Changes in / [9c35431:c13e8dc8]


Ignore:
Files:
73 added
75 deleted
88 edited

Legend:

Unmodified
Added
Removed
  • doc/proposals/concurrency/text/basics.tex

    r9c35431 rc13e8dc8  
    44% ======================================================================
    55% ======================================================================
    6 Before any detailed discussion of the concurrency and parallelism in \CFA, it is important to describe the basics of concurrency and how they are expressed in \CFA user-code.
     6Before any detailed discussion of the concurrency and parallelism in \CFA, it is important to describe the basics of concurrency and how they are expressed in \CFA user code.
    77
    88\section{Basics of concurrency}
     
    1111Execution with a single thread and multiple stacks where the thread is self-scheduling deterministically across the stacks is called coroutining. Execution with a single and multiple stacks but where the thread is scheduled by an oracle (non-deterministic from the thread perspective) across the stacks is called concurrency.
    1212
    13 Therefore, a minimal concurrency system can be achieved by creating coroutines, which instead of context switching among each other, always ask an oracle where to context switch next. While coroutines can execute on the caller's stack-frame, stack-full coroutines allow full generality and are sufficient as the basis for concurrency. The aforementioned oracle is a scheduler and the whole system now follows a cooperative threading-model (a.k.a non-preemptive scheduling). The oracle/scheduler can either be a stack-less or stack-full entity and correspondingly require one or two context switches to run a different coroutine. In any case, a subset of concurrency related challenges start to appear. For the complete set of concurrency challenges to occur, the only feature missing is preemption.
    14 
    15 A scheduler introduces order of execution uncertainty, while preemption introduces uncertainty about where context-switches occur. Mutual-exclusion and synchronization are ways of limiting non-determinism in a concurrent system. Now it is important to understand that uncertainty is desirable; uncertainty can be used by runtime systems to significantly increase performance and is often the basis of giving a user the illusion that tasks are running in parallel. Optimal performance in concurrent applications is often obtained by having as much non-determinism as correctness allows.
    16 
    17 \section{\protect\CFA 's Thread Building Blocks}
    18 One of the important features that is missing in C is threading. On modern architectures, a lack of threading is unacceptable~\cite{Sutter05, Sutter05b}, and therefore modern programming languages must have the proper tools to allow users to write performant concurrent programs to take advantage of parallelism. As an extension of C, \CFA needs to express these concepts in a way that is as natural as possible to programmers familiar with imperative languages. And being a system-level language means programmers expect to choose precisely which features they need and which cost they are willing to pay.
    19 
    20 \section{Coroutines: A stepping stone}\label{coroutine}
    21 While the main focus of this proposal is concurrency and parallelism, it is important to address coroutines, which are actually a significant building block of a concurrency system. Coroutines need to deal with context-switches and other context-management operations. Therefore, this proposal includes coroutines both as an intermediate step for the implementation of threads, and a first class feature of \CFA. Furthermore, many design challenges of threads are at least partially present in designing coroutines, which makes the design effort that much more relevant. The core \acrshort{api} of coroutines revolve around two features: independent call stacks and \code{suspend}/\code{resume}.
     13Therefore, a minimal concurrency system can be achieved by creating coroutines, which instead of context-switching among each other, always ask an oracle where to context-switch next. While coroutines can execute on the caller?s stack-frame, stack-full coroutines allow full generality and are sufficient as the basis for concurrency. The aforementioned oracle is a scheduler and the whole system now follows a cooperative threading-model (aka non-preemptive scheduling). The oracle/scheduler can either be a stack-less or stack-full entity and correspondingly require one or two context-switches to run a different coroutine. In any case, a subset of concurrency related challenges start to appear. For the complete set of concurrency challenges to occur, the only feature missing is preemption.
     14
     15A scheduler introduces order of execution uncertainty, while preemption introduces uncertainty about where context switches occur. Mutual exclusion and synchronization are ways of limiting non-determinism in a concurrent system. Now it is important to understand that uncertainty is desirable; uncertainty can be used by runtime systems to significantly increase performance and is often the basis of giving a user the illusion that tasks are running in parallel. Optimal performance in concurrent applications is often obtained by having as much non-determinism as correctness allows.
     16
     17\section{\protect\CFA's Thread Building Blocks}
     18One of the important features that are missing in C is threading. On modern architectures, a lack of threading is unacceptable~\cite{Sutter05, Sutter05b}, and therefore modern programming languages must have the proper tools to allow users to write efficient concurrent programs to take advantage of parallelism. As an extension of C, \CFA needs to express these concepts in a way that is as natural as possible to programmers familiar with imperative languages. And being a system-level language means programmers expect to choose precisely which features they need and which cost they are willing to pay.
     19
     20\section{Coroutines: A Stepping Stone}\label{coroutine}
     21While the main focus of this proposal is concurrency and parallelism, it is important to address coroutines, which are actually a significant building block of a concurrency system. Coroutines need to deal with context switches and other context-management operations. Therefore, this proposal includes coroutines both as an intermediate step for the implementation of threads, and a first-class feature of \CFA. Furthermore, many design challenges of threads are at least partially present in designing coroutines, which makes the design effort that much more relevant. The core \acrshort{api} of coroutines revolves around two features: independent call-stacks and \code{suspend}/\code{resume}.
    2222
    2323\begin{table}
     
    133133\end{table}
    134134
    135 A good example of a problem made easier with coroutines is generators, like the Fibonacci sequence. This problem comes with the challenge of decoupling how a sequence is generated and how it is used. Table \ref{lst:fibonacci-c} shows conventional approaches to writing generators in C. All three of these approach suffer from strong coupling. The left and center approaches require that the generator have knowledge of how the sequence is used, while the rightmost approach requires holding internal state between calls on behalf of the generator and makes it much harder to handle corner cases like the Fibonacci seed.
     135A good example of a problem made easier with coroutines is generators, like the Fibonacci sequence. This problem comes with the challenge of decoupling how a sequence is generated and how it is used. Table \ref{lst:fibonacci-c} shows conventional approaches to writing generators in C. All three of these approach suffer from strong coupling. The left and centre approaches require that the generator have knowledge of how the sequence is used, while the rightmost approach requires holding internal state between calls on behalf of the generator and makes it much harder to handle corner cases like the Fibonacci seed.
    136136
    137137Listing \ref{lst:fibonacci-cfa} is an example of a solution to the Fibonacci problem using \CFA coroutines, where the coroutine stack holds sufficient state for the next generation. This solution has the advantage of having very strong decoupling between how the sequence is generated and how it is used. Indeed, this version is as easy to use as the \code{fibonacci_state} solution, while the implementation is very similar to the \code{fibonacci_func} example.
     
    233233One important design challenge for implementing coroutines and threads (shown in section \ref{threads}) is that the runtime system needs to run code after the user-constructor runs to connect the fully constructed object into the system. In the case of coroutines, this challenge is simpler since there is no non-determinism from preemption or scheduling. However, the underlying challenge remains the same for coroutines and threads.
    234234
    235 The runtime system needs to create the coroutine's stack and more importantly prepare it for the first resumption. The timing of the creation is non-trivial since users both expect to have fully constructed objects once execution enters the coroutine main and to be able to resume the coroutine from the constructor. There are several solutions to this problem but the chosen options effectively forces the design of the coroutine.
    236 
    237 Furthermore, \CFA faces an extra challenge as polymorphic routines create invisible thunks when casted to non-polymorphic routines and these thunks have function scope. For example, the following code, while looking benign, can run into undefined behaviour because of thunks:
     235The runtime system needs to create the coroutine?s stack and more importantly prepare it for the first resumption. The timing of the creation is non-trivial since users both expect to have fully constructed objects once execution enters the coroutine main and to be able to resume the coroutine from the constructor. There are several solutions to this problem but the chosen option effectively forces the design of the coroutine.
     236
     237Furthermore, \CFA faces an extra challenge as polymorphic routines create invisible thunks when cast to non-polymorphic routines and these thunks have function scope. For example, the following code, while looking benign, can run into undefined behaviour because of thunks:
    238238
    239239\begin{cfacode}
     
    268268}
    269269\end{ccode}
    270 The problem in this example is a storage management issue, the function pointer \code{_thunk0} is only valid until the end of the block, which limits the viable solutions because storing the function pointer for too long causes Undefined Behavior; i.e., the stack-based thunk being destroyed before it can be used. This challenge is an extension of challenges that come with second-class routines. Indeed, GCC nested routines also have the limitation that nested routine cannot be passed outside of the declaration scope. The case of coroutines and threads is simply an extension of this problem to multiple call-stacks.
     270The problem in this example is a storage management issue, the function pointer \code{_thunk0} is only valid until the end of the block, which limits the viable solutions because storing the function pointer for too long causes Undefined Behaviour; i.e., the stack-based thunk being destroyed before it can be used. This challenge is an extension of challenges that come with second-class routines. Indeed, GCC nested routines also have the limitation that nested routine cannot be passed outside of the declaration scope. The case of coroutines and threads is simply an extension of this problem to multiple call stacks.
    271271
    272272\subsection{Alternative: Composition}
     
    310310symmetric_coroutine<>::yield_type
    311311\end{cfacode}
    312 Often, the canonical threading paradigm in languages is based on function pointers, pthread being one of the most well known examples. The main problem of this approach is that the thread usage is limited to a generic handle that must otherwise be wrapped in a custom type. Since the custom type is simple to write in \CFA and solves several issues, added support for routine/lambda based coroutines adds very little.
     312Often, the canonical threading paradigm in languages is based on function pointers, pthread being one of the most well-known examples. The main problem of this approach is that the thread usage is limited to a generic handle that must otherwise be wrapped in a custom type. Since the custom type is simple to write in \CFA and solves several issues, added support for routine/lambda based coroutines adds very little.
    313313
    314314A variation of this would be to use a simple function pointer in the same way pthread does for threads :
     
    327327This semantics is more common for thread interfaces but coroutines work equally well. As discussed in section \ref{threads}, this approach is superseded by static approaches in terms of expressivity.
    328328
    329 \subsection{Alternative: Trait-based coroutines}
    330 
    331 Finally the underlying approach, which is the one closest to \CFA idioms, is to use trait-based lazy coroutines. This approach defines a coroutine as anything that satisfies the trait \code{is_coroutine} and is used as a coroutine.
     329\subsection{Alternative: Trait-Based Coroutines}
     330
     331Finally, the underlying approach, which is the one closest to \CFA idioms, is to use trait-based lazy coroutines. This approach defines a coroutine as anything that satisfies the trait \code{is_coroutine} and is used as a coroutine.
    332332
    333333\begin{cfacode}
     
    369369
    370370\section{Thread Interface}\label{threads}
    371 The basic building blocks of multi-threading in \CFA are \glspl{cfathread}. Both user and kernel threads are supported, where user threads are the concurrency mechanism and kernel threads are the parallel mechanism. User threads offer a flexible and lightweight interface. A thread can be declared using a struct declaration \code{thread} as follows:
     371The basic building blocks of multithreading in \CFA are \glspl{cfathread}. Both user and kernel threads are supported, where user threads are the concurrency mechanism and kernel threads are the parallel mechanism. User threads offer a flexible and lightweight interface. A thread can be declared using a struct declaration \code{thread} as follows:
    372372
    373373\begin{cfacode}
     
    394394\end{cfacode}
    395395
    396 In this example, threads of type \code{foo} start execution in the \code{void main(foo &)} routine, which prints \code{"Hello World!"}. While this thesis encourages this approach to enforce strongly-typed programming, users may prefer to use the routine-based thread semantics for the sake of simplicity. With the static semantics it is trivial to write a thread type that takes a function pointer as a parameter and executes it on its stack asynchronously.
     396In this example, threads of type \code{foo} start execution in the \code{void main(foo &)} routine, which prints \code{"Hello World!".} While this thesis encourages this approach to enforce strongly typed programming, users may prefer to use the routine-based thread semantics for the sake of simplicity. With the static semantics it is trivial to write a thread type that takes a function pointer as a parameter and executes it on its stack asynchronously.
    397397\begin{cfacode}
    398398typedef void (*voidFunc)(int);
     
    419419int main() {
    420420        FuncRunner f = {hello, 42};
    421         return 0'
    422 }
    423 \end{cfacode}
    424 
    425 A consequence of the strongly-typed approach to main is that memory layout of parameters and return values to/from a thread are now explicitly specified in the \acrshort{api}.
     421        return 0?
     422}
     423\end{cfacode}
     424
     425A consequence of the strongly typed approach to main is that memory layout of parameters and return values to/from a thread are now explicitly specified in the \acrshort{api}.
    426426
    427427Of course for threads to be useful, it must be possible to start and stop threads and wait for them to complete execution. While using an \acrshort{api} such as \code{fork} and \code{join} is relatively common in the literature, such an interface is unnecessary. Indeed, the simplest approach is to use \acrshort{raii} principles and have threads \code{fork} after the constructor has completed and \code{join} before the destructor runs.
  • doc/proposals/concurrency/text/cforall.tex

    r9c35431 rc13e8dc8  
    77The following is a quick introduction to the \CFA language, specifically tailored to the features needed to support concurrency.
    88
    9 \CFA is an extension of ISO-C and therefore supports all of the same paradigms as C. It is a non-object-oriented system-language, meaning most of the major abstractions have either no runtime overhead or can be opt-out easily. Like C, the basics of \CFA revolve around structures and routines, which are thin abstractions over machine code. The vast majority of the code produced by the \CFA translator respects memory-layouts and calling-conventions laid out by C. Interestingly, while \CFA is not an object-oriented language, lacking the concept of a receiver (e.g., {\tt this}), it does have some notion of objects\footnote{C defines the term objects as : ``region of data storage in the execution environment, the contents of which can represent
    10 values''~\cite[3.15]{C11}}, most importantly construction and destruction of objects. Most of the following code examples can be found on the \CFA website~\cite{www-cfa}
     9\CFA is an extension of ISO-C and therefore supports all of the same paradigms as C. It is a non-object-oriented system-language, meaning most of the major abstractions have either no runtime overhead or can be opted out easily. Like C, the basics of \CFA revolve around structures and routines, which are thin abstractions over machine code. The vast majority of the code produced by the \CFA translator respects memory layouts and calling conventions laid out by C. Interestingly, while \CFA is not an object-oriented language, lacking the concept of a receiver (e.g., {\tt this}), it does have some notion of objects\footnote{C defines the term objects as : ``region of data storage in the execution environment, the contents of which can represent
     10values''~\cite[3.15]{C11}}, most importantly construction and destruction of objects. Most of the following code examples can be found on the \CFA website~\cite{www-cfa}.
    1111
    1212% ======================================================================
     
    7272% ======================================================================
    7373\section{Constructors/Destructors}
    74 Object life-time is often a challenge in concurrency. \CFA uses the approach of giving concurrent meaning to object life-time as a mean of synchronization and/or mutual exclusion. Since \CFA relies heavily on the life time of objects, constructors and destructors are a core feature required for concurrency and parallelism. \CFA uses the following syntax for constructors and destructors :
     74Object lifetime is often a challenge in concurrency. \CFA uses the approach of giving concurrent meaning to object lifetime as a means of synchronization and/or mutual exclusion. Since \CFA relies heavily on the lifetime of objects, constructors and destructors is a core feature required for concurrency and parallelism. \CFA uses the following syntax for constructors and destructors :
    7575\begin{cfacode}
    7676struct S {
     
    135135\end{cfacode}
    136136
    137 Note that the type use for assertions can be either an \code{otype} or a \code{dtype}. Types declares as \code{otype} refer to ``complete'' objects, i.e., objects with a size, a default constructor, a copy constructor, a destructor and an assignment operator. Using \code{dtype} on the other hand has none of these assumptions but is extremely restrictive, it only guarantees the object is addressable.
     137Note that the type use for assertions can be either an \code{otype} or a \code{dtype}. Types declared as \code{otype} refer to ``complete'' objects, i.e., objects with a size, a default constructor, a copy constructor, a destructor and an assignment operator. Using \code{dtype,} on the other hand, has none of these assumptions but is extremely restrictive, it only guarantees the object is addressable.
    138138
    139139% ======================================================================
  • doc/proposals/concurrency/text/concurrency.tex

    r9c35431 rc13e8dc8  
    44% ======================================================================
    55% ======================================================================
    6 Several tool can be used to solve concurrency challenges. Since many of these challenges appear with the use of mutable shared-state, some languages and libraries simply disallow mutable shared-state (Erlang~\cite{Erlang}, Haskell~\cite{Haskell}, Akka (Scala)~\cite{Akka}). In these paradigms, interaction among concurrent objects relies on message passing~\cite{Thoth,Harmony,V-Kernel} or other paradigms closely relate to networking concepts (channels~\cite{CSP,Go} for example). However, in languages that use routine calls as their core abstraction-mechanism, these approaches force a clear distinction between concurrent and non-concurrent paradigms (i.e., message passing versus routine call). This distinction in turn means that, in order to be effective, programmers need to learn two sets of designs patterns. While this distinction can be hidden away in library code, effective use of the library still has to take both paradigms into account.
     6Several tools can be used to solve concurrency challenges. Since many of these challenges appear with the use of mutable shared-state, some languages and libraries simply disallow mutable shared-state (Erlang~\cite{Erlang}, Haskell~\cite{Haskell}, Akka (Scala)~\cite{Akka}). In these paradigms, interaction among concurrent objects relies on message passing~\cite{Thoth,Harmony,V-Kernel} or other paradigms closely relate to networking concepts (channels~\cite{CSP,Go} for example). However, in languages that use routine calls as their core abstraction mechanism, these approaches force a clear distinction between concurrent and non-concurrent paradigms (i.e., message passing versus routine calls). This distinction in turn means that, in order to be effective, programmers need to learn two sets of design patterns. While this distinction can be hidden away in library code, effective use of the library still has to take both paradigms into account.
    77
    88Approaches based on shared memory are more closely related to non-concurrent paradigms since they often rely on basic constructs like routine calls and shared objects. At the lowest level, concurrent paradigms are implemented as atomic operations and locks. Many such mechanisms have been proposed, including semaphores~\cite{Dijkstra68b} and path expressions~\cite{Campbell74}. However, for productivity reasons it is desirable to have a higher-level construct be the core concurrency paradigm~\cite{HPP:Study}.
    99
    10 An approach that is worth mentioning because it is gaining in popularity is transactional memory~\cite{Herlihy93}. While this approach is even pursued by system languages like \CC~\cite{Cpp-Transactions}, the performance and feature set is currently too restrictive to be the main concurrency paradigm for systems language, which is why it was rejected as the core paradigm for concurrency in \CFA.
    11 
    12 One of the most natural, elegant, and efficient mechanisms for synchronization and communication, especially for shared-memory systems, is the \emph{monitor}. Monitors were first proposed by Brinch Hansen~\cite{Hansen73} and later described and extended by C.A.R.~Hoare~\cite{Hoare74}. Many programming languages---e.g., Concurrent Pascal~\cite{ConcurrentPascal}, Mesa~\cite{Mesa}, Modula~\cite{Modula-2}, Turing~\cite{Turing:old}, Modula-3~\cite{Modula-3}, NeWS~\cite{NeWS}, Emerald~\cite{Emerald}, \uC~\cite{Buhr92a} and Java~\cite{Java}---provide monitors as explicit language constructs. In addition, operating-system kernels and device drivers have a monitor-like structure, although they often use lower-level primitives such as semaphores or locks to simulate monitors. For these reasons, this project proposes monitors as the core concurrency-construct.
     10An approach that is worth mentioning because it is gaining in popularity is transactional memory~\cite{Herlihy93}. While this approach is even pursued by system languages like \CC~\cite{Cpp-Transactions}, the performance and feature set is currently too restrictive to be the main concurrency paradigm for system languages, which is why it was rejected as the core paradigm for concurrency in \CFA.
     11
     12One of the most natural, elegant, and efficient mechanisms for synchronization and communication, especially for shared-memory systems, is the \emph{monitor}. Monitors were first proposed by Brinch Hansen~\cite{Hansen73} and later described and extended by C.A.R.~Hoare~\cite{Hoare74}. Many programming languages---e.g., Concurrent Pascal~\cite{ConcurrentPascal}, Mesa~\cite{Mesa}, Modula~\cite{Modula-2}, Turing~\cite{Turing:old}, Modula-3~\cite{Modula-3}, NeWS~\cite{NeWS}, Emerald~\cite{Emerald}, \uC~\cite{Buhr92a} and Java~\cite{Java}---provide monitors as explicit language constructs. In addition, operating-system kernels and device drivers have a monitor-like structure, although they often use lower-level primitives such as semaphores or locks to simulate monitors. For these reasons, this project proposes monitors as the core concurrency construct.
    1313
    1414\section{Basics}
     
    1919
    2020\subsection{Synchronization}
    21 As for mutual-exclusion, low-level synchronization primitives often offer good performance and good flexibility at the cost of ease of use. Again, higher-level mechanism often simplify usage by adding better coupling between synchronization and data, e.g.: message passing, or offering a simpler solution to otherwise involved challenges. As mentioned above, synchronization can be expressed as guaranteeing that event \textit{X} always happens before \textit{Y}. Most of the time, synchronization happens within a critical section, where threads must acquire mutual-exclusion in a certain order. However, it may also be desirable to guarantee that event \textit{Z} does not occur between \textit{X} and \textit{Y}. Not satisfying this property is called barging. For example, where event \textit{X} tries to effect event \textit{Y} but another thread acquires the critical section and emits \textit{Z} before \textit{Y}. The classic example is the thread that finishes using a resource and unblocks a thread waiting to use the resource, but the unblocked thread must compete again to acquire the resource. Preventing or detecting barging is an involved challenge with low-level locks, which can be made much easier by higher-level constructs. This challenge is often split into two different methods, barging avoidance and barging prevention. Algorithms that use flag variables to detect barging threads are said to be using barging avoidance, while algorithms that baton-pass locks~\cite{Andrews89} between threads instead of releasing the locks are said to be using barging prevention.
     21As for mutual-exclusion, low-level synchronization primitives often offer good performance and good flexibility at the cost of ease of use. Again, higher-level mechanisms often simplify usage by adding better coupling between synchronization and data, e.g.: message passing, or offering a simpler solution to otherwise involved challenges. As mentioned above, synchronization can be expressed as guaranteeing that event \textit{X} always happens before \textit{Y}. Most of the time, synchronization happens within a critical section, where threads must acquire mutual-exclusion in a certain order. However, it may also be desirable to guarantee that event \textit{Z} does not occur between \textit{X} and \textit{Y}. Not satisfying this property is called barging. For example, where event \textit{X} tries to effect event \textit{Y} but another thread acquires the critical section and emits \textit{Z} before \textit{Y}. The classic example is the thread that finishes using a resource and unblocks a thread waiting to use the resource, but the unblocked thread must compete again to acquire the resource. Preventing or detecting barging is an involved challenge with low-level locks, which can be made much easier by higher-level constructs. This challenge is often split into two different methods, barging avoidance and barging prevention. Algorithms that use flag variables to detect barging threads are said to be using barging avoidance, while algorithms that baton-pass locks~\cite{Andrews89} between threads instead of releasing the locks are said to be using barging prevention.
    2222
    2323% ======================================================================
     
    2626% ======================================================================
    2727% ======================================================================
    28 A monitor is a set of routines that ensure mutual exclusion when accessing shared state. This concept is generally associated with Object-Oriented Languages like Java~\cite{Java} or \uC~\cite{uC++book} but does not strictly require OO semantics. The only requirements is the ability to declare a handle to a shared object and a set of routines that act on it :
     28A monitor is a set of routines that ensure mutual exclusion when accessing shared state. This concept is generally associated with Object-Oriented Languages like Java~\cite{Java} or \uC~\cite{uC++book} but does not strictly require OO semantics. The only requirement is the ability to declare a handle to a shared object and a set of routines that act on it :
    2929\begin{cfacode}
    3030typedef /*some monitor type*/ monitor;
     
    3939% ======================================================================
    4040% ======================================================================
    41 \subsection{Call semantics} \label{call}
     41\subsection{Call Semantics} \label{call}
    4242% ======================================================================
    4343% ======================================================================
     
    103103int f5(graph(monitor*) & mutex m);
    104104\end{cfacode}
    105 The problem is to identify which object(s) should be acquired. Furthermore, each object needs to be acquired only once. In the case of simple routines like \code{f1} and \code{f2} it is easy to identify an exhaustive list of objects to acquire on entry. Adding indirections (\code{f3}) still allows the compiler and programmer to identify which object is acquired. However, adding in arrays (\code{f4}) makes it much harder. Array lengths are not necessarily known in C, and even then, making sure objects are only acquired once becomes none-trivial. This problem can be extended to absurd limits like \code{f5}, which uses a graph of monitors. To make the issue tractable, this project imposes the requirement that a routine may only acquire one monitor per parameter and it must be the type of the parameter with at most one level of indirection (ignoring potential qualifiers). Also note that while routine \code{f3} can be supported, meaning that monitor \code{**m} is be acquired, passing an array to this routine would be type safe and yet result in undefined behaviour because only the first element of the array is acquired. However, this ambiguity is part of the C type-system with respects to arrays. For this reason, \code{mutex} is disallowed in the context where arrays may be passed:
     105The problem is to identify which object(s) should be acquired. Furthermore, each object needs to be acquired only once. In the case of simple routines like \code{f1} and \code{f2} it is easy to identify an exhaustive list of objects to acquire on entry. Adding indirections (\code{f3}) still allows the compiler and programmer to identify which object is acquired. However, adding in arrays (\code{f4}) makes it much harder. Array lengths are not necessarily known in C, and even then, making sure objects are only acquired once becomes none-trivial. This problem can be extended to absurd limits like \code{f5}, which uses a graph of monitors. To make the issue tractable, this project imposes the requirement that a routine may only acquire one monitor per parameter and it must be the type of the parameter with at most one level of indirection (ignoring potential qualifiers). Also note that while routine \code{f3} can be supported, meaning that monitor \code{**m} is acquired, passing an array to this routine would be type-safe and yet result in undefined behaviour because only the first element of the array is acquired. However, this ambiguity is part of the C type-system with respects to arrays. For this reason, \code{mutex} is disallowed in the context where arrays may be passed:
    106106\begin{cfacode}
    107107int f1(monitor& mutex m);   //Okay : recommended case
     
    137137The \gls{multi-acq} monitor lock allows a monitor lock to be acquired by both \code{bar} or \code{baz} and acquired again in \code{foo}. In the calls to \code{bar} and \code{baz} the monitors are acquired in opposite order.
    138138
    139 However, such use leads to the lock acquiring order problem. In the example above, the user uses implicit ordering in the case of function \code{foo} but explicit ordering in the case of \code{bar} and \code{baz}. This subtle difference means that calling these routines concurrently may lead to deadlock and is therefore Undefined Behavior. As shown~\cite{Lister77}, solving this problem requires:
     139However, such use leads to the lock acquiring order problems. In the example above, the user uses implicit ordering in the case of function \code{foo} but explicit ordering in the case of \code{bar} and \code{baz}. This subtle difference means that calling these routines concurrently may lead to deadlock and is therefore Undefined Behaviour. As shown~\cite{Lister77}, solving this problem requires:
    140140\begin{enumerate}
    141141        \item Dynamically tracking of the monitor-call order.
     
    155155}
    156156\end{cfacode}
    157 This example shows a trivial solution to the bank-account transfer-problem~\cite{BankTransfer}. Without \gls{multi-acq} and \gls{bulk-acq}, the solution to this problem is much more involved and requires careful engineering.
     157This example shows a trivial solution to the bank-account transfer problem~\cite{BankTransfer}. Without \gls{multi-acq} and \gls{bulk-acq}, the solution to this problem is much more involved and requires careful engineering.
    158158
    159159\subsection{\code{mutex} statement} \label{mutex-stmt}
    160160
    161 The call semantics discussed above have one software engineering issue, only a named routine can acquire the mutual-exclusion of a set of monitor. \CFA offers the \code{mutex} statement to workaround the need for unnecessary names, avoiding a major software engineering problem~\cite{2FTwoHardThings}. Table \ref{lst:mutex-stmt} shows an example of the \code{mutex} statement, which introduces a new scope in which the mutual-exclusion of a set of monitor is acquired. Beyond naming, the \code{mutex} statement has no semantic difference from a routine call with \code{mutex} parameters.
     161The call semantics discussed above have one software engineering issue, only a named routine can acquire the mutual-exclusion of a set of monitor. \CFA offers the \code{mutex} statement to work around the need for unnecessary names, avoiding a major software engineering problem~\cite{2FTwoHardThings}. Table \ref{lst:mutex-stmt} shows an example of the \code{mutex} statement, which introduces a new scope in which the mutual-exclusion of a set of monitor is acquired. Beyond naming, the \code{mutex} statement has no semantic difference from a routine call with \code{mutex} parameters.
    162162
    163163\begin{table}
     
    196196% ======================================================================
    197197% ======================================================================
    198 Once the call semantics are established, the next step is to establish data semantics. Indeed, until now a monitor is used simply as a generic handle but in most cases monitors contain shared data. This data should be intrinsic to the monitor declaration to prevent any accidental use of data without its appropriate protection. For example, here is a complete version of the counter showed in section \ref{call}:
     198Once the call semantics are established, the next step is to establish data semantics. Indeed, until now a monitor is used simply as a generic handle but in most cases monitors contain shared data. This data should be intrinsic to the monitor declaration to prevent any accidental use of data without its appropriate protection. For example, here is a complete version of the counter shown in section \ref{call}:
    199199\begin{cfacode}
    200200monitor counter_t {
     
    227227% ======================================================================
    228228% ======================================================================
    229 \section{Internal scheduling} \label{intsched}
     229\section{Internal Scheduling} \label{intsched}
    230230% ======================================================================
    231231% ======================================================================
    232232In addition to mutual exclusion, the monitors at the core of \CFA's concurrency can also be used to achieve synchronization. With monitors, this capability is generally achieved with internal or external scheduling as in~\cite{Hoare74}. Since internal scheduling within a single monitor is mostly a solved problem, this thesis concentrates on extending internal scheduling to multiple monitors. Indeed, like the \gls{bulk-acq} semantics, internal scheduling extends to multiple monitors in a way that is natural to the user but requires additional complexity on the implementation side.
    233233
    234 First, here is a simple example of internal-scheduling :
     234First, here is a simple example of internal scheduling :
    235235
    236236\begin{cfacode}
     
    253253}
    254254\end{cfacode}
    255 There are two details to note here. First, the \code{signal} is a delayed operation, it only unblocks the waiting thread when it reaches the end of the critical section. This semantic is needed to respect mutual-exclusion, i.e., the signaller and signalled thread cannot be in the monitor simultaneously. The alternative is to return immediately after the call to \code{signal}, which is significantly more restrictive. Second, in \CFA, while it is common to store a \code{condition} as a field of the monitor, a \code{condition} variable can be stored/created independently of a monitor. Here routine \code{foo} waits for the \code{signal} from \code{bar} before making further progress, effectively ensuring a basic ordering.
    256 
    257 An important aspect of the implementation is that \CFA does not allow barging, which means that once function \code{bar} releases the monitor, \code{foo} is guaranteed to resume immediately after (unless some other thread waited on the same condition). This guarantee offers the benefit of not having to loop around waits to recheck that a condition is met. The main reason \CFA offers this guarantee is that users can easily introduce barging if it becomes a necessity but adding barging prevention or barging avoidance is more involved without language support. Supporting barging prevention as well as extending internal scheduling to multiple monitors is the main source of complexity in the design of \CFA concurrency.
    258 
    259 % ======================================================================
    260 % ======================================================================
    261 \subsection{Internal Scheduling - multi monitor}
    262 % ======================================================================
    263 % ======================================================================
    264 It is easier to understand the problem of multi-monitor scheduling using a series of pseudo-code examples. Note that for simplicity in the following snippets of pseudo-code, waiting and signalling is done using an implicit condition variable, like Java built-in monitors. Indeed, \code{wait} statements always use the implicit condition variable as parameter and explicitly names the monitors (A and B) associated with the condition. Note that in \CFA, condition variables are tied to a \emph{group} of monitors on first use (called branding), which means that using internal scheduling with distinct sets of monitors requires one condition variable per set of monitors. The example below shows the simple case of having two threads (one for each column) and a single monitor A.
     255There are two details to note here. First, the \code{signal} is a delayed operation, it only unblocks the waiting thread when it reaches the end of the critical section. This semantic is needed to respect mutual-exclusion, i.e., the signaller and signalled thread cannot be in the monitor simultaneously. The alternative is to return immediately after the call to \code{signal}, which is significantly more restrictive. Second, in \CFA, while it is common to store a \code{condition} as a field of the monitor, a \code{condition} variable can be stored/created independently of a monitor. Here routine \code{foo} waits for the \code{signal} from \code{bar} before making further progress, ensuring a basic ordering.
     256
     257An important aspect of the implementation is that \CFA does not allow barging, which means that once function \code{bar} releases the monitor, \code{foo} is guaranteed to resume immediately after (unless some other thread waited on the same condition). This guarantee offers the benefit of not having to loop around waits to recheck that a condition is met. The main reason \CFA offers this guarantee is that users can easily introduce barging if it becomes a necessity but adding barging prevention or barging avoidance is more involved without language support. Supporting barging prevention as well as extending internal scheduling to multiple monitors is the main source of complexity in the design and implementation of \CFA concurrency.
     258
     259% ======================================================================
     260% ======================================================================
     261\subsection{Internal Scheduling - Multi-Monitor}
     262% ======================================================================
     263% ======================================================================
     264It is easier to understand the problem of multi-monitor scheduling using a series of pseudo-code examples. Note that for simplicity in the following snippets of pseudo-code, waiting and signalling is done using an implicit condition variable, like Java built-in monitors. Indeed, \code{wait} statements always use the implicit condition variable as parameters and explicitly names the monitors (A and B) associated with the condition. Note that in \CFA, condition variables are tied to a \emph{group} of monitors on first use (called branding), which means that using internal scheduling with distinct sets of monitors requires one condition variable per set of monitors. The example below shows the simple case of having two threads (one for each column) and a single monitor A.
    265265
    266266\begin{multicols}{2}
     
    297297\end{pseudo}
    298298\end{multicols}
    299 This version uses \gls{bulk-acq} (denoted using the {\sf\&} symbol), but the presence of multiple monitors does not add a particularly new meaning. Synchronization happens between the two threads in exactly the same way and order. The only difference is that mutual exclusion covers more monitors. On the implementation side, handling multiple monitors does add a degree of complexity as the next few examples demonstrate.
    300 
    301 While deadlock issues can occur when nesting monitors, these issues are only a symptom of the fact that locks, and by extension monitors, are not perfectly composable. For monitors, a well known deadlock problem is the Nested Monitor Problem~\cite{Lister77}, which occurs when a \code{wait} is made by a thread that holds more than one monitor. For example, the following pseudo-code runs into the nested-monitor problem :
     299\noindent This version uses \gls{bulk-acq} (denoted using the {\sf\&} symbol), but the presence of multiple monitors does not add a particularly new meaning. Synchronization happens between the two threads in exactly the same way and order. The only difference is that mutual exclusion covers a group of monitors. On the implementation side, handling multiple monitors does add a degree of complexity as the next few examples demonstrate.
     300
     301While deadlock issues can occur when nesting monitors, these issues are only a symptom of the fact that locks, and by extension monitors, are not perfectly composable. For monitors, a well-known deadlock problem is the Nested Monitor Problem~\cite{Lister77}, which occurs when a \code{wait} is made by a thread that holds more than one monitor. For example, the following pseudo-code runs into the nested-monitor problem :
    302302\begin{multicols}{2}
    303303\begin{pseudo}
     
    319319\end{pseudo}
    320320\end{multicols}
    321 The \code{wait} only releases monitor \code{B} so the signalling thread cannot acquire monitor \code{A} to get to the \code{signal}. Attempting release of all acquired monitors at the \code{wait} introduces a different set of problems, such as releasing monitor \code{C}, which has nothing to do with the \code{signal}.
     321\noindent The \code{wait} only releases monitor \code{B} so the signalling thread cannot acquire monitor \code{A} to get to the \code{signal}. Attempting release of all acquired monitors at the \code{wait} introduces a different set of problems, such as releasing monitor \code{C}, which has nothing to do with the \code{signal}.
    322322
    323323However, for monitors as for locks, it is possible to write a program using nesting without encountering any problems if nesting is done correctly. For example, the next pseudo-code snippet acquires monitors {\sf A} then {\sf B} before waiting, while only acquiring {\sf B} when signalling, effectively avoiding the Nested Monitor Problem~\cite{Lister77}.
     
    343343\end{multicols}
    344344
    345 This simple refactoring may not be possible, forcing more complex restructuring.
    346 
    347 % ======================================================================
    348 % ======================================================================
    349 \subsection{Internal Scheduling - in depth}
    350 % ======================================================================
    351 % ======================================================================
    352 
    353 A larger example is presented to show complex issues for \gls{bulk-acq} and all the implementation options are analyzed. Listing \ref{lst:int-bulk-pseudo} shows an example where \gls{bulk-acq} adds a significant layer of complexity to the internal signalling semantics, and listing \ref{lst:int-bulk-cfa} shows the corresponding \CFA code to implement the pseudo-code in listing \ref{lst:int-bulk-pseudo}. For the purpose of translating the given pseudo-code into \CFA-code, any method of introducing a monitor is acceptable, e.g., \code{mutex} parameter, global variables, pointer parameters or using locals with the \code{mutex}-statement.
     345\noindent However, this simple refactoring may not be possible, forcing more complex restructuring.
     346
     347% ======================================================================
     348% ======================================================================
     349\subsection{Internal Scheduling - In Depth}
     350% ======================================================================
     351% ======================================================================
     352
     353A larger example is presented to show complex issues for \gls{bulk-acq} and all the implementation options are analyzed. Listing \ref{lst:int-bulk-pseudo} shows an example where \gls{bulk-acq} adds a significant layer of complexity to the internal signalling semantics, and listing \ref{lst:int-bulk-cfa} shows the corresponding \CFA code to implement the pseudo-code in listing \ref{lst:int-bulk-pseudo}. For the purpose of translating the given pseudo-code into \CFA-code, any method of introducing a monitor is acceptable, e.g., \code{mutex} parameters, global variables, pointer parameters, or using locals with the \code{mutex}-statement.
    354354
    355355\begin{figure}[!t]
     
    376376                |\label{line:signal1}|signal A & B
    377377                //Code Section 7
    378         release A & B
     378        |\label{line:releaseFirst}|release A & B
    379379        //Code Section 8
    380380|\label{line:lastRelease}|release A
     
    446446\end{figure}
    447447
    448 The complexity begins at code sections 4 and 8, which are where the existing semantics of internal scheduling need to be extended for multiple monitors. The root of the problem is that \gls{bulk-acq} is used in a context where one of the monitors is already acquired and is why it is important to define the behaviour of the previous pseudo-code. When the signaller thread reaches the location where it should ``release \code{A & B}'' (listing \ref{lst:int-bulk-pseudo} line \ref{line:signal1}), it must actually transfer ownership of monitor \code{B} to the waiting thread. This ownership transfer is required in order to prevent barging into \code{B} by another thread, since both the signalling and signalled threads still need monitor \code{A}. There are three options.
    449 
    450 \subsubsection{Delaying signals}
    451 The obvious solution to solve the problem of multi-monitor scheduling is to keep ownership of all locks until the last lock is ready to be transferred. It can be argued that that moment is when the last lock is no longer needed because this semantics fits most closely to the behaviour of single-monitor scheduling. This solution has the main benefit of transferring ownership of groups of monitors, which simplifies the semantics from multiple objects to a single group of objects, effectively making the existing single-monitor semantic viable by simply changing monitors to monitor groups. The naive approach to this solution is to only release monitors once every monitor in a group can be released. However, since some monitors are never released (i.e., the monitor of a thread), this interpretation means groups can grow but may never shrink. A more interesting interpretation is to only transfer groups as one but to recreate the groups on every operation, i.e., limit ownership transfer to one per \code{signal}/\code{release}.
    452 
    453 However, this solution can become much more complicated depending on what is executed while secretly holding B (listing \ref{lst:int-secret} line \ref{line:secret}).
    454 The goal in this solution is to avoid the need to transfer ownership of a subset of the condition monitors. However, listing \ref{lst:dependency} shows a slightly different example where a third thread is waiting on monitor \code{A}, using a different condition variable. Because the third thread is signalled when secretly holding \code{B}, the goal  becomes unreachable. Depending on the order of signals (listing \ref{lst:dependency} line \ref{line:signal-ab} and \ref{line:signal-a}) two cases can happen :
     448The complexity begins at code sections 4 and 8 in listing \ref{lst:int-bulk-pseudo}, which are where the existing semantics of internal scheduling needs to be extended for multiple monitors. The root of the problem is that \gls{bulk-acq} is used in a context where one of the monitors is already acquired and is why it is important to define the behaviour of the previous pseudo-code. When the signaller thread reaches the location where it should ``release \code{A & B}'' (listing \ref{lst:int-bulk-pseudo} line \ref{line:releaseFirst}), it must actually transfer ownership of monitor \code{B} to the waiting thread. This ownership transfer is required in order to prevent barging into \code{B} by another thread, since both the signalling and signalled threads still need monitor \code{A}. There are three options.
     449
     450\subsubsection{Delaying Signals}
     451The obvious solution to solve the problem of multi-monitor scheduling is to keep ownership of all locks until the last lock is ready to be transferred. It can be argued that that moment is when the last lock is no longer needed because this semantics fits most closely to the behaviour of single-monitor scheduling. This solution has the main benefit of transferring ownership of groups of monitors, which simplifies the semantics from multiple objects to a single group of objects, effectively making the existing single-monitor semantic viable by simply changing monitors to monitor groups. This solution releases the monitors once every monitor in a group can be released. However, since some monitors are never released (i.e., the monitor of a thread), this interpretation means a group might never be released. A more interesting interpretation is to transfer the group until it can be disbanded, which means the group is not passed further and a thread can retain its locks.
     452
     453However, listing \ref{lst:int-secret} shows this solution can become much more complicated depending on what is executed while secretly holding B at line \ref{line:secret}, while avoiding the need to transfer ownership of a subset of the condition monitors. Listing \ref{lst:dependency} shows a slightly different example where a third thread is waiting on monitor \code{A}, using a different condition variable. Because the third thread is signalled when secretly holding \code{B}, the goal  becomes unreachable. Depending on the order of signals (listing \ref{lst:dependency} line \ref{line:signal-ab} and \ref{line:signal-a}) two cases can happen :
    455454
    456455\paragraph{Case 1: thread $\alpha$ goes first.} In this case, the problem is that monitor \code{A} needs to be passed to thread $\beta$ when thread $\alpha$ is done with it.
     
    460459Note that ordering is not determined by a race condition but by whether signalled threads are enqueued in FIFO or FILO order. However, regardless of the answer, users can move line \ref{line:signal-a} before line \ref{line:signal-ab} and get the reverse effect for listing \ref{lst:dependency}.
    461460
    462 In both cases, the threads need to be able to distinguish, on a per monitor basis, which ones need to be released and which ones need to be transferred, which means monitors cannot be handled as a single homogeneous group and therefore effectively precludes this approach.
     461In both cases, the threads need to be able to distinguish, on a per monitor basis, which ones need to be released and which ones need to be transferred, which means knowing when to dispand a group becomes complex and inefficient (see next section) and therefore effectively precludes this approach.
    463462
    464463\subsubsection{Dependency graphs}
     
    502501\end{figure}
    503502
    504 In the listing \ref{lst:int-bulk-pseudo} pseudo-code, there is a solution that satisfies both barging prevention and mutual exclusion. If ownership of both monitors is transferred to the waiter when the signaller releases \code{A & B} and then the waiter transfers back ownership of \code{A} back to the signaller when it releases it, then the problem is solved (\code{B} is no longer in use at this point). Dynamically finding the correct order is therefore the second possible solution. The problem is effectively resolving a dependency graph of ownership requirements. Here even the simplest of code snippets requires two transfers and it seems to increase in a manner close to polynomial. This complexity explosion can be seen in listing \ref{lst:explosion}, which is just a direct extension to three monitors, requires at least three ownership transfer and has multiple solutions. Furthermore, the presence of multiple solutions for ownership transfer can cause deadlock problems if a specific solution is not consistently picked; In the same way that multiple lock acquiring order can cause deadlocks.
     503In listing \ref{lst:int-bulk-pseudo}, there is a solution that satisfies both barging prevention and mutual exclusion. If ownership of both monitors is transferred to the waiter when the signaller releases \code{A & B} and then the waiter transfers back ownership of \code{A} back to the signaller when it releases it, then the problem is solved (\code{B} is no longer in use at this point). Dynamically finding the correct order is therefore the second possible solution. The problem is effectively resolving a dependency graph of ownership requirements. Here even the simplest of code snippets requires two transfers and it seems to increase in a manner close to polynomial. This complexity explosion can be seen in listing \ref{lst:explosion}, which is just a direct extension to three monitors, requires at least three ownership transfer and has multiple solutions. Furthermore, the presence of multiple solutions for ownership transfer can cause deadlock problems if a specific solution is not consistently picked; In the same way that multiple lock acquiring order can cause deadlocks.
    505504\begin{figure}
    506505\begin{multicols}{2}
     
    531530\end{figure}
    532531
    533 Listing \ref{lst:dependency} is the three threads example used in the delayed signals solution. Figure \ref{fig:dependency} shows the corresponding dependency graph that results, where every node is a statement of one of the three threads, and the arrows the dependency of that statement (e.g., $\alpha1$ must happen before $\alpha2$). The extra challenge is that this dependency graph is effectively post-mortem, but the runtime system needs to be able to build and solve these graphs as the dependency unfolds. Resolving dependency graphs being a complex and expensive endeavour, this solution is not the preferred one.
    534 
    535 \subsubsection{Partial signalling} \label{partial-sig}
    536 Finally, the solution that is chosen for \CFA is to use partial signalling. Again using listing \ref{lst:int-bulk-pseudo}, the partial signalling solution transfers ownership of monitor \code{B} at lines \ref{line:signal1} to the waiter but does not wake the waiting thread since it is still using monitor \code{A}. Only when it reaches line \ref{line:lastRelease} does it actually wakeup the waiting thread. This solution has the benefit that complexity is encapsulated into only two actions, passing monitors to the next owner when they should be released and conditionally waking threads if all conditions are met. This solution has a much simpler implementation than a dependency graph solving algorithm, which is why it was chosen. Furthermore, after being fully implemented, this solution does not appear to have any significant downsides.
    537 
    538 While listing \ref{lst:dependency} is a complicated problem for previous solutions, it can be solved easily with partial signalling :
     532Given the three threads example in listing \ref{lst:dependency}, figure \ref{fig:dependency} shows the corresponding dependency graph that results, where every node is a statement of one of the three threads, and the arrows the dependency of that statement (e.g., $\alpha1$ must happen before $\alpha2$). The extra challenge is that this dependency graph is effectively post-mortem, but the runtime system needs to be able to build and solve these graphs as the dependency unfolds. Resolving dependency graphs being a complex and expensive endeavour, this solution is not the preferred one.
     533
     534\subsubsection{Partial Signalling} \label{partial-sig}
     535Finally, the solution that is chosen for \CFA is to use partial signalling. Again using listing \ref{lst:int-bulk-pseudo}, the partial signalling solution transfers ownership of monitor \code{B} at lines \ref{line:signal1} to the waiter but does not wake the waiting thread since it is still using monitor \code{A}. Only when it reaches line \ref{line:lastRelease} does it actually wake up the waiting thread. This solution has the benefit that complexity is encapsulated into only two actions, passing monitors to the next owner when they should be released and conditionally waking threads if all conditions are met. This solution has a much simpler implementation than a dependency graph solving algorithms, which is why it was chosen. Furthermore, after being fully implemented, this solution does not appear to have any significant downsides.
     536
     537Using partial signalling, listing \ref{lst:dependency} can be solved easily :
    539538\begin{itemize}
    540539        \item When thread $\gamma$ reaches line \ref{line:release-ab} it transfers monitor \code{B} to thread $\alpha$ and continues to hold monitor \code{A}.
    541540        \item When thread $\gamma$ reaches line \ref{line:release-a}  it transfers monitor \code{A} to thread $\beta$  and wakes it up.
    542541        \item When thread $\beta$  reaches line \ref{line:release-aa} it transfers monitor \code{A} to thread $\alpha$ and wakes it up.
    543         \item Problem solved!
    544542\end{itemize}
    545543
     
    654652An important note is that, until now, signalling a monitor was a delayed operation. The ownership of the monitor is transferred only when the monitor would have otherwise been released, not at the point of the \code{signal} statement. However, in some cases, it may be more convenient for users to immediately transfer ownership to the thread that is waiting for cooperation, which is achieved using the \code{signal_block} routine.
    655653
    656 The example in table \ref{tbl:datingservice} highlights the difference in behaviour. As mentioned, \code{signal} only transfers ownership once the current critical section exits, this behaviour requires additional synchronization when a two-way handshake is needed. To avoid this explicit synchronization, the \code{condition} type offers the \code{signal_block} routine, which handles the two-way handshake as shown in the example. This feature removes the need for a second condition variables and simplifies programming. Like every other monitor semantic, \code{signal_block} uses barging prevention, which means mutual-exclusion is baton-passed both on the frond-end and the back-end of the call to \code{signal_block}, meaning no other thread can acquire the monitor either before or after the call.
     654The example in table \ref{tbl:datingservice} highlights the difference in behaviour. As mentioned, \code{signal} only transfers ownership once the current critical section exits, this behaviour requires additional synchronization when a two-way handshake is needed. To avoid this explicit synchronization, the \code{condition} type offers the \code{signal_block} routine, which handles the two-way handshake as shown in the example. This feature removes the need for a second condition variables and simplifies programming. Like every other monitor semantic, \code{signal_block} uses barging prevention, which means mutual-exclusion is baton-passed both on the frond end and the back end of the call to \code{signal_block}, meaning no other thread can acquire the monitor either before or after the call.
    657655
    658656% ======================================================================
     
