Changeset d800676


Ignore:
Timestamp:
Mar 23, 2023, 12:18:39 PM (19 months ago)
Author:
Peter A. Buhr <pabuhr@…>
Branches:
ADT, ast-experimental, master
Children:
c94b1f0
Parents:
1afd9ccb (diff), 18ea270 (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the (diff) links above to see all the changes relative to each parent.
Message:

Merge branch 'master' of plg.uwaterloo.ca:software/cfa/cfa-cc

Files:
48 added
1 deleted
30 edited
3 moved

Legend:

Unmodified
Added
Removed
  • doc/bibliography/pl.bib

    r1afd9ccb rd800676  
    21362136    address     = {Eindhoven, Neth.},
    21372137    year        = 1965,
    2138     optnote     = {Reprinted in \cite{Genuys68} pp. 43--112.}
     2138    optnote     = {Reprinted in \cite{Genuys68} pp. 43--112.},
    21392139    note        = {\url{https://pure.tue.nl/ws/files/4279816/344354178746665.pdf}},
    21402140}
  • doc/theses/colby_parsons_MMAth/Makefile

    r1afd9ccb rd800676  
    1414
    1515SOURCES = ${addsuffix .tex, \
    16 text/CFA_intro \
    17 text/actors \
    18 thesis \
     16text/CFA_intro                          \
     17text/actors                                     \
     18text/frontpgs                           \
     19text/CFA_concurrency            \
     20thesis                                          \
     21text/mutex_stmt                         \
    1922}
    2023
    21 FIGURES = ${addsuffix .tikz, \
    22 figures/standard_actor \
    23 figures/inverted_actor \
    24 figures/gulp \
     24FIGURES = ${addsuffix .pgf,             \
     25        figures/pykeExecutor                    \
     26        figures/pykeCFAExecutor                 \
     27        figures/nasusExecutor                   \
     28        figures/nasusCFAExecutor                \
     29        figures/pykeMatrix                              \
     30        figures/pykeCFAMatrix                   \
     31        figures/nasusMatrix                     \
     32        figures/nasusCFAMatrix                  \
     33        figures/pykeRepeat                              \
     34        figures/pykeCFARepeat                   \
     35        figures/nasusRepeat                     \
     36        figures/nasusCFARepeat                  \
     37        figures/pykeCFABalance-One              \
     38        figures/nasusCFABalance-One             \
     39        figures/pykeCFABalance-Multi    \
     40        figures/nasusCFABalance-Multi   \
    2541}
    2642
    27 PICTURES = ${addsuffix .pstex, \
     43DATA =  data/pykeSendStatic             \
     44                data/pykeSendDynamic    \
     45                data/pykeExecutorMem    \
     46                data/nasusSendStatic    \
     47                data/nasusSendDynamic   \
     48                data/pykeExecutorMem    \
     49
     50PICTURES = ${addsuffix .tikz,   \
     51        diagrams/standard_actor         \
     52        diagrams/inverted_actor         \
     53        diagrams/gulp                           \
     54        diagrams/chain_swap             \
     55        diagrams/M_to_one_swap          \
     56        diagrams/acyclic_swap           \
     57        diagrams/cyclic_swap            \
    2858}
    2959
     
    5686        dvips ${Build}/$< -o $@
    5787
    58 ${BASE}.dvi : Makefile ${GRAPHS} ${PROGRAMS} ${PICTURES} ${FIGURES} ${SOURCES} \
     88${BASE}.dvi : Makefile ${GRAPHS} ${PROGRAMS} ${PICTURES} ${FIGURES} ${SOURCES} ${DATA} \
    5989                ${Macros}/common.tex ${Macros}/indexstyle local.bib ../../bibliography/pl.bib | ${Build}
    6090        # Must have *.aux file containing citations for bibtex
     
    109139                        "\end{document}" > $@
    110140
     141data/%: ;
     142%.tikz: ;
     143%.pgf: ;
     144
    111145# Local Variables: #
    112146# compile-command: "make" #
  • doc/theses/colby_parsons_MMAth/data/nasusExecutorMem

    r1afd9ccb rd800676  
    1 441.864MB & 139.912MB & 7714.548MB & 116.476MB & 549.812MB
     1441MB & 139MB & 7714MB & 116MB & 549MB
  • doc/theses/colby_parsons_MMAth/data/nasusSendDynamic

    r1afd9ccb rd800676  
    1 43 & 9501 & 7483 & 72 & 5547
     143ns & 9501ns & 7483ns & 72ns & 5547ns
  • doc/theses/colby_parsons_MMAth/data/nasusSendStatic

    r1afd9ccb rd800676  
    1 22 & 2779 & 59 & 40 & 68
     122ns & 2779ns & 59ns & 40ns & 68ns
  • doc/theses/colby_parsons_MMAth/data/pykeExecutorMem

    r1afd9ccb rd800676  
    1 677.536MB & 165.024MB & 8046.684MB & 185.552MB & 563.512MB
     1677MB & 165MB & 8046MB & 185MB & 563MB
  • doc/theses/colby_parsons_MMAth/data/pykeSendDynamic

    r1afd9ccb rd800676  
    1 56 & 8476 & 5972 & 81 & 4179
     156ns & 8476ns & 5972ns & 81ns & 4179ns
  • doc/theses/colby_parsons_MMAth/data/pykeSendStatic

    r1afd9ccb rd800676  
    1 23 & 1712 & 74 & 40 & 90
     123ns & 1712ns & 74ns & 40ns & 90ns
  • doc/theses/colby_parsons_MMAth/diagrams/gulp.tikz

    r1afd9ccb rd800676  
    9393\draw (8,197) node [anchor=north west][inner sep=0.75pt]   [align=left] {{\footnotesize Sharded message queues}};
    9494% Text Node
    95 \draw (21,181) node [anchor=north west][inner sep=0.75pt]   [align=left] {{\footnotesize 0}};
     95\draw (21,184) node [anchor=north west][inner sep=0.75pt]   [align=left] {{\footnotesize 0}};
    9696% Text Node
    97 \draw (52,181) node [anchor=north west][inner sep=0.75pt]   [align=left] {{\footnotesize 1}};
     97\draw (52,184) node [anchor=north west][inner sep=0.75pt]   [align=left] {{\footnotesize 1}};
    9898% Text Node
    99 \draw (85,181) node [anchor=north west][inner sep=0.75pt]   [align=left] {{\footnotesize 2}};
     99\draw (85,184) node [anchor=north west][inner sep=0.75pt]   [align=left] {{\footnotesize 2}};
    100100% Text Node
    101101\draw (70,71) node [anchor=north west][inner sep=0.75pt]   [align=left] {{\footnotesize Gulps queue 0}};
     
    107107\draw (297,198) node [anchor=north west][inner sep=0.75pt]   [align=left] {{\footnotesize Sharded message queues}};
    108108% Text Node
    109 \draw (310,181) node [anchor=north west][inner sep=0.75pt]   [align=left] {{\footnotesize 0}};
     109\draw (310,184) node [anchor=north west][inner sep=0.75pt]   [align=left] {{\footnotesize 0}};
    110110% Text Node
    111 \draw (341,181) node [anchor=north west][inner sep=0.75pt]   [align=left] {{\footnotesize 1}};
     111\draw (341,184) node [anchor=north west][inner sep=0.75pt]   [align=left] {{\footnotesize 1}};
    112112% Text Node
    113 \draw (374,181) node [anchor=north west][inner sep=0.75pt]   [align=left] {{\footnotesize 2}};
     113\draw (374,184) node [anchor=north west][inner sep=0.75pt]   [align=left] {{\footnotesize 2}};
    114114% Text Node
    115115\draw (190,86) node [anchor=north west][inner sep=0.75pt]  [font=\footnotesize] [align=left] {After gulp};
  • doc/theses/colby_parsons_MMAth/local.bib

    r1afd9ccb rd800676  
    2121@string{pldi="Programming Language Design and Implementation"}
    2222
    23 % actor work stealing papers
    2423@inproceedings{barghi18,
    2524  title={Work-stealing, locality-aware actor scheduling},
     
    3837  year={2017}
    3938}
     39
     40@mastersthesis{Delisle18,
     41author={{Delisle, Thierry}},
     42title={Concurrency in C∀},
     43year={2018},
     44publisher="UWSpace",
     45url={http://hdl.handle.net/10012/12888}
     46}
     47
     48@phdthesis{Delisle22,
     49author={{Delisle, Thierry}},
     50title={The C∀ Scheduler},
     51year={2022},
     52publisher="UWSpace",
     53url={http://hdl.handle.net/10012/18941}
     54}
  • doc/theses/colby_parsons_MMAth/text/CFA_intro.tex

    r1afd9ccb rd800676  
    55% ======================================================================
    66
    7 % potentially discuss rebindable references, with stmt, and operators
    8 
    97\section{Overview}
     8The following serves as an introduction to \CFA. \CFA is a layer over C, is transpiled to C and is largely considered to be an extension of C. Beyond C, it adds productivity features, libraries, a type system, and many other language constructions. However, \CFA stays true to C as a language, with most code revolving around \code{struct}'s and routines, and respects the same rules as C. \CFA is not object oriented as it has no notion of \code{this} and no classes or methods, but supports some object oriented adjacent ideas including costructors, destructors, and limited inheritance. \CFA is rich with interesting features, but a subset that is pertinent to this work will be discussed.
     9
     10\section{References}
     11References in \CFA are similar to references in \CC, however in \CFA references are rebindable, and support multi-level referencing. References in \CFA are a layer of syntactic sugar over pointers to reduce the number of ref/deref operations needed with pointer usage. Some examples of references in \CFA are shown in Listing~\ref{l:cfa_ref}.
     12
     13
     14\begin{cfacode}[tabsize=3,caption={Example of \CFA references},label={l:cfa_ref}]
     15int i = 2;
     16int & ref_i = i;            // declare ref to i
     17int * ptr_i = &i;           // ptr to i
     18
     19// address of ref_i is the same as address of i
     20assert( &ref_i == ptr_i );
     21
     22int && ref_ref_i = ref_i;   // can have a ref to a ref
     23ref_i = 3;                  // set i to 3
     24int new_i = 4;
     25
     26// syntax to rebind ref_i (must cancel implicit deref)
     27&ref_i = &new_i; // (&*)ref_i = &new_i; (sets underlying ptr)
     28\end{cfacode}
     29
     30
     31\section{Overloading}
     32In \CFA routines can be overloaded on parameter type, number of parameters, and return type. Variables can also be overloaded on type, meaning that two variables can have the same name so long as they have different types. The variables will be disambiguated via type, sometimes requiring a cast. The code snippet in Listing~\ref{l:cfa_overload} contains examples of overloading.
     33
     34
     35\begin{cfacode}[tabsize=3,caption={Example of \CFA function overloading},label={l:cfa_overload}]
     36int foo() { printf("A\n");  return 0;}
     37int foo( int bar ) { printf("B\n"); return 1; }
     38int foo( double bar ) { printf("C\n"); return 2; }
     39double foo( double bar ) { printf("D\n"); return 3;}
     40void foo( double bar ) { printf("%.0f\n", bar); }
     41
     42int main() {
     43    foo();                  // prints A
     44    foo( 0 );               // prints B
     45    int a = foo( 0.0 );     // prints C
     46    double a = foo( 0.0 );  // prints D
     47    foo( a );               // prints 3
     48}
     49\end{cfacode}
     50
     51
     52\section{With Statement}
     53The with statement is a tool for exposing members of aggregate types within a scope in \CFA. It allows users to use fields of aggregate types without using their fully qualified name. This feature is also implemented in Pascal. It can exist as a stand-alone statement or it can be used on routines to expose fields in the body of the routine. An example is shown in Listing~\ref{l:cfa_with}.
     54
     55
     56\begin{cfacode}[tabsize=3,caption={Usage of \CFA with statement},label={l:cfa_with}]
     57struct obj {
     58    int a, b, c;
     59};
     60struct pair {
     61    double x, y;
     62};
     63
     64// Stand-alone with stmt:
     65pair p;
     66with( p ) {
     67    x = 6.28;
     68    y = 1.73;
     69}
     70
     71// Can be used on routines:
     72void foo( obj o, pair p ) with( o, p ) {
     73    a = 1;
     74    b = 2;
     75    c = 3;
     76    x = 3.14;
     77    y = 2.71;
     78}
     79
     80// routine foo is equivalent to routine bar:
     81void bar( obj o, pair p ) {
     82    o.a = 1;
     83    o.b = 2;
     84    o.c = 3;
     85    p.x = 3.14;
     86    p.y = 2.71;
     87}
     88\end{cfacode}
     89
     90
     91\section{Operators}
     92Operators can be overloaded in \CFA with operator routines. Operators in \CFA are named using the operator symbol and '?' to respresent operands.
     93An example is shown in Listing~\ref{l:cfa_operate}.
     94
     95
     96\begin{cfacode}[tabsize=3,caption={Example of \CFA operators},label={l:cfa_operate}]
     97struct coord {
     98    double x;
     99    double y;
     100    double z;
     101};
     102coord ++?( coord & c ) with(c) {
     103    x++;
     104    y++;
     105    z++;
     106    return c;
     107}
     108coord ?<=?( coord op1, coord op2 ) with( op1 ) {
     109    return (x*x + y*y + z*z) <=
     110        (op2.x*op2.x + op2.y*op2.y + op2.z*op2.z);
     111}
     112\end{cfacode}
     113
     114
     115\section{Constructors and Destructors}
     116Constructors and destructors in \CFA are two special operator routines that are used for creation and destruction of objects. The default constructor and destructor for a type are called implicitly upon creation and deletion respectively if they are defined. An example is shown in Listing~\ref{l:cfa_ctor}.
     117
     118
     119\begin{cfacode}[tabsize=3,caption={Example of \CFA constructors and destructors},label={l:cfa_ctor}]
     120struct discrete_point {
     121    int x;
     122    int y;
     123};
     124void ?{}( discrete_point & this ) with(this) { // ctor
     125    x = 0;
     126    y = 0;
     127}
     128void ?{}( discrete_point & this, int x, int y ) { // ctor
     129    this.x = x;
     130    this.y = y;
     131}
     132void ^?{}( discrete_point & this ) with(this) { // dtor
     133    x = 0;
     134    y = 0;
     135}
     136
     137int main() {
     138    discrete_point d; // implicit call to ?{}
     139    discrete_point p{}; // same call as line above
     140    discrete_point dp{ 2, -4 }; // specialized ctor
     141} // ^d{}, ^p{}, ^dp{} all called as they go out of scope
     142\end{cfacode}
     143
    10144
    11145\section{Polymorphism}\label{s:poly}
    12 
    13 \section{Overloading}
    14 
    15 \section{Constructors and Destructors}
    16 
    17 \section{With Statement}
    18 
    19 \section{Threading Model}\label{s:threading}
     146C does not natively support polymorphism, and requires users to implement polymorphism themselves if they want to use it. \CFA extends C with two styles of polymorphism that it supports, parametric polymorphism and nominal inheritance.
     147
     148\subsection{Parametric Polymorphism}
     149\CFA provides parametric polymorphism in the form of \code{forall}, and \code{trait}s. A \code{forall} takes in a set of types and a list of constraints. The declarations that follow the \code{forall} are parameterized over the types listed that satisfy the constraints. Sometimes the list of constraints can be long, which is where a \code{trait} can be used. A \code{trait} is a collection of constraints that is given a name and can be reused in foralls. An example of the usage of parametric polymorphism in \CFA is shown in Listing~\ref{l:cfa_poly}.
     150
     151\begin{cfacode}[tabsize=3,caption={Example of \CFA polymorphism},label={l:cfa_poly}]
     152// sized() is a trait that means the type has a size
     153forall( V & | sized(V) )        // type params for trait
     154trait vector_space {
     155    V add( V, V );              // vector addition
     156    V scalar_mult( int, V );    // scalar multiplication
     157
     158    // dtor and copy ctor needed in constraints to pass by copy
     159    void ?{}( V &, V & );       // copy ctor for return
     160    void ^?{}( V & );           // dtor
     161};
     162
     163forall( V & | vector_space( V )) {
     164    V get_inverse( V v1 ) {
     165        return scalar_mult( -1, v1 );  // can use ?*? routine defined in trait
     166    }
     167    V add_and_invert( V v1, V v2 ) {
     168        return get_inverse( add( v1, v2 ) );  // can use ?*? routine defined in trait
     169    }
     170}
     171struct Vec1 { int x; };
     172void ?{}( Vec1 & this, Vec1 & other ) { this.x = other.x; }
     173void ?{}( Vec1 & this, int x ) { this.x = x; }
     174void ^?{}( Vec1 & this ) {}
     175Vec1 add( Vec1 v1, Vec1 v2 ) { v1.x += v2.x; return v1; }
     176Vec1 scalar_mult( int c, Vec1 v1 ) { v1.x = v1.x * c; return v1; }
     177
     178struct Vec2 { int x; int y; };
     179void ?{}( Vec2 & this, Vec2 & other ) { this.x = other.x; this.y = other.y; }
     180void ?{}( Vec2 & this, int x ) { this.x = x; this.y = x; }
     181void ^?{}( Vec2 & this ) {}
     182Vec2 add( Vec2 v1, Vec2 v2 ) { v1.x += v2.x; v1.y += v2.y; return v1; }
     183Vec2 scalar_mult( int c, Vec2 v1 ) { v1.x = v1.x * c; v1.y = v1.y * c; return v1; }
     184
     185int main() {
     186    Vec1 v1{ 1 }; // create Vec1 and call ctor
     187    Vec2 v2{ 2 }; // create Vec2 and call ctor
     188
     189    // can use forall defined routines since types satisfy trait
     190    add_and_invert( get_inverse( v1 ), v1 );
     191    add_and_invert( get_inverse( v2 ), v2 );
     192}
     193
     194\end{cfacode}
     195
     196\subsection{Inheritance}
     197Inheritance in \CFA copies its style from Plan-9 C nominal inheritance. In \CFA structs can \code{inline} another struct type to gain its fields and to be able to be passed to routines that require a parameter of the inlined type. An example of \CFA inheritance is shown in Listing~\ref{l:cfa_inherit}.
     198
     199\begin{cfacode}[tabsize=3,caption={Example of \CFA inheritance},label={l:cfa_inherit}]
     200struct one_d { double x; };
     201struct two_d {
     202    inline one_d;
     203    double y;
     204};
     205struct three_d {
     206    inline two_d;
     207    double z;
     208};
     209double get_x( one_d & d ){ return d.x; }
     210
     211struct dog {};
     212struct dog_food {
     213    int count;
     214};
     215struct pet {
     216    inline dog;
     217    inline dog_food;
     218};
     219void pet_dog( dog & d ){printf("woof\n");}
     220void print_food( dog_food & f ){printf("%d\n", f.count);}
     221
     222int main() {
     223    one_d x;
     224    two_d y;
     225    three_d z;
     226    x.x = 1;
     227    y.x = 2;
     228    z.x = 3;
     229    get_x( x ); // returns 1;
     230    get_x( y ); // returns 2;
     231    get_x( z ); // returns 3;
     232    pet p;
     233    p.count = 5;
     234    pet_dog( p );    // prints woof
     235    print_food( p ); // prints 5
     236}
     237\end{cfacode}
     238
     239
  • doc/theses/colby_parsons_MMAth/text/actors.tex

