source: libcfa/src/concurrency/future.hfa @ 70a4ed5

ast-experimental
Last change on this file since 70a4ed5 was 70a4ed5, checked in by caparsons <caparson@…>, 11 months ago

refactored to remove return val from on_selected

  • Property mode set to 100644
File size: 8.8 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2020 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// concurrency/future.hfa --
8//
9// Author           : Thierry Delisle & Peiran Hong & Colby Parsons
10// Created On       : Wed Jan 06 17:33:18 2021
11// Last Modified By :
12// Last Modified On :
13// Update Count     :
14//
15
16#pragma once
17
18#include "bits/locks.hfa"
19#include "monitor.hfa"
20#include "select.hfa"
21#include "locks.hfa"
22
23//----------------------------------------------------------------------------
24// future
25// I don't use future_t here since I need to use a lock for this future
26//  since it supports multiple consumers
27//  future_t is lockfree and uses atomics which aren't needed given we use locks here
28forall( T ) {
29    // enum { FUTURE_EMPTY = 0, FUTURE_FULFILLED = 1 }; // Enums seem to be broken so feel free to add this back afterwards
30
31    // temporary enum replacement
32    const int FUTURE_EMPTY = 0;
33    const int FUTURE_FULFILLED = 1;
34
35        struct future {
36                int state;
37                T result;
38                dlist( select_node ) waiters;
39        futex_mutex lock;
40        };
41
42    struct future_node {
43        inline select_node;
44        T * my_result;
45    };
46
47        static inline {
48
49        void ?{}( future_node(T) & this, thread$ * blocked_thread, T * my_result ) {
50            ((select_node &)this){ blocked_thread };
51            this.my_result = my_result;
52        }
53
54        void ?{}( future(T) & this ) {
55                        this.waiters{};
56            this.state = FUTURE_EMPTY;
57            this.lock{};
58                }
59
60                // Reset future back to original state
61                void reset( future(T) & this ) with(this)
62        {
63            lock( lock );
64            if( ! waiters`isEmpty )
65                abort("Attempting to reset a future with blocked waiters");
66            state = FUTURE_EMPTY;
67            unlock( lock );
68        }
69
70                // check if the future is available
71        // currently no mutual exclusion because I can't see when you need this call to be synchronous or protected
72                bool available( future(T) & this ) { return __atomic_load_n( &this.state, __ATOMIC_RELAXED ); }
73
74
75        // memcpy wrapper to help copy values
76        void copy_T( T & from, T & to ) {
77            memcpy((void *)&to, (void *)&from, sizeof(T));
78        }
79
80        // internal helper to signal waiters off of the future
81        void _internal_flush( future(T) & this ) with(this) {
82            while( ! waiters`isEmpty ) {
83                if ( !__handle_waituntil_OR( waiters ) ) // handle special waituntil OR case
84                    break; // if handle_OR returns false then waiters is empty so break
85                select_node &s = try_pop_front( waiters );
86
87                if ( s.clause_status == 0p ) // poke in result so that woken threads do not need to reacquire any locks
88                    copy_T( result, *(((future_node(T) &)s).my_result) );
89               
90                wake_one( waiters, s );
91            }
92        }
93
94                // Fulfil the future, returns whether or not someone was unblocked
95                bool fulfil( future(T) & this, T val ) with(this) {
96            lock( lock );
97            if( state != FUTURE_EMPTY )
98                abort("Attempting to fulfil a future that has already been fulfilled");
99
100            copy_T( val, result );
101
102            bool ret_val = ! waiters`isEmpty;
103            state = FUTURE_FULFILLED;
104                        _internal_flush( this );
105            unlock( lock );
106            return ret_val;
107                }
108
109                // Wait for the future to be fulfilled
110                // Also return whether the thread had to block or not
111                [T, bool] get( future(T) & this ) with( this ) {
112            lock( lock );
113            T ret_val;
114            if( state == FUTURE_FULFILLED ) {
115                copy_T( result, ret_val );
116                unlock( lock );
117                return [ret_val, false];
118            }
119
120            future_node(T) node = { active_thread(), &ret_val };
121            insert_last( waiters, ((select_node &)node) );
122            unlock( lock );
123            park( );
124
125                        return [ret_val, true];
126                }
127
128                // Wait for the future to be fulfilled
129                T get( future(T) & this ) {
130                        [T, bool] tt;
131                        tt = get(this);
132                        return tt.0;
133                }
134
135        // Gets value if it is available and returns [ val, true ]
136        // otherwise returns [ default_val, false]
137        // will not block
138        [T, bool] try_get( future(T) & this ) with(this) {
139            lock( lock );
140            T ret_val;
141            if( state == FUTURE_FULFILLED ) {
142                copy_T( result, ret_val );
143                unlock( lock );
144                return [ret_val, true];
145            }
146            unlock( lock );
147           
148            return [ret_val, false];
149        }
150
151        bool register_select( future(T) & this, select_node & s ) with(this) {
152            lock( lock );
153
154            // check if we can complete operation. If so race to establish winner in special OR case