    723721\end{tabular}
    724722\end{center}
    725 This method is more constrained and explicit, which helps users reduce the non-deterministic nature of concurrency. Indeed, as the following examples demonstrates, external scheduling allows users to wait for events from other threads without the concern of unrelated events occurring. External scheduling can generally be done either in terms of control flow (e.g., Ada with \code{accept}, \uC with \code{_Accept}) or in terms of data (e.g., Go with channels). Of course, both of these paradigms have their own strengths and weaknesses, but for this project control-flow semantics were chosen to stay consistent with the rest of the languages semantics. Two challenges specific to \CFA arise when trying to add external scheduling with loose object definitions and multiple-monitor routines. The previous example shows a simple use \code{_Accept} versus \code{wait}/\code{signal} and its advantages. Note that while other languages often use \code{accept}/\code{select} as the core external scheduling keyword, \CFA uses \code{waitfor} to prevent name collisions with existing socket \acrshort{api}s.
    726 
    727 For the \code{P} member above using internal scheduling, the call to \code{wait} only guarantees that \code{V} is the last routine to access the monitor, allowing a third routine, say \code{isInUse()}, acquire mutual exclusion several times while routine \code{P} is waiting. On the other hand, external scheduling guarantees that while routine \code{P} is waiting, no routine other than \code{V} can acquire the monitor.
    728 
    729 % ======================================================================
    730 % ======================================================================
    731 \subsection{Loose object definitions}
    732 % ======================================================================
    733 % ======================================================================
    734 In \uC, a monitor class declaration includee an exhaustive list of monitor operations. Since \CFA is not object oriented, monitors become both more difficult to implement and less clear for a user:
     723This method is more constrained and explicit, which helps users reduce the non-deterministic nature of concurrency. Indeed, as the following examples demonstrates, external scheduling allows users to wait for events from other threads without the concern of unrelated events occurring. External scheduling can generally be done either in terms of control flow (e.g., Ada with \code{accept}, \uC with \code{_Accept}) or in terms of data (e.g., Go with channels). Of course, both of these paradigms have their own strengths and weaknesses, but for this project control-flow semantics was chosen to stay consistent with the rest of the languages semantics. Two challenges specific to \CFA arise when trying to add external scheduling with loose object definitions and multiple-monitor routines. The previous example shows a simple use \code{_Accept} versus \code{wait}/\code{signal} and its advantages. Note that while other languages often use \code{accept}/\code{select} as the core external scheduling keyword, \CFA uses \code{waitfor} to prevent name collisions with existing socket \acrshort{api}s.
     724
     725For the \code{P} member above using internal scheduling, the call to \code{wait} only guarantees that \code{V} is the last routine to access the monitor, allowing a third routine, say \code{isInUse()}, acquire mutual exclusion several times while routine \code{P} is waiting. On the other hand, external scheduling guarantees that while routine \code{P} is waiting, no other routine than \code{V} can acquire the monitor.
     726
     727% ======================================================================
     728% ======================================================================
     729\subsection{Loose Object Definitions}
     730% ======================================================================
     731% ======================================================================
     732In \uC, a monitor class declaration includes an exhaustive list of monitor operations. Since \CFA is not object oriented, monitors become both more difficult to implement and less clear for a user:
    735733
    736734\begin{cfacode}
     
    748746\end{cfacode}
    749747
    750 Furthermore, external scheduling is an example where implementation constraints become visible from the interface. Here is the pseudo code for the entering phase of a monitor:
     748Furthermore, external scheduling is an example where implementation constraints become visible from the interface. Here is the pseudo-code for the entering phase of a monitor:
    751749\begin{center}
    752750\begin{tabular}{l}
     
    763761\end{tabular}
    764762\end{center}
    765 For the first two conditions, it is easy to implement a check that can evaluate the condition in a few instruction. However, a fast check for \pscode{monitor accepts me} is much harder to implement depending on the constraints put on the monitors. Indeed, monitors are often expressed as an entry queue and some acceptor queue as in the following figure:
     763For the first two conditions, it is easy to implement a check that can evaluate the condition in a few instructions. However, a fast check for \pscode{monitor accepts me} is much harder to implement depending on the constraints put on the monitors. Indeed, monitors are often expressed as an entry queue and some acceptor queue as in the following figure:
    766764
    767765\begin{figure}[H]
     
    772770\end{figure}
    773771
    774 There are other alternatives to these pictures, but in the case of this picture, implementing a fast accept check is relatively easy. Restricted to a fixed number of mutex members, N, the accept check reduces to updating a bitmask when the acceptor queue changes, a check that executes in a single instruction even with a fairly large number (e.g., 128) of mutex members. This approach requires a dense unique ordering of routines with an upper-bound and that ordering must be consistent across translation units. For OO languages these constraints are common, since objects only offer adding member routines consistently across translation units via inheritence. However, in \CFA users can extend objects with mutex routines that are only visible in certain translation unit. This means that establishing a program-wide dense-ordering among mutex routines can only be done in the program linking phase, and still could have issues when using dynamically shared objects.
     772There are other alternatives to these pictures, but in the case of this picture, implementing a fast accept check is relatively easy. Restricted to a fixed number of mutex members, N, the accept check reduces to updating a bitmask when the acceptor queue changes, a check that executes in a single instruction even with a fairly large number (e.g., 128) of mutex members. This approach requires a unique dense ordering of routines with an upper-bound and that ordering must be consistent across translation units. For OO languages these constraints are common, since objects only offer adding member routines consistently across translation units via inheritance. However, in \CFA users can extend objects with mutex routines that are only visible in certain translation unit. This means that establishing a program-wide dense-ordering among mutex routines can only be done in the program linking phase, and still could have issues when using dynamically shared objects.
    775773
    776774The alternative is to alter the implementation like this:
    777 
    778775\begin{center}
    779776{\resizebox{0.4\textwidth}{!}{\input{ext_monitor}}}
    780777\end{center}
    781 
    782 Here, the mutex routine called is associated with a thread on the entry queue while a list of acceptable routines is kept seperately. Generating a mask dynamically means that the storage for the mask information can vary between calls to \code{waitfor}, allowing for more flexibility and extensions. Storing an array of accepted function-pointers replaces the single instruction bitmask compare with dereferencing a pointer followed by a linear search. Furthermore, supporting nested external scheduling (e.g., listing \ref{lst:nest-ext}) may now require additional searches for the \code{waitfor} statement to check if a routine is already queued.
     778Here, the mutex routine called is associated with a thread on the entry queue while a list of acceptable routines is kept separate. Generating a mask dynamically means that the storage for the mask information can vary between calls to \code{waitfor}, allowing for more flexibility and extensions. Storing an array of accepted function pointers replaces the single instruction bitmask comparison with dereferencing a pointer followed by a linear search. Furthermore, supporting nested external scheduling (e.g., listing \ref{lst:nest-ext}) may now require additional searches for the \code{waitfor} statement to check if a routine is already queued.
    783779
    784780\begin{figure}
     
    797793\end{figure}
    798794
    799 Note that in the second picture, tasks need to always keep track of the monitors associated with mutex routines, and the routine mask needs to have both a function pointer and a set of monitors, as is be discussed in the next section. These details are omitted from the picture for the sake of simplicity.
    800 
    801 At this point, a decision must be made between flexibility and performance. Many design decisions in \CFA achieve both flexibility and performance, for example polymorphic routines add significant flexibility but inlining them means the optimizer can easily remove any runtime cost. Here however, the cost of flexibility cannot be trivially removed. In the end, the most flexible approach has been chosen since it allows users to write programs that would otherwise be  hard to write. This decision is based on the assumption that writing fast but inflexible locks is closer to a solved problems than writing locks that are as flexible as external scheduling in \CFA.
    802 
    803 % ======================================================================
    804 % ======================================================================
    805 \subsection{Multi-monitor scheduling}
    806 % ======================================================================
    807 % ======================================================================
    808 
    809 External scheduling, like internal scheduling, becomes significantly more complex when introducing multi-monitor syntax. Even in the simplest possible case, some new semantics need to be established:
     795Note that in the second picture, tasks need to always keep track of the monitors associated with mutex routines, and the routine mask needs to have both a function pointer and a set of monitors, as is discussed in the next section. These details are omitted from the picture for the sake of simplicity.
     796
     797At this point, a decision must be made between flexibility and performance. Many design decisions in \CFA achieve both flexibility and performance, for example polymorphic routines add significant flexibility but inlining them means the optimizer can easily remove any runtime cost. Here, however, the cost of flexibility cannot be trivially removed. In the end, the most flexible approach has been chosen since it allows users to write programs that would otherwise be  hard to write. This decision is based on the assumption that writing fast but inflexible locks is closer to a solved problem than writing locks that are as flexible as external scheduling in \CFA.
     798
     799% ======================================================================
     800% ======================================================================
     801\subsection{Multi-Monitor Scheduling}
     802% ======================================================================
     803% ======================================================================
     804
     805External scheduling, like internal scheduling, becomes significantly more complex when introducing multi-monitor syntax. Even in the simplest possible case, some new semantics needs to be established:
    810806\begin{cfacode}
    811807monitor M {};
     
    837833
    838834void g(M & mutex a, M & mutex b) {
    839         //wait for call to f with argument a and b
     835        //wait for call to f with arguments a and b
    840836        waitfor(f, a, b);
    841837}
     
    870866% ======================================================================
    871867% ======================================================================
    872 \subsection{\code{waitfor} semantics}
    873 % ======================================================================
    874 % ======================================================================
    875 
    876 Syntactically, the \code{waitfor} statement takes a function identifier and a set of monitors. While the set of monitors can be any list of expression, the function name is more restricted because the compiler validates at compile time the validity of the function type and the parameters used with the \code{waitfor} statement. It checks that the set of monitors passed in matches the requirements for a function call. Listing \ref{lst:waitfor} shows various usage of the waitfor statement and which are acceptable. The choice of the function type is made ignoring any non-\code{mutex} parameter. One limitation of the current implementation is that it does not handle overloading but overloading is possible.
     868\subsection{\code{waitfor} Semantics}
     869% ======================================================================
     870% ======================================================================
     871
     872Syntactically, the \code{waitfor} statement takes a function identifier and a set of monitors. While the set of monitors can be any list of expressions, the function name is more restricted because the compiler validates at compile time the validity of the function type and the parameters used with the \code{waitfor} statement. It checks that the set of monitors passed in matches the requirements for a function call. Listing \ref{lst:waitfor} shows various usages of the waitfor statement and which are acceptable. The choice of the function type is made ignoring any non-\code{mutex} parameter. One limitation of the current implementation is that it does not handle overloading but overloading is possible.
    877873\begin{figure}
    878874\begin{cfacode}[caption={Various correct and incorrect uses of the waitfor statement},label={lst:waitfor}]
     
    908904\end{figure}
    909905
    910 Finally, for added flexibility, \CFA supports constructing a complex \code{waitfor} statement using the \code{or}, \code{timeout} and \code{else}. Indeed, multiple \code{waitfor} clauses can be chained together using \code{or}; this chain forms a single statement that uses baton-pass to any one function that fits one of the function+monitor set passed in. To enable users to tell which accepted function executed, \code{waitfor}s are followed by a statement (including the null statement \code{;}) or a compound statement, which is executed after the clause is triggered. A \code{waitfor} chain can also be followed by a \code{timeout}, to signify an upper bound on the wait, or an \code{else}, to signify that the call should be non-blocking, which checks for a matching function call already arrived and otherwise continues. Any and all of these clauses can be preceded by a \code{when} condition to dynamically toggle the accept clauses on or off based on some current state. Listing \ref{lst:waitfor2}, demonstrates several complex masks and some incorrect ones.
     906Finally, for added flexibility, \CFA supports constructing a complex \code{waitfor} statement using the \code{or}, \code{timeout} and \code{else}. Indeed, multiple \code{waitfor} clauses can be chained together using \code{or}; this chain forms a single statement that uses baton pass to any function that fits one of the function+monitor set passed in. To enable users to tell which accepted function executed, \code{waitfor}s are followed by a statement (including the null statement \code{;}) or a compound statement, which is executed after the clause is triggered. A \code{waitfor} chain can also be followed by a \code{timeout}, to signify an upper bound on the wait, or an \code{else}, to signify that the call should be non-blocking, which checks for a matching function call already arrived and otherwise continues. Any and all of these clauses can be preceded by a \code{when} condition to dynamically toggle the accept clauses on or off based on some current state. Listing \ref{lst:waitfor2}, demonstrates several complex masks and some incorrect ones.
    911907
    912908\begin{figure}
     
    973969% ======================================================================
    974970% ======================================================================
    975 \subsection{Waiting for the destructor}
    976 % ======================================================================
    977 % ======================================================================
    978 An interesting use for the \code{waitfor} statement is destructor semantics. Indeed, the \code{waitfor} statement can accept any \code{mutex} routine, which includes the destructor (see section \ref{data}). However, with the semantics discussed until now, waiting for the destructor does not make any sense since using an object after its destructor is called is undefined behaviour. The simplest approach is to disallow \code{waitfor} on a destructor. However, a more expressive approach is to flip execution ordering when waiting for the destructor, meaning that waiting for the destructor allows the destructor to run after the current \code{mutex} routine, similarly to how a condition is signalled.
     971\subsection{Waiting For The Destructor}
     972% ======================================================================
     973% ======================================================================
     974An interesting use for the \code{waitfor} statement is destructor semantics. Indeed, the \code{waitfor} statement can accept any \code{mutex} routine, which includes the destructor (see section \ref{data}). However, with the semantics discussed until now, waiting for the destructor does not make any sense since using an object after its destructor is called is undefined behaviour. The simplest approach is to disallow \code{waitfor} on a destructor. However, a more expressive approach is to flip ordering of execution when waiting for the destructor, meaning that waiting for the destructor allows the destructor to run after the current \code{mutex} routine, similarly to how a condition is signalled.
    979975\begin{figure}
    980976\begin{cfacode}[caption={Example of an executor which executes action in series until the destructor is called.},label={lst:dtor-order}]
  • doc/proposals/concurrency/text/frontpgs.tex

    r9c35431 rc13e8dc8  
    8080\begin{center}\textbf{Abstract}\end{center}
    8181
    82 \CFA is a modern, non-object-oriented extension of the C programming language. This thesis serves as a definition and an implementation for the concurrency and parallelism \CFA offers. These features are created from scratch due to the lack of concurrency in ISO C. Monitors are introduced as a high-level tool for control-flow based concurrency. In addition, lightweight threads are also introduced into the language. Specifically, the contribution of this thesis is two-fold: it extends the existing semantics of monitors introduce by~\cite{Hoare74} to handle monitors in groups and also details the engineering effort needed to introduce these features as core language features. Indeed, these features are added in respect with expectations of C programmers and are backwards compatible as much as possible.
     82\CFA is a modern, non-object-oriented extension of the C programming language. This thesis serves as a definition and an implementation for the concurrency and parallelism \CFA offers. These features are created from scratch due to the lack of concurrency in ISO C. Lightweight threads are introduced into the language. In addition, monitors are introduced as a high-level tool for control-flow based synchronization and mutual-exclusion. The main contributions of this thesis are two-fold: it extends the existing semantics of monitors introduce by~\cite{Hoare74} to handle monitors in groups and also details the engineering effort needed to introduce these features as core language features. Indeed, these features are added with respect to expectations of C programmers, and integrate with the \CFA type-system and other language features.
    8383
    8484
     
    9595I would like to thank Professors Martin Karsten and Gregor Richards, for reading my thesis and providing helpful feedback.
    9696
    97 Thanks to Aaron Moss, Rob Schluntz and Andrew Beach for their work on the \CFA project as well as all the discussions which have help me concretize the ideas in this thesis.
     97Thanks to Aaron Moss, Rob Schluntz and Andrew Beach for their work on the \CFA project as well as all the discussions which have helped me concretize the ideas in this thesis.
    9898
    99 Finally, I acknowledge that this as been possible thanks to the financial help offered by the David R. Cheriton School of Computer Science and the corperate partnership with Huawei Ltd.
     99Finally, I acknowledge that this has been possible thanks to the financial help offered by the David R. Cheriton School of Computer Science and the corporate partnership with Huawei Ltd.
    100100
    101101\cleardoublepage
  • doc/proposals/concurrency/text/future.tex

    r9c35431 rc13e8dc8  
    11
    22\chapter{Conclusion}
    3 As mentionned in the introduction, this thesis provides a minimal concurrency \acrshort{api} that is simple, efficient and usable as the basis for higher-level features. The approach presented is based on a lighweight thread system for parallelism which sits on top of clusters of processors. This M:N model is jugded to be both more efficient and allow more flexibility for users. Furthermore, this document introduces monitors as the main concurrency tool for users. This thesis also offers a novel approach which allows using multiple monitors at once without running into the Nested Monitor Problem~\cite{Lister77}. It also offers a full implmentation of the concurrency runtime wirtten enterily in \CFA, effectively the largest \CFA code base to date.
     3This thesis has achieved a minimal concurrency \acrshort{api} that is simple, efficient and usable as the basis for higher-level features. The approach presented is based on a lightweight thread-system for parallelism, which sits on top of clusters of processors. This M:N model is judged to be both more efficient and allow more flexibility for users. Furthermore, this document introduces monitors as the main concurrency tool for users. This thesis also offers a novel approach allowing multiple monitors to be accessed simultaneously without running into the Nested Monitor Problem~\cite{Lister77}. It also offers a full implementation of the concurrency runtime written entirely in \CFA, effectively the largest \CFA code base to date.
    44
    55
     
    1111
    1212\subsection{Performance} \label{futur:perf}
    13 This thesis presents a first implementation of the \CFA runtime. Therefore, there is still significant work to do to improve performance. Many of the data structures and algorithms will change in the future to more efficient versions. For example, \CFA the number of monitors in a single \gls{bulk-acq} is only bound by the stack size, this is probably unnecessarily generous. It may be possible that limiting the number help increase performance. However, it is not obvious that the benefit would be significant.
     13This thesis presents a first implementation of the \CFA runtime. Therefore, there is still significant work to improve performance. Many of the data structures and algorithms may change in the future to more efficient versions. For example, the number of monitors in a single \gls{bulk-acq} is only bound by the stack size, this is probably unnecessarily generous. It may be possible that limiting the number helps increase performance. However, it is not obvious that the benefit would be significant.
    1414
    1515\subsection{Flexible Scheduling} \label{futur:sched}
    16 An important part of concurrency is scheduling. Different scheduling algorithm can affect performance (both in terms of average and variation). However, no single scheduler is optimal for all workloads and therefore there is value in being able to change the scheduler for given programs. One solution is to offer various tweaking options to users, allowing the scheduler to be adjusted to the requirements of the workload. However, in order to be truly flexible, it would be interesting to allow users to add arbitrary data and arbitrary scheduling algorithms to the scheduler. For example, a web server could attach Type-of-Service information to threads and have a ``ToS aware'' scheduling algorithm tailored to this specific web server. This path of flexible schedulers will be explored for \CFA.
     16An important part of concurrency is scheduling. Different scheduling algorithms can affect performance (both in terms of average and variation). However, no single scheduler is optimal for all workloads and therefore there is value in being able to change the scheduler for given programs. One solution is to offer various tweaking options to users, allowing the scheduler to be adjusted to the requirements of the workload. However, in order to be truly flexible, it would be interesting to allow users to add arbitrary data and arbitrary scheduling algorithms. For example, a web server could attach Type-of-Service information to threads and have a ``ToS aware'' scheduling algorithm tailored to this specific web server. This path of flexible schedulers will be explored for \CFA.
    1717
    1818\subsection{Non-Blocking IO} \label{futur:nbio}
    19 While most of the parallelism tools are aimed at data parallelism and control-flow parallelism, many modern workloads are not bound on computation but on IO operations, a common case being web-servers and XaaS (anything as a service). These type of workloads often require significant engineering around amortizing costs of blocking IO operations. At its core, Non-Blocking IO is a operating system level feature that allows queuing IO operations (e.g., network operations) and registering for notifications instead of waiting for requests to complete. In this context, the role of the language make Non-Blocking IO easily available and with low overhead. The current trend is to use asynchronous programming using tools like callbacks and/or futures and promises, which can be seen in frameworks like Node.js~\cite{NodeJs} for JavaScript, Spring MVC~\cite{SpringMVC} for Java and Django~\cite{Django} for Python. However, while these are valid solutions, they lead to code that is harder to read and maintain because it is much less linear.
     19While most of the parallelism tools are aimed at data parallelism and control-flow parallelism, many modern workloads are not bound on computation but on IO operations, a common case being web servers and XaaS (anything as a service). These types of workloads often require significant engineering around amortizing costs of blocking IO operations. At its core, Non-Blocking IO is an operating system level feature that allows queuing IO operations (e.g., network operations) and registering for notifications instead of waiting for requests to complete. In this context, the role of the language makes Non-Blocking IO easily available and with low overhead. The current trend is to use asynchronous programming using tools like callbacks and/or futures and promises, which can be seen in frameworks like Node.js~\cite{NodeJs} for JavaScript, Spring MVC~\cite{SpringMVC} for Java and Django~\cite{Django} for Python. However, while these are valid solutions, they lead to code that is harder to read and maintain because it is much less linear.
    2020
    21 \subsection{Other concurrency tools} \label{futur:tools}
    22 While monitors offer a flexible and powerful concurrent core for \CFA, other concurrency tools are also necessary for a complete multi-paradigm concurrency package. Example of such tools can include simple locks and condition variables, futures and promises~\cite{promises}, executors and actors. These additional features are useful when monitors offer a level of abstraction that is inadequate for certain tasks.
     21\subsection{Other Concurrency Tools} \label{futur:tools}
     22While monitors offer a flexible and powerful concurrent core for \CFA, other concurrency tools are also necessary for a complete multi-paradigm concurrency package. Examples of such tools can include simple locks and condition variables, futures and promises~\cite{promises}, executors and actors. These additional features are useful when monitors offer a level of abstraction that is inadequate for certain tasks.
    2323
    24 \subsection{Implicit threading} \label{futur:implcit}
    25 Simpler applications can benefit greatly from having implicit parallelism. That is, parallelism that does not rely on the user to write concurrency. This type of parallelism can be achieved both at the language level and at the library level. The canonical example of implicit parallelism is parallel for loops, which are the simplest example of a divide and conquer algorithm~\cite{uC++book}. Table \ref{lst:parfor} shows three different code examples that accomplish point-wise sums of large arrays. Note that none of these examples explicitly declare any concurrency or parallelism objects.
     24\subsection{Implicit Threading} \label{futur:implcit}
     25Simpler applications can benefit greatly from having implicit parallelism. That is, parallelism that does not rely on the user to write concurrency. This type of parallelism can be achieved both at the language level and at the library level. The canonical example of implicit parallelism is parallel for loops, which are the simplest example of a divide and conquer algorithms~\cite{uC++book}. Table \ref{lst:parfor} shows three different code examples that accomplish point-wise sums of large arrays. Note that none of these examples explicitly declare any concurrency or parallelism objects.
    2626
    2727\begin{table}
     
    108108\end{table}
    109109
    110 Implicit parallelism is a restrictive solution and therefore has its limitations. However, it is a quick and simple approach to parallelism, which may very well be sufficient for smaller applications and reduces the amount of boiler-plate needed to start benefiting from parallelism in modern CPUs.
     110Implicit parallelism is a restrictive solution and therefore has its limitations. However, it is a quick and simple approach to parallelism, which may very well be sufficient for smaller applications and reduces the amount of boilerplate needed to start benefiting from parallelism in modern CPUs.
    111111
    112112
  • doc/proposals/concurrency/text/internals.tex

    r9c35431 rc13e8dc8  
    11
    2 \chapter{Behind the scene}
    3 There are several challenges specific to \CFA when implementing concurrency. These challenges are a direct result of \gls{bulk-acq} and loose object-definitions. These two constraints are the root cause of most design decisions in the implementation. Furthermore, to avoid contention from dynamically allocating memory in a concurrent environment, the internal-scheduling design is (almost) entirely free of mallocs. This approach avoids the chicken and egg problem~\cite{Chicken} of having a memory allocator that relies on the threading system and a threading system that relies on the runtime. This extra goal means that memory management is a constant concern in the design of the system.
    4 
    5 The main memory concern for concurrency is queues. All blocking operations are made by parking threads onto queues and all queues are designed with intrusive nodes, where each not has pre-allocated link fields for chaining, to avoid the need for memory allocation. Since several concurrency operations can use an unbound amount of memory (depending on \gls{bulk-acq}), statically defining information in the intrusive fields of threads is insufficient.The only way to use a variable amount of memory without requiring memory allocation is to pre-allocate large buffers of memory eagerly and store the information in these buffers. Conveniently, the callstack fits that description and is easy to use, which is why it is used heavily in the implementation of internal scheduling, particularly variable-length arrays. Since stack allocation is based around scope, the first step of the implementation is to identify the scopes that are available to store the information, and which of these can have a variable-length array. The threads and the condition both have a fixed amount of memory, while mutex-routines and the actual blocking call allow for an unbound amount, within the stack size.
     2\chapter{Behind the Scenes}
     3There are several challenges specific to \CFA when implementing concurrency. These challenges are a direct result of \gls{bulk-acq} and loose object definitions. These two constraints are the root cause of most design decisions in the implementation. Furthermore, to avoid contention from dynamically allocating memory in a concurrent environment, the internal-scheduling design is (almost) entirely free of mallocs. This approach avoids the chicken and egg problem~\cite{Chicken} of having a memory allocator that relies on the threading system and a threading system that relies on the runtime. This extra goal means that memory management is a constant concern in the design of the system.
     4
     5The main memory concern for concurrency is queues. All blocking operations are made by parking threads onto queues and all queues are designed with intrusive nodes, where each node has pre-allocated link fields for chaining, to avoid the need for memory allocation. Since several concurrency operations can use an unbound amount of memory (depending on \gls{bulk-acq}), statically defining information in the intrusive fields of threads is insufficient.The only way to use a variable amount of memory without requiring memory allocation is to pre-allocate large buffers of memory eagerly and store the information in these buffers. Conveniently, the call stack fits that description and is easy to use, which is why it is used heavily in the implementation of internal scheduling, particularly variable-length arrays. Since stack allocation is based on scopes, the first step of the implementation is to identify the scopes that are available to store the information, and which of these can have a variable-length array. The threads and the condition both have a fixed amount of memory, while mute routines and blocking calls allow for an unbound amount, within the stack size.
    66
    77Note that since the major contributions of this thesis are extending monitor semantics to \gls{bulk-acq} and loose object definitions, any challenges that are not resulting of these characteristics of \CFA are considered as solved problems and therefore not discussed.
     
    99% ======================================================================
    1010% ======================================================================
    11 \section{Mutex routines}
    12 % ======================================================================
    13 % ======================================================================
    14 
    15 The first step towards the monitor implementation is simple mutex-routines. In the single monitor case, mutual-exclusion is done using the entry/exit procedure in listing \ref{lst:entry1}. The entry/exit procedures do not have to be extended to support multiple monitors. Indeed it is sufficient to enter/leave monitors one-by-one as long as the order is correct to prevent deadlock~\cite{Havender68}. In \CFA, ordering of monitor acquisition relies on memory ordering. This approach is sufficient because all objects are guaranteed to have distinct non-overlapping memory layouts and mutual-exclusion for a monitor is only defined for its lifetime, meaning that destroying a monitor while it is acquired is Undefined Behavior. When a mutex call is made, the concerned monitors are aggregated into a variable-length pointer-array and sorted based on pointer values. This array persists for the entire duration of the mutual-exclusion and its ordering reused extensively.
     11\section{Mutex Routines}
     12% ======================================================================
     13% ======================================================================
     14
     15The first step towards the monitor implementation is simple mute routines. In the single monitor case, mutual-exclusion is done using the entry/exit procedure in listing \ref{lst:entry1}. The entry/exit procedures do not have to be extended to support multiple monitors. Indeed it is sufficient to enter/leave monitors one-by-one as long as the order is correct to prevent deadlock~\cite{Havender68}. In \CFA, ordering of monitor acquisition relies on memory ordering. This approach is sufficient because all objects are guaranteed to have distinct non-overlapping memory layouts and mutual-exclusion for a monitor is only defined for its lifetime, meaning that destroying a monitor while it is acquired is Undefined Behaviour. When a mutex call is made, the concerned monitors are aggregated into a variable-length pointer array and sorted based on pointer values. This array persists for the entire duration of the mutual-exclusion and its ordering reused extensively.
    1616\begin{figure}
    1717\begin{multicols}{2}
     
    109109\end{cfacode}
    110110
    111 Both entry-point and \gls{callsite-locking} are feasible implementations. The current \CFA implementations uses entry-point locking because it requires less work when using \gls{raii}, effectively transferring the burden of implementation to object construction/destruction. It is harder to use \gls{raii} for call-site locking, as it does not necessarily have an existing scope that matches exactly the scope of the mutual exclusion, i.e.: the function body. For example, the monitor call can appear in the middle of an expression. Furthermore, entry-point locking requires less code generation since any useful routine multiple times, but there is only one entry-point for many call-sites.
     111Both entry point and \gls{callsite-locking} are feasible implementations. The current \CFA implementation uses entry-point locking because it requires less work when using \gls{raii}, effectively transferring the burden of implementation to object construction/destruction. It is harder to use \gls{raii} for call-site locking, as it does not necessarily have an existing scope that matches exactly the scope of the mutual exclusion, i.e.: the function body. For example, the monitor call can appear in the middle of an expression. Furthermore, entry-point locking requires less code generation since any useful routine multiple times, but there is only one entry point for many call sites.
    112112
    113113% ======================================================================
     
    117117% ======================================================================
    118118
    119 Figure \ref{fig:system1} shows a high-level picture if the \CFA runtime system in regards to concurrency. Each component of the picture is explained in details in the flowing sections.
     119Figure \ref{fig:system1} shows a high-level picture if the \CFA runtime system in regards to concurrency. Each component of the picture is explained in detail in the flowing sections.
    120120
    121121\begin{figure}
     
    128128
    129129\subsection{Context Switching}
    130 As mentioned in section \ref{coroutine}, coroutines are a stepping stone for implementing threading, because they share the same mechanism for context-switching between different stacks. To improve performance and simplicity, context-switching is implemented using the following assumption: all context-switches happen inside a specific function call. This assumption means that the context-switch only has to copy the callee-saved registers onto the stack and then switch the stack registers with the ones of the target coroutine/thread. Note that the instruction pointer can be left untouched since the context-switch is always inside the same function. Threads however do not context-switch between each other directly. They context-switch to the scheduler. This method is called a 2-step context-switch and has the advantage of having a clear distinction between user code and the kernel where scheduling and other system operation happen. Obviously, this doubles the context-switch cost because threads must context-switch to an intermediate stack. The alternative 1-step context-switch uses the stack of the ``from'' thread to schedule and then context-switches directly to the ``to'' thread. However, the performance of the 2-step context-switch is still superior to a \code{pthread_yield} (see section \ref{results}). Additionally, for users in need for optimal performance, it is important to note that having a 2-step context-switch as the default does not prevent \CFA from offering a 1-step context-switch (akin to the Microsoft \code{SwitchToFiber}~\cite{switchToWindows} routine). This option is not currently present in \CFA but the changes required to add it are strictly additive.
     130As mentioned in section \ref{coroutine}, coroutines are a stepping stone for implementing threading, because they share the same mechanism for context-switching between different stacks. To improve performance and simplicity, context-switching is implemented using the following assumption: all context-switches happen inside a specific function call. This assumption means that the context-switch only has to copy the callee-saved registers onto the stack and then switch the stack registers with the ones of the target coroutine/thread. Note that the instruction pointer can be left untouched since the context-switch is always inside the same function. Threads, however, do not context-switch between each other directly. They context-switch to the scheduler. This method is called a 2-step context-switch and has the advantage of having a clear distinction between user code and the kernel where scheduling and other system operations happen. Obviously, this doubles the context-switch cost because threads must context-switch to an intermediate stack. The alternative 1-step context-switch uses the stack of the ``from'' thread to schedule and then context-switches directly to the ``to'' thread. However, the performance of the 2-step context-switch is still superior to a \code{pthread_yield} (see section \ref{results}). Additionally, for users in need for optimal performance, it is important to note that having a 2-step context-switch as the default does not prevent \CFA from offering a 1-step context-switch (akin to the Microsoft \code{SwitchToFiber}~\cite{switchToWindows} routine). This option is not currently present in \CFA but the changes required to add it are strictly additive.
    131131
    132132\subsection{Processors}
    133 Parallelism in \CFA is built around using processors to specify how much parallelism is desired. \CFA processors are object wrappers around kernel threads, specifically pthreads in the current implementation of \CFA. Indeed, any parallelism must go through operating-system libraries. However, \glspl{uthread} are still the main source of concurrency, processors are simply the underlying source of parallelism. Indeed, processor \glspl{kthread} simply fetch a \gls{uthread} from the scheduler and run it; they are effectively executers for user-threads. The main benefit of this approach is that it offers a well defined boundary between kernel code and user code, for example, kernel thread quiescing, scheduling and interrupt handling. Processors internally use coroutines to take advantage of the existing context-switching semantics.
    134 
    135 \subsection{Stack management}
    136 One of the challenges of this system is to reduce the footprint as much as possible. Specifically, all pthreads created also have a stack created with them, which should be used as much as possible. Normally, coroutines also create there own stack to run on, however, in the case of the coroutines used for processors, these coroutines run directly on the \gls{kthread} stack, effectively stealing the processor stack. The exception to this rule is the Main Processor, i.e. the initial \gls{kthread} that is given to any program. In order to respect C user-expectations, the stack of the initial kernel thread, the main stack of the program, is used by the main user thread rather than the main processor, which can grow very large
     133Parallelism in \CFA is built around using processors to specify how much parallelism is desired. \CFA processors are object wrappers around kernel threads, specifically pthreads in the current implementation of \CFA. Indeed, any parallelism must go through operating-system libraries. However, \glspl{uthread} are still the main source of concurrency, processors are simply the underlying source of parallelism. Indeed, processor \glspl{kthread} simply fetch a \gls{uthread} from the scheduler and run it; they are effectively executers for user-threads. The main benefit of this approach is that it offers a well-defined boundary between kernel code and user code, for example, kernel thread quiescing, scheduling and interrupt handling. Processors internally use coroutines to take advantage of the existing context-switching semantics.
     134
     135\subsection{Stack Management}
     136One of the challenges of this system is to reduce the footprint as much as possible. Specifically, all pthreads created also have a stack created with them, which should be used as much as possible. Normally, coroutines also create there own stack to run on, however, in the case of the coroutines used for processors, these coroutines run directly on the \gls{kthread} stack, effectively stealing the processor stack. The exception to this rule is the Main Processor, i.e. the initial \gls{kthread} that is given to any program. In order to respect C user expectations, the stack of the initial kernel thread, the main stack of the program, is used by the main user thread rather than the main processor, which can grow very large.
    137137
    138138\subsection{Preemption} \label{preemption}
    139 Finally, an important aspect for any complete threading system is preemption. As mentioned in chapter \ref{basics}, preemption introduces an extra degree of uncertainty, which enables users to have multiple threads interleave transparently, rather than having to cooperate among threads for proper scheduling and CPU distribution. Indeed, preemption is desirable because it adds a degree of isolation among threads. In a fully cooperative system, any thread that runs a long loop can starve other threads, while in a preemptive system, starvation can still occur but it does not rely on every thread having to yield or block on a regular basis, which reduces significantly a programmer burden. Obviously, preemption is not optimal for every workload, however any preemptive system can become a cooperative system by making the time-slices extremely large. Therefore, \CFA uses a preemptive threading system.
     139Finally, an important aspect for any complete threading system is preemption. As mentioned in chapter \ref{basics}, preemption introduces an extra degree of uncertainty, which enables users to have multiple threads interleave transparently, rather than having to cooperate among threads for proper scheduling and CPU distribution. Indeed, preemption is desirable because it adds a degree of isolation among threads. In a fully cooperative system, any thread that runs a long loop can starve other threads, while in a preemptive system, starvation can still occur but it does not rely on every thread having to yield or block on a regular basis, which reduces significantly a programmer burden. Obviously, preemption is not optimal for every workload. However any preemptive system can become a cooperative system by making the time slices extremely large. Therefore, \CFA uses a preemptive threading system.
    140140
    141141Preemption in \CFA is based on kernel timers, which are used to run a discrete-event simulation. Every processor keeps track of the current time and registers an expiration time with the preemption system. When the preemption system receives a change in preemption, it inserts the time in a sorted order and sets a kernel timer for the closest one, effectively stepping through preemption events on each signal sent by the timer. These timers use the Linux signal {\tt SIGALRM}, which is delivered to the process rather than the kernel-thread. This results in an implementation problem, because when delivering signals to a process, the kernel can deliver the signal to any kernel thread for which the signal is not blocked, i.e. :
     
    146146For the sake of simplicity and in order to prevent the case of having two threads receiving alarms simultaneously, \CFA programs block the {\tt SIGALRM} signal on every kernel thread except one. Now because of how involuntary context-switches are handled, the kernel thread handling {\tt SIGALRM} cannot also be a processor thread.
    147147
    148 Involuntary context-switching is done by sending signal {\tt SIGUSER1} to the corresponding proces\-sor and having the thread yield from inside the signal handler. This approach effectively context-switches away from the signal-handler back to the kernel and the signal-handler frame is eventually unwound when the thread is scheduled again. As a result, a signal-handler can start on one kernel thread and terminate on a second kernel thread (but the same user thread). It is important to note that signal-handlers save and restore signal masks because user-thread migration can cause a signal mask to migrate from one kernel thread to another. This behaviour is only a problem if all kernel threads, among which a user thread can migrate, differ in terms of signal masks\footnote{Sadly, official POSIX documentation is silent on what distinguishes ``async-signal-safe'' functions from other functions.}. However, since the kernel thread handling preemption requires a different signal mask, executing user threads on the kernel-alarm thread can cause deadlocks. For this reason, the alarm thread is in a tight loop around a system call to \code{sigwaitinfo}, requiring very little CPU time for preemption. One final detail about the alarm thread is how to wake it when additional communication is required (e.g., on thread termination). This unblocking is also done using {\tt SIGALRM}, but sent through the \code{pthread_sigqueue}. Indeed, \code{sigwait} can differentiate signals sent from \code{pthread_sigqueue} from signals sent from alarms or the kernel.
     148Involuntary context-switching is done by sending signal {\tt SIGUSER1} to the corresponding proces\-sor and having the thread yield from inside the signal handler. This approach effectively context-switches away from the signal handler back to the kernel and the signal-handler frame is eventually unwound when the thread is scheduled again. As a result, a signal-handler can start on one kernel thread and terminate on a second kernel thread (but the same user thread). It is important to note that signal-handlers save and restore signal masks because user-thread migration can cause a signal mask to migrate from one kernel thread to another. This behaviour is only a problem if all kernel threads, among which a user thread can migrate, differ in terms of signal masks\footnote{Sadly, official POSIX documentation is silent on what distinguishes ``async-signal-safe'' functions from other functions.}. However, since the kernel thread handling preemption requires a different signal mask, executing user threads on the kernel-alarm thread can cause deadlocks. For this reason, the alarm thread is in a tight loop around a system call to \code{sigwaitinfo}, requiring very little CPU time for preemption. One final detail about the alarm thread is how to wake it when additional communication is required (e.g., on thread termination). This unblocking is also done using {\tt SIGALRM}, but sent through the \code{pthread_sigqueue}. Indeed, \code{sigwait} can differentiate signals sent from \code{pthread_sigqueue} from signals sent from alarms or the kernel.
    149149
    150150\subsection{Scheduler}
     
    153153% ======================================================================
    154154% ======================================================================
    155 \section{Internal scheduling} \label{impl:intsched}
     155\section{Internal Scheduling} \label{impl:intsched}
    156156% ======================================================================
    157157% ======================================================================
     
    165165\end{figure}
    166166
    167 This picture has several components, the two most important being the entry-queue and the AS-stack. The entry-queue is an (almost) FIFO list where threads waiting to enter are parked, while the acceptor-signaler (AS) stack is a FILO list used for threads that have been signalled or otherwise marked as running next.
     167This picture has several components, the two most important being the entry queue and the AS-stack. The entry queue is an (almost) FIFO list where threads waiting to enter are parked, while the acceptor/signaller (AS) stack is a FILO list used for threads that have been signalled or otherwise marked as running next.
    168168
    169169For \CFA, this picture does not have support for blocking multiple monitors on a single condition. To support \gls{bulk-acq} two changes to this picture are required. First, it is no longer helpful to attach the condition to \emph{a single} monitor. Secondly, the thread waiting on the condition has to be separated across multiple monitors, seen in figure \ref{fig:monitor_cfa}.
     
    173173{\resizebox{0.8\textwidth}{!}{\input{int_monitor}}}
    174174\end{center}
    175 \caption{Illustration of \CFA monitor}
     175\caption{Illustration of \CFA Monitor}
    176176\label{fig:monitor_cfa}
    177177\end{figure}
    178178
    179 This picture and the proper entry and leave algorithms (see listing \ref{lst:entry2}) is the fundamental implementation of internal scheduling. Note that when a thread is moved from the condition to the AS-stack, it is conceptually split the thread into N pieces, where N is the number of monitors specified in the parameter list. The thread is woken up when all the pieces have popped from the AS-stacks and made active. In this picture, the threads are split into halves but this is only because there are two monitors. For a specific signaling operation every monitor needs a piece of thread on its AS-stack.
     179This picture and the proper entry and leave algorithms (see listing \ref{lst:entry2}) is the fundamental implementation of internal scheduling. Note that when a thread is moved from the condition to the AS-stack, it is conceptually split the thread into N pieces, where N is the number of monitors specified in the parameter list. The thread is woken up when all the pieces have popped from the AS-stacks and made active. In this picture, the threads are split into halves but this is only because there are two monitors. For a specific signalling operation every monitor needs a piece of thread on its AS-stack.
    180180
    181181\begin{figure}[b]
     
    210210\end{figure}
    211211
    212 Some important things to notice about the exit routine. The solution discussed in \ref{intsched} can be seen in the exit routine of listing \ref{lst:entry2}. Basically, the solution boils down to having a separate data structure for the condition queue and the AS-stack, and unconditionally transferring ownership of the monitors but only unblocking the thread when the last monitor has transferred ownership. This solution is deadlock safe as well as preventing any potential barging. The data structure used for the AS-stack are reused extensively for external scheduling, but in the case of internal scheduling, the data is allocated using variable-length arrays on the call-stack of the \code{wait} and \code{signal_block} routines.
     212Some important things to notice about the exit routine. The solution discussed in \ref{intsched} can be seen in the exit routine of listing \ref{lst:entry2}. Basically, the solution boils down to having a separate data structure for the condition queue and the AS-stack, and unconditionally transferring ownership of the monitors but only unblocking the thread when the last monitor has transferred ownership. This solution is deadlock safe as well as preventing any potential barging. The data structures used for the AS-stack are reused extensively for external scheduling, but in the case of internal scheduling, the data is allocated using variable-length arrays on the call stack of the \code{wait} and \code{signal_block} routines.
    213213
    214214\begin{figure}[H]
     
    220220\end{figure}
    221221
    222 Figure \ref{fig:structs} shows a high-level representation of these data-structures. The main idea behind them is that, a thread cannot contain an arbitrary number of intrusive stacks for linking onto monitor. The \code{condition node} is the data structure that is queued onto a condition variable and, when signaled, the condition queue is popped and each \code{condition criterion} are moved to the AS-stack. Once all the criterion have be popped from their respective AS-stacks, the thread is woken-up, which is what is shown in listing \ref{lst:entry2}.
    223 
    224 % ======================================================================
    225 % ======================================================================
    226 \section{External scheduling}
     222Figure \ref{fig:structs} shows a high-level representation of these data structures. The main idea behind them is that, a thread cannot contain an arbitrary number of intrusive stacks for linking onto monitor. The \code{condition node} is the data structure that is queued onto a condition variable and, when signalled, the condition queue is popped and each \code{condition criterion} is moved to the AS-stack. Once all the criteria have been popped from their respective AS-stacks, the thread is woken up, which is what is shown in listing \ref{lst:entry2}.
     223
     224% ======================================================================
     225% ======================================================================
     226\section{External Scheduling}
    227227% ======================================================================
    228228% ======================================================================
     
    232232\begin{itemize}
    233233        \item The queue of the monitor with the lowest address is no longer a true FIFO queue because threads can be moved to the front of the queue. These queues need to contain a set of monitors for each of the waiting threads. Therefore, another thread whose set contains the same lowest address monitor but different lower priority monitors may arrive first but enter the critical section after a thread with the correct pairing.
    234         \item The queue of the lowest priority monitor is both required and potentially unused. Indeed, since it is not known at compile time which monitor is the monitor with have the lowest address, every monitor needs to have the correct queues even though it is possible that some queues go unused for the entire duration of the program, for example if a monitor is only used in a specific pair.
     234        \item The queue of the lowest priority monitor is both required and potentially unused. Indeed, since it is not known at compile time which monitor is the monitor which has the lowest address, every monitor needs to have the correct queues even though it is possible that some queues go unused for the entire duration of the program, for example if a monitor is only used in a specific pair.
    235235\end{itemize}
    236236Therefore, the following modifications need to be made to support external scheduling :
     
    241241\end{itemize}
    242242
    243 \subsection{External scheduling - destructors}
    244 Finally, to support the ordering inversion of destructors, the code generation needs to be modified to use a special entry routine. This routine is needed because of the storage requirements of the call order inversion. Indeed, when waiting for the destructors, storage is need for the waiting context and the lifetime of said storage needs to outlive the waiting operation it is needed for. For regular \code{waitfor} statements, the call-stack of the routine itself matches this requirement but it is no longer the case when waiting for the destructor since it is pushed on to the AS-stack for later. The waitfor semantics can then be adjusted correspondingly, as seen in listing \ref{lst:entry-dtor}
     243\subsection{External Scheduling - Destructors}
     244Finally, to support the ordering inversion of destructors, the code generation needs to be modified to use a special entry routine. This routine is needed because of the storage requirements of the call order inversion. Indeed, when waiting for the destructors, storage is needed for the waiting context and the lifetime of said storage needs to outlive the waiting operation it is needed for. For regular \code{waitfor} statements, the call stack of the routine itself matches this requirement but it is no longer the case when waiting for the destructor since it is pushed on to the AS-stack for later. The waitfor semantics can then be adjusted correspondingly, as seen in listing \ref{lst:entry-dtor}
    245245
    246246\begin{figure}
     
    253253        continue
    254254elif matches waitfor mask
    255         push criterions to AS-stack
     255        push criteria to AS-stack
    256256        continue
    257257else
  • doc/proposals/concurrency/text/parallelism.tex

    r9c35431 rc13e8dc8  
    1010
    1111\section{Paradigms}
    12 \subsection{User-level threads}
    13 A direct improvement on the \gls{kthread} approach is to use \glspl{uthread}. These threads offer most of the same features that the operating system already provide but can be used on a much larger scale. This approach is the most powerful solution as it allows all the features of multi-threading, while removing several of the more expensive costs of kernel threads. The down side is that almost none of the low-level threading problems are hidden; users still have to think about data races, deadlocks and synchronization issues. These issues can be somewhat alleviated by a concurrency toolkit with strong guarantees but the parallelism toolkit offers very little to reduce complexity in itself.
     12\subsection{User-Level Threads}
     13A direct improvement on the \gls{kthread} approach is to use \glspl{uthread}. These threads offer most of the same features that the operating system already provides but can be used on a much larger scale. This approach is the most powerful solution as it allows all the features of multithreading, while removing several of the more expensive costs of kernel threads. The downside is that almost none of the low-level threading problems are hidden; users still have to think about data races, deadlocks and synchronization issues. These issues can be somewhat alleviated by a concurrency toolkit with strong guarantees but the parallelism toolkit offers very little to reduce complexity in itself.
    1414
    1515Examples of languages that support \glspl{uthread} are Erlang~\cite{Erlang} and \uC~\cite{uC++book}.
    1616
    17 \subsection{Fibers : user-level threads without preemption} \label{fibers}
    18 A popular variant of \glspl{uthread} is what is often referred to as \glspl{fiber}. However, \glspl{fiber} do not present meaningful semantical differences with \glspl{uthread}. The significant difference between \glspl{uthread} and \glspl{fiber} is the lack of \gls{preemption} in the latter. Advocates of \glspl{fiber} list their high performance and ease of implementation as majors strengths but the performance difference between \glspl{uthread} and \glspl{fiber} is controversial, and the ease of implementation, while true, is a weak argument in the context of language design. Therefore this proposal largely ignores fibers.
     17\subsection{Fibers : User-Level Threads Without Preemption} \label{fibers}
     18A popular variant of \glspl{uthread} is what is often referred to as \glspl{fiber}. However, \glspl{fiber} do not present meaningful semantic differences with \glspl{uthread}. The significant difference between \glspl{uthread} and \glspl{fiber} is the lack of \gls{preemption} in the latter. Advocates of \glspl{fiber} list their high performance and ease of implementation as major strengths but the performance difference between \glspl{uthread} and \glspl{fiber} is controversial, and the ease of implementation, while true, is a weak argument in the context of language design. Therefore this proposal largely ignores fibers.
    1919
    2020An example of a language that uses fibers is Go~\cite{Go}
    2121
    22 \subsection{Jobs and thread pools}
    23 An approach on the opposite end of the spectrum is to base parallelism on \glspl{pool}. Indeed, \glspl{pool} offer limited flexibility but at the benefit of a simpler user interface. In \gls{pool} based systems, users express parallelism as units of work, called jobs, and a dependency graph (either explicit or implicit) that tie them together. This approach means users need not worry about concurrency but significantly limit the interaction that can occur among jobs. Indeed, any \gls{job} that blocks also blocks the underlying worker, which effectively means the CPU utilization, and therefore throughput, suffers noticeably. It can be argued that a solution to this problem is to use more workers than available cores. However, unless the number of jobs and the number of workers are comparable, having a significant amount of blocked jobs always results in idles cores.
     22\subsection{Jobs and Thread Pools}
     23An approach on the opposite end of the spectrum is to base parallelism on \glspl{pool}. Indeed, \glspl{pool} offer limited flexibility but at the benefit of a simpler user interface. In \gls{pool} based systems, users express parallelism as units of work, called jobs, and a dependency graph (either explicit or implicit) that ties them together. This approach means users need not worry about concurrency but significantly limit the interaction that can occur among jobs. Indeed, any \gls{job} that blocks also block the underlying worker, which effectively means the CPU utilization, and therefore throughput, suffers noticeably. It can be argued that a solution to this problem is to use more workers than available cores. However, unless the number of jobs and the number of workers are comparable, having a significant number of blocked jobs always results in idles cores.
    2424
    2525The gold standard of this implementation is Intel's TBB library~\cite{TBB}.
    2626
    27 \subsection{Paradigm performance}
    28 While the choice between the three paradigms listed above may have significant performance implication, it is difficult to pin-down the performance implications of choosing a model at the language level. Indeed, in many situations one of these paradigms may show better performance but it all strongly depends on the workload. Having a large amount of mostly independent units of work to execute almost guarantees that the \gls{pool} based system has the best performance thanks to the lower memory overhead (i.e., no thread stack per job). However, interactions among jobs can easily exacerbate contention. User-level threads allow fine-grain context switching, which results in better resource utilization, but a context switch is more expensive and the extra control means users need to tweak more variables to get the desired performance. Finally, if the units of uninterrupted work are large enough the paradigm choice is largely amortized by the actual work done.
     27\subsection{Paradigm Performance}
     28While the choice between the three paradigms listed above may have significant performance implication, it is difficult to pin down the performance implications of choosing a model at the language level. Indeed, in many situations one of these paradigms may show better performance but it all strongly depends on the workload. Having a large amount of mostly independent units of work to execute almost guarantees that the \gls{pool}-based system has the best performance thanks to the lower memory overhead (i.e., no thread stack per job). However, interactions among jobs can easily exacerbate contention. User-level threads allow fine-grain context switching, which results in better resource utilization, but a context switch is more expensive and the extra control means users need to tweak more variables to get the desired performance. Finally, if the units of uninterrupted work are large enough the paradigm choice is largely amortized by the actual work done.
    2929
    3030\section{The \protect\CFA\ Kernel : Processors, Clusters and Threads}\label{kernel}
     