    r1afd9ccb rd800676  
    11% ======================================================================
    22% ======================================================================
    3 \chapter{Concurrent Actors}\label{s:actors}
     3\chapter{Actors}\label{s:actors}
    44% ======================================================================
    55% ======================================================================
    66
    7 % C_TODO: add citations
    8 Before discussing \CFA's actor system in detail, it is important to first describe the actor model, and the classic approach to implementing an actor system.
    9 
    10 \section{The Actor Model} % \cite{Hewitt73}
    11 The actor model is a paradigm of concurrent computation, where tasks are broken into units of work that are distributed to actors in the form of messages \cite{}. Actors execute asynchronously upon receiving a message and can modify their own state, make decisions, spawn more actors, and send messages to other actors. The actor model is an implicit model of concurrency. As such, one strength of the actor model is that it abstracts away many considerations that are needed in other paradigms of concurrent computation. Mutual exclusion, and locking are rarely relevant concepts to users of an actor model, as actors typically operate on local state.
     7% C_TODO: add citations throughout chapter
     8Actors are a concurrent feature that abstracts threading away from a user, and instead provides \newterm{actors} and \newterm{messages} as building blocks for concurrency. This is a form of what is called \newterm{implicit concurrency}, where programmers write concurrent code without having to worry about explicit thread synchronization and mutual exclusion. The study of actors can be broken into two concepts, the \newterm{actor model}, which describes the model of computation and the \newterm{actor system}, which refers to the implementation of the model in practice. Before discussing \CFA's actor system in detail, it is important to first describe the actor model, and the classic approach to implementing an actor system.
     9
     10\section{The Actor Model}
     11The actor model is a paradigm of concurrent computation, where tasks are broken into units of work that are distributed to actors in the form of messages \cite{Hewitt73}. Actors execute asynchronously upon receiving a message and can modify their own state, make decisions, spawn more actors, and send messages to other actors. The actor model is an implicit model of concurrency. As such, one strength of the actor model is that it abstracts away many considerations that are needed in other paradigms of concurrent computation. Mutual exclusion, and locking are rarely relevant concepts to users of an actor model, as actors typically operate on local state.
    1212
    1313\section{Classic Actor System}
     
    1616\begin{figure}
    1717\begin{tabular}{l|l}
    18 \subfloat[Actor-centric system]{\label{f:standard_actor}\input{figures/standard_actor.tikz}} &
    19 \subfloat[Message-centric system]{\label{f:inverted_actor}\raisebox{.1\height}{\input{figures/inverted_actor.tikz}}}
     18\subfloat[Actor-centric system]{\label{f:standard_actor}\input{diagrams/standard_actor.tikz}} &
     19\subfloat[Message-centric system]{\label{f:inverted_actor}\raisebox{.1\height}{\input{diagrams/inverted_actor.tikz}}}
    2020\end{tabular}
    2121\caption{Classic and inverted actor implementation approaches with sharded queues.}
     
    4444
    4545\item
    46 Creates a static-typed actor system that catches actor-message mismatches at compile time.
    47 % C_TODO: create and/or mention other safety features (allocation/deadlock/etc)
     46Provides a suite of safety and productivity features including static-typing, detection of erroneous message sends, statistics tracking, and more.
    4847\end{enumerate}
    4948
    50 \subsection{\CFA Actor Syntax}
     49\section{\CFA Actor Syntax}
    5150\CFA is not an object oriented language and it does not have run-time type information (RTTI). As such all message sends and receives between actors occur using exact type matching. To use actors in \CFA you must \code{\#include <actors.hfa>}. To create an actor type one must define a struct which inherits from the base \code{actor} struct via the \code{inline} keyword. This is the Plan-9 C-style nominal inheritance discussed in Section \ref{s:poly}. Similarly to create a message type a user must define a struct which \code{inline}'s the base \code{message} struct.
    5251
     
    7069Allocation receive( derived_actor & receiver, derived_msg & msg ) {
    7170    printf("The message contained the string: %s\n", msg.word);
    72     return Finished; // Return inished since actor is done
     71    return Finished; // Return finished since actor is done
    7372}
    7473
     
    7776    derived_actor my_actor;         
    7877    derived_msg my_msg{ "Hello World" }; // Constructor call
    79     my_actor | my_msg;   // Send message via bar operator
     78    my_actor << my_msg;   // Send message via left shift operator
    8079    stop_actor_system(); // Waits until actors are finished
    8180    return 0;
     
    109108
    110109\item[\LstBasicStyle{\textbf{Finished}}]
    111 tells the executor to mark the respective actor as being finished executing. In this case the executor will not call any destructors or deallocate any objects. This status is used when the actors are stack allocated or if the user wants to manage deallocation of actors themselves. In the case of messages, \code{Finished} is no different than \code{Nodelete} since the executor does not need to track if messages are done work.
     110tells the executor to mark the respective actor as being finished executing. In this case the executor will not call any destructors or deallocate any objects. This status is used when the actors are stack allocated or if the user wants to manage deallocation of actors themselves. In the case of messages, \code{Finished} is no different than \code{Nodelete} since the executor does not need to track if messages are done work. As such \code{Finished} is not supported for messages and is used internally by the executor to track if messages have been used for debugging purposes.
    112111\end{description}
    113112
     
    124123All actors must be created after calling \code{start_actor_system} so that the executor can keep track of the number of actors that have been allocated but have not yet terminated.
    125124
    126 All message sends are done using the bar operater, \ie |. The signature of the bar operator is:
     125All message sends are done using the left shift operater, \ie <<, similar to the syntax of \CC's output. The signature of the left shift operator is:
    127126\begin{cfacode}
    128 Allocation ?|?( derived_actor & receiver, derived_msg & msg )
     127Allocation ?<<?( derived_actor & receiver, derived_msg & msg )
    129128\end{cfacode}
    130129
    131 An astute eye will notice that this is the same signature as the \code{receive} routine which is no coincidence. The \CFA compiler generates a bar operator routine definition and forward declaration of the bar operator for each \code{receive} routine that has the appropriate signature. The generated routine packages the message and actor in an \hyperref[s:envelope]{envelope} and adds it to the executor's queues via an executor routine. As part of packaging the envelope, the bar operator routine sets a function pointer in the envelope to point to the appropriate receive routine for given actor and message types.
    132 
    133 \subsection{\CFA Executor}\label{s:executor}
     130An astute eye will notice that this is the same signature as the \code{receive} routine which is no coincidence. The \CFA compiler generates a \code{?<<?} routine definition and forward declaration for each \code{receive} routine that has the appropriate signature. The generated routine packages the message and actor in an \hyperref[s:envelope]{envelope} and adds it to the executor's queues via an executor routine. As part of packaging the envelope, the \code{?<<?} routine sets a function pointer in the envelope to point to the appropriate receive routine for given actor and message types.
     131
     132\section{\CFA Executor}\label{s:executor}
    134133This section will describe the basic architecture of the \CFA executor. Any discussion of work stealing is omitted until Section \ref{s:steal}. The executor of an actor system is the scheduler that organizes where actors behaviours are run and how messages are sent and delivered. In \CFA the executor lays out actors across the sharded message queues in round robin order as they are created. The message queues are split across worker threads in equal chunks, or as equal as possible if the number of message queues is not divisible by the number of workers threads.
    135134
    136135\begin{figure}
    137136\begin{center}
    138 \input{figures/gulp.tikz}
     137\input{diagrams/gulp.tikz}
    139138\end{center}
    140139\caption{Diagram of the queue gulping mechanism.}
     
    146145To process its local queue, a worker thread takes each unit of work off the queue and executes it. Since all messages to a given actor will be in the same queue, this guarantees atomicity across behaviours of that actor since it can only execute on one thread at a time. After running behaviour, the worker thread looks at the returned allocation status and takes the corresponding action. Once all actors have marked themselves as being finished the executor initiates shutdown by inserting a sentinel value into the message queues. Once a worker thread sees a sentinel it stops running. After all workers stop running the actor system shutdown is complete.
    147146
    148 \subsection{Envelopes}\label{s:envelope}
     147\section{Envelopes}\label{s:envelope}
    149148In actor systems messages are sent and received by actors. When a actor receives a message it  executes its behaviour that is associated with that message type. However the unit of work that stores the message, the receiving actor's address, and other pertinent information needs to persist between send and the receive. Furthermore the unit of work needs to be able to be stored in some fashion, usually in a queue, until it is executed by an actor. All these requirements are fulfilled by a construct called an envelope. The envelope wraps up the unit of work and also stores any information needed by data structures such as link fields. To meet the persistence requirement the envelope is dynamically allocated and cleaned up after it has been delivered and its payload has run.
    150149
     
    153152This frequent allocation of envelopes with each message send between actors results in heavy contention on the memory allocator. As such, a way to alleviate contention on the memory allocator could result in performance improvement. Contention was reduced using a novel data structure that called a \newterm{copy queue}.
    154153
    155 \subsubsection{The Copy Queue}
     154\subsection{The Copy Queue}\label{s:copyQueue}
    156155The copy queue is a thin layer over a dynamically sized array that is designed with the envelope use case in mind. A copy queue supports the typical queue operations of push/pop but in a different way than a typical array based queue. The copy queue is designed to take advantage of the \hyperref[s:executor]{gulping} pattern. As such the amortized rutime cost of each push/pop operation for the copy queue is $O(1)$. In contrast, a naive array based queue often has either push or pop cost $O(n)$ and the other cost $O(1)$ since for at least one of the operations all the elements of the queue have to be shifted over. Since the worker threads gulp each queue to operate on locally, this creates a usage pattern of the queue where all elements are popped from the copy queue without any interleaved pushes. As such, during pop operations there is no need to shift array elements. An index is stored in the copy queue data structure which keeps track of which element to pop next allowing pop to be $O(1)$. Push operations are amortized $O(1)$ since pushes may cause doubling reallocations of the underlying dynamic sized array.
    157156
     
    162161To mitigate this a memory reclamation scheme was introduced. Initially the memory reclamation naively reclaimed one index of the array per gulp if the array size was above a low fixed threshold. This approach had a problem. The high memory usage watermark nearly doubled with this change! The issue with this approach can easily be highlighted with an example. Say that there is a fixed throughput workload where a queue never has more than 19 messages at a time. If the copy queue starts with a size of 10, it will end up doubling at some point to size 20 to accomodate 19 messages. However, after 2 gulps and subsequent reclamations the array would be size 18. The next time 19 messages are enqueued, the array size is doubled to 36! To avoid this issue a second check was added to reclamation. Each copy queue started tracking the utilization of their array size. Reclamation would only occur if less than half of the array was being utilized. In doing this the reclamation scheme was able to achieve a lower high watermark and a lower overall memory utilization when compared to the non-reclamation copy queues. However, the use of copy queues still incurs a higher memory cost than the list based queueing. With the inclusion of a memory reclamation scheme the increase in memory usage is reasonable considering the performance gains and will be discussed further in Section \ref{s:actor_perf}.
    163162
    164 \subsection{Work Stealing}\label{s:steal}
     163\section{Work Stealing}\label{s:steal}
    165164Work stealing is a scheduling strategy that attempts to load balance, and increase resource untilization by having idle threads steal work. There are many parts that make up a work stealing actor scheduler, but the two that will be highlighted in this work are the stealing mechanism and victim selection.
    166165
    167166% C_TODO enter citation for langs
    168 \subsubsection{Stealing Mechanism}
     167\subsection{Stealing Mechanism}
    169168In this discussion of work stealing the worker being stolen from will be referred to as the \newterm{victim} and the worker stealing work will be called the \newterm{thief}. The stealing mechanism presented here differs from existing work stealing actor systems due the inverted actor system. Other actor systems such as Akka \cite{} and CAF \cite{} have work stealing, but since they use an classic actor system that is actor-centric, stealing work is the act of stealing an actor from a dequeue. As an example, in CAF, the sharded actor queue is a set of double ended queues (dequeues). Whenever an actor is moved to a ready queue, it is inserted into a worker's dequeue. Workers then consume actors from the dequeue and execute their behaviours. To steal work, thieves take one or more actors from a victim's dequeue. This action creates contention on the dequeue, which can slow down the throughput of the victim. The notion of which end of the dequeue is used for stealing, consuming, and inserting is not discussed since it isn't relevant. By the pigeon hole principle there are three dequeue operations (push/victim pop/thief pop) that can occur concurrently and only two ends to a dequeue, so work stealing being present in a dequeue based system will always result in a potential increase in contention on the dequeues.
    170169
    171 % C_TODO: insert stealing diagram
    172 
    173 In \CFA, the work stealing is unique, since existing work stealing systems do not use the inverted actor system. While other systems are concerned with stealing actors, the \CFA actor system steals queues. The goal of the \CFA actor work stealing mechanism is to have a zero-victim-cost stealing mechanism. This does not means that stealing has no cost. This goal is to ensure that stealing work does not impact the performance of victim workers. This means that thieves can not contend with victims, and that victims should perform no stealing related work unless they become a thief. In theory this goal is not achieved, but results will be presented that show the goal is achieved in practice. In \CFA's actor system workers own a set of sharded queues which they iterate over and gulp. If a worker has iterated over the queues they own twice without finding any work, they try to steal a queue from another worker. Stealing a queue is done wait-free with a few atomic instructions that can only create contention with other stealing workers. To steal a queue a worker does the following:
     170% C_TODO: maybe insert stealing diagram
     171
     172In \CFA, the actor work stealing implementation is unique. While other systems are concerned with stealing actors, the \CFA actor system steals queues. This is a result of \CFA's use of the inverted actor system. The goal of the \CFA actor work stealing mechanism is to have a zero-victim-cost stealing mechanism. This does not means that stealing has no cost. This goal is to ensure that stealing work does not impact the performance of victim workers. This means that thieves can not contend with victims, and that victims should perform no stealing related work unless they become a thief. In theory this goal is not achieved, but results will be presented that show the goal is achieved in practice. In \CFA's actor system workers own a set of sharded queues which they iterate over and gulp. If a worker has iterated over the queues they own twice without finding any work, they try to steal a queue from another worker. Stealing a queue is done wait-free with a few atomic instructions that can only create contention with other stealing workers. To steal a queue a worker does the following:
    174173\begin{enumerate}[topsep=5pt,itemsep=3pt,parsep=0pt]
    175174\item
     
