Changeset 73d0c54a
- Timestamp:
- Apr 21, 2021, 3:39:14 PM (3 years ago)
- Branches:
- ADT, arm-eh, ast-experimental, enum, forall-pointer-decay, jacob/cs343-translation, master, new-ast-unique-expr, pthread-emulation, qualifiedEnum
- Children:
- b39e6566
- Parents:
- 665edf40 (diff), 7711064 (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the(diff)
links above to see all the changes relative to each parent. - Files:
-
- 2 added
- 4 deleted
- 18 edited
- 2 moved
Legend:
- Unmodified
- Added
- Removed
-
benchmark/readyQ/cycle.cpp
r665edf40 r73d0c54a 3 3 #include <libfibre/fibre.h> 4 4 5 class __attribute__((aligned(128))) bench_sem {6 Fibre * volatile ptr = nullptr;7 public:8 inline bool wait() {9 static Fibre * const ready = reinterpret_cast<Fibre * const>(1ull);10 for(;;) {11 Fibre * expected = this->ptr;12 if(expected == ready) {13 if(__atomic_compare_exchange_n(&this->ptr, &expected, nullptr, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)) {14 return false;15 }16 }17 else {18 /* paranoid */ assert( expected == nullptr );19 if(__atomic_compare_exchange_n(&this->ptr, &expected, fibre_self(), false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)) {20 fibre_park();21 return true;22 }23 }24 25 }26 }27 28 inline bool post() {29 static Fibre * const ready = reinterpret_cast<Fibre * const>(1ull);30 for(;;) {31 Fibre * expected = this->ptr;32 if(expected == ready) return false;33 if(expected == nullptr) {34 if(__atomic_compare_exchange_n(&this->ptr, &expected, ready, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)) {35 return false;36 }37 }38 else {39 if(__atomic_compare_exchange_n(&this->ptr, &expected, nullptr, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)) {40 fibre_unpark( expected );41 return true;42 }43 }44 }45 }46 };47 5 struct Partner { 48 6 unsigned long long count = 0; -
benchmark/readyQ/locality.cpp
r665edf40 r73d0c54a 9 9 uint64_t dmigs = 0; 10 10 uint64_t gmigs = 0; 11 };12 13 class __attribute__((aligned(128))) bench_sem {14 Fibre * volatile ptr = nullptr;15 public:16 inline bool wait() {17 static Fibre * const ready = reinterpret_cast<Fibre * const>(1ull);18 for(;;) {19 Fibre * expected = this->ptr;20 if(expected == ready) {21 if(__atomic_compare_exchange_n(&this->ptr, &expected, nullptr, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)) {22 return false;23 }24 }25 else {26 /* paranoid */ assert( expected == nullptr );27 if(__atomic_compare_exchange_n(&this->ptr, &expected, fibre_self(), false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)) {28 fibre_park();29 return true;30 }31 }32 33 }34 }35 36 inline bool post() {37 static Fibre * const ready = reinterpret_cast<Fibre * const>(1ull);38 for(;;) {39 Fibre * expected = this->ptr;40 if(expected == ready) return false;41 if(expected == nullptr) {42 if(__atomic_compare_exchange_n(&this->ptr, &expected, ready, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)) {43 return false;44 }45 }46 else {47 if(__atomic_compare_exchange_n(&this->ptr, &expected, nullptr, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)) {48 fibre_unpark( expected );49 return true;50 }51 }52 }53 }54 11 }; 55 12 -
benchmark/readyQ/rq_bench.hfa
r665edf40 r73d0c54a 4 4 #include <stdio.h> 5 5 #include <stdlib.hfa> 6 #include <stats.hfa> 6 7 #include <thread.hfa> 7 8 #include <time.hfa> … … 63 64 (*p){ "Benchmark Processor", this.cl }; 64 65 } 66 #if !defined(__CFA_NO_STATISTICS__) 67 print_stats_at_exit( this.cl, CFA_STATS_READY_Q ); 68 #endif 65 69 } 66 70 -
benchmark/readyQ/rq_bench.hpp
r665edf40 r73d0c54a 6 6 #include <time.h> // timespec 7 7 #include <sys/time.h> // timeval 8 9 typedef __uint128_t __lehmer64_state_t; 10 static inline uint64_t __lehmer64( __lehmer64_state_t & state ) { 11 state *= 0xda942042e4dd58b5; 12 return state >> 64; 13 } 8 14 9 15 enum { TIMEGRAN = 1000000000LL }; // nanosecond granularity, except for timeval … … 75 81 } 76 82 83 class Fibre; 84 int fibre_park(); 85 int fibre_unpark( Fibre * ); 86 Fibre * fibre_self(); 87 88 class __attribute__((aligned(128))) bench_sem { 89 Fibre * volatile ptr = nullptr; 90 public: 91 inline bool wait() { 92 static Fibre * const ready = reinterpret_cast<Fibre *>(1ull); 93 for(;;) { 94 Fibre * expected = this->ptr; 95 if(expected == ready) { 96 if(__atomic_compare_exchange_n(&this->ptr, &expected, nullptr, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)) { 97 return false; 98 } 99 } 100 else { 101 /* paranoid */ assert( expected == nullptr ); 102 if(__atomic_compare_exchange_n(&this->ptr, &expected, fibre_self(), false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)) { 103 fibre_park(); 104 return true; 105 } 106 } 107 108 } 109 } 110 111 inline bool post() { 112 static Fibre * const ready = reinterpret_cast<Fibre *>(1ull); 113 for(;;) { 114 Fibre * expected = this->ptr; 115 if(expected == ready) return false; 116 if(expected == nullptr) { 117 if(__atomic_compare_exchange_n(&this->ptr, &expected, ready, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)) { 118 return false; 119 } 120 } 121 else { 122 if(__atomic_compare_exchange_n(&this->ptr, &expected, nullptr, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)) { 123 fibre_unpark( expected ); 124 return true; 125 } 126 } 127 } 128 } 129 }; 130 77 131 // ========================================================================================== 78 132 #include <cstdlib> … … 188 242 this->help = help; 189 243 this->variable = reinterpret_cast<void*>(&variable); 190 this->parse_fun = reinterpret_cast<bool (*)(const char *, void * )>(static_cast<bool (*)(const char *, T & )>(parse)); 244 #pragma GCC diagnostic push 245 #pragma GCC diagnostic ignored "-Wcast-function-type" 246 this->parse_fun = reinterpret_cast<bool (*)(const char *, void * )>(static_cast<bool (*)(const char *, T & )>(parse)); 247 #pragma GCC diagnostic pop 191 248 } 192 249 … … 197 254 this->help = help; 198 255 this->variable = reinterpret_cast<void*>(&variable); 199 this->parse_fun = reinterpret_cast<bool (*)(const char *, void * )>(parse); 256 #pragma GCC diagnostic push 257 #pragma GCC diagnostic ignored "-Wcast-function-type" 258 this->parse_fun = reinterpret_cast<bool (*)(const char *, void * )>(parse); 259 #pragma GCC diagnostic pop 200 260 } 201 261 }; -
doc/theses/andrew_beach_MMath/Makefile
r665edf40 r73d0c54a 1 1 ### Makefile for Andrew Beach's Masters Thesis 2 2 3 DOC = uw-ethesis.pdf 4 BASE = ${DOC:%.pdf=%} # remove suffix 5 # directory for latex clutter files 6 BUILD = build 7 TEXSRC = $(wildcard *.tex) 8 FIGSRC = $(wildcard *.fig) 9 BIBSRC = $(wildcard *.bib) 10 STYSRC = $(wildcard *.sty) 11 CLSSRC = $(wildcard *.cls) 12 TEXLIB = .:../../LaTeXmacros:${BUILD}: # common latex macros 13 BIBLIB = .:../../bibliography # common citation repository 3 DOC=uw-ethesis.pdf 4 BUILD=out 5 TEXSRC=$(wildcard *.tex) 6 FIGSRC=$(wildcard *.fig) 7 BIBSRC=$(wildcard *.bib) 8 STYSRC=$(wildcard *.sty) 9 CLSSRC=$(wildcard *.cls) 10 TEXLIB= .:../../LaTeXmacros:${BUILD}: 11 BIBLIB= .:../../bibliography 14 12 15 MAKEFLAGS = --no-print-directory # --silent 16 VPATH = ${BUILD} 13 # Since tex programs like to add their own file extensions: 14 BASE= ${DOC:%.pdf=%} 15 16 RAWSRC=${TEXSRC} ${BIBSRC} ${STYSRC} ${CLSSRC} 17 FIGTEX=${FIGSRC:%.fig=${BUILD}/%.tex} 17 18 18 19 ### Special Rules: 19 20 20 21 .PHONY: all clean deepclean 21 .PRECIOUS: %.dvi %.ps # do not delete intermediate files22 22 23 23 ### Commands: 24 LATEX = TEXINPUTS=${TEXLIB} && export TEXINPUTS &&latex -halt-on-error -output-directory=${BUILD}25 BIBTEX =BIBINPUTS=${BIBLIB} bibtex26 GLOSSARY =INDEXSTYLE=${BUILD} makeglossaries-lite24 LATEX=TEXINPUTS=${TEXLIB} latex -halt-on-error -output-directory=${BUILD} 25 BIBTEX=BIBINPUTS=${BIBLIB} bibtex 26 GLOSSARY=INDEXSTYLE=${BUILD} makeglossaries-lite 27 27 28 ### Rules and Recip es:28 ### Rules and Recipies: 29 29 30 30 all: ${DOC} 31 31 32 ${BUILD}/%.dvi: ${TEXSRC} ${FIGSRC:.fig=.tex} ${BIBSRC} ${STYSRC} ${CLSSRC} Makefile | ${BUILD} 32 # The main rule, it does all the tex/latex processing. 33 ${BUILD}/${BASE}.dvi: ${RAWSRC} ${FIGTEX} Makefile | ${BUILD} 33 34 ${LATEX} ${BASE} 34 35 ${BIBTEX} ${BUILD}/${BASE} … … 37 38 ${LATEX} ${BASE} 38 39 40 # Convert xfig output to tex. (Generates \special declarations.) 41 ${FIGTEX}: ${BUILD}/%.tex: %.fig | ${BUILD} 42 fig2dev -L eepic $< > $@ 43 44 # Step through dvi & postscript to handle xfig specials. 45 %.pdf : ${BUILD}/%.dvi 46 dvipdf $^ $@ 47 39 48 ${BUILD}: 40 49 mkdir $@ 41 50 42 %.pdf : ${BUILD}/%.ps | ${BUILD}43 ps2pdf $<44 45 %.ps : %.dvi | ${BUILD}46 dvips $< -o $@47 48 %.tex : %.fig | ${BUILD}49 fig2dev -L eepic $< > ${BUILD}/$@50 51 %.ps : %.fig | ${BUILD}52 fig2dev -L ps $< > ${BUILD}/$@53 54 %.pstex : %.fig | ${BUILD}55 fig2dev -L pstex $< > ${BUILD}/$@56 fig2dev -L pstex_t -p ${BUILD}/$@ $< > ${BUILD}/$@_t57 58 51 clean: 59 @rm -frv ${BUILD} *.fig.bak52 -@rm -rv ${BUILD} 60 53 61 54 deepclean: clean 62 -@rm - fv ${DOC}55 -@rm -v ${DOC} -
doc/theses/andrew_beach_MMath/features.tex
r665edf40 r73d0c54a 3 3 This chapter covers the design and user interface of the \CFA 4 4 exception-handling mechanism (EHM). % or exception system. 5 While an EHM is free to add many features, 6 the following overview covers the basic features that all EHMs use, but it is not an 7 exhaustive list of everything an EHM can do. 5 6 We will begin with an overview of EHMs in general. It is not a strict 7 definition of all EHMs nor an exaustive list of all possible features. 8 However it does cover the most common structure and features found in them. 8 9 9 10 % We should cover what is an exception handling mechanism and what is an … … 14 15 These terms are sometimes also known as throw and catch but this work uses 15 16 throw/catch as a particular kind of raise/handle. 16 These are the two parts a programmer writes and so17 are the only two pieces of the EHM that have language syntax.17 These are the two parts that the user will write themselves and may 18 be the only two pieces of the EHM that have any syntax in the language. 18 19 19 20 \subparagraph{Raise} 20 The raise is the starting point for exception handling and usually how \PAB{This sentence is cut off.} 21 Some well known examples include the @throw@ statement of \Cpp and Java and 22 the \lstinline[language=Python]{raise} statement from Python. 23 24 For this overview, a raise starts the handling of an 25 exception, which is called \newterm{raising} an exception. This simple description is sufficient 26 for the overview. 21 The raise is the starting point for exception handling. It marks the beginning 22 of exception handling by \newterm{raising} an excepion, which passes it to 23 the EHM. 24 25 Some well known examples include the @throw@ statements of \Cpp and Java and 26 the \codePy{raise} statement from Python. In real systems a raise may preform 27 some other work (such as memory management) but for the purposes of this 28 overview that can be ignored. 27 29 28 30 \subparagraph{Handle} 29 The purpose of raising an exception is to run user code to address (handle) the 30 issue found at the raise point. 31 The @try@ statement of \Cpp illustrates a common approach for specifying multiple handlers. 32 A handler has three common features: the scope in which it applies, an 33 exception label that describes what exceptions it can handle, and code to run 34 that deals with the raised issue. 35 Each handler can handle exceptions raised in the region matching its 36 exception label. For multiple matches, different EHMs have different rules for matching an exception to a handler label, 37 such as ``best match" or ``first found". 31 The purpose of most exception operations is to run some user code to handle 32 that exception. This code is given, with some other information, in a handler. 33 34 A handler has three common features: the previously mentioned user code, a 35 region of code they cover and an exception label/condition that matches 36 certain exceptions. 37 Only raises inside the covered region and raising exceptions that match the 38 label can be handled by a given handler. 39 Different EHMs will have different rules to pick a handler 40 if multipe handlers could be used such as ``best match" or ``first found". 41 42 The @try@ statements of \Cpp, Java and Python are common examples. All three 43 also show another common feature of handlers, they are grouped by the covered 44 region. 38 45 39 46 \paragraph{Propagation} 40 After an exception is raised , comes the most complexstep for the41 EHM: finding and setting up the handler. Th is propagation of exception from raise to handler can be broken up into three42 different tasks: searching, matching, and 43 installing the handler so it can execute.47 After an exception is raised comes what is usually the biggest step for the 48 EHM: finding and setting up the handler. The propogation from raise to 49 handler can be broken up into three different tasks: searching for a handler, 50 matching against the handler and installing the handler. 44 51 45 52 \subparagraph{Searching} 46 The EHM searches for possible handlers that can be used to handle 47 the exception. Searching is usually independent of the exception that is 48 thrown and instead depends on the call stack: current function, its caller 49 and repeating down the stack. 53 The EHM begins by searching for handlers that might be used to handle 54 the exception. Searching is usually independent of the exception that was 55 thrown as it looks for handlers that have the raise site in their covered 56 region. 57 This includes handlers in the current function, as well as any in callers 58 on the stack that have the function call in their covered region. 50 59 51 60 \subparagraph{Matching} 52 For each handler found, it compares the raised exception with the handler label to see which one is the 53 best match, and hence, which one should be used to handle the exception. 54 In languages where the best match is the first match, these two steps are often 55 intertwined, \ie a match check is performed immediately after the search finds 61 Each handler found has to be matched with the raised exception. The exception 62 label defines a condition that be use used with exception and decides if 63 there is a match or not. 64 65 In languages where the first match is used this step is intertwined with 66 searching, a match check is preformed immediately after the search finds 56 67 a possible handler. 57 68 58 69 \subparagraph{Installing} 59 After a handler is chosen ,it must be made ready to run.60 Th is step varieswidely to fit with the rest of the61 design of the EHM. The installation step might be trivial or it c anbe70 After a handler is chosen it must be made ready to run. 71 The implementation can vary widely to fit with the rest of the 72 design of the EHM. The installation step might be trivial or it could be 62 73 the most expensive step in handling an exception. The latter tends to be the 63 74 case when stack unwinding is involved. 64 An alternate action occurs if no appropriate handler is found, then some implicit action 65 is performed. This step is only required with unchecked 66 exceptions as checked exceptions (Java) promise a handler is always found. The implicit action 67 also installs a handler but it is a default handle that may be 68 installed differently. 75 76 If a matching handler is not guarantied to be found the EHM will need a 77 different course of action here in the cases where no handler matches. 78 This is only required with unchecked exceptions as checked exceptions 79 (such as in Java) can make than guaranty. 80 This different action can also be installing a handler but it is usually an 81 implicat and much more general one. 69 82 70 83 \subparagraph{Hierarchy} 71 Some EHM (\CFA, Java) organize exceptions in a hierarchical structure.72 This strategy is borrowed fromobject-orientated languages where the84 A common way to organize exceptions is in a hierarchical structure. 85 This is especially true in object-orientated languages where the 73 86 exception hierarchy is a natural extension of the object hierarchy. 74 87 75 88 Consider the following hierarchy of exceptions: 76 89 \begin{center} 77 \input{exception Hierarchy}90 \input{exception-hierarchy} 78 91 \end{center} 92 79 93 A handler labelled with any given exception can handle exceptions of that 80 94 type or any child type of that exception. The root of the exception hierarchy 81 (here \ lstinline[language=C++]{exception}) acts as a catch-all, leaf types catch single types95 (here \codeC{exception}) acts as a catch-all, leaf types catch single types 82 96 and the exceptions in the middle can be used to catch different groups of 83 97 related exceptions. 