    3333\Glspl{cfacluster} have not been fully implemented in the context of this thesis, currently \CFA only supports one \gls{cfacluster}, the initial one.
    3434
    35 \subsection{Future Work: Machine setup}\label{machine}
     35\subsection{Future Work: Machine Setup}\label{machine}
    3636While this was not done in the context of this thesis, another important aspect of clusters is affinity. While many common desktop and laptop PCs have homogeneous CPUs, other devices often have more heterogeneous setups. For example, a system using \acrshort{numa} configurations may benefit from users being able to tie clusters and\/or kernel threads to certain CPU cores. OS support for CPU affinity is now common~\cite{affinityLinux, affinityWindows, affinityFreebsd, affinityNetbsd, affinityMacosx} which means it is both possible and desirable for \CFA to offer an abstraction mechanism for portable CPU affinity.
    3737
    3838\subsection{Paradigms}\label{cfaparadigms}
    39 Given these building blocks, it is possible to reproduce all three of the popular paradigms. Indeed, \glspl{uthread} is the default paradigm in \CFA. However, disabling \gls{preemption} on the \gls{cfacluster} means \glspl{cfathread} effectively become \glspl{fiber}. Since several \glspl{cfacluster} with different scheduling policy can coexist in the same application, this allows \glspl{fiber} and \glspl{uthread} to coexist in the runtime of an application. Finally, it is possible to build executors for thread pools from \glspl{uthread} or \glspl{fiber}, which includes specialize jobs like actors~\cite{Actors}.
     39Given these building blocks, it is possible to reproduce all three of the popular paradigms. Indeed, \glspl{uthread} is the default paradigm in \CFA. However, disabling \gls{preemption} on the \gls{cfacluster} means \glspl{cfathread} effectively become \glspl{fiber}. Since several \glspl{cfacluster} with different scheduling policy can coexist in the same application, this allows \glspl{fiber} and \glspl{uthread} to coexist in the runtime of an application. Finally, it is possible to build executors for thread pools from \glspl{uthread} or \glspl{fiber}, which includes specialized jobs like actors~\cite{Actors}.
  • doc/proposals/concurrency/text/results.tex

    r9c35431 rc13e8dc8  
    11% ======================================================================
    22% ======================================================================
    3 \chapter{Performance results} \label{results}
     3\chapter{Performance Results} \label{results}
    44% ======================================================================
    55% ======================================================================
    6 \section{Machine setup}
    7 Table \ref{tab:machine} shows the characteristics of the machine used to run the benchmarks. All tests where made on this machine.
     6\section{Machine Setup}
     7Table \ref{tab:machine} shows the characteristics of the machine used to run the benchmarks. All tests were made on this machine.
    88\begin{table}[H]
    99\begin{center}
     
    3737\end{table}
    3838
    39 \section{Micro benchmarks}
     39\section{Micro Benchmarks}
    4040All benchmarks are run using the same harness to produce the results, seen as the \code{BENCH()} macro in the following examples. This macro uses the following logic to benchmark the code :
    4141\begin{pseudo}
     
    4646        result = (after - before) / N;
    4747\end{pseudo}
    48 The method used to get time is \code{clock_gettime(CLOCK_THREAD_CPUTIME_ID);}. Each benchmark is using many iterations of a simple call to measure the cost of the call. The specific number of iteration depends on the specific benchmark.
    49 
    50 \subsection{Context-switching}
    51 The first interesting benchmark is to measure how long context-switches take. The simplest approach to do this is to yield on a thread, which executes a 2-step context switch. In order to make the comparison fair, coroutines also execute a 2-step context-switch (\gls{uthread} to \gls{kthread} then \gls{kthread} to \gls{uthread}), which is a resume/suspend cycle instead of a yield. Listing \ref{lst:ctx-switch} shows the code for coroutines and threads whith the results in table \ref{tab:ctx-switch}. All omitted tests are functionally identical to one of these tests.
     48The method used to get time is \code{clock_gettime(CLOCK_THREAD_CPUTIME_ID);}. Each benchmark is using many iterations of a simple call to measure the cost of the call. The specific number of iterations depends on the specific benchmark.
     49
     50\subsection{Context-Switching}
     51The first interesting benchmark is to measure how long context-switches take. The simplest approach to do this is to yield on a thread, which executes a 2-step context switch. In order to make the comparison fair, coroutines also execute a 2-step context-switch (\gls{uthread} to \gls{kthread} then \gls{kthread} to \gls{uthread}), which is a resume/suspend cycle instead of a yield. Listing \ref{lst:ctx-switch} shows the code for coroutines and threads with the results in table \ref{tab:ctx-switch}. All omitted tests are functionally identical to one of these tests.
    5252\begin{figure}
    5353\begin{multicols}{2}
     
    114114\end{table}
    115115
    116 \subsection{Mutual-exclusion}
    117 The next interesting benchmark is to measure the overhead to enter/leave a critical-section. For monitors, the simplest approach is to measure how long it takes to enter and leave a monitor routine. Listing \ref{lst:mutex} shows the code for \CFA. To put the results in context, the cost of entering a non-inline function and the cost of acquiring and releasing a pthread mutex lock are also measured. The results can be shown in table \ref{tab:mutex}.
     116\subsection{Mutual-Exclusion}
     117The next interesting benchmark is to measure the overhead to enter/leave a critical-section. For monitors, the simplest approach is to measure how long it takes to enter and leave a monitor routine. Listing \ref{lst:mutex} shows the code for \CFA. To put the results in context, the cost of entering a non-inline function and the cost of acquiring and releasing a pthread mutex lock is also measured. The results can be shown in table \ref{tab:mutex}.
    118118
    119119\begin{figure}
     
    156156\end{table}
    157157
    158 \subsection{Internal scheduling}
     158\subsection{Internal Scheduling}
    159159The internal-scheduling benchmark measures the cost of waiting on and signalling a condition variable. Listing \ref{lst:int-sched} shows the code for \CFA, with results table \ref{tab:int-sched}. As with all other benchmarks, all omitted tests are functionally identical to one of these tests.
    160160
     
    211211\end{table}
    212212
    213 \subsection{External scheduling}
     213\subsection{External Scheduling}
    214214The Internal scheduling benchmark measures the cost of the \code{waitfor} statement (\code{_Accept} in \uC). Listing \ref{lst:ext-sched} shows the code for \CFA, with results in table \ref{tab:ext-sched}. As with all other benchmarks, all omitted tests are functionally identical to one of these tests.
    215215
     
    264264\end{table}
    265265
    266 \subsection{Object creation}
    267 Finally, the last benchmark measurs the cost of creation for concurrent objects. Listing \ref{lst:creation} shows the code for pthreads and \CFA threads, with results shown in table \ref{tab:creation}. As with all other benchmarks, all omitted tests are functionally identical to one of these tests. The only note here is that the call-stacks of \CFA coroutines are lazily created, therefore without priming the coroutine, the creation cost is very low.
     266\subsection{Object Creation}
     267Finally, the last benchmark measures the cost of creation for concurrent objects. Listing \ref{lst:creation} shows the code for pthreads and \CFA threads, with results shown in table \ref{tab:creation}. As with all other benchmarks, all omitted tests are functionally identical to one of these tests. The only note here is that the call stacks of \CFA coroutines are lazily created, therefore without priming the coroutine, the creation cost is very low.
    268268
    269269\begin{figure}
     
    327327\end{tabular}
    328328\end{center}
    329 \caption{Creation comparison. All numbers are in nanoseconds(\si{\nano\second})}
     329\caption{Creation comparison. All numbers are in nanoseconds(\si{\nano\second}).}
    330330\label{tab:creation}
    331331\end{table}
  • doc/proposals/concurrency/text/together.tex

    r9c35431 rc13e8dc8  
    11% ======================================================================
    22% ======================================================================
    3 \chapter{Putting it all together}
     3\chapter{Putting It All Together}
    44% ======================================================================
    55% ======================================================================
    66
    77
    8 \section{Threads as monitors}
     8\section{Threads As Monitors}
    99As it was subtly alluded in section \ref{threads}, \code{thread}s in \CFA are in fact monitors, which means that all monitor features are available when using threads. For example, here is a very simple two thread pipeline that could be used for a simulator of a game engine :
    1010\begin{figure}[H]
  • doc/proposals/concurrency/version

    r9c35431 rc13e8dc8  
    1 0.11.280
     10.11.299
  • src/CodeGen/CodeGenerator.cc

    r9c35431 rc13e8dc8  
    10121012        }
    10131013
     1014        void CodeGenerator::postvisit( WithStmt * with ) {
     1015                if ( ! genC ) {
     1016                        output << "with ( ";
     1017                        genCommaList( with->exprs.begin(), with->exprs.end() );
     1018                        output << " ) ";
     1019                }
     1020                with->stmt->accept( *visitor );
     1021        }
    10141022
    10151023        void CodeGenerator::postvisit( WhileStmt * whileStmt ) {
  • src/CodeGen/CodeGenerator.h

    r9c35431 rc13e8dc8  
    102102                void postvisit( CatchStmt * );
    103103                void postvisit( WaitForStmt * );
     104                void postvisit( WithStmt * );
    104105                void postvisit( WhileStmt * );
    105106                void postvisit( ForStmt * );
  • src/CodeGen/FixNames.cc

    r9c35431 rc13e8dc8  
    1919#include <string>                  // for string, operator!=, operator==
    2020
     21#include "Common/PassVisitor.h"
    2122#include "Common/SemanticError.h"  // for SemanticError
    2223#include "FixMain.h"               // for FixMain
     
    3233
    3334namespace CodeGen {
    34         class FixNames : public Visitor {
     35        class FixNames : public WithGuards {
    3536          public:
    36                 virtual void visit( ObjectDecl *objectDecl );
    37                 virtual void visit( FunctionDecl *functionDecl );
     37                void postvisit( ObjectDecl *objectDecl );
     38                void postvisit( FunctionDecl *functionDecl );
    3839
    39                 virtual void visit( CompoundStmt *compoundStmt );
     40                void previsit( CompoundStmt *compoundStmt );
    4041          private:
    4142                int scopeLevel = 1;
     
    9394        }
    9495
    95         void fixNames( std::list< Declaration* > translationUnit ) {
    96                 FixNames fixer;
     96        void fixNames( std::list< Declaration* > & translationUnit ) {
     97                PassVisitor<FixNames> fixer;
    9798                acceptAll( translationUnit, fixer );
    9899        }
    99100
    100         void FixNames::fixDWT( DeclarationWithType *dwt ) {
     101        void FixNames::fixDWT( DeclarationWithType * dwt ) {
    101102                if ( dwt->get_name() != "" ) {
    102103                        if ( LinkageSpec::isMangled( dwt->get_linkage() ) ) {
     
    107108        }
    108109
    109         void FixNames::visit( ObjectDecl *objectDecl ) {
    110                 Visitor::visit( objectDecl );
     110        void FixNames::postvisit( ObjectDecl * objectDecl ) {
    111111                fixDWT( objectDecl );
    112112        }
    113113
    114         void FixNames::visit( FunctionDecl *functionDecl ) {
    115                 Visitor::visit( functionDecl );
     114        void FixNames::postvisit( FunctionDecl * functionDecl ) {
    116115                fixDWT( functionDecl );
    117116
     
    121120                                throw SemanticError("Main expected to have 0, 2 or 3 arguments\n", functionDecl);
    122121                        }
    123                         functionDecl->get_statements()->get_kids().push_back( new ReturnStmt( noLabels, new ConstantExpr( Constant::from_int( 0 ) ) ) );
     122                        functionDecl->get_statements()->get_kids().push_back( new ReturnStmt( new ConstantExpr( Constant::from_int( 0 ) ) ) );
    124123                        CodeGen::FixMain::registerMain( functionDecl );
    125124                }
    126125        }
    127126
    128         void FixNames::visit( CompoundStmt *compoundStmt ) {
     127        void FixNames::previsit( CompoundStmt * ) {
    129128                scopeLevel++;
    130                 Visitor::visit( compoundStmt );
    131                 scopeLevel--;
     129                GuardAction( [this](){ scopeLevel--; } );
    132130        }
    133131} // namespace CodeGen
  • src/CodeGen/FixNames.h

    r9c35431 rc13e8dc8  
    55// file "LICENCE" distributed with Cforall.
    66//
    7 // FixNames.h -- 
     7// FixNames.h --
    88//
    99// Author           : Richard C. Bilson
     
    2222namespace CodeGen {
    2323        /// mangles object and function names
    24         void fixNames( std::list< Declaration* > translationUnit );
     24        void fixNames( std::list< Declaration* > & translationUnit );
    2525} // namespace CodeGen
    2626
  • src/Common/PassVisitor.h

    r9c35431 rc13e8dc8  
    8181        virtual void visit( FinallyStmt * finallyStmt ) override final;
    8282        virtual void visit( WaitForStmt * waitforStmt ) override final;
     83        virtual void visit( WithStmt * withStmt ) override final;
    8384        virtual void visit( NullStmt * nullStmt ) override final;
    8485        virtual void visit( DeclStmt * declStmt ) override final;
     
    172173        virtual Statement * mutate( FinallyStmt * finallyStmt ) override final;
    173174        virtual Statement * mutate( WaitForStmt * waitforStmt ) override final;
     175        virtual Statement * mutate( WithStmt * withStmt ) override final;
    174176        virtual NullStmt * mutate( NullStmt * nullStmt ) override final;
    175177        virtual Statement * mutate( DeclStmt * declStmt ) override final;
     
    296298        void indexerAddUnionFwd ( UnionDecl           * node ) { indexer_impl_addUnionFwd ( pass, 0, node ); }
    297299        void indexerAddTrait    ( TraitDecl           * node ) { indexer_impl_addTrait    ( pass, 0, node ); }
     300        void indexerAddWith     ( WithStmt            * node ) { indexer_impl_addWith    ( pass, 0, node ); }
     301
    298302
    299303        template< typename TreeType, typename VisitorType >
  • src/Common/PassVisitor.impl.h

    r9c35431 rc13e8dc8  
    5555                it,
    5656                [](Declaration * decl) -> auto {
    57                         return new DeclStmt( noLabels, decl );
     57                        return new DeclStmt( decl );
    5858                }
    5959        );
     
    251251            || ( empty( beforeDecls ) && empty( afterDecls )) );
    252252
    253         CompoundStmt *compound = new CompoundStmt( noLabels );
     253        CompoundStmt *compound = new CompoundStmt();
    254254        if( !empty(beforeDecls) ) { splice( std::back_inserter( compound->get_kids() ), beforeDecls ); }
    255255        if( !empty(beforeStmts) ) { compound->get_kids().splice( compound->get_kids().end(), *beforeStmts ); }
     
    400400        {
    401401                auto guard = makeFuncGuard( [this]() { indexerScopeEnter(); }, [this]() { indexerScopeLeave(); } );
     402                // implicit add __func__ identifier as specified in the C manual 6.4.2.2
     403                static ObjectDecl func(
     404                        "__func__", noStorageClasses, LinkageSpec::C, nullptr,
     405                        new ArrayType( Type::Qualifiers(), new BasicType( Type::Qualifiers( Type::Const ), BasicType::Char ), nullptr, true, false ),
     406                        nullptr
     407                );
     408                indexerAddId( &func );
    402409                maybeAccept_impl( node->type, *this );
    403410                maybeAccept_impl( node->statements, *this );
     
    418425        {
    419426                auto guard = makeFuncGuard( [this]() { indexerScopeEnter(); }, [this]() { indexerScopeLeave(); } );
     427                // implicit add __func__ identifier as specified in the C manual 6.4.2.2
     428                static ObjectDecl func(
     429                        "__func__", noStorageClasses, LinkageSpec::C, nullptr,
     430                        new ArrayType( Type::Qualifiers(), new BasicType( Type::Qualifiers( Type::Const ), BasicType::Char ), nullptr, true, false ),
     431                        nullptr
     432                );
     433                indexerAddId( &func );
    420434                maybeMutate_impl( node->type, *this );
    421435                maybeMutate_impl( node->statements, *this );
     
    969983Statement * PassVisitor< pass_type >::mutate( WaitForStmt * node ) {
    970984        MUTATE_BODY( Statement, node );
     985}
     986
     987
     988
     989//--------------------------------------------------------------------------
     990// NullStmt
     991template< typename pass_type >
     992void PassVisitor< pass_type >::visit( WithStmt * node ) {
     993        VISIT_START( node );
     994        maybeAccept_impl( node->exprs, *this );
     995        {
     996                // catch statements introduce a level of scope (for the caught exception)
     997                auto guard = makeFuncGuard( [this]() { indexerScopeEnter(); }, [this]() { indexerScopeLeave(); } );
     998                indexerAddWith( node );
     999                maybeAccept_impl( node->stmt, *this );
     1000        }
     1001        VISIT_END( node );
     1002}
     1003
     1004template< typename pass_type >
     1005Statement * PassVisitor< pass_type >::mutate( WithStmt * node ) {
     1006        MUTATE_START( node );
     1007        maybeMutate_impl( node->exprs, *this );
     1008        {
     1009                // catch statements introduce a level of scope (for the caught exception)
     1010                auto guard = makeFuncGuard( [this]() { indexerScopeEnter(); }, [this]() { indexerScopeLeave(); } );
     1011                indexerAddWith( node );
     1012                maybeMutate_impl( node->stmt, *this );
     1013        }
     1014        MUTATE_END( Statement, node );
    9711015}
    9721016
  • src/Common/PassVisitor.proto.h

    r9c35431 rc13e8dc8  
    208208INDEXER_FUNC( addUnion  , UnionDecl *           );
    209209INDEXER_FUNC( addTrait  , TraitDecl *           );
     210INDEXER_FUNC( addWith   , WithStmt *            );
    210211
    211212
  • src/Concurrency/Keywords.cc

    r9c35431 rc13e8dc8  
    3838
    3939namespace Concurrency {
    40 
    41         namespace {
    42                 const std::list<Label> noLabels;
    43                 const std::list< Attribute * > noAttributes;
    44                 Type::StorageClasses noStorage;
    45                 Type::Qualifiers noQualifiers;
    46         }
    47 
    4840        //=============================================================================================
    4941        // Pass declarations
     
    296288                ObjectDecl * this_decl = new ObjectDecl(
    297289                        "this",
    298                         noStorage,
     290                        noStorageClasses,
    299291                        LinkageSpec::Cforall,
    300292                        nullptr,
     
    313305                        new ObjectDecl(
    314306                                "ret",
    315                                 noStorage,
     307                                noStorageClasses,
    316308                                LinkageSpec::Cforall,
    317309                                nullptr,
     
    346338                        main_decl = new FunctionDecl(
    347339                                "main",
    348                                 noStorage,
     340                                noStorageClasses,
    349341                                LinkageSpec::Cforall,
    350342                                main_type,
     
    363355                ObjectDecl * field = new ObjectDecl(
    364356                        field_name,
    365                         noStorage,
     357                        noStorageClasses,
    366358                        LinkageSpec::Cforall,
    367359                        nullptr,
     
    379371
    380372        void ConcurrentSueKeyword::addRoutines( ObjectDecl * field, FunctionDecl * func ) {
    381                 CompoundStmt * statement = new CompoundStmt( noLabels );
     373                CompoundStmt * statement = new CompoundStmt();
    382374                statement->push_back(
    383375                        new ReturnStmt(
    384                                 noLabels,
    385376                                new AddressExpr(
    386377                                        new MemberExpr(
     
    488479                ObjectDecl * monitors = new ObjectDecl(
    489480                        "__monitor",
    490                         noStorage,
     481                        noStorageClasses,
    491482                        LinkageSpec::Cforall,
    492483                        nullptr,
     
    509500                // monitor_guard_t __guard = { __monitors, #, func };
    510501                body->push_front(
    511                         new DeclStmt( noLabels, new ObjectDecl(
     502                        new DeclStmt( new ObjectDecl(
    512503                                "__guard",
    513                                 noStorage,
     504                                noStorageClasses,
    514505                                LinkageSpec::Cforall,
    515506                                nullptr,
     
    530521
    531522                //monitor_desc * __monitors[] = { get_monitor(a), get_monitor(b) };
    532                 body->push_front( new DeclStmt( noLabels, monitors) );
     523                body->push_front( new DeclStmt( monitors) );
    533524        }
    534525
     
    536527                ObjectDecl * monitors = new ObjectDecl(
    537528                        "__monitors",
    538                         noStorage,
     529                        noStorageClasses,
    539530                        LinkageSpec::Cforall,
    540531                        nullptr,
     
    569560                // monitor_guard_t __guard = { __monitors, #, func };
    570561                body->push_front(
    571                         new DeclStmt( noLabels, new ObjectDecl(
     562                        new DeclStmt( new ObjectDecl(
    572563                                "__guard",
    573                                 noStorage,
     564                                noStorageClasses,
    574565                                LinkageSpec::Cforall,
    575566                                nullptr,
     
    591582
    592583                //monitor_desc * __monitors[] = { get_monitor(a), get_monitor(b) };
    593                 body->push_front( new DeclStmt( noLabels, monitors) );
     584                body->push_front( new DeclStmt( monitors) );
    594585        }
    595586
     
    631622                stmt->push_back(
    632623                        new ExprStmt(
    633                                 noLabels,
    634624                                new UntypedExpr(
    635625                                        new NameExpr( "__thrd_start" ),
  • src/Concurrency/Waitfor.cc

    r9c35431 rc13e8dc8  
    100100
    101101namespace Concurrency {
    102 
    103         namespace {
    104                 const std::list<Label> noLabels;
    105                 const std::list< Attribute * > noAttributes;
    106                 Type::StorageClasses noStorage;
    107                 Type::Qualifiers noQualifiers;
    108         }
    109 
    110102        //=============================================================================================
    111103        // Pass declarations
     
    203195                        ResolvExpr::findVoidExpression( expr, indexer );
    204196
    205                         return new ExprStmt( noLabels, expr );
     197                        return new ExprStmt( expr );
    206198                }
    207199
     
    259251                if( !decl_monitor || !decl_acceptable || !decl_mask ) throw SemanticError( "waitfor keyword requires monitors to be in scope, add #include <monitor>", waitfor );
    260252
    261                 CompoundStmt * stmt = new CompoundStmt( noLabels );
     253                CompoundStmt * stmt = new CompoundStmt();
    262254
    263255                ObjectDecl * acceptables = declare( waitfor->clauses.size(), stmt );
     
    281273                );
    282274
    283                 CompoundStmt * compound = new CompoundStmt( noLabels );
     275                CompoundStmt * compound = new CompoundStmt();
    284276                stmt->push_back( new IfStmt(
    285                         noLabels,
    286277                        safeCond( new VariableExpr( flag ) ),
    287278                        compound,
     
    313304                );
    314305
    315                 stmt->push_back( new DeclStmt( noLabels, acceptables) );
     306                stmt->push_back( new DeclStmt( acceptables) );
    316307
    317308                Expression * set = new UntypedExpr(
     
    326317                ResolvExpr::findVoidExpression( set, indexer );
    327318
    328                 stmt->push_back( new ExprStmt( noLabels, set ) );
     319                stmt->push_back( new ExprStmt( set ) );
    329320
    330321                return acceptables;
     
    341332                );
    342333
    343                 stmt->push_back( new DeclStmt( noLabels, flag) );
     334                stmt->push_back( new DeclStmt( flag) );
    344335
    345336                return flag;
     
    357348                ResolvExpr::findVoidExpression( expr, indexer );
    358349
    359                 return new ExprStmt( noLabels, expr );
     350                return new ExprStmt( expr );
    360351        }
    361352
     
    399390                );
    400391
    401                 stmt->push_back( new DeclStmt( noLabels, mon) );
     392                stmt->push_back( new DeclStmt( mon) );
    402393
    403394                return mon;
     
    411402
    412403                stmt->push_back( new IfStmt(
    413                         noLabels,
    414404                        safeCond( clause.condition ),
    415405                        new CompoundStmt({
     
    447437                );
    448438
    449                 stmt->push_back( new DeclStmt( noLabels, timeout ) );
     439                stmt->push_back( new DeclStmt( timeout ) );
    450440
    451441                if( time ) {
    452442                        stmt->push_back( new IfStmt(
    453                                 noLabels,
    454443                                safeCond( time_cond ),
    455444                                new CompoundStmt({
    456445                                        new ExprStmt(
    457                                                 noLabels,
    458446                                                makeOpAssign(
    459447                                                        new VariableExpr( timeout ),
     
    471459                if( has_else ) {
    472460                        stmt->push_back( new IfStmt(
    473                                 noLabels,
    474461                                safeCond( else_cond ),
    475462                                new CompoundStmt({
    476463                                        new ExprStmt(
    477                                                 noLabels,
    478464                                                makeOpAssign(
    479465                                                        new VariableExpr( timeout ),
     
    511497                );
    512498
    513                 stmt->push_back( new DeclStmt( noLabels, index ) );
     499                stmt->push_back( new DeclStmt( index ) );
    514500
    515501                ObjectDecl * mask = ObjectDecl::newObject(
     
    526512                );
    527513
    528                 stmt->push_back( new DeclStmt( noLabels, mask ) );
     514                stmt->push_back( new DeclStmt( mask ) );
    529515
    530516                stmt->push_back( new ExprStmt(
    531                         noLabels,
    532517                        new ApplicationExpr(
    533518                                VariableExpr::functionPointer( decl_waitfor ),
     
    557542        ) {
    558543                SwitchStmt * swtch = new SwitchStmt(
    559                         noLabels,
    560544                        result,
    561545                        std::list<Statement *>()
     
    566550                        swtch->statements.push_back(
    567551                                new CaseStmt(
    568                                         noLabels,
    569552                                        new ConstantExpr( Constant::from_ulong( i++ ) ),
    570553                                        {
    571554                                                clause.statement,
    572555                                                new BranchStmt(
    573                                                         noLabels,
    574556                                                        "",
    575557                                                        BranchStmt::Break
     
    583565                        swtch->statements.push_back(
    584566                                new CaseStmt(
    585                                         noLabels,
    586567                                        new ConstantExpr( Constant::from_int( -2 ) ),
    587568                                        {
    588569                                                waitfor->timeout.statement,
    589570                                                new BranchStmt(
    590                                                         noLabels,
    591571                                                        "",
    592572                                                        BranchStmt::Break
     
    600580                        swtch->statements.push_back(
    601581                                new CaseStmt(
    602                                         noLabels,
    603582                                        new ConstantExpr( Constant::from_int( -1 ) ),
    604583                                        {
    605584                                                waitfor->orelse.statement,
    606585                                                new BranchStmt(
    607                                                         noLabels,
    608586                                                        "",
    609587                                                        BranchStmt::Break
  • src/ControlStruct/ExceptTranslate.cc

    r9c35431 rc13e8dc8  
    3030#include "SynTree/Expression.h"       // for UntypedExpr, ConstantExpr, Name...
    3131#include "SynTree/Initializer.h"      // for SingleInit, ListInit
    32 #include "SynTree/Label.h"            // for Label, noLabels
     32#include "SynTree/Label.h"            // for Label
    3333#include "SynTree/Mutator.h"          // for mutateAll
    3434#include "SynTree/Statement.h"        // for CompoundStmt, CatchStmt, ThrowStmt
     
    5757
    5858        void appendDeclStmt( CompoundStmt * block, Declaration * item ) {
    59                 block->push_back(new DeclStmt(noLabels, item));
     59                block->push_back(new DeclStmt(item));
    6060        }
    6161
     
    205205                throwStmt->set_expr( nullptr );
    206206                delete throwStmt;
    207                 return new ExprStmt( noLabels, call );
     207                return new ExprStmt( call );
    208208        }
    209209
     
    211211                        ThrowStmt *throwStmt ) {
    212212                // __throw_terminate( `throwStmt->get_name()` ); }
    213                 return create_given_throw( "__cfaehm__throw_terminate", throwStmt );
     213                return create_given_throw( "__cfaabi_ehm__throw_terminate", throwStmt );
    214214        }
    215215
     
    220220                assert( handler_except_decl );
    221221
    222                 CompoundStmt * result = new CompoundStmt( throwStmt->get_labels() );
    223                 result->push_back( new ExprStmt( noLabels, UntypedExpr::createAssign(
     222                CompoundStmt * result = new CompoundStmt();
     223                result->labels =  throwStmt->labels;
     224                result->push_back( new ExprStmt( UntypedExpr::createAssign(
    224225                        nameOf( handler_except_decl ),
    225226                        new ConstantExpr( Constant::null(
     
    231232                        ) ) );
    232233                result->push_back( new ExprStmt(
    233                         noLabels,
    234                         new UntypedExpr( new NameExpr( "__cfaehm__rethrow_terminate" ) )
     234                        new UntypedExpr( new NameExpr( "__cfaabi_ehm__rethrow_terminate" ) )
    235235                        ) );
    236236                delete throwStmt;
     
    241241                        ThrowStmt *throwStmt ) {
    242242                // __throw_resume( `throwStmt->get_name` );
    243                 return create_given_throw( "__cfaehm__throw_resume", throwStmt );
     243                return create_given_throw( "__cfaabi_ehm__throw_resume", throwStmt );
    244244        }
    245245
     
    248248                // return false;
    249249                Statement * result = new ReturnStmt(
    250                         throwStmt->get_labels(),
    251250                        new ConstantExpr( Constant::from_bool( false ) )
    252251                        );
     252                result->labels = throwStmt->labels;
    253253                delete throwStmt;
    254254                return result;
     
    291291                        // }
    292292                        // return;
    293                         CompoundStmt * block = new CompoundStmt( noLabels );
     293                        CompoundStmt * block = new CompoundStmt();
    294294
    295295                        // Just copy the exception value. (Post Validation)
     
    304304                                        ) })
    305305                                );
    306                         block->push_back( new DeclStmt( noLabels, local_except ) );
     306                        block->push_back( new DeclStmt( local_except ) );
    307307
    308308                        // Add the cleanup attribute.
    309309                        local_except->get_attributes().push_back( new Attribute(
    310310                                "cleanup",
    311                                 { new NameExpr( "__cfaehm__cleanup_terminate" ) }
     311                                { new NameExpr( "__cfaabi_ehm__cleanup_terminate" ) }
    312312                                ) );
    313313
     
    324324
    325325                        std::list<Statement *> caseBody
    326                                         { block, new ReturnStmt( noLabels, nullptr ) };
     326                                        { block, new ReturnStmt( nullptr ) };
    327327                        handler_wrappers.push_back( new CaseStmt(
    328                                 noLabels,
    329328                                new ConstantExpr( Constant::from_int( index ) ),
    330329                                caseBody
     
    340339
    341340                SwitchStmt * handler_lookup = new SwitchStmt(
    342                         noLabels,
    343341                        nameOf( index_obj ),
    344342                        stmt_handlers
    345343                        );
    346                 CompoundStmt * body = new CompoundStmt( noLabels );
     344                CompoundStmt * body = new CompoundStmt();
    347345                body->push_back( handler_lookup );
    348346
     
    363361                // }
    364362
    365                 CompoundStmt * block = new CompoundStmt( noLabels );
     363                CompoundStmt * block = new CompoundStmt();
    366364
    367365                // Local Declaration
     
    369367                        dynamic_cast<ObjectDecl *>( modded_handler->get_decl() );
    370368                assert( local_except );
    371                 block->push_back( new DeclStmt( noLabels, local_except ) );
     369                block->push_back( new DeclStmt( local_except ) );
    372370
    373371                // Check for type match.
     
    381379                }
    382380                // Construct the match condition.
    383                 block->push_back( new IfStmt( noLabels,
     381                block->push_back( new IfStmt(
    384382                        cond, modded_handler->get_body(), nullptr ) );
    385383
     
    397395                // }
    398396
    399                 CompoundStmt * body = new CompoundStmt( noLabels );
     397                CompoundStmt * body = new CompoundStmt();
    400398
    401399                FunctionType * func_type = match_func_t.clone();
     
    413411
    414412                        // Create new body.
    415                         handler->set_body( new ReturnStmt( noLabels,
     413                        handler->set_body( new ReturnStmt(
    416414                                new ConstantExpr( Constant::from_int( index ) ) ) );
    417415
     
    421419                }
    422420
    423                 body->push_back( new ReturnStmt( noLabels,
     421                body->push_back( new ReturnStmt(
    424422                        new ConstantExpr( Constant::from_int( 0 ) ) ) );
    425423
     
    432430                        FunctionDecl * terminate_catch,
    433431                        FunctionDecl * terminate_match ) {
    434                 // { __cfaehm__try_terminate(`try`, `catch`, `match`); }
     432                // { __cfaabi_ehm__try_terminate(`try`, `catch`, `match`); }
    435433
    436434                UntypedExpr * caller = new UntypedExpr( new NameExpr(
    437                         "__cfaehm__try_terminate" ) );
     435                        "__cfaabi_ehm__try_terminate" ) );
    438436                std::list<Expression *>& args = caller->get_args();
    439437                args.push_back( nameOf( try_wrapper ) );
     
    441439                args.push_back( nameOf( terminate_match ) );
    442440
    443                 CompoundStmt * callStmt = new CompoundStmt( noLabels );
    444                 callStmt->push_back( new ExprStmt( noLabels, caller ) );
     441                CompoundStmt * callStmt = new CompoundStmt();
     442                callStmt->push_back( new ExprStmt( caller ) );
    445443                return callStmt;
    446444        }
     
    451449                //     HANDLER WRAPPERS { `hander->body`; return true; }
    452450                // }
    453                 CompoundStmt * body = new CompoundStmt( noLabels );
     451                CompoundStmt * body = new CompoundStmt();
    454452
    455453                FunctionType * func_type = handle_func_t.clone();
     
    464462                                dynamic_cast<CompoundStmt*>( handler->get_body() );
    465463                        if ( ! handling_code ) {
    466                                 handling_code = new CompoundStmt( noLabels );
     464                                handling_code = new CompoundStmt();
    467465                                handling_code->push_back( handler->get_body() );
    468466                        }
    469                         handling_code->push_back( new ReturnStmt( noLabels,
     467                        handling_code->push_back( new ReturnStmt(
    470468                                new ConstantExpr( Constant::from_bool( true ) ) ) );
    471469                        handler->set_body( handling_code );
     
    476474                }
    477475
    478                 body->push_back( new ReturnStmt( noLabels,
     476                body->push_back( new ReturnStmt(
    479477                        new ConstantExpr( Constant::from_bool( false ) ) ) );
    480478
     
    486484                        Statement * wraps,
    487485                        FunctionDecl * resume_handler ) {
    488                 CompoundStmt * body = new CompoundStmt( noLabels );
     486                CompoundStmt * body = new CompoundStmt();
    489487
    490488                // struct __try_resume_node __resume_node
    491                 //      __attribute__((cleanup( __cfaehm__try_resume_cleanup )));
     489                //      __attribute__((cleanup( __cfaabi_ehm__try_resume_cleanup )));
    492490                // ** unwinding of the stack here could cause problems **
    493491                // ** however I don't think that can happen currently **
    494                 // __cfaehm__try_resume_setup( &__resume_node, resume_handler );
     492                // __cfaabi_ehm__try_resume_setup( &__resume_node, resume_handler );
    495493
    496494                std::list< Attribute * > attributes;
     
    498496                        std::list< Expression * > attr_params;
    499497                        attr_params.push_back( new NameExpr(
    500                                 "__cfaehm__try_resume_cleanup" ) );
     498                                "__cfaabi_ehm__try_resume_cleanup" ) );
    501499                        attributes.push_back( new Attribute( "cleanup", attr_params ) );
    502500                }
     
    517515
    518516                UntypedExpr *setup = new UntypedExpr( new NameExpr(
    519                         "__cfaehm__try_resume_setup" ) );
     517                        "__cfaabi_ehm__try_resume_setup" ) );
    520518                setup->get_args().push_back( new AddressExpr( nameOf( obj ) ) );
    521519                setup->get_args().push_back( nameOf( resume_handler ) );
    522520
    523                 body->push_back( new ExprStmt( noLabels, setup ) );
     521                body->push_back( new ExprStmt( setup ) );
    524522
    525523                body->push_back( wraps );
     
    542540        ObjectDecl * ExceptionMutatorCore::create_finally_hook(
    543541                        FunctionDecl * finally_wrapper ) {
    544                 // struct __cfaehm__cleanup_hook __finally_hook
     542                // struct __cfaabi_ehm__cleanup_hook __finally_hook
    545543                //      __attribute__((cleanup( finally_wrapper )));
    546544
     
    596594                        // Skip children?
    597595                        return;
    598                 } else if ( structDecl->get_name() == "__cfaehm__base_exception_t" ) {
     596                } else if ( structDecl->get_name() == "__cfaabi_ehm__base_exception_t" ) {
    599597                        assert( nullptr == except_decl );
    600598                        except_decl = structDecl;
    601599                        init_func_types();
    602                 } else if ( structDecl->get_name() == "__cfaehm__try_resume_node" ) {
     600                } else if ( structDecl->get_name() == "__cfaabi_ehm__try_resume_node" ) {
    603601                        assert( nullptr == node_decl );
    604602                        node_decl = structDecl;
    605                 } else if ( structDecl->get_name() == "__cfaehm__cleanup_hook" ) {
     603                } else if ( structDecl->get_name() == "__cfaabi_ehm__cleanup_hook" ) {
    606604                        assert( nullptr == hook_decl );
    607605                        hook_decl = structDecl;
     
    646644                // Generate a prefix for the function names?
    647645
    648                 CompoundStmt * block = new CompoundStmt( noLabels );
     646                CompoundStmt * block = new CompoundStmt();
    649647                CompoundStmt * inner = take_try_block( tryStmt );
    650648
  • src/ControlStruct/ForExprMutator.cc

    r9c35431 rc13e8dc8  
    2929                // Create compound statement, move initializers outside,
    3030                // the resut of the original stays as is.
    31                 CompoundStmt *block = new CompoundStmt( std::list< Label >() );
     31                CompoundStmt *block = new CompoundStmt();
    3232                std::list<Statement *> &stmts = block->get_kids();
    3333                stmts.splice( stmts.end(), init );
  • src/ControlStruct/LabelFixer.cc

    r9c35431 rc13e8dc8  
    3737        }
    3838
    39         void LabelFixer::visit( FunctionDecl *functionDecl ) {
     39        void LabelFixer::previsit( FunctionDecl * ) {
    4040                // need to go into a nested function in a fresh state
    41                 std::map < Label, Entry *> oldLabelTable = labelTable;
     41                GuardValue( labelTable );
    4242                labelTable.clear();
     43        }
    4344
    44                 maybeAccept( functionDecl->get_statements(), *this );
    45 
     45        void LabelFixer::postvisit( FunctionDecl * functionDecl ) {
    4646                MLEMutator mlemut( resolveJumps(), generator );
    4747                functionDecl->acceptMutator( mlemut );
    48 
    49                 // and remember the outer function's labels when
    50                 // returning to it
    51                 labelTable = oldLabelTable;
    5248        }
    5349
    5450        // prune to at most one label definition for each statement
    55         void LabelFixer::visit( Statement *stmt ) {
     51        void LabelFixer::previsit( Statement *stmt ) {
    5652                std::list< Label > &labels = stmt->get_labels();
    5753
     
    6258        }
    6359
    64         void LabelFixer::visit( BranchStmt *branchStmt ) {
    65                 visit ( ( Statement * )branchStmt );
     60        void LabelFixer::previsit( BranchStmt *branchStmt ) {
     61                previsit( ( Statement *)branchStmt );
    6662
    6763                // for labeled branches, add an entry to the label table
     
    7268        }
    7369
    74         void LabelFixer::visit( UntypedExpr *untyped ) {
    75                 if ( NameExpr * func = dynamic_cast< NameExpr * >( untyped->get_function() ) ) {
    76                         if ( func->get_name() == "&&" ) {
    77                                 NameExpr * arg = dynamic_cast< NameExpr * >( untyped->get_args().front() );
    78                                 Label target = arg->get_name();
    79                                 assert( target != "" );
    80                                 setLabelsUsg( target, untyped );
    81                         } else {
    82                                 Visitor::visit( untyped );
    83                         }
    84                 }
     70        void LabelFixer::previsit( LabelAddressExpr * addrExpr ) {
     71                Label & target = addrExpr->arg;
     72                assert( target != "" );
     73                setLabelsUsg( target, addrExpr );
    8574        }
    8675
  • src/ControlStruct/LabelFixer.h

    r9c35431 rc13e8dc8  
    1919#include <map>                     // for map
    2020
     21#include "Common/PassVisitor.h"
    2122#include "Common/SemanticError.h"  // for SemanticError
    2223#include "SynTree/Label.h"         // for Label
     
    2627namespace ControlStruct {
    2728        /// normalizes label definitions and generates multi-level exit labels
    28 class LabelGenerator;
     29        class LabelGenerator;
    2930
    30         class LabelFixer final : public Visitor {
    31                 typedef Visitor Parent;
     31        class LabelFixer final : public WithGuards {
    3232          public:
    3333                LabelFixer( LabelGenerator *gen = 0 );
     
    3535                std::map < Label, Statement * > *resolveJumps() throw ( SemanticError );
    3636
    37                 using Visitor::visit;
    38 
    3937                // Declarations
    40                 virtual void visit( FunctionDecl *functionDecl ) override;
     38                void previsit( FunctionDecl *functionDecl );
     39                void postvisit( FunctionDecl *functionDecl );
    4140
    4241                // Statements
    43                 void visit( Statement *stmt );
     42                void previsit( Statement *stmt );
     43                void previsit( BranchStmt *branchStmt );
    4444
    45                 virtual void visit( CompoundStmt *stmt ) override { visit( (Statement *)stmt ); return Parent::visit( stmt ); }
    46                 virtual void visit( NullStmt *stmt ) override { visit( (Statement *)stmt ); return Parent::visit( stmt ); }
    47                 virtual void visit( ExprStmt *stmt ) override { visit( (Statement *)stmt ); return Parent::visit( stmt ); }
    48                 virtual void visit( IfStmt *stmt ) override { visit( (Statement *)stmt ); return Parent::visit( stmt ); }
    49                 virtual void visit( WhileStmt *stmt ) override { visit( (Statement *)stmt ); return Parent::visit( stmt ); }
    50                 virtual void visit( ForStmt *stmt ) override { visit( (Statement *)stmt ); return Parent::visit( stmt ); }
    51                 virtual void visit( SwitchStmt *stmt ) override { visit( (Statement *)stmt ); return Parent::visit( stmt ); }
    52                 virtual void visit( CaseStmt *stmt ) override { visit( (Statement *)stmt ); return Parent::visit( stmt ); }
    53                 virtual void visit( ReturnStmt *stmt ) override { visit( (Statement *)stmt ); return Parent::visit( stmt ); }
    54                 virtual void visit( TryStmt *stmt ) override { visit( (Statement *)stmt ); return Parent::visit( stmt ); }
    55                 virtual void visit( CatchStmt *stmt ) override { visit( (Statement *)stmt ); return Parent::visit( stmt ); }
    56                 virtual void visit( DeclStmt *stmt ) override { visit( (Statement *)stmt ); return Parent::visit( stmt ); }
    57                 virtual void visit( BranchStmt *branchStmt ) override;
    58                 virtual void visit( UntypedExpr *untyped ) override;
     45                // Expressions
     46                void previsit( LabelAddressExpr *addrExpr );
    5947
    6048                Label setLabelsDef( std::list< Label > &, Statement *definition );
  • src/ControlStruct/MLEMutator.cc

    r9c35431 rc13e8dc8  
    149149
    150150                        if ( CaseStmt * c = dynamic_cast< CaseStmt * >( statements.back() ) ) {
    151                                 std::list<Label> temp; temp.push_back( brkLabel );
    152                                 c->get_statements().push_back( new BranchStmt( temp, Label("brkLabel"), BranchStmt::Break ) );
     151                                Statement * stmt = new BranchStmt( Label("brkLabel"), BranchStmt::Break );
     152                                stmt->labels.push_back( brkLabel );
     153                                c->get_statements().push_back( stmt );
    153154                        } else assert(0); // as of this point, all statements of a switch are still CaseStmts
    154155                } // if
     
    232233                // transform break/continue statements into goto to simplify later handling of branches
    233234                delete branchStmt;
    234                 return new BranchStmt( std::list<Label>(), exitLabel, BranchStmt::Goto );
     235                return new BranchStmt( exitLabel, BranchStmt::Goto );
    235236        }
    236237
     
    239240                CompoundStmt *newBody;
    240241                if ( ! (newBody = dynamic_cast<CompoundStmt *>( bodyLoop )) ) {
    241                         newBody = new CompoundStmt( std::list< Label >() );
     242                        newBody = new CompoundStmt();
    242243                        newBody->get_kids().push_back( bodyLoop );
    243244                } // if
  • src/ControlStruct/Mutate.cc

    r9c35431 rc13e8dc8  
    2424#include "SynTree/Declaration.h"   // for Declaration
    2525#include "SynTree/Mutator.h"       // for mutateAll
    26 //#include "ExceptMutator.h"
    2726
    2827#include "Common/PassVisitor.h"    // for PassVisitor
     
    3736
    3837                // normalizes label definitions and generates multi-level exit labels
    39                 LabelFixer lfix;
    40 
    41                 //ExceptMutator exc;
     38                PassVisitor<LabelFixer> lfix;
    4239
    4340                mutateAll( translationUnit, formut );
    4441                acceptAll( translationUnit, lfix );
    45                 //mutateAll( translationUnit, exc );
    4642        }
    4743} // namespace CodeGen
  • src/GenPoly/Box.cc

    r9c35431 rc13e8dc8  
    4949#include "SynTree/Expression.h"          // for ApplicationExpr, UntypedExpr
    5050#include "SynTree/Initializer.h"         // for SingleInit, Initializer, Lis...
    51 #include "SynTree/Label.h"               // for Label, noLabels
     51#include "SynTree/Label.h"               // for Label
    5252#include "SynTree/Mutator.h"             // for maybeMutate, Mutator, mutateAll
    5353#include "SynTree/Statement.h"           // for ExprStmt, DeclStmt, ReturnStmt
     
    293293                FunctionDecl *layoutDecl = new FunctionDecl( layoutofName( typeDecl ),
    294294                                                                                                         functionNesting > 0 ? Type::StorageClasses() : Type::StorageClasses( Type::Static ),
    295                                                                                                          LinkageSpec::AutoGen, layoutFnType, new CompoundStmt( noLabels ),
     295                                                                                                         LinkageSpec::AutoGen, layoutFnType, new CompoundStmt(),
    296296                                                                                                         std::list< Attribute * >(), Type::FuncSpecifiers( Type::Inline ) );
    297297                layoutDecl->fixUniqueId();
     
    321321        /// makes an if-statement with a single-expression if-block and no then block
    322322        Statement *makeCond( Expression *cond, Expression *ifPart ) {
    323                 return new IfStmt( noLabels, cond, new ExprStmt( noLabels, ifPart ), 0 );
     323                return new IfStmt( cond, new ExprStmt( ifPart ), 0 );
    324324        }
    325325
     
    340340        /// adds an expression to a compound statement
    341341        void addExpr( CompoundStmt *stmts, Expression *expr ) {
    342                 stmts->get_kids().push_back( new ExprStmt( noLabels, expr ) );
     342                stmts->get_kids().push_back( new ExprStmt( expr ) );
    343343        }
    344344
     
    629629                ObjectDecl *Pass1::makeTemporary( Type *type ) {
    630630                        ObjectDecl *newObj = new ObjectDecl( tempNamer.newName(), Type::StorageClasses(), LinkageSpec::C, 0, type, 0 );
    631                         stmtsToAddBefore.push_back( new DeclStmt( noLabels, newObj ) );
     631                        stmtsToAddBefore.push_back( new DeclStmt( newObj ) );
    632632                        return newObj;
    633633                }
     
    740740                                ObjectDecl *newObj = ObjectDecl::newObject( tempNamer.newName(), newType, nullptr );
    741741                                newObj->get_type()->get_qualifiers() = Type::Qualifiers(); // TODO: is this right???
    742                                 stmtsToAddBefore.push_back( new DeclStmt( noLabels, newObj ) );
     742                                stmtsToAddBefore.push_back( new DeclStmt( newObj ) );
    743743                                UntypedExpr *assign = new UntypedExpr( new NameExpr( "?=?" ) ); // TODO: why doesn't this just use initialization syntax?
    744744                                assign->get_args().push_back( new VariableExpr( newObj ) );
    745745                                assign->get_args().push_back( arg );
    746                                 stmtsToAddBefore.push_back( new ExprStmt( noLabels, assign ) );
     746                                stmtsToAddBefore.push_back( new ExprStmt( assign ) );
    747747                                arg = new AddressExpr( new VariableExpr( newObj ) );
    748748                        } // if
     
    888888                                // void return
    889889                                addAdapterParams( adapteeApp, arg, param, adapterType->get_parameters().end(), realParam, tyVars );
    890                                 bodyStmt = new ExprStmt( noLabels, adapteeApp );
     890                                bodyStmt = new ExprStmt( adapteeApp );
    891891                        } else if ( isDynType( adaptee->get_returnVals().front()->get_type(), tyVars ) ) {
    892892                                // return type T
     
    900900                                addAdapterParams( adapteeApp, arg, param, adapterType->get_parameters().end(), realParam, tyVars );
    901901                                assign->get_args().push_back( adapteeApp );
    902                                 bodyStmt = new ExprStmt( noLabels, assign );
     902                                bodyStmt = new ExprStmt( assign );
    903903                        } else {
    904904                                // adapter for a function that returns a monomorphic value
    905905                                addAdapterParams( adapteeApp, arg, param, adapterType->get_parameters().end(), realParam, tyVars );
    906                                 bodyStmt = new ReturnStmt( noLabels, adapteeApp );
     906                                bodyStmt = new ReturnStmt( adapteeApp );
    907907                        } // if
    908                         CompoundStmt *adapterBody = new CompoundStmt( noLabels );
     908                        CompoundStmt *adapterBody = new CompoundStmt();
    909909                        adapterBody->get_kids().push_back( bodyStmt );
    910910                        std::string adapterName = makeAdapterName( mangleName );
     
    952952                                                std::pair< AdapterIter, bool > answer = adapters.insert( std::pair< std::string, DeclarationWithType *>( mangleName, newAdapter ) );
    953953                                                adapter = answer.first;
    954                                                 stmtsToAddBefore.push_back( new DeclStmt( noLabels, newAdapter ) );
     954                                                stmtsToAddBefore.push_back( new DeclStmt( newAdapter ) );
    955955                                        } // if
    956956                                        assert( adapter != adapters.end() );
     
    12791279                                                retval->set_name( "_retval" );
    12801280                                        }
    1281                                         functionDecl->get_statements()->get_kids().push_front( new DeclStmt( noLabels, retval ) );
     1281                                        functionDecl->get_statements()->get_kids().push_front( new DeclStmt( retval ) );
    12821282                                        DeclarationWithType * newRet = retval->clone(); // for ownership purposes
    12831283                                        ftype->get_returnVals().front() = newRet;
     
    15191519                                        // (alloca was previously used, but can't be safely used in loops)
    15201520                                        ObjectDecl *newBuf = ObjectDecl::newObject( bufNamer.newName(), polyToMonoType( objectDecl->type ), nullptr );
    1521                                         stmtsToAddBefore.push_back( new DeclStmt( noLabels, newBuf ) );
     1521                                        stmtsToAddBefore.push_back( new DeclStmt( newBuf ) );
    15221522
    15231523                                        delete objectDecl->get_init();
     
    15981598                ObjectDecl *PolyGenericCalculator::makeVar( const std::string &name, Type *type, Initializer *init ) {
    15991599                        ObjectDecl *newObj = new ObjectDecl( name, Type::StorageClasses(), LinkageSpec::C, 0, type, init );
    1600                         stmtsToAddBefore.push_back( new DeclStmt( noLabels, newObj ) );
     1600                        stmtsToAddBefore.push_back( new DeclStmt( newObj ) );
    16011601                        return newObj;
    16021602                }
     
    16771677                                        addOtypeParamsToLayoutCall( layoutCall, otypeParams );
    16781678
    1679                                         stmtsToAddBefore.push_back( new ExprStmt( noLabels, layoutCall ) );
     1679                                        stmtsToAddBefore.push_back( new ExprStmt( layoutCall ) );
    16801680                                }
    16811681
     
    17031703                                addOtypeParamsToLayoutCall( layoutCall, otypeParams );
    17041704
    1705                                 stmtsToAddBefore.push_back( new ExprStmt( noLabels, layoutCall ) );
     1705                                stmtsToAddBefore.push_back( new ExprStmt( layoutCall ) );
    17061706
    17071707                                return true;
  • src/GenPoly/InstantiateGeneric.cc

    r9c35431 rc13e8dc8  
    453453                        return false;
    454454                }
    455 
    456                 AggregateDecl * getAggr( Type * t ) {
    457                         if ( StructInstType * inst = dynamic_cast< StructInstType * >( t ) ) {
    458                                 return inst->baseStruct;
    459                         } else if ( UnionInstType * inst = dynamic_cast< UnionInstType * >( t ) ) {
    460                                 return inst->baseUnion;
    461                         }
    462                         assertf( false, "Non-aggregate type: %s", toString( t ).c_str() );
    463                 }
    464455        }
    465456
     
    469460                if ( isGenericType( memberExpr->aggregate->result ) ) {
    470461                        // find the location of the member
    471                         AggregateDecl * aggr = getAggr( memberExpr->aggregate->result );
     462                        AggregateDecl * aggr = memberExpr->aggregate->result->getAggr();
    472463                        std::list< Declaration * > & members = aggr->members;
    473464                        memberIndex = std::distance( members.begin(), std::find( members.begin(), members.end(), memberExpr->member ) );
     
    479470                if ( memberIndex != -1 ) {
    480471                        // using the location from the generic type, find the member in the instantiation and rebuild the member expression
    481                         AggregateDecl * aggr = getAggr( memberExpr->aggregate->result );
     472                        AggregateDecl * aggr = memberExpr->aggregate->result->getAggr();
    482473                        assertf( memberIndex < (int)aggr->members.size(), "Instantiation somehow has fewer members than the generic type." );
    483474                        Declaration * member = *std::next( aggr->members.begin(), memberIndex );
     
    526517                                        Expression * init = new CastExpr( new AddressExpr( memberExpr ), new PointerType( Type::Qualifiers(), concType->clone() ) );
    527518                                        ObjectDecl * tmp = ObjectDecl::newObject( tmpNamer.newName(), new ReferenceType( Type::Qualifiers(), concType ), new SingleInit( init ) );
    528                                         stmtsToAddBefore.push_back( new DeclStmt( noLabels, tmp ) );
     519                                        stmtsToAddBefore.push_back( new DeclStmt( tmp ) );
    529520                                        return new VariableExpr( tmp );
    530521                                } else {
  • src/GenPoly/Specialize.cc

    r9c35431 rc13e8dc8  
    3535#include "SynTree/Declaration.h"         // for FunctionDecl, DeclarationWit...
    3636#include "SynTree/Expression.h"          // for ApplicationExpr, Expression
    37 #include "SynTree/Label.h"               // for Label, noLabels
     37#include "SynTree/Label.h"               // for Label
    3838#include "SynTree/Mutator.h"             // for mutateAll
    3939#include "SynTree/Statement.h"           // for CompoundStmt, DeclStmt, Expr...
     