    183182\end{enumerate}
    184183
    185 % C_TODO insert array of queues diagram
    186184Once a thief fails or succeeds in stealing a queue, it goes back to its own set of queues and iterates over them again. It will only try to steal again once it has completed two consecutive iterations over its owned queues without finding any work. The key to the stealing mechnism is that the queues can still be operated on while they are being swapped. This elimates any contention between thieves and victims. The first key to this is that actors and workers maintain two distinct arrays of references to queues. Actors will always receive messages via the same queues. Workers, on the other hand will swap the pointers to queues in their shared array and operate on queues in the range of that array that they own. Swapping queues is a matter of atomically swapping two pointers in the worker array. As such pushes to the queues can happen concurrently during the swap since pushes happen via the actor queue references.
    187185
     
    189187
    190188
    191 \subsubsection{Queue Swap Correctness}
     189\subsection{Queue Swap Correctness}
    192190Given the wait-free swap used is novel, it is important to show that it is correct. Firstly, it is clear to show that the swap is wait-free since all workers will fail or succeed in swapping the queues in a finite number of steps since there are no locks or looping. There is no retry mechanism in the case of a failed swap, since a failed swap either means the work was already stolen, or that work was stolen from the thief. In both cases it is apropos for a thief to given up on stealing. \CFA-style pseudocode for the queue swap is presented below. The swap uses compare-and-swap (\code{CAS}) which is just pseudocode for C's \code{__atomic_compare_exchange_n}. A pseudocode implementation of \code{CAS} is also shown below. The correctness of the wait-free swap will now be discussed in detail. To first verify sequential correctness, consider the equivalent sequential swap below:
    193191
     
    275273In the failed case the outcome is correct in steps 1 and 2 since no writes have occured so the program state is unchanged. In the failed case of step 3 the program state is safely restored to its state it had prior to the \code{0p} write in step 2, thanks to the invariant that makes the write back to the \code{0p} pointer safe.
    276274
    277 \subsubsection{Stealing Guarantees}
     275\subsection{Stealing Guarantees}
    278276
    279277% C_TODO insert graphs for each proof
    280278Given that the stealing operation can potentially fail, it is important to discuss the guarantees provided by the stealing implementation. Given a set of $N$ swaps a set of connected directed graphs can be constructed where each vertex is a queue and each edge is a swap directed from a thief queue to a victim queue. Since each thief can only steal from one victim at a time, each vertex can only have at most one outgoing edge. A corollary that can be drawn from this, is that there are at most $V$ edges in this constructed set of connected directed graphs, where $V$ is the total number of vertices.
     279
     280\begin{figure}
     281\begin{center}
     282\input{diagrams/M_to_one_swap.tikz}
     283\end{center}
     284\caption{Graph of $M$ thieves swapping with one victim.}
     285\label{f:M_one_swap}
     286\end{figure}
    281287
    282288\begin{theorem}
    283289Given $M$ thieves queues all attempting to swap with one victim queue, and no other swaps occuring that involve these queues, at least one swap is guaranteed to succeed.
    284290\end{theorem}\label{t:one_vic}
     291A graph of the $M$ thieves swapping with one victim discussed in this theorem is presented in Figure~\ref{f:M_one_swap}.
     292\\
    285293First it is important to state that a thief will not attempt to steal from themselves. As such, the victim here is not also a thief. Stepping through the code in \ref{c:swap}, for all thieves steps 0-1 succeed since the victim is not stealing and will have no queue pointers set to be \code{0p}. Similarly for all thieves step 2 will succeed since no one is stealing from any of the thieves. In step 3 the first thief to \code{CAS} will win the race and successfully swap the queue pointer. Since it is the first one to \code{CAS} and \code{CAS} is atomic, there is no way for the \code{CAS} to fail since no other thief could have written to the victim's queue pointer and the victim did not write to the pointer since they aren't stealing. Hence at least one swap is guaranteed to succeed in this case.
     294
     295\begin{figure}
     296\begin{center}
     297\input{diagrams/chain_swap.tikz}
     298\end{center}
     299\caption{Graph of a chain of swaps.}
     300\label{f:chain_swap}
     301\end{figure}
    286302
    287303\begin{theorem}
    288304Given $M$ > 1, ordered queues pointers all attempting to swap with the queue in front of them in the ordering, except the first queue, and no other swaps occuring that involve these queues, at least one swap is guaranteed to succeed.
    289305\end{theorem}\label{t:vic_chain}
     306A graph of the chain of swaps discussed in this theorem is presented in Figure~\ref{f:chain_swap}.
     307\\
    290308This is a proof by contradiction. Assume no swaps occur. Then all thieves must have failed at step 1, step 2 or step 3. For a given thief $b$ to fail at step 1, thief $b + 1$ must have succeded at step 2 before $b$ executes step 0. Hence, not all thieves can fail at step 1. Furthermore if a thief $b$ fails at step 1 it logically splits the chain into two subchains $0 <- b$ and $b + 1 <- M - 1$, where $b$ has become solely a victim since its swap has failed and it did not modify any state. There must exist at least one chain containing two or more queues after since it is impossible for a split to occur both before and after a thief, since that requires failing at step 1 and succeeding at step 2. Hence, without loss of generality, whether thieves succeed or fail at step 1, this proof can proceed inductively.
    291309
    292310For a given thief $i$ to fail at step 2, it means that another thief $j$ had to have written to $i$'s queue pointer between $i$'s step 0 and step 2. The only way for $j$ to write to $i$'s queue pointer would be if $j$ was stealing from $i$ and had successfully finished step 3. If $j$ finished step 3 then the at least one swap was successful. Therefore all thieves did not fail at step 2. Hence all thieves must successfully complete step 2 and fail at step 3. However, since the first worker, thief $0$, is solely a victim and not a thief, it does not change the state of any of its queue pointers. Hence, in this case thief $1$ will always succeed in step 3 if all thieves succeed in step 2. Thus, by contradiction with the earlier assumption that no swaps occur, at least one swap must succeed.
     311
     312% \raisebox{.1\height}{}
     313\begin{figure}
     314\centering
     315\begin{tabular}{l|l}
     316\subfloat[Cyclic Swap Graph]{\label{f:cyclic_swap}\input{diagrams/cyclic_swap.tikz}} &
     317\subfloat[Acyclic Swap Graph]{\label{f:acyclic_swap}\input{diagrams/acyclic_swap.tikz}}
     318\end{tabular}
     319\caption{Illustrations of cyclic and acyclic swap graphs.}
     320\end{figure}
    293321
    294322\begin{theorem}
    295323Given a set of $M > 1$ swaps occuring that form a single directed connected graph. At least one swap is guaranteed to suceed if and only if the graph does not contain a cycle.
    296324\end{theorem}\label{t:vic_cycle}
     325Representations of cyclic and acylic swap graphs discussed in this theorem are presented in Figures~\ref{f:cyclic_swap} and \ref{f:acyclic_swap}.
     326\\
    297327First the reverse direction is proven. If the graph does not contain a cycle, then there must be at least one successful swap. Since the graph contains no cycles and is finite in size, then there must be a vertex $A$ with no outgoing edges. The graph can then be formulated as a tree with $A$ at the top since each node only has at most one outgoing edge and there are no cycles. The forward direction is proven by contradiction in a similar fashion to \ref{t:vic_chain}. Assume no swaps occur. Similar to \ref{t:vic_chain}, this graph can be inductively split into subgraphs of the same type by failure at step 1, so the proof proceeds without loss of generality. Similar to \ref{t:vic_chain} the conclusion is drawn that all thieves must successfully complete step 2 for no swaps to occur, since for step 2 to fail, a different thief has to successfully complete step 3, which would imply a successful swap. Hence, the only way forward is to assume all thieves successfully complete step 2. Hence for there to be no swaps all thieves must fail step 3. However, since $A$ has no outgoing edges, since the graph is connected there must be some $K$ such that $K < M - 1$ thieves are attempting to swap with $A$. Since all $K$ thieves have passed step 2, similar to \ref{t:one_vic} the first one of the $K$ thieves to attempt step 3 is guaranteed to succeed. Thus, by contradiction with the earlier assumption that no swaps occur, if the graph does not contain a cycle, at least one swap must succeed.
    298328
     
