
     362void ast::Pass< core_t >::maybe_accept_top(
     363        const node_t * & parent,
     364        field_t super_t::*field
     365) {
     366        static_assert( std::is_base_of<super_t, node_t>::value, "Error deducing member object" );
     367
     368        if ( __pass::skip( parent->*field ) ) return;
     369        const auto & old_val = __pass::get(parent->*field, 0);
     370
     371        static_assert( !std::is_same<const ast::Node * &, decltype(old_val)>::value, "ERROR" );
     372
     373        auto new_val = call_accept_top( old_val );
     374
     375        static_assert( !std::is_same<const ast::Node *, decltype(new_val)>::value /* || std::is_same<int, decltype(old_val)>::value */, "ERROR" );
     376
     377        if ( new_val.differs ) {
     378                auto new_parent = __pass::mutate<core_t>(parent);
     379                new_val.apply(new_parent, field);
     380                parent = new_parent;
     381        }
     382}
     383
     384template< typename core_t >
     385template<typename node_t, typename super_t, typename field_t>
     386void ast::Pass< core_t >::maybe_accept_as_compound(
     387        const node_t * & parent,
     388        field_t super_t::*child
     389) {
     390        static_assert( std::is_base_of<super_t, node_t>::value, "Error deducing member object" );
     391
     392        if ( __pass::skip( parent->*child ) ) return;
     393        const auto & old_val = __pass::get(parent->*child, 0);
     394
     395        static_assert( !std::is_same<const ast::Node * &, decltype(old_val)>::value, "ERROR" );
     396
     397        auto new_val = call_accept_as_compound( old_val );
     398
     399        static_assert( !std::is_same<const ast::Node *, decltype(new_val)>::value || std::is_same<int, decltype(old_val)>::value, "ERROR" );
     400
     401        if ( new_val.differs ) {
     402                auto new_parent = __pass::mutate<core_t>(parent);
     403                new_val.apply( new_parent, child );
     404                parent = new_parent;
     405        }
    409406}
    410407
     
    760757
    761758        if ( __visit_children() ) {
    762                 // Do not enter (or leave) a new scope if atFunctionTop. Remember to save the result.
    763                 auto guard1 = makeFuncGuard( [this, enterScope = !this->atFunctionTop]() {
    764                         if ( enterScope ) {
    765                                 __pass::symtab::enter(core, 0);
    766                         }
    767                 }, [this, leaveScope = !this->atFunctionTop]() {
    768                         if ( leaveScope ) {
    769                                 __pass::symtab::leave(core, 0);
    770                         }
    771                 });
    772                 ValueGuard< bool > guard2( atFunctionTop );
    773                 atFunctionTop = false;
    774                 guard_scope guard3 { *this };
    775                 maybe_accept( node, &CompoundStmt::kids );
     759                // Do not enter (or leave) a new symbol table scope if atFunctionTop.
     760                // But always enter (and leave) a new general scope.
     761                if ( atFunctionTop ) {
     762                        ValueGuard< bool > guard1( atFunctionTop );
     763                        atFunctionTop = false;
     764                        guard_scope guard2( *this );
     765                        maybe_accept( node, &CompoundStmt::kids );
     766                } else {
     767                        guard_symtab guard1( *this );
     768                        guard_scope guard2( *this );
     769                        maybe_accept( node, &CompoundStmt::kids );
     770                }
    776771        }
    777772
  • src/AST/Pass.proto.hpp

    r2b78949 r8a930c03  
    2727
    2828#ifdef PEDANTIC_PASS_ASSERT
    29 #define __pedantic_pass_assert(...) assert (__VA_ARGS__)
     29#define __pedantic_pass_assert(...) assert(__VA_ARGS__)
    3030#define __pedantic_pass_assertf(...) assertf(__VA_ARGS__)
    3131#else
  • src/AST/Print.cpp

    r2b78949 r8a930c03  
    1616#include "Print.hpp"
    1717
     18#include "Attribute.hpp"
    1819#include "Decl.hpp"
    1920#include "Expr.hpp"
     21#include "Init.hpp"
    2022#include "Stmt.hpp"
    2123#include "Type.hpp"
    2224#include "TypeSubstitution.hpp"
    2325#include "CompilationState.h"
    24 
    25 #include "Common/utility.h" // for group_iterate
     26#include "Common/Iterate.hpp"
    2627
    2728using namespace std;
  • src/AST/SymbolTable.cpp

    r2b78949 r8a930c03  
    1818#include <cassert>
    1919
     20#include "Copy.hpp"
    2021#include "Decl.hpp"
    2122#include "Expr.hpp"
     
    8788}
    8889
    89 SymbolTable::SymbolTable()
     90SymbolTable::SymbolTable( ErrorDetection errorMode )
    9091: idTable(), typeTable(), structTable(), enumTable(), unionTable(), traitTable(),
    91   prevScope(), scope( 0 ), repScope( 0 ) { ++*stats().count; }
     92  prevScope(), scope( 0 ), repScope( 0 ), errorMode(errorMode) { ++*stats().count; }
    9293
    9394SymbolTable::~SymbolTable() { stats().size->push( idTable ? idTable->size() : 0 ); }
     95
     96void SymbolTable::OnFindError( CodeLocation location, std::string error ) const {
     97        assertf( errorMode != AssertClean, "Name collision/redefinition, found during a compilation phase where none should be possible.  Detail: %s", error.c_str() );
     98        if (errorMode == ValidateOnAdd) {
     99                SemanticError(location, error);
     100        }
     101        assertf( errorMode == IgnoreErrors, "Unrecognized symbol-table error mode %d", errorMode );
     102}
    94103
    95104void SymbolTable::enterScope() {
     
    268277}
    269278
    270 namespace {
    271         /// true if redeclaration conflict between two types
    272         bool addedTypeConflicts( const NamedTypeDecl * existing, const NamedTypeDecl * added ) {
    273                 if ( existing->base == nullptr ) {
    274                         return false;
    275                 } else if ( added->base == nullptr ) {
    276                         return true;
    277                 } else {
    278                         // typedef redeclarations are errors only if types are different
    279                         if ( ! ResolvExpr::typesCompatible( existing->base, added->base, SymbolTable{} ) ) {
    280                                 SemanticError( added->location, "redeclaration of " + added->name );
    281                         }
    282                 }
    283                 // does not need to be added to the table if both existing and added have a base that are
    284                 // the same
     279bool SymbolTable::addedTypeConflicts(
     280                const NamedTypeDecl * existing, const NamedTypeDecl * added ) const {
     281        if ( existing->base == nullptr ) {
     282                return false;
     283        } else if ( added->base == nullptr ) {
    285284                return true;
    286         }
    287 
    288         /// true if redeclaration conflict between two aggregate declarations
    289         bool addedDeclConflicts( const AggregateDecl * existing, const AggregateDecl * added ) {
    290                 if ( ! existing->body ) {
    291                         return false;
    292                 } else if ( added->body ) {
    293                         SemanticError( added, "redeclaration of " );
    294                 }
    295                 return true;
    296         }
     285        } else {
     286                // typedef redeclarations are errors only if types are different
     287                if ( ! ResolvExpr::typesCompatible( existing->base, added->base ) ) {
     288                        OnFindError( added->location, "redeclaration of " + added->name );
     289                }
     290        }
     291        // does not need to be added to the table if both existing and added have a base that are
     292        // the same
     293        return true;
     294}
     295
     296bool SymbolTable::addedDeclConflicts(
     297                const AggregateDecl * existing, const AggregateDecl * added ) const {
     298        if ( ! existing->body ) {
     299                return false;
     300        } else if ( added->body ) {
     301                OnFindError( added, "redeclaration of " );
     302        }
     303        return true;
    297304}
    298305
     
    642649        } else if ( existing.id->linkage.is_mangled
    643650                        || ResolvExpr::typesCompatible(
    644                                 added->get_type(), existing.id->get_type(), SymbolTable{} ) ) {
     651                                added->get_type(), existing.id->get_type() ) ) {
    645652
    646653                // it is a conflict if one declaration is deleted and the other is not
    647654                if ( deleter && ! existing.deleter ) {
    648655                        if ( handleConflicts.mode == OnConflict::Error ) {
    649                                 SemanticError( added, "deletion of defined identifier " );
     656                                OnFindError( added, "deletion of defined identifier " );
    650657                        }
    651658                        return true;
    652659                } else if ( ! deleter && existing.deleter ) {
    653660                        if ( handleConflicts.mode == OnConflict::Error ) {
    654                                 SemanticError( added, "definition of deleted identifier " );
     661                                OnFindError( added, "definition of deleted identifier " );
    655662                        }
    656663                        return true;
     
    660667                if ( isDefinition( added ) && isDefinition( existing.id ) ) {
    661668                        if ( handleConflicts.mode == OnConflict::Error ) {
    662                                 SemanticError( added,
     669                                OnFindError( added,
    663670                                        isFunction( added ) ?
    664671                                                "duplicate function definition for " :
     
    669676        } else {
    670677                if ( handleConflicts.mode == OnConflict::Error ) {
    671                         SemanticError( added, "duplicate definition for " );
     678                        OnFindError( added, "duplicate definition for " );
    672679                }
    673680                return true;
     
    721728                // Check that a Cforall declaration doesn't override any C declaration
    722729                if ( hasCompatibleCDecl( name, mangleName ) ) {
    723                         SemanticError( decl, "Cforall declaration hides C function " );
     730                        OnFindError( decl, "Cforall declaration hides C function " );
    724731                }
    725732        } else {
     
    727734                // type-compatibility, which it may not be.
    728735                if ( hasIncompatibleCDecl( name, mangleName ) ) {
    729                         SemanticError( decl, "conflicting overload of C function " );
     736                        OnFindError( decl, "conflicting overload of C function " );
    730737                }
    731738        }
  • src/AST/SymbolTable.hpp

    r2b78949 r8a930c03  
    9393
    9494public:
    95         SymbolTable();
     95
     96        /// Mode to control when (during which pass) user-caused name-declaration errors get reported.
     97        /// The default setting `AssertClean` supports, "I expect all user-caused errors to have been
     98        /// reported by now," or, "I wouldn't know what to do with an error; are there even any here?"
     99        enum ErrorDetection {
     100                AssertClean,               ///< invalid user decls => assert fails during addFoo (default)
     101                ValidateOnAdd,             ///< invalid user decls => calls SemanticError during addFoo
     102                IgnoreErrors               ///< acts as if unspecified decls were removed, forcing validity
     103        };
     104
     105        explicit SymbolTable(
     106                ErrorDetection             ///< mode for the lifetime of the symbol table (whole pass)
     107        );
     108        SymbolTable() : SymbolTable(AssertClean) {}
    96109        ~SymbolTable();
     110
     111        ErrorDetection getErrorMode() const {
     112                return errorMode;
     113        }
    97114
    98115        // when using an indexer manually (e.g., within a mutator traversal), it is necessary to
     
    158175
    159176private:
     177        void OnFindError( CodeLocation location, std::string error ) const;
     178
     179        template< typename T >
     180        void OnFindError( const T * obj, const std::string & error ) const {
     181                OnFindError( obj->location, toString( error, obj ) );
     182        }
     183
     184        template< typename T >
     185        void OnFindError( CodeLocation location, const T * obj, const std::string & error ) const {
     186                OnFindError( location, toString( error, obj ) );
     187        }
     188
    160189        /// Ensures that a proper backtracking scope exists before a mutation
    161190        void lazyInitScope();
     
    168197        bool removeSpecialOverrides( IdData & decl, MangleTable::Ptr & mangleTable );
    169198
    170         /// Options for handling identifier conflicts
     199        /// Error detection mode given at construction (pass-specific).
     200        /// Logically const, except that the symbol table's push-pop is achieved by autogenerated
     201        /// assignment onto self.  The feield is left motuable to keep this code-gen simple.
     202        /// Conceptual constness is preserved by all SymbolTable in a stack sharing the same mode.
     203        ErrorDetection errorMode;
     204
     205        /// Options for handling identifier conflicts.
     206        /// Varies according to AST location during traversal: captures semantics of the construct
     207        /// being visited as "would shadow" vs "must not collide."
     208        /// At a given AST location, is the same for every pass.
    171209        struct OnConflict {
    172210                enum {
    173                         Error,  ///< Throw a semantic error
     211                        Error,  ///< Follow the current pass's ErrorDetection mode (may throw a semantic error)
    174212                        Delete  ///< Delete the earlier version with the delete statement
    175213                } mode;
     
    191229                const Decl * deleter );
    192230
     231        /// true if redeclaration conflict between two types
     232        bool addedTypeConflicts( const NamedTypeDecl * existing, const NamedTypeDecl * added ) const;
     233
     234        /// true if redeclaration conflict between two aggregate declarations
     235        bool addedDeclConflicts( const AggregateDecl * existing, const AggregateDecl * added ) const;
     236
    193237        /// common code for addId, addDeletedId, etc.
    194238        void addIdCommon(
     
    213257}
    214258
     259
    215260// Local Variables: //
    216261// tab-width: 4 //
  • src/AST/TypeEnvironment.cpp

    r2b78949 r8a930c03  
    178178
    179179bool TypeEnvironment::combine(
    180                 const TypeEnvironment & o, OpenVarSet & open, const SymbolTable & symtab ) {
     180                const TypeEnvironment & o, OpenVarSet & open ) {
    181181        // short-circuit easy cases
    182182        if ( o.empty() ) return true;
     
    201201                        EqvClass & r = *rt;
    202202                        // merge bindings
    203                         if ( ! mergeBound( r, c, open, symtab ) ) return false;
     203                        if ( ! mergeBound( r, c, open ) ) return false;
    204204                        // merge previous unbound variables into this class, checking occurs if needed
    205205                        if ( r.bound ) for ( const auto & u : c.vars ) {
     
    216216                                } else if ( st != rt ) {
    217217                                        // bound, but not to the same class
    218                                         if ( ! mergeClasses( rt, st, open, symtab ) ) return false;
     218                                        if ( ! mergeClasses( rt, st, open ) ) return false;
    219219                                }       // ignore bound into the same class
    220220                        }
     
    280280bool TypeEnvironment::bindVar(
    281281                const TypeInstType * typeInst, const Type * bindTo, const TypeData & data,
    282                 AssertionSet & need, AssertionSet & have, const OpenVarSet & open, WidenMode widen,
    283                 const SymbolTable & symtab
     282                AssertionSet & need, AssertionSet & have, const OpenVarSet & open, WidenMode widen
    284283) {
    285284        // remove references from bound type, so that type variables can only bind to value types
     
    300299                        if ( unifyInexact(
    301300                                        newType, target, *this, need, have, open,
    302                                         widen & WidenMode{ it->allowWidening, true }, symtab, common ) ) {
     301                                        widen & WidenMode{ it->allowWidening, true }, common ) ) {
    303302                                if ( common ) {
    304303                                        it->bound = std::move(common);
     
    321320                const TypeInstType * var1, const TypeInstType * var2, TypeData && data,
    322321                AssertionSet & need, AssertionSet & have, const OpenVarSet & open,
    323                 WidenMode widen, const SymbolTable & symtab
     322                WidenMode widen
    324323) {
    325324        auto c1 = internal_lookup( *var1 );
     
    358357
    359358                if ( unifyInexact(
    360                                 newType1, newType2, *this, need, have, open, newWidenMode, symtab, common ) ) {
     359                                newType1, newType2, *this, need, have, open, newWidenMode, common ) ) {
    361360                        c1->vars.insert( c2->vars.begin(), c2->vars.end() );
    362361                        c1->allowWidening = widen1 && widen2;
     
    409408
    410409bool TypeEnvironment::mergeBound(
    411                 EqvClass & to, const EqvClass & from, OpenVarSet & open, const SymbolTable & symtab ) {
     410                EqvClass & to, const EqvClass & from, OpenVarSet & open ) {
    412411        if ( from.bound ) {
    413412                if ( to.bound ) {
     
    419418
    420419                        if ( unifyInexact(
    421                                         toType, fromType, *this, need, have, open, widen, symtab, common ) ) {
     420                                        toType, fromType, *this, need, have, open, widen, common ) ) {
    422421                                // unifies, set common type if necessary
    423422                                if ( common ) {
     
    437436
    438437bool TypeEnvironment::mergeClasses(
    439         ClassList::iterator to, ClassList::iterator from, OpenVarSet & open, const SymbolTable & symtab
     438        ClassList::iterator to, ClassList::iterator from, OpenVarSet & open
    440439) {
    441440        EqvClass & r = *to, & s = *from;
    442441
    443442        // ensure bounds match
    444         if ( ! mergeBound( r, s, open, symtab ) ) return false;
     443        if ( ! mergeBound( r, s, open ) ) return false;
    445444
    446445        // check safely bindable
  • src/AST/TypeEnvironment.hpp

    r2b78949 r8a930c03  
    169169        /// Merge environment with this one, checking compatibility.
    170170        /// Returns false if fails, but does NOT roll back partial changes.
    171         bool combine( const TypeEnvironment & o, OpenVarSet & openVars, const SymbolTable & symtab );
     171        bool combine( const TypeEnvironment & o, OpenVarSet & openVars );
    172172
    173173        /// Add all type variables in environment to open var list
     
    183183                const TypeInstType * typeInst, const Type * bindTo, const TypeData & data,
    184184                AssertionSet & need, AssertionSet & have, const OpenVarSet & openVars,
    185                 ResolvExpr::WidenMode widen, const SymbolTable & symtab );
     185                ResolvExpr::WidenMode widen );
    186186
    187187        /// Binds the type classes represented by `var1` and `var2` together; will add one or both
     
    190190                const TypeInstType * var1, const TypeInstType * var2, TypeData && data,
    191191                AssertionSet & need, AssertionSet & have, const OpenVarSet & openVars,
    192                 ResolvExpr::WidenMode widen, const SymbolTable & symtab );
     192                ResolvExpr::WidenMode widen );
    193193
    194194        /// Disallows widening for all bindings in the environment
     