    234234                } // if
    235235                // create new thunk with same signature as formal type (C linkage, empty body)
    236                 FunctionDecl *thunkFunc = new FunctionDecl( thunkNamer.newName(), Type::StorageClasses(), LinkageSpec::C, newType, new CompoundStmt( noLabels ) );
     236                FunctionDecl *thunkFunc = new FunctionDecl( thunkNamer.newName(), Type::StorageClasses(), LinkageSpec::C, newType, new CompoundStmt() );
    237237                thunkFunc->fixUniqueId();
    238238
     
    287287                Statement *appStmt;
    288288                if ( funType->returnVals.empty() ) {
    289                         appStmt = new ExprStmt( noLabels, appExpr );
    290                 } else {
    291                         appStmt = new ReturnStmt( noLabels, appExpr );
     289                        appStmt = new ExprStmt( appExpr );
     290                } else {
     291                        appStmt = new ReturnStmt( appExpr );
    292292                } // if
    293293                thunkFunc->statements->kids.push_back( appStmt );
    294294
    295295                // add thunk definition to queue of statements to add
    296                 stmtsToAddBefore.push_back( new DeclStmt( noLabels, thunkFunc ) );
     296                stmtsToAddBefore.push_back( new DeclStmt( thunkFunc ) );
    297297                // return address of thunk function as replacement expression
    298298                return new AddressExpr( new VariableExpr( thunkFunc ) );
  • src/InitTweak/FixGlobalInit.cc

    r9c35431 rc13e8dc8  
    2020#include <algorithm>               // for replace_if
    2121
     22#include "Common/PassVisitor.h"
    2223#include "Common/SemanticError.h"  // for SemanticError
    2324#include "Common/UniqueName.h"     // for UniqueName
     
    2930#include "SynTree/Expression.h"    // for ConstantExpr, Expression (ptr only)
    3031#include "SynTree/Initializer.h"   // for ConstructorInit, Initializer
    31 #include "SynTree/Label.h"         // for Label, noLabels
     32#include "SynTree/Label.h"         // for Label
    3233#include "SynTree/Statement.h"     // for CompoundStmt, Statement (ptr only)
    3334#include "SynTree/Type.h"          // for Type, Type::StorageClasses, Functi...
     
    3536
    3637namespace InitTweak {
    37         class GlobalFixer : public Visitor {
     38        class GlobalFixer : public WithShortCircuiting {
    3839          public:
    3940                GlobalFixer( const std::string & name, bool inLibrary );
    4041
    41                 virtual void visit( ObjectDecl *objDecl );
    42                 virtual void visit( FunctionDecl *functionDecl );
    43                 virtual void visit( StructDecl *aggregateDecl );
    44                 virtual void visit( UnionDecl *aggregateDecl );
    45                 virtual void visit( EnumDecl *aggregateDecl );
    46                 virtual void visit( TraitDecl *aggregateDecl );
    47                 virtual void visit( TypeDecl *typeDecl );
     42                void previsit( ObjectDecl *objDecl );
     43                void previsit( FunctionDecl *functionDecl );
     44                void previsit( StructDecl *aggregateDecl );
     45                void previsit( UnionDecl *aggregateDecl );
     46                void previsit( EnumDecl *aggregateDecl );
     47                void previsit( TraitDecl *aggregateDecl );
     48                void previsit( TypeDecl *typeDecl );
    4849
    4950                UniqueName tempNamer;
     
    5354
    5455        void fixGlobalInit( std::list< Declaration * > & translationUnit, const std::string & name, bool inLibrary ) {
    55                 GlobalFixer fixer( name, inLibrary );
    56                 acceptAll( translationUnit, fixer );
     56                PassVisitor<GlobalFixer> visitor( name, inLibrary );
     57                acceptAll( translationUnit, visitor );
     58                GlobalFixer & fixer = visitor.pass;
    5759                // don't need to include function if it's empty
    5860                if ( fixer.initFunction->get_statements()->get_kids().empty() ) {
     
    9294                        dtorParameters.push_back( new ConstantExpr( Constant::from_int( 102 ) ) );
    9395                }
    94                 initFunction = new FunctionDecl( "_init_" + fixedName, Type::StorageClasses( Type::Static ), LinkageSpec::C, new FunctionType( Type::Qualifiers(), false ), new CompoundStmt( noLabels ) );
     96                initFunction = new FunctionDecl( "_init_" + fixedName, Type::StorageClasses( Type::Static ), LinkageSpec::C, new FunctionType( Type::Qualifiers(), false ), new CompoundStmt() );
    9597                initFunction->get_attributes().push_back( new Attribute( "constructor", ctorParameters ) );
    96                 destroyFunction = new FunctionDecl( "_destroy_" + fixedName, Type::StorageClasses( Type::Static ), LinkageSpec::C, new FunctionType( Type::Qualifiers(), false ), new CompoundStmt( noLabels ) );
     98                destroyFunction = new FunctionDecl( "_destroy_" + fixedName, Type::StorageClasses( Type::Static ), LinkageSpec::C, new FunctionType( Type::Qualifiers(), false ), new CompoundStmt() );
    9799                destroyFunction->get_attributes().push_back( new Attribute( "destructor", dtorParameters ) );
    98100        }
    99101
    100         void GlobalFixer::visit( ObjectDecl *objDecl ) {
     102        void GlobalFixer::previsit( ObjectDecl *objDecl ) {
    101103                std::list< Statement * > & initStatements = initFunction->get_statements()->get_kids();
    102104                std::list< Statement * > & destroyStatements = destroyFunction->get_statements()->get_kids();
     
    134136
    135137        // only modify global variables
    136         void GlobalFixer::visit( __attribute__((unused)) FunctionDecl *functionDecl ) {}
    137         void GlobalFixer::visit( __attribute__((unused)) StructDecl *aggregateDecl ) {}
    138         void GlobalFixer::visit( __attribute__((unused)) UnionDecl *aggregateDecl ) {}
    139         void GlobalFixer::visit( __attribute__((unused)) EnumDecl *aggregateDecl ) {}
    140         void GlobalFixer::visit( __attribute__((unused)) TraitDecl *aggregateDecl ) {}
    141         void GlobalFixer::visit( __attribute__((unused)) TypeDecl *typeDecl ) {}
     138        void GlobalFixer::previsit( FunctionDecl * ) { visit_children = false; }
     139        void GlobalFixer::previsit( StructDecl * ) { visit_children = false; }
     140        void GlobalFixer::previsit( UnionDecl * ) { visit_children = false; }
     141        void GlobalFixer::previsit( EnumDecl * ) { visit_children = false; }
     142        void GlobalFixer::previsit( TraitDecl * ) { visit_children = false; }
     143        void GlobalFixer::previsit( TypeDecl * ) { visit_children = false; }
    142144
    143145} // namespace InitTweak
  • src/InitTweak/FixInit.cc

    r9c35431 rc13e8dc8  
    4949#include "SynTree/Expression.h"        // for UniqueExpr, VariableExpr, Unty...
    5050#include "SynTree/Initializer.h"       // for ConstructorInit, SingleInit
    51 #include "SynTree/Label.h"             // for Label, noLabels, operator<
     51#include "SynTree/Label.h"             // for Label, operator<
    5252#include "SynTree/Mutator.h"           // for mutateAll, Mutator, maybeMutate
    5353#include "SynTree/Statement.h"         // for ExprStmt, CompoundStmt, Branch...
     
    547547                        // add all temporary declarations and their constructors
    548548                        for ( ObjectDecl * obj : tempDecls ) {
    549                                 stmtsToAddBefore.push_back( new DeclStmt( noLabels, obj ) );
     549                                stmtsToAddBefore.push_back( new DeclStmt( obj ) );
    550550                        } // for
    551551                        for ( ObjectDecl * obj : returnDecls ) {
    552                                 stmtsToAddBefore.push_back( new DeclStmt( noLabels, obj ) );
     552                                stmtsToAddBefore.push_back( new DeclStmt( obj ) );
    553553                        } // for
    554554
    555555                        // add destructors after current statement
    556556                        for ( Expression * dtor : dtors ) {
    557                                 stmtsToAddAfter.push_back( new ExprStmt( noLabels, dtor ) );
     557                                stmtsToAddAfter.push_back( new ExprStmt( dtor ) );
    558558                        } // for
    559559
     
    601601                        if ( ! result->isVoid() ) {
    602602                                for ( ObjectDecl * obj : stmtExpr->get_returnDecls() ) {
    603                                         stmtsToAddBefore.push_back( new DeclStmt( noLabels, obj ) );
     603                                        stmtsToAddBefore.push_back( new DeclStmt( obj ) );
    604604                                } // for
    605605                                // add destructors after current statement
    606606                                for ( Expression * dtor : stmtExpr->get_dtors() ) {
    607                                         stmtsToAddAfter.push_back( new ExprStmt( noLabels, dtor ) );
     607                                        stmtsToAddAfter.push_back( new ExprStmt( dtor ) );
    608608                                } // for
    609609                                // must have a non-empty body, otherwise it wouldn't have a result
    610610                                assert( ! stmts.empty() );
    611611                                assert( ! stmtExpr->get_returnDecls().empty() );
    612                                 stmts.push_back( new ExprStmt( noLabels, new VariableExpr( stmtExpr->get_returnDecls().front() ) ) );
     612                                stmts.push_back( new ExprStmt( new VariableExpr( stmtExpr->get_returnDecls().front() ) ) );
    613613                                stmtExpr->get_returnDecls().clear();
    614614                                stmtExpr->get_dtors().clear();
     
    739739
    740740                                                // generate body of if
    741                                                 CompoundStmt * initStmts = new CompoundStmt( noLabels );
     741                                                CompoundStmt * initStmts = new CompoundStmt();
    742742                                                std::list< Statement * > & body = initStmts->get_kids();
    743743                                                body.push_back( ctor );
    744                                                 body.push_back( new ExprStmt( noLabels, setTrue ) );
     744                                                body.push_back( new ExprStmt( setTrue ) );
    745745
    746746                                                // put it all together
    747                                                 IfStmt * ifStmt = new IfStmt( noLabels, new VariableExpr( isUninitializedVar ), initStmts, 0 );
    748                                                 stmtsToAddAfter.push_back( new DeclStmt( noLabels, isUninitializedVar ) );
     747                                                IfStmt * ifStmt = new IfStmt( new VariableExpr( isUninitializedVar ), initStmts, 0 );
     748                                                stmtsToAddAfter.push_back( new DeclStmt( isUninitializedVar ) );
    749749                                                stmtsToAddAfter.push_back( ifStmt );
    750750
     
    761761
    762762                                                        // void __objName_dtor_atexitN(...) {...}
    763                                                         FunctionDecl * dtorCaller = new FunctionDecl( objDecl->get_mangleName() + dtorCallerNamer.newName(), Type::StorageClasses( Type::Static ), LinkageSpec::C, new FunctionType( Type::Qualifiers(), false ), new CompoundStmt( noLabels ) );
     763                                                        FunctionDecl * dtorCaller = new FunctionDecl( objDecl->get_mangleName() + dtorCallerNamer.newName(), Type::StorageClasses( Type::Static ), LinkageSpec::C, new FunctionType( Type::Qualifiers(), false ), new CompoundStmt() );
    764764                                                        dtorCaller->fixUniqueId();
    765765                                                        dtorCaller->get_statements()->push_back( dtorStmt );
     
    769769                                                        callAtexit->get_args().push_back( new VariableExpr( dtorCaller ) );
    770770
    771                                                         body.push_back( new ExprStmt( noLabels, callAtexit ) );
     771                                                        body.push_back( new ExprStmt( callAtexit ) );
    772772
    773773                                                        // hoist variable and dtor caller decls to list of decls that will be added into global scope
  • src/InitTweak/InitTweak.cc

    r9c35431 rc13e8dc8  
    55#include <memory>                  // for __shared_ptr
    66
     7#include "Common/PassVisitor.h"
    78#include "Common/SemanticError.h"  // for SemanticError
    89#include "Common/UniqueName.h"     // for UniqueName
     
    1920#include "SynTree/Expression.h"    // for Expression, UntypedExpr, Applicati...
    2021#include "SynTree/Initializer.h"   // for Initializer, ListInit, Designation
    21 #include "SynTree/Label.h"         // for Label, noLabels
     22#include "SynTree/Label.h"         // for Label
    2223#include "SynTree/Statement.h"     // for CompoundStmt, ExprStmt, BranchStmt
    2324#include "SynTree/Type.h"          // for FunctionType, ArrayType, PointerType
     
    2930namespace InitTweak {
    3031        namespace {
    31                 class HasDesignations : public Visitor {
    32                 public:
     32                struct HasDesignations : public WithShortCircuiting {
    3333                        bool hasDesignations = false;
    34                         virtual void visit( Designation * des ) {
    35                                 if ( ! des->get_designators().empty() ) hasDesignations = true;
    36                                 else Visitor::visit( des );
     34
     35                        void previsit( BaseSyntaxNode * ) {
     36                                // short circuit if we already know there are designations
     37                                if ( hasDesignations ) visit_children = false;
     38                        }
     39
     40                        void previsit( Designation * des ) {
     41                                // short circuit if we already know there are designations
     42                                if ( hasDesignations ) visit_children = false;
     43                                else if ( ! des->get_designators().empty() ) {
     44                                        hasDesignations = true;
     45                                        visit_children = false;
     46                                }
    3747                        }
    3848                };
    3949
    40                 class InitDepthChecker : public Visitor {
    41                 public:
     50                struct InitDepthChecker : public WithGuards {
    4251                        bool depthOkay = true;
    4352                        Type * type;
     
    5160                                maxDepth++;
    5261                        }
    53                         virtual void visit( ListInit * listInit ) {
     62                        void previsit( ListInit * ) {
    5463                                curDepth++;
     64                                GuardAction( [this]() { curDepth--; } );
    5565                                if ( curDepth > maxDepth ) depthOkay = false;
    56                                 Visitor::visit( listInit );
    57                                 curDepth--;
    5866                        }
    5967                };
    6068
    61                 class InitFlattener : public Visitor {
    62                         public:
    63                         virtual void visit( SingleInit * singleInit );
    64                         virtual void visit( ListInit * listInit );
     69                struct InitFlattener : public WithShortCircuiting {
     70                        void previsit( SingleInit * singleInit ) {
     71                                visit_children = false;
     72                                argList.push_back( singleInit->value->clone() );
     73                        }
    6574                        std::list< Expression * > argList;
    6675                };
    6776
    68                 void InitFlattener::visit( SingleInit * singleInit ) {
    69                         argList.push_back( singleInit->get_value()->clone() );
    70                 }
    71 
    72                 void InitFlattener::visit( ListInit * listInit ) {
    73                         // flatten nested list inits
    74                         std::list<Initializer*>::iterator it = listInit->begin();
    75                         for ( ; it != listInit->end(); ++it ) {
    76                                 (*it)->accept( *this );
    77                         }
    78                 }
    7977        }
    8078
    8179        std::list< Expression * > makeInitList( Initializer * init ) {
    82                 InitFlattener flattener;
     80                PassVisitor<InitFlattener> flattener;
    8381                maybeAccept( init, flattener );
    84                 return flattener.argList;
     82                return flattener.pass.argList;
    8583        }
    8684
    8785        bool isDesignated( Initializer * init ) {
    88                 HasDesignations finder;
     86                PassVisitor<HasDesignations> finder;
    8987                maybeAccept( init, finder );
    90                 return finder.hasDesignations;
     88                return finder.pass.hasDesignations;
    9189        }
    9290
    9391        bool checkInitDepth( ObjectDecl * objDecl ) {
    94                 InitDepthChecker checker( objDecl->get_type() );
    95                 maybeAccept( objDecl->get_init(), checker );
    96                 return checker.depthOkay;
     92                PassVisitor<InitDepthChecker> checker( objDecl->type );
     93                maybeAccept( objDecl->init, checker );
     94                return checker.pass.depthOkay;
    9795        }
    9896
     
    195193                        callExpr->get_args().splice( callExpr->get_args().end(), args );
    196194
    197                         *out++ = new IfStmt( noLabels, cond, new ExprStmt( noLabels, callExpr ), nullptr );
     195                        *out++ = new IfStmt( cond, new ExprStmt( callExpr ), nullptr );
    198196
    199197                        UntypedExpr * increment = new UntypedExpr( new NameExpr( "++?" ) );
    200198                        increment->get_args().push_back( index->clone() );
    201                         *out++ = new ExprStmt( noLabels, increment );
     199                        *out++ = new ExprStmt( increment );
    202200                }
    203201
     
    244242                                        std::list< Statement * > stmts;
    245243                                        build( callExpr, idx, idxEnd, init, back_inserter( stmts ) );
    246                                         stmts.push_back( new BranchStmt( noLabels, switchLabel, BranchStmt::Break ) );
    247                                         CaseStmt * caseStmt = new CaseStmt( noLabels, condition, stmts );
     244                                        stmts.push_back( new BranchStmt( switchLabel, BranchStmt::Break ) );
     245                                        CaseStmt * caseStmt = new CaseStmt( condition, stmts );
    248246                                        branches.push_back( caseStmt );
    249247                                }
    250                                 *out++ = new SwitchStmt( noLabels, index->clone(), branches );
    251                                 *out++ = new NullStmt( std::list<Label>{ switchLabel } );
     248                                *out++ = new SwitchStmt( index->clone(), branches );
     249                                *out++ = new NullStmt( { switchLabel } );
    252250                        }
    253251                }
     
    262260        Statement * InitImpl::buildListInit( UntypedExpr * dst, std::list< Expression * > & indices ) {
    263261                if ( ! init ) return nullptr;
    264                 CompoundStmt * block = new CompoundStmt( noLabels );
     262                CompoundStmt * block = new CompoundStmt();
    265263                build( dst, indices.begin(), indices.end(), init, back_inserter( block->get_kids() ) );
    266264                if ( block->get_kids().empty() ) {
     
    309307        }
    310308
    311         class CallFinder : public Visitor {
    312         public:
    313                 typedef Visitor Parent;
     309        struct CallFinder {
    314310                CallFinder( const std::list< std::string > & names ) : names( names ) {}
    315311
    316                 virtual void visit( ApplicationExpr * appExpr ) {
     312                void postvisit( ApplicationExpr * appExpr ) {
    317313                        handleCallExpr( appExpr );
    318314                }
    319315
    320                 virtual void visit( UntypedExpr * untypedExpr ) {
     316                void postvisit( UntypedExpr * untypedExpr ) {
    321317                        handleCallExpr( untypedExpr );
    322318                }
     
    328324                template< typename CallExpr >
    329325                void handleCallExpr( CallExpr * expr ) {
    330                         Parent::visit( expr );
    331326                        std::string fname = getFunctionName( expr );
    332327                        if ( std::find( names.begin(), names.end(), fname ) != names.end() ) {
     
    337332
    338333        void collectCtorDtorCalls( Statement * stmt, std::list< Expression * > & matches ) {
    339                 static CallFinder finder( std::list< std::string >{ "?{}", "^?{}" } );
    340                 finder.matches = &matches;
     334                static PassVisitor<CallFinder> finder( std::list< std::string >{ "?{}", "^?{}" } );
     335                finder.pass.matches = &matches;
    341336                maybeAccept( stmt, finder );
    342337        }
     
    544539        }
    545540
    546         class ConstExprChecker : public Visitor {
    547         public:
    548                 ConstExprChecker() : isConstExpr( true ) {}
    549 
    550                 using Visitor::visit;
    551 
    552                 virtual void visit( ApplicationExpr * ) { isConstExpr = false; }
    553                 virtual void visit( UntypedExpr * ) { isConstExpr = false; }
    554                 virtual void visit( NameExpr * ) { isConstExpr = false; }
    555                 // virtual void visit( CastExpr *castExpr ) { isConstExpr = false; }
    556                 virtual void visit( AddressExpr *addressExpr ) {
     541        struct ConstExprChecker : public WithShortCircuiting {
     542                // most expressions are not const expr
     543                void previsit( Expression * ) { isConstExpr = false; visit_children = false; }
     544
     545                void previsit( AddressExpr *addressExpr ) {
     546                        visit_children = false;
     547
    557548                        // address of a variable or member expression is constexpr
    558549                        Expression * arg = addressExpr->get_arg();
    559550                        if ( ! dynamic_cast< NameExpr * >( arg) && ! dynamic_cast< VariableExpr * >( arg ) && ! dynamic_cast< MemberExpr * >( arg ) && ! dynamic_cast< UntypedMemberExpr * >( arg ) ) isConstExpr = false;
    560551                }
    561                 virtual void visit( UntypedMemberExpr * ) { isConstExpr = false; }
    562                 virtual void visit( MemberExpr * ) { isConstExpr = false; }
    563                 virtual void visit( VariableExpr * ) { isConstExpr = false; }
    564                 // these might be okay?
    565                 // virtual void visit( SizeofExpr *sizeofExpr );
    566                 // virtual void visit( AlignofExpr *alignofExpr );
    567                 // virtual void visit( UntypedOffsetofExpr *offsetofExpr );
    568                 // virtual void visit( OffsetofExpr *offsetofExpr );
    569                 // virtual void visit( OffsetPackExpr *offsetPackExpr );
    570                 // virtual void visit( AttrExpr *attrExpr );
    571                 // virtual void visit( CommaExpr *commaExpr );
    572                 // virtual void visit( LogicalExpr *logicalExpr );
    573                 // virtual void visit( ConditionalExpr *conditionalExpr );
    574                 virtual void visit( TypeExpr * ) { isConstExpr = false; }
    575                 virtual void visit( AsmExpr * ) { isConstExpr = false; }
    576                 virtual void visit( UntypedValofExpr * ) { isConstExpr = false; }
    577                 virtual void visit( CompoundLiteralExpr * ) { isConstExpr = false; }
    578                 virtual void visit( UntypedTupleExpr * ) { isConstExpr = false; }
    579                 virtual void visit( TupleExpr * ) { isConstExpr = false; }
    580                 virtual void visit( TupleAssignExpr * ) { isConstExpr = false; }
    581 
    582                 bool isConstExpr;
     552
     553                // these expressions may be const expr, depending on their children
     554                void previsit( SizeofExpr * ) {}
     555                void previsit( AlignofExpr * ) {}
     556                void previsit( UntypedOffsetofExpr * ) {}
     557                void previsit( OffsetofExpr * ) {}
     558                void previsit( OffsetPackExpr * ) {}
     559                void previsit( AttrExpr * ) {}
     560                void previsit( CommaExpr * ) {}
     561                void previsit( LogicalExpr * ) {}
     562                void previsit( ConditionalExpr * ) {}
     563                void previsit( CastExpr * ) {}
     564                void previsit( ConstantExpr * ) {}
     565
     566                bool isConstExpr = true;
    583567        };
    584568
    585569        bool isConstExpr( Expression * expr ) {
    586570                if ( expr ) {
    587                         ConstExprChecker checker;
     571                        PassVisitor<ConstExprChecker> checker;
    588572                        expr->accept( checker );
    589                         return checker.isConstExpr;
     573                        return checker.pass.isConstExpr;
    590574                }
    591575                return true;
     
    594578        bool isConstExpr( Initializer * init ) {
    595579                if ( init ) {
    596                         ConstExprChecker checker;
     580                        PassVisitor<ConstExprChecker> checker;
    597581                        init->accept( checker );
    598                         return checker.isConstExpr;
     582                        return checker.pass.isConstExpr;
    599583                } // if
    600584                // for all intents and purposes, no initializer means const expr
  • src/MakeLibCfa.cc

    r9c35431 rc13e8dc8  
    116116                        } // for
    117117
    118                         funcDecl->set_statements( new CompoundStmt( std::list< Label >() ) );
     118                        funcDecl->set_statements( new CompoundStmt() );
    119119                        newDecls.push_back( funcDecl );
    120120
     
    130130                          case CodeGen::OT_INFIXASSIGN:
    131131                                        // return the recursive call
    132                                         stmt = new ReturnStmt( noLabels, newExpr );
     132                                        stmt = new ReturnStmt( newExpr );
    133133                                        break;
    134134                          case CodeGen::OT_CTOR:
    135135                          case CodeGen::OT_DTOR:
    136136                                        // execute the recursive call
    137                                         stmt = new ExprStmt( noLabels, newExpr );
     137                                        stmt = new ExprStmt( newExpr );
    138138                                        break;
    139139                          case CodeGen::OT_CONSTANT:
  • src/Makefile.in

    r9c35431 rc13e8dc8  
    215215        SymTab/driver_cfa_cpp-Validate.$(OBJEXT) \
    216216        SymTab/driver_cfa_cpp-FixFunction.$(OBJEXT) \
    217         SymTab/driver_cfa_cpp-ImplementationType.$(OBJEXT) \
    218         SymTab/driver_cfa_cpp-TypeEquality.$(OBJEXT) \
    219217        SymTab/driver_cfa_cpp-Autogen.$(OBJEXT) \
    220218        SynTree/driver_cfa_cpp-Type.$(OBJEXT) \
     
    514512        ResolvExpr/CurrentObject.cc ResolvExpr/ExplodedActual.cc \
    515513        SymTab/Indexer.cc SymTab/Mangler.cc SymTab/Validate.cc \
    516         SymTab/FixFunction.cc SymTab/ImplementationType.cc \
    517         SymTab/TypeEquality.cc SymTab/Autogen.cc SynTree/Type.cc \
     514        SymTab/FixFunction.cc SymTab/Autogen.cc SynTree/Type.cc \
    518515        SynTree/VoidType.cc SynTree/BasicType.cc \
    519516        SynTree/PointerType.cc SynTree/ArrayType.cc \
     
    844841SymTab/driver_cfa_cpp-FixFunction.$(OBJEXT): SymTab/$(am__dirstamp) \
    845842        SymTab/$(DEPDIR)/$(am__dirstamp)
    846 SymTab/driver_cfa_cpp-ImplementationType.$(OBJEXT):  \
    847         SymTab/$(am__dirstamp) SymTab/$(DEPDIR)/$(am__dirstamp)
    848 SymTab/driver_cfa_cpp-TypeEquality.$(OBJEXT): SymTab/$(am__dirstamp) \
    849         SymTab/$(DEPDIR)/$(am__dirstamp)
    850843SymTab/driver_cfa_cpp-Autogen.$(OBJEXT): SymTab/$(am__dirstamp) \
    851844        SymTab/$(DEPDIR)/$(am__dirstamp)
     
    10401033@AMDEP_TRUE@@am__include@ @am__quote@SymTab/$(DEPDIR)/driver_cfa_cpp-Autogen.Po@am__quote@
    10411034@AMDEP_TRUE@@am__include@ @am__quote@SymTab/$(DEPDIR)/driver_cfa_cpp-FixFunction.Po@am__quote@
    1042 @AMDEP_TRUE@@am__include@ @am__quote@SymTab/$(DEPDIR)/driver_cfa_cpp-ImplementationType.Po@am__quote@
    10431035@AMDEP_TRUE@@am__include@ @am__quote@SymTab/$(DEPDIR)/driver_cfa_cpp-Indexer.Po@am__quote@
    10441036@AMDEP_TRUE@@am__include@ @am__quote@SymTab/$(DEPDIR)/driver_cfa_cpp-Mangler.Po@am__quote@
    1045 @AMDEP_TRUE@@am__include@ @am__quote@SymTab/$(DEPDIR)/driver_cfa_cpp-TypeEquality.Po@am__quote@
    10461037@AMDEP_TRUE@@am__include@ @am__quote@SymTab/$(DEPDIR)/driver_cfa_cpp-Validate.Po@am__quote@
    10471038@AMDEP_TRUE@@am__include@ @am__quote@SynTree/$(DEPDIR)/driver_cfa_cpp-AddressExpr.Po@am__quote@
     
    20392030@AMDEP_TRUE@@am__fastdepCXX_FALSE@      DEPDIR=$(DEPDIR) $(CXXDEPMODE) $(depcomp) @AMDEPBACKSLASH@
    20402031@am__fastdepCXX_FALSE@  $(AM_V_CXX@am__nodep@)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(driver_cfa_cpp_CXXFLAGS) $(CXXFLAGS) -c -o SymTab/driver_cfa_cpp-FixFunction.obj `if test -f 'SymTab/FixFunction.cc'; then $(CYGPATH_W) 'SymTab/FixFunction.cc'; else $(CYGPATH_W) '$(srcdir)/SymTab/FixFunction.cc'; fi`
    2041 
    2042 SymTab/driver_cfa_cpp-ImplementationType.o: SymTab/ImplementationType.cc
    2043 @am__fastdepCXX_TRUE@   $(AM_V_CXX)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(driver_cfa_cpp_CXXFLAGS) $(CXXFLAGS) -MT SymTab/driver_cfa_cpp-ImplementationType.o -MD -MP -MF SymTab/$(DEPDIR)/driver_cfa_cpp-ImplementationType.Tpo -c -o SymTab/driver_cfa_cpp-ImplementationType.o `test -f 'SymTab/ImplementationType.cc' || echo '$(srcdir)/'`SymTab/ImplementationType.cc
    2044 @am__fastdepCXX_TRUE@   $(AM_V_at)$(am__mv) SymTab/$(DEPDIR)/driver_cfa_cpp-ImplementationType.Tpo SymTab/$(DEPDIR)/driver_cfa_cpp-ImplementationType.Po
    2045 @AMDEP_TRUE@@am__fastdepCXX_FALSE@      $(AM_V_CXX)source='SymTab/ImplementationType.cc' object='SymTab/driver_cfa_cpp-ImplementationType.o' libtool=no @AMDEPBACKSLASH@
    2046 @AMDEP_TRUE@@am__fastdepCXX_FALSE@      DEPDIR=$(DEPDIR) $(CXXDEPMODE) $(depcomp) @AMDEPBACKSLASH@
    2047 @am__fastdepCXX_FALSE@  $(AM_V_CXX@am__nodep@)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(driver_cfa_cpp_CXXFLAGS) $(CXXFLAGS) -c -o SymTab/driver_cfa_cpp-ImplementationType.o `test -f 'SymTab/ImplementationType.cc' || echo '$(srcdir)/'`SymTab/ImplementationType.cc
    2048 
    2049 SymTab/driver_cfa_cpp-ImplementationType.obj: SymTab/ImplementationType.cc
    2050 @am__fastdepCXX_TRUE@   $(AM_V_CXX)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(driver_cfa_cpp_CXXFLAGS) $(CXXFLAGS) -MT SymTab/driver_cfa_cpp-ImplementationType.obj -MD -MP -MF SymTab/$(DEPDIR)/driver_cfa_cpp-ImplementationType.Tpo -c -o SymTab/driver_cfa_cpp-ImplementationType.obj `if test -f 'SymTab/ImplementationType.cc'; then $(CYGPATH_W) 'SymTab/ImplementationType.cc'; else $(CYGPATH_W) '$(srcdir)/SymTab/ImplementationType.cc'; fi`
    2051 @am__fastdepCXX_TRUE@   $(AM_V_at)$(am__mv) SymTab/$(DEPDIR)/driver_cfa_cpp-ImplementationType.Tpo SymTab/$(DEPDIR)/driver_cfa_cpp-ImplementationType.Po
    2052 @AMDEP_TRUE@@am__fastdepCXX_FALSE@      $(AM_V_CXX)source='SymTab/ImplementationType.cc' object='SymTab/driver_cfa_cpp-ImplementationType.obj' libtool=no @AMDEPBACKSLASH@
    2053 @AMDEP_TRUE@@am__fastdepCXX_FALSE@      DEPDIR=$(DEPDIR) $(CXXDEPMODE) $(depcomp) @AMDEPBACKSLASH@
    2054 @am__fastdepCXX_FALSE@  $(AM_V_CXX@am__nodep@)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(driver_cfa_cpp_CXXFLAGS) $(CXXFLAGS) -c -o SymTab/driver_cfa_cpp-ImplementationType.obj `if test -f 'SymTab/ImplementationType.cc'; then $(CYGPATH_W) 'SymTab/ImplementationType.cc'; else $(CYGPATH_W) '$(srcdir)/SymTab/ImplementationType.cc'; fi`
    2055 
    2056 SymTab/driver_cfa_cpp-TypeEquality.o: SymTab/TypeEquality.cc
    2057 @am__fastdepCXX_TRUE@   $(AM_V_CXX)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(driver_cfa_cpp_CXXFLAGS) $(CXXFLAGS) -MT SymTab/driver_cfa_cpp-TypeEquality.o -MD -MP -MF SymTab/$(DEPDIR)/driver_cfa_cpp-TypeEquality.Tpo -c -o SymTab/driver_cfa_cpp-TypeEquality.o `test -f 'SymTab/TypeEquality.cc' || echo '$(srcdir)/'`SymTab/TypeEquality.cc
    2058 @am__fastdepCXX_TRUE@   $(AM_V_at)$(am__mv) SymTab/$(DEPDIR)/driver_cfa_cpp-TypeEquality.Tpo SymTab/$(DEPDIR)/driver_cfa_cpp-TypeEquality.Po
    2059 @AMDEP_TRUE@@am__fastdepCXX_FALSE@      $(AM_V_CXX)source='SymTab/TypeEquality.cc' object='SymTab/driver_cfa_cpp-TypeEquality.o' libtool=no @AMDEPBACKSLASH@
    2060 @AMDEP_TRUE@@am__fastdepCXX_FALSE@      DEPDIR=$(DEPDIR) $(CXXDEPMODE) $(depcomp) @AMDEPBACKSLASH@
    2061 @am__fastdepCXX_FALSE@  $(AM_V_CXX@am__nodep@)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(driver_cfa_cpp_CXXFLAGS) $(CXXFLAGS) -c -o SymTab/driver_cfa_cpp-TypeEquality.o `test -f 'SymTab/TypeEquality.cc' || echo '$(srcdir)/'`SymTab/TypeEquality.cc
    2062 
    2063 SymTab/driver_cfa_cpp-TypeEquality.obj: SymTab/TypeEquality.cc
    2064 @am__fastdepCXX_TRUE@   $(AM_V_CXX)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(driver_cfa_cpp_CXXFLAGS) $(CXXFLAGS) -MT SymTab/driver_cfa_cpp-TypeEquality.obj -MD -MP -MF SymTab/$(DEPDIR)/driver_cfa_cpp-TypeEquality.Tpo -c -o SymTab/driver_cfa_cpp-TypeEquality.obj `if test -f 'SymTab/TypeEquality.cc'; then $(CYGPATH_W) 'SymTab/TypeEquality.cc'; else $(CYGPATH_W) '$(srcdir)/SymTab/TypeEquality.cc'; fi`
    2065 @am__fastdepCXX_TRUE@   $(AM_V_at)$(am__mv) SymTab/$(DEPDIR)/driver_cfa_cpp-TypeEquality.Tpo SymTab/$(DEPDIR)/driver_cfa_cpp-TypeEquality.Po
    2066 @AMDEP_TRUE@@am__fastdepCXX_FALSE@      $(AM_V_CXX)source='SymTab/TypeEquality.cc' object='SymTab/driver_cfa_cpp-TypeEquality.obj' libtool=no @AMDEPBACKSLASH@
    2067 @AMDEP_TRUE@@am__fastdepCXX_FALSE@      DEPDIR=$(DEPDIR) $(CXXDEPMODE) $(depcomp) @AMDEPBACKSLASH@
    2068 @am__fastdepCXX_FALSE@  $(AM_V_CXX@am__nodep@)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(driver_cfa_cpp_CXXFLAGS) $(CXXFLAGS) -c -o SymTab/driver_cfa_cpp-TypeEquality.obj `if test -f 'SymTab/TypeEquality.cc'; then $(CYGPATH_W) 'SymTab/TypeEquality.cc'; else $(CYGPATH_W) '$(srcdir)/SymTab/TypeEquality.cc'; fi`
    20692032
    20702033SymTab/driver_cfa_cpp-Autogen.o: SymTab/Autogen.cc
  • src/Parser/DeclarationNode.cc

    r9c35431 rc13e8dc8  
    717717}
    718718
    719 DeclarationNode * DeclarationNode::addFunctionBody( StatementNode * body ) {
     719DeclarationNode * DeclarationNode::addFunctionBody( StatementNode * body, StatementNode * with ) {
    720720        assert( type );
    721721        assert( type->kind == TypeData::Function );
    722722        assert( ! type->function.body );
     723        if ( with ) {
     724                // convert
     725                //  void f(S s) with (s) { x = 0; }
     726                // to
     727                //  void f(S s) { with(s) { x = 0; } }
     728                WithStmt * withStmt = strict_dynamic_cast< WithStmt * >( with->build() );
     729                withStmt->stmt = body->build();
     730                delete body;
     731                delete with;
     732                body = new StatementNode( new CompoundStmt( { withStmt } ) );
     733        }
    723734        type->function.body = body;
    724735        return this;
  • src/Parser/ParseNode.h

    r9c35431 rc13e8dc8  
    6969
    7070        virtual void print( __attribute__((unused)) std::ostream &os, __attribute__((unused)) int indent = 0 ) const {}
    71         virtual void printList( __attribute__((unused)) std::ostream &os, __attribute__((unused)) int indent = 0 ) const {}
     71        virtual void printList( std::ostream &os, int indent = 0 ) const {
     72                print( os, indent );
     73                if ( next ) next->print( os, indent );
     74        }
    7275
    7376        static int indent_by;
     
    120123        ExpressionNode * set_extension( bool exten ) { extension = exten; return this; }
    121124
    122         virtual void print( __attribute__((unused)) std::ostream &os, __attribute__((unused)) int indent = 0 ) const override {}
     125        virtual void print( std::ostream &os, __attribute__((unused)) int indent = 0 ) const override {
     126                os << expr.get() << std::endl;
     127        }
    123128        void printOneLine( __attribute__((unused)) std::ostream &os, __attribute__((unused)) int indent = 0 ) const {}
    124129
     
    257262        DeclarationNode * addBitfield( ExpressionNode * size );
    258263        DeclarationNode * addVarArgs();
    259         DeclarationNode * addFunctionBody( StatementNode * body );
     264        DeclarationNode * addFunctionBody( StatementNode * body, StatementNode * with = nullptr );
    260265        DeclarationNode * addOldDeclList( DeclarationNode * list );
    261266        DeclarationNode * setBase( TypeData * newType );
     
    359364        virtual StatementNode * append_last_case( StatementNode * );
    360365
    361         virtual void print( __attribute__((unused)) std::ostream &os, __attribute__((unused)) int indent = 0 ) const override {}
    362         virtual void printList( __attribute__((unused)) std::ostream &os, __attribute__((unused)) int indent = 0 ) const override {}
     366        virtual void print( std::ostream &os, __attribute__((unused)) int indent = 0 ) const override {
     367                os << stmt.get() << std::endl;
     368        }
    363369  private:
    364370        std::unique_ptr<Statement> stmt;
     
    408414WaitForStmt * build_waitfor_timeout( ExpressionNode * timeout, StatementNode * stmt, ExpressionNode * when );
    409415WaitForStmt * build_waitfor_timeout( ExpressionNode * timeout, StatementNode * stmt, ExpressionNode * when, StatementNode * else_stmt, ExpressionNode * else_when );
     416WithStmt * build_with( ExpressionNode * exprs, StatementNode * stmt );
    410417
    411418//##############################################################################
  • src/Parser/StatementNode.cc

    r9c35431 rc13e8dc8  
    3737        DeclarationNode *agg = decl->extractAggregate();
    3838        if ( agg ) {
    39                 StatementNode *nextStmt = new StatementNode( new DeclStmt( noLabels, maybeBuild< Declaration >( decl ) ) );
     39                StatementNode *nextStmt = new StatementNode( new DeclStmt( maybeBuild< Declaration >( decl ) ) );
    4040                set_next( nextStmt );
    4141                if ( decl->get_next() ) {
     
    5050                agg = decl;
    5151        } // if
    52         stmt.reset( new DeclStmt( noLabels, maybeMoveBuild< Declaration >(agg) ) );
     52        stmt.reset( new DeclStmt( maybeMoveBuild< Declaration >(agg) ) );
    5353} // StatementNode::StatementNode
    5454
     
    7575
    7676        if ( e )
    77                 return new ExprStmt( noLabels, e );
     77                return new ExprStmt( e );
    7878        else
    79                 return new NullStmt( noLabels );
     79                return new NullStmt();
    8080}
    8181
     
    113113        }
    114114        delete ctl;
    115         return new IfStmt( noLabels, cond, thenb, elseb, init );
     115        return new IfStmt( cond, thenb, elseb, init );
    116116}
    117117
     
    120120        buildMoveList< Statement, StatementNode >( stmt, branches );
    121121        // branches.size() == 0 for switch (...) {}, i.e., no declaration or statements
    122         return new SwitchStmt( noLabels, maybeMoveBuild< Expression >(ctl), branches );
     122        return new SwitchStmt( maybeMoveBuild< Expression >(ctl), branches );
    123123}
    124124Statement *build_case( ExpressionNode *ctl ) {
    125125        std::list< Statement * > branches;
    126         return new CaseStmt( noLabels, maybeMoveBuild< Expression >(ctl), branches );
     126        return new CaseStmt( maybeMoveBuild< Expression >(ctl), branches );
    127127}
    128128Statement *build_default() {
    129129        std::list< Statement * > branches;
    130         return new CaseStmt( noLabels, nullptr, branches, true );
     130        return new CaseStmt( nullptr, branches, true );
    131131}
    132132
     
    135135        buildMoveList< Statement, StatementNode >( stmt, branches );
    136136        assert( branches.size() == 1 );
    137         return new WhileStmt( noLabels, notZeroExpr( maybeMoveBuild< Expression >(ctl) ), branches.front(), kind );
     137        return new WhileStmt( notZeroExpr( maybeMoveBuild< Expression >(ctl) ), branches.front(), kind );
    138138}
    139139
     
    157157
    158158        delete forctl;
    159         return new ForStmt( noLabels, init, cond, incr, branches.front() );
     159        return new ForStmt( init, cond, incr, branches.front() );
    160160}
    161161
    162162Statement *build_branch( BranchStmt::Type kind ) {
    163         Statement * ret = new BranchStmt( noLabels, "", kind );
     163        Statement * ret = new BranchStmt( "", kind );
    164164        return ret;
    165165}
    166166Statement *build_branch( std::string *identifier, BranchStmt::Type kind ) {
    167         Statement * ret = new BranchStmt( noLabels, *identifier, kind );
     167        Statement * ret = new BranchStmt( *identifier, kind );
    168168        delete identifier;                                                                      // allocated by lexer
    169169        return ret;
    170170}
    171171Statement *build_computedgoto( ExpressionNode *ctl ) {
    172         return new BranchStmt( noLabels, maybeMoveBuild< Expression >(ctl), BranchStmt::Goto );
     172        return new BranchStmt( maybeMoveBuild< Expression >(ctl), BranchStmt::Goto );
    173173}
    174174
     
    176176        std::list< Expression * > exps;
    177177        buildMoveList( ctl, exps );
    178         return new ReturnStmt( noLabels, exps.size() > 0 ? exps.back() : nullptr );
     178        return new ReturnStmt( exps.size() > 0 ? exps.back() : nullptr );
    179179}
    180180
     
    183183        buildMoveList( ctl, exps );
    184184        assertf( exps.size() < 2, "This means we are leaking memory");
    185         return new ThrowStmt( noLabels, ThrowStmt::Terminate, !exps.empty() ? exps.back() : nullptr );
     185        return new ThrowStmt( ThrowStmt::Terminate, !exps.empty() ? exps.back() : nullptr );
    186186}
    187187
     
    190190        buildMoveList( ctl, exps );
    191191        assertf( exps.size() < 2, "This means we are leaking memory");
    192         return new ThrowStmt( noLabels, ThrowStmt::Resume, !exps.empty() ? exps.back() : nullptr );
     192        return new ThrowStmt( ThrowStmt::Resume, !exps.empty() ? exps.back() : nullptr );
    193193}
    194194
     
    204204        CompoundStmt *tryBlock = strict_dynamic_cast< CompoundStmt * >(maybeMoveBuild< Statement >(try_stmt));
    205205        FinallyStmt *finallyBlock = dynamic_cast< FinallyStmt * >(maybeMoveBuild< Statement >(finally_stmt) );
    206         return new TryStmt( noLabels, tryBlock, branches, finallyBlock );
     206        return new TryStmt( tryBlock, branches, finallyBlock );
    207207}
    208208Statement *build_catch( CatchStmt::Kind kind, DeclarationNode *decl, ExpressionNode *cond, StatementNode *body ) {
     
    210210        buildMoveList< Statement, StatementNode >( body, branches );
    211211        assert( branches.size() == 1 );
    212         return new CatchStmt( noLabels, kind, maybeMoveBuild< Declaration >(decl), maybeMoveBuild< Expression >(cond), branches.front() );
     212        return new CatchStmt( kind, maybeMoveBuild< Declaration >(decl), maybeMoveBuild< Expression >(cond), branches.front() );
    213213}
    214214Statement *build_finally( StatementNode *stmt ) {
     
    216216        buildMoveList< Statement, StatementNode >( stmt, branches );
    217217        assert( branches.size() == 1 );
    218         return new FinallyStmt( noLabels, dynamic_cast< CompoundStmt * >( branches.front() ) );
     218        return new FinallyStmt( dynamic_cast< CompoundStmt * >( branches.front() ) );
    219219}
    220220
     
    282282        node->timeout.condition = notZeroExpr( maybeMoveBuild<Expression>( when ) );
    283283
    284         node->orelse.statement = maybeMoveBuild<Statement >( else_stmt );
     284        node->orelse.statement  = maybeMoveBuild<Statement >( else_stmt );
    285285        node->orelse.condition  = notZeroExpr( maybeMoveBuild<Expression>( else_when ) );
    286286
     
    288288}
    289289
     290WithStmt * build_with( ExpressionNode * exprs, StatementNode * stmt ) {
     291        std::list< Expression * > e;
     292        buildMoveList( exprs, e );
     293        Statement * s = maybeMoveBuild<Statement>( stmt );
     294        return new WithStmt( e, s );
     295}
     296
    290297Statement *build_compound( StatementNode *first ) {
    291         CompoundStmt *cs = new CompoundStmt( noLabels );
     298        CompoundStmt *cs = new CompoundStmt();
    292299        buildMoveList( first, cs->get_kids() );
    293300        return cs;
     
    301308        buildMoveList( input, in );
    302309        buildMoveList( clobber, clob );
    303         return new AsmStmt( noLabels, voltile, instruction, out, in, clob, gotolabels ? gotolabels->labels : noLabels );
     310        return new AsmStmt( voltile, instruction, out, in, clob, gotolabels ? gotolabels->labels : noLabels );
    304311}
    305312
  • src/Parser/parser.yy

    r9c35431 rc13e8dc8  
    10581058with_statement:
    10591059        WITH '(' tuple_expression_list ')' statement
    1060                 { throw SemanticError("With clause is currently unimplemented."); $$ = nullptr; } // FIX ME
     1060                {
     1061                        $$ = new StatementNode( build_with( $3, $5 ) );
     1062                }
    10611063        ;
    10621064
     
    24102412                { $$ = nullptr; }
    24112413        | WITH '(' tuple_expression_list ')'
    2412                 { throw SemanticError("With clause is currently unimplemented."); $$ = nullptr; } // FIX ME
     2414                { $$ = new StatementNode( build_with( $3, nullptr ) ); }
    24132415        ;
    24142416
     
    24202422                        // Add the function body to the last identifier in the function definition list, i.e., foo3:
    24212423                        //   [const double] foo1(), foo2( int ), foo3( double ) { return 3.0; }
    2422                         $1->get_last()->addFunctionBody( $3 );
     2424                        $1->get_last()->addFunctionBody( $3, $2 );
    24232425                        $$ = $1;
    24242426                }
     
    24282430                        typedefTable.addToEnclosingScope( TypedefTable::ID );
    24292431                        typedefTable.leaveScope();
    2430                         $$ = $2->addFunctionBody( $4 )->addType( $1 );
     2432                        $$ = $2->addFunctionBody( $4, $3 )->addType( $1 );
    24312433                }
    24322434                // handles default int return type, OBSOLESCENT (see 1)
     
    24352437                        typedefTable.addToEnclosingScope( TypedefTable::ID );
    24362438                        typedefTable.leaveScope();
    2437                         $$ = $2->addFunctionBody( $4 )->addQualifiers( $1 );
     2439                        $$ = $2->addFunctionBody( $4, $3 )->addQualifiers( $1 );
    24382440                }
    24392441                // handles default int return type, OBSOLESCENT (see 1)
     
    24422444                        typedefTable.addToEnclosingScope( TypedefTable::ID );
    24432445                        typedefTable.leaveScope();
    2444                         $$ = $2->addFunctionBody( $4 )->addQualifiers( $1 );
     2446                        $$ = $2->addFunctionBody( $4, $3 )->addQualifiers( $1 );
    24452447                }
    24462448                // handles default int return type, OBSOLESCENT (see 1)
     
    24492451                        typedefTable.addToEnclosingScope( TypedefTable::ID );
    24502452                        typedefTable.leaveScope();
    2451                         $$ = $3->addFunctionBody( $5 )->addQualifiers( $2 )->addQualifiers( $1 );
     2453                        $$ = $3->addFunctionBody( $5, $4 )->addQualifiers( $2 )->addQualifiers( $1 );
    24522454                }
    24532455
     
    24582460                        typedefTable.addToEnclosingScope( TypedefTable::ID );
    24592461                        typedefTable.leaveScope();
    2460                         $$ = $2->addOldDeclList( $3 )->addFunctionBody( $5 )->addType( $1 );
     2462                        $$ = $2->addOldDeclList( $3 )->addFunctionBody( $5, $4 )->addType( $1 );
    24612463                }
    24622464                // handles default int return type, OBSOLESCENT (see 1)
     
    24652467                        typedefTable.addToEnclosingScope( TypedefTable::ID );
    24662468                        typedefTable.leaveScope();
    2467                         $$ = $2->addOldDeclList( $3 )->addFunctionBody( $5 )->addQualifiers( $1 );
     2469                        $$ = $2->addOldDeclList( $3 )->addFunctionBody( $5, $4 )->addQualifiers( $1 );
    24682470                }
    24692471                // handles default int return type, OBSOLESCENT (see 1)
     
    24722474                        typedefTable.addToEnclosingScope( TypedefTable::ID );
    24732475                        typedefTable.leaveScope();
    2474                         $$ = $2->addOldDeclList( $3 )->addFunctionBody( $5 )->addQualifiers( $1 );
     2476                        $$ = $2->addOldDeclList( $3 )->addFunctionBody( $5, $4 )->addQualifiers( $1 );
    24752477                }
    24762478                // handles default int return type, OBSOLESCENT (see 1)
     
    24792481                        typedefTable.addToEnclosingScope( TypedefTable::ID );
    24802482                        typedefTable.leaveScope();
    2481                         $$ = $3->addOldDeclList( $4 )->addFunctionBody( $6 )->addQualifiers( $2 )->addQualifiers( $1 );
     2483                        $$ = $3->addOldDeclList( $4 )->addFunctionBody( $6, $5 )->addQualifiers( $2 )->addQualifiers( $1 );
    24822484                }
    24832485        ;
  • src/ResolvExpr/AlternativeFinder.cc

    r9c35431 rc13e8dc8  
    8383        }
    8484
     85        void printAlts( const AltList &list, std::ostream &os, unsigned int indentAmt ) {
     86                Indenter indent = { Indenter::tabsize, indentAmt };
     87                for ( AltList::const_iterator i = list.begin(); i != list.end(); ++i ) {
     88                        i->print( os, indent );
     89                        os << std::endl;
     90                }
     91        }
     92
    8593        namespace {
    86                 void printAlts( const AltList &list, std::ostream &os, unsigned int indentAmt = 0 ) {
    87                         Indenter indent = { Indenter::tabsize, indentAmt };
    88                         for ( AltList::const_iterator i = list.begin(); i != list.end(); ++i ) {
    89                                 i->print( os, indent );
    90                                 os << std::endl;
    91                         }
    92                 }
    93 
    9494                void makeExprList( const AltList &in, std::list< Expression* > &out ) {
    9595                        for ( AltList::const_iterator i = in.begin(); i != in.end(); ++i ) {
     
    469469                        std::cerr << std::endl;
    470470                )
    471                 std::list< DeclarationWithType* > candidates;
     471                std::list< SymTab::Indexer::IdData > candidates;
    472472                decls.lookupId( curDecl->get_name(), candidates );
    473473///   if ( candidates.empty() ) { std::cerr << "no candidates!" << std::endl; }
    474                 for ( std::list< DeclarationWithType* >::const_iterator candidate = candidates.begin(); candidate != candidates.end(); ++candidate ) {
     474                for ( const auto & data : candidates ) {
     475                        DeclarationWithType * candidate = data.id;
    475476                        PRINT(
    476477                                std::cerr << "inferRecursive: candidate is ";
    477                                 (*candidate)->print( std::cerr );
     478                                candidate->print( std::cerr );
    478479                                std::cerr << std::endl;
    479480                        )
     
    482483                        TypeEnvironment newEnv( newAlt.env );
    483484                        OpenVarSet newOpenVars( openVars );
    484                         Type *adjType = (*candidate)->get_type()->clone();
     485                        Type *adjType = candidate->get_type()->clone();
    485486                        adjustExprType( adjType, newEnv, indexer );
    486487                        adjType->accept( global_renamer );
     
    500501                                Alternative newerAlt( newAlt );
    501502                                newerAlt.env = newEnv;
    502                                 assertf( (*candidate)->get_uniqueId(), "Assertion candidate does not have a unique ID: %s", toString( *candidate ).c_str() );
    503                                 DeclarationWithType *candDecl = static_cast< DeclarationWithType* >( Declaration::declFromId( (*candidate)->get_uniqueId() ) );
     503                                assertf( candidate->get_uniqueId(), "Assertion candidate does not have a unique ID: %s", toString( candidate ).c_str() );
    504504
    505505                                // everything with an empty idChain was pulled in by the current assertion.
     