155            if ( !s.park_counter && state != FUTURE_EMPTY ) {
156                if ( !__make_select_node_available( s ) ) { // we didn't win the race so give up on registering
157                    unlock( lock );
158                    return false;
159                }
160            }
161
162            // future not ready -> insert select node and return
163            if( state == FUTURE_EMPTY ) {
164                insert_last( waiters, s );
165                unlock( lock );
166                return false;
167            }
168
169            __make_select_node_available( s );
170            unlock( lock );
171            return true;
172        }
173
174        bool unregister_select( future(T) & this, select_node & s ) with(this) {
175            if ( ! s`isListed ) return false;
176            lock( lock );
177            if ( s`isListed ) remove( s );
178            unlock( lock );
179            return false;
180        }
181               
182        void on_selected( future(T) & this, select_node & node ) {}
183        }
184}
185
186//--------------------------------------------------------------------------------------------------------
187// These futures below do not support select statements so they may not have as many features as 'future'
188//  however the 'single_future' is cheap and cheerful and is most likely more performant than 'future'
189//  since it uses raw atomics and no locks
190//
191// As far as 'multi_future' goes I can't see many use cases as it will be less performant than 'future'
192//  since it is monitor based and also is not compatible with select statements
193//--------------------------------------------------------------------------------------------------------
194
195forall( T ) {
196        struct single_future {
197                inline future_t;
198                T result;
199        };
200
201        static inline {
202                // Reset future back to original state
203                void reset(single_future(T) & this) { reset( (future_t&)this ); }
204
205                // check if the future is available
206                bool available( single_future(T) & this ) { return available( (future_t&)this ); }
207
208                // Mark the future as abandoned, meaning it will be deleted by the server
209                // This doesn't work beause of the potential need for a destructor
210                void abandon( single_future(T) & this );
211
212                // Fulfil the future, returns whether or not someone was unblocked
213                thread$ * fulfil( single_future(T) & this, T result ) {
214                        this.result = result;
215                        return fulfil( (future_t&)this );
216                }
217
218                // Wait for the future to be fulfilled
219                // Also return whether the thread had to block or not
220                [T, bool] wait( single_future(T) & this ) {
221                        bool r = wait( (future_t&)this );
222                        return [this.result, r];
223                }
224
225                // Wait for the future to be fulfilled
226                T wait( single_future(T) & this ) {
227                        [T, bool] tt;
228                        tt = wait(this);
229                        return tt.0;
230                }
231        }
232}
233
234forall( T ) {
235        monitor multi_future {
236                inline future_t;
237                condition blocked;
238                bool has_first;
239                T result;
240        };
241
242        static inline {
243                void ?{}(multi_future(T) & this) {
244                        this.has_first = false;
245                }
246
247                bool $first( multi_future(T) & mutex this ) {
248                        if (this.has_first) {
249                                wait( this.blocked );
250                                return false;
251                        }
252
253                        this.has_first = true;
254                        return true;
255                }
256
257                void $first_done( multi_future(T) & mutex this ) {
258                        this.has_first = false;
259                        signal_all( this.blocked );
260                }
261
262                // Reset future back to original state
263                void reset(multi_future(T) & mutex this) {
264                        if( this.has_first != false) abort("Attempting to reset a multi_future with at least one blocked threads");
265                        if( !is_empty(this.blocked) ) abort("Attempting to reset a multi_future with multiple blocked threads");
266                        reset( (future_t&)this );
267                }
268
269                // Fulfil the future, returns whether or not someone was unblocked
270                bool fulfil( multi_future(T) & this, T result ) {
271                        this.result = result;
272                        return fulfil( (future_t&)this ) != 0p;
273                }
274
275                // Wait for the future to be fulfilled
276                // Also return whether the thread had to block or not
277                [T, bool] wait( multi_future(T) & this ) {
278                        bool sw = $first( this );
279                        bool w = !sw;
280                        if ( sw ) {
281                                w = wait( (future_t&)this );
282                                $first_done( this );
283                        }
284
285                        return [this.result, w];
286                }
287
288                // Wait for the future to be fulfilled
289                T wait( multi_future(T) & this ) {
290                        return wait(this).0;
291                }
292        }
293}
Note: See TracBrowser for help on using the repository browser.