84 98 85 99 This system has some notable advantages, such as multiple levels of grouping, 86 the ability for libraries to add new exception types, and the isolation 87 between different sub-hierarchies. This capability had to be adapted for \CFA, which is a 88 non-object-orientated language. 100 the ability for libraries to add new exception types and the isolation 101 between different sub-hierarchies. 102 This design is used in \CFA even though it is not a object-orientated 103 language using different tools to create the hierarchy. 89 104 90 105 % Could I cite the rational for the Python IO exception rework? 91 106 92 107 \paragraph{Completion} 93 After the handler has returned,the entire exception operation has to complete94 and continue executing somewhere . This step is usually simple,108 After the handler has finished the entire exception operation has to complete 109 and continue executing somewhere else. This step is usually simple, 95 110 both logically and in its implementation, as the installation of the handler 96 usually does the preparation. 97 The EHM can return control to different places, 98 where the most common are after the handler definition or after the raise. 111 is usually set up to do most of the work. 112 113 The EHM can return control to many different places, 114 the most common are after the handler definition and after the raise. 99 115 100 116 \paragraph{Communication} 101 For effective exception handling, additional information is usually passed from the raise, 102 where this basic model only communicates the exception's identity. A common 103 methods for communication is putting fields into an exception and 104 allowing a handler to access these fields via an exception instance in the handler's scope. 117 For effective exception handling, additional information is usually passed 118 from the raise to the handler. 119 So far only communication of the exceptions' identity has been covered. 120 A common method is putting fields into the exception instance and giving the 121 handler access to them. 105 122 106 123 \section{Virtuals} 107 Virtual types and casts are not part of an EHM nor are they 108 required for an EHM. But as pointed out, an object-oriented-style hierarchy is an 109 excellent way of organizing exceptions. Hence, a minimal virtual system has been added 110 to \CFA to support hierarchical exceptions. 124 Virtual types and casts are not part of \CFA's EHM nor are they required for 125 any EHM. But \CFA uses a hierarchial system of exceptions and this feature 126 is leveraged to create that. 127 128 % Maybe talk about why the virtual system is so minimal. 129 % Created for but not a part of the exception system. 111 130 112 131 The virtual system supports multiple ``trees" of types. Each tree is 113 132 a simple hierarchy with a single root type. Each type in a tree has exactly 114 one parent -- except for the root type w ithzero parents -- and any133 one parent -- except for the root type which has zero parents -- and any 115 134 number of children. 116 135 Any type that belongs to any of these trees is called a virtual type. … … 118 137 % A type's ancestors are its parent and its parent's ancestors. 119 138 % The root type has no ancestors. 120 % A type's descendents are its children and its children's descendents. 121 122 Every virtual type has a list of virtual members. Children inherit 123 their parent's virtual members but may add new members to it. 124 It is important to note that these are virtual members, not virtual methods of an object type. 125 However, as \CFA has function pointers, they can be used to mimic virtual 126 methods. 139 % A type's decendents are its children and its children's decendents. 140 141 Every virtual type also has a list of virtual members. Children inherit 142 their parent's list of virtual members but may add new members to it. 143 It is important to note that these are virtual members, not virtual methods 144 of object-orientated programming, and can be of any type. 145 However, since \CFA has function pointers and they are allowed, virtual 146 members can be used to mimic virtual methods. 127 147 128 148 Each virtual type has a unique id. 129 Th e unique id for the virtual type and all itsvirtual members are combined130 into a virtual -table type. Each virtual type has a pointer to a virtual table149 This unique id and all the virtual members are combined 150 into a virtual table type. Each virtual type has a pointer to a virtual table 131 151 as a hidden field. 132 152 133 Up to this point, a virtual system is similar to ones found in object-oriented134 languages but thisis where \CFA diverges. Objects encapsulate a153 Up until this point the virtual system is similar to ones found in 154 object-orientated languages but this where \CFA diverges. Objects encapsulate a 135 155 single set of behaviours in each type, universally across the entire program, 136 and indeed all programs that use that type definition. In this sense ,the156 and indeed all programs that use that type definition. In this sense the 137 157 types are ``closed" and cannot be altered. 138 However, \CFA types do not encapsulate any behaviour. Instead, traits are used and 139 types can satisfy a trait, stop satisfying a trait, or satisfy the same 140 trait in a different way depending on the lexical context. In this sense, the types are 141 ``open" as their behaviour can change in different scopes. This capability means it is impossible to pick 142 a single set of functions that represent the type's virtual members. 143 144 Hence, \CFA does not have a single virtual table for a type. A user can define different virtual tables, 145 which are filled in at their declaration and given a name. 146 That name is used as the virtual table, even if it is defined locally 147 inside a function, although lifetime issues must be considered. 148 Specifically, an object of a virtual type is ``bound" to a virtual table instance, which 158 159 In \CFA types do not encapsulate any behaviour. Traits are local and 160 types can begin to statify a trait, stop satifying a trait or satify the same 161 trait in a different way at any lexical location in the program. 162 In this sense they are ``open" as they can change at any time. This means it 163 is implossible to pick a single set of functions that repersent the type's 164 implementation across the program. 165 166 \CFA side-steps this issue by not having a single virtual table for each 167 type. A user can define virtual tables which are filled in at their 168 declaration and given a name. Anywhere that name is visible, even if it was 169 defined locally inside a function (although that means it will not have a 170 static lifetime), it can be used. 171 Specifically, a virtual type is ``bound" to a virtual table which 149 172 sets the virtual members for that object. The virtual members can be accessed 150 173 through the object. … … 160 183 \Cpp syntax for special casts. Both the type of @EXPRESSION@ and @TYPE@ must be 161 184 a pointer to a virtual type. 162 The cast dynamically checks if the @EXPRESSION@ type is the same or a sub type185 The cast dynamically checks if the @EXPRESSION@ type is the same or a sub-type 163 186 of @TYPE@, and if true, returns a pointer to the 164 187 @EXPRESSION@ object, otherwise it returns @0p@ (null pointer). … … 178 201 \end{cfa} 179 202 The trait is defined over two types, the exception type and the virtual table 180 type. Th ese type should have a one-to-one relationship: each exception type has only one virtual203 type. This should be one-to-one: each exception type has only one virtual 181 204 table type and vice versa. The only assertion in the trait is 182 205 @get_exception_vtable@, which takes a pointer of the exception type and 183 returns a reference to the virtual-table type-instance. 184 206 returns a reference to the virtual table type instance. 207 208 % TODO: This section, and all references to get_exception_vtable, are 209 % out-of-data. Perhaps wait until the update is finished before rewriting it. 185 210 The function @get_exception_vtable@ is actually a constant function. 186 Regardless of the value passed in (including the null pointer) it 187 return s a reference to the virtual-table instance for that type.188 The reason it is a function instead of a constant is t omake type189 annotations easier to write using the exception type rather thanthe190 virtual -table type, which usually has a mangled name because it is an internal component of the EHM.211 Regardless of the value passed in (including the null pointer) it should 212 return a reference to the virtual table instance for that type. 213 The reason it is a function instead of a constant is that it make type 214 annotations easier to write as you can use the exception type instead of the 215 virtual table type; which usually has a mangled name. 191 216 % Also \CFA's trait system handles functions better than constants and doing 192 217 % it this way reduce the amount of boiler plate we need. … … 194 219 % I did have a note about how it is the programmer's responsibility to make 195 220 % sure the function is implemented correctly. But this is true of every 196 % similar system I know of (except A da's I guess) so I took it out.197 198 There are two more exception traits defined as follows:221 % similar system I know of (except Agda's I guess) so I took it out. 222 223 There are two more traits for exceptions defined as follows: 199 224 \begin{cfa} 200 225 trait is_termination_exception( … … 208 233 }; 209 234 \end{cfa} 210 These traits ensure a given type and virtual type are an 211 exception type and defines one of the two default handlers. The default handlers 212 a re used in the main exception-handling operations anddiscussed in detail in \VRef{s:ExceptionHandling}.213 214 However, all three of these traits are tricky to use directly.235 Both traits ensure a pair of types are an exception type and its virtual table 236 and defines one of the two default handlers. The default handlers are used 237 as fallbacks and are discussed in detail in \VRef{s:ExceptionHandling}. 238 239 However, all three of these traits can be tricky to use directly. 215 240 While there is a bit of repetition required, 216 the largest issue is that the virtual -table type is mangled and not in a user217 facing way. So th ree macros are provided to wrap these traits218 tosimplify referring to the names:241 the largest issue is that the virtual table type is mangled and not in a user 242 facing way. So these three macros are provided to wrap these traits to 243 simplify referring to the names: 219 244 @IS_EXCEPTION@, @IS_TERMINATION_EXCEPTION@ and @IS_RESUMPTION_EXCEPTION@. 220 245 221 These macrostake one or two arguments. The first argument is the name of the222 exception type. The macro passes theunmangled and mangled form to the trait.246 All three take one or two arguments. The first argument is the name of the 247 exception type. The macro passes its unmangled and mangled form to the trait. 223 248 The second (optional) argument is a parenthesized list of polymorphic 224 249 arguments. This argument is only used with polymorphic exceptions and the 225 list is passed to both types.226 In the current set-up, the base name and the polymorphic arguments have to227 matchso these macros can be used without losing flexibility.250 list is be passed to both types. 251 In the current set-up, the two types always have the same polymorphic 252 arguments so these macros can be used without losing flexibility. 228 253 229 254 For example consider a function that is polymorphic over types that have a 230 255 defined arithmetic exception: 231 256 \begin{cfa} 232 forall(Num | @IS_EXCEPTION(Arithmetic, Num)@)257 forall(Num | IS_EXCEPTION(Arithmetic, (Num))) 233 258 void some_math_function(Num & left, Num & right); 234 259 \end{cfa} 235 where the function may raise exception @Arithmetic@ or any of its decedents.236 260 237 261 \section{Exception Handling} 238 262 \label{s:ExceptionHandling} 239 263 \CFA provides two kinds of exception handling: termination and resumption. 240 These twin mechanisms are the core of the \CFA EHM and 241 multiple features are provided to support them. 242 This section covers the general patterns shared by the two kinds of exceptions and 243 then covers the individual detail operations. 244 245 Both mechanisms follow the same set of steps to do their operations. Both 246 start with the user performing an exception raise. 247 Then there is the handler search. If one is found, than the exception 248 is caught and the handler is run. When the handler returns, control returns to an 249 location appropriate for each kind of exception. 250 251 \begin{sloppypar} 252 If the search fails, an appropriate default handler, @defaultTermiationHandler@ 253 or @defaultResumptionHandler@, is run and control returns to the 254 appropriate location. 255 \end{sloppypar} 264 These twin operations are the core of \CFA's exception handling mechanism. 265 This section will cover the general patterns shared by the two operations and 266 then go on to cover the details each individual operation. 267 268 Both operations follow the same set of steps. 269 Both start with the user preforming a raise on an exception. 270 Then the exception propogates up the stack. 271 If a handler is found the exception is caught and the handler is run. 272 After that control returns to normal execution. 273 If the search fails a default handler is run and then control 274 returns to normal execution after the raise. 275 276 This general description covers what the two kinds have in common. 277 Differences include how propogation is preformed, where exception continues 278 after an exception is caught and handled and which default handler is run. 256 279 257 280 \subsection{Termination} 258 281 \label{s:Termination} 259 Termination handling is familiarand used in most programming282 Termination handling is the familiar kind and used in most programming 260 283 languages with exception handling. 261 It is a dynamic, non-local goto. The raise starts searching, and if matched and handled, the stack is 262 unwound and control (usually) continues in the function on 263 the call stack containing the handler. Terminate is commonly used for an error where recovery 264 is impossible in the function performing the raise. 284 It is dynamic, non-local goto. If the raised exception is matched and 285 handled the stack is unwound and control will (usually) continue the function 286 on the call stack that defined the handler. 287 Termination is commonly used when an error has occurred and recovery is 288 impossible locally. 265 289 266 290 % (usually) Control can continue in the current function but then a different … … 272 296 \end{cfa} 273 297 The expression must return a reference to a termination exception, where the 274 termination exception is any type that satisfies trait 275 @is_termination_exception@ at the call site. Through \CFA's trait system, the 276 trait functions are implicitly passed into the hidden throw code and available 277 to the exception system while handling the exception. A new 278 @defaultTerminationHandler@ can be defined in any scope to change the throw's 279 unhandled behaviour (see below). 280 281 The throw must copy the provided exception into managed memory because the stack is unwounded. 282 The lifetime of the exception copy is managed by the exception runtime. 283 It is the user's responsibility to ensure the original exception is cleaned up, where allocating it on the unwound stack is sufficient. 284 285 The exception search walks the stack matching with the copied exception. 298 termination exception is any type that satisfies the trait 299 @is_termination_exception@ at the call site. 300 Through \CFA's trait system the trait functions are implicity passed into the 301 throw code and the EHM. 302 A new @defaultTerminationHandler@ can be defined in any scope to 303 change the throw's behavior (see below). 304 305 The throw will copy the provided exception into managed memory to ensure 306 the exception is not destroyed if the stack is unwound. 307 It is the user's responsibility to ensure the original exception is cleaned 308 up wheither the stack is unwound or not. Allocating it on the stack is 309 usually sufficient. 310 311 Then propogation starts with the search. \CFA uses a ``first match" rule so 312 matching is preformed with the copied exception as the search continues. 286 313 It starts from the throwing function and proceeds to the base of the stack, 287 314 from callee to caller. 288 At each stack frame, a check is made for termination handlers defined by the315 At each stack frame, a check is made for resumption handlers defined by the 289 316 @catch@ clauses of a @try@ statement. 