    516516                                // DOESN'T WORK: grandchild nodes conflict with their cousins
    517517                                //if ( newNeedParents[ curDecl->get_uniqueId() ][ candDecl->get_uniqueId() ]++ > recursionParentLimit ) continue;
    518                                 Expression *varExpr = new VariableExpr( candDecl );
     518                                Expression *varExpr = data.combine();
    519519                                delete varExpr->get_result();
    520520                                varExpr->set_result( adjType->clone() );
     
    522522                                        std::cerr << "satisfying assertion " << curDecl->get_uniqueId() << " ";
    523523                                        curDecl->print( std::cerr );
    524                                         std::cerr << " with declaration " << (*candidate)->get_uniqueId() << " ";
    525                                         (*candidate)->print( std::cerr );
     524                                        std::cerr << " with declaration " << candidate->get_uniqueId() << " ";
     525                                        candidate->print( std::cerr );
    526526                                        std::cerr << std::endl;
    527527                                )
     
    532532                                }
    533533                                // XXX: this is a memory leak, but adjType can't be deleted because it might contain assertions
    534                                 (*inferParameters)[ curDecl->get_uniqueId() ] = ParamEntry( (*candidate)->get_uniqueId(), adjType->clone(), curDecl->get_type()->clone(), varExpr );
     534                                (*inferParameters)[ curDecl->get_uniqueId() ] = ParamEntry( candidate->get_uniqueId(), adjType->clone(), curDecl->get_type()->clone(), varExpr );
    535535                                inferRecursive( begin, end, newerAlt, newOpenVars, newDecls, newerNeed, /*newNeedParents,*/ level, indexer, out );
    536536                        } else {
     
    13171317
    13181318        void AlternativeFinder::visit( NameExpr *nameExpr ) {
    1319                 std::list< DeclarationWithType* > declList;
     1319                std::list< SymTab::Indexer::IdData > declList;
    13201320                indexer.lookupId( nameExpr->get_name(), declList );
    13211321                PRINT( std::cerr << "nameExpr is " << nameExpr->get_name() << std::endl; )
    1322                 for ( std::list< DeclarationWithType* >::iterator i = declList.begin(); i != declList.end(); ++i ) {
    1323                         VariableExpr newExpr( *i );
    1324                         alternatives.push_back( Alternative( newExpr.clone(), env, Cost::zero ) );
     1322                for ( auto & data : declList ) {
     1323                        Expression * newExpr = data.combine();
     1324                        // xxx - add in extra cost for with-statement exprs?
     1325                        alternatives.push_back( Alternative( newExpr, env, Cost::zero ) );
    13251326                        PRINT(
    13261327                                std::cerr << "decl is ";
    1327                                 (*i)->print( std::cerr );
     1328                                data.id->print( std::cerr );
    13281329                                std::cerr << std::endl;
    13291330                                std::cerr << "newExpr is ";
    1330                                 newExpr.print( std::cerr );
     1331                                newExpr->print( std::cerr );
    13311332                                std::cerr << std::endl;
    13321333                        )
     
    14201421        }
    14211422
    1422         void AlternativeFinder::resolveAttr( DeclarationWithType *funcDecl, FunctionType *function, Type *argType, const TypeEnvironment &env ) {
    1423                 // assume no polymorphism
    1424                 // assume no implicit conversions
    1425                 assert( function->get_parameters().size() == 1 );
    1426                 PRINT(
    1427                         std::cerr << "resolvAttr: funcDecl is ";
    1428                         funcDecl->print( std::cerr );
    1429                         std::cerr << " argType is ";
    1430                         argType->print( std::cerr );
    1431                         std::cerr << std::endl;
    1432                 )
    1433                 if ( typesCompatibleIgnoreQualifiers( argType, function->get_parameters().front()->get_type(), indexer, env ) ) {
    1434                         alternatives.push_back( Alternative( new AttrExpr( new VariableExpr( funcDecl ), argType->clone() ), env, Cost::zero ) );
    1435                         for ( std::list< DeclarationWithType* >::iterator i = function->get_returnVals().begin(); i != function->get_returnVals().end(); ++i ) {
    1436                                 alternatives.back().expr->set_result( (*i)->get_type()->clone() );
    1437                         } // for
    1438                 } // if
     1423        namespace {
     1424                void resolveAttr( SymTab::Indexer::IdData data, FunctionType *function, Type *argType, const TypeEnvironment &env, AlternativeFinder & finder ) {
     1425                        // assume no polymorphism
     1426                        // assume no implicit conversions
     1427                        assert( function->get_parameters().size() == 1 );
     1428                        PRINT(
     1429                                std::cerr << "resolvAttr: funcDecl is ";
     1430                                data.id->print( std::cerr );
     1431                                std::cerr << " argType is ";
     1432                                argType->print( std::cerr );
     1433                                std::cerr << std::endl;
     1434                        )
     1435                        const SymTab::Indexer & indexer = finder.get_indexer();
     1436                        AltList & alternatives = finder.get_alternatives();
     1437                        if ( typesCompatibleIgnoreQualifiers( argType, function->get_parameters().front()->get_type(), indexer, env ) ) {
     1438                                alternatives.push_back( Alternative( new AttrExpr( data.combine(), argType->clone() ), env, Cost::zero ) );
     1439                                for ( DeclarationWithType * retVal : function->returnVals ) {
     1440                                        alternatives.back().expr->result = retVal->get_type()->clone();
     1441                                } // for
     1442                        } // if
     1443                }
    14391444        }
    14401445
     
    14431448                NameExpr *nameExpr = dynamic_cast< NameExpr* >( attrExpr->get_attr() );
    14441449                assert( nameExpr );
    1445                 std::list< DeclarationWithType* > attrList;
     1450                std::list< SymTab::Indexer::IdData > attrList;
    14461451                indexer.lookupId( nameExpr->get_name(), attrList );
    14471452                if ( attrExpr->get_isType() || attrExpr->get_expr() ) {
    1448                         for ( std::list< DeclarationWithType* >::iterator i = attrList.begin(); i != attrList.end(); ++i ) {
     1453                        for ( auto & data : attrList ) {
     1454                                DeclarationWithType * id = data.id;
    14491455                                // check if the type is function
    1450                                 if ( FunctionType *function = dynamic_cast< FunctionType* >( (*i)->get_type() ) ) {
     1456                                if ( FunctionType *function = dynamic_cast< FunctionType* >( id->get_type() ) ) {
    14511457                                        // assume exactly one parameter
    14521458                                        if ( function->get_parameters().size() == 1 ) {
    14531459                                                if ( attrExpr->get_isType() ) {
    1454                                                         resolveAttr( *i, function, attrExpr->get_type(), env );
     1460                                                        resolveAttr( data, function, attrExpr->get_type(), env, *this );
    14551461                                                } else {
    14561462                                                        AlternativeFinder finder( indexer, env );
     
    14581464                                                        for ( AltList::iterator choice = finder.alternatives.begin(); choice != finder.alternatives.end(); ++choice ) {
    14591465                                                                if ( choice->expr->get_result()->size() == 1 ) {
    1460                                                                         resolveAttr(*i, function, choice->expr->get_result(), choice->env );
     1466                                                                        resolveAttr(data, function, choice->expr->get_result(), choice->env, *this );
    14611467                                                                } // fi
    14621468                                                        } // for
     
    14661472                        } // for
    14671473                } else {
    1468                         for ( std::list< DeclarationWithType* >::iterator i = attrList.begin(); i != attrList.end(); ++i ) {
    1469                                 VariableExpr newExpr( *i );
    1470                                 alternatives.push_back( Alternative( newExpr.clone(), env, Cost::zero ) );
     1474                        for ( auto & data : attrList ) {
     1475                                alternatives.push_back( Alternative( data.combine(), env, Cost::zero ) );
    14711476                                renameTypes( alternatives.back().expr );
    14721477                        } // for
  • src/ResolvExpr/AlternativeFinder.h

    r9c35431 rc13e8dc8  
    142142                template< typename OutputIterator >
    143143                void inferParameters( const AssertionSet &need, AssertionSet &have, const Alternative &newAlt, OpenVarSet &openVars, OutputIterator out );
    144                 void resolveAttr( DeclarationWithType *funcDecl, FunctionType *function, Type *argType, const TypeEnvironment &env );
    145144
    146145                const SymTab::Indexer &indexer;
     
    151150
    152151        Expression *resolveInVoidContext( Expression *expr, const SymTab::Indexer &indexer, TypeEnvironment &env );
    153         void referenceToRvalueConversion( Expression *& expr );
    154152
    155153        template< typename InputIterator, typename OutputIterator >
     
    174172
    175173        Cost sumCost( const AltList &in );
     174        void printAlts( const AltList &list, std::ostream &os, unsigned int indentAmt = 0 );
    176175
    177176        template< typename InputIterator >
     
    181180                }
    182181        }
     182
    183183} // namespace ResolvExpr
    184184
  • src/ResolvExpr/Resolver.cc

    r9c35431 rc13e8dc8  
    2626#include "Common/utility.h"              // for ValueGuard, group_iterate
    2727#include "CurrentObject.h"               // for CurrentObject
     28#include "InitTweak/GenInit.h"
    2829#include "InitTweak/InitTweak.h"         // for isIntrinsicSingleArgCallStmt
    2930#include "RenameVars.h"                  // for RenameVars, global_renamer
     
    4041#include "SynTree/TypeSubstitution.h"    // for TypeSubstitution
    4142#include "SynTree/Visitor.h"             // for acceptAll, maybeAccept
     43#include "Tuples/Tuples.h"
    4244#include "typeops.h"                     // for extractResultType
    4345#include "Unify.h"                       // for unify
     
    4648
    4749namespace ResolvExpr {
    48         struct Resolver final : public WithIndexer, public WithGuards, public WithVisitorRef<Resolver>, public WithShortCircuiting {
     50        struct Resolver final : public WithIndexer, public WithGuards, public WithVisitorRef<Resolver>, public WithShortCircuiting, public WithStmtsToAdd {
    4951                Resolver() {}
    5052                Resolver( const SymTab::Indexer & other ) {
     
    7476                void previsit( CatchStmt *catchStmt );
    7577                void previsit( WaitForStmt * stmt );
     78                void previsit( WithStmt * withStmt );
    7679
    7780                void previsit( SingleInit *singleInit );
     
    369372                if ( throwStmt->get_expr() ) {
    370373                        StructDecl * exception_decl =
    371                                 indexer.lookupStruct( "__cfaehm__base_exception_t" );
     374                                indexer.lookupStruct( "__cfaabi_ehm__base_exception_t" );
    372375                        assert( exception_decl );
    373376                        Type * exceptType = new PointerType( noQualifiers, new StructInstType( noQualifiers, exception_decl ) );
     
    568571                        findSingleExpression( stmt->orelse.condition, this->indexer );
    569572                        stmt->orelse.statement->accept( *visitor );
     573                }
     574        }
     575
     576        bool isStructOrUnion( Type * t ) {
     577                t = t->stripReferences();
     578                return dynamic_cast< StructInstType * >( t ) || dynamic_cast< UnionInstType * >( t );
     579        }
     580
     581        void Resolver::previsit( WithStmt * withStmt ) {
     582                for ( Expression *& expr : withStmt->exprs )  {
     583                        TypeEnvironment env;
     584                        AlternativeFinder finder( indexer, env );
     585                        finder.findWithAdjustment( expr );
     586
     587                        // only struct- and union-typed expressions are viable candidates
     588                        AltList candidates;
     589                        for ( Alternative & alt : finder.get_alternatives() ) {
     590                                if ( isStructOrUnion( alt.expr->result ) ) {
     591                                        candidates.push_back( std::move( alt ) );
     592                                }
     593                        }
     594
     595                        // choose the lowest cost expression among the candidates
     596                        AltList winners;
     597                        findMinCost( candidates.begin(), candidates.end(), back_inserter( winners ) );
     598                        if ( winners.size() == 0 ) {
     599                                throw SemanticError( "No reasonable alternatives for with statement expression: ", expr );
     600                        } else if ( winners.size() != 1 ) {
     601                                std::ostringstream stream;
     602                                stream << "Cannot choose between " << winners.size() << " alternatives for with statement expression\n";
     603                                expr->print( stream );
     604                                stream << "Alternatives are:\n";
     605                                printAlts( winners, stream, 1 );
     606                                throw SemanticError( stream.str() );
     607                        }
     608
     609                        // there is one unambiguous interpretation - move the expression into the with statement
     610                        Alternative & alt = winners.front();
     611                        finishExpr( alt.expr, alt.env, expr->env );
     612                        delete expr;
     613                        expr = alt.expr;
     614                        alt.expr = nullptr;
     615
     616                        // if with expression might be impure, create a temporary so that it is evaluated once
     617                        if ( Tuples::maybeImpure( expr ) ) {
     618                                static UniqueName tmpNamer( "_with_tmp_" );
     619                                ObjectDecl * tmp = ObjectDecl::newObject( tmpNamer.newName(), expr->result->clone(), new SingleInit( expr ) );
     620                                expr = new VariableExpr( tmp );
     621                                stmtsToAddBefore.push_back( new DeclStmt( tmp ) );
     622                                if ( InitTweak::isConstructable( tmp->type ) ) {
     623                                        // generate ctor/dtor and resolve them
     624                                        tmp->init = InitTweak::genCtorInit( tmp );
     625                                        tmp->accept( *visitor );
     626                                }
     627                        }
    570628                }
    571629        }
  • src/ResolvExpr/typeops.h

    r9c35431 rc13e8dc8  
    102102        bool occurs( Type *type, std::string varName, const TypeEnvironment &env );
    103103
     104        // in AlternativeFinder.cc
     105        void referenceToRvalueConversion( Expression *& expr );
     106
    104107        // flatten tuple type into list of types
    105108        template< typename OutputIterator >
  • src/SymTab/AddVisit.h

    r9c35431 rc13e8dc8  
    2424                        // add any new declarations after the previous statement
    2525                        for ( std::list< Declaration* >::iterator decl = visitor.declsToAddAfter.begin(); decl != visitor.declsToAddAfter.end(); ++decl ) {
    26                                 DeclStmt *declStmt = new DeclStmt( noLabels, *decl );
     26                                DeclStmt *declStmt = new DeclStmt( *decl );
    2727                                stmts.insert( stmt, declStmt );
    2828                        }
     
    3636                        // add any new declarations before the statement
    3737                        for ( std::list< Declaration* >::iterator decl = visitor.declsToAdd.begin(); decl != visitor.declsToAdd.end(); ++decl ) {
    38                                 DeclStmt *declStmt = new DeclStmt( noLabels, *decl );
     38                                DeclStmt *declStmt = new DeclStmt( *decl );
    3939                                stmts.insert( stmt, declStmt );
    4040                        }
  • src/SymTab/Autogen.cc

    r9c35431 rc13e8dc8  
    267267                Type::StorageClasses scs = functionNesting > 0 ? Type::StorageClasses() : Type::StorageClasses( Type::Static );
    268268                LinkageSpec::Spec spec = isIntrinsic ? LinkageSpec::Intrinsic : LinkageSpec::AutoGen;
    269                 FunctionDecl * decl = new FunctionDecl( fname, scs, spec, ftype, new CompoundStmt( noLabels ),
     269                FunctionDecl * decl = new FunctionDecl( fname, scs, spec, ftype, new CompoundStmt(),
    270270                                                                                                std::list< Attribute * >(), Type::FuncSpecifiers( Type::Inline ) );
    271271                decl->fixUniqueId();
     
    302302                                assert( assignType->returnVals.size() == 1 );
    303303                                ObjectDecl * dstParam = strict_dynamic_cast< ObjectDecl * >( assignType->parameters.front() );
    304                                 dcl->statements->push_back( new ReturnStmt( noLabels, new VariableExpr( dstParam ) ) );
     304                                dcl->statements->push_back( new ReturnStmt( new VariableExpr( dstParam ) ) );
    305305                        }
    306306                        resolve( dcl );
     
    471471                copy->args.push_back( new AddressExpr( new VariableExpr( srcParam ) ) );
    472472                copy->args.push_back( new SizeofExpr( srcParam->get_type()->clone() ) );
    473                 *out++ = new ExprStmt( noLabels, copy );
     473                *out++ = new ExprStmt( copy );
    474474        }
    475475
     
    547547                        callExpr->get_args().push_back( new VariableExpr( dstParam ) );
    548548                        callExpr->get_args().push_back( new VariableExpr( srcParam ) );
    549                         funcDecl->statements->push_back( new ExprStmt( noLabels, callExpr ) );
     549                        funcDecl->statements->push_back( new ExprStmt( callExpr ) );
    550550                } else {
    551551                        // default ctor/dtor body is empty - add unused attribute to parameter to silence warnings
     
    572572                expr->args.push_back( new CastExpr( new VariableExpr( dst ), new ReferenceType( Type::Qualifiers(), typeDecl->base->clone() ) ) );
    573573                if ( src ) expr->args.push_back( new CastExpr( new VariableExpr( src ), typeDecl->base->clone() ) );
    574                 dcl->statements->kids.push_back( new ExprStmt( noLabels, expr ) );
     574                dcl->statements->kids.push_back( new ExprStmt( expr ) );
    575575        };
    576576
     
    667667                        untyped->get_args().push_back( new VariableExpr( ftype->get_parameters().back() ) );
    668668                }
    669                 function->get_statements()->get_kids().push_back( new ExprStmt( noLabels, untyped ) );
    670                 function->get_statements()->get_kids().push_back( new ReturnStmt( noLabels, UntypedExpr::createDeref( new VariableExpr( ftype->get_parameters().front() ) ) ) );
     669                function->get_statements()->get_kids().push_back( new ExprStmt( untyped ) );
     670                function->get_statements()->get_kids().push_back( new ReturnStmt( UntypedExpr::createDeref( new VariableExpr( ftype->get_parameters().front() ) ) ) );
    671671        }
    672672
  • src/SymTab/Autogen.h

    r9c35431 rc13e8dc8  
    107107                fExpr->args.splice( fExpr->args.end(), args );
    108108
    109                 *out++ = new ExprStmt( noLabels, fExpr );
     109                *out++ = new ExprStmt( fExpr );
    110110
    111111                srcParam.clearArrayIndices();
     
    165165
    166166                // for stmt's body, eventually containing call
    167                 CompoundStmt * body = new CompoundStmt( noLabels );
     167                CompoundStmt * body = new CompoundStmt();
    168168                Statement * listInit = genCall( srcParam, dstParam, fname, back_inserter( body->kids ), array->base, addCast, forward );
    169169
    170170                // block containing for stmt and index variable
    171171                std::list<Statement *> initList;
    172                 CompoundStmt * block = new CompoundStmt( noLabels );
    173                 block->push_back( new DeclStmt( noLabels, index ) );
     172                CompoundStmt * block = new CompoundStmt();
     173                block->push_back( new DeclStmt( index ) );
    174174                if ( listInit ) block->get_kids().push_back( listInit );
    175                 block->push_back( new ForStmt( noLabels, initList, cond, inc, body ) );
     175                block->push_back( new ForStmt( initList, cond, inc, body ) );
    176176
    177177                *out++ = block;
  • src/SymTab/Indexer.cc

    r9c35431 rc13e8dc8  
    4040
    4141namespace SymTab {
    42         typedef std::unordered_map< std::string, DeclarationWithType* > MangleTable;
     42        std::ostream & operator<<( std::ostream & out, const Indexer::IdData & data ) {
     43                return out << "(" << data.id << "," << data.baseExpr << ")";
     44        }
     45
     46        typedef std::unordered_map< std::string, Indexer::IdData > MangleTable;
    4347        typedef std::unordered_map< std::string, MangleTable > IdTable;
    4448        typedef std::unordered_map< std::string, NamedTypeDecl* > TypeTable;
     
    97101        }
    98102
    99         void Indexer::removeSpecialOverrides( const std::string &id, std::list< DeclarationWithType * > & out ) const {
     103        void Indexer::removeSpecialOverrides( const std::string &id, std::list< IdData > & out ) const {
    100104                // only need to perform this step for constructors, destructors, and assignment functions
    101105                if ( ! CodeGen::isCtorDtorAssign( id ) ) return;
     
    104108                struct ValueType {
    105109                        struct DeclBall {
    106                                 FunctionDecl * decl;
     110                                IdData decl;
    107111                                bool isUserDefinedFunc; // properties for this particular decl
    108112                                bool isDefaultCtor;
     
    120124                        // another FunctionDecl for the current type was found - determine
    121125                        // if it has special properties and update data structure accordingly
    122                         ValueType & operator+=( FunctionDecl * function ) {
     126                        ValueType & operator+=( IdData data ) {
     127                                DeclarationWithType * function = data.id;
    123128                                bool isUserDefinedFunc = ! LinkageSpec::isOverridable( function->get_linkage() );
    124129                                bool isDefaultCtor = InitTweak::isDefaultConstructor( function );
    125130                                bool isDtor = InitTweak::isDestructor( function );
    126131                                bool isCopyFunc = InitTweak::isCopyFunction( function, function->get_name() );
    127                                 decls.push_back( DeclBall{ function, isUserDefinedFunc, isDefaultCtor, isDtor, isCopyFunc } );
     132                                decls.push_back( DeclBall{ data, isUserDefinedFunc, isDefaultCtor, isDtor, isCopyFunc } );
    128133                                existsUserDefinedFunc = existsUserDefinedFunc || isUserDefinedFunc;
    129134                                existsUserDefinedCtor = existsUserDefinedCtor || (isUserDefinedFunc && CodeGen::isConstructor( function->get_name() ) );
     
    135140                }; // ValueType
    136141
    137                 std::list< DeclarationWithType * > copy;
     142                std::list< IdData > copy;
    138143                copy.splice( copy.end(), out );
    139144
    140145                // organize discovered declarations by type
    141146                std::unordered_map< std::string, ValueType > funcMap;
    142                 for ( DeclarationWithType * decl : copy ) {
    143                         if ( FunctionDecl * function = dynamic_cast< FunctionDecl * >( decl ) ) {
     147                for ( auto decl : copy ) {
     148                        if ( FunctionDecl * function = dynamic_cast< FunctionDecl * >( decl.id ) ) {
    144149                                std::list< DeclarationWithType * > & params = function->get_functionType()->get_parameters();
    145150                                assert( ! params.empty() );
     
    147152                                Type * base = InitTweak::getPointerBase( params.front()->get_type() );
    148153                                assert( base );
    149                                 funcMap[ Mangler::mangle( base ) ] += function;
     154                                funcMap[ Mangler::mangle( base ) ] += decl;
    150155                        } else {
    151156                                out.push_back( decl );
     
    164169                                bool noUserDefinedFunc = ! val.existsUserDefinedFunc;
    165170                                bool isUserDefinedFunc = ball.isUserDefinedFunc;
    166                                 bool isAcceptableDefaultCtor = (! val.existsUserDefinedCtor || (! val.existsUserDefinedDefaultCtor && ball.decl->get_linkage() == LinkageSpec::Intrinsic)) && ball.isDefaultCtor; // allow default constructors only when no user-defined constructors exist, except in the case of intrinsics, which require exact overrides
     171                                bool isAcceptableDefaultCtor = (! val.existsUserDefinedCtor || (! val.existsUserDefinedDefaultCtor && ball.decl.id->get_linkage() == LinkageSpec::Intrinsic)) && ball.isDefaultCtor; // allow default constructors only when no user-defined constructors exist, except in the case of intrinsics, which require exact overrides
    167172                                bool isAcceptableCopyFunc = ! val.existsUserDefinedCopyFunc && ball.isCopyFunc; // handles copy ctor and assignment operator
    168173                                bool isAcceptableDtor = ! val.existsUserDefinedDtor && ball.isDtor;
     
    219224        }
    220225
    221         void Indexer::lookupId( const std::string &id, std::list< DeclarationWithType* > &out ) const {
     226        void Indexer::lookupId( const std::string &id, std::list< IdData > &out ) const {
    222227                std::unordered_set< std::string > foundMangleNames;
    223228
     
    289294                        const MangleTable &mangleTable = decls->second;
    290295                        MangleTable::const_iterator decl = mangleTable.find( mangleName );
    291                         if ( decl != mangleTable.end() ) return decl->second;
     296                        if ( decl != mangleTable.end() ) return decl->second.id;
    292297                }
    293298
     
    304309                        for ( MangleTable::const_iterator decl = mangleTable.begin(); decl != mangleTable.end(); ++decl ) {
    305310                                // check for C decls with the same name, skipping those with a compatible type (by mangleName)
    306                                 if ( ! LinkageSpec::isMangled( decl->second->get_linkage() ) && decl->first != mangleName ) return true;
     311                                if ( ! LinkageSpec::isMangled( decl->second.id->get_linkage() ) && decl->first != mangleName ) return true;
    307312                        }
    308313                }
     
    321326                                // check for C decls with the same name, skipping
    322327                                // those with an incompatible type (by mangleName)
    323                                 if ( ! LinkageSpec::isMangled( decl->second->get_linkage() ) && decl->first == mangleName ) return true;
     328                                if ( ! LinkageSpec::isMangled( decl->second.id->get_linkage() ) && decl->first == mangleName ) return true;
    324329                        }
    325330                }
     
    403408        }
    404409
    405         void Indexer::addId( DeclarationWithType *decl ) {
     410        void Indexer::addId( DeclarationWithType *decl, Expression * baseExpr ) {
    406411                debugPrint( "Adding Id " << decl->name << std::endl );
    407412                makeWritable();
     
    439444
    440445                // add to indexer
    441                 tables->idTable[ name ][ mangleName ] = decl;
     446                tables->idTable[ name ][ mangleName ] = { decl, baseExpr };
    442447                ++tables->size;
    443448        }
     
    563568                        if ( ! addedDeclConflicts( existing->second, decl ) ) {
    564569                                existing->second = decl;
     570                        }
     571                }
     572        }
     573
     574        void Indexer::addWith( WithStmt * stmt ) {
     575                for ( Expression * expr : stmt->exprs ) {
     576                        if ( expr->result ) {
     577                                AggregateDecl * aggr = expr->result->stripReferences()->getAggr();
     578                                assertf( aggr, "WithStmt expr has non-aggregate type: %s", toString( expr->result ).c_str() );
     579
     580                                for ( Declaration * decl : aggr->members ) {
     581                                        if ( DeclarationWithType * dwt = dynamic_cast< DeclarationWithType * >( decl ) ) {
     582                                                addId( dwt, expr );
     583                                        }
     584                                }
    565585                        }
    566586                }
     
    645665
    646666        }
     667
     668        Expression * Indexer::IdData::combine() const {
     669                if ( baseExpr ) {
     670                        Expression * base = baseExpr->clone();
     671                        ResolvExpr::referenceToRvalueConversion( base );
     672                        Expression * ret = new MemberExpr( id, base );
     673                        // xxx - this introduces hidden environments, for now remove them.
     674                        // std::swap( base->env, ret->env );
     675                        delete base->env;
     676                        base->env = nullptr;
     677                        return ret;
     678                } else {
     679                        return new VariableExpr( id );
     680                }
     681        }
    647682} // namespace SymTab
    648683
  • src/SymTab/Indexer.h

    r9c35431 rc13e8dc8  
    3939                void leaveScope();
    4040
     41                struct IdData {
     42                        DeclarationWithType * id;
     43                        Expression * baseExpr; // WithExpr
     44
     45                        Expression * combine() const;
     46                };
     47
    4148                /// Gets all declarations with the given ID
    42                 void lookupId( const std::string &id, std::list< DeclarationWithType* > &out ) const;
     49                void lookupId( const std::string &id, std::list< IdData > &out ) const;
    4350                /// Gets the top-most type declaration with the given ID
    4451                NamedTypeDecl *lookupType( const std::string &id ) const;
     
    6774                TraitDecl *lookupTraitAtScope( const std::string &id, unsigned long scope ) const;
    6875
    69                 void addId( DeclarationWithType *decl );
     76                void addId( DeclarationWithType *decl, Expression * baseExpr = nullptr );
    7077                void addType( NamedTypeDecl *decl );
    7178                void addStruct( const std::string &id );
     
    7582                void addUnion( UnionDecl *decl );
    7683                void addTrait( TraitDecl *decl );
     84
     85                /// adds all of the IDs from WithStmt exprs
     86                void addWith( WithStmt * );
    7787
    7888                /// convenience function for adding a list of Ids to the indexer
     
    100110                // so that they will not be selected
    101111                // void removeSpecialOverrides( FunctionDecl *decl );
    102                 void removeSpecialOverrides( const std::string &id, std::list< DeclarationWithType * > & out ) const;
     112                void removeSpecialOverrides( const std::string &id, std::list< IdData > & out ) const;
    103113
    104114                /// Ensures that tables variable is writable (i.e. allocated, uniquely owned by this Indexer, and at the current scope)
  • src/SymTab/Validate.cc

    r9c35431 rc13e8dc8  
    8181
    8282namespace SymTab {
    83         class HoistStruct final : public Visitor {
    84                 template< typename Visitor >
    85                 friend void acceptAndAdd( std::list< Declaration * > &translationUnit, Visitor &visitor );
    86             template< typename Visitor >
    87             friend void addVisitStatementList( std::list< Statement* > &stmts, Visitor &visitor );
    88           public:
     83        struct HoistStruct final : public WithDeclsToAdd, public WithGuards {
    8984                /// Flattens nested struct types
    9085                static void hoistStruct( std::list< Declaration * > &translationUnit );
    9186
    92                 std::list< Declaration * > &get_declsToAdd() { return declsToAdd; }
    93 
    94                 virtual void visit( EnumInstType *enumInstType );
    95                 virtual void visit( StructInstType *structInstType );
    96                 virtual void visit( UnionInstType *unionInstType );
    97                 virtual void visit( StructDecl *aggregateDecl );
    98                 virtual void visit( UnionDecl *aggregateDecl );
    99 
    100                 virtual void visit( CompoundStmt *compoundStmt );
    101                 virtual void visit( SwitchStmt *switchStmt );
     87                void previsit( EnumInstType * enumInstType );
     88                void previsit( StructInstType * structInstType );
     89                void previsit( UnionInstType * unionInstType );
     90                void previsit( StructDecl * aggregateDecl );
     91                void previsit( UnionDecl * aggregateDecl );
     92
    10293          private:
    103                 HoistStruct();
    104 
    10594                template< typename AggDecl > void handleAggregate( AggDecl *aggregateDecl );
    10695
    107                 std::list< Declaration * > declsToAdd, declsToAddAfter;
    108                 bool inStruct;
     96                bool inStruct = false;
    10997        };
    11098
     
    305293
    306294        void HoistStruct::hoistStruct( std::list< Declaration * > &translationUnit ) {
    307                 HoistStruct hoister;
    308                 acceptAndAdd( translationUnit, hoister );
    309         }
    310 
    311         HoistStruct::HoistStruct() : inStruct( false ) {
     295                PassVisitor<HoistStruct> hoister;
     296                acceptAll( translationUnit, hoister );
    312297        }
    313298
     
    320305                if ( inStruct ) {
    321306                        // Add elements in stack order corresponding to nesting structure.
    322                         declsToAdd.push_front( aggregateDecl );
    323                         Visitor::visit( aggregateDecl );
     307                        declsToAddBefore.push_front( aggregateDecl );
    324308                } else {
     309                        GuardValue( inStruct );
    325310                        inStruct = true;
    326                         Visitor::visit( aggregateDecl );
    327                         inStruct = false;
    328311                } // if
    329312                // Always remove the hoisted aggregate from the inner structure.
    330                 filter( aggregateDecl->get_members(), isStructOrUnion, false );
    331         }
    332 
    333         void HoistStruct::visit( EnumInstType *structInstType ) {
    334                 if ( structInstType->get_baseEnum() ) {
    335                         declsToAdd.push_front( structInstType->get_baseEnum() );
    336                 }
    337         }
    338 
    339         void HoistStruct::visit( StructInstType *structInstType ) {
    340                 if ( structInstType->get_baseStruct() ) {
    341                         declsToAdd.push_front( structInstType->get_baseStruct() );
    342                 }
    343         }
    344 
    345         void HoistStruct::visit( UnionInstType *structInstType ) {
    346                 if ( structInstType->get_baseUnion() ) {
    347                         declsToAdd.push_front( structInstType->get_baseUnion() );
    348                 }
    349         }
    350 
    351         void HoistStruct::visit( StructDecl *aggregateDecl ) {
     313                GuardAction( [aggregateDecl]() { filter( aggregateDecl->members, isStructOrUnion, false ); } );
     314        }
     315
     316        void HoistStruct::previsit( EnumInstType * inst ) {
     317                if ( inst->baseEnum ) {
     318                        declsToAddBefore.push_front( inst->baseEnum );
     319                }
     320        }
     321
     322        void HoistStruct::previsit( StructInstType * inst ) {
     323                if ( inst->baseStruct ) {
     324                        declsToAddBefore.push_front( inst->baseStruct );
     325                }
     326        }
     327
     328        void HoistStruct::previsit( UnionInstType * inst ) {
     329                if ( inst->baseUnion ) {
     330                        declsToAddBefore.push_front( inst->baseUnion );
     331                }
     332        }
     333
     334        void HoistStruct::previsit( StructDecl * aggregateDecl ) {
    352335                handleAggregate( aggregateDecl );
    353336        }
    354337
    355         void HoistStruct::visit( UnionDecl *aggregateDecl ) {
     338        void HoistStruct::previsit( UnionDecl * aggregateDecl ) {
    356339                handleAggregate( aggregateDecl );
    357         }
    358 
    359         void HoistStruct::visit( CompoundStmt *compoundStmt ) {
    360                 addVisit( compoundStmt, *this );
    361         }
    362 
    363         void HoistStruct::visit( SwitchStmt *switchStmt ) {
    364                 addVisit( switchStmt, *this );
    365340        }
    366341
  • src/SymTab/module.mk

    r9c35431 rc13e8dc8  
    1919       SymTab/Validate.cc \
    2020       SymTab/FixFunction.cc \
    21        SymTab/ImplementationType.cc \
    22        SymTab/TypeEquality.cc \
    2321       SymTab/Autogen.cc
  • src/SynTree/CompoundStmt.cc

    r9c35431 rc13e8dc8  
    2828using std::endl;
    2929
    30 CompoundStmt::CompoundStmt( std::list<Label> labels ) : Statement( labels ) {
     30CompoundStmt::CompoundStmt() : Statement() {
    3131}
    3232
    33 CompoundStmt::CompoundStmt( std::list<Statement *> stmts ) : Statement( noLabels ), kids( stmts ) {
     33CompoundStmt::CompoundStmt( std::list<Statement *> stmts ) : Statement(), kids( stmts ) {
    3434}
    3535
  • src/SynTree/DeclStmt.cc

    r9c35431 rc13e8dc8  
    2323#include "SynTree/Label.h"   // for Label
    2424
    25 DeclStmt::DeclStmt( std::list<Label> labels, Declaration *decl ) : Statement( labels ), decl( decl ) {
     25DeclStmt::DeclStmt( Declaration *decl ) : Statement(), decl( decl ) {
    2626}
    2727
  • src/SynTree/Mutator.cc

    r9c35431 rc13e8dc8  
    203203}
    204204
     205Statement * Mutator::mutate( WithStmt * withStmt ) {
     206        mutateAll( withStmt->exprs, *this );
     207        withStmt->stmt = maybeMutate( withStmt->stmt, *this );
     208        return withStmt;
     209}
     210
    205211NullStmt * Mutator::mutate( NullStmt *nullStmt ) {
    206212        return nullStmt;
  • src/SynTree/Mutator.h

    r9c35431 rc13e8dc8  
    5050        virtual Statement * mutate( FinallyStmt * catchStmt );
    5151        virtual Statement * mutate( WaitForStmt * waitforStmt );
     52        virtual Statement * mutate( WithStmt * withStmt );
    5253        virtual NullStmt * mutate( NullStmt * nullStmt );
    5354        virtual Statement * mutate( DeclStmt * declStmt );
  • src/SynTree/ReferenceToType.cc

    r9c35431 rc13e8dc8  
    7070bool StructInstType::isComplete() const { return baseStruct ? baseStruct->has_body() : false; }
    7171
     72AggregateDecl * StructInstType::getAggr() { return baseStruct; }
     73
    7274void StructInstType::lookup( const std::string &name, std::list< Declaration* > &foundDecls ) const {
    7375        assert( baseStruct );
     
    101103
    102104bool UnionInstType::isComplete() const { return baseUnion ? baseUnion->has_body() : false; }
     105
     106AggregateDecl * UnionInstType::getAggr() { return baseUnion; }
    103107
    104108void UnionInstType::lookup( const std::string &name, std::list< Declaration* > &foundDecls ) const {
  • src/SynTree/Statement.cc

    r9c35431 rc13e8dc8  
    3232using std::endl;
    3333
    34 Statement::Statement( std::list<Label> labels ) : labels( labels ) {}
     34Statement::Statement( const std::list<Label> & labels ) : labels( labels ) {}
    3535
    3636void Statement::print( std::ostream & os, Indenter ) const {
     
    4646Statement::~Statement() {}
    4747
    48 ExprStmt::ExprStmt( std::list<Label> labels, Expression *expr ) : Statement( labels ), expr( expr ) {}
     48ExprStmt::ExprStmt( Expression *expr ) : Statement(), expr( expr ) {}
    4949
    5050ExprStmt::ExprStmt( const ExprStmt &other ) : Statement( other ), expr( maybeClone( other.expr ) ) {}
     
    6060
    6161
    62 AsmStmt::AsmStmt( std::list<Label> labels, bool voltile, Expression *instruction, std::list<Expression *> output, std::list<Expression *> input, std::list<ConstantExpr *> clobber, std::list<Label> gotolabels ) : Statement( labels ), voltile( voltile ), instruction( instruction ), output( output ), input( input ), clobber( clobber ), gotolabels( gotolabels ) {}
     62AsmStmt::AsmStmt( bool voltile, Expression *instruction, std::list<Expression *> output, std::list<Expression *> input, std::list<ConstantExpr *> clobber, std::list<Label> gotolabels ) : Statement(), voltile( voltile ), instruction( instruction ), output( output ), input( input ), clobber( clobber ), gotolabels( gotolabels ) {}
    6363
    6464AsmStmt::AsmStmt( const AsmStmt & other ) : Statement( other ), voltile( other.voltile ), instruction( maybeClone( other.instruction ) ), gotolabels( other.gotolabels ) {
     
    9696const char *BranchStmt::brType[] = { "Goto", "Break", "Continue" };
    9797
    98 BranchStmt::BranchStmt( std::list<Label> labels, Label target, Type type ) throw ( SemanticError ) :
    99         Statement( labels ), originalTarget( target ), target( target ), computedTarget( nullptr ), type( type ) {
     98BranchStmt::BranchStmt( Label target, Type type ) throw ( SemanticError ) :
     99        Statement(), originalTarget( target ), target( target ), computedTarget( nullptr ), type( type ) {
    100100        //actually this is a syntactic error signaled by the parser
    101101        if ( type == BranchStmt::Goto && target.empty() ) {
     
    104104}
    105105
    106 BranchStmt::BranchStmt( std::list<Label> labels, Expression *computedTarget, Type type ) throw ( SemanticError ) :
    107         Statement( labels ), computedTarget( computedTarget ), type( type ) {
     106BranchStmt::BranchStmt( Expression *computedTarget, Type type ) throw ( SemanticError ) :
     107        Statement(), computedTarget( computedTarget ), type( type ) {
    108108        if ( type != BranchStmt::Goto || computedTarget == nullptr ) {
    109109                throw SemanticError("Computed target not valid in branch statement");
     
    118118}
    119119
    120 ReturnStmt::ReturnStmt( std::list<Label> labels, Expression *expr ) : Statement( labels ), expr( expr ) {}
     120ReturnStmt::ReturnStmt( Expression *expr ) : Statement(), expr( expr ) {}
    121121
    122122ReturnStmt::ReturnStmt( const ReturnStmt & other ) : Statement( other ), expr( maybeClone( other.expr ) ) {}
     
    135135}
    136136
    137 IfStmt::IfStmt( std::list<Label> labels, Expression *condition, Statement *thenPart, Statement *elsePart, std::list<Statement *> initialization ):
    138         Statement( labels ), condition( condition ), thenPart( thenPart ), elsePart( elsePart ), initialization( initialization ) {}
     137IfStmt::IfStmt( Expression *condition, Statement *thenPart, Statement *elsePart, std::list<Statement *> initialization ):
     138        Statement(), condition( condition ), thenPart( thenPart ), elsePart( elsePart ), initialization( initialization ) {}
    139139
    140140IfStmt::IfStmt( const IfStmt & other ) :
     
    176176}
    177177
    178 SwitchStmt::SwitchStmt( std::list<Label> labels, Expression * condition, const std::list<Statement *> &statements ):
    179         Statement( labels ), condition( condition ), statements( statements ) {
     178SwitchStmt::SwitchStmt( Expression * condition, const std::list<Statement *> &statements ):
     179        Statement(), condition( condition ), statements( statements ) {
    180180}
    181181
     
    201201}
    202202
    203 CaseStmt::CaseStmt( std::list<Label> labels, Expression *condition, const std::list<Statement *> &statements, bool deflt ) throw ( SemanticError ) :
    204         Statement( labels ), condition( condition ), stmts( statements ), _isDefault( deflt ) {
     203CaseStmt::CaseStmt( Expression *condition, const std::list<Statement *> &statements, bool deflt ) throw ( SemanticError ) :
     204        Statement(), condition( condition ), stmts( statements ), _isDefault( deflt ) {
    205205        if ( isDefault() && condition != 0 ) throw SemanticError("default case with condition: ", condition);
    206206}
     
    216216}
    217217
    218 CaseStmt * CaseStmt::makeDefault( std::list<Label> labels, std::list<Statement *> stmts ) {
    219         return new CaseStmt( labels, 0, stmts, true );
     218CaseStmt * CaseStmt::makeDefault( const std::list<Label> & labels, std::list<Statement *> stmts ) {
     219        CaseStmt * stmt = new CaseStmt( nullptr, stmts, true );
     220        stmt->labels = labels;
     221        return stmt;
    220222}
    221223
     
    233235}
    234236
    235 WhileStmt::WhileStmt( std::list<Label> labels, Expression *condition, Statement *body, bool isDoWhile ):
    236         Statement( labels ), condition( condition), body( body), isDoWhile( isDoWhile) {
     237WhileStmt::WhileStmt( Expression *condition, Statement *body, bool isDoWhile ):
     238        Statement(), condition( condition), body( body), isDoWhile( isDoWhile) {
    237239}
    238240
     
    255257}
    256258
    257 ForStmt::ForStmt( std::list<Label> labels, std::list<Statement *> initialization, Expression *condition, Expression *increment, Statement *body ):
    258         Statement( labels ), initialization( initialization ), condition( condition ), increment( increment ), body( body ) {
     259ForStmt::ForStmt( std::list<Statement *> initialization, Expression *condition, Expression *increment, Statement *body ):
     260        Statement(), initialization( initialization ), condition( condition ), increment( increment ), body( body ) {
    259261}
    260262
     
    302304}
    303305
    304 ThrowStmt::ThrowStmt( std::list<Label> labels, Kind kind, Expression * expr, Expression * target ) :
    305                 Statement( labels ), kind(kind), expr(expr), target(target)     {
     306ThrowStmt::ThrowStmt( Kind kind, Expression * expr, Expression * target ) :
     307                Statement(), kind(kind), expr(expr), target(target)     {
    306308        assertf(Resume == kind || nullptr == target, "Non-local termination throw is not accepted." );
    307309}
     
    326328}
    327329
    328 TryStmt::TryStmt( std::list<Label> labels, CompoundStmt *tryBlock, std::list<CatchStmt *> &handlers, FinallyStmt *finallyBlock ) :
    329         Statement( labels ), block( tryBlock ),  handlers( handlers ), finallyBlock( finallyBlock ) {
     330TryStmt::TryStmt( CompoundStmt *tryBlock, std::list<CatchStmt *> &handlers, FinallyStmt *finallyBlock ) :
     331        Statement(), block( tryBlock ),  handlers( handlers ), finallyBlock( finallyBlock ) {
    330332}
    331333
     
    359361}
    360362
    361 CatchStmt::CatchStmt( std::list<Label> labels, Kind kind, Declaration *decl, Expression *cond, Statement *body ) :
    362         Statement( labels ), kind ( kind ), decl ( decl ), cond ( cond ), body( body ) {
     363CatchStmt::CatchStmt( Kind kind, Declaration *decl, Expression *cond, Statement *body ) :
     364        Statement(), kind ( kind ), decl ( decl ), cond ( cond ), body( body ) {
    363365                assertf( decl, "Catch clause must have a declaration." );
    364366}
     