    300330
    301331% C_TODO: go through and use \paragraph to format to make it look nicer
    302 \subsubsection{Victim Selection}
     332\subsection{Victim Selection}\label{s:victimSelect}
    303333In any work stealing algorithm thieves have some heuristic to determine which victim to choose from. Choosing this algorithm is difficult and can have implications on performance. There is no one selection heuristic that is known to be the best on all workloads. Recent work focuses on locality aware scheduling in actor systems\cite{barghi18}\cite{wolke17}. However, while locality aware scheduling provides good performance on some workloads, something as simple as randomized selection performs better on other workloads\cite{barghi18}. Since locality aware scheduling has been explored recently, this work introduces a heuristic called \newterm{longest victim} and compares it to randomized work stealing. The longest victim heuristic maintains a timestamp per worker thread that is updated every time a worker attempts to steal work. Thieves then attempt to steal from the thread with the oldest timestamp. This means that if two thieves look to steal at the same time, they likely will attempt to steal from the same victim. This does increase the chance at contention between thieves, however given that workers have multiple queues under them, often in the tens or hundreds of queues per worker it is rare for two queues to attempt so steal the same queue. Furthermore in the case they attempt to steal the same queue at least one of them is guaranteed to successfully steal the queue as shown in Theorem \ref{t:one_vic}. Additonally, the longest victim heuristic makes it very improbable that the no swap scenario presented in Theorem \ref{t:vic_cycle} manifests. Given the longest victim heuristic, for a cycle to manifest it would require all workers to attempt to steal in a short timeframe. This is the only way that more than one thief could choose another thief as a victim, since timestamps are only updated upon attempts to steal. In this case, the probability of lack of any successful swaps is a non issue, since it is likely that these steals were not important if all workers are trying to steal.
    304334
    305 \subsection{Safety}
    306 
    307 \subsection{Performance}\label{s:actor_perf}
     335\section{Safety and Productivity}
     336\CFA's actor system comes with a suite of safety and productivity features. Most of these features are present in \CFA's debug mode, but are removed when code is compiled in nodebug mode. Some of the features include:
     337
     338\begin{itemize}
     339\item Static-typed message sends. If an actor does not support receiving a given message type, the actor program is rejected at compile time, allowing unsupported messages to never be sent to actors.
     340\item Detection of message sends to Finished/Destroyed/Deleted actors. All actors have a ticket that assigns them to a respective queue. The maximum integer value of the ticket is reserved to indicate that an actor is dead, and subsequent message sends result in an error.
     341\item Actors made before the executor can result in undefined behaviour since an executor needs to be created beforehand so it can give out the tickets to actors. As such, this is detected and an error is printed.
     342\item When an executor is created, the queues are handed out to worker threads in round robin order. If there are fewer queues than worker threads, then some workers will spin and never do any work. There is no reasonable use case for this behaviour so an error is printed if the number of queues is fewer than the number of worker threads.
     343\item A warning is printed when messages are deallocated without being sent. Since the \code{Finished} allocation status is unused for messages, it is used internally to detect if a message has been sent. Deallocating a message without sending it could indicate to a user that they are touching freed memory later, or it could point out extra allocations that could be removed.
     344\end{itemize}
     345
     346In addition to these features, \CFA's actor system comes with a suite of statistics that can be toggled on and off. These statistics have minimal impact on the actor system's performance since they are counted on a per worker thread basis. During shutdown of the actor system they are aggregated, ensuring that the only atomic instructions used by the statistics counting happen at shutdown. The statistics measured are as follows.
     347
     348\begin{description}
     349\item[\LstBasicStyle{\textbf{Actors Created}}]
     350Actors created. Includes both actors made by the main and ones made by other actors.
     351\item[\LstBasicStyle{\textbf{Messages Sent}}]
     352Messages sent and received. Includes termination messages send to the worker threads.
     353\item[\LstBasicStyle{\textbf{Gulps}}]
     354Gulps that occured across the worker threads.
     355\item[\LstBasicStyle{\textbf{Average Gulp Size}}]
     356Average number of messages in a gulped queue.
     357\item[\LstBasicStyle{\textbf{Missed gulps}}]
     358Occurences where a worker missed a gulp due to the concurrent queue processing by another worker.
     359\item[\LstBasicStyle{\textbf{Steal attempts}}]
     360Worker threads attempts to steal work.
     361\item[\LstBasicStyle{\textbf{Steal failures (no candidates)}}]
     362Work stealing failures due to selected victim not having any non empty or non-being-processed queues.
     363\item[\LstBasicStyle{\textbf{Steal failures (failed swaps)}}]
     364Work stealing failures due to the two stage atomic swap failing.
     365\item[\LstBasicStyle{\textbf{Messages stolen}}]
     366Aggregate of the number of messages in queues as they were stolen.
     367\item[\LstBasicStyle{\textbf{Average steal size}}]
     368Average number of messages in a stolen queue.
     369\end{description}
     370
     371These statistics enable a user of \CFA's actor system to make informed choices about how to configure their executor, or how to structure their actor program. For example, if there is a lot of messages being stolen relative to the number of messages sent, it could indicate to a user that their workload is heavily imbalanced across worker threads. In another example, if the average gulp size is very high, it could indicate that the executor could use more queue sharding.
     372
     373% C_TODO cite poison pill messages and add languages
     374Another productivity feature that is included is a group of poison-pill messages. Poison-pill messages are common across actor systems, including Akka and ProtoActor \cite{}. Poison-pill messages inform an actor to terminate. In \CFA, due to the allocation of actors and lack of garbage collection, there needs to be a suite of poison-pills. The messages that \CFA provides are \code{DeleteMsg}, \code{DestroyMsg}, and \code{FinishedMsg}. These messages are supported on all actor types via inheritance and when sent to an actor, the actor takes the corresponding allocation action after receiving the message. Note that any pending messages to the actor will still be sent. It is still the user's responsibility to ensure that an actor does not receive any messages after termination.
     375
     376\section{Performance}\label{s:actor_perf}
     377The performance of \CFA's actor system is tested using a suite of microbenchmarks, and compared with other actor systems.
     378Most of the benchmarks are the same as those presented in \ref{}, with a few additions. % C_TODO cite actor paper
     379At the time of this work the versions of the actor systems are as follows. \CFA 1.0, \uC 7.0.0, Akka Typed 2.7.0, CAF 0.18.6, and ProtoActor-Go v0.0.0-20220528090104-f567b547ea07. Akka Classic is omitted as Akka Typed is their newest version and seems to be the direction they are headed in.
     380The experiments are run on
     381\begin{list}{\arabic{enumi}.}{\usecounter{enumi}\topsep=5pt\parsep=5pt\itemsep=0pt}
     382\item
     383Supermicro SYS--6029U--TR4 Intel Xeon Gold 5220R 24--core socket, hyper-threading $\times$ 2 sockets (48 process\-ing units) 2.2GHz, running Linux v5.8.0--59--generic
     384\item
     385Supermicro AS--1123US--TR4 AMD EPYC 7662 64--core socket, hyper-threading $\times$ 2 sockets (256 processing units) 2.0 GHz, running Linux v5.8.0--55--generic
     386\end{list}
     387
     388The benchmarks are run on up to 48 cores. On the Intel, when going beyond 24 cores there is the choice to either hop sockets or to use hyperthreads. Either choice will cause a blip in performance trends, which can be seen in the following performance figures. On the Intel the choice was made to hyperthread instead of hopping sockets for experiments with more than 24 cores.
     389
     390All benchmarks presented are run 5 times and the median is taken. Error bars showing the 95\% confidence intervals are drawn on each point on the graphs. If the confidence bars are small enough, they may be obscured by the point. In this section \uC will be compared to \CFA frequently, as the actor system in \CFA was heavily based off \uC's actor system. As such the peformance differences that arise are largely due to the contributions of this work.
     391
     392\begin{table}[t]
     393\centering
     394\setlength{\extrarowheight}{2pt}
     395\setlength{\tabcolsep}{5pt}
     396
     397\caption{Static Actor/Message Performance: message send, program memory}
     398\label{t:StaticActorMessagePerformance}
     399\begin{tabular}{*{5}{r|}r}
     400    & \multicolumn{1}{c|}{\CFA (100M)} & \multicolumn{1}{c|}{CAF (10M)} & \multicolumn{1}{c|}{Akka (100M)} & \multicolumn{1}{c|}{\uC (100M)} & \multicolumn{1}{c@{}}{ProtoActor (100M)} \\
     401    \hline                                                                                                                                         
     402    AMD         & \input{data/pykeSendStatic} \\
     403    \hline                                                                                                                                         
     404    Intel       & \input{data/nasusSendStatic}
     405\end{tabular}
     406
     407\bigskip
     408
     409\caption{Dynamic Actor/Message Performance: message send, program memory}
     410\label{t:DynamicActorMessagePerformance}
     411
     412\begin{tabular}{*{5}{r|}r}
     413    & \multicolumn{1}{c|}{\CFA (20M)} & \multicolumn{1}{c|}{CAF (2M)} & \multicolumn{1}{c|}{Akka (2M)} & \multicolumn{1}{c|}{\uC (20M)} & \multicolumn{1}{c@{}}{ProtoActor (2M)} \\
     414    \hline                                                                                                                                         
     415    AMD         & \input{data/pykeSendDynamic} \\
     416    \hline                                                                                                                                         
     417    Intel       & \input{data/nasusSendDynamic}
     418\end{tabular}
     419\end{table}
     420
     421\subsection{Message Sends}
     422Message sending is the key component of actor communication. As such latency of a single message send is the fundamental unit of fast-path performance for an actor system. The following two microbenchmarks evaluate the average latency for a static actor/message send and a dynamic actor/message send. Static and dynamic refer to the allocation of the message and actor. In the static send benchmark a message and actor are allocated once and then the message is sent to the same actor repeatedly until it has been sent 100 million (100M) times. The average latency per message send is then calculated by dividing the duration by the number of sends. This benchmark evaluates the cost of message sends in the actor use case where all actors and messages are allocated ahead of time and do not need to be created dynamically during execution. The CAF static send benchmark only sends a message 10M times to avoid extensively long run times.
     423
     424In the dynamic send benchmark the same experiment is performed, with the change that with each send a new actor and message is allocated. This evaluates the cost of message sends in the other common actor pattern where actors and message are created on the fly as the actor program tackles a workload of variable or unknown size. Since dynamic sends are more expensive, this benchmark repeats the actor/message creation and send 20M times (\uC, \CFA), or 2M times (Akka, CAF, ProtoActor), to give an appropriate benchmark duration.
     425
     426The results from the static/dynamic send benchmarks are shown in Figures~\ref{t:StaticActorMessagePerformance} and \ref{t:DynamicActorMessagePerformance} respectively. \CFA leads the charts in both benchmarks, largely due to the copy queue removing the majority of the envelope allocations. In the static send benchmark all systems except CAF have static send costs that are in the same ballpark, only varying by ~70ns. In the dynamic send benchmark all systems experience slower message sends, as expected due to the extra allocations. However,  Akka and ProtoActor, slow down by a more significant margin than the \uC and \CFA. This is likely a result of Akka and ProtoActor's garbage collection, which can suffer from hits in performance for allocation heavy workloads, whereas \uC and \CFA have explicit allocation/deallocation.
     427
     428\subsection{Work Stealing}
     429\CFA's actor system has a work stealing mechanism which uses the longest victim heuristic, introduced in Section~ref{s:victimSelect}. In this performance section, \CFA with the longest victim heuristic is compared with other actor systems on the benchmark suite, and is separately compared with vanilla non-stealing \CFA and \CFA with randomized work stealing.
     430
     431\begin{figure}
     432    \centering
     433    \begin{subfigure}{0.5\textwidth}
     434        \centering
     435        \scalebox{0.5}{\input{figures/nasusCFABalance-One.pgf}}
     436        \subcaption{AMD \CFA Balance-One Benchmark}
     437        \label{f:BalanceOneAMD}
     438    \end{subfigure}\hfill
     439    \begin{subfigure}{0.5\textwidth}
     440        \centering
     441        \scalebox{0.5}{\input{figures/pykeCFABalance-One.pgf}}
     442        \subcaption{Intel \CFA Balance-One Benchmark}
     443        \label{f:BalanceOneIntel}
     444    \end{subfigure}
     445    \caption{The balance-one benchmark comparing stealing heuristics (lower is better).}
     446\end{figure}
     447
     448\begin{figure}
     449    \centering
     450    \begin{subfigure}{0.5\textwidth}
     451        \centering
     452        \scalebox{0.5}{\input{figures/nasusCFABalance-Multi.pgf}}
     453        \subcaption{AMD \CFA Balance-Multi Benchmark}
     454        \label{f:BalanceMultiAMD}
     455    \end{subfigure}\hfill
     456    \begin{subfigure}{0.5\textwidth}
     457        \centering
     458        \scalebox{0.5}{\input{figures/pykeCFABalance-Multi.pgf}}
     459        \subcaption{Intel \CFA Balance-Multi Benchmark}
     460        \label{f:BalanceMultiIntel}
     461    \end{subfigure}
     462    \caption{The balance-multi benchmark comparing stealing heuristics (lower is better).}
     463\end{figure}
     464
     465There are two benchmarks in which \CFA's work stealing is solely evaluated. The main goal of introducing work stealing to \CFA's actor system is to eliminate the pathological unbalanced cases that can present themselves in a system without some form of load balancing. The following two microbenchmarks construct two such pathological cases, and compare the work stealing variations of \CFA. The balance benchmarks adversarily takes advantage of the round robin assignment of actors to load all actors that will do work on specific cores and create 'dummy' actors that terminate after a single message send on all other cores. The workload on the loaded cores is the same as the executor benchmark described in \ref{s:executorPerf}, but with fewer rounds. The balance-one benchmark loads all the work on a single core, whereas the balance-multi loads all the work on half the cores (every other core). Given this layout, one expects the ideal speedup of work stealing in the balance-one case to be $N / N - 1$ where $N$ is the number of threads. In the balance-multi case the ideal speedup is 0.5. Note that in the balance-one benchmark the workload is fixed so decreasing runtime is expected. In the balance-multi experiment, the workload increases with the number of cores so an increasing or constant runtime is expected.
     466
     467On both balance microbenchmarks slightly less than ideal speedup compared to the non stealing variation is achieved by both the random and longest victim stealing heuristics. On the balance-multi benchmark \ref{f:BalanceMultiAMD},\ref{f:BalanceMultiIntel} the random heuristic outperforms the longest victim. This is likely a result of the longest victim heuristic having a higher stealing cost as it needs to maintain timestamps and look at all timestamps before stealing. Additionally, a performance cost can be observed when hyperthreading kicks in in Figure~\ref{f:BalanceMultiIntel}.
     468
     469In the balance-one benchmark on AMD \ref{f:BalanceOneAMD}, the performance bottoms out at 32 cores onwards likely due to the amount of work becoming less than the cost to steal it and move it across cores and cache. On Intel \ref{f:BalanceOneIntel}, above 32 cores the performance gets worse for all variants due to hyperthreading. Note that the non stealing variation of balance-one will slow down marginally as the cores increase due to having to create more dummy actors on the inactive cores during startup.
     470
     471\subsection{Executor}\label{s:executorPerf}
     472The microbenchmarks in this section are designed to stress the executor. The executor is the scheduler of an actor system and is responsible for organizing the interaction of worker threads to service the needs of a workload. In the executor benchmark, 40'000 actors are created and assigned a group. Each group of actors is a group of 100 actors who send and receive 100 messages from all other actors in their group. Each time an actor completes all their sends and receives, they are done a round. After all groups have completed 400 rounds the system terminates. This microbenchmark is designed to flood the executor with a large number of messages flowing between actors. Given there is no work associated with each message, other than sending more messages, the intended bottleneck of this experiment is the executor message send process.
     473
     474\begin{figure}
     475    \centering
     476    \begin{subfigure}{0.5\textwidth}
     477        \centering
     478        \scalebox{0.5}{\input{figures/nasusExecutor.pgf}}
     479        \subcaption{AMD Executor Benchmark}
     480        \label{f:ExecutorAMD}
     481    \end{subfigure}\hfill
     482    \begin{subfigure}{0.5\textwidth}
     483        \centering
     484        \scalebox{0.5}{\input{figures/pykeExecutor.pgf}}
     485        \subcaption{Intel Executor Benchmark}
     486        \label{f:ExecutorIntel}
     487    \end{subfigure}
     488    \caption{The executor benchmark comparing actor systems (lower is better).}
     489\end{figure}
     490
     491The results of the executor benchmark in Figures~\ref{f:ExecutorIntel} and \ref{f:ExecutorAMD} show \CFA with the lowest runtime relative to its peers. The difference in runtime between \uC and \CFA is largely due to the usage of the copy queue described in Section~\ref{s:copyQueue}. The copy queue both reduces and consolidates allocations, heavily reducing contention on the memory allocator. Additionally, due to the static typing in \CFA's actor system, it is able to get rid of expensive dynamic casts that occur in \uC to disciminate messages by type. Note that dynamic casts are ususally not very expensive, but relative to the high performance of the rest of the implementation of the \uC actor system, the cost is significant.
     492
     493\begin{figure}
     494    \centering
     495    \begin{subfigure}{0.5\textwidth}
     496        \centering
     497        \scalebox{0.5}{\input{figures/nasusCFAExecutor.pgf}}
     498        \subcaption{AMD \CFA Executor Benchmark}\label{f:cfaExecutorAMD}
     499    \end{subfigure}\hfill
     500    \begin{subfigure}{0.5\textwidth}
     501        \centering
     502        \scalebox{0.5}{\input{figures/pykeCFAExecutor.pgf}}
     503        \subcaption{Intel \CFA Executor Benchmark}\label{f:cfaExecutorIntel}
     504    \end{subfigure}
     505    \caption{Executor benchmark comparing \CFA stealing heuristics (lower is better).}
     506\end{figure}
     507
     508When comparing the \CFA stealing heuristics in Figure~\ref{f:cfaExecutorAMD} it can be seen that the random heuristic falls slightly behind the other two, but in Figure~\ref{f:cfaExecutorIntel} the runtime of all heuristics are nearly identical to eachother.
     509
     510\begin{figure}
     511    \centering
     512    \begin{subfigure}{0.5\textwidth}
     513        \centering
     514        \scalebox{0.5}{\input{figures/nasusRepeat.pgf}}
     515        \subcaption{AMD Repeat Benchmark}\label{f:RepeatAMD}
     516    \end{subfigure}\hfill
     517    \begin{subfigure}{0.5\textwidth}
     518        \centering
     519        \scalebox{0.5}{\input{figures/pykeRepeat.pgf}}
     520        \subcaption{Intel Repeat Benchmark}\label{f:RepeatIntel}
     521    \end{subfigure}
     522    \caption{The repeat benchmark comparing actor systems (lower is better).}
     523\end{figure}
     524
     525The repeat microbenchmark also evaluates the executor. It stresses the executor's ability to withstand contention on queues, as it repeatedly fans out messages from a single client to 100000 servers who then all respond to the client. After this scatter and gather repeats 200 times the benchmark terminates. The messages from the servers to the client will likely all come in on the same queue, resulting in high contention. As such this benchmark will not scale with the number of processors, since more processors will result in higher contention. In Figure~\ref{f:RepeatAMD} we can see that \CFA performs well compared to \uC, however by less of a margin than the executor benchmark. One factor in this result is that the contention on the queues poses a significant bottleneck. As such the gains from using the copy queue are much less apparent.
     526
     527\begin{figure}
     528    \centering
     529    \begin{subfigure}{0.5\textwidth}
     530        \centering
     531        \scalebox{0.5}{\input{figures/nasusCFARepeat.pgf}}
     532        \subcaption{AMD \CFA Repeat Benchmark}\label{f:cfaRepeatAMD}
     533    \end{subfigure}\hfill
     534    \begin{subfigure}{0.5\textwidth}
     535        \centering
     536        \scalebox{0.5}{\input{figures/pykeCFARepeat.pgf}}
     537        \subcaption{Intel \CFA Repeat Benchmark}\label{f:cfaRepeatIntel}
     538    \end{subfigure}
     539    \caption{The repeat benchmark comparing \CFA stealing heuristics (lower is better).}
     540\end{figure}
     541
     542In Figure~\ref{f:RepeatIntel} \uC and \CFA are very comparable.
     543In comparison with the other systems \uC does well on the repeat benchmark since it does not have work stealing. The client of this experiment is long running and maintains a lot of state, as it needs to know the handles of all the servers. When stealing the client or its respective queue (in \CFA's inverted model), moving the client incurs a high cost due to cache invalidation. As such stealing the client can result in a hit in performance.
     544This result is shown in Figure~\ref{f:cfaRepeatAMD} and \ref{f:cfaRepeatIntel} where the no-stealing version of \CFA performs better than both stealing variations.
     545In particular on the Intel machine in Figure~\ref{f:cfaRepeatIntel}, the cost of stealing is higher, which can be seen in the vertical shift of Akka, CAF and CFA results in Figure~\ref{f:RepeatIntel} (\uC and ProtoActor do not have work stealing). The shift for CAF is particularly large, which further supports the hypothesis that CAF's work stealing is particularly eager.
     546In both the executor and the repeat benchmark CAF performs poorly. It is hypothesized that CAF has an aggressive work stealing algorithm, that eagerly attempts to steal. This results in poor performance in benchmarks with small messages containing little work per message. On the other hand, in \ref{f:MatrixAMD} CAF performs much better since each message has a large amount of work, and few messages are sent, so the eager work stealing allows for the clean up of loose ends to occur faster. This hypothesis stems from experimentation with \CFA. CAF uses a randomized work stealing heuristic. In \CFA if the system is tuned so that it steals work much more eagerly with a randomized it was able to replicate the results that CAF achieves in the matrix benchmark, but this tuning performed much worse on all other microbenchmarks that we present, since they all perform a small amount of work per message.
     547
     548\begin{table}[t]
     549    \centering
     550    \setlength{\extrarowheight}{2pt}
     551    \setlength{\tabcolsep}{5pt}
     552   
     553    \caption{Executor Program Memory High Watermark}
     554    \label{t:ExecutorMemory}
     555    \begin{tabular}{*{5}{r|}r}
     556        & \multicolumn{1}{c|}{\CFA} & \multicolumn{1}{c|}{CAF} & \multicolumn{1}{c|}{Akka} & \multicolumn{1}{c|}{\uC} & \multicolumn{1}{c@{}}{ProtoActor} \\
     557        \hline                                                                                                                                     
     558        AMD             & \input{data/pykeExecutorMem} \\
     559        \hline                                                                                                                                     
     560        Intel   & \input{data/nasusExecutorMem}
     561    \end{tabular}
     562\end{table}
     563
     564Figure~\ref{t:ExecutorMemory} shows the high memory watermark of the actor systems when running the executor benchmark on 48 cores. \CFA has a high watermark relative to the other non-garbage collected systems \uC, and CAF. This is a result of the copy queue data structure, as it will overallocate storage and not clean up eagerly, whereas the per envelope allocations will always allocate exactly the amount of storage needed.
     565
     566\subsection{Matrix Multiply}
     567The matrix benchmark evaluates the actor systems in a practical application, where actors concurrently multiplies two matrices. The majority of the computation in this benchmark involves computing the final matrix, so this benchmark stresses the actor systems' ability to have actors run work, rather than stressing the executor or message sending system.
     568
     569Given $Z_{m,r} = X_{m,n} \cdot Y_{n,r}$, the matrix multiply is defined as:
     570\begin{displaymath}
     571X_{i,j} \cdot Y_{j,k} = \left( \sum_{c=1}^{j} X_{row,c}Y_{c,column} \right)_{i,k}
     572\end{displaymath}
     573
     574The benchmark uses input matrices $X$ and $Y$ that are both $3072$ by $3072$ in size. An actor is made for each row of $X$ and is passed via message the information needed to calculate a row of the result matrix $Z$.
     575
     576Given that the bottleneck of the benchmark is the computation of the result matrix, it follows that the results in Figures~\ref{f:MatrixAMD} and \ref{f:MatrixIntel} are clustered closer than other experiments. In Figure~\ref{f:MatrixAMD} \uC and \CFA have identical performance and in Figure~\ref{f:MatrixIntel} \uC pulls ahead og \CFA after 24 cores likely due to costs associated with work stealing while hyperthreading. As mentioned in \label{s:executorPerf}, it is hypothesized that CAF performs better in this benchmark compared to others due to its eager work stealing implementation. In Figures~\ref{f:cfaMatrixAMD} and \ref{f:cfaMatrixIntel} there is little negligible performance difference across \CFA stealing heuristics.
     577
     578\begin{figure}
     579    \centering
     580    \begin{subfigure}{0.5\textwidth}
     581        \centering
     582        \scalebox{0.5}{\input{figures/nasusMatrix.pgf}}
     583        \subcaption{AMD Matrix Benchmark}\label{f:MatrixAMD}
     584    \end{subfigure}\hfill
     585    \begin{subfigure}{0.5\textwidth}
     586        \centering
     587        \scalebox{0.5}{\input{figures/pykeMatrix.pgf}}
     588        \subcaption{Intel Matrix Benchmark}\label{f:MatrixIntel}
     589    \end{subfigure}
     590    \caption{The matrix benchmark comparing actor systems (lower is better).}
     591\end{figure}
     592
     593\begin{figure}
     594    \centering
     595    \begin{subfigure}{0.5\textwidth}
     596        \centering
     597        \scalebox{0.5}{\input{figures/nasusCFAMatrix.pgf}}
     598        \subcaption{AMD \CFA Matrix Benchmark}\label{f:cfaMatrixAMD}
     599    \end{subfigure}\hfill
     600    \begin{subfigure}{0.5\textwidth}
     601        \centering
     602        \scalebox{0.5}{\input{figures/pykeCFAMatrix.pgf}}
     603        \subcaption{Intel \CFA Matrix Benchmark}\label{f:cfaMatrixIntel}
     604    \end{subfigure}
     605    \caption{The matrix benchmark comparing \CFA stealing heuristics (lower is better).}
     606\end{figure}
  • doc/theses/colby_parsons_MMAth/thesis.tex