    205205        /// Unifies the type bound of `to` with the type bound of `from`, returning false if fails
    206206        bool mergeBound(
    207                 EqvClass & to, const EqvClass & from, OpenVarSet & openVars, const SymbolTable & symtab );
     207                EqvClass & to, const EqvClass & from, OpenVarSet & openVars );
    208208
    209209        /// Merges two type classes from local environment, returning false if fails
    210210        bool mergeClasses(
    211                 ClassList::iterator to, ClassList::iterator from, OpenVarSet & openVars,
    212                 const SymbolTable & symtab );
     211                ClassList::iterator to, ClassList::iterator from, OpenVarSet & openVars);
    213212
    214213        /// Private lookup API; returns array index of string, or env.size() for not found
  • src/AST/TypeSubstitution.cpp

    r2b78949 r8a930c03  
    1010// Created On       : Mon May 18 07:44:20 2015
    1111// Last Modified By : Andrew Beach
    12 // Last Modified On : Mon Jun  3 13:26:00 2017
    13 // Update Count     : 5
    14 //
     12// Last Modified On : Thr May 25 11:24:00 2023
     13// Update Count     : 6
     14//
     15
     16#include "TypeSubstitution.hpp"
    1517
    1618#include "Type.hpp"   // for TypeInstType, Type, StructInstType, UnionInstType
    17 #include "TypeSubstitution.hpp"
     19#include "Pass.hpp"   // for Pass, PureVisitor, WithGuards, WithVisitorRef
    1820
    1921namespace ast {
    20 
    21 
    22 // size_t TypeSubstitution::Substituter::traceId = Stats::Heap::new_stacktrace_id("TypeSubstitution");
    2322
    2423TypeSubstitution::TypeSubstitution() {
     
    119118}
    120119
     120// definitition must happen after PassVisitor is included so that WithGuards can be used
     121struct TypeSubstitution::Substituter : public WithGuards, public WithVisitorRef<Substituter>, public PureVisitor {
     122        //static size_t traceId;
     123
     124        Substituter( const TypeSubstitution & sub, bool freeOnly ) : sub( sub ), freeOnly( freeOnly ) {}
     125
     126        const Type * postvisit( const TypeInstType * aggregateUseType );
     127
     128        /// Records type variable bindings from forall-statements
     129        void previsit( const FunctionType * type );
     130        /// Records type variable bindings from forall-statements and instantiations of generic types
     131        // void handleAggregateType( const BaseInstType * type );
     132
     133        // void previsit( const StructInstType * aggregateUseType );
     134        // void previsit( const UnionInstType * aggregateUseType );
     135
     136        const TypeSubstitution & sub;
     137        int subCount = 0;
     138        bool freeOnly;
     139        typedef std::unordered_set< TypeEnvKey > BoundVarsType;
     140        BoundVarsType boundVars;
     141};
     142
     143// size_t TypeSubstitution::Substituter::traceId = Stats::Heap::new_stacktrace_id("TypeSubstitution");
     144
    121145void TypeSubstitution::normalize() {
    122146        Pass<Substituter> sub( *this, true );
     
    128152                }
    129153        } while ( sub.core.subCount );
     154}
     155
     156TypeSubstitution::ApplyResult<Node> TypeSubstitution::applyBase(
     157                const Node * input, bool isFree ) const {
     158        assert( input );
     159        Pass<Substituter> sub( *this, isFree );
     160        const Node * output = input->accept( sub );
     161        return { output, sub.core.subCount };
    130162}
    131163
  • src/AST/TypeSubstitution.hpp

    r2b78949 r8a930c03  
    99// Author           : Richard C. Bilson
    1010// Created On       : Mon May 18 07:44:20 2015
    11 // Last Modified By : Peter A. Buhr
    12 // Last Modified On : Tue Apr 30 22:52:47 2019
    13 // Update Count     : 9
     11// Last Modified By : Andrew Beach
     12// Last Modified On : Thr May 25 12:31:00 2023
     13// Update Count     : 10
    1414//
    1515
     
    4646        TypeSubstitution &operator=( const TypeSubstitution &other );
    4747
    48         template< typename SynTreeClass >
     48        template< typename node_t >
    4949        struct ApplyResult {
    50                 ast::ptr<SynTreeClass> node;
     50                ast::ptr<node_t> node;
    5151                int count;
    5252        };
    5353
    54         template< typename SynTreeClass > ApplyResult<SynTreeClass> apply( const SynTreeClass * input ) const;
    55         template< typename SynTreeClass > ApplyResult<SynTreeClass> applyFree( const SynTreeClass * input ) const;
     54        template< typename node_t >
     55        ApplyResult<node_t> apply( const node_t * input ) const {
     56                ApplyResult<Node> ret = applyBase( input, false );
     57                return { ret.node.strict_as<node_t>(), ret.count };
     58        }
    5659
    5760        template< typename node_t, enum Node::ref_type ref_t >
    5861        int apply( ptr_base< node_t, ref_t > & input ) const {
    59                 const node_t * p = input.get();
    60                 auto ret = apply(p);
    61                 input = ret.node;
     62                ApplyResult<Node> ret = applyBase( input.get(), false );
     63                input = ret.node.strict_as<node_t>();
    6264                return ret.count;
     65        }
     66
     67        template< typename node_t >
     68        ApplyResult<node_t> applyFree( const node_t * input ) const {
     69                ApplyResult<Node> ret = applyBase( input, true );
     70                return { ret.node.strict_as<node_t>(), ret.count };
    6371        }
    6472
    6573        template< typename node_t, enum Node::ref_type ref_t >
    6674        int applyFree( ptr_base< node_t, ref_t > & input ) const {
    67                 const node_t * p = input.get();
    68                 auto ret = applyFree(p);
    69                 input = ret.node;
     75                ApplyResult<Node> ret = applyBase( input.get(), true );
     76                input = ret.node.strict_as<node_t>();
    7077                return ret.count;
    7178        }
     
    97104        // Mutator that performs the substitution
    98105        struct Substituter;
     106        ApplyResult<Node> applyBase( const Node * input, bool isFree ) const;
    99107
    100108        // TODO: worry about traversing into a forall-qualified function type or type decl with assertions
     
    158166} // namespace ast
    159167
    160 // include needs to happen after TypeSubstitution is defined so that both TypeSubstitution and
    161 // PassVisitor are defined before PassVisitor implementation accesses TypeSubstitution internals.
    162 #include "Pass.hpp"
    163 #include "Copy.hpp"
    164 
    165 namespace ast {
    166 
    167 // definitition must happen after PassVisitor is included so that WithGuards can be used
    168 struct TypeSubstitution::Substituter : public WithGuards, public WithVisitorRef<Substituter>, public PureVisitor {
    169                 static size_t traceId;
    170 
    171                 Substituter( const TypeSubstitution & sub, bool freeOnly ) : sub( sub ), freeOnly( freeOnly ) {}
    172 
    173                 const Type * postvisit( const TypeInstType * aggregateUseType );
    174 
    175                 /// Records type variable bindings from forall-statements
    176                 void previsit( const FunctionType * type );
    177                 /// Records type variable bindings from forall-statements and instantiations of generic types
    178                 // void handleAggregateType( const BaseInstType * type );
    179 
    180                 // void previsit( const StructInstType * aggregateUseType );
    181                 // void previsit( const UnionInstType * aggregateUseType );
    182 
    183                 const TypeSubstitution & sub;
    184                 int subCount = 0;
    185                 bool freeOnly;
    186                 typedef std::unordered_set< TypeEnvKey > BoundVarsType;
    187                 BoundVarsType boundVars;
    188 
    189 };
    190 
    191 template< typename SynTreeClass >
    192 TypeSubstitution::ApplyResult<SynTreeClass> TypeSubstitution::apply( const SynTreeClass * input ) const {
    193         assert( input );
    194         Pass<Substituter> sub( *this, false );
    195         input = strict_dynamic_cast< const SynTreeClass * >( input->accept( sub ) );
    196         return { input, sub.core.subCount };
    197 }
    198 
    199 template< typename SynTreeClass >
    200 TypeSubstitution::ApplyResult<SynTreeClass> TypeSubstitution::applyFree( const SynTreeClass * input ) const {
    201         assert( input );
    202         Pass<Substituter> sub( *this, true );
    203         input = strict_dynamic_cast< const SynTreeClass * >( input->accept( sub ) );
    204         return { input, sub.core.subCount };
    205 }
    206 
    207 } // namespace ast
    208 
    209168// Local Variables: //
    210169// tab-width: 4 //
  • src/AST/Util.cpp

    r2b78949 r8a930c03  
    8383}
    8484
     85/// Check that the MemberExpr has an aggregate type and matching member.
     86void memberMatchesAggregate( const MemberExpr * expr ) {
     87        const Type * aggrType = expr->aggregate->result->stripReferences();
     88        const AggregateDecl * decl = nullptr;
     89        if ( auto inst = dynamic_cast<const StructInstType *>( aggrType ) ) {
     90                decl = inst->base;
     91        } else if ( auto inst = dynamic_cast<const UnionInstType *>( aggrType ) ) {
     92                decl = inst->base;
     93        }
     94        assertf( decl, "Aggregate of member not correct type." );
     95
     96        for ( auto aggrMember : decl->members ) {
     97                if ( expr->member == aggrMember ) {
     98                        return;
     99                }
     100        }
     101        assertf( false, "Member not found." );
     102}
     103
    85104struct InvariantCore {
    86105        // To save on the number of visits: this is a kind of composed core.
     
    108127        }
    109128
     129        void previsit( const MemberExpr * node ) {
     130                previsit( (const ParseNode *)node );
     131                memberMatchesAggregate( node );
     132        }
     133
    110134        void postvisit( const Node * node ) {
    111135                no_strong_cycles.postvisit( node );
  • src/Concurrency/Actors.cpp

    r2b78949 r8a930c03  
    3838    bool namedDecl = false;
    3939
    40     // finds and sets a ptr to the Allocation enum, which is needed in the next pass
     40    // finds and sets a ptr to the allocation enum, which is needed in the next pass
    4141    void previsit( const EnumDecl * decl ) {
    42         if( decl->name == "Allocation" ) *allocationDecl = decl;
     42        if( decl->name == "allocation" ) *allocationDecl = decl;
    4343    }
    4444
     
    227227                static inline derived_actor & ?|?( derived_actor & receiver, derived_msg & msg ) {
    228228                    request new_req;
    229                     Allocation (*my_work_fn)( derived_actor &, derived_msg & ) = receive;
     229                    allocation (*my_work_fn)( derived_actor &, derived_msg & ) = receive;
    230230                    __receive_fn fn = (__receive_fn)my_work_fn;
    231231                    new_req{ &receiver, &msg, fn };
     
    246246            ));
    247247           
    248             // Function type is: Allocation (*)( derived_actor &, derived_msg & )
     248            // Function type is: allocation (*)( derived_actor &, derived_msg & )
    249249            FunctionType * derivedReceive = new FunctionType();
    250250            derivedReceive->params.push_back( ast::deepCopy( derivedActorRef ) );
     
    252252            derivedReceive->returns.push_back( new EnumInstType( *allocationDecl ) );
    253253
    254             // Generates: Allocation (*my_work_fn)( derived_actor &, derived_msg & ) = receive;
     254            // Generates: allocation (*my_work_fn)( derived_actor &, derived_msg & ) = receive;
    255255            sendBody->push_back( new DeclStmt(
    256256                decl->location,
     
    263263            ));
    264264
    265             // Function type is: Allocation (*)( actor &, message & )
     265            // Function type is: allocation (*)( actor &, message & )
    266266            FunctionType * genericReceive = new FunctionType();
    267267            genericReceive->params.push_back( new ReferenceType( new StructInstType( *actorDecl ) ) );
     
    269269            genericReceive->returns.push_back( new EnumInstType( *allocationDecl ) );
    270270
    271             // Generates: Allocation (*fn)( actor &, message & ) = (Allocation (*)( actor &, message & ))my_work_fn;
     271            // Generates: allocation (*fn)( actor &, message & ) = (allocation (*)( actor &, message & ))my_work_fn;
    272272            // More readable synonymous code:
    273             //     typedef Allocation (*__receive_fn)(actor &, message &);
     273            //     typedef allocation (*__receive_fn)(actor &, message &);
    274274            //     __receive_fn fn = (__receive_fn)my_work_fn;
    275275            sendBody->push_back( new DeclStmt(
     
    422422    const StructDecl ** msgDecl = &msgDeclPtr;
    423423
    424     // first pass collects ptrs to Allocation enum, request type, and generic receive fn typedef
     424    // first pass collects ptrs to allocation enum, request type, and generic receive fn typedef
    425425    // also populates maps of all derived actors and messages
    426426    Pass<CollectactorStructDecls>::run( translationUnit, actorStructDecls, messageStructDecls, requestDecl,
  • src/Concurrency/Waituntil.cpp

    r2b78949 r8a930c03  
    1414//
    1515
     16#include "Waituntil.hpp"
     17
    1618#include <string>
    1719
    18 #include "Waituntil.hpp"
     20#include "AST/Copy.hpp"
    1921#include "AST/Expr.hpp"
    2022#include "AST/Pass.hpp"
     
    9395                        case 0:
    9496                            try {
    95                                 if (on_selected( A, clause1 ))
     97                                    on_selected( A, clause1 );
    9698                                    doA();
    9799                            }
     
    120122        // the unregister and on_selected calls are needed to support primitives where the acquire has side effects
    121123        // so the corresponding block MUST be run for those primitives to not lose state (example is channels)
    122         if ( ! has_run(clause_statuses[0]) && whenA && unregister_select(A, clause1) && on_selected( A, clause1 ) )
     124        if ( !has_run(clause_statuses[0]) && whenA && unregister_select(A, clause1) )
     125            on_selected( A, clause1 )
    123126            doA();
    124127        ... repeat if above for B and C ...
     
    617620
    618621// Generates:
    619 /* if ( on_selected( target_1, node_1 )) ... corresponding body of target_1 ...
     622/* on_selected( target_1, node_1 ); ... corresponding body of target_1 ...
    620623*/
    621624CompoundStmt * GenerateWaitUntilCore::genStmtBlock( const WhenClause * clause, const ClauseData * data ) {
     
    623626    return new CompoundStmt( cLoc,
    624627        {
    625             new IfStmt( cLoc,
    626                 genSelectTraitCall( clause, data, "on_selected" ),
    627                 new CompoundStmt( cLoc,
    628                     {
    629                         ast::deepCopy( clause->stmt )
    630                     }
    631                 )
    632             )
     628            new ExprStmt( cLoc,
     629                genSelectTraitCall( clause, data, "on_selected" )
     630            ),
     631            ast::deepCopy( clause->stmt )
    633632        }
    634633    );
     
    642641            case 0:
    643642                try {
    644                     if (on_selected( target1, clause1 ))
    645                         dotarget1stmt();
     643                    on_selected( target1, clause1 );
     644                    dotarget1stmt();
    646645                }
    647646                finally { clause_statuses[i] = __SELECT_RUN; unregister_select(target1, clause1); }
     
    662661        case 0:
    663662            try {
    664                 if (on_selected( target1, clause1 ))
    665                     dotarget1stmt();
     663                on_selected( target1, clause1 );
     664                dotarget1stmt();
    666665            }
    667666            finally { clause_statuses[i] = __SELECT_RUN; unregister_select(target1, clause1); }
     
    938937        }
    939938
    940     // C_TODO: will remove this commented code later. Currently it isn't needed but may switch to a modified version of this later if it has better performance
    941     // std::vector<ptr<CaseClause>> switchCases;
    942 
    943     // int idx = 0;
    944     // for ( const auto & clause: stmt->clauses ) {
    945     //     const CodeLocation & cLoc = clause->location;
    946     //     switchCases.push_back(
    947     //         new CaseClause( cLoc,
    948     //             new CastExpr( cLoc,
    949     //                 new AddressExpr( cLoc, new NameExpr( cLoc, data.at(idx)->targetName ) ),
    950     //                 new BasicType( BasicType::Kind::LongUnsignedInt ), GeneratedFlag::ExplicitCast
    951     //             ),
    952     //             {
    953     //                 new CompoundStmt( cLoc,
    954     //                     {
    955     //                         ast::deepCopy( clause->stmt ),
    956     //                         new BranchStmt( cLoc, BranchStmt::Kind::Break, Label( cLoc ) )
    957     //                     }
    958     //                 )
    959     //             }
    960     //         )
    961     //     );
    962     //     idx++;
    963     // }
    964 
    965939    return new CompoundStmt( loc,
    966940        {
    967941            new ExprStmt( loc, new UntypedExpr( loc, new NameExpr( loc, "park" ) ) ),
    968942            outerIf
    969             // new SwitchStmt( loc,
    970             //     new NameExpr( loc, statusName ),
    971             //     std::move( switchCases )
    972             // )
    973943        }
    974944    );
     
    1013983    const CodeLocation & cLoc = stmt->clauses.at(idx)->location;
    1014984
     985    Expr * baseCond = genSelectTraitCall( stmt->clauses.at(idx), data.at(idx), "register_select" );
    1015986    Expr * ifCond;
    1016987
     
    1023994            ),
    1024995            new CastExpr( cLoc,
    1025                 genSelectTraitCall( stmt->clauses.at(idx), data.at(idx), "register_select" ),
     996                baseCond,
    1026997                new BasicType( BasicType::Kind::Bool ), GeneratedFlag::ExplicitCast
    1027998            ),
    1028999            LogicalFlag::AndExpr
    10291000        );
    1030     } else ifCond = genSelectTraitCall( stmt->clauses.at(idx), data.at(idx), "register_select" );
     1001    } else ifCond = baseCond;
    10311002
    10321003    return new CompoundStmt( cLoc,
     
    10461017                ifCond,
    10471018                genStmtBlock( stmt->clauses.at(idx), data.at(idx) ),
    1048                 // ast::deepCopy( stmt->clauses.at(idx)->stmt ),
    10491019                recursiveOrIfGen( stmt, data, idx + 1, elseWhenName )
    10501020            )
  • src/ControlStruct/ExceptDeclNew.cpp

    r2b78949 r8a930c03  
    1818#include <sstream>
    1919
     20#include "AST/Copy.hpp"
    2021#include "AST/Decl.hpp"
    2122#include "AST/Pass.hpp"
  • src/GenPoly/InstantiateGenericNew.cpp

    r2b78949 r8a930c03  
    362362                        ResolvExpr::typesCompatible(
    363363                                memberExpr->result,
    364                                 memberExpr->member->get_type(), ast::SymbolTable() ) ) {
     364                                memberExpr->member->get_type() ) ) {
    365365                return memberExpr;
    366366        }
  • src/GenPoly/LvalueNew.cpp

    r2b78949 r8a930c03  
    359359                                !ResolvExpr::typesCompatible(
    360360                                        srcType,
    361                                         strict_dynamic_cast<ast::ReferenceType const *>( dstType )->base,
    362                                         ast::SymbolTable() ) ) {
     361                                        strict_dynamic_cast<ast::ReferenceType const *>( dstType )->base ) ) {
    363362                        // Must keep cast if cast-to type is different from the actual type.
    364363                        return ast::mutate_field( expr, &ast::CastExpr::arg, ret );
     