290 317 \begin{cfa} 291 318 try { 292 319 GUARDED_BLOCK 293 } catch (EXCEPTION_TYPE$\(_1\)$ [*NAME$\(_1\)$]) {320 } catch (EXCEPTION_TYPE$\(_1\)$ * [NAME$\(_1\)$]) { 294 321 HANDLER_BLOCK$\(_1\)$ 295 } catch (EXCEPTION_TYPE$\(_2\)$ [*NAME$\(_2\)$]) {322 } catch (EXCEPTION_TYPE$\(_2\)$ * [NAME$\(_2\)$]) { 296 323 HANDLER_BLOCK$\(_2\)$ 297 324 } 298 325 \end{cfa} 299 When viewed on its own, a @try@ statement with @catch@ clauses simply executes the statements in 300 the @GUARDED_BLOCK@, and when those are finished, the try statement finishes. 301 302 However, while the guarded statements are being executed, including any invoked 303 functions, a termination exception may be thrown. If that exception is not handled by a try 304 statement further up the stack, the handlers following the try block are now 305 searched for a matching termination exception-type from top to bottom. 306 307 Exception matching checks each @catch@ clasue from top to bottom, if the representation of the thrown exception-type is 308 the same or a descendant type of the exception types in the @catch@ clauses. If 309 it is the same or a descendant of @EXCEPTION_TYPE@$_i$, then the optional @NAME@$_i$ is 326 When viewed on its own, a try statement will simply execute the statements 327 in @GUARDED_BLOCK@ and when those are finished the try statement finishes. 328 329 However, while the guarded statements are being executed, including any 330 invoked functions, all the handlers in the statement are now on the search 331 path. If a termination exception is thrown and not handled further up the 332 stack they will be matched against the exception. 333 334 Exception matching checks the handler in each catch clause in the order 335 they appear, top to bottom. If the representation of the thrown exception type 336 is the same or a descendant of @EXCEPTION_TYPE@$_i$ then @NAME@$_i$ 337 (if provided) is 310 338 bound to a pointer to the exception and the statements in @HANDLER_BLOCK@$_i$ 311 339 are executed. If control reaches the end of the handler, the exception is 312 freed and control continues after the @try@statement.313 314 If no termination handler is found during the search , the default termination315 handler visible at the raise is called. Through \CFA's trait-system the best 316 default-handler match at the throw sight is used. This function is 317 passed the copied exception given to the raise. After the default handler is 318 run, control continues after the @throw@statement.319 320 There is a global @defaultTerminationHandler@ function that that is polymorphic321 over all exception types allowing new default handlers to be defined for 322 d ifferent exception types and so different exception types can have different323 default handlers. The global default termination-handler performs a 324 cancellation \see{\VRef{s:Cancellation}} on the current stack with the copied 325 exception.340 freed and control continues after the try statement. 341 342 If no termination handler is found during the search then the default handler 343 (@defaultTerminationHandler@) is run. 344 Through \CFA's trait system the best match at the throw sight will be used. 345 This function is run and is passed the copied exception. After the default 346 handler is run control continues after the throw statement. 347 348 There is a global @defaultTerminationHandler@ that is polymorphic over all 349 exception types. Since it is so general a more specific handler can be 350 defined and will be used for those types, effectively overriding the handler 351 for particular exception type. 352 The global default termination handler performs a cancellation 353 \see{\VRef{s:Cancellation}} on the current stack with the copied exception. 326 354 327 355 \subsection{Resumption} 328 356 \label{s:Resumption} 329 Resumption exception-handling is a less common counterpart to termination but is 330 just as old~\cite{Goodenough75} and is simpler to understand. 331 It is a dynamic, non-local function call (like Lisp). If the throw is successful, a 332 closure is taken from up the stack and executed, after which the throwing 333 function continues executing. 334 Resumption is used when an error occurred, and if the error is repaired, 357 358 Resumption exception handling is less common than termination but is 359 just as old~\cite{Goodenough75} and is simpler in many ways. 360 It is a dynamic, non-local function call. If the raised exception is 361 matched a closure will be taken from up the stack and executed, 362 after which the raising function will continue executing. 363 These are most often used when an error occurred and if the error is repaired 335 364 then the function can continue. 336 365 337 An alternative approach is explicitly passing fixup functions with local338 closures up the stack to be called when an error occurs. However, fixup339 functions significantly expand the parameters list of functions, even when the340 fixup function is not used by a function but must be passed to other called341 functions.342 343 366 A resumption raise is started with the @throwResume@ statement: 344 367 \begin{cfa} 345 368 throwResume EXPRESSION; 346 369 \end{cfa} 347 Like termination, the expression must return a reference to a resumption 348 exception, where the resumption exception is any type that satisfies the trait 349 @is_termination_exception@ at the call site. 350 The assertions for this trait are available to 370 It works much the same way as the termination throw. 371 The expression must return a reference to a resumption exception, 372 where the resumption exception is any type that satisfies the trait 373 @is_resumption_exception@ at the call site. 374 The assertions from this trait are available to 351 375 the exception system while handling the exception. 352 376 353 At run time, no exception copy is made, as the stack is not unwound. Hence, the exception and354 any values on the stack remain in scope while the resumption is handled. 355 356 The exception searches walks the stack matching with the provided exception. 357 It starts from the resuming function and proceeds to the base of the stack, 358 from callee to caller.377 At run-time, no exception copy is made. 378 As the stack is not unwound the exception and 379 any values on the stack will remain in scope while the resumption is handled. 380 381 The EHM then begins propogation. The search starts from the raise in the 382 resuming function and proceeds to the base of the stack, from callee to caller. 359 383 At each stack frame, a check is made for resumption handlers defined by the 360 384 @catchResume@ clauses of a @try@ statement. … … 362 386 try { 363 387 GUARDED_BLOCK 364 } catchResume (EXCEPTION_TYPE$\(_1\)$ [*NAME$\(_1\)$]) {388 } catchResume (EXCEPTION_TYPE$\(_1\)$ * [NAME$\(_1\)$]) { 365 389 HANDLER_BLOCK$\(_1\)$ 366 } catchResume (EXCEPTION_TYPE$\(_2\)$ [*NAME$\(_2\)$]) {390 } catchResume (EXCEPTION_TYPE$\(_2\)$ * [NAME$\(_2\)$]) { 367 391 HANDLER_BLOCK$\(_2\)$ 368 392 } 369 393 \end{cfa} 370 Termination and resumption handlers may be intermixed in a @try@ 371 statement but the kind of throw must match with kind of handler for it to be 372 considered as a possible match. 373 Like termination, when viewed on its own, a @try@ statement with 374 @catchResume@ clauses simply executes the statements in the @GUARDED_BLOCK@, 375 and when those are finished, the try statement finishes. 376 377 However, while the guarded statements are being executed, including any invoked 378 functions, a resumption exception may be thrown. If that exception is not handled by a try 379 statement further up the stack, the handlers following the try block are now 380 searched for a matching resumption exception-type from top to bottom. 381 382 Like termination, exception matching checks each @catch@ clasue from top to bottom, if the representation of the thrown exception-type is 383 the same or a descendant type of the exception types in the @catchResume@ clauses. If 384 it is the same or a descendant of @EXCEPTION_TYPE@$_i$, then the optional @NAME@$_i$ is 385 bound to a pointer to the exception and the statements in @HANDLER_BLOCK@$_i$ 386 are executed. If control reaches the end of the handler, the exception is 387 freed and control continues after the @throwResume@ statement. 388 389 Like termination, if no resumption handler is found during the search, the 390 default resumption handler visible at the raise is called, which is the best 391 match at the according to \CFA's overloading rules. This function is passed the 392 exception given to the raise. After the default handler is run, execution 393 continues after the @throwResume@ statement. 394 395 There is a global @defaultResumptionHandler@ that is polymorphic over all 396 resumption and preforms a termination throw on the exception. 397 The @defaultTerminationHandler@ for that throw is matched at the original 398 throw statement (the resumption @throwResume@) and it can be customized by 394 % I wonder if there would be some good central place for this. 395 Note that termination handlers and resumption handlers may be used together 396 in a single try statement, intermixing @catch@ and @catchResume@ freely. 397 Each type of handler will only interact with exceptions from the matching 398 type of raise. 399 When a try statement is executed it simply executes the statements in the 400 @GUARDED_BLOCK@ and then finishes. 401 402 However, while the guarded statements are being executed, including any 403 invoked functions, all the handlers in the statement are now on the search 404 path. If a resumption exception is reported and not handled further up the 405 stack they will be matched against the exception. 406 407 Exception matching checks the handler in each catch clause in the order 408 they appear, top to bottom. If the representation of the thrown exception type 409 is the same or a descendant of @EXCEPTION_TYPE@$_i$ then @NAME@$_i$ 410 (if provided) is bound to a pointer to the exception and the statements in 411 @HANDLER_BLOCK@$_i$ are executed. 412 If control reaches the end of the handler, execution continues after the 413 the raise statement that raised the handled exception. 414 415 Like termination, if no resumption handler is found, the default handler 416 visible at the throw statement is called. It will use the best match at the 417 call sight according to \CFA's overloading rules. The default handler is 418 passed the exception given to the throw. When the default handler finishes 419 execution continues after the raise statement. 420 421 There is a global @defaultResumptionHandler@ is polymorphic over all 422 termination exceptions and preforms a termination throw on the exception. 423 The @defaultTerminationHandler@ for that raise is matched at the original 424 raise statement (the resumption @throwResume@) and it can be customized by 399 425 introducing a new or better match as well. 400 426 401 \subs ection{Resumption Marking}427 \subsubsection{Resumption Marking} 402 428 A key difference between resumption and termination is that resumption does 403 not unwind the stack. A side effect is that when a handler is matched404 and run it s try block (the guarded statements) and every try statement429 not unwind the stack. A side effect that is that when a handler is matched 430 and run it's try block (the guarded statements) and every try statement 405 431 searched before it are still on the stack. This can lead to the recursive 406 432 resumption problem. … … 416 442 } 417 443 \end{cfa} 418 When this code is executed the guarded @throwResume@ startsa419 search and match es the handler in the @catchResume@ clause. The handler is420 call ed and placed on the stack on top of the try-block. The second throw in the handler421 searches the same try block and callsanother instance of the444 When this code is executed the guarded @throwResume@ will throw, start a 445 search and match the handler in the @catchResume@ clause. This will be 446 call and placed on the stack on top of the try-block. The second throw then 447 throws and will search the same try block and put call another instance of the 422 448 same handler leading to an infinite loop. 423 449 424 While this situation is trivial and easy to avoid,much more complex cycles450 This situation is trivial and easy to avoid, but much more complex cycles 425 451 can form with multiple handlers and different exception types. 426 452 427 To prevent this case, examined try statements on the stack are marked, so that 428 subsequent resumption searches skip over them and continue with the next unmarked section 429 of the stack. 430 Unmarking occurs when that exception is handled 431 or the search completes without finding a handler. 432 433 % This might need a diagram. But it is an important part of the justification 434 % of the design of the traversal order. 453 To prevent all of these cases we mark try statements on the stack. 454 A try statement is marked when a match check is preformed with it and an 455 exception. The statement will be unmarked when the handling of that exception 456 is completed or the search completes without finding a handler. 457 While a try statement is marked its handlers are never matched, effectify 458 skipping over it to the next try statement. 435 459 436 460 \begin{center} 437 %\begin{verbatim} 438 % throwResume2 ----------. 439 % | | 440 % generated from handler | 441 % | | 442 % handler | 443 % | | 444 % throwResume1 -----. : 445 % | | : 446 % try | : search skip 447 % | | : 448 % catchResume <----' : 449 % | | 450 %\end{verbatim} 451 \input{stackMarking} 461 \input{stack-marking} 452 462 \end{center} 453 463 454 The resulting search can be understood by thinking about what is searched for455 termination. When a throw happens in a handler, a termination handler 456 skips everythingfrom the original throw to the original catch because that457 part of the stack is unwound. A resumption handler skips the same458 section of stack because it is marked. 459 A throw in a resumption default-handler performs the same search as the original 460 @throwResume@ because for resumption nothing has been unwound.461 462 The symmetry between resumption masking and termination searching is why this pattern was picked. Other patterns,463 such as marking just the handlers that caught, also work but the 464 symmetry seems to match programmer intuition.464 These rules mirror what happens with termination. 465 When a termination throw happens in a handler the search will not look at 466 any handlers from the original throw to the original catch because that 467 part of the stack has been unwound. 468 A resumption raise in the same situation wants to search the entire stack, 469 but it will not try to match the exception with try statements in the section 470 that would have been unwound as they are marked. 471 472 The symmetry between resumption termination is why this pattern was picked. 473 Other patterns, such as marking just the handlers that caught, also work but 474 lack the symmetry means there are less rules to remember. 465 475 466 476 \section{Conditional Catch} 467 Both termination and resumption handler -clauses can be given an additional468 condition to further control which exceptions is handled:469 \begin{cfa} 470 catch (EXCEPTION_TYPE [* NAME] @; CONDITION@)477 Both termination and resumption handler clauses can be given an additional 478 condition to further control which exceptions they handle: 479 \begin{cfa} 480 catch (EXCEPTION_TYPE * [NAME] ; CONDITION) 471 481 \end{cfa} 472 482 First, the same semantics is used to match the exception type. Second, if the 473 483 exception matches, @CONDITION@ is executed. The condition expression may 474 reference all names in the scopeof the try block and @NAME@484 reference all names in scope at the beginning of the try block and @NAME@ 475 485 introduced in the handler clause. If the condition is true, then the handler 476 486 matches. Otherwise, the exception search continues as if the exception type 477 487 did not match. 478 488 479 Conditional catch allows fine-gain matching based on object values as well as exception types. 480 For example, assume the exception hierarchy @OpenFailure@ $\rightarrow$ @CreateFailure@ and these exceptions are raised by function @open@. 481 \begin{cfa} 482 try { 483 f1 = open( ... ); // open raises CreateFailure/OpenFailure 484 f2 = open( ... ); // with the associate file 489 The condition matching allows finer matching by allowing the match to check 490 more kinds of information than just the exception type. 491 \begin{cfa} 492 try { 493 handle1 = open( f1, ... ); 494 handle2 = open( f2, ... ); 495 handle3 = open( f3, ... ); 485 496 ... 