    r1afd9ccb rd800676  
    2323\usepackage{calc}
    2424\usepackage{xspace}
    25 \usepackage[labelformat=simple]{subfig}
    26 \renewcommand{\thesubfigure}{(\alph{subfigure})}
     25% \usepackage[labelformat=simple]{subfig}
     26% \renewcommand{\thesubfigure}{(\alph{subfigure})}
     27\usepackage{subcaption}
     28% \usepackage{subfigure}
    2729\usepackage{graphicx}
    2830\usepackage{tabularx}
     
    102104% FRONT MATERIAL
    103105%----------------------------------------------------------------------
    104 % \input{frontpgs}
     106\input{frontpgs}
    105107
    106108%----------------------------------------------------------------------
     
    111113
    112114\input{CFA_intro}
     115
     116\input{CFA_concurrency}
     117
     118\input{mutex_stmt}
    113119
    114120\input{actors}
  • doc/theses/mike_brooks_MMath/Makefile

    r1afd9ccb rd800676  
    88PicSRC = ${notdir ${wildcard ${Pictures}/*.png}}
    99DemoSRC = ${notdir ${wildcard ${Programs}/*-demo.cfa}}
    10 PgmSRC = ${notdir ${wildcard ${Programs}/*.cfa}}
     10PgmSRC = ${notdir ${wildcard ${Programs}/*}}
     11RunPgmSRC = ${notdir ${wildcard ${Programs}/*.run.*}}
    1112BibSRC = ${wildcard *.bib}
    1213
     
    1415BibLIB = .:../../bibliography                   # common citation repository
    1516
    16 MAKEFLAGS = --no-print-directory # --silent
     17#MAKEFLAGS = --no-print-directory # --silent
    1718VPATH = ${Build} ${Pictures} ${Programs} # extra search path for file names used in document
    1819
     
    2021BASE = ${basename ${DOCUMENT}}                  # remove suffix
    2122
     23DemoTex = ${DemoSRC:%.cfa=${Build}/%.tex}
     24RunPgmExe = ${addprefix ${Build}/,${basename ${basename ${RunPgmSRC}}}}
     25RunPgmOut = ${RunPgmExe:%=%.out}
     26
    2227# Commands
    2328
    2429LaTeX = TEXINPUTS=${TeXLIB} && export TEXINPUTS && pdflatex -halt-on-error -output-directory=${Build}
    2530BibTeX = BIBINPUTS=${BibLIB} && export BIBINPUTS && bibtex
    26 CFA = cfa
     31CFA = cfa -O0 -g
     32CC  = gcc -O0 -g
     33CXX = g++-11 --std=c++20 -O0 -g
    2734
    2835# Rules and Recipes
    2936
    30 .PHONY : all clean                              # not file names
     37.PHONY : all fragments_ran clean                        # not file names
     38.PRECIOUS : ${Build}/% ${Build}/%-demo      # don't delete intermediates
    3139.ONESHELL :
    3240
    33 all : ${DOCUMENT}
     41all : fragments_ran ${DOCUMENT}
     42
     43fragments_ran : $(RunPgmOut)
    3444
    3545clean :
     
    3848# File Dependencies
    3949
    40 %.pdf : ${TeXSRC} ${DemoSRC:%.cfa=%.tex} ${PicSRC} ${PgmSRC} ${BibSRC} Makefile | ${Build}
     50%.pdf : ${TeXSRC} ${DemoTex} ${PicSRC} ${PgmSRC} ${BibSRC} Makefile | ${Build}
    4151        ${LaTeX} ${BASE}
    4252        ${BibTeX} ${Build}/${BASE}
     
    5262
    5363%-demo.tex: %-demo | ${Build}
    54         ${Build}/$< > ${Build}/$@
     64        $< > $@
    5565
    56 %-demo: %-demo.cfa
    57         ${CFA} $< -o ${Build}/$@
     66${Build}/%-demo: ${Programs}/%-demo.cfa | ${Build}
     67        ${CFA} $< -o $@
    5868
     69${Build}/%: ${Programs}/%.run.cfa | ${Build}
     70        ${CFA} $< -o $@
     71
     72${Build}/%: ${Programs}/%.run.c | ${Build}
     73        ${CC}  $< -o $@
     74
     75${Build}/%: ${Programs}/%.run.cpp | ${Build}
     76        ${CXX} -MMD $< -o $@
     77
     78${Build}/%.out: ${Build}/% | ${Build}
     79        $< > $@
     80
     81-include ${Build}/*.d
  • doc/theses/mike_brooks_MMath/uw-ethesis.bib

    r1afd9ccb rd800676  
    6565  bibsource = {dblp computer science bibliography, https://dblp.org}
    6666}
     67
     68% --------------------------------------------------
     69% Linked-list prior work
     70
     71@misc{CFAStackEvaluation,
     72    contributer = {a3moss@plg},
     73    author      = {Aaron Moss},
     74    title       = {\textsf{C}$\mathbf{\forall}$ Stack Evaluation Programs},
     75    year        = 2018,
     76    howpublished= {\href{https://cforall.uwaterloo.ca/CFAStackEvaluation.zip}{https://cforall.uwaterloo.ca/\-CFAStackEvaluation.zip}},
     77}
     78
     79@misc{lst:linuxq,
     80  title     = {queue(7) — Linux manual page},
     81  howpublished= {\href{https://man7.org/linux/man-pages/man3/queue.3.html}{https://man7.org/linux/man-pages/man3/queue.3.html}},
     82}
     83  % see also https://man7.org/linux/man-pages/man7/queue.7.license.html
     84  %          https://man7.org/tlpi/
     85  %          https://www.kernel.org/doc/man-pages/
     86
     87@misc{lst:stl,
     88  title     = {std::list},
     89  howpublished= {\href{https://en.cppreference.com/w/cpp/container/list}{https://en.cppreference.com/w/cpp/container/list}},
     90}
     91
  • doc/theses/mike_brooks_MMath/uw-ethesis.tex

    r1afd9ccb rd800676  
    6060% For hyperlinked PDF, suitable for viewing on a computer, use this:
    6161\documentclass[letterpaper,12pt,titlepage,oneside,final]{book}
     62\usepackage{times}
    6263\usepackage[T1]{fontenc}        % Latin-1 => 256-bit characters, => | not dash, <> not Spanish question marks
    6364
     
    8788\usepackage{comment} % Removes large sections of the document.
    8889\usepackage{tabularx}
    89 \usepackage{subfigure}
     90\usepackage[labelformat=simple,aboveskip=0pt,farskip=0pt,font=normalsize]{subfig}
     91\renewcommand\thesubfigure{(\alph{subfigure})}
    9092
    9193\usepackage{algorithm}
     
    115117    citecolor=blue,        % color of links to bibliography
    116118    filecolor=magenta,      % color of file links
    117     urlcolor=blue           % color of external links
     119    urlcolor=blue,           % color of external links
     120    breaklinks=true
    118121}
    119122\ifthenelse{\boolean{PrintVersion}}{   % for improved print quality, change some hyperref options
     
    129132% although it's supposed to be in both the TeX Live and MikTeX distributions. There are also documentation and
    130133% installation instructions there.
     134
     135% Customizing tabularx
     136\newcolumntype{Y}{>{\centering\arraybackslash}X}
    131137
    132138% Setting up the page margins...
     
    175181\CFAStyle                                               % CFA code-style
    176182\lstset{language=CFA}                                   % default language
    177 \lstset{basicstyle=\linespread{0.9}\tt}                 % CFA typewriter font
     183\lstset{basicstyle=\linespread{0.9}\sf}                 % CFA typewriter font
    178184\lstset{inputpath={programs}}
    179185\newcommand{\PAB}[1]{{\color{red}PAB: #1}}
     186
     187\newcommand{\uCpp}{$\mu$\CC}
    180188
    181189%======================================================================
     
    201209%----------------------------------------------------------------------
    202210\begin{sloppypar}
    203 
    204211\input{intro}
    205212\input{background}
     213\input{list}
    206214\input{array}
    207215\input{string}
  • libcfa/src/Makefile.am

    r1afd9ccb rd800676  
    4848        math.hfa \
    4949        time_t.hfa \
    50     virtual_dtor.hfa \
     50        virtual_dtor.hfa \
    5151        bits/algorithm.hfa \
    5252        bits/align.hfa \
     
    6969        vec/vec2.hfa \
    7070        vec/vec3.hfa \
    71         vec/vec4.hfa 
     71        vec/vec4.hfa
    7272
    7373inst_headers_src = \
  • libcfa/src/bits/random.hfa

    r1afd9ccb rd800676  
    1010// Created On       : Fri Jan 14 07:18:11 2022
    1111// Last Modified By : Peter A. Buhr
    12 // Last Modified On : Thu Dec 22 20:54:22 2022
    13 // Update Count     : 178
     12// Last Modified On : Mon Mar 20 21:45:24 2023
     13// Update Count     : 186
    1414//
    1515
     
    2828        #define XOSHIRO256PP
    2929        //#define KISS_64
     30    // #define SPLITMIX_64
    3031
    3132        // 32-bit generators
    3233        //#define XORSHIFT_6_21_7
    3334        #define XOSHIRO128PP
     35    // #define SPLITMIX_32
    3436#else                                                                                                   // 32-bit architecture
    3537        // 64-bit generators
    3638        //#define XORSHIFT_13_7_17
    3739        #define XOSHIRO256PP
     40    // #define SPLITMIX_64
    3841
    3942        // 32-bit generators
    4043        //#define XORSHIFT_6_21_7
    4144        #define XOSHIRO128PP
     45    // #define SPLITMIX_32
    4246#endif // __x86_64__
    4347
    4448// Define C/CFA PRNG name and random-state.
    45 
    46 // SKULLDUGGERY: typedefs name struct and typedef with the same name to deal with CFA typedef numbering problem.
    4749
    4850#ifdef XOSHIRO256PP
    4951#define PRNG_NAME_64 xoshiro256pp
    5052#define PRNG_STATE_64_T GLUE(PRNG_NAME_64,_t)
    51 typedef struct PRNG_STATE_64_T { uint64_t s0, s1, s2, s3; } PRNG_STATE_64_T;
     53typedef struct { uint64_t s0, s1, s2, s3; } PRNG_STATE_64_T;
    5254#endif // XOSHIRO256PP
    5355
     
    5557#define PRNG_NAME_32 xoshiro128pp
    5658#define PRNG_STATE_32_T GLUE(PRNG_NAME_32,_t)
    57 typedef struct PRNG_STATE_32_T { uint32_t s0, s1, s2, s3; } PRNG_STATE_32_T;
     59typedef struct { uint32_t s0, s1, s2, s3; } PRNG_STATE_32_T;
    5860#endif // XOSHIRO128PP
    5961
     
    8385#endif // XORSHIFT_12_25_27
    8486
     87#ifdef SPLITMIX_64
     88#define PRNG_NAME_64 splitmix64
     89#define PRNG_STATE_64_T uint64_t
     90#endif // SPLITMIX32
     91
     92#ifdef SPLITMIX_32
     93#define PRNG_NAME_32 splitmix32
     94#define PRNG_STATE_32_T uint32_t
     95#endif // SPLITMIX32
     96
    8597#ifdef KISS_64
    8698#define PRNG_NAME_64 kiss_64
    8799#define PRNG_STATE_64_T GLUE(PRNG_NAME_64,_t)
    88 typedef struct PRNG_STATE_64_T { uint64_t z, w, jsr, jcong; } PRNG_STATE_64_T;
     100typedef struct { uint64_t z, w, jsr, jcong; } PRNG_STATE_64_T;
    89101#endif // KISS_^64
    90102
     