    377376                if ( !ResolvExpr::typesCompatibleIgnoreQualifiers(
    378377                                dstType->stripReferences(),
    379                                 srcType->stripReferences(),
    380                                 ast::SymbolTable() ) ) {
     378                                srcType->stripReferences() ) ) {
    381379                        return ast::mutate_field( expr, &ast::CastExpr::arg, ret );
    382380                }
     
    393391                                ResolvExpr::typesCompatible(
    394392                                        expr->result,
    395                                         expr->arg->result, ast::SymbolTable() ) ) {
     393                                        expr->arg->result ) ) {
    396394                        PRINT(
    397395                                std::cerr << "types are compatible, removing cast: " << expr << '\n';
     
    590588                ast::OpenVarSet openVars;
    591589                ResolvExpr::unify( ret->arg2->result, ret->arg3->result, newEnv,
    592                         needAssertions, haveAssertions, openVars,
    593                         ast::SymbolTable(), common );
     590                        needAssertions, haveAssertions, openVars, common );
    594591                ret->result = common ? common : ast::deepCopy( ret->arg2->result );
    595592                return ret;
  • src/GenPoly/SpecializeNew.cpp

    r2b78949 r8a930c03  
    1616#include "Specialize.h"
    1717
     18#include "AST/Copy.hpp"                  // for deepCopy
    1819#include "AST/Inspect.hpp"               // for isIntrinsicCallExpr
    1920#include "AST/Pass.hpp"                  // for Pass
  • src/InitTweak/InitTweak.cc

    r2b78949 r8a930c03  
    10661066        const ast::Type * t2 = ftype->params.back();
    10671067
    1068         return ResolvExpr::typesCompatibleIgnoreQualifiers( t1, t2, ast::SymbolTable() );
     1068        return ResolvExpr::typesCompatibleIgnoreQualifiers( t1, t2 );
    10691069}
    10701070
  • src/MakeLibCfaNew.cpp

    r2b78949 r8a930c03  
    1616#include "MakeLibCfa.h"
    1717
     18#include "AST/Copy.hpp"
    1819#include "AST/Fwd.hpp"
    1920#include "AST/Pass.hpp"
  • src/Parser/lex.ll

    r2b78949 r8a930c03  
    1010 * Created On       : Sat Sep 22 08:58:10 2001
    1111 * Last Modified By : Peter A. Buhr
    12  * Last Modified On : Tue May  2 08:45:21 2023
    13  * Update Count     : 769
     12 * Last Modified On : Fri Jun  9 10:04:00 2023
     13 * Update Count     : 770
    1414 */
    1515
     
    319319static                  { KEYWORD_RETURN(STATIC); }
    320320_Static_assert  { KEYWORD_RETURN(STATICASSERT); }               // C11
     321_static_assert  { KEYWORD_RETURN(STATICASSERT); }               // C23
    321322struct                  { KEYWORD_RETURN(STRUCT); }
    322323suspend                 { KEYWORD_RETURN(SUSPEND); }                    // CFA
  • src/Parser/parser.yy

    r2b78949 r8a930c03  
    1010// Created On       : Sat Sep  1 20:22:55 2001
    1111// Last Modified By : Peter A. Buhr
    12 // Last Modified On : Wed Apr 26 16:45:37 2023
    13 // Update Count     : 6330
     12// Last Modified On : Wed Jun  7 14:32:28 2023
     13// Update Count     : 6341
    1414//
    1515
     
    108108        assert( declList );
    109109        // printf( "distAttr1 typeSpec %p\n", typeSpec ); typeSpec->print( std::cout );
    110         DeclarationNode * cur = declList, * cl = (new DeclarationNode)->addType( typeSpec );
     110        DeclarationNode * cl = (new DeclarationNode)->addType( typeSpec );
    111111        // printf( "distAttr2 cl %p\n", cl ); cl->type->print( std::cout );
    112112        // cl->type->aggregate.name = cl->type->aggInst.aggregate->aggregate.name;
    113113
    114         for ( cur = dynamic_cast<DeclarationNode *>( cur->get_next() ); cur != nullptr; cur = dynamic_cast<DeclarationNode *>( cur->get_next() ) ) {
     114        for ( DeclarationNode * cur = dynamic_cast<DeclarationNode *>( declList->get_next() ); cur != nullptr; cur = dynamic_cast<DeclarationNode *>( cur->get_next() ) ) {
    115115                cl->cloneBaseType( cur );
    116116        } // for
     
    206206#define NEW_ONE  new ExpressionNode( build_constantInteger( yylloc, *new string( "1" ) ) )
    207207#define UPDOWN( compop, left, right ) (compop == OperKinds::LThan || compop == OperKinds::LEThan ? left : right)
    208 #define MISSING_ANON_FIELD "Missing loop fields with an anonymous loop index is meaningless as loop index is unavailable in loop body."
    209 #define MISSING_LOW "Missing low value for up-to range so index is uninitialized."
    210 #define MISSING_HIGH "Missing high value for down-to range so index is uninitialized."
     208#define MISSING_ANON_FIELD "syntax error, missing loop fields with an anonymous loop index is meaningless as loop index is unavailable in loop body."
     209#define MISSING_LOW "syntax error, missing low value for up-to range so index is uninitialized."
     210#define MISSING_HIGH "syntax error, missing high value for down-to range so index is uninitialized."
    211211
    212212static ForCtrl * makeForCtrl(
     
    232232ForCtrl * forCtrl( const CodeLocation & location, DeclarationNode * index, ExpressionNode * start, enum OperKinds compop, ExpressionNode * comp, ExpressionNode * inc ) {
    233233        if ( index->initializer ) {
    234                 SemanticError( yylloc, "Direct initialization disallowed. Use instead: type var; initialization ~ comparison ~ increment." );
     234                SemanticError( yylloc, "syntax error, direct initialization disallowed. Use instead: type var; initialization ~ comparison ~ increment." );
    235235        } // if
    236236        if ( index->next ) {
    237                 SemanticError( yylloc, "Multiple loop indexes disallowed in for-loop declaration." );
     237                SemanticError( yylloc, "syntax error, multiple loop indexes disallowed in for-loop declaration." );
    238238        } // if
    239239        DeclarationNode * initDecl = index->addInitializer( new InitializerNode( start ) );
     
    260260                        return forCtrl( location, type, new string( identifier->name ), start, compop, comp, inc );
    261261                } else {
    262                         SemanticError( yylloc, "Expression disallowed. Only loop-index name allowed." ); return nullptr;
     262                        SemanticError( yylloc, "syntax error, loop-index name missing. Expression disallowed." ); return nullptr;
    263263                } // if
    264264        } else {
    265                 SemanticError( yylloc, "Expression disallowed. Only loop-index name allowed." ); return nullptr;
     265                SemanticError( yylloc, "syntax error, loop-index name missing. Expression disallowed. ." ); return nullptr;
    266266        } // if
    267267} // forCtrl
    268268
    269269static void IdentifierBeforeIdentifier( string & identifier1, string & identifier2, const char * kind ) {
    270         SemanticError( yylloc, ::toString( "Adjacent identifiers \"", identifier1, "\" and \"", identifier2, "\" are not meaningful in a", kind, ".\n"
     270        SemanticError( yylloc, ::toString( "syntax error, adjacent identifiers \"", identifier1, "\" and \"", identifier2, "\" are not meaningful in a", kind, ".\n"
    271271                                   "Possible cause is misspelled type name or missing generic parameter." ) );
    272272} // IdentifierBeforeIdentifier
    273273
    274274static void IdentifierBeforeType( string & identifier, const char * kind ) {
    275         SemanticError( yylloc, ::toString( "Identifier \"", identifier, "\" cannot appear before a ", kind, ".\n"
     275        SemanticError( yylloc, ::toString( "syntax error, identifier \"", identifier, "\" cannot appear before a ", kind, ".\n"
    276276                                   "Possible cause is misspelled storage/CV qualifier, misspelled typename, or missing generic parameter." ) );
    277277} // IdentifierBeforeType
     
    689689        // | RESUME '(' comma_expression ')' compound_statement
    690690        //      { SemanticError( yylloc, "Resume expression is currently unimplemented." ); $$ = nullptr; }
    691         | IDENTIFIER IDENTIFIER                                                         // syntax error
     691        | IDENTIFIER IDENTIFIER                                                         // invalid syntax rules
    692692                { IdentifierBeforeIdentifier( *$1.str, *$2.str, "n expression" ); $$ = nullptr; }
    693         | IDENTIFIER type_qualifier                                                     // syntax error
     693        | IDENTIFIER type_qualifier                                                     // invalid syntax rules
    694694                { IdentifierBeforeType( *$1.str, "type qualifier" ); $$ = nullptr; }
    695         | IDENTIFIER storage_class                                                      // syntax error
     695        | IDENTIFIER storage_class                                                      // invalid syntax rules
    696696                { IdentifierBeforeType( *$1.str, "storage class" ); $$ = nullptr; }
    697         | IDENTIFIER basic_type_name                                            // syntax error
     697        | IDENTIFIER basic_type_name                                            // invalid syntax rules
    698698                { IdentifierBeforeType( *$1.str, "type" ); $$ = nullptr; }
    699         | IDENTIFIER TYPEDEFname                                                        // syntax error
     699        | IDENTIFIER TYPEDEFname                                                        // invalid syntax rules
    700700                { IdentifierBeforeType( *$1.str, "type" ); $$ = nullptr; }
    701         | IDENTIFIER TYPEGENname                                                        // syntax error
     701        | IDENTIFIER TYPEGENname                                                        // invalid syntax rules
    702702                { IdentifierBeforeType( *$1.str, "type" ); $$ = nullptr; }
    703703        ;
     
    11521152        identifier_or_type_name ':' attribute_list_opt statement
    11531153                { $$ = $4->add_label( yylloc, $1, $3 ); }
    1154         | identifier_or_type_name ':' attribute_list_opt error // syntax error
    1155                 {
    1156                         SemanticError( yylloc, ::toString( "Label \"", *$1.str, "\" must be associated with a statement, "
     1154        | identifier_or_type_name ':' attribute_list_opt error // invalid syntax rule
     1155                {
     1156                        SemanticError( yylloc, ::toString( "syntx error, label \"", *$1.str, "\" must be associated with a statement, "
    11571157                                                                                           "where a declaration, case, or default is not a statement. "
    11581158                                                                                           "Move the label or terminate with a semi-colon." ) );
     
    11931193        | statement_list_nodecl statement
    11941194                { assert( $1 ); $1->set_last( $2 ); $$ = $1; }
    1195         | statement_list_nodecl error                                           // syntax error
    1196                 { SemanticError( yylloc, "Declarations only allowed at the start of the switch body, i.e., after the '{'." ); $$ = nullptr; }
     1195        | statement_list_nodecl error                                           // invalid syntax rule
     1196                { SemanticError( yylloc, "syntax error, declarations only allowed at the start of the switch body, i.e., after the '{'." ); $$ = nullptr; }
    11971197        ;
    11981198
     
    12191219                        $$ = $7 ? new StatementNode( build_compound( yylloc, (StatementNode *)((new StatementNode( $7 ))->set_last( sw )) ) ) : sw;
    12201220                }
    1221         | SWITCH '(' comma_expression ')' '{' error '}'         // CFA, syntax error
    1222                 { SemanticError( yylloc, "Only declarations can appear before the list of case clauses." ); $$ = nullptr; }
     1221        | SWITCH '(' comma_expression ')' '{' error '}'         // CFA, invalid syntax rule error
     1222                { SemanticError( yylloc, "synatx error, declarations can only appear before the list of case clauses." ); $$ = nullptr; }
    12231223        | CHOOSE '(' comma_expression ')' case_clause           // CFA
    12241224                { $$ = new StatementNode( build_switch( yylloc, false, $3, $5 ) ); }
     
    12281228                        $$ = $7 ? new StatementNode( build_compound( yylloc, (StatementNode *)((new StatementNode( $7 ))->set_last( sw )) ) ) : sw;
    12291229                }
    1230         | CHOOSE '(' comma_expression ')' '{' error '}'         // CFA, syntax error
    1231                 { SemanticError( yylloc, "Only declarations can appear before the list of case clauses." ); $$ = nullptr; }
     1230        | CHOOSE '(' comma_expression ')' '{' error '}'         // CFA, invalid syntax rule
     1231                { SemanticError( yylloc, "syntax error, declarations can only appear before the list of case clauses." ); $$ = nullptr; }
    12321232        ;
    12331233
     
    12681268
    12691269case_label:                                                                                             // CFA
    1270         CASE error                                                                                      // syntax error
    1271                 { SemanticError( yylloc, "Missing case list after case." ); $$ = nullptr; }
     1270        CASE error                                                                                      // invalid syntax rule
     1271                { SemanticError( yylloc, "syntax error, case list missing after case." ); $$ = nullptr; }
    12721272        | CASE case_value_list ':'                                      { $$ = $2; }
    1273         | CASE case_value_list error                                            // syntax error
    1274                 { SemanticError( yylloc, "Missing colon after case list." ); $$ = nullptr; }
     1273        | CASE case_value_list error                                            // invalid syntax rule
     1274                { SemanticError( yylloc, "syntax error, colon missing after case list." ); $$ = nullptr; }
    12751275        | DEFAULT ':'                                                           { $$ = new ClauseNode( build_default( yylloc ) ); }
    12761276                // A semantic check is required to ensure only one default clause per switch/choose statement.
    1277         | DEFAULT error                                                                         //  syntax error
    1278                 { SemanticError( yylloc, "Missing colon after default." ); $$ = nullptr; }
     1277        | DEFAULT error                                                                         //  invalid syntax rules
     1278                { SemanticError( yylloc, "syntax error, colon missing after default." ); $$ = nullptr; }
    12791279        ;
    12801280
     
    14051405                        else { SemanticError( yylloc, MISSING_HIGH ); $$ = nullptr; }
    14061406                }
    1407         | comma_expression updowneq comma_expression '~' '@' // CFA, error
     1407        | comma_expression updowneq comma_expression '~' '@' // CFA, invalid syntax rules
    14081408                { SemanticError( yylloc, MISSING_ANON_FIELD ); $$ = nullptr; }
    1409         | '@' updowneq '@'                                                                      // CFA, error
     1409        | '@' updowneq '@'                                                                      // CFA, invalid syntax rules
    14101410                { SemanticError( yylloc, MISSING_ANON_FIELD ); $$ = nullptr; }
    1411         | '@' updowneq comma_expression '~' '@'                         // CFA, error
     1411        | '@' updowneq comma_expression '~' '@'                         // CFA, invalid syntax rules
    14121412                { SemanticError( yylloc, MISSING_ANON_FIELD ); $$ = nullptr; }
    1413         | comma_expression updowneq '@' '~' '@'                         // CFA, error
     1413        | comma_expression updowneq '@' '~' '@'                         // CFA, invalid syntax rules
    14141414                { SemanticError( yylloc, MISSING_ANON_FIELD ); $$ = nullptr; }
    1415         | '@' updowneq '@' '~' '@'                                                      // CFA, error
     1415        | '@' updowneq '@' '~' '@'                                                      // CFA, invalid syntax rules
    14161416                { SemanticError( yylloc, MISSING_ANON_FIELD ); $$ = nullptr; }
    14171417
     
    14311431                {
    14321432                        if ( $4 == OperKinds::GThan || $4 == OperKinds::GEThan ) { SemanticError( yylloc, MISSING_HIGH ); $$ = nullptr; }
    1433                         else if ( $4 == OperKinds::LEThan ) { SemanticError( yylloc, "Equality with missing high value is meaningless. Use \"~\"." ); $$ = nullptr; }
     1433                        else if ( $4 == OperKinds::LEThan ) { SemanticError( yylloc, "syntax error, equality with missing high value is meaningless. Use \"~\"." ); $$ = nullptr; }
    14341434                        else $$ = forCtrl( yylloc, $3, $1, $3->clone(), $4, nullptr, NEW_ONE );
    14351435                }
    1436         | comma_expression ';' '@' updowneq '@'                         // CFA, error
    1437                 { SemanticError( yylloc, "Missing low/high value for up/down-to range so index is uninitialized." ); $$ = nullptr; }
     1436        | comma_expression ';' '@' updowneq '@'                         // CFA, invalid syntax rules
     1437                { SemanticError( yylloc, "syntax error, missing low/high value for up/down-to range so index is uninitialized." ); $$ = nullptr; }
    14381438
    14391439        | comma_expression ';' comma_expression updowneq comma_expression '~' comma_expression // CFA
    14401440                { $$ = forCtrl( yylloc, $3, $1, UPDOWN( $4, $3->clone(), $5 ), $4, UPDOWN( $4, $5->clone(), $3->clone() ), $7 ); }
    1441         | comma_expression ';' '@' updowneq comma_expression '~' comma_expression // CFA, error
     1441        | comma_expression ';' '@' updowneq comma_expression '~' comma_expression // CFA, invalid syntax rules
    14421442                {
    14431443                        if ( $4 == OperKinds::LThan || $4 == OperKinds::LEThan ) { SemanticError( yylloc, MISSING_LOW ); $$ = nullptr; }
     
