Changeset dcfc4b35 for doc/proposals/concurrency/text/concurrency.tex
- Timestamp:
- Oct 3, 2017, 3:09:12 PM (7 years ago)
- Branches:
- ADT, aaron-thesis, arm-eh, ast-experimental, cleanup-dtors, deferred_resn, demangler, enum, forall-pointer-decay, jacob/cs343-translation, jenkins-sandbox, master, new-ast, new-ast-unique-expr, new-env, no_list, persistent-indexer, pthread-emulation, qualifiedEnum, resolv-new, with_gc
- Children:
- 3628765
- Parents:
- e1ff775
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
doc/proposals/concurrency/text/concurrency.tex
re1ff775 rdcfc4b35 700 700 \end{tabular} 701 701 \end{center} 702 This method is more constrained and explicit, which may help users tone down the undeterministic nature of concurrency. Indeed, as the following examples demonstrates, external scheduling allows users to wait for events from other threads without the concern of unrelated events occuring. External scheduling can generally be done either in terms of control flow (e.g., \uC) or in terms of data (e.g. Go). Of course, both of these paradigms have their own strenghts and weaknesses but for this project control-flow semantics were chosen to stay consistent with the rest of the languages semantics. Two challenges specific to \CFA arise when trying to add external scheduling with loose object definitions and multi-monitor routines. The previous example shows a simple use \code{_Accept} versus \code{wait}/\code{signal} and its advantages. Note that while other languages often use \code{accept} as the core external scheduling keyword, \CFA uses \code{waitfor} to prevent name collisions with existing socket APIs.702 This method is more constrained and explicit, which may help users tone down the undeterministic nature of concurrency. Indeed, as the following examples demonstrates, external scheduling allows users to wait for events from other threads without the concern of unrelated events occuring. External scheduling can generally be done either in terms of control flow (e.g., \uC) or in terms of data (e.g. Go). Of course, both of these paradigms have their own strenghts and weaknesses but for this project control-flow semantics were chosen to stay consistent with the rest of the languages semantics. Two challenges specific to \CFA arise when trying to add external scheduling with loose object definitions and multi-monitor routines. The previous example shows a simple use \code{_Accept} versus \code{wait}/\code{signal} and its advantages. Note that while other languages often use \code{accept} as the core external scheduling keyword, \CFA uses \code{waitfor} to prevent name collisions with existing socket \acrshort{api}s. 703 703 704 704 In the case of internal scheduling, the call to \code{wait} only guarantees that \code{V} is the last routine to access the monitor. This entails that the routine \code{V} may have acquired mutual exclusion several times while routine \code{P} was waiting. On the other hand, external scheduling guarantees that while routine \code{P} was waiting, no routine other than \code{V} could acquire the monitor.
Note: See TracChangeset
for help on using the changeset viewer.