    92104#define PRNG_NAME_32 xorwow
    93105#define PRNG_STATE_32_T GLUE(PRNG_NAME_32,_t)
    94 typedef struct PRNG_STATE_32_T { uint32_t a, b, c, d, counter; } PRNG_STATE_32_T;
     106typedef struct { uint32_t a, b, c, d, counter; } PRNG_STATE_32_T;
    95107#endif // XOSHIRO128PP
    96108
     
    119131#ifdef __cforall                                                                                // don't include in C code (invoke.h)
    120132
     133// https://rosettacode.org/wiki/Pseudo-random_numbers/Splitmix64
     134//
     135// Splitmix64 is not recommended for demanding random number requirements, but is often used to calculate initial states
     136// for other more complex pseudo-random number generators (see https://prng.di.unimi.it).
     137// Also https://rosettacode.org/wiki/Pseudo-random_numbers/Splitmix64.
     138static inline uint64_t splitmix64( uint64_t & state ) {
     139    state += 0x9e3779b97f4a7c15;
     140    uint64_t z = state;
     141    z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9;
     142    z = (z ^ (z >> 27)) * 0x94d049bb133111eb;
     143    return z ^ (z >> 31);
     144} // splitmix64
     145
     146static inline void splitmix64_set_seed( uint64_t & state , uint64_t seed ) {
     147    state = seed;
     148    splitmix64( state );                                                                // prime
     149} // splitmix64_set_seed
     150
     151// https://github.com/bryc/code/blob/master/jshash/PRNGs.md#splitmix32
     152//
     153// Splitmix32 is not recommended for demanding random number requirements, but is often used to calculate initial states
     154// for other more complex pseudo-random number generators (see https://prng.di.unimi.it).
     155
     156static inline uint32_t splitmix32( uint32_t & state ) {
     157    state += 0x9e3779b9;
     158    uint64_t z = state;
     159    z = (z ^ (z >> 15)) * 0x85ebca6b;
     160    z = (z ^ (z >> 13)) * 0xc2b2ae35;
     161    return z ^ (z >> 16);
     162} // splitmix32
     163
     164static inline void splitmix32_set_seed( uint32_t & state, uint64_t seed ) {
     165    state = seed;
     166    splitmix32( state );                                                                // prime
     167} // splitmix32_set_seed
     168
     169#ifdef __SIZEOF_INT128__
     170//--------------------------------------------------
     171static inline uint64_t lehmer64( __uint128_t & state ) {
     172        __uint128_t ret = state;
     173        state *= 0x_da94_2042_e4dd_58b5;
     174        return ret >> 64;
     175} // lehmer64
     176
     177static inline void lehmer64_set_seed( __uint128_t & state, uint64_t seed ) {
     178        // The seed needs to be coprime with the 2^64 modulus to get the largest period, so no factors of 2 in the seed.
     179        state = splitmix64( seed );                                                     // prime
     180} // lehmer64_set_seed
     181
     182//--------------------------------------------------
     183static inline uint64_t wyhash64( uint64_t & state ) {
     184        uint64_t ret = state;
     185        state += 0x_60be_e2be_e120_fc15;
     186        __uint128_t tmp;
     187        tmp = (__uint128_t) ret * 0x_a3b1_9535_4a39_b70d;
     188        uint64_t m1 = (tmp >> 64) ^ tmp;
     189        tmp = (__uint128_t)m1 * 0x_1b03_7387_12fa_d5c9;
     190        uint64_t m2 = (tmp >> 64) ^ tmp;
     191        return m2;
     192} // wyhash64
     193
     194static inline void wyhash64_set_seed( uint64_t & state, uint64_t seed ) {
     195        state = splitmix64( seed );                                                     // prime
     196} // wyhash64_set_seed
     197#endif // __SIZEOF_INT128__
     198
    121199// https://prng.di.unimi.it/xoshiro256starstar.c
    122200//
     
    130208
    131209#ifndef XOSHIRO256PP
    132 typedef struct xoshiro256pp_t { uint64_t s0, s1, s2, s3; } xoshiro256pp_t;
     210typedef struct { uint64_t s0, s1, s2, s3; } xoshiro256pp_t;
    133211#endif // ! XOSHIRO256PP
    134212
     
    151229
    152230static inline void xoshiro256pp_set_seed( xoshiro256pp_t & state, uint64_t seed ) {
    153         state = (xoshiro256pp_t){ seed, seed, seed, seed };
    154         xoshiro256pp( state );
     231    // To attain repeatable seeding, compute seeds separately because the order of argument evaluation is undefined.
     232    uint64_t seed1 = splitmix64( seed );                                // prime
     233    uint64_t seed2 = splitmix64( seed );
     234    uint64_t seed3 = splitmix64( seed );
     235    uint64_t seed4 = splitmix64( seed );
     236        state = (xoshiro256pp_t){ seed1, seed2, seed3, seed4 };
    155237} // xoshiro256pp_set_seed
    156238
     
    165247
    166248#ifndef XOSHIRO128PP
    167 typedef struct xoshiro128pp_t { uint32_t s0, s1, s2, s3; } xoshiro128pp_t;
     249typedef struct { uint32_t s0, s1, s2, s3; } xoshiro128pp_t;
    168250#endif // ! XOSHIRO128PP
    169251
     
    186268
    187269static inline void xoshiro128pp_set_seed( xoshiro128pp_t & state, uint32_t seed ) {
    188         state = (xoshiro128pp_t){ seed, seed, seed, seed };
    189         xoshiro128pp( state );                                                          // prime
     270    // To attain repeatable seeding, compute seeds separately because the order of argument evaluation is undefined.
     271    uint32_t seed1 = splitmix32( seed );                                // prime
     272    uint32_t seed2 = splitmix32( seed );
     273    uint32_t seed3 = splitmix32( seed );
     274    uint32_t seed4 = splitmix32( seed );
     275        state = (xoshiro128pp_t){ seed1, seed2, seed3, seed4 };
    190276} // xoshiro128pp_set_seed
    191 
    192 #ifdef __SIZEOF_INT128__
    193         //--------------------------------------------------
    194         static inline uint64_t lehmer64( __uint128_t & state ) {
    195                 __uint128_t ret = state;
    196                 state *= 0x_da94_2042_e4dd_58b5;
    197                 return ret >> 64;
    198         } // lehmer64
    199 
    200         static inline void lehmer64_set_seed( __uint128_t & state, uint64_t seed ) {
    201                 // The seed needs to be coprime with the 2^64 modulus to get the largest period, so no factors of 2 in the seed.
    202                 state = seed;
    203                 lehmer64( state );                                                              // prime
    204         } // lehmer64_set_seed
    205 
    206         //--------------------------------------------------
    207         static inline uint64_t wyhash64( uint64_t & state ) {
    208                 uint64_t ret = state;
    209                 state += 0x_60be_e2be_e120_fc15;
    210                 __uint128_t tmp;
    211                 tmp = (__uint128_t) ret * 0x_a3b1_9535_4a39_b70d;
    212                 uint64_t m1 = (tmp >> 64) ^ tmp;
    213                 tmp = (__uint128_t)m1 * 0x_1b03_7387_12fa_d5c9;
    214                 uint64_t m2 = (tmp >> 64) ^ tmp;
    215                 return m2;
    216         } // wyhash64
    217 
    218         static inline void wyhash64_set_seed( uint64_t & state, uint64_t seed ) {
    219                 state = seed;
    220                 wyhash64( state );                                                              // prime
    221         } // wyhash64_set_seed
    222 #endif // __SIZEOF_INT128__
    223277
    224278//--------------------------------------------------
     
    232286
    233287static inline void xorshift_13_7_17_set_seed( uint64_t & state, uint64_t seed ) {
    234         state = seed;
    235         xorshift_13_7_17( state );                                                      // prime
     288        state = splitmix64( seed );                                                     // prime
    236289} // xorshift_13_7_17_set_seed
    237290
     
    250303
    251304static inline void xorshift_6_21_7_set_seed( uint32_t & state, uint32_t seed ) {
    252         state = seed;
    253         xorshift_6_21_7( state );                                                       // prime
     305    state = splitmix32( seed );                                                 // prime
    254306} // xorshift_6_21_7_set_seed
    255307
     
    265317
    266318static inline void xorshift_12_25_27_set_seed( uint64_t & state, uint64_t seed ) {
    267         state = seed;
    268         xorshift_12_25_27( state );                                                     // prime
     319        state = splitmix64( seed );                                                     // prime
    269320} // xorshift_12_25_27_set_seed
    270321
     
    272323// The state must be seeded with a nonzero value.
    273324#ifndef KISS_64
    274 typedef struct kiss_64_t { uint64_t z, w, jsr, jcong; } kiss_64_t;
     325typedef struct { uint64_t z, w, jsr, jcong; } kiss_64_t;
    275326#endif // ! KISS_64
    276327
     
    287338
    288339static inline void kiss_64_set_seed( kiss_64_t & rs, uint64_t seed ) with(rs) {
    289         z = 1; w = 1; jsr = 4; jcong = seed;
    290         kiss_64( rs );                                                                          // prime
     340        z = 1; w = 1; jsr = 4; jcong = splitmix64( seed );      // prime
    291341} // kiss_64_set_seed
    292342
     
    294344// The state array must be initialized to non-zero in the first four words.
    295345#ifndef XORWOW
    296 typedef struct xorwow_t { uint32_t a, b, c, d, counter; } xorwow_t;
     346typedef struct { uint32_t a, b, c, d, counter; } xorwow_t;
    297347#endif // ! XORWOW
    298348
     
    316366
    317367static inline void xorwow_set_seed( xorwow_t & rs, uint32_t seed ) {
    318         rs = (xorwow_t){ seed, seed, seed, seed, 0 };
    319         xorwow( rs );                                                                           // prime
     368    // To attain repeatable seeding, compute seeds separately because the order of argument evaluation is undefined.
     369    uint32_t seed1 = splitmix32( seed );                                // prime
     370    uint32_t seed2 = splitmix32( seed );
     371    uint32_t seed3 = splitmix32( seed );
     372    uint32_t seed4 = splitmix32( seed );
     373        rs = (xorwow_t){ seed1, seed2, seed3, seed4, 0 };
    320374} // xorwow_set_seed
    321375
     
    323377// Used in __tls_rand_fwd
    324378#define M  (1_l64u << 48_l64u)
    325 #define A  (25214903917_l64u)
    326 #define AI (18446708753438544741_l64u)
     379#define A  (25_214_903_917_l64u)
     380#define AI (18_446_708_753_438_544_741_l64u)
    327381#define C  (11_l64u)
    328382#define D  (16_l64u)
  • libcfa/src/concurrency/channel.hfa

    r1afd9ccb rd800676  
    2828    exp_backoff_then_block_lock c_lock, p_lock;
    2929    __spinlock_t mutex_lock;
     30    char __padding[64]; // avoid false sharing in arrays
    3031};
    3132
  • libcfa/src/concurrency/mutex_stmt.hfa

    r1afd9ccb rd800676  
    2727    // Sort locks based on address
    2828    __libcfa_small_sort(this.lockarr, count);
    29 
    30     // acquire locks in order
    31     // for ( size_t i = 0; i < count; i++ ) {
    32     //     lock(*this.lockarr[i]);
    33     // }
    34 }
    35 
    36 static inline void ^?{}( __mutex_stmt_lock_guard & this ) with(this) {
    37     // for ( size_t i = count; i > 0; i-- ) {
    38     //     unlock(*lockarr[i - 1]);
    39     // }
    4029}
    4130
  • libcfa/src/containers/list.hfa

    r1afd9ccb rd800676  
    3232static inline tytagref(void, T) ?`inner ( T & this ) { tytagref( void, T ) ret = {this}; return ret; }
    3333
    34 // use this on every case of plan-9 inheritance, to make embedded a closure of plan-9 inheritance
    35 #define P9_EMBEDDED( derived, immedBase ) \
    36 forall( Tbase &, TdiscardPath & | { tytagref( TdiscardPath, Tbase ) ?`inner( immedBase & ); } ) \
    37     static inline tytagref(immedBase, Tbase) ?`inner( derived & this ) { \
     34
     35//
     36// P9_EMBEDDED: Use on every case of plan-9 inheritance, to make "implements embedded" be a closure of plan-9 inheritance.
     37//
     38// struct foo {
     39//    int a, b, c;
     40//    inline (bar);
     41// };
     42// P9_EMBEDDED( foo, bar )
     43//
     44
     45// usual version, for structs that are top-level declarations
     46#define P9_EMBEDDED(        derived, immedBase ) P9_EMBEDDED_DECL_( derived, immedBase, static ) P9_EMBEDDED_BDY_( immedBase )
     47
     48// special version, for structs that are declared in functions
     49#define P9_EMBEDDED_INFUNC( derived, immedBase ) P9_EMBEDDED_DECL_( derived, immedBase,        ) P9_EMBEDDED_BDY_( immedBase )
     50
     51// forward declarations of both the above; generally not needed
     52// may help you control where the P9_EMBEEDED cruft goes, in case "right after the stuct" isn't where you want it
     53#define P9_EMBEDDED_FWD(        derived, immedBase )      P9_EMBEDDED_DECL_( derived, immedBase, static ) ;
     54#define P9_EMBEDDED_FWD_INFUNC( derived, immedBase ) auto P9_EMBEDDED_DECL_( derived, immedBase,        ) ;
     55
     56// private helpers
     57#define P9_EMBEDDED_DECL_( derived, immedBase, STORAGE ) \
     58    forall( Tbase &, TdiscardPath & | { tytagref( TdiscardPath, Tbase ) ?`inner( immedBase & ); } ) \
     59    STORAGE inline tytagref(immedBase, Tbase) ?`inner( derived & this )
     60   
     61#define P9_EMBEDDED_BDY_( immedBase ) { \
    3862        immedBase & ib = this; \
    3963        Tbase & b = ib`inner; \
  • src/ControlStruct/ExceptTranslateNew.cpp

    r1afd9ccb rd800676  
    314314                nullptr,
    315315                ast::Storage::Classes{},
    316                 ast::Linkage::Cforall
     316                ast::Linkage::Cforall,
     317                {},
     318                { ast::Function::Inline }
    317319        );
    318320}
  • src/Parser/ExpressionNode.cc

    r1afd9ccb rd800676  
    164164        } else {
    165165                // At least one digit in integer constant, so safe to backup while looking for suffix.
     166                // This declaration and the comma expressions in the conditions mimic
     167                // the declare and check pattern allowed in later compiler versions.
     168                // (Only some early compilers/C++ standards do not support it.)
    166169                string::size_type posn;
    167170                // pointer value
    168                 if ( posn = str.find_last_of( "pP" ); posn != string::npos ) {
     171                if ( posn = str.find_last_of( "pP" ), posn != string::npos ) {
    169172                        ltype = 5; str.erase( posn, 1 );
    170173                // size_t
    171                 } else if ( posn = str.find_last_of( "zZ" ); posn != string::npos ) {
     174                } else if ( posn = str.find_last_of( "zZ" ), posn != string::npos ) {
    172175                        Unsigned = true; type = 2; ltype = 4; str.erase( posn, 1 );
    173176                // signed char
    174                 } else if ( posn = str.rfind( "hh" ); posn != string::npos ) {
     177                } else if ( posn = str.rfind( "hh" ), posn != string::npos ) {
    175178                        type = 1; str.erase( posn, 2 );
    176179                // signed char
    177                 } else if ( posn = str.rfind( "HH" ); posn != string::npos ) {
     180                } else if ( posn = str.rfind( "HH" ), posn != string::npos ) {
    178181                        type = 1; str.erase( posn, 2 );
    179182                // short
    180                 } else if ( posn = str.find_last_of( "hH" ); posn != string::npos ) {
     183                } else if ( posn = str.find_last_of( "hH" ), posn != string::npos ) {
    181184                        type = 0; str.erase( posn, 1 );
    182185                // int (natural number)
    183                 } else if ( posn = str.find_last_of( "nN" ); posn != string::npos ) {
     186                } else if ( posn = str.find_last_of( "nN" ), posn != string::npos ) {
    184187                        type = 2; str.erase( posn, 1 );
    185188                } else if ( str.rfind( "ll" ) != string::npos || str.rfind( "LL" ) != string::npos ) {
  • src/Parser/parser.yy

    r1afd9ccb rd800676  
    1010// Created On       : Sat Sep  1 20:22:55 2001
    1111// Last Modified By : Peter A. Buhr
    12 // Last Modified On : Tue Mar 14 09:37:58 2023
    13 // Update Count     : 5990
     12// Last Modified On : Wed Mar 22 21:26:01 2023
     13// Update Count     : 6002
    1414//
    1515
     