    14471447                {
    14481448                        if ( $4 == OperKinds::GThan || $4 == OperKinds::GEThan ) { SemanticError( yylloc, MISSING_HIGH ); $$ = nullptr; }
    1449                         else if ( $4 == OperKinds::LEThan ) { SemanticError( yylloc, "Equality with missing high value is meaningless. Use \"~\"." ); $$ = nullptr; }
     1449                        else if ( $4 == OperKinds::LEThan ) { SemanticError( yylloc, "syntax error, equality with missing high value is meaningless. Use \"~\"." ); $$ = nullptr; }
    14501450                        else $$ = forCtrl( yylloc, $3, $1, $3->clone(), $4, nullptr, $7 );
    14511451                }
    14521452        | comma_expression ';' comma_expression updowneq comma_expression '~' '@' // CFA
    14531453                { $$ = forCtrl( yylloc, $3, $1, UPDOWN( $4, $3->clone(), $5 ), $4, UPDOWN( $4, $5->clone(), $3->clone() ), nullptr ); }
    1454         | comma_expression ';' '@' updowneq comma_expression '~' '@' // CFA, error
     1454        | comma_expression ';' '@' updowneq comma_expression '~' '@' // CFA, invalid syntax rules
    14551455                {
    14561456                        if ( $4 == OperKinds::LThan || $4 == OperKinds::LEThan ) { SemanticError( yylloc, MISSING_LOW ); $$ = nullptr; }
     
    14601460                {
    14611461                        if ( $4 == OperKinds::GThan || $4 == OperKinds::GEThan ) { SemanticError( yylloc, MISSING_HIGH ); $$ = nullptr; }
    1462                         else if ( $4 == OperKinds::LEThan ) { SemanticError( yylloc, "Equality with missing high value is meaningless. Use \"~\"." ); $$ = nullptr; }
     1462                        else if ( $4 == OperKinds::LEThan ) { SemanticError( yylloc, "syntax error, equality with missing high value is meaningless. Use \"~\"." ); $$ = nullptr; }
    14631463                        else $$ = forCtrl( yylloc, $3, $1, $3->clone(), $4, nullptr, nullptr );
    14641464                }
    14651465        | comma_expression ';' '@' updowneq '@' '~' '@' // CFA
    1466                 { SemanticError( yylloc, "Missing low/high value for up/down-to range so index is uninitialized." ); $$ = nullptr; }
     1466                { SemanticError( yylloc, "syntax error, missing low/high value for up/down-to range so index is uninitialized." ); $$ = nullptr; }
    14671467
    14681468        | declaration comma_expression                                          // CFA
     
    14811481                {
    14821482                        if ( $3 == OperKinds::GThan || $3 == OperKinds::GEThan ) { SemanticError( yylloc, MISSING_HIGH ); $$ = nullptr; }
    1483                         else if ( $3 == OperKinds::LEThan ) { SemanticError( yylloc, "Equality with missing high value is meaningless. Use \"~\"." ); $$ = nullptr; }
     1483                        else if ( $3 == OperKinds::LEThan ) { SemanticError( yylloc, "syntax error, equality with missing high value is meaningless. Use \"~\"." ); $$ = nullptr; }
    14841484                        else $$ = forCtrl( yylloc, $1, $2, $3, nullptr, NEW_ONE );
    14851485                }
     
    14951495                {
    14961496                        if ( $3 == OperKinds::GThan || $3 == OperKinds::GEThan ) { SemanticError( yylloc, MISSING_HIGH ); $$ = nullptr; }
    1497                         else if ( $3 == OperKinds::LEThan ) { SemanticError( yylloc, "Equality with missing high value is meaningless. Use \"~\"." ); $$ = nullptr; }
     1497                        else if ( $3 == OperKinds::LEThan ) { SemanticError( yylloc, "syntax error, equality with missing high value is meaningless. Use \"~\"." ); $$ = nullptr; }
    14981498                        else $$ = forCtrl( yylloc, $1, $2, $3, nullptr, $6 );
    14991499                }
     
    15081508                {
    15091509                        if ( $3 == OperKinds::GThan || $3 == OperKinds::GEThan ) { SemanticError( yylloc, MISSING_HIGH ); $$ = nullptr; }
    1510                         else if ( $3 == OperKinds::LEThan ) { SemanticError( yylloc, "Equality with missing high value is meaningless. Use \"~\"." ); $$ = nullptr; }
     1510                        else if ( $3 == OperKinds::LEThan ) { SemanticError( yylloc, "syntax error, equality with missing high value is meaningless. Use \"~\"." ); $$ = nullptr; }
    15111511                        else $$ = forCtrl( yylloc, $1, $2, $3, nullptr, nullptr );
    15121512                }
    1513         | declaration '@' updowneq '@' '~' '@'                          // CFA, error
    1514                 { SemanticError( yylloc, "Missing low/high value for up/down-to range so index is uninitialized." ); $$ = nullptr; }
     1513        | declaration '@' updowneq '@' '~' '@'                          // CFA, invalid syntax rules
     1514                { SemanticError( yylloc, "syntax error, missing low/high value for up/down-to range so index is uninitialized." ); $$ = nullptr; }
    15151515
    15161516        | comma_expression ';' TYPEDEFname                                      // CFA, array type
     
    15211521        | comma_expression ';' downupdowneq TYPEDEFname         // CFA, array type
    15221522                {
    1523                         if ( $3 == OperKinds::LEThan || $3 == OperKinds::GEThan ) { SemanticError( yylloc, "All enumation ranges are equal (all values). Remove \"=~\"." ); $$ = nullptr; }
     1523                        if ( $3 == OperKinds::LEThan || $3 == OperKinds::GEThan ) {
     1524                                SemanticError( yylloc, "syntax error, all enumeration ranges are equal (all values). Remove \"=~\"." ); $$ = nullptr;
     1525                        }
    15241526                        SemanticError( yylloc, "Type iterator is currently unimplemented." ); $$ = nullptr;
    15251527                }
     
    16161618        MUTEX '(' argument_expression_list_opt ')' statement
    16171619                {
    1618                         if ( ! $3 ) { SemanticError( yylloc, "mutex argument list cannot be empty." ); $$ = nullptr; }
     1620                        if ( ! $3 ) { SemanticError( yylloc, "syntax error, mutex argument list cannot be empty." ); $$ = nullptr; }
    16191621                        $$ = new StatementNode( build_mutex( yylloc, $3, $5 ) );
    16201622                }
     
    16641666                { $$ = build_waitfor_timeout( yylloc, $1, $3, $4, maybe_build_compound( yylloc, $5 ) ); }
    16651667        // "else" must be conditional after timeout or timeout is never triggered (i.e., it is meaningless)
    1666         | wor_waitfor_clause wor when_clause_opt timeout statement wor ELSE statement // syntax error
    1667                 { SemanticError( yylloc, "else clause must be conditional after timeout or timeout never triggered." ); $$ = nullptr; }
     1668        | wor_waitfor_clause wor when_clause_opt timeout statement wor ELSE statement // invalid syntax rules
     1669                { SemanticError( yylloc, "syntax error, else clause must be conditional after timeout or timeout never triggered." ); $$ = nullptr; }
    16681670        | wor_waitfor_clause wor when_clause_opt timeout statement wor when_clause ELSE statement
    16691671                { $$ = build_waitfor_else( yylloc, build_waitfor_timeout( yylloc, $1, $3, $4, maybe_build_compound( yylloc, $5 ) ), $7, maybe_build_compound( yylloc, $9 ) ); }
     
    17091711                { $$ = new ast::WaitUntilStmt::ClauseNode( ast::WaitUntilStmt::ClauseNode::Op::LEFT_OR, $1, build_waituntil_timeout( yylloc, $3, $4, maybe_build_compound( yylloc, $5 ) ) ); }
    17101712        // "else" must be conditional after timeout or timeout is never triggered (i.e., it is meaningless)
    1711         | wor_waituntil_clause wor when_clause_opt timeout statement wor ELSE statement // syntax error
    1712                 { SemanticError( yylloc, "else clause must be conditional after timeout or timeout never triggered." ); $$ = nullptr; }
     1713        | wor_waituntil_clause wor when_clause_opt timeout statement wor ELSE statement // invalid syntax rules
     1714                { SemanticError( yylloc, "syntax error, else clause must be conditional after timeout or timeout never triggered." ); $$ = nullptr; }
    17131715        | wor_waituntil_clause wor when_clause_opt timeout statement wor when_clause ELSE statement
    17141716                { $$ = new ast::WaitUntilStmt::ClauseNode( ast::WaitUntilStmt::ClauseNode::Op::LEFT_OR, $1,
     
    20652067                        assert( $1->type );
    20662068                        if ( $1->type->qualifiers.any() ) {                     // CV qualifiers ?
    2067                                 SemanticError( yylloc, "Useless type qualifier(s) in empty declaration." ); $$ = nullptr;
     2069                                SemanticError( yylloc, "syntax error, useless type qualifier(s) in empty declaration." ); $$ = nullptr;
    20682070                        }
    20692071                        // enums are never empty declarations because there must have at least one enumeration.
    20702072                        if ( $1->type->kind == TypeData::AggregateInst && $1->storageClasses.any() ) { // storage class ?
    2071                                 SemanticError( yylloc, "Useless storage qualifier(s) in empty aggregate declaration." ); $$ = nullptr;
     2073                                SemanticError( yylloc, "syntax error, useless storage qualifier(s) in empty aggregate declaration." ); $$ = nullptr;
    20722074                        }
    20732075                }
     
    21002102        | type_declaration_specifier
    21012103        | sue_declaration_specifier
    2102         | sue_declaration_specifier invalid_types
    2103                 {
    2104                         SemanticError( yylloc, ::toString( "Missing ';' after end of ",
     2104        | sue_declaration_specifier invalid_types                       // invalid syntax rule
     2105                {
     2106                        SemanticError( yylloc, ::toString( "syntax error, expecting ';' at end of ",
    21052107                                $1->type->enumeration.name ? "enum" : ast::AggregateDecl::aggrString( $1->type->aggregate.kind ),
    2106                                 " declaration" ) );
     2108                                " declaration." ) );
    21072109                        $$ = nullptr;
    21082110                }
     
    25842586                        // } // for
    25852587                }
     2588        | type_specifier field_declaring_list_opt '}'           // invalid syntax rule
     2589                {
     2590                        SemanticError( yylloc, ::toString( "syntax error, expecting ';' at end of previous declaration." ) );
     2591                        $$ = nullptr;
     2592                }
    25862593        | EXTENSION type_specifier field_declaring_list_opt ';' // GCC
    25872594                { $$ = fieldDecl( $2, $3 ); distExt( $$ ); }
     
    26822689        | ENUM '(' cfa_abstract_parameter_declaration ')' attribute_list_opt '{' enumerator_list comma_opt '}'
    26832690                {
    2684                         if ( $3->storageClasses.val != 0 || $3->type->qualifiers.any() )
    2685                         { SemanticError( yylloc, "storage-class and CV qualifiers are not meaningful for enumeration constants, which are const." ); }
    2686 
     2691                        if ( $3->storageClasses.val != 0 || $3->type->qualifiers.any() ) {
     2692                                SemanticError( yylloc, "syntax error, storage-class and CV qualifiers are not meaningful for enumeration constants, which are const." );
     2693                        }
    26872694                        $$ = DeclarationNode::newEnum( nullptr, $7, true, true, $3 )->addQualifiers( $5 );
    26882695                }
    26892696        | ENUM '(' cfa_abstract_parameter_declaration ')' attribute_list_opt identifier attribute_list_opt
    26902697                {
    2691                         if ( $3->storageClasses.any() || $3->type->qualifiers.val != 0 ) { SemanticError( yylloc, "storage-class and CV qualifiers are not meaningful for enumeration constants, which are const." ); }
     2698                        if ( $3->storageClasses.any() || $3->type->qualifiers.val != 0 ) {
     2699                                SemanticError( yylloc, "syntax error, storage-class and CV qualifiers are not meaningful for enumeration constants, which are const." );
     2700                        }
    26922701                        typedefTable.makeTypedef( *$6 );
    26932702                }
     
    31543163        | IDENTIFIER IDENTIFIER
    31553164                { IdentifierBeforeIdentifier( *$1.str, *$2.str, " declaration" ); $$ = nullptr; }
    3156         | IDENTIFIER type_qualifier                                                     // syntax error
     3165        | IDENTIFIER type_qualifier                                                     // invalid syntax rules
    31573166                { IdentifierBeforeType( *$1.str, "type qualifier" ); $$ = nullptr; }
    3158         | IDENTIFIER storage_class                                                      // syntax error
     3167        | IDENTIFIER storage_class                                                      // invalid syntax rules
    31593168                { IdentifierBeforeType( *$1.str, "storage class" ); $$ = nullptr; }
    3160         | IDENTIFIER basic_type_name                                            // syntax error
     3169        | IDENTIFIER basic_type_name                                            // invalid syntax rules
    31613170                { IdentifierBeforeType( *$1.str, "type" ); $$ = nullptr; }
    3162         | IDENTIFIER TYPEDEFname                                                        // syntax error
     3171        | IDENTIFIER TYPEDEFname                                                        // invalid syntax rules
    31633172                { IdentifierBeforeType( *$1.str, "type" ); $$ = nullptr; }
    3164         | IDENTIFIER TYPEGENname                                                        // syntax error
     3173        | IDENTIFIER TYPEGENname                                                        // invalid syntax rules
    31653174                { IdentifierBeforeType( *$1.str, "type" ); $$ = nullptr; }
    31663175        | external_function_definition
     
    31973206        | type_qualifier_list
    31983207                {
    3199                         if ( $1->type->qualifiers.any() ) { SemanticError( yylloc, "CV qualifiers cannot be distributed; only storage-class and forall qualifiers." ); }
     3208                        if ( $1->type->qualifiers.any() ) {
     3209                                SemanticError( yylloc, "syntax error, CV qualifiers cannot be distributed; only storage-class and forall qualifiers." );
     3210                        }
    32003211                        if ( $1->type->forall ) forall = true;          // remember generic type
    32013212                }
     
    32083219        | declaration_qualifier_list
    32093220                {
    3210                         if ( $1->type && $1->type->qualifiers.any() ) { SemanticError( yylloc, "CV qualifiers cannot be distributed; only storage-class and forall qualifiers." ); }
     3221                        if ( $1->type && $1->type->qualifiers.any() ) {
     3222                                SemanticError( yylloc, "syntax error, CV qualifiers cannot be distributed; only storage-class and forall qualifiers." );
     3223                        }
    32113224                        if ( $1->type && $1->type->forall ) forall = true; // remember generic type
    32123225                }
     
    32193232        | declaration_qualifier_list type_qualifier_list
    32203233                {
    3221                         if ( ($1->type && $1->type->qualifiers.any()) || ($2->type && $2->type->qualifiers.any()) ) { SemanticError( yylloc, "CV qualifiers cannot be distributed; only storage-class and forall qualifiers." ); }
     3234                        if ( ($1->type && $1->type->qualifiers.any()) || ($2->type && $2->type->qualifiers.any()) ) {
     3235                                SemanticError( yylloc, "syntax error, CV qualifiers cannot be distributed; only storage-class and forall qualifiers." );
     3236                        }
    32223237                        if ( ($1->type && $1->type->forall) || ($2->type && $2->type->forall) ) forall = true; // remember generic type
    32233238                }
     
    32503265                        $$ = $3; forall = false;
    32513266                        if ( $5 ) {
    3252                                 SemanticError( yylloc, "Attributes cannot be associated with function body. Move attribute(s) before \"with\" clause." );
     3267                                SemanticError( yylloc, "syntax error, attributes cannot be associated with function body. Move attribute(s) before \"with\" clause." );
    32533268                                $$ = nullptr;
    32543269                        } // if
  • src/ResolvExpr/CandidateFinder.cpp

    r2b78949 r8a930c03  
    373373                                                        unify(
    374374                                                                ttype, argType, newResult.env, newResult.need, newResult.have,
    375                                                                 newResult.open, symtab )
     375                                                                newResult.open )
    376376                                                ) {
    377377                                                        finalResults.emplace_back( std::move( newResult ) );
     
    444444                                )
    445445
    446                                 if ( unify( paramType, argType, env, need, have, open, symtab ) ) {
     446                                if ( unify( paramType, argType, env, need, have, open ) ) {
    447447                                        unsigned nextExpl = results[i].nextExpl + 1;
    448448                                        if ( nextExpl == expl.exprs.size() ) { nextExpl = 0; }
     
    463463                                        ast::OpenVarSet open = results[i].open;
    464464
    465                                         if ( unify( paramType, cnst->result, env, need, have, open, symtab ) ) {
     465                                        if ( unify( paramType, cnst->result, env, need, have, open ) ) {
    466466                                                results.emplace_back(
    467467                                                        i, new ast::DefaultArgExpr{ cnst->location, cnst }, std::move( env ),
     
    506506
    507507                                // attempt to unify types
    508                                 if ( unify( paramType, argType, env, need, have, open, symtab ) ) {
     508                                if ( unify( paramType, argType, env, need, have, open ) ) {
    509509                                        // add new result
    510510                                        results.emplace_back(
     
    750750                        const ast::Type * returnType = funcType->returns.front();
    751751                        if ( ! unify(
    752                                 returnType, targetType, funcEnv, funcNeed, funcHave, funcOpen, symtab )
     752                                returnType, targetType, funcEnv, funcNeed, funcHave, funcOpen )
    753753                        ) {
    754754                                // unification failed, do not pursue this candidate
     
    11591159
    11601160                        // unification run for side-effects
    1161                         unify( toType, cand->expr->result, cand->env, need, have, open, symtab );
     1161                        unify( toType, cand->expr->result, cand->env, need, have, open );
    11621162                        Cost thisCost =
    11631163                                (castExpr->isGenerated == ast::GeneratedFlag::GeneratedCast)
     
    14831483                                        if (
    14841484                                                unify(
    1485                                                         r2->expr->result, r3->expr->result, env, need, have, open, symtab,
     1485                                                        r2->expr->result, r3->expr->result, env, need, have, open,
    14861486                                                        common )
    14871487                                        ) {
     
    15561556                                if (
    15571557                                        unify(
    1558                                                 r1->expr->result, r2->expr->result, env, need, have, open, symtab,
     1558                                                r1->expr->result, r2->expr->result, env, need, have, open,
    15591559                                                common )
    15601560                                ) {
     