    391393
    392394
    393 FinallyStmt::FinallyStmt( std::list<Label> labels, CompoundStmt *block ) : Statement( labels ), block( block ) {
    394         assert( labels.empty() ); // finally statement cannot be labeled
     395FinallyStmt::FinallyStmt( CompoundStmt *block ) : Statement(), block( block ) {
    395396}
    396397
     
    408409}
    409410
    410 WaitForStmt::WaitForStmt( std::list<Label> labels ) : Statement( labels ) {
     411WaitForStmt::WaitForStmt() : Statement() {
    411412        timeout.time      = nullptr;
    412413        timeout.statement = nullptr;
     
    455456}
    456457
    457 NullStmt::NullStmt( std::list<Label> labels ) : Statement( labels ) {}
    458 NullStmt::NullStmt() : Statement( std::list<Label>() ) {}
     458
     459WithStmt::WithStmt( const std::list< Expression * > & exprs, Statement * stmt ) : Statement(), exprs( exprs ), stmt( stmt ) {}
     460WithStmt::WithStmt( const WithStmt & other ) : Statement( other ), stmt( maybeClone( other.stmt ) ) {
     461        cloneAll( other.exprs, exprs );
     462}
     463WithStmt::~WithStmt() {
     464        deleteAll( exprs );
     465        delete stmt;
     466}
     467
     468void WithStmt::print( std::ostream & os, Indenter indent ) const {
     469        os << "With statement" << endl;
     470        os << indent << "... with statement:" << endl << indent+1;
     471        stmt->print( os, indent+1 );
     472}
     473
     474
     475NullStmt::NullStmt( const std::list<Label> & labels ) : Statement( labels ) {
     476}
    459477
    460478void NullStmt::print( std::ostream &os, Indenter ) const {
     
    462480}
    463481
    464 ImplicitCtorDtorStmt::ImplicitCtorDtorStmt( Statement * callStmt ) : Statement( std::list<Label>() ), callStmt( callStmt ) {
     482ImplicitCtorDtorStmt::ImplicitCtorDtorStmt( Statement * callStmt ) : Statement(), callStmt( callStmt ) {
    465483        assert( callStmt );
    466484}
  • src/SynTree/Statement.h

    r9c35431 rc13e8dc8  
    3737        std::list<Label> labels;
    3838
    39         Statement( std::list<Label> labels );
     39        Statement( const std::list<Label> & labels = {} );
    4040        virtual ~Statement();
    4141
     
    5353        std::list<Statement*> kids;
    5454
    55         CompoundStmt( std::list<Label> labels );
     55        CompoundStmt();
    5656        CompoundStmt( std::list<Statement *> stmts );
    5757        CompoundStmt( const CompoundStmt &other );
     
    7070class NullStmt : public Statement {
    7171  public:
    72         NullStmt();
    73         NullStmt( std::list<Label> labels );
     72        NullStmt( const std::list<Label> & labels = {} );
    7473
    7574        virtual NullStmt *clone() const override { return new NullStmt( *this ); }
     
    8382        Expression *expr;
    8483
    85         ExprStmt( std::list<Label> labels, Expression *expr );
     84        ExprStmt( Expression *expr );
    8685        ExprStmt( const ExprStmt &other );
    8786        virtual ~ExprStmt();
     
    104103        std::list<Label> gotolabels;
    105104
    106         AsmStmt( std::list<Label> labels, bool voltile, Expression *instruction, std::list<Expression *> output, std::list<Expression *> input, std::list<ConstantExpr *> clobber, std::list<Label> gotolabels );
     105        AsmStmt( bool voltile, Expression *instruction, std::list<Expression *> output, std::list<Expression *> input, std::list<ConstantExpr *> clobber, std::list<Label> gotolabels );
    107106        AsmStmt( const AsmStmt &other );
    108107        virtual ~AsmStmt();
     
    134133        std::list<Statement *> initialization;
    135134
    136         IfStmt( std::list<Label> labels, Expression *condition, Statement *thenPart, Statement *elsePart,
     135        IfStmt( Expression *condition, Statement *thenPart, Statement *elsePart,
    137136                        std::list<Statement *> initialization = std::list<Statement *>() );
    138137        IfStmt( const IfStmt &other );
     
    158157        std::list<Statement *> statements;
    159158
    160         SwitchStmt( std::list<Label> labels, Expression *condition, const std::list<Statement *> &statements );
     159        SwitchStmt( Expression *condition, const std::list<Statement *> &statements );
    161160        SwitchStmt( const SwitchStmt &other );
    162161        virtual ~SwitchStmt();
     
    180179        std::list<Statement *> stmts;
    181180
    182         CaseStmt( std::list<Label> labels, Expression *conditions, const std::list<Statement *> &stmts, bool isdef = false ) throw(SemanticError);
     181        CaseStmt( Expression *conditions, const std::list<Statement *> &stmts, bool isdef = false ) throw(SemanticError);
    183182        CaseStmt( const CaseStmt &other );
    184183        virtual ~CaseStmt();
    185184
    186         static CaseStmt * makeDefault( std::list<Label> labels = std::list<Label>(), std::list<Statement *> stmts = std::list<Statement *>() );
     185        static CaseStmt * makeDefault( const std::list<Label> & labels = {}, std::list<Statement *> stmts = std::list<Statement *>() );
    187186
    188187        bool isDefault() const { return _isDefault; }
     
    210209        bool isDoWhile;
    211210
    212         WhileStmt( std::list<Label> labels, Expression *condition,
     211        WhileStmt( Expression *condition,
    213212               Statement *body, bool isDoWhile = false );
    214213        WhileStmt( const WhileStmt &other );
     
    235234        Statement *body;
    236235
    237         ForStmt( std::list<Label> labels, std::list<Statement *> initialization,
     236        ForStmt( std::list<Statement *> initialization,
    238237             Expression *condition = 0, Expression *increment = 0, Statement *body = 0 );
    239238        ForStmt( const ForStmt &other );
     
    264263        Type type;
    265264
    266         BranchStmt( std::list<Label> labels, Label target, Type ) throw (SemanticError);
    267         BranchStmt( std::list<Label> labels, Expression *computedTarget, Type ) throw (SemanticError);
     265        BranchStmt( Label target, Type ) throw (SemanticError);
     266        BranchStmt( Expression *computedTarget, Type ) throw (SemanticError);
    268267
    269268        Label get_originalTarget() { return originalTarget; }
     
    289288        Expression *expr;
    290289
    291         ReturnStmt( std::list<Label> labels, Expression *expr );
     290        ReturnStmt( Expression *expr );
    292291        ReturnStmt( const ReturnStmt &other );
    293292        virtual ~ReturnStmt();
     
    310309        Expression * target;
    311310
    312         ThrowStmt( std::list<Label> labels, Kind kind, Expression * expr, Expression * target = nullptr );
     311        ThrowStmt( Kind kind, Expression * expr, Expression * target = nullptr );
    313312        ThrowStmt( const ThrowStmt &other );
    314313        virtual ~ThrowStmt();
     
    332331        FinallyStmt * finallyBlock;
    333332
    334         TryStmt( std::list<Label> labels, CompoundStmt *tryBlock, std::list<CatchStmt *> &handlers, FinallyStmt *finallyBlock = 0 );
     333        TryStmt( CompoundStmt *tryBlock, std::list<CatchStmt *> &handlers, FinallyStmt *finallyBlock = 0 );
    335334        TryStmt( const TryStmt &other );
    336335        virtual ~TryStmt();
     
    358357        Statement *body;
    359358
    360         CatchStmt( std::list<Label> labels, Kind kind, Declaration *decl,
     359        CatchStmt( Kind kind, Declaration *decl,
    361360                   Expression *cond, Statement *body );
    362361        CatchStmt( const CatchStmt &other );
     
    381380        CompoundStmt *block;
    382381
    383         FinallyStmt( std::list<Label> labels, CompoundStmt *block );
     382        FinallyStmt( CompoundStmt *block );
    384383        FinallyStmt( const FinallyStmt &other );
    385384        virtual ~FinallyStmt();
     
    408407        };
    409408
    410         WaitForStmt( std::list<Label> labels = noLabels );
     409        WaitForStmt();
    411410        WaitForStmt( const WaitForStmt & );
    412411        virtual ~WaitForStmt();
     
    432431};
    433432
     433class WithStmt : public Statement {
     434public:
     435        std::list< Expression * > exprs;
     436        Statement * stmt;
     437
     438        WithStmt( const std::list< Expression * > & exprs, Statement * stmt );
     439        WithStmt( const WithStmt & other );
     440        virtual ~WithStmt();
     441
     442        virtual WithStmt * clone() const override { return new WithStmt( *this ); }
     443        virtual void accept( Visitor & v ) override { v.visit( this ); }
     444        virtual Statement * acceptMutator( Mutator & m )  override { return m.mutate( this ); }
     445        virtual void print( std::ostream & os, Indenter indent = {} ) const override;
     446};
     447
    434448
    435449// represents a declaration that occurs as part of a compound statement
     
    438452        Declaration *decl;
    439453
    440         DeclStmt( std::list<Label> labels, Declaration *decl );
     454        DeclStmt( Declaration *decl );
    441455        DeclStmt( const DeclStmt &other );
    442456        virtual ~DeclStmt();
  • src/SynTree/SynTree.h

    r9c35431 rc13e8dc8  
    5555class FinallyStmt;
    5656class WaitForStmt;
     57class WithStmt;
    5758class NullStmt;
    5859class DeclStmt;
  • src/SynTree/TupleExpr.cc

    r9c35431 rc13e8dc8  
    2323#include "Declaration.h"        // for ObjectDecl
    2424#include "Expression.h"         // for Expression, TupleExpr, TupleIndexExpr
    25 #include "SynTree/Label.h"      // for Label, noLabels
     25#include "SynTree/Label.h"      // for Label
    2626#include "SynTree/Statement.h"  // for CompoundStmt, DeclStmt, ExprStmt, Sta...
    2727#include "Tuples/Tuples.h"      // for makeTupleType
     
    8989        // convert internally into a StmtExpr which contains the declarations and produces the tuple of the assignments
    9090        set_result( Tuples::makeTupleType( assigns ) );
    91         CompoundStmt * compoundStmt = new CompoundStmt( noLabels );
     91        CompoundStmt * compoundStmt = new CompoundStmt();
    9292        std::list< Statement * > & stmts = compoundStmt->get_kids();
    9393        for ( ObjectDecl * obj : tempDecls ) {
    94                 stmts.push_back( new DeclStmt( noLabels, obj ) );
     94                stmts.push_back( new DeclStmt( obj ) );
    9595        }
    9696        TupleExpr * tupleExpr = new TupleExpr( assigns );
    9797        assert( tupleExpr->get_result() );
    98         stmts.push_back( new ExprStmt( noLabels, tupleExpr ) );
     98        stmts.push_back( new ExprStmt( tupleExpr ) );
    9999        stmtExpr = new StmtExpr( compoundStmt );
    100100}
  • src/SynTree/Type.h

    r9c35431 rc13e8dc8  
    178178        virtual bool isComplete() const { return true; }
    179179
     180        virtual AggregateDecl * getAggr() {     assertf( false, "Non-aggregate type: %s", toString( this ).c_str() ); }
     181
    180182        virtual Type *clone() const = 0;
    181183        virtual void accept( Visitor & v ) = 0;
     
    405407        virtual bool isComplete() const override;
    406408
     409        virtual AggregateDecl * getAggr() override;
     410
    407411        /// Looks up the members of this struct named "name" and places them into "foundDecls".
    408412        /// Clones declarations into "foundDecls", caller responsible for freeing
     
    436440
    437441        virtual bool isComplete() const override;
     442
     443        virtual AggregateDecl * getAggr() override;
    438444
    439445        /// looks up the members of this union named "name" and places them into "foundDecls"
  • src/SynTree/Visitor.cc

    r9c35431 rc13e8dc8  
    174174}
    175175
    176 void Visitor::visit( __attribute__((unused)) NullStmt *nullStmt ) {
     176void Visitor::visit( WithStmt * withStmt ) {
     177        acceptAll( withStmt->exprs, *this );
     178        maybeAccept( withStmt->stmt, *this );
     179}
     180
     181void Visitor::visit( NullStmt * ) {
    177182}
    178183
  • src/SynTree/Visitor.h

    r9c35431 rc13e8dc8  
    5252        virtual void visit( FinallyStmt * finallyStmt );
    5353        virtual void visit( WaitForStmt * waitforStmt );
     54        virtual void visit( WithStmt * withStmt );
    5455        virtual void visit( NullStmt * nullStmt );
    5556        virtual void visit( DeclStmt * declStmt );
  • src/Tuples/TupleAssignment.cc

    r9c35431 rc13e8dc8  
    2323
    2424#include "CodeGen/OperatorTable.h"
     25#include "Common/PassVisitor.h"
    2526#include "Common/UniqueName.h"             // for UniqueName
    2627#include "Common/utility.h"                // for zipWith
     
    6162                struct Matcher {
    6263                  public:
    63                         Matcher( TupleAssignSpotter &spotter, const ResolvExpr::AltList& lhs, const 
     64                        Matcher( TupleAssignSpotter &spotter, const ResolvExpr::AltList& lhs, const
    6465                                ResolvExpr::AltList& rhs );
    6566                        virtual ~Matcher() {}
     
    7576                struct MassAssignMatcher : public Matcher {
    7677                  public:
    77                         MassAssignMatcher( TupleAssignSpotter &spotter, const ResolvExpr::AltList& lhs, 
     78                        MassAssignMatcher( TupleAssignSpotter &spotter, const ResolvExpr::AltList& lhs,
    7879                                const ResolvExpr::AltList& rhs ) : Matcher(spotter, lhs, rhs) {}
    7980                        virtual void match( std::list< Expression * > &out );
     
    8283                struct MultipleAssignMatcher : public Matcher {
    8384                  public:
    84                         MultipleAssignMatcher( TupleAssignSpotter &spotter, const ResolvExpr::AltList& lhs, 
     85                        MultipleAssignMatcher( TupleAssignSpotter &spotter, const ResolvExpr::AltList& lhs,
    8586                                const ResolvExpr::AltList& rhs ) : Matcher(spotter, lhs, rhs) {}
    8687                        virtual void match( std::list< Expression * > &out );
     
    119120        }
    120121
    121         void handleTupleAssignment( ResolvExpr::AlternativeFinder & currentFinder, UntypedExpr * expr, 
     122        void handleTupleAssignment( ResolvExpr::AlternativeFinder & currentFinder, UntypedExpr * expr,
    122123                                std::vector<ResolvExpr::AlternativeFinder> &args ) {
    123124                TupleAssignSpotter spotter( currentFinder );
     
    128129                : currentFinder(f) {}
    129130
    130         void TupleAssignSpotter::spot( UntypedExpr * expr, 
     131        void TupleAssignSpotter::spot( UntypedExpr * expr,
    131132                        std::vector<ResolvExpr::AlternativeFinder> &args ) {
    132133                if (  NameExpr *op = dynamic_cast< NameExpr * >(expr->get_function()) ) {
     
    137138                                if ( args.size() == 0 ) return;
    138139
    139                                 // if an assignment only takes 1 argument, that's odd, but maybe someone wrote 
     140                                // if an assignment only takes 1 argument, that's odd, but maybe someone wrote
    140141                                // the function, in which case AlternativeFinder will handle it normally
    141142                                if ( args.size() == 1 && CodeGen::isAssignment( fname ) ) return;
     
    146147                                        if ( ! refToTuple(lhsAlt.expr) ) continue;
    147148
    148                                         // explode is aware of casts - ensure every LHS expression is sent into explode 
     149                                        // explode is aware of casts - ensure every LHS expression is sent into explode
    149150                                        // with a reference cast
    150                                         // xxx - this seems to change the alternatives before the normal 
     151                                        // xxx - this seems to change the alternatives before the normal
    151152                                        //  AlternativeFinder flow; maybe this is desired?
    152153                                        if ( ! dynamic_cast<CastExpr*>( lhsAlt.expr ) ) {
    153                                                 lhsAlt.expr = new CastExpr( lhsAlt.expr, 
    154                                                                 new ReferenceType( Type::Qualifiers(), 
     154                                                lhsAlt.expr = new CastExpr( lhsAlt.expr,
     155                                                                new ReferenceType( Type::Qualifiers(),
    155156                                                                        lhsAlt.expr->get_result()->clone() ) );
    156157                                        }
     
    160161                                        explode( lhsAlt, currentFinder.get_indexer(), back_inserter(lhs), true );
    161162                                        for ( ResolvExpr::Alternative& alt : lhs ) {
    162                                                 // each LHS value must be a reference - some come in with a cast expression, 
     163                                                // each LHS value must be a reference - some come in with a cast expression,
    163164                                                // if not just cast to reference here
    164165                                                if ( ! dynamic_cast<ReferenceType*>( alt.expr->get_result() ) ) {
    165                                                         alt.expr = new CastExpr( alt.expr, 
    166                                                                 new ReferenceType( Type::Qualifiers(), 
     166                                                        alt.expr = new CastExpr( alt.expr,
     167                                                                new ReferenceType( Type::Qualifiers(),
    167168                                                                        alt.expr->get_result()->clone() ) );
    168169                                                }
     
    178179                                                // TODO build iterative version of this instead of using combos
    179180                                                std::vector< ResolvExpr::AltList > rhsAlts;
    180                                                 combos( std::next(args.begin(), 1), args.end(), 
     181                                                combos( std::next(args.begin(), 1), args.end(),
    181182                                                        std::back_inserter( rhsAlts ) );
    182183                                                for ( const ResolvExpr::AltList& rhsAlt : rhsAlts ) {
    183184                                                        // multiple assignment
    184185                                                        ResolvExpr::AltList rhs;
    185                                                         explode( rhsAlt, currentFinder.get_indexer(), 
     186                                                        explode( rhsAlt, currentFinder.get_indexer(),
    186187                                                                std::back_inserter(rhs), true );
    187188                                                        matcher.reset( new MultipleAssignMatcher( *this, lhs, rhs ) );
     
    193194                                                        if ( isTuple(rhsAlt.expr) ) {
    194195                                                                // multiple assignment
    195                                                                 explode( rhsAlt, currentFinder.get_indexer(), 
     196                                                                explode( rhsAlt, currentFinder.get_indexer(),
    196197                                                                        std::back_inserter(rhs), true );
    197198                                                                matcher.reset( new MultipleAssignMatcher( *this, lhs, rhs ) );
     
    222223                ResolvExpr::AltList current;
    223224                // now resolve new assignments
    224                 for ( std::list< Expression * >::iterator i = new_assigns.begin(); 
     225                for ( std::list< Expression * >::iterator i = new_assigns.begin();
    225226                                i != new_assigns.end(); ++i ) {
    226227                        PRINT(
     
    229230                        )
    230231
    231                         ResolvExpr::AlternativeFinder finder{ currentFinder.get_indexer(), 
     232                        ResolvExpr::AlternativeFinder finder{ currentFinder.get_indexer(),
    232233                                currentFinder.get_environ() };
    233234                        try {
     
    253254                // xxx -- was push_front
    254255                currentFinder.get_alternatives().push_back( ResolvExpr::Alternative(
    255                         new TupleAssignExpr(solved_assigns, matcher->tmpDecls), matcher->compositeEnv, 
     256                        new TupleAssignExpr(solved_assigns, matcher->tmpDecls), matcher->compositeEnv,
    256257                        ResolvExpr::sumCost( current ) + matcher->baseCost ) );
    257258        }
    258259
    259         TupleAssignSpotter::Matcher::Matcher( TupleAssignSpotter &spotter, 
    260                 const ResolvExpr::AltList &lhs, const ResolvExpr::AltList &rhs ) 
    261         : lhs(lhs), rhs(rhs), spotter(spotter), 
     260        TupleAssignSpotter::Matcher::Matcher( TupleAssignSpotter &spotter,
     261                const ResolvExpr::AltList &lhs, const ResolvExpr::AltList &rhs )
     262        : lhs(lhs), rhs(rhs), spotter(spotter),
    262263          baseCost( ResolvExpr::sumCost( lhs ) + ResolvExpr::sumCost( rhs ) ) {
    263264                simpleCombineEnvironments( lhs.begin(), lhs.end(), compositeEnv );
     
    277278        // xxx - maybe this should happen in alternative finder for every StmtExpr?
    278279        // xxx - it's possible that these environments could contain some useful information. Maybe the right thing to do is aggregate the environments and pass the aggregate back to be added into the compositeEnv
    279         struct EnvRemover : public Visitor {
    280                 virtual void visit( ExprStmt * stmt ) {
    281                         delete stmt->get_expr()->get_env();
    282                         stmt->get_expr()->set_env( nullptr );
    283                         Visitor::visit( stmt );
     280        struct EnvRemover {
     281                void previsit( ExprStmt * stmt ) {
     282                        delete stmt->expr->env;
     283                        stmt->expr->env = nullptr;
    284284                }
    285285        };
     
    293293                        ret->set_init( ctorInit );
    294294                        ResolvExpr::resolveCtorInit( ctorInit, spotter.currentFinder.get_indexer() ); // resolve ctor/dtors for the new object
    295                         EnvRemover rm; // remove environments from subexpressions of StmtExprs
     295                        PassVisitor<EnvRemover> rm; // remove environments from subexpressions of StmtExprs
    296296                        ctorInit->accept( rm );
    297297                }
  • src/Tuples/TupleExpansion.cc

    r9c35431 rc13e8dc8  
    315315        namespace {
    316316                /// determines if impurity (read: side-effects) may exist in a piece of code. Currently gives a very crude approximation, wherein any function call expression means the code may be impure
    317                 class ImpurityDetector : public Visitor {
    318                 public:
     317                struct ImpurityDetector : public WithShortCircuiting {
    319318                        ImpurityDetector( bool ignoreUnique ) : ignoreUnique( ignoreUnique ) {}
    320319
    321                         typedef Visitor Parent;
    322                         virtual void visit( ApplicationExpr * appExpr ) {
     320                        void previsit( ApplicationExpr * appExpr ) {
     321                                visit_children = false;
    323322                                if ( DeclarationWithType * function = InitTweak::getFunction( appExpr ) ) {
    324323                                        if ( function->get_linkage() == LinkageSpec::Intrinsic ) {
    325324                                                if ( function->get_name() == "*?" || function->get_name() == "?[?]" ) {
    326325                                                        // intrinsic dereference, subscript are pure, but need to recursively look for impurity
    327                                                         Parent::visit( appExpr );
     326                                                        visit_children = true;
    328327                                                        return;
    329328                                                }
     
    332331                                maybeImpure = true;
    333332                        }
    334                         virtual void visit( UntypedExpr * ) { maybeImpure = true; }
    335                         virtual void visit( UniqueExpr * unq ) {
     333                        void previsit( UntypedExpr * ) { maybeImpure = true; visit_children = false; }
     334                        void previsit( UniqueExpr * ) {
    336335                                if ( ignoreUnique ) {
    337336                                        // bottom out at unique expression.
    338337                                        // The existence of a unique expression doesn't change the purity of an expression.
    339338                                        // That is, even if the wrapped expression is impure, the wrapper protects the rest of the expression.
     339                                        visit_children = false;
    340340                                        return;
    341341                                }
    342                                 maybeAccept( unq->expr, *this );
    343342                        }
    344343
     
    349348
    350349        bool maybeImpure( Expression * expr ) {
    351                 ImpurityDetector detector( false );
     350                PassVisitor<ImpurityDetector> detector( false );
    352351                expr->accept( detector );
    353                 return detector.maybeImpure;
     352                return detector.pass.maybeImpure;
    354353        }
    355354
    356355        bool maybeImpureIgnoreUnique( Expression * expr ) {
    357                 ImpurityDetector detector( true );
     356                PassVisitor<ImpurityDetector> detector( true );
    358357                expr->accept( detector );
    359                 return detector.maybeImpure;
     358                return detector.pass.maybeImpure;
    360359        }
    361360} // namespace Tuples
  • src/driver/cfa.cc

    r9c35431 rc13e8dc8  
    275275                args[nargs] = "-Xlinker";
    276276                nargs += 1;
    277                 args[nargs] = "--undefined=__lib_debug_write";
     277                args[nargs] = "--undefined=__cfaabi_dbg_bits_write";
    278278                nargs += 1;
    279279
  • src/libcfa/Makefile.am

    r9c35431 rc13e8dc8  
    5555
    5656libobjs = ${headers:=.o}
    57 libsrc = libcfa-prelude.c interpose.c libhdr/libdebug.c ${headers:=.c} \
     57libsrc = libcfa-prelude.c interpose.c bits/debug.c ${headers:=.c} \
    5858         assert.c exception.c virtual.c
    5959
     
    100100        math                            \
    101101        gmp                             \
     102        bits/align.h            \
    102103        bits/containers.h               \
    103104        bits/defs.h             \
     105        bits/debug.h            \
    104106        bits/locks.h            \
    105         concurrency/invoke.h    \
    106         libhdr.h                        \
    107         libhdr/libalign.h       \
    108         libhdr/libdebug.h       \
    109         libhdr/libtools.h
     107        concurrency/invoke.h
    110108
    111109CLEANFILES = libcfa-prelude.c
  • src/libcfa/Makefile.in

    r9c35431 rc13e8dc8  
    149149libcfa_d_a_LIBADD =
    150150am__libcfa_d_a_SOURCES_DIST = libcfa-prelude.c interpose.c \
    151         libhdr/libdebug.c fstream.c iostream.c iterator.c limits.c \
     151        bits/debug.c fstream.c iostream.c iterator.c limits.c \
    152152        rational.c stdlib.c containers/maybe.c containers/pair.c \
    153153        containers/result.c containers/vector.c \
     
    175175@BUILD_CONCURRENCY_TRUE@        concurrency/libcfa_d_a-preemption.$(OBJEXT)
    176176am__objects_4 = libcfa_d_a-libcfa-prelude.$(OBJEXT) \
    177         libcfa_d_a-interpose.$(OBJEXT) \
    178         libhdr/libcfa_d_a-libdebug.$(OBJEXT) $(am__objects_2) \
    179         libcfa_d_a-assert.$(OBJEXT) libcfa_d_a-exception.$(OBJEXT) \
    180         libcfa_d_a-virtual.$(OBJEXT) $(am__objects_3)
     177        libcfa_d_a-interpose.$(OBJEXT) bits/libcfa_d_a-debug.$(OBJEXT) \
     178        $(am__objects_2) libcfa_d_a-assert.$(OBJEXT) \
     179        libcfa_d_a-exception.$(OBJEXT) libcfa_d_a-virtual.$(OBJEXT) \
     180        $(am__objects_3)
    181181am_libcfa_d_a_OBJECTS = $(am__objects_4)
    182182libcfa_d_a_OBJECTS = $(am_libcfa_d_a_OBJECTS)
    183183libcfa_a_AR = $(AR) $(ARFLAGS)
    184184libcfa_a_LIBADD =
    185 am__libcfa_a_SOURCES_DIST = libcfa-prelude.c interpose.c \
    186         libhdr/libdebug.c fstream.c iostream.c iterator.c limits.c \
    187         rational.c stdlib.c containers/maybe.c containers/pair.c \
    188         containers/result.c containers/vector.c \
    189         concurrency/coroutine.c concurrency/thread.c \
    190         concurrency/kernel.c concurrency/monitor.c assert.c \
    191         exception.c virtual.c concurrency/CtxSwitch-@MACHINE_TYPE@.S \
    192         concurrency/alarm.c concurrency/invoke.c \
    193         concurrency/preemption.c
     185am__libcfa_a_SOURCES_DIST = libcfa-prelude.c interpose.c bits/debug.c \
     186        fstream.c iostream.c iterator.c limits.c rational.c stdlib.c \
     187        containers/maybe.c containers/pair.c containers/result.c \
     188        containers/vector.c concurrency/coroutine.c \
     189        concurrency/thread.c concurrency/kernel.c \
     190        concurrency/monitor.c assert.c exception.c virtual.c \
     191        concurrency/CtxSwitch-@MACHINE_TYPE@.S concurrency/alarm.c \
     192        concurrency/invoke.c concurrency/preemption.c
    194193@BUILD_CONCURRENCY_TRUE@am__objects_5 = concurrency/libcfa_a-coroutine.$(OBJEXT) \
    195194@BUILD_CONCURRENCY_TRUE@        concurrency/libcfa_a-thread.$(OBJEXT) \
     
    208207@BUILD_CONCURRENCY_TRUE@        concurrency/libcfa_a-preemption.$(OBJEXT)
    209208am__objects_8 = libcfa_a-libcfa-prelude.$(OBJEXT) \
    210         libcfa_a-interpose.$(OBJEXT) \
    211         libhdr/libcfa_a-libdebug.$(OBJEXT) $(am__objects_6) \
    212         libcfa_a-assert.$(OBJEXT) libcfa_a-exception.$(OBJEXT) \
    213         libcfa_a-virtual.$(OBJEXT) $(am__objects_7)
     209        libcfa_a-interpose.$(OBJEXT) bits/libcfa_a-debug.$(OBJEXT) \
     210        $(am__objects_6) libcfa_a-assert.$(OBJEXT) \
     211        libcfa_a-exception.$(OBJEXT) libcfa_a-virtual.$(OBJEXT) \
     212        $(am__objects_7)
    214213am_libcfa_a_OBJECTS = $(am__objects_8)
    215214libcfa_a_OBJECTS = $(am_libcfa_a_OBJECTS)
     
    264263        containers/result containers/vector concurrency/coroutine \
    265264        concurrency/thread concurrency/kernel concurrency/monitor \
    266         ${shell echo stdhdr/*} math gmp bits/containers.h bits/defs.h \
    267         bits/locks.h concurrency/invoke.h libhdr.h libhdr/libalign.h \
    268         libhdr/libdebug.h libhdr/libtools.h
     265        ${shell echo stdhdr/*} math gmp bits/align.h bits/containers.h \
     266        bits/defs.h bits/debug.h bits/locks.h concurrency/invoke.h
    269267HEADERS = $(nobase_cfa_include_HEADERS)
    270268am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP)
     
    424422        containers/vector $(am__append_3)
    425423libobjs = ${headers:=.o}
    426 libsrc = libcfa-prelude.c interpose.c libhdr/libdebug.c ${headers:=.c} \
     424libsrc = libcfa-prelude.c interpose.c bits/debug.c ${headers:=.c} \
    427425        assert.c exception.c virtual.c $(am__append_4)
    428426libcfa_a_SOURCES = ${libsrc}
     
    437435        math                            \
    438436        gmp                             \
     437        bits/align.h            \
    439438        bits/containers.h               \
    440439        bits/defs.h             \
     440        bits/debug.h            \
    441441        bits/locks.h            \
    442         concurrency/invoke.h    \
    443         libhdr.h                        \
    444         libhdr/libalign.h       \
    445         libhdr/libdebug.h       \
    446         libhdr/libtools.h
     442        concurrency/invoke.h
    447443
    448444CLEANFILES = libcfa-prelude.c
     
    511507clean-libLIBRARIES:
    512508        -test -z "$(lib_LIBRARIES)" || rm -f $(lib_LIBRARIES)
    513 libhdr/$(am__dirstamp):
    514         @$(MKDIR_P) libhdr
    515         @: > libhdr/$(am__dirstamp)
    516 libhdr/$(DEPDIR)/$(am__dirstamp):
    517         @$(MKDIR_P) libhdr/$(DEPDIR)
    518         @: > libhdr/$(DEPDIR)/$(am__dirstamp)
    519 libhdr/libcfa_d_a-libdebug.$(OBJEXT): libhdr/$(am__dirstamp) \
    520         libhdr/$(DEPDIR)/$(am__dirstamp)
     509bits/$(am__dirstamp):
     510        @$(MKDIR_P) bits
     511        @: > bits/$(am__dirstamp)
     512bits/$(DEPDIR)/$(am__dirstamp):
     513        @$(MKDIR_P) bits/$(DEPDIR)
     514        @: > bits/$(DEPDIR)/$(am__dirstamp)
     515bits/libcfa_d_a-debug.$(OBJEXT): bits/$(am__dirstamp) \
     516        bits/$(DEPDIR)/$(am__dirstamp)
    521517containers/$(am__dirstamp):
    522518        @$(MKDIR_P) containers
     
    563559        $(AM_V_AR)$(libcfa_d_a_AR) libcfa-d.a $(libcfa_d_a_OBJECTS) $(libcfa_d_a_LIBADD)
    564560        $(AM_V_at)$(RANLIB) libcfa-d.a
    565 libhdr/libcfa_a-libdebug.$(OBJEXT): libhdr/$(am__dirstamp) \
    566         libhdr/$(DEPDIR)/$(am__dirstamp)
     561bits/libcfa_a-debug.$(OBJEXT): bits/$(am__dirstamp) \
     562        bits/$(DEPDIR)/$(am__dirstamp)
    567563containers/libcfa_a-maybe.$(OBJEXT): containers/$(am__dirstamp) \
    568564        containers/$(DEPDIR)/$(am__dirstamp)
     
    596592mostlyclean-compile:
    597593        -rm -f *.$(OBJEXT)
     594        -rm -f bits/*.$(OBJEXT)
    598595        -rm -f concurrency/*.$(OBJEXT)
    599596        -rm -f containers/*.$(OBJEXT)
    600         -rm -f libhdr/*.$(OBJEXT)
    601597
    602598distclean-compile:
     
    625621@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libcfa_d_a-stdlib.Po@am__quote@
    626622@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libcfa_d_a-virtual.Po@am__quote@
     623@AMDEP_TRUE@@am__include@ @am__quote@bits/$(DEPDIR)/libcfa_a-debug.Po@am__quote@
     624@AMDEP_TRUE@@am__include@ @am__quote@bits/$(DEPDIR)/libcfa_d_a-debug.Po@am__quote@
    627625@AMDEP_TRUE@@am__include@ @am__quote@concurrency/$(DEPDIR)/CtxSwitch-@MACHINE_TYPE@.Po@am__quote@
    628626@AMDEP_TRUE@@am__include@ @am__quote@concurrency/$(DEPDIR)/libcfa_a-alarm.Po@am__quote@
     
    648646@AMDEP_TRUE@@am__include@ @am__quote@containers/$(DEPDIR)/libcfa_d_a-result.Po@am__quote@
    649647@AMDEP_TRUE@@am__include@ @am__quote@containers/$(DEPDIR)/libcfa_d_a-vector.Po@am__quote@
    650 @AMDEP_TRUE@@am__include@ @am__quote@libhdr/$(DEPDIR)/libcfa_a-libdebug.Po@am__quote@
    651 @AMDEP_TRUE@@am__include@ @am__quote@libhdr/$(DEPDIR)/libcfa_d_a-libdebug.Po@am__quote@
    652648
    653649.S.o:
     
    704700@am__fastdepCC_FALSE@   $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_d_a_CFLAGS) $(CFLAGS) -c -o libcfa_d_a-interpose.obj `if test -f 'interpose.c'; then $(CYGPATH_W) 'interpose.c'; else $(CYGPATH_W) '$(srcdir)/interpose.c'; fi`
    705701
    706 libhdr/libcfa_d_a-libdebug.o: libhdr/libdebug.c
    707 @am__fastdepCC_TRUE@    $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_d_a_CFLAGS) $(CFLAGS) -MT libhdr/libcfa_d_a-libdebug.o -MD -MP -MF libhdr/$(DEPDIR)/libcfa_d_a-libdebug.Tpo -c -o libhdr/libcfa_d_a-libdebug.o `test -f 'libhdr/libdebug.c' || echo '$(srcdir)/'`libhdr/libdebug.c
    708 @am__fastdepCC_TRUE@    $(AM_V_at)$(am__mv) libhdr/$(DEPDIR)/libcfa_d_a-libdebug.Tpo libhdr/$(DEPDIR)/libcfa_d_a-libdebug.Po
    709 @AMDEP_TRUE@@am__fastdepCC_FALSE@       $(AM_V_CC)source='libhdr/libdebug.c' object='libhdr/libcfa_d_a-libdebug.o' libtool=no @AMDEPBACKSLASH@
    710 @AMDEP_TRUE@@am__fastdepCC_FALSE@       DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@
    711 @am__fastdepCC_FALSE@   $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_d_a_CFLAGS) $(CFLAGS) -c -o libhdr/libcfa_d_a-libdebug.o `test -f 'libhdr/libdebug.c' || echo '$(srcdir)/'`libhdr/libdebug.c
    712 
    713 libhdr/libcfa_d_a-libdebug.obj: libhdr/libdebug.c
    714 @am__fastdepCC_TRUE@    $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_d_a_CFLAGS) $(CFLAGS) -MT libhdr/libcfa_d_a-libdebug.obj -MD -MP -MF libhdr/$(DEPDIR)/libcfa_d_a-libdebug.Tpo -c -o libhdr/libcfa_d_a-libdebug.obj `if test -f 'libhdr/libdebug.c'; then $(CYGPATH_W) 'libhdr/libdebug.c'; else $(CYGPATH_W) '$(srcdir)/libhdr/libdebug.c'; fi`
    715 @am__fastdepCC_TRUE@    $(AM_V_at)$(am__mv) libhdr/$(DEPDIR)/libcfa_d_a-libdebug.Tpo libhdr/$(DEPDIR)/libcfa_d_a-libdebug.Po
    716 @AMDEP_TRUE@@am__fastdepCC_FALSE@       $(AM_V_CC)source='libhdr/libdebug.c' object='libhdr/libcfa_d_a-libdebug.obj' libtool=no @AMDEPBACKSLASH@
    717 @AMDEP_TRUE@@am__fastdepCC_FALSE@       DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@
    718 @am__fastdepCC_FALSE@   $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_d_a_CFLAGS) $(CFLAGS) -c -o libhdr/libcfa_d_a-libdebug.obj `if test -f 'libhdr/libdebug.c'; then $(CYGPATH_W) 'libhdr/libdebug.c'; else $(CYGPATH_W) '$(srcdir)/libhdr/libdebug.c'; fi`
     702bits/libcfa_d_a-debug.o: bits/debug.c
     703@am__fastdepCC_TRUE@    $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_d_a_CFLAGS) $(CFLAGS) -MT bits/libcfa_d_a-debug.o -MD -MP -MF bits/$(DEPDIR)/libcfa_d_a-debug.Tpo -c -o bits/libcfa_d_a-debug.o `test -f 'bits/debug.c' || echo '$(srcdir)/'`bits/debug.c
     704@am__fastdepCC_TRUE@    $(AM_V_at)$(am__mv) bits/$(DEPDIR)/libcfa_d_a-debug.Tpo bits/$(DEPDIR)/libcfa_d_a-debug.Po
     705@AMDEP_TRUE@@am__fastdepCC_FALSE@       $(AM_V_CC)source='bits/debug.c' object='bits/libcfa_d_a-debug.o' libtool=no @AMDEPBACKSLASH@
     706@AMDEP_TRUE@@am__fastdepCC_FALSE@       DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@
     707@am__fastdepCC_FALSE@   $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_d_a_CFLAGS) $(CFLAGS) -c -o bits/libcfa_d_a-debug.o `test -f 'bits/debug.c' || echo '$(srcdir)/'`bits/debug.c
     708
     709bits/libcfa_d_a-debug.obj: bits/debug.c
     710@am__fastdepCC_TRUE@    $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_d_a_CFLAGS) $(CFLAGS) -MT bits/libcfa_d_a-debug.obj -MD -MP -MF bits/$(DEPDIR)/libcfa_d_a-debug.Tpo -c -o bits/libcfa_d_a-debug.obj `if test -f 'bits/debug.c'; then $(CYGPATH_W) 'bits/debug.c'; else $(CYGPATH_W) '$(srcdir)/bits/debug.c'; fi`
     711@am__fastdepCC_TRUE@    $(AM_V_at)$(am__mv) bits/$(DEPDIR)/libcfa_d_a-debug.Tpo bits/$(DEPDIR)/libcfa_d_a-debug.Po
     712@AMDEP_TRUE@@am__fastdepCC_FALSE@       $(AM_V_CC)source='bits/debug.c' object='bits/libcfa_d_a-debug.obj' libtool=no @AMDEPBACKSLASH@
     713@AMDEP_TRUE@@am__fastdepCC_FALSE@       DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@
     714@am__fastdepCC_FALSE@   $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_d_a_CFLAGS) $(CFLAGS) -c -o bits/libcfa_d_a-debug.obj `if test -f 'bits/debug.c'; then $(CYGPATH_W) 'bits/debug.c'; else $(CYGPATH_W) '$(srcdir)/bits/debug.c'; fi`
    719715
    720716libcfa_d_a-fstream.o: fstream.c
     
    998994@am__fastdepCC_FALSE@   $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_a_CFLAGS) $(CFLAGS) -c -o libcfa_a-interpose.obj `if test -f 'interpose.c'; then $(CYGPATH_W) 'interpose.c'; else $(CYGPATH_W) '$(srcdir)/interpose.c'; fi`
    999995
    1000 libhdr/libcfa_a-libdebug.o: libhdr/libdebug.c
    1001 @am__fastdepCC_TRUE@    $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_a_CFLAGS) $(CFLAGS) -MT libhdr/libcfa_a-libdebug.o -MD -MP -MF libhdr/$(DEPDIR)/libcfa_a-libdebug.Tpo -c -o libhdr/libcfa_a-libdebug.o `test -f 'libhdr/libdebug.c' || echo '$(srcdir)/'`libhdr/libdebug.c
    1002 @am__fastdepCC_TRUE@    $(AM_V_at)$(am__mv) libhdr/$(DEPDIR)/libcfa_a-libdebug.Tpo libhdr/$(DEPDIR)/libcfa_a-libdebug.Po
    1003 @AMDEP_TRUE@@am__fastdepCC_FALSE@       $(AM_V_CC)source='libhdr/libdebug.c' object='libhdr/libcfa_a-libdebug.o' libtool=no @AMDEPBACKSLASH@
    1004 @AMDEP_TRUE@@am__fastdepCC_FALSE@       DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@
    1005 @am__fastdepCC_FALSE@   $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_a_CFLAGS) $(CFLAGS) -c -o libhdr/libcfa_a-libdebug.o `test -f 'libhdr/libdebug.c' || echo '$(srcdir)/'`libhdr/libdebug.c
    1006 
    1007 libhdr/libcfa_a-libdebug.obj: libhdr/libdebug.c
    1008 @am__fastdepCC_TRUE@    $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_a_CFLAGS) $(CFLAGS) -MT libhdr/libcfa_a-libdebug.obj -MD -MP -MF libhdr/$(DEPDIR)/libcfa_a-libdebug.Tpo -c -o libhdr/libcfa_a-libdebug.obj `if test -f 'libhdr/libdebug.c'; then $(CYGPATH_W) 'libhdr/libdebug.c'; else $(CYGPATH_W) '$(srcdir)/libhdr/libdebug.c'; fi`
    1009 @am__fastdepCC_TRUE@    $(AM_V_at)$(am__mv) libhdr/$(DEPDIR)/libcfa_a-libdebug.Tpo libhdr/$(DEPDIR)/libcfa_a-libdebug.Po
    1010 @AMDEP_TRUE@@am__fastdepCC_FALSE@       $(AM_V_CC)source='libhdr/libdebug.c' object='libhdr/libcfa_a-libdebug.obj' libtool=no @AMDEPBACKSLASH@
    1011 @AMDEP_TRUE@@am__fastdepCC_FALSE@       DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@
    1012 @am__fastdepCC_FALSE@   $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_a_CFLAGS) $(CFLAGS) -c -o libhdr/libcfa_a-libdebug.obj `if test -f 'libhdr/libdebug.c'; then $(CYGPATH_W) 'libhdr/libdebug.c'; else $(CYGPATH_W) '$(srcdir)/libhdr/libdebug.c'; fi`
     996bits/libcfa_a-debug.o: bits/debug.c
     997@am__fastdepCC_TRUE@    $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_a_CFLAGS) $(CFLAGS) -MT bits/libcfa_a-debug.o -MD -MP -MF bits/$(DEPDIR)/libcfa_a-debug.Tpo -c -o bits/libcfa_a-debug.o `test -f 'bits/debug.c' || echo '$(srcdir)/'`bits/debug.c
     998@am__fastdepCC_TRUE@    $(AM_V_at)$(am__mv) bits/$(DEPDIR)/libcfa_a-debug.Tpo bits/$(DEPDIR)/libcfa_a-debug.Po
     999@AMDEP_TRUE@@am__fastdepCC_FALSE@       $(AM_V_CC)source='bits/debug.c' object='bits/libcfa_a-debug.o' libtool=no @AMDEPBACKSLASH@
     1000@AMDEP_TRUE@@am__fastdepCC_FALSE@       DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@
     1001@am__fastdepCC_FALSE@   $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_a_CFLAGS) $(CFLAGS) -c -o bits/libcfa_a-debug.o `test -f 'bits/debug.c' || echo '$(srcdir)/'`bits/debug.c
     1002
     1003bits/libcfa_a-debug.obj: bits/debug.c
     1004@am__fastdepCC_TRUE@    $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_a_CFLAGS) $(CFLAGS) -MT bits/libcfa_a-debug.obj -MD -MP -MF bits/$(DEPDIR)/libcfa_a-debug.Tpo -c -o bits/libcfa_a-debug.obj `if test -f 'bits/debug.c'; then $(CYGPATH_W) 'bits/debug.c'; else $(CYGPATH_W) '$(srcdir)/bits/debug.c'; fi`
     1005@am__fastdepCC_TRUE@    $(AM_V_at)$(am__mv) bits/$(DEPDIR)/libcfa_a-debug.Tpo bits/$(DEPDIR)/libcfa_a-debug.Po
     1006@AMDEP_TRUE@@am__fastdepCC_FALSE@       $(AM_V_CC)source='bits/debug.c' object='bits/libcfa_a-debug.obj' libtool=no @AMDEPBACKSLASH@
     1007@AMDEP_TRUE@@am__fastdepCC_FALSE@       DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@
     1008@am__fastdepCC_FALSE@   $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_a_CFLAGS) $(CFLAGS) -c -o bits/libcfa_a-debug.obj `if test -f 'bits/debug.c'; then $(CYGPATH_W) 'bits/debug.c'; else $(CYGPATH_W) '$(srcdir)/bits/debug.c'; fi`
    10131009
    10141010libcfa_a-fstream.o: fstream.c
     
    14111407        -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES)
    14121408        -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES)
     1409        -rm -f bits/$(DEPDIR)/$(am__dirstamp)
     1410        -rm -f bits/$(am__dirstamp)
    14131411        -rm -f concurrency/$(DEPDIR)/$(am__dirstamp)
    14141412        -rm -f concurrency/$(am__dirstamp)
    14151413        -rm -f containers/$(DEPDIR)/$(am__dirstamp)
    14161414        -rm -f containers/$(am__dirstamp)
    1417         -rm -f libhdr/$(DEPDIR)/$(am__dirstamp)
    1418         -rm -f libhdr/$(am__dirstamp)
    14191415
    14201416maintainer-clean-generic:
     
    14261422
    14271423distclean: distclean-am
    1428         -rm -rf ./$(DEPDIR) concurrency/$(DEPDIR) containers/$(DEPDIR) libhdr/$(DEPDIR)
     1424        -rm -rf ./$(DEPDIR) bits/$(DEPDIR) concurrency/$(DEPDIR) containers/$(DEPDIR)
    14291425        -rm -f Makefile
    14301426distclean-am: clean-am distclean-compile distclean-generic \
     
    14721468
    14731469maintainer-clean: maintainer-clean-am
    1474         -rm -rf ./$(DEPDIR) concurrency/$(DEPDIR) containers/$(DEPDIR) libhdr/$(DEPDIR)
     1470        -rm -rf ./$(DEPDIR) bits/$(DEPDIR) concurrency/$(DEPDIR) containers/$(DEPDIR)
    14751471        -rm -f Makefile
    14761472maintainer-clean-am: distclean-am maintainer-clean-generic \
  • src/libcfa/assert.c

    r9c35431 rc13e8dc8  
    1717#include <stdarg.h>                                                             // varargs
    1818#include <stdio.h>                                                              // fprintf
    19 #include "libhdr/libdebug.h"
     19#include "bits/debug.h"
    2020
    2121extern "C" {
     
    2626        // called by macro assert in assert.h
    2727        void __assert_fail( const char *assertion, const char *file, unsigned int line, const char *function ) {
    28                 __lib_debug_print_safe( CFA_ASSERT_FMT ".\n", __progname, function, line, file );
     28                __cfaabi_dbg_bits_print_safe( CFA_ASSERT_FMT ".\n", __progname, function, line, file );
    2929                abort();
    3030        }
     
    3232        // called by macro assertf
    3333        void __assert_fail_f( const char *assertion, const char *file, unsigned int line, const char *function, const char *fmt, ... ) {
    34                 __lib_debug_acquire();
    35                 __lib_debug_print_nolock( CFA_ASSERT_FMT ": ", __progname, function, line, file );
     34                __cfaabi_dbg_bits_acquire();
     35                __cfaabi_dbg_bits_print_nolock( CFA_ASSERT_FMT ": ", __progname, function, line, file );
    3636
    3737                va_list args;
    3838                va_start( args, fmt );
    39                 __lib_debug_print_vararg( fmt, args );
     39                __cfaabi_dbg_bits_print_vararg( fmt, args );
    4040                va_end( args );
    4141
    42                 __lib_debug_print_nolock( "\n" );
    43                 __lib_debug_release();
     42                __cfaabi_dbg_bits_print_nolock( "\n" );
     43                __cfaabi_dbg_bits_release();
    4444                abort();
    4545        }
  • src/libcfa/bits/containers.h

    r9c35431 rc13e8dc8  
    1515#pragma once
    1616
     17#include "bits/align.h"
    1718#include "bits/defs.h"
    18 #include "libhdr.h"
    1919
    2020//-----------------------------------------------------------------------------
  • src/libcfa/bits/defs.h

    r9c35431 rc13e8dc8  
    3232#define __cfa_anonymous_object __cfa_anonymous_object
    3333#endif
     34
     35#ifdef __cforall
     36extern "C" {
     37#endif
     38void abortf( const char fmt[], ... ) __attribute__ ((__nothrow__, __leaf__, __noreturn__));
     39#ifdef __cforall
     40}
     41#endif
  • src/libcfa/bits/locks.h

    r9c35431 rc13e8dc8  
    1616#pragma once
    1717
     18#include "bits/debug.h"
    1819#include "bits/defs.h"
    19 
    20 #include "libhdr.h"
    2120
    2221// pause to prevent excess processor bus usage
     
    6564
    6665        // Lock the spinlock, return false if already acquired
    67         static inline _Bool try_lock  ( __spinlock_t & this DEBUG_CTX_PARAM2 ) {
     66        static inline _Bool try_lock  ( __spinlock_t & this __cfaabi_dbg_ctx_param2 ) {
    6867                _Bool result = __lock_test_and_test_and_set( this.lock );
    69                 LIB_DEBUG_DO(
     68                __cfaabi_dbg_debug_do(
    7069                        if( result ) {
    7170                                this.prev_name = caller;
     