    270270        SemanticError( yylloc, ::toString( "Identifier \"", identifier, "\" cannot appear before a ", kind, ".\n"
    271271                                   "Possible cause is misspelled storage/CV qualifier, misspelled typename, or missing generic parameter." ) );
     272} // IdentifierBeforeType
     273
     274static bool TypedefForall( DeclarationNode * decl ) {
     275        if ( decl->type->forall || (decl->type->kind == TypeData::Aggregate && decl->type->aggregate.params) ) {
     276                SemanticError( yylloc, "forall qualifier in typedef is currently unimplemented." );
     277                return true;
     278        } // if
     279        return false;
    272280} // IdentifierBeforeType
    273281
     
    496504%type<decl> typedef_name typedef_declaration typedef_expression
    497505
    498 %type<decl> variable_type_redeclarator type_ptr type_array type_function
     506%type<decl> variable_type_redeclarator variable_type_ptr variable_type_array variable_type_function
     507%type<decl> general_function_declarator function_type_redeclarator function_type_array function_type_no_ptr function_type_ptr
    499508
    500509%type<decl> type_parameter_redeclarator type_parameter_ptr type_parameter_array type_parameter_function
     
    19571966        TYPEDEF type_specifier declarator
    19581967                {
    1959                         // if type_specifier is an anon aggregate => name
    19601968                        typedefTable.addToEnclosingScope( *$3->name, TYPEDEFname, "4" );
    1961                         $$ = $3->addType( $2 )->addTypedef();           // watchout frees $2 and $3
     1969                        if ( TypedefForall( $2 ) ) $$ = nullptr;
     1970                        else $$ = $3->addType( $2 )->addTypedef();              // watchout frees $2 and $3
    19621971                }
    19631972        | typedef_declaration pop ',' push declarator
     
    19691978                {
    19701979                        typedefTable.addToEnclosingScope( *$4->name, TYPEDEFname, "6" );
    1971                         $$ = $4->addQualifiers( $1 )->addType( $3 )->addTypedef();
     1980                        if ( TypedefForall( $1 ) ) $$ = nullptr;
     1981                        else $$ = $4->addQualifiers( $1 )->addType( $3 )->addTypedef();
    19721982                }
    19731983        | type_specifier TYPEDEF declarator
    19741984                {
    19751985                        typedefTable.addToEnclosingScope( *$3->name, TYPEDEFname, "7" );
    1976                         $$ = $3->addType( $1 )->addTypedef();
     1986                        if ( TypedefForall( $1 ) ) $$ = nullptr;
     1987                        else $$ = $3->addType( $1 )->addTypedef();
    19771988                }
    19781989        | type_specifier TYPEDEF type_qualifier_list declarator
    19791990                {
    19801991                        typedefTable.addToEnclosingScope( *$4->name, TYPEDEFname, "8" );
    1981                         $$ = $4->addQualifiers( $1 )->addType( $1 )->addTypedef();
     1992                        if ( TypedefForall( $3 ) ) $$ = nullptr;
     1993                        else $$ = $4->addQualifiers( $1 )->addType( $1 )->addTypedef();
    19821994                }
    19831995        ;
     
    20162028                // A semantic check is required to ensure asm_name only appears on declarations with implicit or explicit static
    20172029                // storage-class
    2018         declarator asm_name_opt initializer_opt
     2030        variable_declarator asm_name_opt initializer_opt
    20192031                { $$ = $1->addAsmName( $2 )->addInitializer( $3 ); }
     2032        | variable_type_redeclarator asm_name_opt initializer_opt
     2033                { $$ = $1->addAsmName( $2 )->addInitializer( $3 ); }
     2034
     2035        | general_function_declarator asm_name_opt
     2036                { $$ = $1->addAsmName( $2 )->addInitializer( nullptr ); }
     2037        | general_function_declarator asm_name_opt '=' VOID
     2038                { $$ = $1->addAsmName( $2 )->addInitializer( new InitializerNode( true ) ); }
     2039
    20202040        | declaring_list ',' attribute_list_opt declarator asm_name_opt initializer_opt
    20212041                { $$ = $1->appendList( $4->addQualifiers( $3 )->addAsmName( $5 )->addInitializer( $6 ) ); }
     2042        ;
     2043
     2044general_function_declarator:
     2045        function_type_redeclarator
     2046        | function_declarator
    20222047        ;
    20232048
     
    25432568                // A semantic check is required to ensure bit_subrange only appears on integral types.
    25442569                { $$ = $1->addBitfield( $2 ); }
     2570        | function_type_redeclarator bit_subrange_size_opt
     2571                // A semantic check is required to ensure bit_subrange only appears on integral types.
     2572                { $$ = $1->addBitfield( $2 ); }
    25452573        ;
    25462574
     
    31953223                        $$ = $2->addFunctionBody( $4, $3 )->addType( $1 );
    31963224                }
    3197         | declaration_specifier variable_type_redeclarator with_clause_opt compound_statement
     3225        | declaration_specifier function_type_redeclarator with_clause_opt compound_statement
    31983226                {
    31993227                        rebindForall( $1, $2 );
     
    32313259        | variable_type_redeclarator
    32323260        | function_declarator
     3261        | function_type_redeclarator
    32333262        ;
    32343263
     
    34813510        ;
    34823511
    3483 // This pattern parses a declaration for a variable or function prototype that redefines a type name, e.g.:
     3512// This pattern parses a declaration for a variable that redefines a type name, e.g.:
    34843513//
    34853514//              typedef int foo;
     
    34873516//                 int foo; // redefine typedef name in new scope
    34883517//              }
    3489 //
    3490 // The pattern precludes declaring an array of functions versus a pointer to an array of functions, and returning arrays
    3491 // and functions versus pointers to arrays and functions.
    34923518
    34933519paren_type:
     
    35043530        paren_type attribute_list_opt
    35053531                { $$ = $1->addQualifiers( $2 ); }
    3506         | type_ptr
    3507         | type_array attribute_list_opt
     3532        | variable_type_ptr
     3533        | variable_type_array attribute_list_opt
    35083534                { $$ = $1->addQualifiers( $2 ); }
    3509         | type_function attribute_list_opt
     3535        | variable_type_function attribute_list_opt
    35103536                { $$ = $1->addQualifiers( $2 ); }
    35113537        ;
    35123538
    3513 type_ptr:
     3539variable_type_ptr:
    35143540        ptrref_operator variable_type_redeclarator
    35153541                { $$ = $2->addPointer( DeclarationNode::newPointer( nullptr, $1 ) ); }
    35163542        | ptrref_operator type_qualifier_list variable_type_redeclarator
    35173543                { $$ = $3->addPointer( DeclarationNode::newPointer( $2, $1 ) ); }
    3518         | '(' type_ptr ')' attribute_list_opt                           // redundant parenthesis
     3544        | '(' variable_type_ptr ')' attribute_list_opt          // redundant parenthesis
    35193545                { $$ = $2->addQualifiers( $4 ); }
    3520         | '(' attribute_list type_ptr ')' attribute_list_opt // redundant parenthesis
     3546        | '(' attribute_list variable_type_ptr ')' attribute_list_opt // redundant parenthesis
    35213547                { $$ = $3->addQualifiers( $2 )->addQualifiers( $5 ); }
    35223548        ;
    35233549
    3524 type_array:
     3550variable_type_array:
    35253551        paren_type array_dimension
    35263552                { $$ = $1->addArray( $2 ); }
    3527         | '(' type_ptr ')' array_dimension
     3553        | '(' variable_type_ptr ')' array_dimension
    35283554                { $$ = $2->addArray( $4 ); }
    3529         | '(' attribute_list type_ptr ')' array_dimension
     3555        | '(' attribute_list variable_type_ptr ')' array_dimension
    35303556                { $$ = $3->addQualifiers( $2 )->addArray( $5 ); }
    3531         | '(' type_array ')' multi_array_dimension                      // redundant parenthesis
     3557        | '(' variable_type_array ')' multi_array_dimension     // redundant parenthesis
    35323558                { $$ = $2->addArray( $4 ); }
    3533         | '(' attribute_list type_array ')' multi_array_dimension // redundant parenthesis
     3559        | '(' attribute_list variable_type_array ')' multi_array_dimension // redundant parenthesis
    35343560                { $$ = $3->addQualifiers( $2 )->addArray( $5 ); }
    3535         | '(' type_array ')'                                                            // redundant parenthesis
     3561        | '(' variable_type_array ')'                                           // redundant parenthesis
    35363562                { $$ = $2; }
    3537         | '(' attribute_list type_array ')'                                     // redundant parenthesis
     3563        | '(' attribute_list variable_type_array ')'            // redundant parenthesis
    35383564                { $$ = $3->addQualifiers( $2 ); }
    35393565        ;
    35403566
    3541 type_function:
     3567variable_type_function:
     3568        '(' variable_type_ptr ')' '(' push parameter_type_list_opt pop ')' // empty parameter list OBSOLESCENT (see 3)
     3569                { $$ = $2->addParamList( $6 ); }
     3570        | '(' attribute_list variable_type_ptr ')' '(' push parameter_type_list_opt pop ')' // empty parameter list OBSOLESCENT (see 3)
     3571                { $$ = $3->addQualifiers( $2 )->addParamList( $7 ); }
     3572        | '(' variable_type_function ')'                                        // redundant parenthesis
     3573                { $$ = $2; }
     3574        | '(' attribute_list variable_type_function ')'         // redundant parenthesis
     3575                { $$ = $3->addQualifiers( $2 ); }
     3576        ;
     3577
     3578// This pattern parses a declaration for a function prototype that redefines a type name.  It precludes declaring an
     3579// array of functions versus a pointer to an array of functions, and returning arrays and functions versus pointers to
     3580// arrays and functions.
     3581
     3582function_type_redeclarator:
     3583        function_type_no_ptr attribute_list_opt
     3584                { $$ = $1->addQualifiers( $2 ); }
     3585        | function_type_ptr
     3586        | function_type_array attribute_list_opt
     3587                { $$ = $1->addQualifiers( $2 ); }
     3588        ;
     3589
     3590function_type_no_ptr:
    35423591        paren_type '(' push parameter_type_list_opt pop ')' // empty parameter list OBSOLESCENT (see 3)
    35433592                { $$ = $1->addParamList( $4 ); }
    3544         | '(' type_ptr ')' '(' push parameter_type_list_opt pop ')' // empty parameter list OBSOLESCENT (see 3)
     3593        | '(' function_type_ptr ')' '(' push parameter_type_list_opt pop ')'
    35453594                { $$ = $2->addParamList( $6 ); }
    3546         | '(' attribute_list type_ptr ')' '(' push parameter_type_list_opt pop ')' // empty parameter list OBSOLESCENT (see 3)
     3595        | '(' attribute_list function_type_ptr ')' '(' push parameter_type_list_opt pop ')'
    35473596                { $$ = $3->addQualifiers( $2 )->addParamList( $7 ); }
    3548         | '(' type_function ')'                                                         // redundant parenthesis
     3597        | '(' function_type_no_ptr ')'                                          // redundant parenthesis
    35493598                { $$ = $2; }
    3550         | '(' attribute_list type_function ')'                          // redundant parenthesis
     3599        | '(' attribute_list function_type_no_ptr ')'           // redundant parenthesis
     3600                { $$ = $3->addQualifiers( $2 ); }
     3601        ;
     3602
     3603function_type_ptr:
     3604        ptrref_operator function_type_redeclarator
     3605                { $$ = $2->addPointer( DeclarationNode::newPointer( nullptr, $1 ) ); }
     3606        | ptrref_operator type_qualifier_list function_type_redeclarator
     3607                { $$ = $3->addPointer( DeclarationNode::newPointer( $2, $1 ) ); }
     3608        | '(' function_type_ptr ')' attribute_list_opt
     3609                { $$ = $2->addQualifiers( $4 ); }
     3610        | '(' attribute_list function_type_ptr ')' attribute_list_opt
     3611                { $$ = $3->addQualifiers( $2 )->addQualifiers( $5 ); }
     3612        ;
     3613
     3614function_type_array:
     3615        '(' function_type_ptr ')' array_dimension
     3616                { $$ = $2->addArray( $4 ); }
     3617        | '(' attribute_list function_type_ptr ')' array_dimension
     3618                { $$ = $3->addQualifiers( $2 )->addArray( $5 ); }
     3619        | '(' function_type_array ')' multi_array_dimension     // redundant parenthesis
     3620                { $$ = $2->addArray( $4 ); }
     3621        | '(' attribute_list function_type_array ')' multi_array_dimension // redundant parenthesis
     3622                { $$ = $3->addQualifiers( $2 )->addArray( $5 ); }
     3623        | '(' function_type_array ')'                                           // redundant parenthesis
     3624                { $$ = $2; }
     3625        | '(' attribute_list function_type_array ')'            // redundant parenthesis
    35513626                { $$ = $3->addQualifiers( $2 ); }
    35523627        ;
  • tests/.expect/PRNG.x64.txt