    16591659
    16601660                                // unification run for side-effects
    1661                                 bool canUnify = unify( toType, cand->expr->result, env, need, have, open, symtab );
     1661                                bool canUnify = unify( toType, cand->expr->result, env, need, have, open );
    16621662                                (void) canUnify;
    16631663                                Cost thisCost = computeConversionCost( cand->expr->result, toType, cand->expr->get_lvalue(),
  • src/ResolvExpr/CastCost.cc

    r2b78949 r8a930c03  
    165165                                if (
    166166                                        pointerType->qualifiers <= ptr->qualifiers
    167                                         && typesCompatibleIgnoreQualifiers( pointerType->base, ptr->base, symtab, env )
     167                                        && typesCompatibleIgnoreQualifiers( pointerType->base, ptr->base, env )
    168168                                ) {
    169169                                        cost = Cost::safe;
     
    232232        )
    233233
    234         if ( typesCompatibleIgnoreQualifiers( src, dst, symtab, env ) ) {
     234        if ( typesCompatibleIgnoreQualifiers( src, dst, env ) ) {
    235235                PRINT( std::cerr << "compatible!" << std::endl; )
    236236                return Cost::zero;
  • src/ResolvExpr/CommonType.cc

    r2b78949 r8a930c03  
    2121
    2222#include "AST/Decl.hpp"
     23#include "AST/Pass.hpp"
    2324#include "AST/Type.hpp"
    2425#include "Common/PassVisitor.h"
     
    675676                const ast::Type * type2;
    676677                WidenMode widen;
    677                 const ast::SymbolTable & symtab;
    678678                ast::TypeEnvironment & tenv;
    679679                const ast::OpenVarSet & open;
     
    685685
    686686                CommonType_new(
    687                         const ast::Type * t2, WidenMode w, const ast::SymbolTable & st,
     687                        const ast::Type * t2, WidenMode w,
    688688                        ast::TypeEnvironment & env, const ast::OpenVarSet & o,
    689689                        ast::AssertionSet & need, ast::AssertionSet & have )
    690                 : type2( t2 ), widen( w ), symtab( st ), tenv( env ), open( o ), need (need), have (have) ,result() {}
     690                : type2( t2 ), widen( w ), tenv( env ), open( o ), need (need), have (have) ,result() {}
    691691
    692692                void previsit( const ast::Node * ) { visit_children = false; }
     
    748748                                        ast::AssertionSet need, have;
    749749                                        if ( ! tenv.bindVar(
    750                                                 var, voidPtr->base, entry->second, need, have, open, widen, symtab )
     750                                                var, voidPtr->base, entry->second, need, have, open, widen )
    751751                                        ) return;
    752752                                }
     
    761761                                ast::OpenVarSet newOpen{ open };
    762762                                if (enumInst->base->base
    763                                 && unifyExact(type1, enumInst->base->base, tenv, need, have, newOpen, widen, symtab)) {
     763                                && unifyExact(type1, enumInst->base->base, tenv, need, have, newOpen, widen)) {
    764764                                        result = type1;
    765765                                        return true;
     
    798798
    799799                                        ast::OpenVarSet newOpen{ open };
    800                                         if ( unifyExact( t1, t2, tenv, have, need, newOpen, noWiden(), symtab ) ) {
     800                                        if ( unifyExact( t1, t2, tenv, have, need, newOpen, noWiden() ) ) {
    801801                                                result = pointer;
    802802                                                if ( q1.val != q2.val ) {
     
    841841                                                                if (unifyExact(
    842842                                                                        arg1, tupleFromTypes( crnt2, end2 ), tenv, need, have, open,
    843                                                                         noWiden(), symtab )) {
     843                                                                        noWiden() )) {
    844844                                                                                break;
    845845
     
    850850                                                                if (unifyExact(
    851851                                                                        tupleFromTypes( crnt1, end1 ), arg2, tenv, need, have, open,
    852                                                                         noWiden(), symtab )) {
     852                                                                        noWiden() )) {
    853853                                                                                break;
    854854
     
    874874
    875875                                                                                if ( ! unifyExact(
    876                                                                                         base1, base2, tenv, need, have, open, noWiden(), symtab )
     876                                                                                        base1, base2, tenv, need, have, open, noWiden() )
    877877                                                                                ) return;
    878878                                                                        }       
     
    894894
    895895                                                                                if ( ! unifyExact(
    896                                                                                         base1, base2, tenv, need, have, open, noWiden(), symtab )
     896                                                                                        base1, base2, tenv, need, have, open, noWiden() )
    897897                                                                                ) return;
    898898                                                                        }       
     
    902902                                                        }
    903903                                                        else if (! unifyExact(
    904                                                                 arg1, arg2, tenv, need, have, open, noWiden(), symtab )) return;
     904                                                                arg1, arg2, tenv, need, have, open, noWiden() )) return;
    905905
    906906                                                        ++crnt1; ++crnt2;
     
    912912                                                        if (! unifyExact(
    913913                                                                t1, tupleFromTypes( crnt2, end2 ), tenv, need, have, open,
    914                                                                 noWiden(), symtab )) return;
     914                                                                noWiden() )) return;
    915915                                                } else if ( crnt2 != end2 ) {
    916916                                                        // try unifying empty tuple with ttype
     
    919919                                                        if (! unifyExact(
    920920                                                                tupleFromTypes( crnt1, end1 ), t2, tenv, need, have, open,
    921                                                                 noWiden(), symtab )) return;
     921                                                                noWiden() )) return;
    922922                                                }
    923923                                                if ((f1->returns.size() == 0 && f2->returns.size() == 0)
    924                                                   || (f1->returns.size() == 1 && f2->returns.size() == 1 && unifyExact(f1->returns[0], f2->returns[0], tenv, need, have, open, noWiden(), symtab))) {
     924                                                  || (f1->returns.size() == 1 && f2->returns.size() == 1 && unifyExact(f1->returns[0], f2->returns[0], tenv, need, have, open, noWiden()))) {
    925925                                                        result = pointer;
    926926
     
    979979
    980980                                        ast::OpenVarSet newOpen{ open };
    981                                         if ( unifyExact( t1, t2, tenv, have, need, newOpen, noWiden(), symtab ) ) {
     981                                        if ( unifyExact( t1, t2, tenv, have, need, newOpen, noWiden() ) ) {
    982982                                                result = ref;
    983983                                                if ( q1.val != q2.val ) {
     
    994994                        } else {
    995995                                if (!dynamic_cast<const ast::EnumInstType *>(type2))
    996                                         result = commonType( type2, ref, tenv, need, have, open, widen, symtab );
     996                                        result = commonType( type2, ref, tenv, need, have, open, widen );
    997997                        }
    998998                }
     
    10121012                void postvisit( const ast::EnumInstType * enumInst ) {
    10131013                        if (!dynamic_cast<const ast::EnumInstType *>(type2))
    1014                                 result = commonType( type2, enumInst, tenv, need, have, open, widen, symtab);
     1014                                result = commonType( type2, enumInst, tenv, need, have, open, widen);
    10151015                }
    10161016
    10171017                void postvisit( const ast::TraitInstType * ) {}
    10181018
    1019                 void postvisit( const ast::TypeInstType * inst ) {
    1020                         if ( ! widen.first ) return;
    1021                         if ( const ast::NamedTypeDecl * nt = symtab.lookupType( inst->name ) ) {
    1022                                 if ( const ast::Type * base =
    1023                                                 strict_dynamic_cast< const ast::TypeDecl * >( nt )->base
    1024                                 ) {
    1025                                         ast::CV::Qualifiers q1 = inst->qualifiers, q2 = type2->qualifiers;
    1026 
    1027                                         // force t{1,2} to be cloned if their qualifiers must be mutated
    1028                                         ast::ptr< ast::Type > t1{ base }, t2{ type2 };
    1029                                         reset_qualifiers( t1, q1 );
    1030                                         reset_qualifiers( t2 );
    1031 
    1032                                         ast::OpenVarSet newOpen{ open };
    1033                                         if ( unifyExact( t1, t2, tenv, have, need, newOpen, noWiden(), symtab ) ) {
    1034                                                 result = type2;
    1035                                                 reset_qualifiers( result, q1 | q2 );
    1036                                         } else {
    1037                                                 tryResolveWithTypedEnum( t1 );
    1038                                         }
    1039                                 }
    1040                         }
    1041                 }
    1042 
    1043                 void postvisit( const ast::TupleType * tuple) {
     1019                void postvisit( const ast::TypeInstType * ) {}
     1020
     1021                void postvisit( const ast::TupleType * tuple ) {
    10441022                        tryResolveWithTypedEnum( tuple );
    10451023                }
     
    11021080                ast::ptr< ast::Type > handleReference(
    11031081                        const ast::ptr< ast::Type > & t1, const ast::ptr< ast::Type > & t2, WidenMode widen,
    1104                         const ast::SymbolTable & symtab, ast::TypeEnvironment & env,
     1082                        ast::TypeEnvironment & env,
    11051083                        const ast::OpenVarSet & open
    11061084                ) {
     
    11101088
    11111089                        // need unify to bind type variables
    1112                         if ( unify( t1, t2, env, have, need, newOpen, symtab, common ) ) {
     1090                        if ( unify( t1, t2, env, have, need, newOpen, common ) ) {
    11131091                                ast::CV::Qualifiers q1 = t1->qualifiers, q2 = t2->qualifiers;
    11141092                                PRINT(
     
    11341112                        const ast::ptr< ast::Type > & type1, const ast::ptr< ast::Type > & type2,
    11351113                        ast::TypeEnvironment & env, ast::AssertionSet & need, ast::AssertionSet & have,
    1136                         const ast::OpenVarSet & open, WidenMode widen, const ast::SymbolTable & symtab
     1114                        const ast::OpenVarSet & open, WidenMode widen
    11371115        ) {
    11381116                unsigned depth1 = type1->referenceDepth();
     
    11491127                        if ( depth1 > depth2 ) {
    11501128                                assert( ref1 );
    1151                                 result = handleReference( ref1->base, type2, widen, symtab, env, open );
     1129                                result = handleReference( ref1->base, type2, widen, env, open );
    11521130                        } else {  // implies depth1 < depth2
    11531131                                assert( ref2 );
    1154                                 result = handleReference( type1, ref2->base, widen, symtab, env, open );
     1132                                result = handleReference( type1, ref2->base, widen, env, open );
    11551133                        }
    11561134
     
    11701148                }
    11711149                // otherwise both are reference types of the same depth and this is handled by the visitor
    1172                 ast::Pass<CommonType_new> visitor{ type2, widen, symtab, env, open, need, have };
     1150                ast::Pass<CommonType_new> visitor{ type2, widen, env, open, need, have };
    11731151                type1->accept( visitor );
    1174                 ast::ptr< ast::Type > result = visitor.core.result;
    1175 
    1176                 // handling for opaque type declarations (?)
    1177                 if ( ! result && widen.second ) {
    1178                         if ( const ast::TypeInstType * inst = type2.as< ast::TypeInstType >() ) {
    1179                                 if ( const ast::NamedTypeDecl * nt = symtab.lookupType( inst->name ) ) {
    1180                                         auto type = strict_dynamic_cast< const ast::TypeDecl * >( nt );
    1181                                         if ( type->base ) {
    1182                                                 ast::CV::Qualifiers q1 = type1->qualifiers, q2 = type2->qualifiers;
    1183                                                 ast::OpenVarSet newOpen{ open };
    1184 
    1185                                                 // force t{1,2} to be cloned if its qualifiers must be stripped, so that
    1186                                                 // type1 and type->base are left unchanged; calling convention forces
    1187                                                 // {type1,type->base}->strong_ref >= 1
    1188                                                 ast::ptr<ast::Type> t1{ type1 }, t2{ type->base };
    1189                                                 reset_qualifiers( t1 );
    1190                                                 reset_qualifiers( t2, q1 );
    1191 
    1192                                                 if ( unifyExact( t1, t2, env, have, need, newOpen, noWiden(), symtab ) ) {
    1193                                                         result = t1;
    1194                                                         reset_qualifiers( result, q1 | q2 );
    1195                                                 }
    1196                                         }
    1197                                 }
    1198                         }
    1199                 }
    1200 
    1201                 return result;
     1152                // ast::ptr< ast::Type > result = visitor.core.result;
     1153
     1154                return visitor.core.result;
    12021155        }
    12031156
  • src/ResolvExpr/CommonType.hpp

    r2b78949 r8a930c03  
    3636        ast::TypeEnvironment & env,
    3737        ast::AssertionSet & need, ast::AssertionSet & have,
    38         const ast::OpenVarSet & open, WidenMode widen,
    39         const ast::SymbolTable & symtab );
     38        const ast::OpenVarSet & open, WidenMode widen);
    4039
    4140}
  • src/ResolvExpr/ConversionCost.cc

    r2b78949 r8a930c03  
    532532                }
    533533        }
    534         if ( typesCompatibleIgnoreQualifiers( src, dst, symtab, env ) ) {
     534        if ( typesCompatibleIgnoreQualifiers( src, dst, env ) ) {
    535535                return Cost::zero;
    536536        } else if ( dynamic_cast< const ast::VoidType * >( dst ) ) {
     
    566566                        ast::CV::Qualifiers tq2 = dstAsRef->base->qualifiers;
    567567                        if ( tq1 <= tq2 && typesCompatibleIgnoreQualifiers(
    568                                         srcAsRef->base, dstAsRef->base, symtab, env ) ) {
     568                                        srcAsRef->base, dstAsRef->base, env ) ) {
    569569                                if ( tq1 == tq2 ) {
    570570                                        return Cost::zero;
     
    587587                const ast::ReferenceType * dstAsRef = dynamic_cast< const ast::ReferenceType * >( dst );
    588588                assert( dstAsRef );
    589                 if ( typesCompatibleIgnoreQualifiers( src, dstAsRef->base, symtab, env ) ) {
     589                if ( typesCompatibleIgnoreQualifiers( src, dstAsRef->base, env ) ) {
    590590                        if ( srcIsLvalue ) {
    591591                                if ( src->qualifiers == dstAsRef->base->qualifiers ) {
     
    653653                ast::CV::Qualifiers tq2 = dstAsPtr->base->qualifiers;
    654654                if ( tq1 <= tq2 && typesCompatibleIgnoreQualifiers(
    655                                 pointerType->base, dstAsPtr->base, symtab, env ) ) {
     655                                pointerType->base, dstAsPtr->base, env ) ) {
    656656                        if ( tq1 == tq2 ) {
    657657                                cost = Cost::zero;
  • src/ResolvExpr/PolyCost.cc

    r2b78949 r8a930c03  
    1515
    1616#include "AST/SymbolTable.hpp"
     17#include "AST/Pass.hpp"
    1718#include "AST/Type.hpp"
    1819#include "AST/TypeEnvironment.hpp"
  • src/ResolvExpr/Resolver.cc

    r2b78949 r8a930c03  
    11061106
    11071107                /// Removes cast to type of argument (unlike StripCasts, also handles non-generated casts)
    1108                 void removeExtraneousCast( ast::ptr<ast::Expr> & expr, const ast::SymbolTable & symtab ) {
     1108                void removeExtraneousCast( ast::ptr<ast::Expr> & expr ) {
    11091109                        if ( const ast::CastExpr * castExpr = expr.as< ast::CastExpr >() ) {
    1110                                 if ( typesCompatible( castExpr->arg->result, castExpr->result, symtab ) ) {
     1110                                if ( typesCompatible( castExpr->arg->result, castExpr->result ) ) {
    11111111                                        // cast is to the same type as its argument, remove it
    11121112                                        swap_and_save_env( expr, castExpr->arg );
     
    11961196                ast::ptr< ast::Expr > castExpr = new ast::CastExpr{ untyped, type };
    11971197                ast::ptr< ast::Expr > newExpr = findSingleExpression( castExpr, context );
    1198                 removeExtraneousCast( newExpr, context.symtab );
     1198                removeExtraneousCast( newExpr );
    11991199                return newExpr;
    12001200        }
     
    12611261                static size_t traceId;
    12621262                Resolver_new( const ast::TranslationGlobal & global ) :
     1263                        ast::WithSymbolTable(ast::SymbolTable::ErrorDetection::ValidateOnAdd),
    12631264                        context{ symtab, global } {}
    12641265                Resolver_new( const ResolveContext & context ) :
     
    18341835                                                                if (
    18351836                                                                        ! unify(
    1836                                                                                 arg->expr->result, *param, resultEnv, need, have, open,
    1837                                                                                 symtab )
     1837                                                                                arg->expr->result, *param, resultEnv, need, have, open )
    18381838                                                                ) {
    18391839                                                                        // Type doesn't match
     
    20412041                const ast::Type * initContext = currentObject.getCurrentType();
    20422042
    2043                 removeExtraneousCast( newExpr, symtab );
     2043                removeExtraneousCast( newExpr );
    20442044
    20452045                // check if actual object's type is char[]
  • src/ResolvExpr/SatisfyAssertions.cpp

    r2b78949 r8a930c03  
    215215                        findOpenVars( adjType, newOpen, closed, newNeed, have, FirstOpen );
    216216                        if ( allowConversion ) {
    217                                 if ( auto c = commonType( toType, adjType, newEnv, newNeed, have, newOpen, WidenMode {true, true}, sat.symtab ) ) {
     217                                if ( auto c = commonType( toType, adjType, newEnv, newNeed, have, newOpen, WidenMode {true, true} ) ) {
    218218                                        // set up binding slot for recursive assertions
    219219                                        ast::UniqueId crntResnSlot = 0;
     
    229229                        }
    230230                        else {
    231                                 if ( unifyExact( toType, adjType, newEnv, newNeed, have, newOpen, WidenMode {true, true}, sat.symtab ) ) {
     231                                if ( unifyExact( toType, adjType, newEnv, newNeed, have, newOpen, WidenMode {true, true} ) ) {
    232232                                        // set up binding slot for recursive assertions
    233233                                        ast::UniqueId crntResnSlot = 0;
     
    392392                        mergeOpenVars( open, i.match.open );
    393393
    394                         if ( ! env.combine( i.match.env, open, symtab ) ) return false;
     394                        if ( ! env.combine( i.match.env, open ) ) return false;
    395395
    396396                        crnt.emplace_back( i );
  • src/ResolvExpr/Unify.cc

    r2b78949 r8a930c03  
    128128                const ast::Type * type1, const ast::Type * type2, ast::TypeEnvironment & env,
    129129                ast::AssertionSet & need, ast::AssertionSet & have, const ast::OpenVarSet & open,
    130                 WidenMode widen, const ast::SymbolTable & symtab );
     130                WidenMode widen );
    131131
    132132        bool typesCompatible( const Type * first, const Type * second, const SymTab::Indexer & indexer, const TypeEnvironment & env ) {
     