486 } catch( CreateFailure * f ; @fd( f ) == f1@ ) { 487 // only handle IO failure for f1 488 } catch( OpenFailure * f ; @fd( f ) == f2@ ) { 489 // only handle IO failure for f2 490 } 491 \end{cfa} 492 Here, matching is very precise on the I/O exception and particular file with an open problem. 493 This capability cannot be easily mimiced within the handler. 494 \begin{cfa} 495 try { 496 f1 = open( ... ); 497 f2 = open( ... ); 498 ... 499 } catch( CreateFailure * f ) { 500 if ( @fd( f ) == f1@ ) ... else // reraise 501 } catch( OpenFailure * f ) { 502 if ( @fd( f ) == f2@ ) ... else // reraise 503 } 504 \end{cfa} 505 When an exception @CreateFailure@ is raised, the first handler catches the 506 derived exception and reraises it if the object is inappropriate. The reraise 507 immediately terminates the current guarded block, which precludes the handler 508 for the base exception @OpenFailure@ from consideration for object 509 @f2@. Therefore, the ``catch first, then reraise'' approach is an incomplete 510 substitute for conditional catch. 511 512 \section{Reraise} 513 \label{s:Rethrowing} 514 \colour{red}{From Andrew: I recommend we talk about why the language doesn't 515 have rethrows/reraises instead.} 516 497 } catch( IOFailure * f ; fd( f ) == f1 ) { 498 // Only handle IO failure for f1. 499 } catch( IOFailure * f ; fd( f ) == f3 ) { 500 // Only handle IO failure for f3. 501 } 502 // Can't handle a failure relating to f2 here. 503 \end{cfa} 504 In this example the file that experianced the IO error is used to decide 505 which handler should be run, if any at all. 506 507 \begin{comment} 508 % I know I actually haven't got rid of them yet, but I'm going to try 509 % to write it as if I had and see if that makes sense: 510 \section{Reraising} 511 \label{s:Reraising} 517 512 Within the handler block or functions called from the handler block, it is 518 513 possible to reraise the most recently caught exception with @throw@ or … … 533 528 is part of an unwound stack frame. To prevent this problem, a new default 534 529 handler is generated that does a program-level abort. 535 \PAB{I don't see how this is different from the normal throw/throwResume.} 530 \end{comment} 531 532 \subsection{Comparison with Reraising} 533 A more popular way to allow handlers to match in more detail is to reraise 534 the exception after it has been caught if it could not be handled here. 535 On the surface these two features seem interchangable. 536 537 If we used @throw;@ to start a termination reraise then these two statements 538 would have the same behaviour: 539 \begin{cfa} 540 try { 541 do_work_may_throw(); 542 } catch(exception_t * exc ; can_handle(exc)) { 543 handle(exc); 544 } 545 \end{cfa} 546 547 \begin{cfa} 548 try { 549 do_work_may_throw(); 550 } catch(exception_t * exc) { 551 if (can_handle(exc)) { 552 handle(exc); 553 } else { 554 throw; 555 } 556 } 557 \end{cfa} 558 If there are further handlers after this handler only the first version will 559 check them. If multiple handlers on a single try block could handle the same 560 exception the translations get more complex but they are equivilantly 561 powerful. 562 563 Until stack unwinding comes into the picture. In termination handling, a 564 conditional catch happens before the stack is unwound, but a reraise happens 565 afterwards. Normally this might only cause you to loose some debug 566 information you could get from a stack trace (and that can be side stepped 567 entirely by collecting information during the unwind). But for \CFA there is 568 another issue, if the exception isn't handled the default handler should be 569 run at the site of the original raise. 570 571 There are two problems with this: the site of the original raise doesn't 572 exist anymore and the default handler might not exist anymore. The site will 573 always be removed as part of the unwinding, often with the entirety of the 574 function it was in. The default handler could be a stack allocated nested 575 function removed during the unwind. 576 577 This means actually trying to pretend the catch didn't happening, continuing 578 the original raise instead of starting a new one, is infeasible. 579 That is the expected behaviour for most languages and we can't replicate 580 that behaviour. 536 581 537 582 \section{Finally Clauses} 538 Finally clauses are used to perform unconditional clean-up when leaving a 539 scope and appear at the end of a try statement after any catch clauses: 583 \label{s:FinallyClauses} 584 Finally clauses are used to preform unconditional clean-up when leaving a 585 scope and are placed at the end of a try statement after any handler clauses: 540 586 \begin{cfa} 541 587 try { … … 548 594 The @FINALLY_BLOCK@ is executed when the try statement is removed from the 549 595 stack, including when the @GUARDED_BLOCK@ finishes, any termination handler 550 finishes ,or during an unwind.596 finishes or during an unwind. 551 597 The only time the block is not executed is if the program is exited before 552 598 the stack is unwound. 553 599 554 600 Execution of the finally block should always finish, meaning control runs off 555 the end of the block. This requirement ensures execution always continues as if the 556 finally clause is not present, \ie @finally@ is for cleanup not changing control 557 flow. Because of this requirement, local control flow out of the finally block 601 the end of the block. This requirement ensures control always continues as if 602 the finally clause is not present, \ie finally is for cleanup not changing 603 control flow. 604 Because of this requirement, local control flow out of the finally block 558 605 is forbidden. The compiler precludes any @break@, @continue@, @fallthru@ or 559 606 @return@ that causes control to leave the finally block. Other ways to leave 560 607 the finally block, such as a long jump or termination are much harder to check, 561 and at best requir e additional run-time overhead, and so are608 and at best requiring additional run-time overhead, and so are only 562 609 discouraged. 563 610 564 Not all languages with exceptionshave finally clauses. Notably \Cpp does565 without it as des tructors serve a similar role. Although destructors and566 finally clauses can be used in many of the same areas ,they have their own611 Not all languages with unwinding have finally clauses. Notably \Cpp does 612 without it as descructors serve a similar role. Although destructors and 613 finally clauses can be used in many of the same areas they have their own 567 614 use cases like top-level functions and lambda functions with closures. 568 615 Destructors take a bit more work to set up but are much easier to reuse while 569 finally clauses are good for one-off situations and can easily include local information. 616 finally clauses are good for one-off uses and 617 can easily include local information. 570 618 571 619 \section{Cancellation} 572 620 \label{s:Cancellation} 573 Cancellation is a stack-level abort, which can be thought of as a n574 uncatchable termination. It unwinds the entire stack, and when575 possible ,forwards the cancellation exception to a different stack.621 Cancellation is a stack-level abort, which can be thought of as as an 622 uncatchable termination. It unwinds the entire current stack, and if 623 possible forwards the cancellation exception to a different stack. 576 624 577 625 Cancellation is not an exception operation like termination or resumption. 578 626 There is no special statement for starting a cancellation; instead the standard 579 627 library function @cancel_stack@ is called passing an exception. Unlike a 580 throw, this exception is not used in matching only to pass information about628 raise, this exception is not used in matching only to pass information about 581 629 the cause of the cancellation. 582 (This semanticsalso means matching cannot fail so there is no default handler.)583 584 After @cancel_stack@ is called , the exception is copied into the EHM's585 memoryand the current stack is630 (This also means matching cannot fail so there is no default handler.) 631 632 After @cancel_stack@ is called the exception is copied into the EHM's memory 633 and the current stack is 586 634 unwound. After that it depends one which stack is being cancelled. 587 635 \begin{description} 588 636 \item[Main Stack:] 589 637 The main stack is the one used by the program main at the start of execution, 590 and is the only stack in a sequential program. Even in a concurrent program, 591 the main stack is often used as the environment to start the concurrent threads. 592 Hence, when the main stack is cancelled there is nowhere else in the program 593 to go. Hence, after the main stack is unwound, there is a program-level abort. 638 and is the only stack in a sequential program. 639 After the main stack is unwound there is a program-level abort. 640 641 There are two reasons for this. The first is that it obviously had to do this 642 in a sequential program as there is nothing else to notify and the simplicity 643 of keeping the same behaviour in sequential and concurrent programs is good. 644 Also, even in concurrent programs there is no stack that an innate connection 645 to, so it would have be explicitly managed. 594 646 595 647 \item[Thread Stack:] 596 A thread stack is created for a \CFA @thread@ object or object that satisfies the 597 @is_thread@ trait. A thread only has two points of communication that must 598 happen: start and join. A thread must be running to perform a 599 cancellation (a thread cannot cancel another thread). Therefore, a cancellation must 600 occur after start and before join, so join is used 601 for cancellation communication. 602 After the stack is unwound, the thread halts and waits for 603 another thread to join with it. The joining thread checks for a cancellation, 604 and if present, resumes exception @ThreadCancelled@. 605 606 \begin{sloppypar} 607 There is a subtle difference between the explicit join (@join@ function) and 608 implicit join (from a @thread@'s destructor call). The explicit join takes the default 609 handler (@defaultResumptionHandler@) from its calling context, which is used if 610 the exception is not caught. The implicit join does a program abort instead. 611 \end{sloppypar} 612 613 \PAB{uC++ does not have these issues, but catch(...) is not working.} 614 \begin{lstlisting}[language=uC++] 615 #include <iostream> 616 using namespace std; 617 618 struct Cl { 619 ~Cl() { cout << "C" << endl; } 620 }; 621 _Coroutine C { 622 void main() { 623 Cl c; 624 try { 625 cancel(); 626 } catch( ... ) { 627 cout << "..." << endl; 628 } _Finally { 629 cout << "F" << endl; 630 } 631 } 632 public: 633 void mem() { resume(); } 634 }; 635 _Task T { 636 void main() { 637 Cl c; 638 try { 639 cancel(); 640 } catch( ... ) { 641 cout << "..." << endl; 642 } _Finally { 643 cout << "F" << endl; 644 } 645 } 646 }; 647 int main() { 648 C c; 649 cout << "here1" << endl; 650 c.mem(); 651 cout << "here2" << endl; 652 { 653 T t; 654 } 655 cout << "here3" << endl; 656 } 657 \end{lstlisting} 658 659 \PAB{This discussion should be its own section.} 660 This semantics is for safety. If an unwind is triggered while another unwind 661 is underway only one of them can proceed as they both want to ``consume" the 662 stack. Letting both try to proceed leads to very undefined behaviour. 663 Both termination and cancellation involve unwinding and, since the default 664 @defaultResumptionHandler@ preforms a termination that could more easily 665 happen in an implicate join inside a destructor. So there is an error message 666 and an abort instead. 667 668 \todo{Perhaps have a more general disucssion of unwind collisions before 669 this point.} 670 671 The recommended way to avoid the abort is to handle the initial resumption 672 from the implicate join. If required you may put an explicate join inside a 673 finally clause to disable the check and use the local 674 @defaultResumptionHandler@ instead. 675 676 \item[Coroutine Stack:] A coroutine stack is created for a @coroutine@ object 677 or object that satisfies the @is_coroutine@ trait. A coroutine only knows of 678 two other coroutines, its starter and its last resumer. Of the two the last 679 resumer has the tightest coupling to the coroutine it activated and the most 680 up-to-date information. 681 682 Hence, cancellation of the active coroutine is forwarded to the last resumer 683 after the stack is unwound. When the resumer restarts, it resumes exception 684 @CoroutineCancelled@, which is polymorphic over the coroutine type and has a 685 pointer to the cancelled coroutine. 686 687 The resume function also has an assertion that the @defaultResumptionHandler@ 688 for the exception. So it will use the default handler like a regular throw. 648 A thread stack is created for a \CFA @thread@ object or object that satisfies 649 the @is_thread@ trait. 650 After a thread stack is unwound there exception is stored until another 651 thread attempts to join with it. Then the exception @ThreadCancelled@, 652 which stores a reference to the thread and to the exception passed to the 653 cancellation, is reported from the join. 654 There is one difference between an explicit join (with the @join@ function) 655 and an implicit join (from a destructor call). The explicit join takes the 656 default handler (@defaultResumptionHandler@) from its calling context while 657 the implicit join provides its own which does a program abort if the 658 @ThreadCancelled@ exception cannot be handled. 659 660 Communication is done at join because a thread only has to have to points of 661 communication with other threads: start and join. 662 Since a thread must be running to perform a cancellation (and cannot be 663 cancelled from another stack), the cancellation must be after start and 664 before the join. So join is the one that we will use. 665 666 % TODO: Find somewhere to discuss unwind collisions. 667 The difference between the explicit and implicit join is for safety and 668 debugging. It helps prevent unwinding collisions by avoiding throwing from 669 a destructor and prevents cascading the error across multiple threads if 670 the user is not equipped to deal with it. 671 Also you can always add an explicit join if that is the desired behaviour. 672 673 \item[Coroutine Stack:] 674 A coroutine stack is created for a @coroutine@ object or object that 675 satisfies the @is_coroutine@ trait. 676 After a coroutine stack is unwound control returns to the resume function 677 that most recently resumed it. The resume statement reports a 678 @CoroutineCancelled@ exception, which contains a references to the cancelled 679 coroutine and the exception used to cancel it. 680 The resume function also takes the @defaultResumptionHandler@ from the 681 caller's context and passes it to the internal report. 682 683 A coroutine knows of two other coroutines, its starter and its last resumer. 684 The starter has a much more distant connection while the last resumer just 685 (in terms of coroutine state) called resume on this coroutine, so the message 686 is passed to the latter. 689 687 \end{description} 690 691 \PAB{You should have more test programs that compare \CFA EHM to uC++ EHM.} -
doc/theses/andrew_beach_MMath/uw-ethesis.tex
