Ignore:
Timestamp:
Oct 3, 2017, 3:09:12 PM (7 years ago)
Author:
Thierry Delisle <tdelisle@…>
Branches:
ADT, aaron-thesis, arm-eh, ast-experimental, cleanup-dtors, deferred_resn, demangler, enum, forall-pointer-decay, jacob/cs343-translation, jenkins-sandbox, master, new-ast, new-ast-unique-expr, new-env, no_list, persistent-indexer, pthread-emulation, qualifiedEnum, resolv-new, with_gc
Children:
3628765
Parents:
e1ff775
Message:

Added internals section and updated v0.10 up to chapter 4

File:
1 edited

Legend:

Unmodified
Added
Removed
  • doc/proposals/concurrency/text/concurrency.tex

    re1ff775 rdcfc4b35  
    700700\end{tabular}
    701701\end{center}
    702 This method is more constrained and explicit, which may help users tone down the undeterministic nature of concurrency. Indeed, as the following examples demonstrates, external scheduling allows users to wait for events from other threads without the concern of unrelated events occuring. External scheduling can generally be done either in terms of control flow (e.g., \uC) or in terms of data (e.g. Go). Of course, both of these paradigms have their own strenghts and weaknesses but for this project control-flow semantics were chosen to stay consistent with the rest of the languages semantics. Two challenges specific to \CFA arise when trying to add external scheduling with loose object definitions and multi-monitor routines. The previous example shows a simple use \code{_Accept} versus \code{wait}/\code{signal} and its advantages. Note that while other languages often use \code{accept} as the core external scheduling keyword, \CFA uses \code{waitfor} to prevent name collisions with existing socket APIs.
     702This method is more constrained and explicit, which may help users tone down the undeterministic nature of concurrency. Indeed, as the following examples demonstrates, external scheduling allows users to wait for events from other threads without the concern of unrelated events occuring. External scheduling can generally be done either in terms of control flow (e.g., \uC) or in terms of data (e.g. Go). Of course, both of these paradigms have their own strenghts and weaknesses but for this project control-flow semantics were chosen to stay consistent with the rest of the languages semantics. Two challenges specific to \CFA arise when trying to add external scheduling with loose object definitions and multi-monitor routines. The previous example shows a simple use \code{_Accept} versus \code{wait}/\code{signal} and its advantages. Note that while other languages often use \code{accept} as the core external scheduling keyword, \CFA uses \code{waitfor} to prevent name collisions with existing socket \acrshort{api}s.
    703703
    704704In the case of internal scheduling, the call to \code{wait} only guarantees that \code{V} is the last routine to access the monitor. This entails that the routine \code{V} may have acquired mutual exclusion several times while routine \code{P} was waiting. On the other hand, external scheduling guarantees that while routine \code{P} was waiting, no routine other than \code{V} could acquire the monitor.
Note: See TracChangeset for help on using the changeset viewer.