    150150
    151151        bool typesCompatible(
    152                         const ast::Type * first, const ast::Type * second, const ast::SymbolTable & symtab,
     152                        const ast::Type * first, const ast::Type * second,
    153153                        const ast::TypeEnvironment & env ) {
    154154                ast::TypeEnvironment newEnv;
     
    163163                findOpenVars( newSecond, open, closed, need, have, FirstOpen );
    164164
    165                 return unifyExact(newFirst, newSecond, newEnv, need, have, open, noWiden(), symtab );
     165                return unifyExact(newFirst, newSecond, newEnv, need, have, open, noWiden() );
    166166        }
    167167
     
    183183
    184184        bool typesCompatibleIgnoreQualifiers(
    185                         const ast::Type * first, const ast::Type * second, const ast::SymbolTable & symtab,
     185                        const ast::Type * first, const ast::Type * second,
    186186                        const ast::TypeEnvironment & env ) {
    187187                ast::TypeEnvironment newEnv;
     
    216216                        subFirst,
    217217                        subSecond,
    218                         newEnv, need, have, open, noWiden(), symtab );
     218                        newEnv, need, have, open, noWiden() );
    219219        }
    220220
     
    786786                const ast::OpenVarSet & open;
    787787                WidenMode widen;
    788                 const ast::SymbolTable & symtab;
    789788        public:
    790789                static size_t traceId;
     
    793792                Unify_new(
    794793                        const ast::Type * type2, ast::TypeEnvironment & env, ast::AssertionSet & need,
    795                         ast::AssertionSet & have, const ast::OpenVarSet & open, WidenMode widen,
    796                         const ast::SymbolTable & symtab )
     794                        ast::AssertionSet & have, const ast::OpenVarSet & open, WidenMode widen )
    797795                : type2(type2), tenv(env), need(need), have(have), open(open), widen(widen),
    798                   symtab(symtab), result(false) {}
     796                result(false) {}
    799797
    800798                void previsit( const ast::Node * ) { visit_children = false; }
     
    814812                                result = unifyExact(
    815813                                        pointer->base, pointer2->base, tenv, need, have, open,
    816                                         noWiden(), symtab );
     814                                        noWiden());
    817815                        }
    818816                }
     
    837835
    838836                        result = unifyExact(
    839                                 array->base, array2->base, tenv, need, have, open, noWiden(),
    840                                 symtab );
     837                                array->base, array2->base, tenv, need, have, open, noWiden());
    841838                }
    842839
     
    844841                        if ( auto ref2 = dynamic_cast< const ast::ReferenceType * >( type2 ) ) {
    845842                                result = unifyExact(
    846                                         ref->base, ref2->base, tenv, need, have, open, noWiden(),
    847                                         symtab );
     843                                        ref->base, ref2->base, tenv, need, have, open, noWiden());
    848844                        }
    849845                }
     
    854850                static bool unifyTypeList(
    855851                        Iter crnt1, Iter end1, Iter crnt2, Iter end2, ast::TypeEnvironment & env,
    856                         ast::AssertionSet & need, ast::AssertionSet & have, const ast::OpenVarSet & open,
    857                         const ast::SymbolTable & symtab
     852                        ast::AssertionSet & need, ast::AssertionSet & have, const ast::OpenVarSet & open
    858853                ) {
    859854                        while ( crnt1 != end1 && crnt2 != end2 ) {
     
    868863                                        return unifyExact(
    869864                                                t1, tupleFromTypes( crnt2, end2 ), env, need, have, open,
    870                                                 noWiden(), symtab );
     865                                                noWiden() );
    871866                                } else if ( ! isTuple1 && isTuple2 ) {
    872867                                        // combine remainder of list1, then unify
    873868                                        return unifyExact(
    874869                                                tupleFromTypes( crnt1, end1 ), t2, env, need, have, open,
    875                                                 noWiden(), symtab );
     870                                                noWiden() );
    876871                                }
    877872
    878873                                if ( ! unifyExact(
    879                                         t1, t2, env, need, have, open, noWiden(), symtab )
     874                                        t1, t2, env, need, have, open, noWiden() )
    880875                                ) return false;
    881876
     
    891886                                return unifyExact(
    892887                                        t1, tupleFromTypes( crnt2, end2 ), env, need, have, open,
    893                                         noWiden(), symtab );
     888                                        noWiden() );
    894889                        } else if ( crnt2 != end2 ) {
    895890                                // try unifying empty tuple with ttype
     
    898893                                return unifyExact(
    899894                                        tupleFromTypes( crnt1, end1 ), t2, env, need, have, open,
    900                                         noWiden(), symtab );
     895                                        noWiden() );
    901896                        }
    902897
     
    908903                        const std::vector< ast::ptr< ast::Type > > & list2,
    909904                        ast::TypeEnvironment & env, ast::AssertionSet & need, ast::AssertionSet & have,
    910                         const ast::OpenVarSet & open, const ast::SymbolTable & symtab
     905                        const ast::OpenVarSet & open
    911906                ) {
    912907                        return unifyTypeList(
    913                                 list1.begin(), list1.end(), list2.begin(), list2.end(), env, need, have, open,
    914                                 symtab );
     908                                list1.begin(), list1.end(), list2.begin(), list2.end(), env, need, have, open);
    915909                }
    916910
     
    953947                        ) return;
    954948
    955                         if ( ! unifyTypeList( params, params2, tenv, need, have, open, symtab ) ) return;
     949                        if ( ! unifyTypeList( params, params2, tenv, need, have, open ) ) return;
    956950                        if ( ! unifyTypeList(
    957                                 func->returns, func2->returns, tenv, need, have, open, symtab ) ) return;
     951                                func->returns, func2->returns, tenv, need, have, open ) ) return;
    958952
    959953                        markAssertions( have, need, func );
     
    10261020
    10271021                                if ( ! unifyExact(
    1028                                                 pty, pty2, tenv, need, have, open, noWiden(), symtab ) ) {
     1022                                                pty, pty2, tenv, need, have, open, noWiden() ) ) {
    10291023                                        result = false;
    10301024                                        return;
     
    10651059                        const std::vector< ast::ptr< ast::Type > > & list1,
    10661060                        const std::vector< ast::ptr< ast::Type > > & list2, ast::TypeEnvironment & env,
    1067                         ast::AssertionSet & need, ast::AssertionSet & have, const ast::OpenVarSet & open,
    1068                         const ast::SymbolTable & symtab
     1061                        ast::AssertionSet & need, ast::AssertionSet & have, const ast::OpenVarSet & open
    10691062                ) {
    10701063                        auto crnt1 = list1.begin();
     
    10811074                                        return unifyExact(
    10821075                                                t1, tupleFromTypes( list2 ), env, need, have, open,
    1083                                                 noWiden(), symtab );
     1076                                                noWiden() );
    10841077                                } else if ( ! isTuple1 && isTuple2 ) {
    10851078                                        // combine entirety of list1, then unify
    10861079                                        return unifyExact(
    10871080                                                tupleFromTypes( list1 ), t2, env, need, have, open,
    1088                                                 noWiden(), symtab );
     1081                                                noWiden() );
    10891082                                }
    10901083
    10911084                                if ( ! unifyExact(
    1092                                         t1, t2, env, need, have, open, noWiden(), symtab )
     1085                                        t1, t2, env, need, have, open, noWiden() )
    10931086                                ) return false;
    10941087
     
    11041097                                return unifyExact(
    11051098                                                t1, tupleFromTypes( list2 ), env, need, have, open,
    1106                                                 noWiden(), symtab );
     1099                                                noWiden() );
    11071100                        } else if ( crnt2 != list2.end() ) {
    11081101                                // try unifying empty tuple with ttype
     
    11131106                                return unifyExact(
    11141107                                                tupleFromTypes( list1 ), t2, env, need, have, open,
    1115                                                 noWiden(), symtab );
     1108                                                noWiden() );
    11161109                        }
    11171110
     
    11321125                        auto types2 = flatten( flat2 );
    11331126
    1134                         result = unifyList( types, types2, tenv, need, have, open, symtab );
     1127                        result = unifyList( types, types2, tenv, need, have, open );
    11351128                }
    11361129
     
    11561149                        const ast::ptr<ast::Type> & type1, const ast::ptr<ast::Type> & type2,
    11571150                        ast::TypeEnvironment & env, ast::AssertionSet & need, ast::AssertionSet & have,
    1158                         ast::OpenVarSet & open, const ast::SymbolTable & symtab
     1151                        ast::OpenVarSet & open
    11591152        ) {
    11601153                ast::ptr<ast::Type> common;
    1161                 return unify( type1, type2, env, need, have, open, symtab, common );
     1154                return unify( type1, type2, env, need, have, open, common );
    11621155        }
    11631156
     
    11651158                        const ast::ptr<ast::Type> & type1, const ast::ptr<ast::Type> & type2,
    11661159                        ast::TypeEnvironment & env, ast::AssertionSet & need, ast::AssertionSet & have,
    1167                         ast::OpenVarSet & open, const ast::SymbolTable & symtab, ast::ptr<ast::Type> & common
     1160                        ast::OpenVarSet & open, ast::ptr<ast::Type> & common
    11681161        ) {
    11691162                ast::OpenVarSet closed;
     
    11711164                findOpenVars( type2, open, closed, need, have, FirstOpen );
    11721165                return unifyInexact(
    1173                         type1, type2, env, need, have, open, WidenMode{ true, true }, symtab, common );
     1166                        type1, type2, env, need, have, open, WidenMode{ true, true }, common );
    11741167        }
    11751168
     
    11771170                        const ast::Type * type1, const ast::Type * type2, ast::TypeEnvironment & env,
    11781171                        ast::AssertionSet & need, ast::AssertionSet & have, const ast::OpenVarSet & open,
    1179                         WidenMode widen, const ast::SymbolTable & symtab
     1172                        WidenMode widen
    11801173        ) {
    11811174                if ( type1->qualifiers != type2->qualifiers ) return false;
     
    11931186                        return env.bindVarToVar(
    11941187                                var1, var2, ast::TypeData{ entry1->second, entry2->second }, need, have,
    1195                                 open, widen, symtab );
     1188                                open, widen );
    11961189                } else if ( isopen1 ) {
    1197                         return env.bindVar( var1, type2, entry1->second, need, have, open, widen, symtab );
     1190                        return env.bindVar( var1, type2, entry1->second, need, have, open, widen );
    11981191                } else if ( isopen2 ) {
    1199                         return env.bindVar( var2, type1, entry2->second, need, have, open, widen, symtab );
     1192                        return env.bindVar( var2, type1, entry2->second, need, have, open, widen );
    12001193                } else {
    12011194                        return ast::Pass<Unify_new>::read(
    1202                                 type1, type2, env, need, have, open, widen, symtab );
     1195                                type1, type2, env, need, have, open, widen );
    12031196                }
    12041197        }
     
    12071200                        const ast::ptr<ast::Type> & type1, const ast::ptr<ast::Type> & type2,
    12081201                        ast::TypeEnvironment & env, ast::AssertionSet & need, ast::AssertionSet & have,
    1209                         const ast::OpenVarSet & open, WidenMode widen, const ast::SymbolTable & symtab,
     1202                        const ast::OpenVarSet & open, WidenMode widen,
    12101203                        ast::ptr<ast::Type> & common
    12111204        ) {
     
    12211214                ast::ptr< ast::Type > t2_(t2);
    12221215
    1223                 if ( unifyExact( t1, t2, env, need, have, open, widen, symtab ) ) {
     1216                if ( unifyExact( t1, t2, env, need, have, open, widen ) ) {
    12241217                        // if exact unification on unqualified types, try to merge qualifiers
    12251218                        if ( q1 == q2 || ( ( q1 > q2 || widen.first ) && ( q2 > q1 || widen.second ) ) ) {
     
    12311224                        }
    12321225
    1233                 } else if (( common = commonType( t1, t2, env, need, have, open, widen, symtab ))) {
     1226                } else if (( common = commonType( t1, t2, env, need, have, open, widen ))) {
    12341227                        // no exact unification, but common type
    12351228                        auto c = shallowCopy(common.get());
  • src/ResolvExpr/Unify.h

    r2b78949 r8a930c03  
    5959        const ast::ptr<ast::Type> & type1, const ast::ptr<ast::Type> & type2,
    6060        ast::TypeEnvironment & env, ast::AssertionSet & need, ast::AssertionSet & have,
    61         ast::OpenVarSet & open, const ast::SymbolTable & symtab );
     61        ast::OpenVarSet & open );
    6262
    6363bool unify(
    6464        const ast::ptr<ast::Type> & type1, const ast::ptr<ast::Type> & type2,
    6565        ast::TypeEnvironment & env, ast::AssertionSet & need, ast::AssertionSet & have,
    66         ast::OpenVarSet & open, const ast::SymbolTable & symtab, ast::ptr<ast::Type> & common );
     66        ast::OpenVarSet & open, ast::ptr<ast::Type> & common );
    6767
    6868bool unifyExact(
    6969        const ast::Type * type1, const ast::Type * type2, ast::TypeEnvironment & env,
    7070        ast::AssertionSet & need, ast::AssertionSet & have, const ast::OpenVarSet & open,
    71         WidenMode widen, const ast::SymbolTable & symtab );
     71        WidenMode widen );
    7272
    7373bool unifyInexact(
    7474        const ast::ptr<ast::Type> & type1, const ast::ptr<ast::Type> & type2,
    7575        ast::TypeEnvironment & env, ast::AssertionSet & need, ast::AssertionSet & have,
    76         const ast::OpenVarSet & open, WidenMode widen, const ast::SymbolTable & symtab,
     76        const ast::OpenVarSet & open, WidenMode widen,
    7777        ast::ptr<ast::Type> & common );
    7878
    7979bool typesCompatible(
    80         const ast::Type *, const ast::Type *, const ast::SymbolTable & symtab = {},
     80        const ast::Type *, const ast::Type *,
    8181        const ast::TypeEnvironment & env = {} );
    8282
    8383bool typesCompatibleIgnoreQualifiers(
    84         const ast::Type *, const ast::Type *, const ast::SymbolTable & symtab = {},
     84        const ast::Type *, const ast::Type *,
    8585        const ast::TypeEnvironment & env = {} );
    8686
  • src/SymTab/Autogen.h

    r2b78949 r8a930c03  
    2020#include <string>                 // for string
    2121
    22 #include "AST/Decl.hpp"
    23 #include "AST/Expr.hpp"
    24 #include "AST/Init.hpp"
    25 #include "AST/Node.hpp"
    26 #include "AST/Stmt.hpp"
    27 #include "AST/Type.hpp"
    2822#include "CodeGen/OperatorTable.h"
    2923#include "Common/UniqueName.h"    // for UniqueName
     
    5751        /// maybePolymorphic is true if the resulting FunctionType is allowed to be polymorphic
    5852        FunctionType * genCopyType( Type * paramType, bool maybePolymorphic = true );
    59 
    60         /// Enum for loop direction
    61         enum LoopDirection { LoopBackward, LoopForward };
    6253
    6354        /// inserts into out a generated call expression to function fname with arguments dstParam and srcParam. Intended to be used with generated ?=?, ?{}, and ^?{} calls.
  • src/SymTab/GenImplicitCall.cpp

    r2b78949 r8a930c03  
    1616#include "GenImplicitCall.hpp"
    1717
     18#include "AST/Decl.hpp"                  // for ObjectDecl
     19#include "AST/Expr.hpp"                  // for ConstantExpr, UntypedExpr,...
     20#include "AST/Init.hpp"                  // for SingleInit
    1821#include "AST/Inspect.hpp"               // for isUnnamedBitfield
     22#include "AST/Stmt.hpp"                  // for ExprStmt
     23#include "AST/Type.hpp"                  // for ArrayType, BasicType, ...
    1924#include "CodeGen/OperatorTable.h"       // for isCtorDtor
    2025#include "Common/UniqueName.h"           // for UniqueName
    2126
    2227namespace SymTab {
     28
     29namespace {
    2330
    2431template< typename OutIter >
     
    173180}
    174181
     182} // namespace
     183
    175184ast::ptr< ast::Stmt > genImplicitCall(
    176185        InitTweak::InitExpander_new & srcParam, const ast::Expr * dstParam,
  • src/SymTab/GenImplicitCall.hpp

    r2b78949 r8a930c03  
    1717
    1818#include "InitTweak/InitTweak.h"  // for InitExpander
    19 #include "SymTab/Autogen.h"       // for LoopDirection
    2019
    2120namespace SymTab {
    2221
     22/// Enum for loop direction
     23enum LoopDirection { LoopBackward, LoopForward };
     24
     25/// Returns a generated call expression to function fname with srcParam and
     26/// dstParam. Intended to be used with generated ?=?, ?{}, and ^?{} calls.
    2327ast::ptr<ast::Stmt> genImplicitCall(
    2428        InitTweak::InitExpander_new & srcParam, const ast::Expr * dstParam,
     
    3438// compile-command: "make install" //
    3539// End: //
    36 
  • src/Tuples/Explode.cc

    r2b78949 r8a930c03  
    1717#include <list>                  // for list
    1818
     19#include "AST/Pass.hpp"          // for Pass
    1920#include "SynTree/Mutator.h"     // for Mutator
    2021#include "Common/PassVisitor.h"  // for PassVisitor
  • src/Validate/Autogen.cpp

    r2b78949 r8a930c03  
    2525
    2626#include "AST/Attribute.hpp"
     27#include "AST/Copy.hpp"
    2728#include "AST/Create.hpp"
    2829#include "AST/Decl.hpp"
     
    4344#include "CompilationState.h"
    4445
    45 // TODO: The other new ast function should be moved over to this file.
    46 #include "SymTab/Autogen.h"
    47 
    4846namespace Validate {
    4947
     
    9593
    9694        const CodeLocation& getLocation() const { return getDecl()->location; }
    97         ast::FunctionDecl * genProto( const std::string& name,
     95        ast::FunctionDecl * genProto( std::string&& name,
    9896                std::vector<ast::ptr<ast::DeclWithType>>&& params,
    9997                std::vector<ast::ptr<ast::DeclWithType>>&& returns ) const;
     