r665edf40 r73d0c54a 74 74 % ====================================================================== 75 75 % D O C U M E N T P R E A M B L E 76 % Specify the document class, default style attributes, page dimensions, etc. 77 % For hyperlinked PDF, suitable for viewing on a computer, use this: 78 \documentclass[letterpaper,12pt,titlepage,oneside,final]{book} 79 80 % For PDF, suitable for double-sided printing, change the PrintVersion 81 % variable below to "true" and use this \documentclass line instead of the 82 % one above: 83 %\documentclass[letterpaper,12pt,titlepage,openright,twoside,final]{book} 84 85 \usepackage{etoolbox} 76 \RequirePackage{etoolbox} 77 78 % Control if this for print (set true) or will stay digital (default). 79 % Print is two sided, digital uses more colours. 80 \newtoggle{printversion} 81 %\toggletrue{printversion} 82 83 \iftoggle{printversion}{% 84 \documentclass[letterpaper,12pt,titlepage,openright,twoside,final]{book} 85 }{% 86 \documentclass[letterpaper,12pt,titlepage,oneside,final]{book} 87 } 86 88 87 89 % Some LaTeX commands I define for my own nomenclature. … … 94 96 % Anything defined here may be redefined by packages added below... 95 97 96 % This package allows if-then-else control structures. 97 \usepackage{ifthen} 98 \newboolean{PrintVersion} 99 \setboolean{PrintVersion}{false} 100 % CHANGE THIS VALUE TO "true" as necessary, to improve printed results for 101 % hard copies by overriding some options of the hyperref package, called below. 102 103 %\usepackage{nomencl} % For a nomenclature (optional; available from ctan.org) 98 % For a nomenclature (optional; available from ctan.org) 99 %\usepackage{nomencl} 104 100 % Lots of math symbols and environments 105 101 \usepackage{amsmath,amssymb,amstext} 106 % For including graphics N.B. pdftex graphics driver 107 %\usepackage[pdftex]{graphicx} 102 % For including graphics (must match graphics driver) 108 103 \usepackage{epic,eepic} 109 104 \usepackage{graphicx} … … 113 108 \usepackage{todonotes} 114 109 115 116 110 % Hyperlinks make it very easy to navigate an electronic document. 117 111 % In addition, this is where you should specify the thesis title and author as … … 119 113 % Use the "hyperref" package 120 114 % N.B. HYPERREF MUST BE THE LAST PACKAGE LOADED; ADD ADDITIONAL PKGS ABOVE 121 %\usepackage[pdftex,pagebackref=true]{hyperref} % with basic options 122 \usepackage[pagebackref=true]{hyperref} % with basic options 123 %\usepackage[pdftex,pagebackref=true]{hyperref} 115 \usepackage[pagebackref=true]{hyperref} 124 116 % N.B. pagebackref=true provides links back from the References to the body 125 117 % text. This can cause trouble for printing. … … 131 123 pdffitwindow=false, % window fit to page when opened 132 124 pdfstartview={FitH}, % fits the width of the page to the window 133 % pdftitle={uWaterloo\ LaTeX\ Thesis\ Template}, % title: CHANGE THIS TEXT!134 % pdfauthor={Author}, % author: CHANGE THIS TEXT! and uncomment this line135 % pdfsubject={Subject}, % subject: CHANGE THIS TEXT! and uncomment this line136 % pdfkeywords={keyword1} {key2} {key3}, % optional list of keywords137 125 pdfnewwindow=true, % links in new window 138 126 colorlinks=true, % false: boxed links; true: colored links 139 linkcolor=blue, % color of internal links140 citecolor=green, % color of links to bibliography141 filecolor=magenta, % color of file links142 urlcolor=cyan % color of external links143 127 } 144 % for improved print quality, change some hyperref options 145 \ifthenelse{\boolean{PrintVersion}}{ 146 \hypersetup{ % override some previously defined hyperref options 147 % colorlinks,% 148 citecolor=black,% 149 filecolor=black,% 150 linkcolor=black,% 151 urlcolor=black} 152 }{} % end of ifthenelse (no else) 128 \iftoggle{printversion}{ 129 \hypersetup{ 130 citecolor=black, % colour of links to bibliography 131 filecolor=black, % colour of file links 132 linkcolor=black, % colour of internal links 133 urlcolor=black, % colour of external links 134 } 135 }{ % Digital Version 136 \hypersetup{ 137 citecolor=green, 138 filecolor=magenta, 139 linkcolor=blue, 140 urlcolor=cyan, 141 } 142 } 143 144 \hypersetup{ 145 pdftitle={Exception Handling in Cforall}, 146 pdfauthor={Andrew James Beach}, 147 pdfsubject={Computer Science}, 148 pdfkeywords={programming languages} {exceptions} 149 {language design} {language implementation}, 150 } 153 151 154 152 % Exception to the rule of hyperref being the last add-on package … … 220 218 \pdfstringdefDisableCommands{\def\Cpp{C++}} 221 219 220 % Wrappers for inline code snippits. 221 \newrobustcmd*\codeCFA[1]{\lstinline[language=CFA]{#1}} 222 \newrobustcmd*\codeC[1]{\lstinline[language=C]{#1}} 223 \newrobustcmd*\codeCpp[1]{\lstinline[language=C++]{#1}} 224 \newrobustcmd*\codePy[1]{\lstinline[language=Python]{#1}} 225 222 226 % Colour text, formatted in LaTeX style instead of TeX style. 223 227 \newcommand*\colour[2]{{\color{#1}#2}} -
doc/user/user.tex
r665edf40 r73d0c54a 11 11 %% Created On : Wed Apr 6 14:53:29 2016 12 12 %% Last Modified By : Peter A. Buhr 13 %% Last Modified On : Sat Mar 27 09:55:55202114 %% Update Count : 4 79613 %% Last Modified On : Tue Apr 20 23:25:56 2021 14 %% Update Count : 4888 15 15 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 16 16 … … 66 66 % math escape $...$ (dollar symbol) 67 67 \input{common} % common CFA document macros 68 \setlength{\gcolumnposn}{3in} 68 69 \CFAStyle % use default CFA format-style 69 70 \lstset{language=CFA} % CFA default lnaguage … … 2166 2167 \section{Enumeration} 2167 2168 2168 An \newterm{enumeration} is a compile-time mechanism to give names to constants. 2169 There is no runtime manifestation of an enumeration. 2170 Their purpose is code-readability and maintenance -- changing an enum's value automatically updates all name usages during compilation. 2171 2172 An enumeration defines a type containing a set of names, each called an \newterm{enumeration constant} (shortened to \newterm{enum}) with a fixed (©const©) value. 2173 \begin{cfa} 2174 enum Days { Mon, Tue, Wed, Thu, Fri, Sat, Sun }; // enumeration type definition, set of 7 names 2169 An \newterm{enumeration} is a compile-time mechanism to alias names to constants, like ©typedef© is a mechanism to alias names to types. 2170 Its purpose is to define a restricted-value type providing code-readability and maintenance -- changing an enum's value automatically updates all name usages during compilation. 2171 2172 An enumeration type is a set of names, each called an \newterm{enumeration constant} (shortened to \newterm{enum}) aliased to a fixed value (constant). 2173 \begin{cfa} 2174 enum Days { Mon, Tue, Wed, Thu, Fri, Sat, Sun }; // enumeration type definition, set of 7 names & values 2175 2175 Days days = Mon; // enumeration type declaration and initialization 2176 2176 \end{cfa} 2177 The set of enums are injected into the scope of the definition and use the variable namespace.2177 The set of enums are injected into the variable namespace at the definition scope. 2178 2178 Hence, enums may be overloaded with enum/variable/function names. 2179 2179 \begin{cfa} … … 2183 2183 double Bar; $\C{// overload Foo.Bar, Goo.Bar}\CRT$ 2184 2184 \end{cfa} 2185 An anonymous enumeration i s used to inject enums with specific values into a scope:2185 An anonymous enumeration injects enums with specific values into a scope. 2186 2186 \begin{cfa} 2187 2187 enum { Prime = 103, BufferSize = 1024 }; 2188 2188 \end{cfa} 2189 An enumeration is better than using the C \Index{preprocessor} 2189 An enumeration is better than using C \Index{preprocessor} or constant declarations. 2190 \begin{cquote} 2191 \begin{tabular}{@{}l@{\hspace{4em}}l@{}} 2190 2192 \begin{cfa} 2191 2193 #define Mon 0 … … 2193 2195 #define Sun 6 2194 2196 \end{cfa} 2195 or C constant declarations 2196 \begin{cfa} 2197 const int Mon = 0, ..., Sun = 6; 2198 \end{cfa} 2197 & 2198 \begin{cfa} 2199 const int Mon = 0, 2200 ..., 2201 Sun = 6; 2202 \end{cfa} 2203 \end{tabular} 2204 \end{cquote} 2199 2205 because the enumeration is succinct, has automatic numbering, can appear in ©case© labels, does not use storage, and is part of the language type-system. 2200 2206 Finally, the type of an enum is implicitly or explicitly specified and the constant value can be implicitly or explicitly specified. … … 2204 2210 \subsection{Enum type} 2205 2211 2206 While an enumeration defines a new set-type of names, its underlying enums can be any ©const© type, and an enum's value comes from this type. 2207 \CFA provides an automatic conversion from an enum to its base type, \eg comparing/printing an enum compares/prints its value rather than the enum name. 2212 The type of enums can be any type, and an enum's value comes from this type. 2213 Because an enum is a constant, it cannot appear in a mutable context, \eg ©Mon = Sun© is disallowed, and has no address (it is an rvalue). 2214 Therefore, an enum is automatically converted to its constant's base-type, \eg comparing/printing an enum compares/prints its value rather than the enum name; 2215 there is no mechanism to print the enum name. 2216 2208 2217 The default enum type is ©int©. 2209 2218 Hence, ©Days© is the set type ©Mon©, ©Tue©, ...\,, ©Sun©, while the type of each enum is ©int© and each enum represents a fixed integral value. 2210 2219 If no values are specified for an integral enum type, the enums are automatically numbered by one from left to right starting at zero. 2211 2220 Hence, the value of enum ©Mon© is 0, ©Tue© is 1, ...\,, ©Sun© is 6. 2212 If a value is specified, numbering continues by one from that value.2213 I tan enum value is an expression, the compiler performs constant-folding to obtain a constant value.2214 2215 Other integral types with associated values can be explicitly specified.2221 If an enum value is specified, numbering continues by one from that value for subsequent unnumbered enums. 2222 If an enum value is an expression, the compiler performs constant-folding to obtain a constant value. 2223 2224 \CFA allows other integral types with associated values. 2216 2225 \begin{cfa} 2217 2226 enum( @char@ ) Letter { A @= 'A'@, B, C, I @= 'I'@, J, K }; … … 2219 2228 \end{cfa} 2220 2229 For enumeration ©Letter©, enum ©A©'s value is explicitly set to ©'A'©, with ©B© and ©C© implicitly numbered with increasing values from ©'A'©, and similarly for enums ©I©, ©J©, and ©K©. 2221 Note, an enum is an immutable constant, \ie ©A = B© is disallowed; 2222 by transitivity, an enum's type is implicitly ©const©. 2223 Hence, a constant/enum cannot appear in a mutuable context nor is a constant/enum addressable (rvalue). 2224 2225 Non-integral enum types have the restriction that all enums \emph{must} be explicitly specified, \ie incrementing by one for the next enum is not done even if supported by the enum type, \eg ©double©. 2230 2231 Non-integral enum types must be explicitly initialized, \eg ©double© is not automatically numbered by one. 2226 2232 \begin{cfa} 2227 2233 // non-integral numeric 2228 enum( double) Math { PI_2 = 1.570796, PI = 3.141597, E = 2.718282 }2234 enum( @double@ ) Math { PI_2 = 1.570796, PI = 3.141597, E = 2.718282 } 2229 2235 // pointer 2230 enum( char *) Name { Fred = "Fred", Mary = "Mary", Jane = "Jane" };2236 enum( @char *@ ) Name { Fred = "Fred", Mary = "Mary", Jane = "Jane" }; 2231 2237 int i, j, k; 2232 enum( int *) ptr { I = &i, J = &j, K = &k };2233 enum( int &) ref { I = i, J = j, K = k };2238 enum( @int *@ ) ptr { I = &i, J = &j, K = &k }; 2239 enum( @int &@ ) ref { I = i, J = j, K = k }; 2234 2240 // tuple 2235 enum( [int, int]) { T = [ 1, 2 ] };2241 enum( @[int, int]@ ) { T = [ 1, 2 ] }; 2236 2242 // function 2237 2243 void f() {...} void g() {...} 2238 enum( void (*)()) funs { F = f, F = g };2244 enum( @void (*)()@ ) funs { F = f, F = g }; 2239 2245 // aggregate 2240 2246 struct S { int i, j; }; 2241 enum( S) s { A = { 3, 4 }, B = { 7, 8 } };2247 enum( @S@ ) s { A = { 3, 4 }, B = { 7, 8 } }; 2242 2248 // enumeration 2243 enum( Letter) Greek { Alph = A, Beta = B, /* more enums */ }; // alphabet intersection2249 enum( @Letter@ ) Greek { Alph = A, Beta = B, /* more enums */ }; // alphabet intersection 2244 2250 \end{cfa} 2245 2251 Enumeration ©Greek© may have more or less enums than ©Letter©, but the enum values \emph{must} be from ©Letter©. … … 2253 2259 m = Alph; $\C{// {\color{red}disallowed}}$ 2254 2260 m = 3.141597; $\C{// {\color{red}disallowed}}$ 2255 d = E; $\C{// allowed, conversion to base type}$ 2256 d = m; $\C{// {\color{red}disallowed}}$ 2261 d = m; $\C{// allowed}$ 2257 2262 d = Alph; $\C{// {\color{red}disallowed}}$ 2258 2263 Letter l = A; $\C{// allowed}$ … … 2263 2268 2264 2269 A constructor \emph{cannot} be used to initialize enums because a constructor executes at runtime. 2265 A fallback is to substitute C-style initialization overriding the constructor with©@=©.2266 \begin{cfa} 2267 enum( struct vec3 ) Axis { Up $@$= { 1, 0, 0 }, Left $@$= ..., Front $@$= ...}2270 A fallback is explicit C-style initialization using ©@=©. 2271 \begin{cfa} 2272 enum( struct vec3 ) Axis { Up $@$= { 1, 0, 0 }, Left $@$= { 0, 1, 0 }, Front $@$= { 0, 0, 1 } } 2268 2273 \end{cfa} 2269 2274 Finally, enumeration variables are assignable and comparable only if the appropriate operators are defined for its enum type. … … 2274 2279 \Index{Plan-9}\index{inheritance!enumeration} inheritance may be used with enumerations. 2275 2280 \begin{cfa} 2276 enum( c onst char * ) Name2 { @inline Name@, Jack = "Jack", Jill = "Jill" };2277 enum @/* inferred */@ Name3 { @inline Name @, @inline Name2@, Sue = "Sue", Tom = "Tom" };2281 enum( char * ) Name2 { @inline Name@, Jack = "Jack", Jill = "Jill" }; 2282 enum @/* inferred */@ Name3 { @inline Name2@, Sue = "Sue", Tom = "Tom" }; 2278 2283 \end{cfa} 2279 2284 Enumeration ©Name2© inherits all the enums and their values from enumeration ©Name© by containment, and a ©Name© enumeration is a subtype of enumeration ©Name2©. … … 2281 2286 The enum type for the inheriting type must be the same as the inherited type; 2282 2287 hence the enum type may be omitted for the inheriting enumeration and it is inferred from the inherited enumeration, as for ©Name3©. 2283 When inheriting from integral types, automatic numbering may be used, so the inheritance placement left to right is important .2288 When inheriting from integral types, automatic numbering may be used, so the inheritance placement left to right is important, \eg the placement of ©Sue© and ©Tom© before or after ©inline Name2©. 2284 2289 2285 2290 Specifically, the inheritance relationship for ©Name©s is: … … 2301 2306 j( Fred ); j( Jill ); j( Sue ); j( 'W' ); 2302 2307 \end{cfa} 2303 Note, the validity of calls is the same for call by reference as for call byvalue, and ©const© restrictions are the same as for other types.2308 Note, the validity of calls is the same for call-by-reference as for call-by-value, and ©const© restrictions are the same as for other types. 2304 2309 2305 2310 Enums cannot be created at runtime, so inheritence problems, such as contra-variance do not apply. … … 2313 2318 \begin{cfa} 2314 2319 // Fred is a subset of char * 2315 enum char *Fred { A = "A", B = "B", C = "C" };2320 enum( char *) Fred { A = "A", B = "B", C = "C" }; 2316 2321 // Jack is a subset of Fred 2317 enum enum FredJack { W = A, Y = C};2322 enum( enum Fred ) Jack { W = A, Y = C}; 2318 2323 // Mary is a superset of Fred 2319 2324 enum Mary { inline Fred, D = "hello" }; … … 4168 4173 4169 4174 The format of numeric input values in the same as C constants without a trailing type suffix, as the input value-type is denoted by the input variable. 4170 For © _Bool© type, the constants are ©true© and ©false©.4175 For ©bool© type, the constants are ©true© and ©false©. 4171 4176 For integral types, any number of digits, optionally preceded by a sign (©+© or ©-©), where a 4172 4177 \begin{itemize} … … 4580 4585 In C, the integer constants 0 and 1 suffice because the integer promotion rules can convert them to any arithmetic type, and the rules for pointer expressions treat constant expressions evaluating to 0 as a special case. 4581 4586 However, user-defined arithmetic types often need the equivalent of a 1 or 0 for their functions or operators, polymorphic functions often need 0 and 1 constants of a type matching their polymorphic parameters, and user-defined pointer-like types may need a null value. 4582 Defining special constants for a user-defined type is more efficient than defining a conversion to the type from © _Bool©.4587 Defining special constants for a user-defined type is more efficient than defining a conversion to the type from ©bool©. 4583 4588 4584 4589 Why just 0 and 1? Why not other integers? No other integers have special status in C. … … 5045 5050 \begin{figure} 5046 5051 \begin{cfa} 5047 #include <fstream >5048 #include <coroutine>5049 5050 coroutineFibonacci {5052 #include <fstream.hfa> 5053 #include @<coroutine.hfa>@ 5054 5055 @coroutine@ Fibonacci { 5051 5056 int fn; $\C{// used for communication}$ 5052 5057 }; 5053 void ?{}( Fibonacci * this ) { 5054 this->fn = 0; 5055 } 5056 void main( Fibonacci * this ) { 5058 5059 void main( Fibonacci & fib ) with( fib ) { $\C{// called on first resume}$ 5057 5060 int fn1, fn2; $\C{// retained between resumes}$ 5058 this->fn = 0; $\C{// case 0}$ 5059 fn1 = this->fn; 5060 suspend(); $\C{// return to last resume}$ 5061 5062 this->fn = 1; $\C{// case 1}$ 5063 fn2 = fn1; 5064 fn1 = this->fn; 5065 suspend(); $\C{// return to last resume}$ 5066 5067 for ( ;; ) { $\C{// general case}$ 5068 this->fn = fn1 + fn2; 5069 fn2 = fn1; 5070 fn1 = this->fn; 5071 suspend(); $\C{// return to last resume}$ 5072 } // for 5073 } 5074 int next( Fibonacci * this ) { 5075 resume( this ); $\C{// transfer to last suspend}$ 5076 return this->fn; 5061 fn = 0; fn1 = fn; $\C{// 1st case}$ 5062 @suspend;@ $\C{// restart last resume}$ 5063 fn = 1; fn2 = fn1; fn1 = fn; $\C{// 2nd case}$ 5064 @suspend;@ $\C{// restart last resume}$ 5065 for () { 5066 fn = fn1 + fn2; fn2 = fn1; fn1 = fn; $\C{// general case}$ 5067 @suspend;@ $\C{// restart last resume}$ 5068 } 5069 } 5070 int next( Fibonacci & fib ) with( fib ) { 5071 @resume( fib );@ $\C{// restart last suspend}$ 5072 return fn; 5077 5073 } 5078 5074 int main() { 5079 5075 Fibonacci f1, f2; 5080 for ( int i = 1; i <= 10; i += 1 ) { 5081 sout | next( &f1 ) | ' ' | next( &f2 ); 5082 } // for 5083 } 5084 \end{cfa} 5076 for ( 10 ) { $\C{// print N Fibonacci values}$ 5077 sout | next( f1 ) | next( f2 ); 5078 } 5079 } 5080 \end{cfa} 5081 \vspace*{-5pt} 5085 5082 \caption{Fibonacci Coroutine} 5086 5083 \label{f:FibonacciCoroutine} … … 5108 5105 \begin{figure} 5109 5106 \begin{cfa} 5110 #include <fstream> 5111 #include <kernel> 5112 #include <monitor> 5113 #include <thread> 5114 5115 monitor global_t { 5116 int value; 5117 }; 5118 5119 void ?