    7776
    7877        // Lock the spinlock, spin if already acquired
    79         static inline void lock( __spinlock_t & this DEBUG_CTX_PARAM2 ) {
     78        static inline void lock( __spinlock_t & this __cfaabi_dbg_ctx_param2 ) {
    8079                #ifndef NOEXPBACK
    8180                        enum { SPIN_START = 4, SPIN_END = 64 * 1024, };
     
    9897                        #endif
    9998                }
    100                 LIB_DEBUG_DO(
     99                __cfaabi_dbg_debug_do(
    101100                        this.prev_name = caller;
    102101                        this.prev_thrd = this_thread;
     
    105104
    106105        // Lock the spinlock, spin if already acquired
    107         static inline void lock_yield( __spinlock_t & this DEBUG_CTX_PARAM2 ) {
     106        static inline void lock_yield( __spinlock_t & this __cfaabi_dbg_ctx_param2 ) {
    108107                for ( unsigned int i = 1;; i += 1 ) {
    109108                        if ( __lock_test_and_test_and_set( this.lock ) ) break;
    110109                        yield( i );
    111110                }
    112                 LIB_DEBUG_DO(
     111                __cfaabi_dbg_debug_do(
    113112                        this.prev_name = caller;
    114113                        this.prev_thrd = this_thread;
  • src/libcfa/concurrency/alarm.c

    r9c35431 rc13e8dc8  
    2323}
    2424
    25 #include "libhdr.h"
    26 
    2725#include "alarm.h"
    2826#include "kernel_private.h"
     
    110108}
    111109
    112 LIB_DEBUG_DO( bool validate( alarm_list_t * this ) {
     110__cfaabi_dbg_debug_do( bool validate( alarm_list_t * this ) {
    113111        alarm_node_t ** it = &this->head;
    114112        while( (*it) ) {
     
    186184
    187185        disable_interrupts();
    188         lock( event_kernel->lock DEBUG_CTX2 );
     186        lock( event_kernel->lock __cfaabi_dbg_ctx2 );
    189187        {
    190188                verify( validate( alarms ) );
     
    198196        unlock( event_kernel->lock );
    199197        this->set = true;
    200         enable_interrupts( DEBUG_CTX );
     198        enable_interrupts( __cfaabi_dbg_ctx );
    201199}
    202200
    203201void unregister_self( alarm_node_t * this ) {
    204202        disable_interrupts();
    205         lock( event_kernel->lock DEBUG_CTX2 );
     203        lock( event_kernel->lock __cfaabi_dbg_ctx2 );
    206204        {
    207205                verify( validate( &event_kernel->alarms ) );
     
    209207        }
    210208        unlock( event_kernel->lock );
    211         enable_interrupts( DEBUG_CTX );
     209        enable_interrupts( __cfaabi_dbg_ctx );
    212210        this->set = false;
    213211}
  • src/libcfa/concurrency/coroutine.c

    r9c35431 rc13e8dc8  
    2929#define __CFA_INVOKE_PRIVATE__
    3030#include "invoke.h"
    31 
    3231
    3332//-----------------------------------------------------------------------------
     
    7675void ^?{}(coStack_t & this) {
    7776        if ( ! this.userStack && this.storage ) {
    78                 LIB_DEBUG_DO(
     77                __cfaabi_dbg_debug_do(
    7978                        if ( mprotect( this.storage, pageSize, PROT_READ | PROT_WRITE ) == -1 ) {
    8079                                abortf( "(coStack_t *)%p.^?{}() : internal error, mprotect failure, error(%d) %s.", &this, errno, strerror( errno ) );
     
    131130
    132131                // assume malloc has 8 byte alignment so add 8 to allow rounding up to 16 byte alignment
    133                 LIB_DEBUG_DO( this->storage = memalign( pageSize, cxtSize + this->size + pageSize ) );
    134                 LIB_NO_DEBUG_DO( this->storage = malloc( cxtSize + this->size + 8 ) );
     132                __cfaabi_dbg_debug_do( this->storage = memalign( pageSize, cxtSize + this->size + pageSize ) );
     133                __cfaabi_dbg_no_debug_do( this->storage = malloc( cxtSize + this->size + 8 ) );
    135134
    136                 LIB_DEBUG_DO(
     135                __cfaabi_dbg_debug_do(
    137136                        if ( mprotect( this->storage, pageSize, PROT_NONE ) == -1 ) {
    138137                                abortf( "(uMachContext &)%p.createContext() : internal error, mprotect failure, error(%d) %s.", this, (int)errno, strerror( (int)errno ) );
     
    144143                } // if
    145144
    146                 LIB_DEBUG_DO( this->limit = (char *)this->storage + pageSize );
    147                 LIB_NO_DEBUG_DO( this->limit = (char *)libCeiling( (unsigned long)this->storage, 16 ) ); // minimum alignment
     145                __cfaabi_dbg_debug_do( this->limit = (char *)this->storage + pageSize );
     146                __cfaabi_dbg_no_debug_do( this->limit = (char *)libCeiling( (unsigned long)this->storage, 16 ) ); // minimum alignment
    148147
    149148        } else {
  • src/libcfa/concurrency/invoke.c

    r9c35431 rc13e8dc8  
    1818#include <stdio.h>
    1919
    20 #include "libhdr.h"
    2120#include "invoke.h"
    2221
     
    3130extern void __leave_thread_monitor( struct thread_desc * this );
    3231extern void disable_interrupts();
    33 extern void enable_interrupts( DEBUG_CTX_PARAM );
     32extern void enable_interrupts( __cfaabi_dbg_ctx_param );
    3433
    3534void CtxInvokeCoroutine(
    36       void (*main)(void *),
    37       struct coroutine_desc *(*get_coroutine)(void *),
    38       void *this
     35        void (*main)(void *),
     36        struct coroutine_desc *(*get_coroutine)(void *),
     37        void *this
    3938) {
    40       // LIB_DEBUG_PRINTF("Invoke Coroutine : Received %p (main %p, get_c %p)\n", this, main, get_coroutine);
     39        struct coroutine_desc* cor = get_coroutine( this );
    4140
    42       struct coroutine_desc* cor = get_coroutine( this );
     41        if(cor->state == Primed) {
     42                __suspend_internal();
     43        }
    4344
    44       if(cor->state == Primed) {
    45             __suspend_internal();
    46       }
     45        cor->state = Active;
    4746
    48       cor->state = Active;
     47        main( this );
    4948
    50       main( this );
     49        cor->state = Halted;
    5150
    52       cor->state = Halted;
    53 
    54       //Final suspend, should never return
    55       __leave_coroutine();
    56       abortf("Resumed dead coroutine");
     51        //Final suspend, should never return
     52        __leave_coroutine();
     53        abortf("Resumed dead coroutine");
    5754}
    5855
    5956void CtxInvokeThread(
    60       void (*dtor)(void *),
    61       void (*main)(void *),
    62       struct thread_desc *(*get_thread)(void *),
    63       void *this
     57        void (*dtor)(void *),
     58        void (*main)(void *),
     59        struct thread_desc *(*get_thread)(void *),
     60        void *this
    6461) {
    65       // First suspend, once the thread arrives here,
    66       // the function pointer to main can be invalidated without risk
    67       __suspend_internal();
     62        // First suspend, once the thread arrives here,
     63        // the function pointer to main can be invalidated without risk
     64        __suspend_internal();
    6865
    69       // Fetch the thread handle from the user defined thread structure
    70       struct thread_desc* thrd = get_thread( this );
     66        // Fetch the thread handle from the user defined thread structure
     67        struct thread_desc* thrd = get_thread( this );
    7168
    72       // Officially start the thread by enabling preemption
    73       enable_interrupts( DEBUG_CTX );
     69        // Officially start the thread by enabling preemption
     70        enable_interrupts( __cfaabi_dbg_ctx );
    7471
    75       // Call the main of the thread
    76       main( this );
     72        // Call the main of the thread
     73        main( this );
    7774
    78       // To exit a thread we must :
    79       // 1 - Mark it as halted
    80       // 2 - Leave its monitor
    81       // 3 - Disable the interupts
    82       // 4 - Final suspend
    83       // The order of these 4 operations is very important
    84       //Final suspend, should never return
    85       __leave_thread_monitor( thrd );
    86       abortf("Resumed dead thread");
     75        // To exit a thread we must :
     76        // 1 - Mark it as halted
     77        // 2 - Leave its monitor
     78        // 3 - Disable the interupts
     79        // 4 - Final suspend
     80        // The order of these 4 operations is very important
     81        //Final suspend, should never return
     82        __leave_thread_monitor( thrd );
     83        abortf("Resumed dead thread");
    8784}
    8885
    8986
    9087void CtxStart(
    91       void (*main)(void *),
    92       struct coroutine_desc *(*get_coroutine)(void *),
    93       void *this,
    94       void (*invoke)(void *)
     88        void (*main)(void *),
     89        struct coroutine_desc *(*get_coroutine)(void *),
     90        void *this,
     91        void (*invoke)(void *)
    9592) {
    96       // LIB_DEBUG_PRINTF("StartCoroutine : Passing in %p (main %p) to invoke (%p) from start (%p)\n", this, main, invoke, CtxStart);
    97 
    98       struct coStack_t* stack = &get_coroutine( this )->stack;
     93        struct coStack_t* stack = &get_coroutine( this )->stack;
    9994
    10095#if defined( __i386__ )
     
    10398            void *fixedRegisters[3];                    // fixed registers ebx, edi, esi (popped on 1st uSwitch, values unimportant)
    10499            uint32_t mxcr;                        // SSE Status and Control bits (control bits are preserved across function calls)
    105           uint16_t fcw;                         // X97 FPU control word (preserved across function calls)
     100            uint16_t fcw;                         // X97 FPU control word (preserved across function calls)
    106101            void *rturn;                          // where to go on return from uSwitch
    107102            void *dummyReturn;                          // fake return compiler would have pushed on call to uInvoke
     
    116111        ((struct FakeStack *)(((struct machine_context_t *)stack->context)->SP))->argument[0] = this;     // argument to invoke
    117112        ((struct FakeStack *)(((struct machine_context_t *)stack->context)->SP))->rturn = invoke;
    118       ((struct FakeStack *)(((struct machine_context_t *)stack->context)->SP))->mxcr = 0x1F80; //Vol. 2A 3-520
    119       ((struct FakeStack *)(((struct machine_context_t *)stack->context)->SP))->fcw = 0x037F;  //Vol. 1 8-7
     113        ((struct FakeStack *)(((struct machine_context_t *)stack->context)->SP))->mxcr = 0x1F80; //Vol. 2A 3-520
     114        ((struct FakeStack *)(((struct machine_context_t *)stack->context)->SP))->fcw = 0x037F;  //Vol. 1 8-7
    120115
    121116#elif defined( __x86_64__ )
    122117
    123       struct FakeStack {
    124             void *fixedRegisters[5];            // fixed registers rbx, r12, r13, r14, r15
    125             uint32_t mxcr;                      // SSE Status and Control bits (control bits are preserved across function calls)
    126             uint16_t fcw;                       // X97 FPU control word (preserved across function calls)
    127             void *rturn;                        // where to go on return from uSwitch
    128             void *dummyReturn;                  // NULL return address to provide proper alignment
    129       };
     118        struct FakeStack {
     119                void *fixedRegisters[5];            // fixed registers rbx, r12, r13, r14, r15
     120                uint32_t mxcr;                      // SSE Status and Control bits (control bits are preserved across function calls)
     121                uint16_t fcw;                       // X97 FPU control word (preserved across function calls)
     122                void *rturn;                        // where to go on return from uSwitch
     123                void *dummyReturn;                  // NULL return address to provide proper alignment
     124        };
    130125
    131       ((struct machine_context_t *)stack->context)->SP = (char *)stack->base - sizeof( struct FakeStack );
    132       ((struct machine_context_t *)stack->context)->FP = NULL;          // terminate stack with NULL fp
     126        ((struct machine_context_t *)stack->context)->SP = (char *)stack->base - sizeof( struct FakeStack );
     127        ((struct machine_context_t *)stack->context)->FP = NULL;                // terminate stack with NULL fp
    133128
    134       ((struct FakeStack *)(((struct machine_context_t *)stack->context)->SP))->dummyReturn = NULL;
    135       ((struct FakeStack *)(((struct machine_context_t *)stack->context)->SP))->rturn = CtxInvokeStub;
    136       ((struct FakeStack *)(((struct machine_context_t *)stack->context)->SP))->fixedRegisters[0] = this;
    137       ((struct FakeStack *)(((struct machine_context_t *)stack->context)->SP))->fixedRegisters[1] = invoke;
    138       ((struct FakeStack *)(((struct machine_context_t *)stack->context)->SP))->mxcr = 0x1F80; //Vol. 2A 3-520
    139       ((struct FakeStack *)(((struct machine_context_t *)stack->context)->SP))->fcw = 0x037F;  //Vol. 1 8-7
     129        ((struct FakeStack *)(((struct machine_context_t *)stack->context)->SP))->dummyReturn = NULL;
     130        ((struct FakeStack *)(((struct machine_context_t *)stack->context)->SP))->rturn = CtxInvokeStub;
     131        ((struct FakeStack *)(((struct machine_context_t *)stack->context)->SP))->fixedRegisters[0] = this;
     132        ((struct FakeStack *)(((struct machine_context_t *)stack->context)->SP))->fixedRegisters[1] = invoke;
     133        ((struct FakeStack *)(((struct machine_context_t *)stack->context)->SP))->mxcr = 0x1F80; //Vol. 2A 3-520
     134        ((struct FakeStack *)(((struct machine_context_t *)stack->context)->SP))->fcw = 0x037F;  //Vol. 1 8-7
    140135#else
    141       #error Only __i386__ and __x86_64__ is supported for threads in cfa
     136        #error Only __i386__ and __x86_64__ is supported for threads in cfa
    142137#endif
    143138}
  • src/libcfa/concurrency/kernel.c

    r9c35431 rc13e8dc8  
    1414//
    1515
    16 #include "libhdr.h"
    17 
    1816//C Includes
    1917#include <stddef.h>
     
    150148
    151149        this.runner = &runner;
    152         LIB_DEBUG_PRINT_SAFE("Kernel : constructing main processor context %p\n", &runner);
     150        __cfaabi_dbg_print_safe("Kernel : constructing main processor context %p\n", &runner);
    153151        runner{ &this };
    154152}
     
    156154void ^?{}(processor & this) {
    157155        if( ! this.do_terminate ) {
    158                 LIB_DEBUG_PRINT_SAFE("Kernel : core %p signaling termination\n", &this);
     156                __cfaabi_dbg_print_safe("Kernel : core %p signaling termination\n", &this);
    159157                this.do_terminate = true;
    160158                P( this.terminated );
     
    181179        processor * this = runner.proc;
    182180
    183         LIB_DEBUG_PRINT_SAFE("Kernel : core %p starting\n", this);
     181        __cfaabi_dbg_print_safe("Kernel : core %p starting\n", this);
    184182
    185183        {
     
    187185                preemption_scope scope = { this };
    188186
    189                 LIB_DEBUG_PRINT_SAFE("Kernel : core %p started\n", this);
     187                __cfaabi_dbg_print_safe("Kernel : core %p started\n", this);
    190188
    191189                thread_desc * readyThread = NULL;
     
    213211                }
    214212
    215                 LIB_DEBUG_PRINT_SAFE("Kernel : core %p stopping\n", this);
     213                __cfaabi_dbg_print_safe("Kernel : core %p stopping\n", this);
    216214        }
    217215
    218216        V( this->terminated );
    219217
    220         LIB_DEBUG_PRINT_SAFE("Kernel : core %p terminated\n", this);
     218        __cfaabi_dbg_print_safe("Kernel : core %p terminated\n", this);
    221219}
    222220
     
    292290        processorCtx_t proc_cor_storage = { proc, &info };
    293291
    294         LIB_DEBUG_PRINT_SAFE("Coroutine : created stack %p\n", proc_cor_storage.__cor.stack.base);
     292        __cfaabi_dbg_print_safe("Coroutine : created stack %p\n", proc_cor_storage.__cor.stack.base);
    295293
    296294        //Set global state
     
    299297
    300298        //We now have a proper context from which to schedule threads
    301         LIB_DEBUG_PRINT_SAFE("Kernel : core %p created (%p, %p)\n", proc, proc->runner, &ctx);
     299        __cfaabi_dbg_print_safe("Kernel : core %p created (%p, %p)\n", proc, proc->runner, &ctx);
    302300
    303301        // SKULLDUGGERY: Since the coroutine doesn't have its own stack, we can't
     
    310308
    311309        // Main routine of the core returned, the core is now fully terminated
    312         LIB_DEBUG_PRINT_SAFE("Kernel : core %p main ended (%p)\n", proc, proc->runner);
     310        __cfaabi_dbg_print_safe("Kernel : core %p main ended (%p)\n", proc, proc->runner);
    313311
    314312        return NULL;
     
    316314
    317315void start(processor * this) {
    318         LIB_DEBUG_PRINT_SAFE("Kernel : Starting core %p\n", this);
     316        __cfaabi_dbg_print_safe("Kernel : Starting core %p\n", this);
    319317
    320318        pthread_create( &this->kernel_thread, NULL, CtxInvokeProcessor, (void*)this );
    321319
    322         LIB_DEBUG_PRINT_SAFE("Kernel : core %p started\n", this);
     320        __cfaabi_dbg_print_safe("Kernel : core %p started\n", this);
    323321}
    324322
     
    334332        verifyf( thrd->next == NULL, "Expected null got %p", thrd->next );
    335333
    336         lock(   this_processor->cltr->ready_queue_lock DEBUG_CTX2 );
     334        lock(   this_processor->cltr->ready_queue_lock __cfaabi_dbg_ctx2 );
    337335        append( this_processor->cltr->ready_queue, thrd );
    338336        unlock( this_processor->cltr->ready_queue_lock );
     
    343341thread_desc * nextThread(cluster * this) {
    344342        verify( disable_preempt_count > 0 );
    345         lock( this->ready_queue_lock DEBUG_CTX2 );
     343        lock( this->ready_queue_lock __cfaabi_dbg_ctx2 );
    346344        thread_desc * head = pop_head( this->ready_queue );
    347345        unlock( this->ready_queue_lock );
     
    355353        suspend();
    356354        verify( disable_preempt_count > 0 );
    357         enable_interrupts( DEBUG_CTX );
     355        enable_interrupts( __cfaabi_dbg_ctx );
    358356}
    359357
     
    367365        verify( disable_preempt_count > 0 );
    368366
    369         enable_interrupts( DEBUG_CTX );
     367        enable_interrupts( __cfaabi_dbg_ctx );
    370368}
    371369
     
    381379        verify( disable_preempt_count > 0 );
    382380
    383         enable_interrupts( DEBUG_CTX );
     381        enable_interrupts( __cfaabi_dbg_ctx );
    384382}
    385383
     
    395393        verify( disable_preempt_count > 0 );
    396394
    397         enable_interrupts( DEBUG_CTX );
     395        enable_interrupts( __cfaabi_dbg_ctx );
    398396}
    399397
     
    408406        verify( disable_preempt_count > 0 );
    409407
    410         enable_interrupts( DEBUG_CTX );
     408        enable_interrupts( __cfaabi_dbg_ctx );
    411409}
    412410
     
    423421        verify( disable_preempt_count > 0 );
    424422
    425         enable_interrupts( DEBUG_CTX );
     423        enable_interrupts( __cfaabi_dbg_ctx );
    426424}
    427425
     
    441439// Kernel boot procedures
    442440void kernel_startup(void) {
    443         LIB_DEBUG_PRINT_SAFE("Kernel : Starting\n");
     441        __cfaabi_dbg_print_safe("Kernel : Starting\n");
    444442
    445443        // Start by initializing the main thread
     
    450448        (*mainThread){ &info };
    451449
    452         LIB_DEBUG_PRINT_SAFE("Kernel : Main thread ready\n");
     450        __cfaabi_dbg_print_safe("Kernel : Main thread ready\n");
    453451
    454452        // Initialize the main cluster
     
    456454        (*mainCluster){};
    457455
    458         LIB_DEBUG_PRINT_SAFE("Kernel : main cluster ready\n");
     456        __cfaabi_dbg_print_safe("Kernel : main cluster ready\n");
    459457
    460458        // Initialize the main processor and the main processor ctx
     
    483481
    484482        // THE SYSTEM IS NOW COMPLETELY RUNNING
    485         LIB_DEBUG_PRINT_SAFE("Kernel : Started\n--------------------------------------------------\n\n");
    486 
    487         enable_interrupts( DEBUG_CTX );
     483        __cfaabi_dbg_print_safe("Kernel : Started\n--------------------------------------------------\n\n");
     484
     485        enable_interrupts( __cfaabi_dbg_ctx );
    488486}
    489487
    490488void kernel_shutdown(void) {
    491         LIB_DEBUG_PRINT_SAFE("\n--------------------------------------------------\nKernel : Shutting down\n");
     489        __cfaabi_dbg_print_safe("\n--------------------------------------------------\nKernel : Shutting down\n");
    492490
    493491        disable_interrupts();
     
    513511        ^(mainThread){};
    514512
    515         LIB_DEBUG_PRINT_SAFE("Kernel : Shutdown complete\n");
     513        __cfaabi_dbg_print_safe("Kernel : Shutdown complete\n");
    516514}
    517515
     
    523521        // abort cannot be recursively entered by the same or different processors because all signal handlers return when
    524522        // the globalAbort flag is true.
    525         lock( kernel_abort_lock DEBUG_CTX2 );
     523        lock( kernel_abort_lock __cfaabi_dbg_ctx2 );
    526524
    527525        // first task to abort ?
     
    548546
    549547        int len = snprintf( abort_text, abort_text_size, "Error occurred while executing task %.256s (%p)", thrd->self_cor.name, thrd );
    550         __lib_debug_write( abort_text, len );
     548        __cfaabi_dbg_bits_write( abort_text, len );
    551549
    552550        if ( thrd != this_coroutine ) {
    553551                len = snprintf( abort_text, abort_text_size, " in coroutine %.256s (%p).\n", this_coroutine->name, this_coroutine );
    554                 __lib_debug_write( abort_text, len );
     552                __cfaabi_dbg_bits_write( abort_text, len );
    555553        }
    556554        else {
    557                 __lib_debug_write( ".\n", 2 );
     555                __cfaabi_dbg_bits_write( ".\n", 2 );
    558556        }
    559557}
    560558
    561559extern "C" {
    562         void __lib_debug_acquire() {
    563                 lock( kernel_debug_lock DEBUG_CTX2 );
    564         }
    565 
    566         void __lib_debug_release() {
     560        void __cfaabi_dbg_bits_acquire() {
     561                lock( kernel_debug_lock __cfaabi_dbg_ctx2 );
     562        }
     563
     564        void __cfaabi_dbg_bits_release() {
    567565                unlock( kernel_debug_lock );
    568566        }
     
    582580
    583581void P(semaphore & this) {
    584         lock( this.lock DEBUG_CTX2 );
     582        lock( this.lock __cfaabi_dbg_ctx2 );
    585583        this.count -= 1;
    586584        if ( this.count < 0 ) {
     
    598596void V(semaphore & this) {
    599597        thread_desc * thrd = NULL;
    600         lock( this.lock DEBUG_CTX2 );
     598        lock( this.lock __cfaabi_dbg_ctx2 );
    601599        this.count += 1;
    602600        if ( this.count <= 0 ) {
  • src/libcfa/concurrency/kernel_private.h

    r9c35431 rc13e8dc8  
    1616#pragma once
    1717
    18 #include "libhdr.h"
    19 
    2018#include "kernel"
    2119#include "thread"
     
    3028        void disable_interrupts();
    3129        void enable_interrupts_noPoll();
    32         void enable_interrupts( DEBUG_CTX_PARAM );
     30        void enable_interrupts( __cfaabi_dbg_ctx_param );
    3331}
    3432
     
    3937        disable_interrupts();
    4038        ScheduleThread( thrd );
    41         enable_interrupts( DEBUG_CTX );
     39        enable_interrupts( __cfaabi_dbg_ctx );
    4240}
    4341thread_desc * nextThread(cluster * this);
  • src/libcfa/concurrency/monitor.c

    r9c35431 rc13e8dc8  
    1919#include <inttypes.h>
    2020
    21 #include "libhdr.h"
    2221#include "kernel_private.h"
    2322
     
    9190        static void __enter_monitor_desc( monitor_desc * this, const __monitor_group_t & group ) {
    9291                // Lock the monitor spinlock
    93                 DO_LOCK( this->lock DEBUG_CTX2 );
     92                DO_LOCK( this->lock __cfaabi_dbg_ctx2 );
    9493                thread_desc * thrd = this_thread;
    9594
    96                 LIB_DEBUG_PRINT_SAFE("Kernel : %10p Entering mon %p (%p)\n", thrd, this, this->owner);
     95                __cfaabi_dbg_print_safe("Kernel : %10p Entering mon %p (%p)\n", thrd, this, this->owner);
    9796
    9897                if( !this->owner ) {
     
    10099                        set_owner( this, thrd );
    101100
    102                         LIB_DEBUG_PRINT_SAFE("Kernel :  mon is free \n");
     101                        __cfaabi_dbg_print_safe("Kernel :  mon is free \n");
    103102                }
    104103                else if( this->owner == thrd) {
     
    106105                        this->recursion += 1;
    107106
    108                         LIB_DEBUG_PRINT_SAFE("Kernel :  mon already owned \n");
     107                        __cfaabi_dbg_print_safe("Kernel :  mon already owned \n");
    109108                }
    110109                else if( is_accepted( this, group) ) {
     
    115114                        reset_mask( this );
    116115
    117                         LIB_DEBUG_PRINT_SAFE("Kernel :  mon accepts \n");
     116                        __cfaabi_dbg_print_safe("Kernel :  mon accepts \n");
    118117                }
    119118                else {
    120                         LIB_DEBUG_PRINT_SAFE("Kernel :  blocking \n");
     119                        __cfaabi_dbg_print_safe("Kernel :  blocking \n");
    121120
    122121                        // Some one else has the monitor, wait in line for it
     
    124123                        BlockInternal( &this->lock );
    125124
    126                         LIB_DEBUG_PRINT_SAFE("Kernel : %10p Entered  mon %p\n", thrd, this);
     125                        __cfaabi_dbg_print_safe("Kernel : %10p Entered  mon %p\n", thrd, this);
    127126
    128127                        // BlockInternal will unlock spinlock, no need to unlock ourselves
     
    130129                }
    131130
    132                 LIB_DEBUG_PRINT_SAFE("Kernel : %10p Entered  mon %p\n", thrd, this);
     131                __cfaabi_dbg_print_safe("Kernel : %10p Entered  mon %p\n", thrd, this);
    133132
    134133                // Release the lock and leave
     
    139138        static void __enter_monitor_dtor( monitor_desc * this, fptr_t func ) {
    140139                // Lock the monitor spinlock
    141                 DO_LOCK( this->lock DEBUG_CTX2 );
     140                DO_LOCK( this->lock __cfaabi_dbg_ctx2 );
    142141                thread_desc * thrd = this_thread;
    143142
    144                 LIB_DEBUG_PRINT_SAFE("Kernel : %10p Entering dtor for mon %p (%p)\n", thrd, this, this->owner);
     143                __cfaabi_dbg_print_safe("Kernel : %10p Entering dtor for mon %p (%p)\n", thrd, this, this->owner);
    145144
    146145
    147146                if( !this->owner ) {
    148                         LIB_DEBUG_PRINT_SAFE("Kernel : Destroying free mon %p\n", this);
     147                        __cfaabi_dbg_print_safe("Kernel : Destroying free mon %p\n", this);
    149148
    150149                        // No one has the monitor, just take it
     
    164163                __monitor_group_t group = { &this, 1, func };
    165164                if( is_accepted( this, group) ) {
    166                         LIB_DEBUG_PRINT_SAFE("Kernel :  mon accepts dtor, block and signal it \n");
     165                        __cfaabi_dbg_print_safe("Kernel :  mon accepts dtor, block and signal it \n");
    167166
    168167                        // Wake the thread that is waiting for this
     
    183182                }
    184183                else {
    185                         LIB_DEBUG_PRINT_SAFE("Kernel :  blocking \n");
     184                        __cfaabi_dbg_print_safe("Kernel :  blocking \n");
    186185
    187186                        wait_ctx( this_thread, 0 )
     
    196195                }
    197196
    198                 LIB_DEBUG_PRINT_SAFE("Kernel : Destroying %p\n", this);
     197                __cfaabi_dbg_print_safe("Kernel : Destroying %p\n", this);
    199198
    200199        }
     
    203202        void __leave_monitor_desc( monitor_desc * this ) {
    204203                // Lock the monitor spinlock, DO_LOCK to reduce contention
    205                 DO_LOCK( this->lock DEBUG_CTX2 );
    206 
    207                 LIB_DEBUG_PRINT_SAFE("Kernel : %10p Leaving mon %p (%p)\n", this_thread, this, this->owner);
     204                DO_LOCK( this->lock __cfaabi_dbg_ctx2 );
     205
     206                __cfaabi_dbg_print_safe("Kernel : %10p Leaving mon %p (%p)\n", this_thread, this, this->owner);
    208207
    209208                verifyf( this_thread == this->owner, "Expected owner to be %p, got %p (r: %i, m: %p)", this_thread, this->owner, this->recursion, this );
     
    215214                // it means we don't need to do anything
    216215                if( this->recursion != 0) {
    217                         LIB_DEBUG_PRINT_SAFE("Kernel :  recursion still %d\n", this->recursion);
     216                        __cfaabi_dbg_print_safe("Kernel :  recursion still %d\n", this->recursion);
    218217                        unlock( this->lock );
    219218                        return;
     
    232231        // Leave single monitor for the last time
    233232        void __leave_dtor_monitor_desc( monitor_desc * this ) {
    234                 LIB_DEBUG_DO(
     233                __cfaabi_dbg_debug_do(
    235234                        if( this_thread != this->owner ) {
    236235                                abortf("Destroyed monitor %p has inconsistent owner, expected %p got %p.\n", this, this_thread, this->owner);
     
    249248
    250249                // Lock the monitor now
    251                 DO_LOCK( this->lock DEBUG_CTX2 );
     250                DO_LOCK( this->lock __cfaabi_dbg_ctx2 );
    252251
    253252                disable_interrupts();
     
    308307        (this_thread->monitors){m, count, func};
    309308
    310         // LIB_DEBUG_PRINT_SAFE("MGUARD : enter %d\n", count);
     309        // __cfaabi_dbg_print_safe("MGUARD : enter %d\n", count);
    311310
    312311        // Enter the monitors in order
     
    314313        enter( group );
    315314
    316         // LIB_DEBUG_PRINT_SAFE("MGUARD : entered\n");
     315        // __cfaabi_dbg_print_safe("MGUARD : entered\n");
    317316}
    318317
     
    320319// Dtor for monitor guard
    321320void ^?{}( monitor_guard_t & this ) {
    322         // LIB_DEBUG_PRINT_SAFE("MGUARD : leaving %d\n", this.count);
     321        // __cfaabi_dbg_print_safe("MGUARD : leaving %d\n", this.count);
    323322
    324323        // Leave the monitors in order
    325324        leave( this.m, this.count );
    326325
    327         // LIB_DEBUG_PRINT_SAFE("MGUARD : left\n");
     326        // __cfaabi_dbg_print_safe("MGUARD : left\n");
    328327
    329328        // Restore thread context
     
    430429
    431430        //Some more checking in debug
    432         LIB_DEBUG_DO(
     431        __cfaabi_dbg_debug_do(
    433432                thread_desc * this_thrd = this_thread;
    434433                if ( this.monitor_count != this_thrd->monitors.size ) {
     
    487486        set_owner( monitors, count, signallee );
    488487
    489         LIB_DEBUG_PRINT_BUFFER_DECL( "Kernel : signal_block condition %p (s: %p)\n", &this, signallee );
     488        __cfaabi_dbg_print_buffer_decl( "Kernel : signal_block condition %p (s: %p)\n", &this, signallee );
    490489
    491490        //Everything is ready to go to sleep
     
    496495
    497496
    498         LIB_DEBUG_PRINT_BUFFER_LOCAL( "Kernel :   signal_block returned\n" );
     497        __cfaabi_dbg_print_buffer_local( "Kernel :   signal_block returned\n" );
    499498
    500499        //We are back, restore the masks and recursions
     
    535534        __lock_size_t actual_count = aggregate( mon_storage, mask );
    536535
    537         LIB_DEBUG_PRINT_BUFFER_DECL( "Kernel : waitfor %d (s: %d, m: %d)\n", actual_count, mask.size, (__lock_size_t)max);
     536        __cfaabi_dbg_print_buffer_decl( "Kernel : waitfor %d (s: %d, m: %d)\n", actual_count, mask.size, (__lock_size_t)max);
    538537
    539538        if(actual_count == 0) return;
    540539
    541         LIB_DEBUG_PRINT_BUFFER_LOCAL( "Kernel : waitfor internal proceeding\n");
     540        __cfaabi_dbg_print_buffer_local( "Kernel : waitfor internal proceeding\n");
    542541
    543542        // Create storage for monitor context
     
    556555                        __acceptable_t& accepted = mask[index];
    557556                        if( accepted.is_dtor ) {
    558                                 LIB_DEBUG_PRINT_BUFFER_LOCAL( "Kernel : dtor already there\n");
     557                                __cfaabi_dbg_print_buffer_local( "Kernel : dtor already there\n");
    559558                                verifyf( accepted.size == 1,  "ERROR: Accepted dtor has more than 1 mutex parameter." );
    560559
     
    568567                        }
    569568                        else {
    570                                 LIB_DEBUG_PRINT_BUFFER_LOCAL( "Kernel : thread present, baton-passing\n");
     569                                __cfaabi_dbg_print_buffer_local( "Kernel : thread present, baton-passing\n");
    571570
    572571                                // Create the node specific to this wait operation
     
    576575                                monitor_save;
    577576
    578                                 LIB_DEBUG_PRINT_BUFFER_LOCAL( "Kernel :  baton of %d monitors : ", count );
     577                                __cfaabi_dbg_print_buffer_local( "Kernel :  baton of %d monitors : ", count );
    579578                                #ifdef __CFA_DEBUG_PRINT__
    580579                                        for( int i = 0; i < count; i++) {
    581                                                 LIB_DEBUG_PRINT_BUFFER_LOCAL( "%p %p ", monitors[i], monitors[i]->signal_stack.top );
     580                                                __cfaabi_dbg_print_buffer_local( "%p %p ", monitors[i], monitors[i]->signal_stack.top );
    582581                                        }
    583582                                #endif
    584                                 LIB_DEBUG_PRINT_BUFFER_LOCAL( "\n");
     583                                __cfaabi_dbg_print_buffer_local( "\n");
    585584
    586585                                // Set the owners to be the next thread
     
    593592                                monitor_restore;
    594593
    595                                 LIB_DEBUG_PRINT_BUFFER_LOCAL( "Kernel : thread present, returned\n");
     594                                __cfaabi_dbg_print_buffer_local( "Kernel : thread present, returned\n");
    596595                        }
    597596
    598                         LIB_DEBUG_PRINT_BUFFER_LOCAL( "Kernel : accepted %d\n", *mask.accepted);
     597                        __cfaabi_dbg_print_buffer_local( "Kernel : accepted %d\n", *mask.accepted);
    599598                        return;
    600599                }
     
    603602
    604603        if( duration == 0 ) {
    605                 LIB_DEBUG_PRINT_BUFFER_LOCAL( "Kernel : non-blocking, exiting\n");
     604                __cfaabi_dbg_print_buffer_local( "Kernel : non-blocking, exiting\n");
    606605
    607606                unlock_all( locks, count );
    608607
    609                 LIB_DEBUG_PRINT_BUFFER_LOCAL( "Kernel : accepted %d\n", *mask.accepted);
     608                __cfaabi_dbg_print_buffer_local( "Kernel : accepted %d\n", *mask.accepted);
    610609                return;
    611610        }
     
    614613        verifyf( duration < 0, "Timeout on waitfor statments not supported yet.");
    615614
    616         LIB_DEBUG_PRINT_BUFFER_LOCAL( "Kernel : blocking waitfor\n");
     615        __cfaabi_dbg_print_buffer_local( "Kernel : blocking waitfor\n");
    617616
    618617        // Create the node specific to this wait operation
     
    636635        monitor_restore;
    637636
    638         LIB_DEBUG_PRINT_BUFFER_LOCAL( "Kernel : exiting\n");
    639 
    640         LIB_DEBUG_PRINT_BUFFER_LOCAL( "Kernel : accepted %d\n", *mask.accepted);
     637        __cfaabi_dbg_print_buffer_local( "Kernel : exiting\n");
     638
     639        __cfaabi_dbg_print_buffer_local( "Kernel : accepted %d\n", *mask.accepted);
    641640}
    642641
     
    645644
    646645static inline void set_owner( monitor_desc * this, thread_desc * owner ) {
    647         // LIB_DEBUG_PRINT_SAFE("Kernal :   Setting owner of %p to %p ( was %p)\n", this, owner, this->owner );
     646        // __cfaabi_dbg_print_safe("Kernal :   Setting owner of %p to %p ( was %p)\n", this, owner, this->owner );
    648647
    649648        //Pass the monitor appropriately
     
    677676static inline thread_desc * next_thread( monitor_desc * this ) {
    678677        //Check the signaller stack
    679         LIB_DEBUG_PRINT_SAFE("Kernel :  mon %p AS-stack top %p\n", this, this->signal_stack.top);
     678        __cfaabi_dbg_print_safe("Kernel :  mon %p AS-stack top %p\n", this, this->signal_stack.top);
    680679        __condition_criterion_t * urgent = pop( this->signal_stack );
    681680        if( urgent ) {
     
    729728        for( __lock_size_t i = 0; i < count; i++) {
    730729                (criteria[i]){ monitors[i], waiter };
    731                 LIB_DEBUG_PRINT_SAFE( "Kernel :  target %p = %p\n", criteria[i].target, &criteria[i] );
     730                __cfaabi_dbg_print_safe( "Kernel :  target %p = %p\n", criteria[i].target, &criteria[i] );
    732731                push( criteria[i].target->signal_stack, &criteria[i] );
    733732        }
     
    738737static inline void lock_all( __spinlock_t * locks [], __lock_size_t count ) {
    739738        for( __lock_size_t i = 0; i < count; i++ ) {
    740                 DO_LOCK( *locks[i] DEBUG_CTX2 );
     739                DO_LOCK( *locks[i] __cfaabi_dbg_ctx2 );
    741740        }
    742741}
     
    745744        for( __lock_size_t i = 0; i < count; i++ ) {
    746745                __spinlock_t * l = &source[i]->lock;
    747                 DO_LOCK( *l DEBUG_CTX2 );
     746                DO_LOCK( *l __cfaabi_dbg_ctx2 );
    748747                if(locks) locks[i] = l;
    749748        }
     
    803802        for(    int i = 0; i < count; i++ ) {
    804803
    805                 // LIB_DEBUG_PRINT_SAFE( "Checking %p for %p\n", &criteria[i], target );
     804                // __cfaabi_dbg_print_safe( "Checking %p for %p\n", &criteria[i], target );
    806805                if( &criteria[i] == target ) {
    807806                        criteria[i].ready = true;
    808                         // LIB_DEBUG_PRINT_SAFE( "True\n" );
     807                        // __cfaabi_dbg_print_safe( "True\n" );
    809808                }
    810809
     
    812811        }
    813812
    814         LIB_DEBUG_PRINT_SAFE( "Kernel :  Runing %i (%p)\n", ready2run, ready2run ? node->waiting_thread : NULL );
     813        __cfaabi_dbg_print_safe( "Kernel :  Runing %i (%p)\n", ready2run, ready2run ? node->waiting_thread : NULL );
    815814        return ready2run ? node->waiting_thread : NULL;
    816815}
     
    819818        thread_desc * thrd = this_thread;
    820819        if( !this.monitors ) {
    821                 // LIB_DEBUG_PRINT_SAFE("Branding\n");
     820                // __cfaabi_dbg_print_safe("Branding\n");
    822821                assertf( thrd->monitors.data != NULL, "No current monitor to brand condition %p", thrd->monitors.data );
    823822                this.monitor_count = thrd->monitors.size;
  • src/libcfa/concurrency/preemption.c

    r9c35431 rc13e8dc8  
    1414//
    1515
    16 #include "libhdr.h"
    1716#include "preemption.h"
    1817
     
    148147//=============================================================================================
    149148
    150 LIB_DEBUG_DO( static thread_local void * last_interrupt = 0; )
     149__cfaabi_dbg_debug_do( static thread_local void * last_interrupt = 0; )
    151150
    152151extern "C" {
     
    159158        // Enable interrupts by decrementing the counter
    160159        // If counter reaches 0, execute any pending CtxSwitch
    161         void enable_interrupts( DEBUG_CTX_PARAM ) {
     160        void enable_interrupts( __cfaabi_dbg_ctx_param ) {
    162161                processor * proc   = this_processor;      // Cache the processor now since interrupts can start happening after the atomic add
    163162                thread_desc * thrd = this_thread;         // Cache the thread now since interrupts can start happening after the atomic add
     
    173172
    174173                // For debugging purposes : keep track of the last person to enable the interrupts
    175                 LIB_DEBUG_DO( proc->last_enable = caller; )
     174                __cfaabi_dbg_debug_do( proc->last_enable = caller; )
    176175        }
    177176
     
    233232// Called from kernel_startup
    234233void kernel_start_preemption() {
    235         LIB_DEBUG_PRINT_SAFE("Kernel : Starting preemption\n");
     234        __cfaabi_dbg_print_safe("Kernel : Starting preemption\n");
    236235
    237236        // Start with preemption disabled until ready
     
    255254// Called from kernel_shutdown
    256255void kernel_stop_preemption() {
    257         LIB_DEBUG_PRINT_SAFE("Kernel : Preemption stopping\n");
     256        __cfaabi_dbg_print_safe("Kernel : Preemption stopping\n");
    258257
    259258        // Block all signals since we are already shutting down
     
    271270        // Preemption is now fully stopped
    272271
    273         LIB_DEBUG_PRINT_SAFE("Kernel : Preemption stopped\n");
     272        __cfaabi_dbg_print_safe("Kernel : Preemption stopped\n");
    274273}
    275274
     
    297296// Receives SIGUSR1 signal and causes the current thread to yield
    298297void sigHandler_ctxSwitch( __CFA_SIGPARMS__ ) {
    299         LIB_DEBUG_DO( last_interrupt = (void *)(cxt->uc_mcontext.gregs[CFA_REG_IP]); )
     298        __cfaabi_dbg_debug_do( last_interrupt = (void *)(cxt->uc_mcontext.gregs[CFA_REG_IP]); )
    300299
    301300        // Check if it is safe to preempt here
     
    346345                assertf(sig == SIGALRM, "Kernel Internal Error, sigwait: Unexpected signal %d (%d : %d)\n", sig, info.si_code, info.si_value.sival_int);
    347346
    348                 // LIB_DEBUG_PRINT_SAFE("Kernel : Caught alarm from %d with %d\n", info.si_code, info.si_value.sival_int );
     347                // __cfaabi_dbg_print_safe("Kernel : Caught alarm from %d with %d\n", info.si_code, info.si_value.sival_int );
    349348                // Switch on the code (a.k.a. the sender) to
    350349                switch( info.si_code )
     
    354353                case SI_TIMER:
    355354                case SI_KERNEL:
    356                         // LIB_DEBUG_PRINT_SAFE("Kernel : Preemption thread tick\n");
    357                         lock( event_kernel->lock DEBUG_CTX2 );
     355                        // __cfaabi_dbg_print_safe("Kernel : Preemption thread tick\n");
     356                        lock( event_kernel->lock __cfaabi_dbg_ctx2 );
    358357                        tick_preemption();
    359358                        unlock( event_kernel->lock );
     
    368367
    369368EXIT:
    370         LIB_DEBUG_PRINT_SAFE("Kernel : Preemption thread stopping\n");
     369        __cfaabi_dbg_print_safe("Kernel : Preemption thread stopping\n");
    371370        return NULL;
    372371}
     
    380379
    381380        if ( sigaction( sig, &act, NULL ) == -1 ) {
    382                 LIB_DEBUG_PRINT_BUFFER_DECL(
     381                __cfaabi_dbg_print_buffer_decl(
    383382                        " __kernel_sigaction( sig:%d, handler:%p, flags:%d ), problem installing signal handler, error(%d) %s.\n",
    384383                        sig, handler, flags, errno, strerror( errno )
     
    397396
    398397        if ( sigaction( sig, &act, NULL ) == -1 ) {
    399                 LIB_DEBUG_PRINT_BUFFER_DECL(
     398                __cfaabi_dbg_print_buffer_decl(
    400399                        " __kernel_sigdefault( sig:%d ), problem reseting signal handler, error(%d) %s.\n",
    401400                        sig, errno, strerror( errno )
     
    409408//=============================================================================================
    410409
    411 LIB_DEBUG_DO(
     410__cfaabi_dbg_debug_do(
    412411        static void __kernel_backtrace( int start ) {
    413412                // skip first N stack frames
     
    476475
    477476// void sigHandler_segv( __CFA_SIGPARMS__ ) {
    478 //      LIB_DEBUG_DO(
     477//      __cfaabi_dbg_debug_do(
    479478//              #ifdef __USE_STREAM__
    480479//              serr    | "*CFA runtime error* program cfa-cpp terminated with"
     
    493492// void sigHandler_abort( __CFA_SIGPARMS__ ) {
    494493//      // skip first 6 stack frames
    495 //      LIB_DEBUG_DO( __kernel_backtrace( 6 ); )
     494//      __cfaabi_dbg_debug_do( __kernel_backtrace( 6 ); )
    496495
    497496//      // reset default signal handler
  • src/libcfa/concurrency/thread.c

    r9c35431 rc13e8dc8  
    1717
    1818#include "kernel_private.h"
    19 #include "libhdr.h"
    2019
    2120#define __CFA_INVOKE_PRIVATE__
     
    7271        thrd_c->last = this_coroutine;
    7372
    74         // LIB_DEBUG_PRINT_SAFE("Thread start : %p (t %p, c %p)\n", this, thrd_c, thrd_h);
     73        // __cfaabi_dbg_print_safe("Thread start : %p (t %p, c %p)\n", this, thrd_c, thrd_h);
    7574
    7675        disable_interrupts();
     
    8281
    8382        ScheduleThread(thrd_h);
    84         enable_interrupts( DEBUG_CTX );
     83        enable_interrupts( __cfaabi_dbg_ctx );
    8584}
    8685
  • src/libcfa/exception.c

    r9c35431 rc13e8dc8  
    2323#include <stdio.h>
    2424#include <unwind.h>
    25 #include <libhdr/libdebug.h>
     25#include <bits/debug.h>
    2626
    2727// FIX ME: temporary hack to keep ARM build working
     
    3737
    3838// Base exception vtable is abstract, you should not have base exceptions.
    39 struct __cfaehm__base_exception_t_vtable
    40                 ___cfaehm__base_exception_t_vtable_instance = {
     39struct __cfaabi_ehm__base_exception_t_vtable
     40                ___cfaabi_ehm__base_exception_t_vtable_instance = {
    4141        .parent = NULL,
    4242        .size = 0,
     
    4949// Temperary global exception context. Does not work with concurency.
    5050struct exception_context_t {
    51     struct __cfaehm__try_resume_node * top_resume;
    52     struct __cfaehm__try_resume_node * current_resume;
     51    struct __cfaabi_ehm__try_resume_node * top_resume;
     52    struct __cfaabi_ehm__try_resume_node * current_resume;
    5353
    5454    exception * current_exception;
     
    7878// RESUMPTION ================================================================
    7979
    80 void __cfaehm__throw_resume(exception * except) {
    81 
    82         LIB_DEBUG_PRINT_SAFE("Throwing resumption exception\n");
    83 
    84         struct __cfaehm__try_resume_node * original_head = shared_stack.current_resume;
    85         struct __cfaehm__try_resume_node * current =
     80void __cfaabi_ehm__throw_resume(exception * except) {
     81
     82        __cfaabi_dbg_print_safe("Throwing resumption exception\n");
     83
     84        struct __cfaabi_ehm__try_resume_node * original_head = shared_stack.current_resume;
     85        struct __cfaabi_ehm__try_resume_node * current =
    8686                (original_head) ? original_head->next : shared_stack.top_resume;
    8787
     
    9494        }
    9595
    96         LIB_DEBUG_PRINT_SAFE("Unhandled exception\n");
     96        __cfaabi_dbg_print_safe("Unhandled exception\n");
    9797        shared_stack.current_resume = original_head;
    9898
    9999        // Fall back to termination:
    100         __cfaehm__throw_terminate(except);
     100        __cfaabi_ehm__throw_terminate(except);
    101101        // TODO: Default handler for resumption.
    102102}
     
    105105// hook has to be added after the node is built but before it is made the top node.
    106106
    107 void __cfaehm__try_resume_setup(struct __cfaehm__try_resume_node * node,
     107void __cfaabi_ehm__try_resume_setup(struct __cfaabi_ehm__try_resume_node * node,
    108108                        _Bool (*handler)(exception * except)) {
    109109        node->next = shared_stack.top_resume;
     
    112112}
    113113
    114 void __cfaehm__try_resume_cleanup(struct __cfaehm__try_resume_node * node) {
     114void __cfaabi_ehm__try_resume_cleanup(struct __cfaabi_ehm__try_resume_node * node) {
    115115        shared_stack.top_resume = node->next;
    116116}
     
    122122// May have to move to cfa for constructors and destructors (references).
    123123
    124 struct __cfaehm__node {
    125         struct __cfaehm__node * next;
     124struct __cfaabi_ehm__node {
     125        struct __cfaabi_ehm__node * next;
    126126};
    127127
    128128#define NODE_TO_EXCEPT(node) ((exception *)(1 + (node)))
    129 #define EXCEPT_TO_NODE(except) ((struct __cfaehm__node *)(except) - 1)
     129#define EXCEPT_TO_NODE(except) ((struct __cfaabi_ehm__node *)(except) - 1)
    130130
    131131// Creates a copy of the indicated exception and sets current_exception to it.
    132 static void __cfaehm__allocate_exception( exception * except ) {
     132static void __cfaabi_ehm__allocate_exception( exception * except ) {
    133133        struct exception_context_t * context = this_exception_context();
    134134
    135135        // Allocate memory for the exception.
    136         struct __cfaehm__node * store = malloc(
    137                 sizeof( struct __cfaehm__node ) + except->virtual_table->size );
     136        struct __cfaabi_ehm__node * store = malloc(
     137                sizeof( struct __cfaabi_ehm__node ) + except->virtual_table->size );
    138138
    139139        if ( ! store ) {
     
    151151
    152152// Delete the provided exception, unsetting current_exception if relivant.
    153 static void __cfaehm__delete_exception( exception * except ) {
     153static void __cfaabi_ehm__delete_exception( exception * except ) {
    154154        struct exception_context_t * context = this_exception_context();
    155155
    156         LIB_DEBUG_PRINT_SAFE("Deleting Exception\n");
     156        __cfaabi_dbg_print_safe("Deleting Exception\n");
    157157
    158158        // Remove the exception from the list.
    159         struct __cfaehm__node * to_free = EXCEPT_TO_NODE(except);
    160         struct __cfaehm__node * node;
     159        struct __cfaabi_ehm__node * to_free = EXCEPT_TO_NODE(except);
     160        struct __cfaabi_ehm__node * node;
    161161
    162162        if ( context->current_exception == except ) {
     
    178178
    179179// If this isn't a rethrow (*except==0), delete the provided exception.
    180 void __cfaehm__cleanup_terminate( void * except ) {
    181         if ( *(void**)except ) __cfaehm__delete_exception( *(exception**)except );
     180void __cfaabi_ehm__cleanup_terminate( void * except ) {
     181        if ( *(void**)except ) __cfaabi_ehm__delete_exception( *(exception**)except );
    182182}
    183183
     
    202202
    203203// The exception that is being thrown must already be stored.
    204 __attribute__((noreturn)) void __cfaehm__begin_unwind(void) {
     204__attribute__((noreturn)) void __cfaabi_ehm__begin_unwind(void) {
    205205        if ( ! this_exception_context()->current_exception ) {
    206206                printf("UNWIND ERROR missing exception in begin unwind\n");
     
    233233}
    234234
    235 void __cfaehm__throw_terminate( exception * val ) {
    236         LIB_DEBUG_PRINT_SAFE("Throwing termination exception\n");
    237 
    238         __cfaehm__allocate_exception( val );
    239         __cfaehm__begin_unwind();
    240 }
    241 
    242 void __cfaehm__rethrow_terminate(void) {
    243         LIB_DEBUG_PRINT_SAFE("Rethrowing termination exception\n");
    244 
    245         __cfaehm__begin_unwind();
     235void __cfaabi_ehm__throw_terminate( exception * val ) {
     236        __cfaabi_dbg_print_safe("Throwing termination exception\n");
     237
     238        __cfaabi_ehm__allocate_exception( val );
     239        __cfaabi_ehm__begin_unwind();
     240}
     241
     242void __cfaabi_ehm__rethrow_terminate(void) {
     243        __cfaabi_dbg_print_safe("Rethrowing termination exception\n");
     244
     245        __cfaabi_ehm__begin_unwind();
    246246}
    247247
     
    254254{
    255255
    256         //LIB_DEBUG_PRINT_SAFE("CFA: 0x%lx\n", _Unwind_GetCFA(context));
    257         LIB_DEBUG_PRINT_SAFE("Personality function (%d, %x, %llu, %p, %p):", version, actions, exceptionClass, unwind_exception, context);
     256        //__cfaabi_dbg_print_safe("CFA: 0x%lx\n", _Unwind_GetCFA(context));
     257        __cfaabi_dbg_print_safe("Personality function (%d, %x, %llu, %p, %p):", version, actions, exceptionClass, unwind_exception, context);
    258258
    259259        // If we've reached the end of the stack then there is nothing much we can do...
     