    336334}
    337335
     336void replaceAll( std::vector<ast::ptr<ast::DeclWithType>> & dwts,
     337                const ast::DeclReplacer::TypeMap & map ) {
     338        for ( auto & dwt : dwts ) {
     339                dwt = strict_dynamic_cast<const ast::DeclWithType *>(
     340                                ast::DeclReplacer::replace( dwt, map ) );
     341        }
     342}
     343
    338344/// Generates a basic prototype function declaration.
    339 ast::FunctionDecl * FuncGenerator::genProto( const std::string& name,
     345ast::FunctionDecl * FuncGenerator::genProto( std::string&& name,
    340346                std::vector<ast::ptr<ast::DeclWithType>>&& params,
    341347                std::vector<ast::ptr<ast::DeclWithType>>&& returns ) const {
     
    343349        // Handle generic prameters and assertions, if any.
    344350        auto const & old_type_params = getGenericParams( type );
     351        ast::DeclReplacer::TypeMap oldToNew;
    345352        std::vector<ast::ptr<ast::TypeDecl>> type_params;
    346353        std::vector<ast::ptr<ast::DeclWithType>> assertions;
    347354        for ( auto & old_param : old_type_params ) {
    348355                ast::TypeDecl * decl = ast::deepCopy( old_param );
    349                 for ( auto assertion : decl->assertions ) {
    350                         assertions.push_back( assertion );
    351                 }
    352                 decl->assertions.clear();
     356                decl->init = nullptr;
     357                splice( assertions, decl->assertions );
     358                oldToNew.emplace( std::make_pair( old_param, decl ) );
    353359                type_params.push_back( decl );
    354360        }
    355         // TODO: The values in params and returns still may point at the old
    356         // generic params, that does not appear to be an issue but perhaps it
    357         // should be addressed.
     361        replaceAll( params, oldToNew );
     362        replaceAll( returns, oldToNew );
     363        replaceAll( assertions, oldToNew );
    358364
    359365        ast::FunctionDecl * decl = new ast::FunctionDecl(
    360366                // Auto-generated routines use the type declaration's location.
    361367                getLocation(),
    362                 name,
     368                std::move( name ),
    363369                std::move( type_params ),
    364370                std::move( assertions ),
  • src/Validate/FixQualifiedTypes.cpp

    r2b78949 r8a930c03  
    1616#include "Validate/FixQualifiedTypes.hpp"
    1717
     18#include "AST/Copy.hpp"
    1819#include "AST/LinkageSpec.hpp"             // for Linkage
    1920#include "AST/Pass.hpp"
  • src/Validate/GenericParameter.cpp

    r2b78949 r8a930c03  
    1616#include "GenericParameter.hpp"
    1717
     18#include "AST/Copy.hpp"
    1819#include "AST/Decl.hpp"
    1920#include "AST/Expr.hpp"
  • src/Validate/HoistStruct.cpp

    r2b78949 r8a930c03  
    1818#include <sstream>
    1919
     20#include "AST/DeclReplacer.hpp"
    2021#include "AST/Pass.hpp"
    2122#include "AST/TranslationUnit.hpp"
     23#include "AST/Vector.hpp"
    2224
    2325namespace Validate {
     
    5153        template<typename AggrDecl>
    5254        AggrDecl const * postAggregate( AggrDecl const * );
     55        template<typename InstType>
     56        InstType const * preCollectionInstType( InstType const * type );
    5357
    5458        ast::AggregateDecl const * parent = nullptr;
     
    6670        qualifiedName( decl, ss );
    6771        return ss.str();
     72}
     73
     74void extendParams( ast::vector<ast::TypeDecl> & dstParams,
     75                ast::vector<ast::TypeDecl> const & srcParams ) {
     76        if ( srcParams.empty() ) return;
     77
     78        ast::DeclReplacer::TypeMap newToOld;
     79        ast::vector<ast::TypeDecl> params;
     80        for ( ast::ptr<ast::TypeDecl> const & srcParam : srcParams ) {
     81                ast::TypeDecl * dstParam = ast::deepCopy( srcParam.get() );
     82                dstParam->init = nullptr;
     83                newToOld.emplace( srcParam, dstParam );
     84                for ( auto assertion : dstParam->assertions ) {
     85                        assertion = ast::DeclReplacer::replace( assertion, newToOld );
     86                }
     87                params.emplace_back( dstParam );
     88        }
     89        spliceBegin( dstParams, params );
    6890}
    6991
     
    7496                mut->parent = parent;
    7597                mut->name = qualifiedName( mut );
    76                 return mut;
    77         } else {
    78                 GuardValue( parent ) = decl;
    79                 return decl;
    80         }
     98                extendParams( mut->params, parent->params );
     99                decl = mut;
     100        }
     101        GuardValue( parent ) = decl;
     102        return decl;
    81103}
    82104
     
    112134}
    113135
     136ast::AggregateDecl const * commonParent(
     137                ast::AggregateDecl const * lhs, ast::AggregateDecl const * rhs ) {
     138        for ( auto outer = lhs ; outer ; outer = outer->parent ) {
     139                for ( auto inner = rhs ; inner ; inner = inner->parent ) {
     140                        if ( outer == inner ) {
     141                                return outer;
     142                        }
     143                }
     144        }
     145        return nullptr;
     146}
     147
     148template<typename InstType>
     149InstType const * HoistStructCore::preCollectionInstType( InstType const * type ) {
     150    if ( !type->base->parent ) return type;
     151    if ( type->base->params.empty() ) return type;
     152
     153    InstType * mut = ast::mutate( type );
     154    ast::AggregateDecl const * parent =
     155        commonParent( this->parent, mut->base->parent );
     156    assert( parent );
     157
     158    std::vector<ast::ptr<ast::Expr>> args;
     159    for ( const ast::ptr<ast::TypeDecl> & param : parent->params ) {
     160        args.emplace_back( new ast::TypeExpr( param->location,
     161            new ast::TypeInstType( param )
     162        ) );
     163    }
     164    spliceBegin( mut->params, args );
     165    return mut;
     166}
     167
    114168template<typename InstType>
    115169InstType const * preInstType( InstType const * type ) {
     
    121175
    122176ast::StructInstType const * HoistStructCore::previsit( ast::StructInstType const * type ) {
    123         return preInstType( type );
     177        return preInstType( preCollectionInstType( type ) );
    124178}
    125179
    126180ast::UnionInstType const * HoistStructCore::previsit( ast::UnionInstType const * type ) {
    127         return preInstType( type );
     181        return preInstType( preCollectionInstType( type ) );
    128182}
    129183
  • src/Validate/ReplaceTypedef.cpp

    r2b78949 r8a930c03  
    1616#include "ReplaceTypedef.hpp"
    1717
     18#include "AST/Copy.hpp"
    1819#include "AST/Pass.hpp"
    1920#include "Common/ScopedMap.h"
     
    149150                // constant/enumerator. The effort required to fix this corner case
    150151                // likely outweighs the utility of allowing it.
    151                 if ( !ResolvExpr::typesCompatible( t0, t1, ast::SymbolTable() )
     152                if ( !ResolvExpr::typesCompatible( t0, t1 )
    152153                                || ast::Pass<VarLenChecker>::read( t0 )
    153154                                || ast::Pass<VarLenChecker>::read( t1 ) ) {
  • src/Virtual/ExpandCasts.cc

    r2b78949 r8a930c03  
    2020#include <string>                  // for string, allocator, operator==, ope...
    2121
     22#include "AST/Copy.hpp"
    2223#include "AST/Decl.hpp"
    2324#include "AST/Expr.hpp"
  • src/main.cc

    r2b78949 r8a930c03  
    3232
    3333#include "AST/Convert.hpp"
     34#include "AST/Pass.hpp"                     // for pass_visitor_stats
     35#include "AST/TranslationUnit.hpp"          // for TranslationUnit
    3436#include "AST/Util.hpp"                     // for checkInvariants
    3537#include "CompilationState.h"
  • tests/.expect/array.txt

    r2b78949 r8a930c03  
    1 array.cfa:52:25: warning: Compiled
     1array.cfa:119:25: warning: Preprocessor started
  • tests/.expect/copyfile.txt

    r2b78949 r8a930c03  
    1010// Created On       : Fri Jun 19 13:44:05 2020
    1111// Last Modified By : Peter A. Buhr
    12 // Last Modified On : Fri Jun 19 17:58:03 2020
    13 // Update Count     : 4
     12// Last Modified On : Mon Jun  5 21:20:07 2023
     13// Update Count     : 5
    1414//
    1515
     
    3030                        exit | "Usage" | argv[0] | "[ input-file (default stdin) [ output-file (default stdout) ] ]";
    3131                } // choose
    32         } catch( Open_Failure * ex ; ex->istream == &in ) {
     32        } catch( open_failure * ex ; ex->istream == &in ) {
    3333                exit | "Unable to open input file" | argv[1];
    34         } catch( Open_Failure * ex ; ex->ostream == &out ) {
     34        } catch( open_failure * ex ; ex->ostream == &out ) {
    3535                close( in );                                                                    // optional
    3636                exit | "Unable to open output file" | argv[2];
  • tests/.in/copyfile.txt

    r2b78949 r8a930c03  
    1010// Created On       : Fri Jun 19 13:44:05 2020
    1111// Last Modified By : Peter A. Buhr
    12 // Last Modified On : Fri Jun 19 17:58:03 2020
    13 // Update Count     : 4
     12// Last Modified On : Mon Jun  5 21:20:07 2023
     13// Update Count     : 5
    1414//
    1515
     
    3030                        exit | "Usage" | argv[0] | "[ input-file (default stdin) [ output-file (default stdout) ] ]";
    3131                } // choose
    32         } catch( Open_Failure * ex ; ex->istream == &in ) {
     32        } catch( open_failure * ex ; ex->istream == &in ) {
    3333                exit | "Unable to open input file" | argv[1];
    34         } catch( Open_Failure * ex ; ex->ostream == &out ) {
     34        } catch( open_failure * ex ; ex->ostream == &out ) {
    3535                close( in );                                                                    // optional
    3636                exit | "Unable to open output file" | argv[2];
  • tests/Makefile.am

    r2b78949 r8a930c03  
    1111## Created On       : Sun May 31 09:08:15 2015
    1212## Last Modified By : Peter A. Buhr
    13 ## Last Modified On : Tue May 16 09:27:48 2023
    14 ## Update Count     : 178
     13## Last Modified On : Sun May 28 08:15:43 2023
     14## Update Count     : 196
    1515###############################################################################
    1616
     
    2626ARCH = ${if ${arch},"--arch=${arch}"}
    2727arch_support = "x86/x64/arm"
     28TIMEOUT = ${if ${timeout},"--timeout=${timeout}"}
     29GLOBAL_TIMEOUT = ${if ${global-timeout},"--global-timeout=${global-timeout}"}
     30ARCHIVE_ERRORS = ${if ${archive-errors},"--archive-errors=${archive-errors}"}
     31
    2832DEBUG_FLAGS = -debug -g -O0
    2933
    3034quick_test = avl_test operators numericConstants expression enum array typeof cast raii/dtor-early-exit raii/init_once attributes meta/dumpable
    31 
    32 archiveerrors=
    33 concurrent=
    34 timeouts=
    3535
    3636TEST_PY = python3 ${builddir}/test.py
     
    6767PRETTY_PATH = mkdir -p ${dir ${abspath ${@}}} && cd ${srcdir} &&
    6868
    69 .PHONY : list .validate .test_makeflags
     69.PHONY : concurrency list .validate .test_makeflags
    7070.INTERMEDIATE : .validate .validate.cfa .test_makeflags
    7171EXTRA_PROGRAMS = avl_test linkonce linking/mangling/anon .dummy_hack # build but do not install
     
    7979        avltree/avl-private.h \
    8080        avltree/avl.h \
    81         concurrent/clib_tls.c \
    82         concurrent/clib.c \
    8381        configs/.in/parseconfig-all.txt \
    8482        configs/.in/parseconfig-errors.txt \
     
    8987        io/.in/many_read.data \
    9088        meta/fork+exec.hfa \
    91         concurrent/unified_locking/mutex_test.hfa \
    92         concurrent/channels/parallel_harness.hfa
     89        concurrency/clib_tls.c \
     90        concurrency/clib.c \
     91        concurrency/unified_locking/mutex_test.hfa \
     92        concurrency/channels/parallel_harness.hfa
    9393
    9494dist-hook:
     
    109109#----------------------------------------------------------------------------------------------------------------
    110110
     111# '@' => do not echo command (SILENT), '+' => allows recursive make from within python program
    111112all-local : # This name is important to automake and implies the default build target.
    112         @+${TEST_PY} --debug=${debug} --install=${installed} --invariant --archive-errors=${archiveerrors} ${concurrent} ${timeouts} ${ARCH} --all # '@' => do not echo command (SILENT), '+' => allows recursive make from within python program
    113 
    114 install : all-local # PAB only
    115 
    116 tests : all-local
     113        @+${TEST_PY} --debug=${debug} --install=${installed} --invariant ${ARCHIVE_ERRORS} ${TIMEOUT} ${GLOBAL_TIMEOUT} ${ARCH} --all
     114
     115tests : all-local # synonym
     116
     117install : all-local  # synonym, PAB only
    117118
    118119quick :
    119         @+${TEST_PY} --debug=${debug} --install=${installed} --archive-errors=${archiveerrors} ${concurrent} ${timeouts} ${ARCH} ${quick_test}
     120        @+${TEST_PY} --debug=${debug} --install=${installed} ${ARCHIVE_ERRORS} ${ARCH} ${quick_test}
    120121
    121122concurrency :
    122         @+${TEST_PY} --debug=${debug} --install=${installed} ${ARCH} -Iconcurrent
     123        @+${TEST_PY} --debug=${debug} --install=${installed} ${ARCHIVE_ERRORS} ${TIMEOUT} ${GLOBAL_TIMEOUT} ${ARCH} -Iconcurrency
    123124
    124125list :
    125         @+${TEST_PY} --list ${concurrent}
     126        @+${TEST_PY} --list
    126127
    127128help :
    128129        @echo "user targets:"
    129130        @echo "    Run the complete test suite."
    130         @echo "    $$ make (null) / tests [debug=yes/no] [installed=yes/no] [arch=${arch_support}]"
     131        @echo "    $$ make (null) / tests [debug=yes/no] [installed=yes/no] [archive-errors=dump-dir] [timeout=seconds] [global-timeout=seconds] [arch=${arch_support}]"
    131132        @echo ""
    132133        @echo "    Run the short (quick) test suite."
    133         @echo "    $$ make quick [debug=yes/no] [installed=yes/no] [arch=${arch_support}]"
     134        @echo "    $$ make quick [debug=yes/no] [installed=yes/no] [archive-errors=dump-dir] [arch=${arch_support}]"
    134135        @echo ""
    135         @echo "    Run the concurrent test suite."
    136         @echo "    $$ make concurrency [debug=yes/no] [installed=yes/no] [arch=${arch_support}]"
     136        @echo "    Run the concurrency test suite."
     137        @echo "    $$ make concurrency [debug=yes/no] [installed=yes/no] [archive-errors=dump-dir] [timeout=seconds] [global-timeout=seconds] [arch=${arch_support}]"
    137138        @echo ""
    138139        @echo "    List all tests in the test suite."
     
    204205
    205206SYNTAX_ONLY_CODE = expression typedefRedef variableDeclarator switch numericConstants identFuncDeclarator \
    206         init1 limits nested-types cast labelledExit array quasiKeyword include/stdincludes include/includes builtins/sync warnings/self-assignment concurrent/waitfor/parse
     207        init1 limits nested-types cast labelledExit array quasiKeyword include/stdincludes include/includes builtins/sync warnings/self-assignment concurrency/waitfor/parse
    207208${SYNTAX_ONLY_CODE} : % : %.cfa ${CFACCBIN}
    208209        ${CFACOMPILE_SYNTAX}
     