{}(global_t * this) { 5120 this->value = 0; 5121 } 5122 5123 static global_t global; 5124 5125 void increment3( global_t * mutex this ) { 5126 this->value += 1; 5127 } 5128 void increment2( global_t * mutex this ) { 5129 increment3( this ); 5130 } 5131 void increment( global_t * mutex this ) { 5132 increment2( this ); 5133 } 5107 #include <fstream.hfa> 5108 #include @<thread.hfa>@ 5109 5110 @monitor@ AtomicCnt { int counter; }; 5111 void ?{}( AtomicCnt & c, int init = 0 ) with(c) { counter = init; } 5112 int inc( AtomicCnt & @mutex@ c, int inc = 1 ) with(c) { return counter += inc; } 5113 int dec( AtomicCnt & @mutex@ c, int dec = 1 ) with(c) { return counter -= dec; } 5114 forall( ostype & | ostream( ostype ) ) { $\C{// print any stream}$ 5115 ostype & ?|?( ostype & os, AtomicCnt c ) { return os | c.counter; } 5116 void ?|?( ostype & os, AtomicCnt c ) { (ostype &)(os | c.counter); ends( os ); } 5117 } 5118 5119 AtomicCnt global; $\C{// shared}$ 5134 5120 5135 5121 thread MyThread {}; 5136 5137 void main( MyThread* this) {5138 for(int i = 0; i < 1_000_000; i++) {5139 increment( &global );5122 void main( MyThread & ) { 5123 for ( i; 100_000 ) { 5124 inc( global ); 5125 dec( global ); 5140 5126 } 5141 5127 } 5142 int main(int argc, char* argv[]) { 5143 processor p; 5128 int main() { 5129 enum { Threads = 4 }; 5130 processor p[Threads - 1]; $\C{// + starting processor}$ 5144 5131 { 5145 MyThread f[4];5132 MyThread t[Threads]; 5146 5133 } 5147 sout | global .value;5134 sout | global; $\C{// print 0}$ 5148 5135 } 5149 5136 \end{cfa} 5150 5137 \caption{Atomic-Counter Monitor} 5151 \ caption{f:AtomicCounterMonitor}5138 \label{f:AtomicCounterMonitor} 5152 5139 \end{figure} 5153 5140 … … 7320 7307 [ int, long double ] remquo( long double, long double ); 7321 7308 7322 float div( float, float, int * );$\indexc{div}$ $\C{// alternative name for remquo}$7323 double div( double, double, int * );7324 long double div( long double, long double, int * );7325 7309 [ int, float ] div( float, float ); 7326 7310 [ int, double ] div( double, double ); … … 7383 7367 long double _Complex log( long double _Complex ); 7384 7368 7385 float log2( float );$\indexc{log2}$ 7369 int log2( unsigned int );$\indexc{log2}$ 7370 long int log2( unsigned long int ); 7371 long long int log2( unsigned long long int ) 7372 float log2( float ); 7386 7373 double log2( double ); 7387 7374 long double log2( long double ); … … 7565 7552 \leavevmode 7566 7553 \begin{cfa}[aboveskip=0pt,belowskip=0pt] 7554 // n / align * align 7555 signed char floor( signed char n, signed char align ); 7556 unsigned char floor( unsigned char n, unsigned char align ); 7557 short int floor( short int n, short int align ); 7558 unsigned short int floor( unsigned short int n, unsigned short int align ); 7559 int floor( int n, int align ); 7560 unsigned int floor( unsigned int n, unsigned int align ); 7561 long int floor( long int n, long int align ); 7562 unsigned long int floor( unsigned long int n, unsigned long int align ); 7563 long long int floor( long long int n, long long int align ); 7564 unsigned long long int floor( unsigned long long int n, unsigned long long int align ); 7565 7566 // (n + (align - 1)) / align 7567 signed char ceiling_div( signed char n, char align ); 7568 unsigned char ceiling_div( unsigned char n, unsigned char align ); 7569 short int ceiling_div( short int n, short int align ); 7570 unsigned short int ceiling_div( unsigned short int n, unsigned short int align ); 7571 int ceiling_div( int n, int align ); 7572 unsigned int ceiling_div( unsigned int n, unsigned int align ); 7573 long int ceiling_div( long int n, long int align ); 7574 unsigned long int ceiling_div( unsigned long int n, unsigned long int align ); 7575 long long int ceiling_div( long long int n, long long int align ); 7576 unsigned long long int ceiling_div( unsigned long long int n, unsigned long long int align ); 7577 7578 // floor( n + (n % align != 0 ? align - 1 : 0), align ) 7579 signed char ceiling( signed char n, signed char align ); 7580 unsigned char ceiling( unsigned char n, unsigned char align ); 7581 short int ceiling( short int n, short int align ); 7582 unsigned short int ceiling( unsigned short int n, unsigned short int align ); 7583 int ceiling( int n, int align ); 7584 unsigned int ceiling( unsigned int n, unsigned int align ); 7585 long int ceiling( long int n, long int align ); 7586 unsigned long int ceiling( unsigned long int n, unsigned long int align ); 7587 long long int ceiling( long long int n, long long int align ); 7588 unsigned long long int ceiling( unsigned long long int n, unsigned long long int align ); 7589 7567 7590 float floor( float );$\indexc{floor}$ 7568 7591 double floor( double ); … … 7667 7690 \begin{cfa}[aboveskip=0pt,belowskip=0pt] 7668 7691 struct Duration { 7669 int64_t t v; $\C{// nanoseconds}$7692 int64_t tn; $\C{// nanoseconds}$ 7670 7693 }; 7671 7694 7672 7695 void ?{}( Duration & dur ); 7673 7696 void ?{}( Duration & dur, zero_t ); 7697 void ?{}( Duration & dur, timeval t ) 7698 void ?{}( Duration & dur, timespec t ) 7674 7699 7675 7700 Duration ?=?( Duration & dur, zero_t ); 7701 Duration ?=?( Duration & dur, timeval t ) 7702 Duration ?=?( Duration & dur, timespec t ) 7676 7703 7677 7704 Duration +?( Duration rhs ); … … 7695 7722 Duration ?%=?( Duration & lhs, Duration rhs ); 7696 7723 7697 _Bool ?==?( Duration lhs, Duration rhs);7698 _Bool ?!=?( Duration lhs, Duration rhs);7699 _Bool ?<? ( Duration lhs, Duration rhs);7700 _Bool ?<=?( Duration lhs, Duration rhs);7701 _Bool ?>? ( Duration lhs, Duration rhs);7702 _Bool ?>=?( Duration lhs, Duration rhs);7703 7704 _Bool ?==?( Duration lhs, zero_t);7705 _Bool ?!=?( Duration lhs, zero_t);7706 _Bool ?<? ( Duration lhs, zero_t);7707 _Bool ?<=?( Duration lhs, zero_t);7708 _Bool ?>? ( Duration lhs, zero_t);7709 _Bool ?>=?( Duration lhs, zero_t);7724 bool ?==?( Duration lhs, zero_t ); 7725 bool ?!=?( Duration lhs, zero_t ); 7726 bool ?<? ( Duration lhs, zero_t ); 7727 bool ?<=?( Duration lhs, zero_t ); 7728 bool ?>? ( Duration lhs, zero_t ); 7729 bool ?>=?( Duration lhs, zero_t ); 7730 7731 bool ?==?( Duration lhs, Duration rhs ); 7732 bool ?!=?( Duration lhs, Duration rhs ); 7733 bool ?<? ( Duration lhs, Duration rhs ); 7734 bool ?<=?( Duration lhs, Duration rhs ); 7735 bool ?>? ( Duration lhs, Duration rhs ); 7736 bool ?>=?( Duration lhs, Duration rhs ); 7710 7737 7711 7738 Duration abs( Duration rhs ); … … 7734 7761 int64_t ?`w( Duration dur ); 7735 7762 7763 double ?`dns( Duration dur ); 7764 double ?`dus( Duration dur ); 7765 double ?`dms( Duration dur ); 7766 double ?`ds( Duration dur ); 7767 double ?`dm( Duration dur ); 7768 double ?`dh( Duration dur ); 7769 double ?`dd( Duration dur ); 7770 double ?`dw( Duration dur ); 7771 7736 7772 Duration max( Duration lhs, Duration rhs ); 7737 7773 Duration min( Duration lhs, Duration rhs ); 7774 7775 forall( ostype & | ostream( ostype ) ) ostype & ?|?( ostype & os, Duration dur ); 7738 7776 \end{cfa} 7739 7777 … … 7746 7784 \begin{cfa}[aboveskip=0pt,belowskip=0pt] 7747 7785 void ?{}( timeval & t ); 7786 void ?{}( timeval & t, zero_t ); 7748 7787 void ?{}( timeval & t, time_t sec, suseconds_t usec ); 7749 7788 void ?{}( timeval & t, time_t sec ); 7750 void ?{}( timeval & t, zero_t );7751 7789 void ?{}( timeval & t, Time time ); 7752 7790 … … 7754 7792 timeval ?+?( timeval & lhs, timeval rhs ); 7755 7793 timeval ?-?( timeval & lhs, timeval rhs ); 7756 _Bool ?==?( timeval lhs, timeval rhs );7757 _Bool ?!=?( timeval lhs, timeval rhs );7794 bool ?==?( timeval lhs, timeval rhs ); 7795 bool ?!=?( timeval lhs, timeval rhs ); 7758 7796 \end{cfa} 7759 7797 … … 7766 7804 \begin{cfa}[aboveskip=0pt,belowskip=0pt] 7767 7805 void ?{}( timespec & t ); 7806 void ?{}( timespec & t, zero_t ); 7768 7807 void ?{}( timespec & t, time_t sec, __syscall_slong_t nsec ); 7769 7808 void ?{}( timespec & t, time_t sec ); 7770 void ?{}( timespec & t, zero_t );7771 7809 void ?{}( timespec & t, Time time ); 7772 7810 … … 7774 7812 timespec ?+?( timespec & lhs, timespec rhs ); 7775 7813 timespec ?-?( timespec & lhs, timespec rhs ); 7776 _Bool ?==?( timespec lhs, timespec rhs );7777 _Bool ?!=?( timespec lhs, timespec rhs );7814 bool ?==?( timespec lhs, timespec rhs ); 7815 bool ?!=?( timespec lhs, timespec rhs ); 7778 7816 \end{cfa} 7779 7817 … … 7797 7835 \begin{cfa}[aboveskip=0pt,belowskip=0pt] 7798 7836 struct Time { 7799 uint64_t t v; $\C{// nanoseconds since UNIX epoch}$7837 uint64_t tn; $\C{// nanoseconds since UNIX epoch}$ 7800 7838 }; 7801 7839 7802 7840 void ?{}( Time & time ); 7803 7841 void ?{}( Time & time, zero_t ); 7842 void ?{}( Time & time, timeval t ); 7843 void ?{}( Time & time, timespec t ); 7804 7844 7805 7845 Time ?=?( Time & time, zero_t ); 7806 7807 void ?{}( Time & time, timeval t );7808 7846 Time ?=?( Time & time, timeval t ); 7809 7810 void ?{}( Time & time, timespec t );7811 7847 Time ?=?( Time & time, timespec t ); 7812 7848 … … 7818 7854 Time ?-?( Time lhs, Duration rhs ); 7819 7855 Time ?-=?( Time & lhs, Duration rhs ); 7820 _Bool ?==?( Time lhs, Time rhs ); 7821 _Bool ?!=?( Time lhs, Time rhs ); 7822 _Bool ?<?( Time lhs, Time rhs ); 7823 _Bool ?<=?( Time lhs, Time rhs ); 7824 _Bool ?>?( Time lhs, Time rhs ); 7825 _Bool ?>=?( Time lhs, Time rhs ); 7856 bool ?==?( Time lhs, Time rhs ); 7857 bool ?!=?( Time lhs, Time rhs ); 7858 bool ?<?( Time lhs, Time rhs ); 7859 bool ?<=?( Time lhs, Time rhs ); 7860 bool ?>?( Time lhs, Time rhs ); 7861 bool ?>=?( Time lhs, Time rhs ); 7862 7863 int64_t ?`ns( Time t ); 7826 7864 7827 7865 char * yy_mm_dd( Time time, char * buf ); 7828 char * ?`ymd( Time time, char * buf ) { // short form 7829 return yy_mm_dd( time, buf ); 7830 } // ymd 7866 char * ?`ymd( Time time, char * buf ); // short form 7831 7867 7832 7868 char * mm_dd_yy( Time time, char * buf ); 7833 char * ?`mdy( Time time, char * buf ) { // short form 7834 return mm_dd_yy( time, buf ); 7835 } // mdy 7869 char * ?`mdy( Time time, char * buf ); // short form 7836 7870 7837 7871 char * dd_mm_yy( Time time, char * buf ); 7838 char * ?`dmy( Time time, char * buf ) { // short form 7839 return dd_mm_yy( time, buf );; 7840 } // dmy 7872 char * ?`dmy( Time time, char * buf ); // short form 7841 7873 7842 7874 size_t strftime( char * buf, size_t size, const char * fmt, Time time ); 7843 forall( dtype ostype | ostream( ostype ) ) ostype & ?|?( ostype & os, Time time ); 7875 7876 forall( ostype & | ostream( ostype ) ) ostype & ?|?( ostype & os, Time time ); 7844 7877 \end{cfa} 7845 7878 … … 7867 7900 \leavevmode 7868 7901 \begin{cfa}[aboveskip=0pt,belowskip=0pt] 7869 struct Clock { 7870 Duration offset; $\C{// for virtual clock: contains offset from real-time}$ 7871 int clocktype; $\C{// implementation only -1 (virtual), CLOCK\_REALTIME}$ 7902 struct Clock { $\C{// virtual clock}$ 7903 Duration offset; $\C{// offset from computer real-time}$ 7872 7904 }; 7873 7905 7874 void resetClock( Clock & clk ); 7875 void resetClock( Clock & clk, Duration adj ); 7876 void ?{}( Clock & clk ); 7877 void ?{}( Clock & clk, Duration adj ); 7878 7879 Duration getResNsec(); $\C{// with nanoseconds}$ 7880 Duration getRes(); $\C{// without nanoseconds}$ 7881 7882 Time getTimeNsec(); $\C{// with nanoseconds}$ 7883 Time getTime(); $\C{// without nanoseconds}$ 7884 Time getTime( Clock & clk ); 7885 Time ?()( Clock & clk ); 7886 timeval getTime( Clock & clk ); 7887 tm getTime( Clock & clk ); 7906 void ?{}( Clock & clk ); $\C{// create no offset}$ 7907 void ?{}( Clock & clk, Duration adj ); $\C{// create with offset}$ 7908 void reset( Clock & clk, Duration adj ); $\C{// change offset}$ 7909 7910 Duration resolutionHi(); $\C{// clock resolution in nanoseconds (fine)}$ 7911 Duration resolution(); $\C{// clock resolution without nanoseconds (coarse)}$ 7912 7913 Time timeHiRes(); $\C{// real time with nanoseconds}$ 7914 Time time(); $\C{// real time without nanoseconds}$ 7915 Time time( Clock & clk ); $\C{// real time for given clock}$ 7916 Time ?()( Clock & clk ); $\C{//\ \ \ \ alternative syntax}$ 7917 timeval time( Clock & clk ); $\C{// convert to C time format}$ 7918 tm time( Clock & clk ); 7919 Duration processor(); $\C{// non-monotonic duration of kernel thread}$ 7920 Duration program(); $\C{// non-monotonic duration of program CPU}$ 7921 Duration boot(); $\C{// monotonic duration since computer boot}$ 7888 7922 \end{cfa} 7889 7923 … … 8056 8090 forall( dtype ostype | ostream( ostype ) ) ostype * ?|?( ostype * os, Int mp ); 8057 8091 \end{cfa} 8058 8059 The following factorial programs contrast using GMP with the \CFA and C interfaces, where the output from these programs appears in \VRef[Figure]{f:MultiPrecisionFactorials}. 8092 \VRef[Figure]{f:MultiPrecisionFactorials} shows \CFA and C factorial programs using the GMP interfaces. 8060 8093 (Compile with flag \Indexc{-lgmp} to link with the GMP library.) 8094 8095 \begin{figure} 8061 8096 \begin{cquote} 8062 8097 \begin{tabular}{@{}l@{\hspace{\parindentlnth}}|@{\hspace{\parindentlnth}}l@{}} 8063 \multicolumn{1}{ c|@{\hspace{\parindentlnth}}}{\textbf{\CFA}} & \multicolumn{1}{@{\hspace{\parindentlnth}}c}{\textbf{C}} \\8098 \multicolumn{1}{@{}c|@{\hspace{\parindentlnth}}}{\textbf{\CFA}} & \multicolumn{1}{@{\hspace{\parindentlnth}}c}{\textbf{C}@{}} \\ 8064 8099 \hline 8065 8100 \begin{cfa} … … 8070 8105 8071 8106 sout | 0 | fact; 8072 for ( unsigned int i = 1; i <= 40; i += 1) {8107 for ( i; 40 ) { 8073 8108 fact *= i; 8074 8109 sout | i | fact; … … 8092 8127 \end{tabular} 8093 8128 \end{cquote} 8094 8095 \begin{figure} 8129 \small 8096 8130 \begin{cfa} 8097 8131 Factorial Numbers -
libcfa/src/concurrency/locks.hfa
r665edf40 r73d0c54a 197 197 static inline $thread * unlock( fast_lock & this ) __attribute__((artificial)); 198 198 static inline $thread * unlock( fast_lock & this ) { 199 $thread * thrd = active_thread(); 200 /* paranoid */ verify(thrd == this.owner); 199 /* paranoid */ verify(active_thread() == this.owner); 201 200 202 201 // open 'owner' before unlocking anyone -
libcfa/src/concurrency/ready_queue.cfa
r665edf40 r73d0c54a 413 413 unsigned it2 = proc->rdq.itr + 1; 414 414 unsigned idx1 = proc->rdq.id + (it1 % READYQ_SHARD_FACTOR); 415 unsigned idx2 = proc->rdq.id + (it 1% READYQ_SHARD_FACTOR);415 unsigned idx2 = proc->rdq.id + (it2 % READYQ_SHARD_FACTOR); 416 416 unsigned long long tsc1 = ts(lanes.data[idx1]); 417 417 unsigned long long tsc2 = ts(lanes.data[idx2]); 418 418 proc->rdq.cutoff = min(tsc1, tsc2); 419 } 420 else if(lanes.tscs[proc->rdq.target].tv < proc->rdq.cutoff) { 421 $thread * t = try_pop(cltr, proc->rdq.target __STATS(, __tls_stats()->ready.pop.help)); 419 if(proc->rdq.cutoff == 0) proc->rdq.cutoff = -1ull; 420 } 421 else { 422 unsigned target = proc->rdq.target; 422 423 proc->rdq.target = -1u; 423 if(t) return t; 424 if(lanes.tscs[target].tv < proc->rdq.cutoff) { 425 $thread * t = try_pop(cltr, target __STATS(, __tls_stats()->ready.pop.help)); 426 if(t) return t; 427 } 424 428 } 425 429 -
libcfa/src/fstream.cfa