    r1afd9ccb rd800676  
    11
    22                    PRNG()     PRNG(5)   PRNG(0,5)
    3                 8464106481           4           4
    4        5215204710507639537           1           2
    5        1880401021892145483           0           4
    6       12503840966285181348           2           5
    7         801971300205459356           0           2
    8        6123812066052045228           3           1
    9        7691074772031490538           4           3
    10        4793575011534070065           0           0
    11       10647551928893428440           1           3
    12       10865128702974868079           0           3
    13         530720947131684825           3           0
    14       10520125295812061287           1           5
    15        7539957561855178679           4           4
    16       13739826796006269835           0           2
    17        4289714351582916365           3           2
    18       16911914987551424434           2           1
    19        5327155553462670435           4           0
    20       16251986870929071204           4           4
    21       13394433706240223001           0           3
    22        4814982023332666924           4           0
     3      13944458589275087071           3           2
     4        129977468648444256           0           4
     5       2357727400298891021           2           2
     6       8855179187835660146           3           3
     7       9957620185645882382           4           1
     8      13396406983727409795           0           5
     9       3342782395220265920           0           5
     10       1707651271867677937           1           0
     11      16402561450140881681           0           1
     12      17838519215740313729           4           2
     13       7425936020594490136           4           0
     14       4174865704721714670           3           5
     15      16055269689200152092           0           2
     16      15091270195803594018           1           5
     17      11807315541476180798           1           1
     18      10697186588988060306           4           1
     19      14665526411527044929           3           2
     20      11289342279096164771           2           5
     21      16126980828050300615           1           4
     22       7821578301767524260           4           1
    2323seed 1009
    2424
    2525Sequential
    26 trials 100000000 buckets 100000 min 871 max 1144 avg 1000.0 std 31.6 rstd 3.2%
     26trials 100000000 buckets 100000 min 875 max 1146 avg 1000.0 std 31.6 rstd 3.2%
    2727
    2828Concurrent
    29 trials 100000000 buckets 100000 min 871 max 1144 avg 1000.0 std 31.6 rstd 3.2%
    30 trials 100000000 buckets 100000 min 871 max 1144 avg 1000.0 std 31.6 rstd 3.2%
    31 trials 100000000 buckets 100000 min 871 max 1144 avg 1000.0 std 31.6 rstd 3.2%
    32 trials 100000000 buckets 100000 min 871 max 1144 avg 1000.0 std 31.6 rstd 3.2%
     29trials 100000000 buckets 100000 min 875 max 1146 avg 1000.0 std 31.6 rstd 3.2%
     30trials 100000000 buckets 100000 min 875 max 1146 avg 1000.0 std 31.6 rstd 3.2%
     31trials 100000000 buckets 100000 min 875 max 1146 avg 1000.0 std 31.6 rstd 3.2%
     32trials 100000000 buckets 100000 min 875 max 1146 avg 1000.0 std 31.6 rstd 3.2%
    3333
    3434                    prng()     prng(5)   prng(0,5)
    35                 8464106481           4           4
    36        5215204710507639537           1           2
    37        1880401021892145483           0           4
    38       12503840966285181348           2           5
    39         801971300205459356           0           2
    40        6123812066052045228           3           1
    41        7691074772031490538           4           3
    42        4793575011534070065           0           0
    43       10647551928893428440           1           3
    44       10865128702974868079           0           3
    45         530720947131684825           3           0
    46       10520125295812061287           1           5
    47        7539957561855178679           4           4
    48       13739826796006269835           0           2
    49        4289714351582916365           3           2
    50       16911914987551424434           2           1
    51        5327155553462670435           4           0
    52       16251986870929071204           4           4
    53       13394433706240223001           0           3
    54        4814982023332666924           4           0
     35      13944458589275087071           3           2
     36        129977468648444256           0           4
     37       2357727400298891021           2           2
     38       8855179187835660146           3           3
     39       9957620185645882382           4           1
     40      13396406983727409795           0           5
     41       3342782395220265920           0           5
     42       1707651271867677937           1           0
     43      16402561450140881681           0           1
     44      17838519215740313729           4           2
     45       7425936020594490136           4           0
     46       4174865704721714670           3           5
     47      16055269689200152092           0           2
     48      15091270195803594018           1           5
     49      11807315541476180798           1           1
     50      10697186588988060306           4           1
     51      14665526411527044929           3           2
     52      11289342279096164771           2           5
     53      16126980828050300615           1           4
     54       7821578301767524260           4           1
    5555seed 1009
    5656
    5757Sequential
    58 trials 100000000 buckets 100000 min 871 max 1144 avg 1000.0 std 31.6 rstd 3.2%
     58trials 100000000 buckets 100000 min 875 max 1146 avg 1000.0 std 31.6 rstd 3.2%
    5959
    6060Concurrent
    61 trials 100000000 buckets 100000 min 871 max 1144 avg 1000.0 std 31.6 rstd 3.2%
    62 trials 100000000 buckets 100000 min 871 max 1144 avg 1000.0 std 31.6 rstd 3.2%
    63 trials 100000000 buckets 100000 min 871 max 1144 avg 1000.0 std 31.6 rstd 3.2%
    64 trials 100000000 buckets 100000 min 871 max 1144 avg 1000.0 std 31.6 rstd 3.2%
     61trials 100000000 buckets 100000 min 875 max 1146 avg 1000.0 std 31.6 rstd 3.2%
     62trials 100000000 buckets 100000 min 875 max 1146 avg 1000.0 std 31.6 rstd 3.2%
     63trials 100000000 buckets 100000 min 875 max 1146 avg 1000.0 std 31.6 rstd 3.2%
     64trials 100000000 buckets 100000 min 875 max 1146 avg 1000.0 std 31.6 rstd 3.2%
    6565
    6666                   prng(t)   prng(t,5) prng(t,0,5)
    67                 8464106481           4           4
    68        5215204710507639537           1           2
    69        1880401021892145483           0           4
    70       12503840966285181348           2           5
    71         801971300205459356           0           2
    72        6123812066052045228           3           1
    73        7691074772031490538           4           3
    74        4793575011534070065           0           0
    75       10647551928893428440           1           3
    76       10865128702974868079           0           3
    77         530720947131684825           3           0
    78       10520125295812061287           1           5
    79        7539957561855178679           4           4
    80       13739826796006269835           0           2
    81        4289714351582916365           3           2
    82       16911914987551424434           2           1
    83        5327155553462670435           4           0
    84       16251986870929071204           4           4
    85       13394433706240223001           0           3
    86        4814982023332666924           4           0
     67      13944458589275087071           3           2
     68        129977468648444256           0           4
     69       2357727400298891021           2           2
     70       8855179187835660146           3           3
     71       9957620185645882382           4           1
     72      13396406983727409795           0           5
     73       3342782395220265920           0           5
     74       1707651271867677937           1           0
     75      16402561450140881681           0           1
     76      17838519215740313729           4           2
     77       7425936020594490136           4           0
     78       4174865704721714670           3           5
     79      16055269689200152092           0           2
     80      15091270195803594018           1           5
     81      11807315541476180798           1           1
     82      10697186588988060306           4           1
     83      14665526411527044929           3           2
     84      11289342279096164771           2           5
     85      16126980828050300615           1           4
     86       7821578301767524260           4           1
    8787seed 1009
    8888
    8989Sequential
    90 trials 100000000 buckets 100000 min 871 max 1144 avg 1000.0 std 31.6 rstd 3.2%
     90trials 100000000 buckets 100000 min 875 max 1146 avg 1000.0 std 31.6 rstd 3.2%
    9191
    9292Concurrent
    93 trials 100000000 buckets 100000 min 871 max 1144 avg 1000.0 std 31.6 rstd 3.2%
    94 trials 100000000 buckets 100000 min 871 max 1144 avg 1000.0 std 31.6 rstd 3.2%
    95 trials 100000000 buckets 100000 min 871 max 1144 avg 1000.0 std 31.6 rstd 3.2%
    96 trials 100000000 buckets 100000 min 871 max 1144 avg 1000.0 std 31.6 rstd 3.2%
     93trials 100000000 buckets 100000 min 875 max 1146 avg 1000.0 std 31.6 rstd 3.2%
     94trials 100000000 buckets 100000 min 875 max 1146 avg 1000.0 std 31.6 rstd 3.2%
     95trials 100000000 buckets 100000 min 875 max 1146 avg 1000.0 std 31.6 rstd 3.2%
     96trials 100000000 buckets 100000 min 875 max 1146 avg 1000.0 std 31.6 rstd 3.2%
  • tests/.expect/PRNG.x86.txt

    r1afd9ccb rd800676  
    11
    22                    PRNG()     PRNG(5)   PRNG(0,5)
    3                     130161           1           1
    4                 4074541490           0           0
    5                  927506267           0           3
    6                 1991273445           1           3
    7                  669918146           2           3
    8                  519546860           1           1
    9                 1136699882           4           3
    10                 2130185384           3           1
    11                  992239050           0           5
    12                 2250903111           0           1
    13                 1544429724           3           2
    14                 1591091660           3           3
    15                 2511657707           2           4
    16                 1065770984           2           4
    17                 2412763405           4           4
    18                 1834447239           4           2
    19                  360289337           0           4
    20                 2449452027           1           1
    21                 3370425396           2           1
    22                 3109103043           0           3
     3                2884683541           0           0
     4                3465286746           2           4
     5                3268922916           0           1
     6                2396374907           3           0
     7                2135076892           4           1
     8                 944377718           3           1
     9                2204845346           3           3
     10                3736609533           0           4
     11                4063231336           0           2
     12                1075394776           0           2
     13                 712844808           4           0
     14                4246343110           3           1
     15                3793873837           2           1
     16                3690340337           1           4
     17                 319207944           1           4
     18                1815791072           3           5
     19                2581617261           1           5
     20                3873329448           1           3
     21                 832631329           4           0
     22                 651551615           3           5
    2323seed 1009
    2424
    2525Sequential
    26 trials 100000000 buckets 100000 min 867 max 1135 avg 1000.0 std 31.7 rstd 3.2%
     26trials 100000000 buckets 100000 min 858 max 1147 avg 1000.0 std 31.5 rstd 3.2%
    2727
    2828Concurrent
    29 trials 100000000 buckets 100000 min 867 max 1135 avg 1000.0 std 31.7 rstd 3.2%
    30 trials 100000000 buckets 100000 min 867 max 1135 avg 1000.0 std 31.7 rstd 3.2%
    31 trials 100000000 buckets 100000 min 867 max 1135 avg 1000.0 std 31.7 rstd 3.2%
    32 trials 100000000 buckets 100000 min 867 max 1135 avg 1000.0 std 31.7 rstd 3.2%
     29trials 100000000 buckets 100000 min 858 max 1147 avg 1000.0 std 31.5 rstd 3.2%
     30trials 100000000 buckets 100000 min 858 max 1147 avg 1000.0 std 31.5 rstd 3.2%
     31trials 100000000 buckets 100000 min 858 max 1147 avg 1000.0 std 31.5 rstd 3.2%
     32trials 100000000 buckets 100000 min 858 max 1147 avg 1000.0 std 31.5 rstd 3.2%
    3333
    3434                    prng()     prng(5)   prng(0,5)
    35                     130161           1           1
    36                 4074541490           0           0
    37                  927506267           0           3
    38                 1991273445           1           3
    39                  669918146           2           3
    40                  519546860           1           1
    41                 1136699882           4           3
    42                 2130185384           3           1
    43                  992239050           0           5
    44                 2250903111           0           1
    45                 1544429724           3           2
    46                 1591091660           3           3
    47                 2511657707           2           4
    48                 1065770984           2           4
    49                 2412763405           4           4
    50                 1834447239           4           2
    51                  360289337           0           4
    52                 2449452027           1           1
    53                 3370425396           2           1
    54                 3109103043           0           3
     35                2884683541           0           0
     36                3465286746           2           4
     37                3268922916           0           1
     38                2396374907           3           0
     39                2135076892           4           1
     40                 944377718           3           1
     41                2204845346           3           3
     42                3736609533           0           4
     43                4063231336           0           2
     44                1075394776           0           2
     45                 712844808           4           0
     46                4246343110           3           1
     47                3793873837           2           1
     48                3690340337           1           4
     49                 319207944           1           4
     50                1815791072           3           5
     51                2581617261           1           5
     52                3873329448           1           3
     53                 832631329           4           0
     54                 651551615           3           5
    5555seed 1009
    5656
    5757Sequential
    58 trials 100000000 buckets 100000 min 867 max 1135 avg 1000.0 std 31.7 rstd 3.2%
     58trials 100000000 buckets 100000 min 858 max 1147 avg 1000.0 std 31.5 rstd 3.2%
    5959
    6060Concurrent
    61 trials 100000000 buckets 100000 min 867 max 1135 avg 1000.0 std 31.7 rstd 3.2%
    62 trials 100000000 buckets 100000 min 867 max 1135 avg 1000.0 std 31.7 rstd 3.2%
    63 trials 100000000 buckets 100000 min 867 max 1135 avg 1000.0 std 31.7 rstd 3.2%
    64 trials 100000000 buckets 100000 min 867 max 1135 avg 1000.0 std 31.7 rstd 3.2%
     61trials 100000000 buckets 100000 min 858 max 1147 avg 1000.0 std 31.5 rstd 3.2%
     62trials 100000000 buckets 100000 min 858 max 1147 avg 1000.0 std 31.5 rstd 3.2%
     63trials 100000000 buckets 100000 min 858 max 1147 avg 1000.0 std 31.5 rstd 3.2%
     64trials 100000000 buckets 100000 min 858 max 1147 avg 1000.0 std 31.5 rstd 3.2%
    6565
    6666                   prng(t)   prng(t,5) prng(t,0,5)
    67                     130161           1           1
    68                 4074541490           0           0
    69                  927506267           0           3
    70                 1991273445           1           3
    71                  669918146           2           3
    72                  519546860           1           1
    73                 1136699882           4           3
    74                 2130185384           3           1
    75                  992239050           0           5
    76                 2250903111           0           1
    77                 1544429724           3           2
    78                 1591091660           3           3
    79                 2511657707           2           4
    80                 1065770984           2           4
    81                 2412763405           4           4
    82                 1834447239           4           2
    83                  360289337           0           4
    84                 2449452027           1           1
    85                 3370425396           2           1
    86                 3109103043           0           3
     67                2884683541           0           0
     68                3465286746           2           4
     69                3268922916           0           1
     70                2396374907           3           0
     71                2135076892           4           1
     72                 944377718           3           1
     73                2204845346           3           3
     74                3736609533           0           4
     75                4063231336           0           2
     76                1075394776           0           2
     77                 712844808           4           0
     78                4246343110           3           1
     79                3793873837           2           1
     80                3690340337           1           4
     81                 319207944           1           4
     82                1815791072           3           5
     83                2581617261           1           5
     84                3873329448           1           3
     85                 832631329           4           0
     86                 651551615           3           5
    8787seed 1009
    8888
    8989Sequential
    90 trials 100000000 buckets 100000 min 867 max 1135 avg 1000.0 std 31.7 rstd 3.2%
     90trials 100000000 buckets 100000 min 858 max 1147 avg 1000.0 std 31.5 rstd 3.2%
    9191
    9292Concurrent
    93 trials 100000000 buckets 100000 min 867 max 1135 avg 1000.0 std 31.7 rstd 3.2%
    94 trials 100000000 buckets 100000 min 867 max 1135 avg 1000.0 std 31.7 rstd 3.2%
    95 trials 100000000 buckets 100000 min 867 max 1135 avg 1000.0 std 31.7 rstd 3.2%
    96 trials 100000000 buckets 100000 min 867 max 1135 avg 1000.0 std 31.7 rstd 3.2%
     93trials 100000000 buckets 100000 min 858 max 1147 avg 1000.0 std 31.5 rstd 3.2%
     94trials 100000000 buckets 100000 min 858 max 1147 avg 1000.0 std 31.5 rstd 3.2%
     95trials 100000000 buckets 100000 min 858 max 1147 avg 1000.0 std 31.5 rstd 3.2%
     96trials 100000000 buckets 100000 min 858 max 1147 avg 1000.0 std 31.5 rstd 3.2%
  • tests/.expect/nested_function.x64.txt

    r1afd9ccb rd800676  
    1 total 155
     1total 145
  • tests/.expect/nested_function.x86.txt

    r1afd9ccb rd800676  
    1 total 105
     1total 245
  • tests/concurrent/channels/parallel_harness.hfa

    r1afd9ccb rd800676  
    100100
    101101int test( size_t Processors, size_t Channels, size_t Producers, size_t Consumers, size_t ChannelSize ) {
    102     size_t Clusters = 1;
     102    size_t Clusters = Processors;
    103103    // create a cluster
    104104    cluster clus[Clusters];
     
    108108    }
    109109
    110     channels = anew( Channels );
     110    channels = aalloc( Channels );
    111111
    112112    // sout | "Processors: " | Processors | " ProdsPerChan: " | Producers | " ConsPerChan: " | Consumers | "Channels: " | Channels | " Channel Size: " | ChannelSize;
     
    150150       
    151151    }
    152     // for ( i; Channels ) {
    153     //     // sout | get_count( channels[i] );
    154     //     if ( get_count( channels[i] ) < Consumers ){
    155     //         #ifdef BIG
    156     //         bigObject b{0};
    157     //         #endif
    158     //         for ( j; Consumers ) {
    159     //             #ifdef BIG
    160     //             insert( channels[i], b );
    161     //             #else
    162     //             insert( channels[i], 0 );
    163     //             #endif
    164     //         }
    165     //     }
    166     // }
     152
    167153    sout | "cons";
    168154    for ( i; Consumers * Channels ) {
  • tests/concurrent/pthread/.expect/bounded_buffer.x64.txt

    r1afd9ccb rd800676  
    1 producer total value is 44280
    2 consumer total value is 44280
     1producer total value is 39780
     2consumer total value is 39780
  • tests/concurrent/pthread/.expect/bounded_buffer.x86.txt

    r1afd9ccb rd800676  
    1 producer total value is 45060
    2 consumer total value is 45060
     1producer total value is 1770
     2consumer total value is 1770
Note: See TracChangeset for help on using the changeset viewer.