    211212# expected failures
    212213# use custom target since they require a custom define *and* have a name that doesn't match the file
     214
     215array-ERR1 : array.cfa ${CFACCBIN}
     216        ${CFACOMPILE_SYNTAX} -DERR1
     217        -cp ${test} ${abspath ${@}}
     218
     219array-ERR2 : array.cfa ${CFACCBIN}
     220        ${CFACOMPILE_SYNTAX} -DERR2
     221        -cp ${test} ${abspath ${@}}
     222
     223array-ERR3 : array.cfa ${CFACCBIN}
     224        ${CFACOMPILE_SYNTAX} -DERR3
     225        -cp ${test} ${abspath ${@}}
     226
    213227alloc-ERROR : alloc.cfa ${CFACCBIN}
    214228        ${CFACOMPILE_SYNTAX} -DERR1
  • tests/PRNG.cfa

    r2b78949 r8a930c03  
    1 //                               -*- Mode: C -*-
    2 //
     1//
    32// Cforall Version 1.0.0 Copyright (C) 2021 University of Waterloo
    4 //
    5 // PRNG.c --
    6 //
     3//
     4// PRNG.c -- high-perforamnce pseudo-random numbers
     5//
     6// The contents of this file are covered under the licence agreement in the
     7// file "LICENCE" distributed with Cforall.
     8//
    79// Author           : Peter A. Buhr
    810// Created On       : Wed Dec 29 09:38:12 2021
    911// Last Modified By : Peter A. Buhr
    10 // Last Modified On : Sun Apr 23 22:02:09 2023
    11 // Update Count     : 420
     12// Last Modified On : Thu May 25 15:39:52 2023
     13// Update Count     : 422
    1214//
    1315
  • tests/array.cfa

    r2b78949 r8a930c03  
    1515//
    1616
    17 int a1[0];
    18 //int a2[*];
    19 //double a4[3.0];
     17// Tests syntax.  Comments explain semantics.  Test does not show semantics.
     18// Mostly illustrates facts about C (with which CFA is being tested to agree).
     19// Is a test oracle under `gcc -x c`.
    2020
    21 int m1[0][3];
    22 //int m2[*][*];
    23 int m4[3][3];
     21#ifdef ERR1
     22#define E1(...) __VA_ARGS__
     23#else
     24#define E1(...)
     25#endif
    2426
    25 typedef int T;
     27#ifdef ERR2
     28#define E2(...) __VA_ARGS__
     29#else
     30#define E2(...)
     31#endif
    2632
    27 int fred() {
    28 //      int a1[];
    29 //      int a2[*];
    30         int a4[3];
    31         int T[3];
    32 }
     33#ifdef ERR3
     34#define E3(...) __VA_ARGS__
     35#else
     36#define E3(...)
     37#endif
    3338
    34 int mary( int T[3],
    35                   int p1[const 3],
    36                   int p2[static 3],
    37                   int p3[static const 3]
    38         ) {
    39 }
     39    int a1[0];
     40E1( int a2[*];       )
     41                                                        #ifndef __cforall
     42E1( double a4[3.0];  )                                  // BUG 275: CFA accepts but should reject
     43                                                        #endif
    4044
    41 int (*tom())[3] {
    42 }
     45    int m1[0][3];
     46E1( int m2[*][*];    )
     47    int m4[3][3];
    4348
    44 int (*(jane)())( int T[3],
    45                                  int p1[const 3],
    46                                  int p2[static 3],
    47                                  int p3[static const 3]
    48         ) {
    49 }
     49    typedef int T;
     50
     51    int fred(int n) {
     52E1(     int a1[];    )
     53E1(     int a2[*];   )
     54        int a4[3];
     55        int T[3];
     56        int a5[n];
     57    }
     58
     59    int mary( int T[3],                                 // same as: int *T
     60              int p1[const 3],                          // same as: int const *p1
     61              int p2[static 3],                         // same as T, but length >=3 checked
     62              int p3[static const 3]                    // both above: 3 is static, p3 is const
     63        ) {
     64    }
     65
     66    // function taking (), returning pointer to array of ints
     67    int (*tom())[3] {
     68    }
     69
     70    // function taking (), returning pointer to function of same type as mary
     71    int (*(jane)())( int T[3],
     72                     int p1[const 3],
     73                     int p2[static 3],
     74                     int p3[static const 3]
     75        ) {
     76    }
     77
     78    // functions returning same exotic pointers, in CFA's non-onion syntax
     79    #ifdef __cforall
     80    [ * [3] int ] toms_twin(...) {
     81    }
     82    [ * [int]( [3] int T,
     83               [const 3] int p1,
     84               [static 3] int p2,
     85               [static const 3] int p3
     86             )
     87    ] janes_twin(...) {
     88    }
     89    #endif
     90
     91    // GCC 11+ gives a false warning (-Wvla-parameter) on the valid (C11 ARM p134-135) combination:
     92    // declare with type int[*], define with type int[n].
     93    // https://gcc.gnu.org/bugzilla//show_bug.cgi?id=100420 suggests the internal representation of
     94    // of a[*] is the same as a[0].
     95    // https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html#index-Wno-vla-parameter explains
     96    // the purpose of -Wvla-parameter is to report conflicts between int[] and int[n], which would
     97    // understandably also include those between int[42] and int[n].
     98    // https://stackoverflow.com/questions/17371645/why-use-an-asterisk-instead-of-an-integer-for-a-vla-array-parameter-of-a-f
     99    // explains the declare-*, define-n pattern.
     100
     101    // To work around the false warning, and keep to this test's purpose of exercising CFA's
     102    // handling of exotic C array syntax, what would ideally be demonstrated as a declaration of
     103    // fm1, followed by its definition, is instead split into fm1x and fm1y.  And similarly for
     104    // fm5.
     105
     106    int fm1x( int, int, int[][*] );
     107    int fm1y( int r, int c, int m[][c] ) {}
     108    int fm2( int r, int c, int (*m)[c] ) {}             // same as fm1
     109E2( int fm3( int r, int c, int m[][static c] ) {}  )    // that's not static
     110E3( int fm4( int r, int c, int m[][] );            )    // m's immediate element type is incomplete
     111    int fm5x( int, int, int[*][*] );                    // same as fm1 decl
     112                                                        #ifndef __cforall
     113    int fm5y( int r, int c, int m[r][c] ) {}            // BUG 276: CFA chokes but should accept
     114                                                        // C: same as fm1 defn
     115                                                        #endif
     116
    50117
    51118int main() {
    52     #pragma GCC warning "Compiled"                      // force non-empty .expect file, NO TABS!!!
     119    #pragma GCC warning "Preprocessor started"          // force non-empty .expect file, NO TABS!!!
    53120}
    54121
  • tests/concurrency/.expect/ctor-check.txt

    r2b78949 r8a930c03  
    1 concurrent/ctor-check.cfa:11:1 error: constructors cannot have mutex parameters
     1concurrency/ctor-check.cfa:11:1 error: constructors cannot have mutex parameters
    22?{}: function
    33... with parameters
  • tests/concurrency/actors/dynamic.cfa

    r2b78949 r8a930c03  
    1919void ?{}( derived_msg & this ) { ((derived_msg &)this){ 0 }; }
    2020
    21 Allocation receive( derived_actor & receiver, derived_msg & msg ) {
     21allocation receive( derived_actor & receiver, derived_msg & msg ) {
    2222    if ( msg.cnt >= Times ) {
    2323        sout | "Done";
  • tests/concurrency/actors/executor.cfa

    r2b78949 r8a930c03  
    2424struct d_msg { inline message; } shared_msg;
    2525
    26 Allocation receive( d_actor & this, d_msg & msg ) with( this ) {
     26allocation receive( d_actor & this, d_msg & msg ) with( this ) {
    2727    if ( recs == rounds ) return Finished;
    2828    if ( recs % Batch == 0 ) {
  • tests/concurrency/actors/inherit.cfa

    r2b78949 r8a930c03  
    1515void ^?{}( D_msg & this ) { mutex(sout) sout | 'A'; }
    1616
    17 Allocation handle() {
     17allocation handle() {
    1818    return Finished;
    1919}
    2020
    21 Allocation receive( Server & receiver, D_msg & msg ) { return handle(); }
    22 Allocation receive( Server & receiver, D_msg2 & msg ) { return handle(); }
    23 Allocation receive( Server2 & receiver, D_msg & msg ) { return Delete; }
    24 Allocation receive( Server2 & receiver, D_msg2 & msg ) { return Delete; }
     21allocation receive( Server & receiver, D_msg & msg ) { return handle(); }
     22allocation receive( Server & receiver, D_msg2 & msg ) { return handle(); }
     23allocation receive( Server2 & receiver, D_msg & msg ) { return Delete; }
     24allocation receive( Server2 & receiver, D_msg2 & msg ) { return Delete; }
    2525
    2626int main() {
  • tests/concurrency/actors/matrix.cfa

    r2b78949 r8a930c03  
    2424}
    2525
    26 Allocation receive( derived_actor & receiver, derived_msg & msg ) {
     26allocation receive( derived_actor & receiver, derived_msg & msg ) {
    2727    for ( unsigned int i = 0; i < yc; i += 1 ) { // multiply X_row by Y_col and sum products
    2828        msg.Z[i] = 0;
  • tests/concurrency/actors/pingpong.cfa

    r2b78949 r8a930c03  
    1919size_t times = 100000;
    2020
    21 Allocation receive( ping & receiver, p_msg & msg ) {
     21allocation receive( ping & receiver, p_msg & msg ) {
    2222    msg.count++;
    2323    if ( msg.count > times ) return Finished;
    2424
    25     Allocation retval = Nodelete;
     25    allocation retval = Nodelete;
    2626    if ( msg.count == times ) retval = Finished;
    2727    *po << msg;
     
    2929}
    3030
    31 Allocation receive( pong & receiver, p_msg & msg ) {
     31allocation receive( pong & receiver, p_msg & msg ) {
    3232    msg.count++;
    3333    if ( msg.count > times ) return Finished;
    3434   
    35     Allocation retval = Nodelete;
     35    allocation retval = Nodelete;
    3636    if ( msg.count == times ) retval = Finished;
    3737    *pi << msg;
  • tests/concurrency/actors/poison.cfa

    r2b78949 r8a930c03  
    1818        Server s[10];
    1919        for ( i; 10 ) {
    20             s[i] << FinishedMsg;
     20            s[i] << finished_msg;
    2121        }
    2222        stop_actor_system();
     
    2929            Server * s = alloc();
    3030            (*s){};
    31             (*s) << DeleteMsg;
     31            (*s) << delete_msg;
    3232        }
    3333        stop_actor_system();
     
    3939        Server s[10];
    4040        for ( i; 10 )
    41             s[i] << DestroyMsg;
     41            s[i] << destroy_msg;
    4242        stop_actor_system();
    4343        for ( i; 10 )
  • tests/concurrency/actors/static.cfa

    r2b78949 r8a930c03  
    1919void ?{}( derived_msg & this ) { ((derived_msg &)this){ 0 }; }
    2020
    21 Allocation receive( derived_actor & receiver, derived_msg & msg ) {
     21allocation receive( derived_actor & receiver, derived_msg & msg ) {
    2222    if ( msg.cnt >= Times ) {
    2323        sout | "Done";
  • tests/concurrency/actors/types.cfa

    r2b78949 r8a930c03  
    2020
    2121// this isn't a valid receive routine since int is not a message type
    22 Allocation receive( derived_actor & receiver, int i ) with( receiver ) {
     22allocation receive( derived_actor & receiver, int i ) with( receiver ) {
    2323    mutex(sout) sout | i;
    2424    counter++;
     
    2727}
    2828
    29 Allocation receive( derived_actor & receiver, d_msg & msg ) {
     29allocation receive( derived_actor & receiver, d_msg & msg ) {
    3030    return receive( receiver, msg.num );
    3131}
     
    3636};
    3737
    38 Allocation receive( derived_actor2 & receiver, d_msg & msg ) {
     38allocation receive( derived_actor2 & receiver, d_msg & msg ) {
    3939    mutex(sout) sout | msg.num;
    4040    return Finished;
     
    4848};
    4949
    50 Allocation receive( derived_actor3 & receiver, d_msg & msg ) {
     50allocation receive( derived_actor3 & receiver, d_msg & msg ) {
    5151    mutex(sout) sout | msg.num;
    5252    if ( msg.num == -1 ) return Nodelete;
     
    5454}
    5555
    56 Allocation receive( derived_actor3 & receiver, d_msg2 & msg ) {
     56allocation receive( derived_actor3 & receiver, d_msg2 & msg ) {
    5757    mutex(sout) sout | msg.num;
    5858    return Finished;
  • tests/concurrency/barrier/gen_generation_expect.cfa

    r2b78949 r8a930c03  
    55// file "LICENCE" distributed with Cforall.
    66//
    7 // gen_generation_expect.cfa -- simple 'script' generates the expect file for concurrent/barrier/generation
     7// gen_generation_expect.cfa -- simple 'script' generates the expect file for concurrency/barrier/generation
    88//
    99// Author           : Thierry Delisle
  • tests/concurrency/barrier/generation.cfa

    r2b78949 r8a930c03  
    55// file "LICENCE" distributed with Cforall.
    66//
    7 // concurrent/barrier/generation.cfa -- simple test that validates barriers by printing
    8 //                                      alphabetical generations
     7// generation.cfa -- simple test that validates barriers by printing alphabetical generations
    98//
    109// Author           : Thierry Delisle
  • tests/concurrency/barrier/last.cfa

    r2b78949 r8a930c03  
    55// file "LICENCE" distributed with Cforall.
    66//
    7 // concurrent/barrier/last.cfa -- validates barrier's last hook functionality
     7// last.cfa -- validates barrier's last hook functionality
    88//
    99// Author           : Thierry Delisle
  • tests/concurrency/barrier/order.cfa

    r2b78949 r8a930c03  
    55// file "LICENCE" distributed with Cforall.
    66//
    7 // concurrent/barrier/order.cfa -- validates barriers the return value of
     7// order.cfa -- validates barriers the return value of
    88//                                 barrier block
    99//
  • tests/concurrency/readyQ/barrier_sleeper.cfa

    r2b78949 r8a930c03  
    55// file "LICENCE" distributed with Cforall.
    66//
    7 // concurrent/readyQ/barrier_sleeper.cfa -- testing the ready-queue
     7// barrier_sleeper.cfa -- testing the ready-queue
    88//
    99// Author           : Thierry Delisle
  • tests/concurrency/readyQ/leader_spin.cfa

    r2b78949 r8a930c03  
    55// file "LICENCE" distributed with Cforall.
    66//
    7 // concurrent/readyQ/leader_spin.cfa -- validates ready queue fairness
     7// leader_spin.cfa -- validates ready queue fairness
    88//
    99// Author           : Thierry Delisle
  • tests/concurrency/waituntil/locks.cfa

    r2b78949 r8a930c03  
    22#include <thread.hfa>
    33#include <locks.hfa>
     4#include <fstream.hfa>
    45#include <mutex_stmt.hfa>
    56
  • tests/configs/.expect/parseconfig.txt

    r2b78949 r8a930c03  
    1212Maximum student trips: 3
    1313
    14 Open_Failure thrown when config file does not exist
     14open_failure thrown when config file does not exist
    1515Failed to open the config file
    1616
  • tests/configs/parseconfig.cfa

    r2b78949 r8a930c03  
    6666
    6767
    68         sout | "Open_Failure thrown when config file does not exist";
     68        sout | "open_failure thrown when config file does not exist";
    6969        try {
    7070                parse_config( xstr(IN_DIR) "doesnt-exist.txt", entries, NUM_ENTRIES, parse_tabular_config_format );
    71         } catch( Open_Failure * ex ) {
     71        } catch( open_failure * ex ) {
    7272                sout | "Failed to open the config file";
    7373        }
  • tests/copyfile.cfa

    r2b78949 r8a930c03  
    1010// Created On       : Fri Jun 19 13:44:05 2020
    1111// Last Modified By : Peter A. Buhr
    12 // Last Modified On : Sat Aug 15 15:00:48 2020
    13 // Update Count     : 6
     12// Last Modified On : Mon Jun  5 21:20:19 2023
     13// Update Count     : 7
    1414//
    1515
     
    3030                        exit | "Usage" | argv[0] | "[ input-file (default stdin) [ output-file (default stdout) ] ]";
    3131                } // choose
    32         } catch( Open_Failure * ex ; ex->istream == &in ) {
     32        } catch( open_failure * ex ; ex->istream == &in ) {
    3333                exit | "Unable to open input file" | argv[1];
    34         } catch( Open_Failure * ex ; ex->ostream == &out ) {
     34        } catch( open_failure * ex ; ex->ostream == &out ) {
    3535                close( in );                                                                    // optional
    3636                exit | "Unable to open output file" | argv[2];
  • tests/rational.cfa

    r2b78949 r8a930c03  
    1010// Created On       : Mon Mar 28 08:43:12 2016
    1111// Last Modified By : Peter A. Buhr
    12 // Last Modified On : Tue Jul 20 18:13:40 2021
    13 // Update Count     : 107
     12// Last Modified On : Mon Jun  5 22:58:09 2023
     13// Update Count     : 108
    1414//
    1515
     
    1919#include <fstream.hfa>
    2020
    21 typedef Rational(int) RatInt;
     21typedef rational(int) rat_int;
    2222double convert( int i ) { return (double)i; }                   // used by narrow/widen
    2323int convert( double d ) { return (int)d; }
     
    2525int main() {
    2626        sout | "constructor";
    27         RatInt a = { 3 }, b = { 4 }, c, d = 0, e = 1;
     27        rat_int a = { 3 }, b = { 4 }, c, d = 0, e = 1;
    2828        sout | "a : " | a | "b : " | b | "c : " | c | "d : " | d | "e : " | e;
    2929
    30         a = (RatInt){ 4, 8 };
    31         b = (RatInt){ 5, 7 };
     30        a = (rat_int){ 4, 8 };
     31        b = (rat_int){ 5, 7 };
    3232        sout | "a : " | a | "b : " | b;
    33         a = (RatInt){ -2, -3 };
    34         b = (RatInt){ 3, -2 };
     33        a = (rat_int){ -2, -3 };
     34        b = (rat_int){ 3, -2 };
    3535        sout | "a : " | a | "b : " | b;
    36         a = (RatInt){ -2, 3 };
    37         b = (RatInt){ 3, 2 };
     36        a = (rat_int){ -2, 3 };
     37        b = (rat_int){ 3, 2 };
    3838        sout | "a : " | a | "b : " | b;
    3939        sout | nl;
    4040
    4141        sout | "comparison";
    42         a = (RatInt){ -2 };
    43         b = (RatInt){ -3, 2 };
     42        a = (rat_int){ -2 };
     43        b = (rat_int){ -3, 2 };
    4444        sout | "a : " | a | "b : " | b;
    45         sout | "a == 0 : " | a == (Rational(int)){0}; // FIX ME
    46         sout | "a == 1 : " | a == (Rational(int)){1}; // FIX ME
     45        sout | "a == 0 : " | a == (rational(int)){0}; // FIX ME
     46        sout | "a == 1 : " | a == (rational(int)){1}; // FIX ME
    4747        sout | "a != 0 : " | a != 0;
    4848        sout | "! a : " | ! a;
     
    7373
    7474        sout | "conversion";
    75         a = (RatInt){ 3, 4 };
     75        a = (rat_int){ 3, 4 };
    7676        sout | widen( a );
    77         a = (RatInt){ 1, 7 };
     77        a = (rat_int){ 1, 7 };
    7878        sout | widen( a );
    79         a = (RatInt){ 355, 113 };
     79        a = (rat_int){ 355, 113 };
    8080        sout | widen( a );
    8181        sout | narrow( 0.75, 4 );
     
    9090
    9191        sout | "more tests";
    92         RatInt x = { 1, 2 }, y = { 2 };
     92        rat_int x = { 1, 2 }, y = { 2 };
    9393        sout | x - y;
    9494        sout | x > y;
     
    9696        sout | y | denominator( y, -2 ) | y;
    9797
    98         RatInt z = { 0, 5 };
     98        rat_int z = { 0, 5 };
    9999        sout | z;
    100100
    101101        sout | x | numerator( x, 0 ) | x;
    102102
    103         x = (RatInt){ 1, MAX } + (RatInt){ 1, MAX };
     103        x = (rat_int){ 1, MAX } + (rat_int){ 1, MAX };
    104104        sout | x;
    105         x = (RatInt){ 3, MAX } + (RatInt){ 2, MAX };
     105        x = (rat_int){ 3, MAX } + (rat_int){ 2, MAX };
    106106        sout | x;
    107107
Note: See TracChangeset for help on using the changeset viewer.