r665edf40 r73d0c54a 10 10 // Created On : Wed May 27 17:56:53 2015 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Mon Mar 1 21:12:15202113 // Update Count : 42 412 // Last Modified On : Tue Apr 20 19:04:46 2021 13 // Update Count : 425 14 14 // 15 15 … … 31 31 32 32 void ?{}( ofstream & os, void * file ) { 33 os. $file= file;34 os. $sepDefault= true;35 os. $sepOnOff= false;36 os. $nlOnOff= true;37 os. $prt= false;38 os. $sawNL= false;39 os. $acquired= false;40 $sepSetCur( os, sepGet( os ) );33 os.file$ = file; 34 os.sepDefault$ = true; 35 os.sepOnOff$ = false; 36 os.nlOnOff$ = true; 37 os.prt$ = false; 38 os.sawNL$ = false; 39 os.acquired$ = false; 40 sepSetCur$( os, sepGet( os ) ); 41 41 sepSet( os, " " ); 42 42 sepSetTuple( os, ", " ); … … 44 44 45 45 // private 46 bool $sepPrt( ofstream & os ) { $setNL( os, false ); return os.$sepOnOff; }47 void $sepReset( ofstream & os ) { os.$sepOnOff = os.$sepDefault; }48 void $sepReset( ofstream & os, bool reset ) { os.$sepDefault = reset; os.$sepOnOff = os.$sepDefault; }49 const char * $sepGetCur( ofstream & os ) { return os.$sepCur; }50 void $sepSetCur( ofstream & os, const char sepCur[] ) { os.$sepCur= sepCur; }51 bool $getNL( ofstream & os ) { return os.$sawNL; }52 void $setNL( ofstream & os, bool state ) { os.$sawNL= state; }53 bool $getANL( ofstream & os ) { return os.$nlOnOff; }54 bool $getPrt( ofstream & os ) { return os.$prt; }55 void $setPrt( ofstream & os, bool state ) { os.$prt= state; }46 bool sepPrt$( ofstream & os ) { setNL$( os, false ); return os.sepOnOff$; } 47 void sepReset$( ofstream & os ) { os.sepOnOff$ = os.sepDefault$; } 48 void sepReset$( ofstream & os, bool reset ) { os.sepDefault$ = reset; os.sepOnOff$ = os.sepDefault$; } 49 const char * sepGetCur$( ofstream & os ) { return os.sepCur$; } 50 void sepSetCur$( ofstream & os, const char sepCur[] ) { os.sepCur$ = sepCur; } 51 bool getNL$( ofstream & os ) { return os.sawNL$; } 52 void setNL$( ofstream & os, bool state ) { os.sawNL$ = state; } 53 bool getANL$( ofstream & os ) { return os.nlOnOff$; } 54 bool getPrt$( ofstream & os ) { return os.prt$; } 55 void setPrt$( ofstream & os, bool state ) { os.prt$ = state; } 56 56 57 57 // public 58 void ?{}( ofstream & os ) { os. $file= 0p; }58 void ?{}( ofstream & os ) { os.file$ = 0p; } 59 59 60 60 void ?{}( ofstream & os, const char name[], const char mode[] ) { … … 70 70 } // ^?{} 71 71 72 void sepOn( ofstream & os ) { os. $sepOnOff = ! $getNL( os ); }73 void sepOff( ofstream & os ) { os. $sepOnOff= false; }72 void sepOn( ofstream & os ) { os.sepOnOff$ = ! getNL$( os ); } 73 void sepOff( ofstream & os ) { os.sepOnOff$ = false; } 74 74 75 75 bool sepDisable( ofstream & os ) { 76 bool temp = os. $sepDefault;77 os. $sepDefault= false;78 $sepReset( os );76 bool temp = os.sepDefault$; 77 os.sepDefault$ = false; 78 sepReset$( os ); 79 79 return temp; 80 80 } // sepDisable 81 81 82 82 bool sepEnable( ofstream & os ) { 83 bool temp = os. $sepDefault;84 os. $sepDefault= true;85 if ( os. $sepOnOff ) $sepReset( os ); // start of line ?83 bool temp = os.sepDefault$; 84 os.sepDefault$ = true; 85 if ( os.sepOnOff$ ) sepReset$( os ); // start of line ? 86 86 return temp; 87 87 } // sepEnable 88 88 89 void nlOn( ofstream & os ) { os. $nlOnOff= true; }90 void nlOff( ofstream & os ) { os. $nlOnOff= false; }91 92 const char * sepGet( ofstream & os ) { return os. $separator; }89 void nlOn( ofstream & os ) { os.nlOnOff$ = true; } 90 void nlOff( ofstream & os ) { os.nlOnOff$ = false; } 91 92 const char * sepGet( ofstream & os ) { return os.separator$; } 93 93 void sepSet( ofstream & os, const char s[] ) { 94 94 assert( s ); 95 strncpy( os. $separator, s, sepSize - 1 );96 os. $separator[sepSize - 1] = '\0';95 strncpy( os.separator$, s, sepSize - 1 ); 96 os.separator$[sepSize - 1] = '\0'; 97 97 } // sepSet 98 98 99 const char * sepGetTuple( ofstream & os ) { return os. $tupleSeparator; }99 const char * sepGetTuple( ofstream & os ) { return os.tupleSeparator$; } 100 100 void sepSetTuple( ofstream & os, const char s[] ) { 101 101 assert( s ); 102 strncpy( os. $tupleSeparator, s, sepSize - 1 );103 os. $tupleSeparator[sepSize - 1] = '\0';102 strncpy( os.tupleSeparator$, s, sepSize - 1 ); 103 os.tupleSeparator$[sepSize - 1] = '\0'; 104 104 } // sepSet 105 105 106 106 void ends( ofstream & os ) { 107 if ( $getANL( os ) ) nl( os );108 else $setPrt( os, false ); // turn off107 if ( getANL$( os ) ) nl( os ); 108 else setPrt$( os, false ); // turn off 109 109 if ( &os == &exit ) exit( EXIT_FAILURE ); 110 110 if ( &os == &abort ) abort(); 111 if ( os. $acquired ) { os.$acquired= false; release( os ); }111 if ( os.acquired$ ) { os.acquired$ = false; release( os ); } 112 112 } // ends 113 113 114 114 int fail( ofstream & os ) { 115 return os. $file == 0 || ferror( (FILE *)(os.$file) );115 return os.file$ == 0 || ferror( (FILE *)(os.file$) ); 116 116 } // fail 117 117 118 118 int flush( ofstream & os ) { 119 return fflush( (FILE *)(os. $file) );119 return fflush( (FILE *)(os.file$) ); 120 120 } // flush 121 121 … … 136 136 137 137 void close( ofstream & os ) { 138 if ( (FILE *)(os. $file) == 0p ) return;139 if ( (FILE *)(os. $file) == (FILE *)stdout || (FILE *)(os.$file) == (FILE *)stderr ) return;140 141 if ( fclose( (FILE *)(os. $file) ) == EOF ) {138 if ( (FILE *)(os.file$) == 0p ) return; 139 if ( (FILE *)(os.file$) == (FILE *)stdout || (FILE *)(os.file$) == (FILE *)stderr ) return; 140 141 if ( fclose( (FILE *)(os.file$) ) == EOF ) { 142 142 abort | IO_MSG "close output" | nl | strerror( errno ); 143 143 } // if 144 os. $file= 0p;144 os.file$ = 0p; 145 145 } // close 146 146 … … 150 150 } // if 151 151 152 if ( fwrite( data, 1, size, (FILE *)(os. $file) ) != size ) {152 if ( fwrite( data, 1, size, (FILE *)(os.file$) ) != size ) { 153 153 abort | IO_MSG "write" | nl | strerror( errno ); 154 154 } // if … … 159 159 va_list args; 160 160 va_start( args, format ); 161 int len = vfprintf( (FILE *)(os. $file), format, args );161 int len = vfprintf( (FILE *)(os.file$), format, args ); 162 162 if ( len == EOF ) { 163 if ( ferror( (FILE *)(os. $file) ) ) {163 if ( ferror( (FILE *)(os.file$) ) ) { 164 164 abort | IO_MSG "invalid write"; 165 165 } // if … … 167 167 va_end( args ); 168 168 169 $setPrt( os, true ); // called in output cascade170 $sepReset( os ); // reset separator169 setPrt$( os, true ); // called in output cascade 170 sepReset$( os ); // reset separator 171 171 return len; 172 172 } // fmt 173 173 174 174 inline void acquire( ofstream & os ) { 175 lock( os. $lock);176 if ( ! os. $acquired ) os.$acquired= true;177 else unlock( os. $lock);175 lock( os.lock$ ); 176 if ( ! os.acquired$ ) os.acquired$ = true; 177 else unlock( os.lock$ ); 178 178 } // acquire 179 179 180 180 inline void release( ofstream & os ) { 181 unlock( os. $lock);181 unlock( os.lock$ ); 182 182 } // release 183 183 184 void ?{}( osacquire & acq, ofstream & os ) { &acq.os = &os; lock( os. $lock); }184 void ?{}( osacquire & acq, ofstream & os ) { &acq.os = &os; lock( os.lock$ ); } 185 185 void ^?{}( osacquire & acq ) { release( acq.os ); } 186 186 … … 204 204 // private 205 205 void ?{}( ifstream & is, void * file ) { 206 is. $file= file;207 is. $nlOnOff= false;208 is. $acquired= false;206 is.file$ = file; 207 is.nlOnOff$ = false; 208 is.acquired$ = false; 209 209 } // ?{} 210 210 211 211 // public 212 void ?{}( ifstream & is ) { is. $file= 0p; }212 void ?{}( ifstream & is ) { is.file$ = 0p; } 213 213 214 214 void ?{}( ifstream & is, const char name[], const char mode[] ) { … … 224 224 } // ^?{} 225 225 226 void nlOn( ifstream & os ) { os. $nlOnOff= true; }227 void nlOff( ifstream & os ) { os. $nlOnOff= false; }228 bool getANL( ifstream & os ) { return os. $nlOnOff; }226 void nlOn( ifstream & os ) { os.nlOnOff$ = true; } 227 void nlOff( ifstream & os ) { os.nlOnOff$ = false; } 228 bool getANL( ifstream & os ) { return os.nlOnOff$; } 229 229 230 230 int fail( ifstream & is ) { 231 return is. $file == 0p || ferror( (FILE *)(is.$file) );231 return is.file$ == 0p || ferror( (FILE *)(is.file$) ); 232 232 } // fail 233 233 234 234 void ends( ifstream & is ) { 235 if ( is. $acquired ) { is.$acquired= false; release( is ); }235 if ( is.acquired$ ) { is.acquired$ = false; release( is ); } 236 236 } // ends 237 237 238 238 int eof( ifstream & is ) { 239 return feof( (FILE *)(is. $file) );239 return feof( (FILE *)(is.file$) ); 240 240 } // eof 241 241 … … 248 248 } // if 249 249 #endif // __CFA_DEBUG__ 250 is. $file= file;250 is.file$ = file; 251 251 } // open 252 252 … … 256 256 257 257 void close( ifstream & is ) { 258 if ( (FILE *)(is. $file) == 0p ) return;259 if ( (FILE *)(is. $file) == (FILE *)stdin ) return;260 261 if ( fclose( (FILE *)(is. $file) ) == EOF ) {258 if ( (FILE *)(is.file$) == 0p ) return; 259 if ( (FILE *)(is.file$) == (FILE *)stdin ) return; 260 261 if ( fclose( (FILE *)(is.file$) ) == EOF ) { 262 262 abort | IO_MSG "close input" | nl | strerror( errno ); 263 263 } // if 264 is. $file= 0p;264 is.file$ = 0p; 265 265 } // close 266 266 … … 270 270 } // if 271 271 272 if ( fread( data, size, 1, (FILE *)(is. $file) ) == 0 ) {272 if ( fread( data, size, 1, (FILE *)(is.file$) ) == 0 ) { 273 273 abort | IO_MSG "read" | nl | strerror( errno ); 274 274 } // if … … 281 281 } // if 282 282 283 if ( ungetc( c, (FILE *)(is. $file) ) == EOF ) {283 if ( ungetc( c, (FILE *)(is.file$) ) == EOF ) { 284 284 abort | IO_MSG "ungetc" | nl | strerror( errno ); 285 285 } // if … … 291 291 292 292 va_start( args, format ); 293 int len = vfscanf( (FILE *)(is. $file), format, args );293 int len = vfscanf( (FILE *)(is.file$), format, args ); 294 294 if ( len == EOF ) { 295 if ( ferror( (FILE *)(is. $file) ) ) {295 if ( ferror( (FILE *)(is.file$) ) ) { 296 296 abort | IO_MSG "invalid read"; 297 297 } // if … … 302 302 303 303 inline void acquire( ifstream & is ) { 304 lock( is. $lock);305 if ( ! is. $acquired ) is.$acquired= true;306 else unlock( is. $lock);304 lock( is.lock$ ); 305 if ( ! is.acquired$ ) is.acquired$ = true; 306 else unlock( is.lock$ ); 307 307 } // acquire 308 308 309 309 inline void release( ifstream & is ) { 310 unlock( is. $lock);310 unlock( is.lock$ ); 311 311 } // release 312 312 313 void ?{}( isacquire & acq, ifstream & is ) { &acq.is = &is; lock( is. $lock); }313 void ?{}( isacquire & acq, ifstream & is ) { &acq.is = &is; lock( is.lock$ ); } 314 314 void ^?{}( isacquire & acq ) { release( acq.is ); } 315 315 -
libcfa/src/fstream.hfa
r665edf40 r73d0c54a 10 10 // Created On : Wed May 27 17:56:53 2015 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Mon Mar 1 22:45:08202113 // Update Count : 21 712 // Last Modified On : Tue Apr 20 19:04:12 2021 13 // Update Count : 218 14 14 // 15 15 … … 26 26 enum { sepSize = 16 }; 27 27 struct ofstream { 28 void * $file;29 bool $sepDefault;30 bool $sepOnOff;31 bool $nlOnOff;32 bool $prt; // print text33 bool $sawNL;34 const char * $sepCur;35 char $separator[sepSize];36 char $tupleSeparator[sepSize];37 multiple_acquisition_lock $lock;38 bool $acquired;28 void * file$; 29 bool sepDefault$; 30 bool sepOnOff$; 31 bool nlOnOff$; 32 bool prt$; // print text 33 bool sawNL$; 34 const char * sepCur$; 35 char separator$[sepSize]; 36 char tupleSeparator$[sepSize]; 37 multiple_acquisition_lock lock$; 38 bool acquired$; 39 39 }; // ofstream 40 40 41 41 // private 42 bool $sepPrt( ofstream & );43 void $sepReset( ofstream & );44 void $sepReset( ofstream &, bool );45 const char * $sepGetCur( ofstream & );46 void $sepSetCur( ofstream &, const char [] );47 bool $getNL( ofstream & );48 void $setNL( ofstream &, bool );49 bool $getANL( ofstream & );50 bool $getPrt( ofstream & );51 void $setPrt( ofstream &, bool );42 bool sepPrt$( ofstream & ); 43 void sepReset$( ofstream & ); 44 void sepReset$( ofstream &, bool ); 45 const char * sepGetCur$( ofstream & ); 46 void sepSetCur$( ofstream &, const char [] ); 47 bool getNL$( ofstream & ); 48 void setNL$( ofstream &, bool ); 49 bool getANL$( ofstream & ); 50 bool getPrt$( ofstream & ); 51 void setPrt$( ofstream &, bool ); 52 52 53 53 // public … … 94 94 95 95 struct ifstream { 96 void * $file;97 bool $nlOnOff;98 multiple_acquisition_lock $lock;99 bool $acquired;96 void * file$; 97 bool nlOnOff$; 98 multiple_acquisition_lock lock$; 99 bool acquired$; 100 100 }; // ifstream 101 101 -
libcfa/src/gmp.hfa
r665edf40 r73d0c54a 10 10 // Created On : Tue Apr 19 08:43:43 2016 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Sun Feb 9 09:56:54 202013 // Update Count : 3 112 // Last Modified On : Tue Apr 20 20:59:21 2021 13 // Update Count : 32 14 14 // 15 15 … … 263 263 forall( ostype & | ostream( ostype ) ) { 264 264 ostype & ?|?( ostype & os, Int mp ) { 265 if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) );265 if ( sepPrt$( os ) ) fmt( os, "%s", sepGetCur$( os ) ); 266 266 gmp_printf( "%Zd", mp.mpz ); 267 267 sepOn( os ); -
libcfa/src/heap.cfa
r665edf40 r73d0c54a 10 10 // Created On : Tue Dec 19 21:58:35 2017 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Sun Mar 14 10:39:24202113 // Update Count : 103 212 // Last Modified On : Tue Apr 20 21:20:48 2021 13 // Update Count : 1033 14 14 // 15 15 … … 1128 1128 1129 1129 // Set the alignment for an the allocation and return previous alignment or 0 if no alignment. 1130 size_t $malloc_alignment_set( void * addr, size_t alignment ) {1130 size_t malloc_alignment_set$( void * addr, size_t alignment ) { 1131 1131 if ( unlikely( addr == 0p ) ) return libAlign(); // minimum alignment 1132 1132 size_t ret; … … 1139 1139 } // if 1140 1140 return ret; 1141 } // $malloc_alignment_set1141 } // malloc_alignment_set$ 1142 1142 1143 1143 … … 1153 1153 1154 1154 // Set allocation is zero filled and return previous zero filled. 1155 bool $malloc_zero_fill_set( void * addr ) {1155 bool malloc_zero_fill_set$( void * addr ) { 1156 1156 if ( unlikely( addr == 0p ) ) return false; // null allocation is not zero fill 1157 1157 HeapManager.Storage.Header * header = headerAddr( addr ); … … 1162 1162 header->kind.real.blockSize |= 2; // mark as zero filled 1163 1163 return ret; 1164 } // $malloc_zero_fill_set1164 } // malloc_zero_fill_set$ 1165 1165 1166 1166 … … 1176 1176 1177 1177 // Set allocation size and return previous size. 1178 size_t $malloc_size_set( void * addr, size_t size ) {1178 size_t malloc_size_set$( void * addr, size_t size ) { 1179 1179 if ( unlikely( addr == 0p ) ) return 0; // null allocation has 0 size 1180 1180 HeapManager.Storage.Header * header = headerAddr( addr ); … … 1185 1185 header->kind.real.size = size; 1186 1186 return ret; 1187 } // $malloc_size_set1187 } // malloc_size_set$ 1188 1188 1189 1189 -
libcfa/src/iostream.cfa
r665edf40 r73d0c54a 10 10 // Created On : Wed May 27 17:56:53 2015 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Tue Apr 13 13:05:24202113 // Update Count : 132 412 // Last Modified On : Tue Apr 20 19:09:41 2021 13 // Update Count : 1325 14 14 // 15 15 … … 38 38 forall( ostype & | ostream( ostype ) ) { 39 39 ostype & ?|?( ostype & os, bool b ) { 40 if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) );40 if ( sepPrt$( os ) ) fmt( os, "%s", sepGetCur$( os ) ); 41 41 fmt( os, "%s", b ? "true" : "false" ); 42 42 return os; … … 48 48 ostype & ?|?( ostype & os, char c ) { 49 49 fmt( os, "%c", c ); 50 if ( c == '\n' ) $setNL( os, true );50 if ( c == '\n' ) setNL$( os, true ); 51 51 return sepOff( os ); 52 52 } // ?|? … … 56 56 57 57 ostype & ?|?( ostype & os, signed char sc ) { 58 if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) );58 if ( sepPrt$( os ) ) fmt( os, "%s", sepGetCur$( os ) ); 59 59 fmt( os, "%hhd", sc ); 60 60 return os; … … 65 65 66 66 ostype & ?|?( ostype & os, unsigned char usc ) { 67 if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) );67 if ( sepPrt$( os ) ) fmt( os, "%s", sepGetCur$( os ) ); 68 68 fmt( os, "%hhu", usc ); 69 69 return os; … … 74 74 75 75 ostype & ?|?( ostype & os, short int si ) { 76 if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) );76 if ( sepPrt$( os ) ) fmt( os, "%s", sepGetCur$( os ) ); 77 77 fmt( os, "%hd", si ); 78 78 return os; … … 83 83 84 84 ostype & ?|?( ostype & os, unsigned short int usi ) { 85 if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) );85 if ( sepPrt$( os ) ) fmt( os, "%s", sepGetCur$( os ) ); 86 86 fmt( os, "%hu", usi ); 87 87 return os; … … 92 92 93 93 ostype & ?|?( ostype & os, int i ) { 94 if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) );94 if ( sepPrt$( os ) ) fmt( os, "%s", sepGetCur$( os ) ); 95 95 fmt( os, "%d", i ); 96 96 return os; … … 101 101 102 102 ostype & ?|?( ostype & os, unsigned int ui ) { 103 if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) );103 if ( sepPrt$( os ) ) fmt( os, "%s", sepGetCur$( os ) ); 104 104 fmt( os, "%u", ui ); 105 105 return os; … … 110 110 111 111 ostype & ?|?( ostype & os, long int li ) { 112 if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) );112 if ( sepPrt$( os ) ) fmt( os, "%s", sepGetCur$( os ) ); 113 113 fmt( os, "%ld", li ); 114 114 return os; … … 119 119 120 120 ostype & ?|?( ostype & os, unsigned long int uli ) { 121 if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) );121 if ( sepPrt$( os ) ) fmt( os, "%s", sepGetCur$( os ) ); 122 122 fmt( os, "%lu", uli ); 123 123 return os; … … 128 128 129 129 ostype & ?|?( ostype & os, long long int lli ) { 130 if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) );130 if ( sepPrt$( os ) ) fmt( os, "%s", sepGetCur$( os ) ); 131 131 fmt( os, "%lld", lli ); 132 132 return os; … … 137 137 138 138 ostype & ?|?( ostype & os, unsigned long long int ulli ) { 139 if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) );139 if ( sepPrt$( os ) ) fmt( os, "%s", sepGetCur$( os ) ); 140 140 fmt( os, "%llu", ulli ); 141 141 return os; … … 171 171 172 172 ostype & ?|?( ostype & os, int128 llli ) { 173 if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) );173 if ( sepPrt$( os ) ) fmt( os, "%s", sepGetCur$( os ) ); 174 174 base10_128( os, llli ); 175 175 return os; … … 180 180 181 181 ostype & ?