    261261
    262262        if (actions & _UA_SEARCH_PHASE) {
    263                 LIB_DEBUG_PRINT_SAFE(" lookup phase");
     263                __cfaabi_dbg_print_safe(" lookup phase");
    264264        }
    265265        else if (actions & _UA_CLEANUP_PHASE) {
    266                 LIB_DEBUG_PRINT_SAFE(" cleanup phase");
     266                __cfaabi_dbg_print_safe(" cleanup phase");
    267267        }
    268268        // Just in case, probably can't actually happen
     
    307307                        void * ep = (void*)lsd_info.Start + callsite_start + callsite_len;
    308308                        void * ip = (void*)instruction_ptr;
    309                         LIB_DEBUG_PRINT_SAFE("\nfound %p - %p (%p, %p, %p), looking for %p\n", bp, ep, ls, cs, cl, ip);
     309                        __cfaabi_dbg_print_safe("\nfound %p - %p (%p, %p, %p), looking for %p\n", bp, ep, ls, cs, cl, ip);
    310310#endif // __CFA_DEBUG_PRINT__
    311311                        continue;
     
    346346
    347347                                        // Get a function pointer from the relative offset and call it
    348                                         // _Unwind_Reason_Code (*matcher)() = (_Unwind_Reason_Code (*)())lsd_info.LPStart + imatcher;                                   
     348                                        // _Unwind_Reason_Code (*matcher)() = (_Unwind_Reason_Code (*)())lsd_info.LPStart + imatcher;
    349349
    350350                                        _Unwind_Reason_Code (*matcher)(exception *) =
     
    357357                                        // Based on the return value, check if we matched the exception
    358358                                        if( ret == _URC_HANDLER_FOUND) {
    359                                                 LIB_DEBUG_PRINT_SAFE(" handler found\n");
     359                                                __cfaabi_dbg_print_safe(" handler found\n");
    360360                                        } else {
    361                                                 LIB_DEBUG_PRINT_SAFE(" no handler\n");
     361                                                __cfaabi_dbg_print_safe(" no handler\n");
    362362                                        }
    363363                                        return ret;
     
    365365
    366366                                // This is only a cleanup handler, ignore it
    367                                 LIB_DEBUG_PRINT_SAFE(" no action");
     367                                __cfaabi_dbg_print_safe(" no action");
    368368                        }
    369369                        else if (actions & _UA_CLEANUP_PHASE) {
     
    385385                                _Unwind_SetIP( context, ((lsd_info.LPStart) + (callsite_landing_pad)) );
    386386
    387                                 LIB_DEBUG_PRINT_SAFE(" action\n");
     387                                __cfaabi_dbg_print_safe(" action\n");
    388388
    389389                                // Return have some action to run
     
    393393
    394394                // Nothing to do, move along
    395                 LIB_DEBUG_PRINT_SAFE(" no landing pad");
     395                __cfaabi_dbg_print_safe(" no landing pad");
    396396        }
    397397        // No handling found
    398         LIB_DEBUG_PRINT_SAFE(" table end reached\n");
     398        __cfaabi_dbg_print_safe(" table end reached\n");
    399399
    400400        UNWIND:
    401         LIB_DEBUG_PRINT_SAFE(" unwind\n");
     401        __cfaabi_dbg_print_safe(" unwind\n");
    402402
    403403        // Keep unwinding the stack
     
    408408// libcfa but there is one problem left, see the exception table for details
    409409__attribute__((noinline))
    410 void __cfaehm__try_terminate(void (*try_block)(),
     410void __cfaabi_ehm__try_terminate(void (*try_block)(),
    411411                void (*catch_block)(int index, exception * except),
    412412                __attribute__((unused)) int (*match_block)(exception * except)) {
     
    466466        // Body uses language specific data and therefore could be modified arbitrarily
    467467        ".LLSDACSBCFA2:\n"                                              // BODY start
    468         "       .uleb128 .TRYSTART-__cfaehm__try_terminate\n"           // Handled area start  (relative to start of function)
     468        "       .uleb128 .TRYSTART-__cfaabi_ehm__try_terminate\n"               // Handled area start  (relative to start of function)
    469469        "       .uleb128 .TRYEND-.TRYSTART\n"                           // Handled area length
    470         "       .uleb128 .CATCH-__cfaehm__try_terminate\n"                              // Hanlder landing pad adress  (relative to start of function)
     470        "       .uleb128 .CATCH-__cfaabi_ehm__try_terminate\n"                          // Hanlder landing pad adress  (relative to start of function)
    471471        "       .uleb128 1\n"                                           // Action code, gcc seems to use always 0
    472472        ".LLSDACSECFA2:\n"                                              // BODY end
    473473        "       .text\n"                                                        // TABLE footer
    474         "       .size   __cfaehm__try_terminate, .-__cfaehm__try_terminate\n"
     474        "       .size   __cfaabi_ehm__try_terminate, .-__cfaabi_ehm__try_terminate\n"
    475475        "       .ident  \"GCC: (Ubuntu 6.2.0-3ubuntu11~16.04) 6.2.0 20160901\"\n"
    476476//      "       .section        .note.GNU-stack,\"x\",@progbits\n"
  • src/libcfa/exception.h

    r9c35431 rc13e8dc8  
    2121#endif
    2222
    23 struct __cfaehm__base_exception_t;
    24 typedef struct __cfaehm__base_exception_t exception;
    25 struct __cfaehm__base_exception_t_vtable {
    26         const struct __cfaehm__base_exception_t_vtable * parent;
     23struct __cfaabi_ehm__base_exception_t;
     24typedef struct __cfaabi_ehm__base_exception_t exception;
     25struct __cfaabi_ehm__base_exception_t_vtable {
     26        const struct __cfaabi_ehm__base_exception_t_vtable * parent;
    2727        size_t size;
    28         void (*copy)(struct __cfaehm__base_exception_t *this,
    29                      struct __cfaehm__base_exception_t * other);
    30         void (*free)(struct __cfaehm__base_exception_t *this);
    31         const char * (*msg)(struct __cfaehm__base_exception_t *this);
     28        void (*copy)(struct __cfaabi_ehm__base_exception_t *this,
     29                     struct __cfaabi_ehm__base_exception_t * other);
     30        void (*free)(struct __cfaabi_ehm__base_exception_t *this);
     31        const char * (*msg)(struct __cfaabi_ehm__base_exception_t *this);
    3232};
    33 struct __cfaehm__base_exception_t {
    34         struct __cfaehm__base_exception_t_vtable const * virtual_table;
     33struct __cfaabi_ehm__base_exception_t {
     34        struct __cfaabi_ehm__base_exception_t_vtable const * virtual_table;
    3535};
    36 extern struct __cfaehm__base_exception_t_vtable
    37         ___cfaehm__base_exception_t_vtable_instance;
     36extern struct __cfaabi_ehm__base_exception_t_vtable
     37        ___cfaabi_ehm__base_exception_t_vtable_instance;
    3838
    3939
    4040// Used in throw statement translation.
    41 void __cfaehm__throw_terminate(exception * except) __attribute__((noreturn));
    42 void __cfaehm__rethrow_terminate() __attribute__((noreturn));
    43 void __cfaehm__throw_resume(exception * except);
     41void __cfaabi_ehm__throw_terminate(exception * except) __attribute__((noreturn));
     42void __cfaabi_ehm__rethrow_terminate() __attribute__((noreturn));
     43void __cfaabi_ehm__throw_resume(exception * except);
    4444
    4545// Function catches termination exceptions.
    46 void __cfaehm__try_terminate(
     46void __cfaabi_ehm__try_terminate(
    4747    void (*try_block)(),
    4848    void (*catch_block)(int index, exception * except),
     
    5050
    5151// Clean-up the exception in catch blocks.
    52 void __cfaehm__cleanup_terminate(void * except);
     52void __cfaabi_ehm__cleanup_terminate(void * except);
    5353
    5454// Data structure creates a list of resume handlers.
    55 struct __cfaehm__try_resume_node {
    56     struct __cfaehm__try_resume_node * next;
     55struct __cfaabi_ehm__try_resume_node {
     56    struct __cfaabi_ehm__try_resume_node * next;
    5757    _Bool (*handler)(exception * except);
    5858};
    5959
    6060// These act as constructor and destructor for the resume node.
    61 void __cfaehm__try_resume_setup(
    62     struct __cfaehm__try_resume_node * node,
     61void __cfaabi_ehm__try_resume_setup(
     62    struct __cfaabi_ehm__try_resume_node * node,
    6363    _Bool (*handler)(exception * except));
    64 void __cfaehm__try_resume_cleanup(
    65     struct __cfaehm__try_resume_node * node);
     64void __cfaabi_ehm__try_resume_cleanup(
     65    struct __cfaabi_ehm__try_resume_node * node);
    6666
    6767// Check for a standard way to call fake deconstructors.
    68 struct __cfaehm__cleanup_hook {};
     68struct __cfaabi_ehm__cleanup_hook {};
    6969
    7070#ifdef __cforall
  • src/libcfa/interpose.c

    r9c35431 rc13e8dc8  
    2424}
    2525
    26 #include "libhdr/libdebug.h"
    27 #include "libhdr/libtools.h"
     26#include "bits/debug.h"
     27#include "bits/defs.h"
    2828#include "startup.h"
    2929
     
    6969__typeof__( exit ) libc_exit __attribute__(( noreturn ));
    7070__typeof__( abort ) libc_abort __attribute__(( noreturn ));
    71 
    72 // #define INIT_REALRTN( x, ver ) libc_##x = (__typeof__(libc_##x))interpose_symbol( #x, ver )
    7371
    7472forall(dtype T)
     
    127125                        va_end( args );
    128126
    129                         __lib_debug_write( abort_text, len );
    130                         __lib_debug_write( "\n", 1 );
     127                        __cfaabi_dbg_bits_write( abort_text, len );
     128                        __cfaabi_dbg_bits_write( "\n", 1 );
    131129                }
    132130
    133131                len = snprintf( abort_text, abort_text_size, "Cforall Runtime error (UNIX pid:%ld)\n", (long int)getpid() ); // use UNIX pid (versus getPid)
    134                 __lib_debug_write( abort_text, len );
     132                __cfaabi_dbg_bits_write( abort_text, len );
    135133
    136134
  • src/libcfa/stdhdr/assert.h

    r9c35431 rc13e8dc8  
    3030#endif
    3131
     32#if !defined(NDEBUG) && (defined(__CFA_DEBUG__) || defined(__CFA_VERIFY__))
     33        #define verify(x) assert(x)
     34        #define verifyf(x, ...) assertf(x, __VA_ARGS__)
     35#else
     36        #define verify(x)
     37        #define verifyf(x, ...)
     38#endif
     39
    3240#ifdef __cforall
    3341} // extern "C"
  • src/prelude/builtins.c

    r9c35431 rc13e8dc8  
    1616// exception implementation
    1717
    18 typedef unsigned long long __cfaabi_exception_type_t;
     18typedef unsigned long long __cfaabi_abi_exception_type_t;
    1919
    2020#include "../libcfa/virtual.h"
     
    8080} // ?\?
    8181
    82 // FIXME (x \ (unsigned long int)y) relies on X ?\?(T, unsigned long) a function that is neither 
    83 // defined, nor passed as an assertion parameter. Without user-defined conversions, cannot specify 
    84 // X as a type that casts to double, yet it doesn't make sense to write functions with that type 
     82// FIXME (x \ (unsigned long int)y) relies on X ?\?(T, unsigned long) a function that is neither
     83// defined, nor passed as an assertion parameter. Without user-defined conversions, cannot specify
     84// X as a type that casts to double, yet it doesn't make sense to write functions with that type
    8585// signature where X is double.
    8686
  • src/tests/.expect/declarationErrors.txt

    r9c35431 rc13e8dc8  
    77declarationErrors.c:19:1 error: duplicate static in declaration of x4: static const volatile instance of const volatile struct __anonymous0
    88  with members
     9    i: int
    910   with body
    1011
     
    1213declarationErrors.c:20:1 error: duplicate const, duplicate static, duplicate volatile in declaration of x5: static const volatile instance of const volatile struct __anonymous1
    1314  with members
     15    i: int
    1416   with body
    1517
  • src/tests/Makefile.am

    r9c35431 rc13e8dc8  
    2020
    2121if BUILD_CONCURRENCY
    22 concurrent = yes
    23 quick_test += coroutine thread monitor
    24 concurrent_test =               \
    25         coroutine               \
    26         fmtLines                \
    27         pingpong                \
    28         prodcons                \
    29         thread                  \
    30         matrixSum               \
    31         monitor                 \
    32         multi-monitor           \
    33         boundedBuffer           \
    34         preempt                 \
    35         sched-int-block         \
    36         sched-int-disjoint      \
    37         sched-int-wait          \
    38         sched-ext-barge         \
    39         sched-ext-dtor          \
    40         sched-ext-else          \
    41         sched-ext-parse         \
    42         sched-ext-recurse       \
    43         sched-ext-statment      \
    44         sched-ext-when
     22concurrent=
    4523else
    46 concurrent=no
    47 concurrent_test=
     24concurrent='-Econcurrent'
    4825endif
    4926
     
    6239endif
    6340
    64 TEST_FLAGS = $(if $(test), 2> .err/${@}.log, )
     41TEST_FLAGS = $(if $(test), 2> $(test), )
    6542AM_CFLAGS = ${TEST_FLAGS} ${BUILD_FLAGS}
    6643CC = @CFA_BINDIR@/@CFA_NAME@
     
    7047
    7148fstream_test_SOURCES = fstream_test.c
    72 fstream_test_CFLAGS = $(if $(test), 2>> .err/fstream_test.log, ) ${BUILD_FLAGS}
     49fstream_test_CFLAGS = $(if $(test), 2>> $(test), ) ${BUILD_FLAGS}
    7350
    7451vector_test_SOURCES = vector/vector_int.c vector/array.c vector/vector_test.c
    75 vector_test_CFLAGS = $(if $(test), 2>> .err/vector_test.log, ) ${BUILD_FLAGS}
     52vector_test_CFLAGS = $(if $(test), 2>> $(test), ) ${BUILD_FLAGS}
    7653
    7754avl_test_SOURCES = avltree/avl_test.c avltree/avl0.c avltree/avl1.c avltree/avl2.c avltree/avl3.c avltree/avl4.c avltree/avl-private.c
    78 avl_test_CFLAGS = $(if $(test), 2>> .err/avl_test.log, ) ${BUILD_FLAGS}
     55avl_test_CFLAGS = $(if $(test), 2>> $(test), ) ${BUILD_FLAGS}
    7956
    8057all-local :
    81         @+python test.py --debug=${debug} --concurrent=${concurrent} ${quick_test}
     58        @+python test.py --debug=${debug} ${concurrent} ${quick_test}
    8259
    8360all-tests :
    84         @+python test.py --all --debug=${debug} --concurrent=${concurrent}              # '@' => do not echo command (SILENT), '+' => allows recursive make from within python program
     61        @+python test.py --all --debug=${debug} ${concurrent}           # '@' => do not echo command (SILENT), '+' => allows recursive make from within python program
    8562
    8663clean-local :
     
    8865
    8966list :
    90         @+python test.py --list --concurrent=${concurrent}
     67        @+python test.py --list ${concurrent}
    9168
    9269concurrency :
    93         @+python test.py --debug=${debug} --concurrent=${concurrent} ${concurrent_test}
     70        @+python test.py --debug=${debug} ${concurrent} ${concurrent_test}
    9471
    9572.dummy : .dummy.c @CFA_BINDIR@/@CFA_NAME@
  • src/tests/Makefile.in

    r9c35431 rc13e8dc8  
    9191build_triplet = @build@
    9292host_triplet = @host@
    93 @BUILD_CONCURRENCY_TRUE@am__append_1 = coroutine thread monitor
    94 @BUILD_DEBUG_FALSE@am__append_2 = -nodebug
    95 @BUILD_DEBUG_TRUE@@BUILD_RELEASE_FALSE@am__append_3 = -debug
    96 @BUILD_DEBUG_TRUE@@BUILD_RELEASE_TRUE@am__append_4 = ${DEBUG_FLAGS}
     93@BUILD_DEBUG_FALSE@am__append_1 = -nodebug
     94@BUILD_DEBUG_TRUE@@BUILD_RELEASE_FALSE@am__append_2 = -debug
     95@BUILD_DEBUG_TRUE@@BUILD_RELEASE_TRUE@am__append_3 = ${DEBUG_FLAGS}
    9796EXTRA_PROGRAMS = fstream_test$(EXEEXT) vector_test$(EXEEXT) \
    9897        avl_test$(EXEEXT)
     
    314313top_srcdir = @top_srcdir@
    315314debug = yes
    316 quick_test = vector_test avl_test operators numericConstants \
    317         expression enum array typeof cast dtor-early-exit init_once \
    318         attributes $(am__append_1)
    319 @BUILD_CONCURRENCY_FALSE@concurrent = no
    320 @BUILD_CONCURRENCY_TRUE@concurrent = yes
    321 @BUILD_CONCURRENCY_FALSE@concurrent_test =
    322 @BUILD_CONCURRENCY_TRUE@concurrent_test = \
    323 @BUILD_CONCURRENCY_TRUE@        coroutine               \
    324 @BUILD_CONCURRENCY_TRUE@        fmtLines                \
    325 @BUILD_CONCURRENCY_TRUE@        pingpong                \
    326 @BUILD_CONCURRENCY_TRUE@        prodcons                \
    327 @BUILD_CONCURRENCY_TRUE@        thread                  \
    328 @BUILD_CONCURRENCY_TRUE@        matrixSum               \
    329 @BUILD_CONCURRENCY_TRUE@        monitor                 \
    330 @BUILD_CONCURRENCY_TRUE@        multi-monitor           \
    331 @BUILD_CONCURRENCY_TRUE@        boundedBuffer           \
    332 @BUILD_CONCURRENCY_TRUE@        preempt                 \
    333 @BUILD_CONCURRENCY_TRUE@        sched-int-block         \
    334 @BUILD_CONCURRENCY_TRUE@        sched-int-disjoint      \
    335 @BUILD_CONCURRENCY_TRUE@        sched-int-wait          \
    336 @BUILD_CONCURRENCY_TRUE@        sched-ext-barge         \
    337 @BUILD_CONCURRENCY_TRUE@        sched-ext-dtor          \
    338 @BUILD_CONCURRENCY_TRUE@        sched-ext-else          \
    339 @BUILD_CONCURRENCY_TRUE@        sched-ext-parse         \
    340 @BUILD_CONCURRENCY_TRUE@        sched-ext-recurse       \
    341 @BUILD_CONCURRENCY_TRUE@        sched-ext-statment      \
    342 @BUILD_CONCURRENCY_TRUE@        sched-ext-when
    343 
     315quick_test = vector_test avl_test operators numericConstants expression enum array typeof cast dtor-early-exit init_once attributes
     316@BUILD_CONCURRENCY_FALSE@concurrent = '-Econcurrent'
     317@BUILD_CONCURRENCY_TRUE@concurrent =
    344318
    345319# applies to both programs
    346320DEBUG_FLAGS =
    347321BUILD_FLAGS = -g -Wall -Wno-unused-function -quiet @CFA_FLAGS@ \
    348         $(am__append_2) $(am__append_3) $(am__append_4)
    349 TEST_FLAGS = $(if $(test), 2> .err/${@}.log, )
     322        $(am__append_1) $(am__append_2) $(am__append_3)
     323TEST_FLAGS = $(if $(test), 2> $(test), )
    350324AM_CFLAGS = ${TEST_FLAGS} ${BUILD_FLAGS}
    351325fstream_test_SOURCES = fstream_test.c
    352 fstream_test_CFLAGS = $(if $(test), 2>> .err/fstream_test.log, ) ${BUILD_FLAGS}
     326fstream_test_CFLAGS = $(if $(test), 2>> $(test), ) ${BUILD_FLAGS}
    353327vector_test_SOURCES = vector/vector_int.c vector/array.c vector/vector_test.c
    354 vector_test_CFLAGS = $(if $(test), 2>> .err/vector_test.log, ) ${BUILD_FLAGS}
     328vector_test_CFLAGS = $(if $(test), 2>> $(test), ) ${BUILD_FLAGS}
    355329avl_test_SOURCES = avltree/avl_test.c avltree/avl0.c avltree/avl1.c avltree/avl2.c avltree/avl3.c avltree/avl4.c avltree/avl-private.c
    356 avl_test_CFLAGS = $(if $(test), 2>> .err/avl_test.log, ) ${BUILD_FLAGS}
     330avl_test_CFLAGS = $(if $(test), 2>> $(test), ) ${BUILD_FLAGS}
    357331all: all-am
    358332
     
    833807
    834808all-local :
    835         @+python test.py --debug=${debug} --concurrent=${concurrent} ${quick_test}
     809        @+python test.py --debug=${debug} ${concurrent} ${quick_test}
    836810
    837811all-tests :
    838         @+python test.py --all --debug=${debug} --concurrent=${concurrent}              # '@' => do not echo command (SILENT), '+' => allows recursive make from within python program
     812        @+python test.py --all --debug=${debug} ${concurrent}           # '@' => do not echo command (SILENT), '+' => allows recursive make from within python program
    839813
    840814clean-local :
     
    842816
    843817list :
    844         @+python test.py --list --concurrent=${concurrent}
     818        @+python test.py --list ${concurrent}
    845819
    846820concurrency :
    847         @+python test.py --debug=${debug} --concurrent=${concurrent} ${concurrent_test}
     821        @+python test.py --debug=${debug} ${concurrent} ${concurrent_test}
    848822
    849823.dummy : .dummy.c @CFA_BINDIR@/@CFA_NAME@
  • src/tests/except-mac.h

    r9c35431 rc13e8dc8  
    77
    88// The fully (perhaps overly) qualified name of the base exception type:
    9 #define BASE_EXCEPT __cfaehm__base_exception_t
     9#define BASE_EXCEPT __cfaabi_ehm__base_exception_t
    1010
    1111// Get the name of the vtable type and vtable instance for an exception type:
     
    3030        size_t size; \
    3131        void (*copy)(except_name *this, except_name * other); \
    32         void (*free)(except_name *this); \
     32        void (*free)(except_name &this); \
    3333        const char * (*msg)(except_name *this); \
    3434        __VA_ARGS__ \
     
    4242// In each constructor the vtable must be initialized.
    4343#define VTABLE_INIT(this_name,except_name) \
    44 this_name->virtual_table = &INSTANCE(except_name)
     44this_name.virtual_table = &INSTANCE(except_name)
    4545
    4646// Declare the vtable instance. This should end an exception declaration.
     
    7373    this->virtual_table = other->virtual_table; \
    7474} \
    75 void ?{}(name * this) { \
     75void ?{}(name & this) { \
    7676        VTABLE_INIT(this,name); \
    7777} \
  • src/tests/pybin/tools.py

    r9c35431 rc13e8dc8  
     1from __future__ import print_function
     2
    13import __main__
    24import argparse
     5import multiprocessing
    36import os
    47import re
     8import signal
    59import stat
    6 
     10import sys
     11
     12from pybin import settings
    713from subprocess import Popen, PIPE, STDOUT
    814
     15################################################################################
     16#               shell helpers
     17################################################################################
     18
    919# helper functions to run terminal commands
    10 def sh(cmd, dry_run = False, print2stdout = True):
    11         if dry_run :    # if this is a dry_run, only print the commands that would be ran
     20def sh(cmd, print2stdout = True, input = None):
     21        # add input redirection if needed
     22        if input and os.path.isfile(input):
     23                cmd += " < %s" % input
     24
     25        # if this is a dry_run, only print the commands that would be ran
     26        if settings.dry_run :
    1227                print("cmd: %s" % cmd)
    1328                return 0, None
    14         else :                  # otherwise create a pipe and run the desired command
     29
     30        # otherwise create a pipe and run the desired command
     31        else :
    1532                proc = Popen(cmd, stdout=None if print2stdout else PIPE, stderr=STDOUT, shell=True)
    1633                out, err = proc.communicate()
     
    1835
    1936# Remove 1 or more files silently
    20 def rm( files, dry_run = False ):
     37def rm( files ):
    2138        try:
    2239                for file in files:
    23                         sh("rm -f %s > /dev/null 2>&1" % file, dry_run)
     40                        sh("rm -f %s > /dev/null 2>&1" % file )
    2441        except TypeError:
    25                 sh("rm -f %s > /dev/null 2>&1" % files, dry_run)
     42                sh("rm -f %s > /dev/null 2>&1" % files )
    2643
    2744def chdir( dest = __main__.__file__ ):
     
    3047        os.chdir(dname)
    3148
    32 # helper function to replace patterns in a file
    33 def file_replace(fname, pat, s_after):
    34     # first, see if the pattern is even in the file.
    35     with open(fname) as f:
    36         if not any(re.search(pat, line) for line in f):
    37             return # pattern does not occur in file so we are done.
    38 
    39     # pattern is in the file, so perform replace operation.
    40     with open(fname) as f:
    41         out_fname = fname + ".tmp"
    42         out = open(out_fname, "w")
    43         for line in f:
    44             out.write(re.sub(pat, s_after, line))
    45         out.close()
    46         os.rename(out_fname, fname)
    47 
    48 # helper function to check if a files contains only a spacific string
    49 def fileContainsOnly(file, text) :
    50         with open(file) as f:
    51                 ff = f.read().strip()
    52                 result = ff == text.strip()
    53 
    54                 return result;
    55 
    56 # check whether or not a file is executable
    57 def fileIsExecutable(file) :
    58         try :
    59                 fileinfo = os.stat(file)
    60                 return bool(fileinfo.st_mode & stat.S_IXUSR)
    61         except Exception as inst:
    62                 print(type(inst))    # the exception instance
    63                 print(inst.args)     # arguments stored in .args
    64                 print(inst)
    65                 return False
    66 
    67 # check if arguments is yes or no
    68 def yes_no(string):
    69         if string == "yes" :
    70                 return True
    71         if string == "no" :
    72                 return False
    73         raise argparse.ArgumentTypeError(msg)
    74         return False
    75 
    7649# diff two files
    77 def diff( lhs, rhs, dry_run ):
     50def diff( lhs, rhs ):
    7851        # diff the output of the files
    7952        diff_cmd = ("diff --ignore-all-space "
     
    9467
    9568        # fetch return code and error from the diff command
    96         return sh(diff_cmd % (lhs, rhs), dry_run, False)
     69        return sh(diff_cmd % (lhs, rhs), False)
     70
     71# call make
     72def make(target, flags = '', redirects = '', error_file = None, silent = False):
     73        test_param = """test="%s" """ % (error_file) if error_file else ''
     74        cmd = ' '.join([
     75                settings.make,
     76                '-s' if silent else '',
     77                test_param,
     78                settings.debug.flags,
     79                flags,
     80                target,
     81                redirects
     82        ])
     83        return sh(cmd)
     84
     85################################################################################
     86#               file handling
     87################################################################################
     88
     89# helper function to replace patterns in a file
     90def file_replace(fname, pat, s_after):
     91    # first, see if the pattern is even in the file.
     92    with open(fname) as f:
     93        if not any(re.search(pat, line) for line in f):
     94            return # pattern does not occur in file so we are done.
     95
     96    # pattern is in the file, so perform replace operation.
     97    with open(fname) as f:
     98        out_fname = fname + ".tmp"
     99        out = open(out_fname, "w")
     100        for line in f:
     101            out.write(re.sub(pat, s_after, line))
     102        out.close()
     103        os.rename(out_fname, fname)
     104
     105# helper function to check if a files contains only a specific string
     106def fileContainsOnly(file, text) :
     107        with open(file) as f:
     108                ff = f.read().strip()
     109                result = ff == text.strip()
     110
     111                return result;
     112
     113# check whether or not a file is executable
     114def fileIsExecutable(file) :
     115        try :
     116                fileinfo = os.stat(file)
     117                return bool(fileinfo.st_mode & stat.S_IXUSR)
     118        except Exception as inst:
     119                print(type(inst))    # the exception instance
     120                print(inst.args)     # arguments stored in .args
     121                print(inst)
     122                return False
     123
     124# transform path to canonical form
     125def canonicalPath(path):
     126        return os.path.join('.', os.path.normpath(path) )
     127
     128# compare path even if form is different
     129def pathCmp(lhs, rhs):
     130        return canonicalPath( lhs ) == canonicalPath( rhs )
     131
     132# walk all files in a path
     133def pathWalk( op ):
     134        def step(_, dirname, names):
     135                for name in names:
     136                        path = os.path.join(dirname, name)
     137
     138                        op( path )
     139
     140        # Start the walk
     141        os.path.walk('.', step, '')
     142
     143################################################################################
     144#               system
     145################################################################################
     146
     147# parses the Makefile to find the machine type (32-bit / 64-bit)
     148def getMachineType():
     149        sh('echo "void ?{}(int&a,int b){}int main(){return 0;}" > .dummy.c')
     150        ret, out = make('.dummy', silent = True)
     151
     152        if ret != 0:
     153                print("Failed to identify architecture:")
     154                print(out)
     155                print("Stopping")
     156                rm( (".dummy.c",".dummy") )
     157                sys.exit(1)
     158
     159        _, out = sh("file .dummy", print2stdout=False)
     160        rm( (".dummy.c",".dummy") )
     161
     162        if settings.dry_run :
     163                return 'x64'
     164
     165        return re.search(r"[^,]+,([^,]+),", out).group(1).strip()
     166
     167# count number of jobs to create
     168def jobCount( options, tests ):
     169        # check if the user already passed in a number of jobs for multi-threading
     170        make_flags = os.environ.get('MAKEFLAGS')
     171        make_jobs_fds = re.search("--jobserver-(auth|fds)=\s*([0-9]+),([0-9]+)", make_flags) if make_flags else None
     172        if make_jobs_fds :
     173                tokens = os.read(int(make_jobs_fds.group(2)), 1024)
     174                options.jobs = len(tokens)
     175                os.write(int(make_jobs_fds.group(3)), tokens)
     176        else :
     177                options.jobs = multiprocessing.cpu_count()
     178
     179        # make sure we have a valid number of jobs that corresponds to user input
     180        if options.jobs <= 0 :
     181                print('ERROR: Invalid number of jobs', file=sys.stderr)
     182                sys.exit(1)
     183
     184        return min( options.jobs, len(tests) ), True if make_flags else False
     185
     186# setup a proper processor pool with correct signal handling
     187def setupPool(jobs):
     188        original_sigint_handler = signal.signal(signal.SIGINT, signal.SIG_IGN)
     189        pool = multiprocessing.Pool(jobs)
     190        signal.signal(signal.SIGINT, original_sigint_handler)
     191
     192        return pool
     193
     194# handle signals in scope
     195class SignalHandling():
     196        def __enter__(self):
     197                # enable signal handling
     198                signal.signal(signal.SIGINT, signal.SIG_DFL)
     199
     200        def __exit__(self, type, value, traceback):
     201                # disable signal handling
     202                signal.signal(signal.SIGINT, signal.SIG_IGN)
     203
     204################################################################################
     205#               misc
     206################################################################################
     207
     208# check if arguments is yes or no
     209def yes_no(string):
     210        if string == "yes" :
     211                return True
     212        if string == "no" :
     213                return False
     214        raise argparse.ArgumentTypeError(msg)
     215        return False
     216
     217
     218settings.set_machine_default( getMachineType )
  • src/tests/test.py

    r9c35431 rc13e8dc8  
    22from __future__ import print_function
    33
    4 from functools import partial
    5 from multiprocessing import Pool
    6 from os import listdir, environ
    7 from os.path import isfile, join, splitext
    84from pybin.tools import *
     5from pybin.test_run import *
     6from pybin import settings
    97
    108import argparse
    11 import multiprocessing
    12 import os
    139import re
    14 import signal
    1510import sys
    1611
     
    1914################################################################################
    2015
    21 # Test class that defines what a test is
    22 class Test:
    23     def __init__(self, name, path):
    24         self.name, self.path = name, path
    25 
    26 class TestResult:
    27         SUCCESS = 0
    28         FAILURE = 1
    29         TIMEOUT = 124
    30 
    31 # parses the Makefile to find the machine type (32-bit / 64-bit)
    32 def getMachineType():
    33         sh('echo "void ?{}(int&a,int b){}int main(){return 0;}" > .dummy.c')
    34         ret, out = sh("make .dummy -s", print2stdout=True)
    35 
    36         if ret != 0:
    37                 print("Failed to identify architecture:")
    38                 print(out)
    39                 print("Stopping")
    40                 rm( (".dummy.c",".dummy") )
    41                 sys.exit(1)
    42 
    43         _, out = sh("file .dummy", print2stdout=False)
    44         rm( (".dummy.c",".dummy") )
    45 
    46         return re.search("ELF\s([0-9]+)-bit", out).group(1)
    47 
    48 def listTestsFolder(folder) :
    49         path = ('./.expect/%s/' % folder) if folder else './.expect/'
    50         subpath = "%s/" % folder if folder else ""
     16def findTests():
     17        expected = []
     18
     19        def matchTest(path):
     20                match = re.search("(\.[\w\/\-_]*)\/.expect\/([\w\-_]+)(\.[\w\-_]+)?\.txt", path)
     21                if match :
     22                        test = Test()
     23                        test.name = match.group(2)
     24                        test.path = match.group(1)
     25                        test.arch = match.group(3)[1:] if match.group(3) else None
     26                        if settings.arch.match(test.arch):
     27                                expected.append(test)
     28
     29        pathWalk( matchTest )
     30
     31        return expected
     32
     33# reads the directory ./.expect and indentifies the tests
     34def listTests( includes, excludes ):
     35        includes = [canonicalPath( i ) for i in includes] if includes else None
     36        excludes = [canonicalPath( i ) for i in excludes] if excludes else None
    5137
    5238        # tests directly in the .expect folder will always be processed
    53         return map(lambda fname: Test(fname, subpath + fname),
    54                 [splitext(f)[0] for f in listdir( path )
    55                 if not f.startswith('.') and f.endswith('.txt')
    56                 ])
    57 
    58 # reads the directory ./.expect and indentifies the tests
    59 def listTests( concurrent ):
    60         machineType = getMachineType()
    61 
    62         # tests directly in the .expect folder will always be processed
    63         generic_list = listTestsFolder( "" )
    64 
    65         # tests in the machineType folder will be ran only for the corresponding compiler
    66         typed_list = listTestsFolder( machineType )
    67 
    68         # tests in the concurrent folder will be ran only if concurrency is enabled
    69         concurrent_list = listTestsFolder( "concurrent" ) if concurrent else []
    70 
    71         # append both lists to get
    72         return generic_list + typed_list + concurrent_list;
     39        test_list = findTests()
     40
     41        # if we have a limited number of includes, filter by them
     42        if includes:
     43                test_list = [x for x in test_list if
     44                        x.path.startswith( tuple(includes) )
     45                ]
     46
     47        # # if we have a folders to excludes, filter by them
     48        if excludes:
     49                test_list = [x for x in test_list if not
     50                        x.path.startswith( tuple(excludes) )
     51                ]
     52
     53        return test_list
    7354
    7455# from the found tests, filter all the valid tests/desired tests
     
    8061        if options.regenerate_expected :
    8162                for testname in options.tests :
    82                         if testname.endswith( (".c", ".cc", ".cpp") ):
     63                        if Test.valid_name(testname):
     64                                found = [test for test in allTests if test.target() == testname]
     65                                tests.append( found[0] if len(found) == 1 else Test.from_target(testname) )
     66                        else :
    8367                                print('ERROR: "%s", tests are not allowed to end with a C/C++/CFA extension, ignoring it' % testname, file=sys.stderr)
    84                         else :
    85                                 found = [test for test in allTests if test.name == testname]
    86                                 tests.append( found[0] if len(found) == 1 else Test(testname, testname) )
    8768
    8869        else :
    8970                # otherwise we only need to validate that all tests are present in the complete list
    9071                for testname in options.tests:
    91                         test = [t for t in allTests if t.name == testname]
    92 
    93                         if len(test) != 0 :
     72                        test = [t for t in allTests if pathCmp( t.target(), testname )]
     73
     74                        if test :
    9475                                tests.append( test[0] )
    9576                        else :
     
    9778
    9879        # make sure we have at least some test to run
    99         if len(tests) == 0 :
     80        if not tests :
    10081                print('ERROR: No valid test to run', file=sys.stderr)
    10182                sys.exit(1)
     
    10889        parser = argparse.ArgumentParser(description='Script which runs cforall tests')
    10990        parser.add_argument('--debug', help='Run all tests in debug or release', type=yes_no, default='no')
    110         parser.add_argument('--concurrent', help='Run concurrent tests', type=yes_no, default='yes')
     91        parser.add_argument('--arch', help='Test for specific architecture', type=str, default='')
    11192        parser.add_argument('--dry-run', help='Don\'t run the tests, only output the commands', action='store_true')
    11293        parser.add_argument('--list', help='List all test available', action='store_true')
     
    11596        parser.add_argument('-j', '--jobs', help='Number of tests to run simultaneously', type=int, default='8')
    11697        parser.add_argument('--list-comp', help='List all valide arguments', action='store_true')
     98        parser.add_argument('-I','--include', help='Directory of test to include, can be used multiple time, All  if omitted', action='append')
     99        parser.add_argument('-E','--exclude', help='Directory of test to exclude, can be used multiple time, None if omitted', action='append')
    117100        parser.add_argument('tests', metavar='test', type=str, nargs='*', help='a list of tests to run')
    118101
     
    123106        all_tests  = options.all
    124107        some_tests = len(options.tests) > 0
     108        some_dirs  = len(options.include) > 0 if options.include else 0
    125109
    126110        # check that exactly one of the booleans is set to true
    127         if not sum( (listing, all_tests, some_tests) ) == 1 :
    128                 print('ERROR: must have option \'--all\', \'--list\' or non-empty test list', file=sys.stderr)
     111        if not sum( (listing, all_tests, some_tests, some_dirs) ) > 0 :
     112                print('ERROR: must have option \'--all\', \'--list\', \'--include\', \'-I\' or non-empty test list', file=sys.stderr)
    129113                parser.print_help()
    130114                sys.exit(1)
     
    132116        return options
    133117
    134 def jobCount( options ):
    135         # check if the user already passed in a number of jobs for multi-threading
    136         make_flags = environ.get('MAKEFLAGS')
    137         make_jobs_fds = re.search("--jobserver-(auth|fds)=\s*([0-9]+),([0-9]+)", make_flags) if make_flags else None
    138         if make_jobs_fds :
    139                 tokens = os.read(int(make_jobs_fds.group(2)), 1024)
    140                 options.jobs = len(tokens)
    141                 os.write(int(make_jobs_fds.group(3)), tokens)
    142         else :
    143                 options.jobs = multiprocessing.cpu_count()
    144 
    145         # make sure we have a valid number of jobs that corresponds to user input
    146         if options.jobs <= 0 :
    147                 print('ERROR: Invalid number of jobs', file=sys.stderr)
    148                 sys.exit(1)
    149 
    150         return min( options.jobs, len(tests) ), True if make_flags else False
    151 
    152118################################################################################
    153119#               running test functions
    154120################################################################################
    155121# logic to run a single test and return the result (No handling of printing or other test framework logic)
    156 def run_single_test(test, generate, dry_run, debug):
     122def run_single_test(test):
    157123
    158124        # find the output file based on the test name and options flag
    159         out_file = (".out/%s.log" % test.name) if not generate else (".expect/%s.txt" % test.path)
    160         err_file = ".err/%s.log" % test.name
     125        out_file = test.target_output()
     126        err_file = test.error_log()
     127        cmp_file = test.expect()
     128        in_file  = test.input()
     129
     130        # prepare the proper directories
     131        test.prepare()
    161132
    162133        # remove any outputs from the previous tests to prevent side effects
    163         rm( (out_file, err_file, test.name), dry_run )
    164 
    165         options = "-debug" if debug else "-nodebug"
     134        rm( (out_file, err_file, test.target()) )
    166135
    167136        # build, skipping to next test on error
    168         make_ret, _ = sh("""%s test=yes DEBUG_FLAGS="%s" %s 2> %s 1> /dev/null""" % (make_cmd, options, test.name, out_file), dry_run)
    169 
    170         retcode = 0
    171         error = None
     137        make_ret, _ = make( test.target(),
     138                redirects  = "2> %s 1> /dev/null" % out_file,
     139                error_file = err_file
     140        )
    172141
    173142        # if the make command succeds continue otherwise skip to diff
    174         if make_ret == 0 :
    175                 # fetch optional input
    176                 stdinput = "< .in/%s.txt" % test.name if isfile(".in/%s.txt" % test.name) else ""
    177 
    178                 if fileIsExecutable(test.name) :
     143        if make_ret == 0 or settings.dry_run:
     144                if settings.dry_run or fileIsExecutable(test.target()) :
    179145                        # run test
    180                         retcode, _ = sh("timeout 60 ./%s %s > %s 2>&1" % (test.name, stdinput, out_file), dry_run)
     146                        retcode, _ = sh("timeout 60 %s > %s 2>&1" % (test.target(), out_file), input = in_file)
    181147                else :
    182148                        # simply cat the result into the output
    183                         sh("cat %s > %s" % (test.name, out_file), dry_run)
    184 
    185         else :
    186                 # command failed save the log to less temporary file
    187                 sh("mv %s %s" % (err_file, out_file), dry_run)
     149                        retcode, _ = sh("cat %s > %s" % (test.target(), out_file))
     150        else:
     151                retcode, _ = sh("mv %s %s" % (err_file, out_file))
     152
    188153
    189154        if retcode == 0:
    190                 if generate :
     155                if settings.generating :
    191156                        # if we are ounly generating the output we still need to check that the test actually exists
    192                         if not dry_run and fileContainsOnly(out_file, "make: *** No rule to make target `%s'.  Stop." % test.name) :
     157                        if not settings.dry_run and fileContainsOnly(out_file, "make: *** No rule to make target `%s'.  Stop." % test.target()) :
    193158                                retcode = 1;
    194                                 error = "\t\tNo make target for test %s!" % test.name
     159                                error = "\t\tNo make target for test %s!" % test.target()
    195160                                sh("rm %s" % out_file, False)
     161                        else:
     162                                error = None
    196163                else :
    197164                        # fetch return code and error from the diff command
    198                         retcode, error = diff(".expect/%s.txt" % test.path, ".out/%s.log" % test.name, dry_run)
     165                        retcode, error = diff(cmp_file, out_file)
    199166
    200167        else:
     
    204171
    205172        # clean the executable
    206         sh("rm -f %s > /dev/null 2>&1" % test.name, dry_run)
     173        sh("rm -f %s > /dev/null 2>&1" % test.target())
    207174
    208175        return retcode, error
    209176
    210177# run a single test and handle the errors, outputs, printing, exception handling, etc.
    211 def run_test_worker(t, generate, dry_run, debug) :
    212 
    213         signal.signal(signal.SIGINT, signal.SIG_DFL)
    214         # print formated name
    215         name_txt = "%20s  " % t.name
    216 
    217         retcode, error = run_single_test(t, generate, dry_run, debug)
    218 
    219         # update output based on current action
    220         if generate :
    221                 if   retcode == TestResult.SUCCESS:     result_txt = "Done"
    222                 elif retcode == TestResult.TIMEOUT:     result_txt = "TIMEOUT"
    223                 else :                                          result_txt = "ERROR code %d" % retcode
    224         else :
    225                 if   retcode == TestResult.SUCCESS:     result_txt = "PASSED"
    226                 elif retcode == TestResult.TIMEOUT:     result_txt = "TIMEOUT"
    227                 else :                                          result_txt = "FAILED with code %d" % retcode
    228 
    229         #print result with error if needed
    230         text = name_txt + result_txt
    231         out = sys.stdout
    232         if error :
    233                 text = text + "\n" + error
    234                 out = sys.stderr
    235 
    236         print(text, file = out)
    237         sys.stdout.flush()
    238         sys.stderr.flush()
    239         signal.signal(signal.SIGINT, signal.SIG_IGN)
     178def run_test_worker(t) :
     179
     180        with SignalHandling():
     181                # print formated name
     182                name_txt = "%20s  " % t.name
     183
     184                retcode, error = run_single_test(t)
     185
     186                # update output based on current action
     187                result_txt = TestResult.toString( retcode )
     188
     189                #print result with error if needed
     190                text = name_txt + result_txt
     191                out = sys.stdout
     192                if error :
     193                        text = text + "\n" + error
     194                        out = sys.stderr
     195
     196                print(text, file = out)
     197                sys.stdout.flush()
     198                sys.stderr.flush()
    240199
    241200        return retcode != TestResult.SUCCESS
    242201
    243202# run the given list of tests with the given parameters
    244 def run_tests(tests, generate, dry_run, jobs, debug) :
     203def run_tests(tests, jobs) :
    245204        # clean the sandbox from previous commands
    246         sh("%s clean > /dev/null 2>&1" % make_cmd, dry_run)
    247 
    248         # make sure the required folder are present
    249         sh('mkdir -p .out .expect .err', dry_run)
    250 
    251         if generate :
    252                 print( "Regenerate tests for: " )
     205        make('clean', redirects = '> /dev/null 2>&1')
    253206
    254207        # create the executor for our jobs and handle the signal properly
    255         original_sigint_handler = signal.signal(signal.SIGINT, signal.SIG_IGN)
    256         pool = Pool(jobs)
    257         signal.signal(signal.SIGINT, original_sigint_handler)
     208        pool = setupPool(jobs)
    258209
    259210        # for each test to run
    260211        try :
    261                 results = pool.map_async(partial(run_test_worker, generate=generate, dry_run=dry_run, debug=debug), tests, chunksize = 1 ).get(7200)
     212                results = pool.map_async(
     213                        run_test_worker,
     214                        tests,
     215                        chunksize = 1
     216                ).get(7200)
    262217        except KeyboardInterrupt:
    263218                pool.terminate()
     
    266221
    267222        # clean the workspace
    268         sh("%s clean > /dev/null 2>&1" % make_cmd, dry_run)
     223        make('clean', redirects = '> /dev/null 2>&1')
    269224
    270225        for failed in results:
     
    285240        options = getOptions()
    286241
     242        # init global settings
     243        settings.init( options )
     244
    287245        # fetch the liest of all valid tests
    288         allTests = listTests( options.concurrent )
     246        allTests = listTests( options.include, options.exclude )
    289247
    290248        # if user wants all tests than no other treatement of the test list is required
    291         if options.all or options.list or options.list_comp :
     249        if options.all or options.list or options.list_comp or options.include :
    292250                tests = allTests
    293251
     252        #otherwise we need to validate that the test list that was entered is valid
    294253        else :
    295                 #otherwise we need to validate that the test list that was entered is valid
    296254                tests = validTests( options )
    297255
    298256        # sort the test alphabetically for convenience
    299         tests.sort(key=lambda t: t.name)
     257        tests.sort(key=lambda t: (t.arch if t.arch else '') + t.target())
    300258
    301259        # users may want to simply list the tests
    302260        if options.list_comp :
    303                 print("-h --help --debug --concurrent --dry-run --list --all --regenerate-expected -j --jobs ", end='')
    304                 print(" ".join(map(lambda t: "%s" % (t.name), tests)))
     261                print("-h --help --debug --dry-run --list --arch --all --regenerate-expected -j --jobs ", end='')
     262                print(" ".join(map(lambda t: "%s" % (t.target()), tests)))
    305263
    306264        elif options.list :
    307                 print("\n".join(map(lambda t: "%s (%s)" % (t.name, t.path), tests)))
     265                print("Listing for %s:%s"% (settings.arch.string, settings.debug.string))
     266                print("\n".join(map(lambda t: "%s" % (t.toString()), tests)))
    308267
    309268        else :
    310                 options.jobs, forceJobs = jobCount( options )
    311 
    312                 print('Running (%s) on %i cores' % ("debug" if options.debug else "no debug", options.jobs))
    313                 make_cmd = "make" if forceJobs else ("make -j%i" % options.jobs)
     269                options.jobs, forceJobs = jobCount( options, tests )
     270                settings.updateMakeCmd(forceJobs, options.jobs)
     271
     272                print('%s (%s:%s) on %i cores' % (
     273                        'Regenerate tests' if settings.generating else 'Running',
     274                        settings.arch.string,
     275                        settings.debug.string,
     276                        options.jobs
     277                ))
    314278
    315279                # otherwise run all tests and make sure to return the correct error code
    316                 sys.exit( run_tests(tests, options.regenerate_expected, options.dry_run, options.jobs, options.debug) )
     280                sys.exit( run_tests(tests, options.jobs) )
Note: See TracChangeset for help on using the changeset viewer.