|?( ostype & os, unsigned int128 ullli ) { 182 if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) );182 if ( sepPrt$( os ) ) fmt( os, "%s", sepGetCur$( os ) ); 183 183 base10_128( os, ullli ); 184 184 return os; … … 204 204 205 205 ostype & ?|?( ostype & os, float f ) { 206 if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) );206 if ( sepPrt$( os ) ) fmt( os, "%s", sepGetCur$( os ) ); 207 207 PrintWithDP( os, "%g", f ); 208 208 return os; … … 213 213 214 214 ostype & ?|?( ostype & os, double d ) { 215 if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) );215 if ( sepPrt$( os ) ) fmt( os, "%s", sepGetCur$( os ) ); 216 216 PrintWithDP( os, "%.*lg", d, DBL_DIG ); 217 217 return os; … … 222 222 223 223 ostype & ?|?( ostype & os, long double ld ) { 224 if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) );224 if ( sepPrt$( os ) ) fmt( os, "%s", sepGetCur$( os ) ); 225 225 PrintWithDP( os, "%.*Lg", ld, LDBL_DIG ); 226 226 return os; … … 231 231 232 232 ostype & ?|?( ostype & os, float _Complex fc ) { 233 if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) );233 if ( sepPrt$( os ) ) fmt( os, "%s", sepGetCur$( os ) ); 234 234 // os | crealf( fc ) | nonl; 235 235 PrintWithDP( os, "%g", crealf( fc ) ); … … 243 243 244 244 ostype & ?|?( ostype & os, double _Complex dc ) { 245 if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) );245 if ( sepPrt$( os ) ) fmt( os, "%s", sepGetCur$( os ) ); 246 246 // os | creal( dc ) | nonl; 247 247 PrintWithDP( os, "%.*lg", creal( dc ), DBL_DIG ); … … 255 255 256 256 ostype & ?|?( ostype & os, long double _Complex ldc ) { 257 if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) );257 if ( sepPrt$( os ) ) fmt( os, "%s", sepGetCur$( os ) ); 258 258 // os | creall( ldc ) || nonl; 259 259 PrintWithDP( os, "%.*Lg", creall( ldc ), LDBL_DIG ); … … 286 286 // first character IS NOT spacing or closing punctuation => add left separator 287 287 unsigned char ch = s[0]; // must make unsigned 288 if ( $sepPrt( os ) && mask[ ch ] != Close && mask[ ch ] != OpenClose ) {289 fmt( os, "%s", $sepGetCur( os ) );288 if ( sepPrt$( os ) && mask[ ch ] != Close && mask[ ch ] != OpenClose ) { 289 fmt( os, "%s", sepGetCur$( os ) ); 290 290 } // if 291 291 292 292 // if string starts line, must reset to determine open state because separator is off 293 $sepReset( os ); // reset separator293 sepReset$( os ); // reset separator 294 294 295 295 // last character IS spacing or opening punctuation => turn off separator for next item 296 296 size_t len = strlen( s ); 297 297 ch = s[len - 1]; // must make unsigned 298 if ( $sepPrt( os ) && mask[ ch ] != Open && mask[ ch ] != OpenClose ) {298 if ( sepPrt$( os ) && mask[ ch ] != Open && mask[ ch ] != OpenClose ) { 299 299 sepOn( os ); 300 300 } else { 301 301 sepOff( os ); 302 302 } // if 303 if ( ch == '\n' ) $setNL( os, true ); // check *AFTER* $sepPrtcall above as it resets NL flag303 if ( ch == '\n' ) setNL$( os, true ); // check *AFTER* sepPrt$ call above as it resets NL flag 304 304 return write( os, s, len ); 305 305 } // ?|? … … 309 309 310 310 // ostype & ?|?( ostype & os, const char16_t * s ) { 311 // if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) );311 // if ( sepPrt$( os ) ) fmt( os, "%s", sepGetCur$( os ) ); 312 312 // fmt( os, "%ls", s ); 313 313 // return os; … … 316 316 // #if ! ( __ARM_ARCH_ISA_ARM == 1 && __ARM_32BIT_STATE == 1 ) // char32_t == wchar_t => ambiguous 317 317 // ostype & ?|?( ostype & os, const char32_t * s ) { 318 // if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) );318 // if ( sepPrt$( os ) ) fmt( os, "%s", sepGetCur$( os ) ); 319 319 // fmt( os, "%ls", s ); 320 320 // return os; … … 323 323 324 324 // ostype & ?|?( ostype & os, const wchar_t * s ) { 325 // if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) );325 // if ( sepPrt$( os ) ) fmt( os, "%s", sepGetCur$( os ) ); 326 326 // fmt( os, "%ls", s ); 327 327 // return os; … … 329 329 330 330 ostype & ?|?( ostype & os, const void * p ) { 331 if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) );331 if ( sepPrt$( os ) ) fmt( os, "%s", sepGetCur$( os ) ); 332 332 fmt( os, "%p", p ); 333 333 return os; … … 343 343 void ?|?( ostype & os, ostype & (* manip)( ostype & ) ) { 344 344 manip( os ); 345 if ( $getPrt( os ) ) ends( os ); // something printed ?346 $setPrt( os, false ); // turn off345 if ( getPrt$( os ) ) ends( os ); // something printed ? 346 setPrt$( os, false ); // turn off 347 347 } // ?|? 348 348 … … 357 357 ostype & nl( ostype & os ) { 358 358 (ostype &)(os | '\n'); 359 $setPrt( os, false ); // turn off360 $setNL( os, true );359 setPrt$( os, false ); // turn off 360 setNL$( os, true ); 361 361 flush( os ); 362 362 return sepOff( os ); // prepare for next line … … 364 364 365 365 ostype & nonl( ostype & os ) { 366 $setPrt( os, false ); // turn off366 setPrt$( os, false ); // turn off 367 367 return os; 368 368 } // nonl … … 408 408 ostype & ?|?( ostype & os, T arg, Params rest ) { 409 409 (ostype &)(os | arg); // print first argument 410 $sepSetCur( os, sepGetTuple( os ) ); // switch to tuple separator410 sepSetCur$( os, sepGetTuple( os ) ); // switch to tuple separator 411 411 (ostype &)(os | rest); // print remaining arguments 412 $sepSetCur( os, sepGet( os ) ); // switch to regular separator412 sepSetCur$( os, sepGet( os ) ); // switch to regular separator 413 413 return os; 414 414 } // ?|? … … 416 416 // (ostype &)(?|?( os, arg, rest )); ends( os ); 417 417 (ostype &)(os | arg); // print first argument 418 $sepSetCur( os, sepGetTuple( os ) ); // switch to tuple separator418 sepSetCur$( os, sepGetTuple( os ) ); // switch to tuple separator 419 419 (ostype &)(os | rest); // print remaining arguments 420 $sepSetCur( os, sepGet( os ) ); // switch to regular separator420 sepSetCur$( os, sepGet( os ) ); // switch to regular separator 421 421 ends( os ); 422 422 } // ?|? … … 447 447 forall( ostype & | ostream( ostype ) ) { \ 448 448 ostype & ?|?( ostype & os, _Ostream_Manip(T) f ) { \ 449 if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) ); \449 if ( sepPrt$( os ) ) fmt( os, "%s", sepGetCur$( os ) ); \ 450 450 \ 451 451 if ( f.base == 'b' || f.base == 'B' ) { /* bespoke binary format */ \ … … 691 691 int bufbeg = 0, i, len; \ 692 692 \ 693 if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) ); \693 if ( sepPrt$( os ) ) fmt( os, "%s", sepGetCur$( os ) ); \ 694 694 char fmtstr[sizeof(DFMTP) + 8]; /* sizeof includes '\0' */ \ 695 695 if ( ! f.flags.pc ) memcpy( &fmtstr, DFMTNP, sizeof(DFMTNP) ); \ … … 734 734 } // if 735 735 736 if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) );736 if ( sepPrt$( os ) ) fmt( os, "%s", sepGetCur$( os ) ); 737 737 738 738 #define CFMTNP "% * " … … 772 772 } // if 773 773 774 if ( $sepPrt( os ) ) fmt( os, "%s", $sepGetCur( os ) );774 if ( sepPrt$( os ) ) fmt( os, "%s", sepGetCur$( os ) ); 775 775 776 776 #define SFMTNP "% * " -
libcfa/src/iostream.hfa
r665edf40 r73d0c54a 10 10 // Created On : Wed May 27 17:56:53 2015 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Tue Apr 13 13:05:11202113 // Update Count : 38 412 // Last Modified On : Tue Apr 20 19:09:44 2021 13 // Update Count : 385 14 14 // 15 15 … … 24 24 trait ostream( ostype & ) { 25 25 // private 26 bool $sepPrt( ostype & ); // get separator state (on/off)27 void $sepReset( ostype & ); // set separator state to default state28 void $sepReset( ostype &, bool ); // set separator and default state29 const char * $sepGetCur( ostype & ); // get current separator string30 void $sepSetCur( ostype &, const char [] ); // set current separator string31 bool $getNL( ostype & ); // check newline32 void $setNL( ostype &, bool ); // saw newline33 bool $getANL( ostype & ); // get auto newline (on/off)34 bool $getPrt( ostype & ); // get fmt called in output cascade35 void $setPrt( ostype &, bool ); // set fmt called in output cascade26 bool sepPrt$( ostype & ); // get separator state (on/off) 27 void sepReset$( ostype & ); // set separator state to default state 28 void sepReset$( ostype &, bool ); // set separator and default state 29 const char * sepGetCur$( ostype & ); // get current separator string 30 void sepSetCur$( ostype &, const char [] ); // set current separator string 31 bool getNL$( ostype & ); // check newline 32 void setNL$( ostype &, bool ); // saw newline 33 bool getANL$( ostype & ); // get auto newline (on/off) 34 bool getPrt$( ostype & ); // get fmt called in output cascade 35 void setPrt$( ostype &, bool ); // set fmt called in output cascade 36 36 // public 37 37 void sepOn( ostype & ); // turn separator state on -
libcfa/src/stdlib.hfa
r665edf40 r73d0c54a 10 10 // Created On : Thu Jan 28 17:12:35 2016 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : T hu Jan 21 22:02:13 202113 // Update Count : 57 412 // Last Modified On : Tue Apr 20 21:20:03 2021 13 // Update Count : 575 14 14 // 15 15 … … 44 44 45 45 // Macro because of returns 46 #define $ARRAY_ALLOC( allocation, alignment, dim ) \46 #define ARRAY_ALLOC$( allocation, alignment, dim ) \ 47 47 if ( _Alignof(T) <= libAlign() ) return (T *)(void *)allocation( dim, (size_t)sizeof(T) ); /* C allocation */ \ 48 48 else return (T *)alignment( _Alignof(T), dim, sizeof(T) ) … … 57 57 58 58 T * aalloc( size_t dim ) { 59 $ARRAY_ALLOC( aalloc, amemalign, dim );59 ARRAY_ALLOC$( aalloc, amemalign, dim ); 60 60 } // aalloc 61 61 62 62 T * calloc( size_t dim ) { 63 $ARRAY_ALLOC( calloc, cmemalign, dim );63 ARRAY_ALLOC$( calloc, cmemalign, dim ); 64 64 } // calloc 65 65 … … 119 119 S_fill(T) ?`fill( T a[], size_t nmemb ) { S_fill(T) ret = {'a', nmemb}; ret.fill.a = a; return ret; } 120 120 121 3. Replace the $alloc_internalfunction which is outside ttype forall-block with following function:122 T * $alloc_internal( void * Resize, T * Realloc, size_t Align, size_t Dim, S_fill(T) Fill) {121 3. Replace the alloc_internal$ function which is outside ttype forall-block with following function: 122 T * alloc_internal$( void * Resize, T * Realloc, size_t Align, size_t Dim, S_fill(T) Fill) { 123 123 T * ptr = NULL; 124 124 size_t size = sizeof(T); … … 145 145 146 146 return ptr; 147 } // $alloc_internal147 } // alloc_internal$ 148 148 */ 149 149 … … 175 175 S_realloc(T) ?`realloc ( T * a ) { return (S_realloc(T)){a}; } 176 176 177 T * $alloc_internal( void * Resize, T * Realloc, size_t Align, size_t Dim, S_fill(T) Fill ) {177 T * alloc_internal$( void * Resize, T * Realloc, size_t Align, size_t Dim, S_fill(T) Fill ) { 178 178 T * ptr = NULL; 179 179 size_t size = sizeof(T); … … 206 206 207 207 return ptr; 208 } // $alloc_internal209 210 forall( TT... | { T * $alloc_internal( void *, T *, size_t, size_t, S_fill(T), TT ); } ) {211 212 T * $alloc_internal( void * , T * Realloc, size_t Align, size_t Dim, S_fill(T) Fill, T_resize Resize, TT rest) {213 return $alloc_internal( Resize, (T*)0p, Align, Dim, Fill, rest);214 } 215 216 T * $alloc_internal( void * Resize, T * , size_t Align, size_t Dim, S_fill(T) Fill, S_realloc(T) Realloc, TT rest) {217 return $alloc_internal( (void*)0p, Realloc, Align, Dim, Fill, rest);218 } 219 220 T * $alloc_internal( void * Resize, T * Realloc, size_t , size_t Dim, S_fill(T) Fill, T_align Align, TT rest) {221 return $alloc_internal( Resize, Realloc, Align, Dim, Fill, rest);222 } 223 224 T * $alloc_internal( void * Resize, T * Realloc, size_t Align, size_t Dim, S_fill(T) , S_fill(T) Fill, TT rest) {225 return $alloc_internal( Resize, Realloc, Align, Dim, Fill, rest);208 } // alloc_internal$ 209 210 forall( TT... | { T * alloc_internal$( void *, T *, size_t, size_t, S_fill(T), TT ); } ) { 211 212 T * alloc_internal$( void * , T * Realloc, size_t Align, size_t Dim, S_fill(T) Fill, T_resize Resize, TT rest) { 213 return alloc_internal$( Resize, (T*)0p, Align, Dim, Fill, rest); 214 } 215 216 T * alloc_internal$( void * Resize, T * , size_t Align, size_t Dim, S_fill(T) Fill, S_realloc(T) Realloc, TT rest) { 217 return alloc_internal$( (void*)0p, Realloc, Align, Dim, Fill, rest); 218 } 219 220 T * alloc_internal$( void * Resize, T * Realloc, size_t , size_t Dim, S_fill(T) Fill, T_align Align, TT rest) { 221 return alloc_internal$( Resize, Realloc, Align, Dim, Fill, rest); 222 } 223 224 T * alloc_internal$( void * Resize, T * Realloc, size_t Align, size_t Dim, S_fill(T) , S_fill(T) Fill, TT rest) { 225 return alloc_internal$( Resize, Realloc, Align, Dim, Fill, rest); 226 226 } 227 227 228 228 T * alloc( TT all ) { 229 return $alloc_internal( (void*)0p, (T*)0p, (_Alignof(T) > libAlign() ? _Alignof(T) : libAlign()), (size_t)1, (S_fill(T)){'0'}, all);229 return alloc_internal$( (void*)0p, (T*)0p, (_Alignof(T) > libAlign() ? _Alignof(T) : libAlign()), (size_t)1, (S_fill(T)){'0'}, all); 230 230 } 231 231 232 232 T * alloc( size_t dim, TT all ) { 233 return $alloc_internal( (void*)0p, (T*)0p, (_Alignof(T) > libAlign() ? _Alignof(T) : libAlign()), dim, (S_fill(T)){'0'}, all);233 return alloc_internal$( (void*)0p, (T*)0p, (_Alignof(T) > libAlign() ? _Alignof(T) : libAlign()), dim, (S_fill(T)){'0'}, all); 234 234 } 235 235 -
libcfa/src/time.hfa
r665edf40 r73d0c54a 10 10 // Created On : Wed Mar 14 23:18:57 2018 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Wed Apr 14 09:30:30202113 // Update Count : 66 412 // Last Modified On : Wed Apr 21 06:32:31 2021 13 // Update Count : 667 14 14 // 15 15 … … 28 28 29 29 static inline { 30 void ?{}( Duration & dur, timeval t ) with( dur ) { tn = (int64_t)t.tv_sec * TIMEGRAN + t.tv_usec * 1000; } 31 void ?{}( Duration & dur, timespec t ) with( dur ) { tn = (int64_t)t.tv_sec * TIMEGRAN + t.tv_nsec; } 32 30 33 Duration ?=?( Duration & dur, __attribute__((unused)) zero_t ) { return dur{ 0 }; } 31 32 void ?{}( Duration & dur, timeval t ) with( dur ) { tn = (int64_t)t.tv_sec * TIMEGRAN + t.tv_usec * 1000; }33 34 Duration ?=?( Duration & dur, timeval t ) with( dur ) { 34 35 tn = (int64_t)t.tv_sec * TIMEGRAN + t.tv_usec * (TIMEGRAN / 1_000_000LL); 35 36 return dur; 36 37 } // ?=? 37 38 void ?{}( Duration & dur, timespec t ) with( dur ) { tn = (int64_t)t.tv_sec * TIMEGRAN + t.tv_nsec; }39 38 Duration ?=?( Duration & dur, timespec t ) with( dur ) { 40 39 tn = (int64_t)t.tv_sec * TIMEGRAN + t.tv_nsec; … … 61 60 Duration ?%?( Duration lhs, Duration rhs ) { return (Duration)@{ lhs.tn % rhs.tn }; } 62 61 Duration ?%=?( Duration & lhs, Duration rhs ) { lhs = lhs % rhs; return lhs; } 62 63 bool ?==?( Duration lhs, __attribute__((unused)) zero_t ) { return lhs.tn == 0; } 64 bool ?!=?( Duration lhs, __attribute__((unused)) zero_t ) { return lhs.tn != 0; } 65 bool ?<? ( Duration lhs, __attribute__((unused)) zero_t ) { return lhs.tn < 0; } 66 bool ?<=?( Duration lhs, __attribute__((unused)) zero_t ) { return lhs.tn <= 0; } 67 bool ?>? ( Duration lhs, __attribute__((unused)) zero_t ) { return lhs.tn > 0; } 68 bool ?>=?( Duration lhs, __attribute__((unused)) zero_t ) { return lhs.tn >= 0; } 63 69 64 70 bool ?==?( Duration lhs, Duration rhs ) { return lhs.tn == rhs.tn; } … … 68 74 bool ?>? ( Duration lhs, Duration rhs ) { return lhs.tn > rhs.tn; } 69 75 bool ?>=?( Duration lhs, Duration rhs ) { return lhs.tn >= rhs.tn; } 70 71 bool ?==?( Duration lhs, __attribute__((unused)) zero_t ) { return lhs.tn == 0; }72 bool ?!=?( Duration lhs, __attribute__((unused)) zero_t ) { return lhs.tn != 0; }73 bool ?<? ( Duration lhs, __attribute__((unused)) zero_t ) { return lhs.tn < 0; }74 bool ?<=?( Duration lhs, __attribute__((unused)) zero_t ) { return lhs.tn <= 0; }75 bool ?>? ( Duration lhs, __attribute__((unused)) zero_t ) { return lhs.tn > 0; }76 bool ?>=?( Duration lhs, __attribute__((unused)) zero_t ) { return lhs.tn >= 0; }77 76 78 77 Duration abs( Duration rhs ) { return rhs.tn >= 0 ? rhs : -rhs; } … … 164 163 void ?{}( Time & time, int year, int month = 1, int day = 1, int hour = 0, int min = 0, int sec = 0, int64_t nsec = 0 ); 165 164 static inline { 165 void ?{}( Time & time, timeval t ) with( time ) { tn = (int64_t)t.tv_sec * TIMEGRAN + t.tv_usec * 1000; } 166 void ?{}( Time & time, timespec t ) with( time ) { tn = (int64_t)t.tv_sec * TIMEGRAN + t.tv_nsec; } 167 166 168 Time ?=?( Time & time, __attribute__((unused)) zero_t ) { return time{ 0 }; } 167 168 void ?{}( Time & time, timeval t ) with( time ) { tn = (int64_t)t.tv_sec * TIMEGRAN + t.tv_usec * 1000; }169 169 Time ?=?( Time & time, timeval t ) with( time ) { 170 170 tn = (int64_t)t.tv_sec * TIMEGRAN + t.tv_usec * (TIMEGRAN / 1_000_000LL); 171 171 return time; 172 172 } // ?=? 173 174 void ?{}( Time & time, timespec t ) with( time ) { tn = (int64_t)t.tv_sec * TIMEGRAN + t.tv_nsec; }175 173 Time ?=?( Time & time, timespec t ) with( time ) { 176 174 tn = (int64_t)t.tv_sec * TIMEGRAN + t.tv_nsec;
Note: See TracChangeset
for help on using the changeset viewer.