1 | #pragma once |
---|
2 | |
---|
3 | #include <locks.hfa> |
---|
4 | |
---|
5 | struct no_reacq_lock { |
---|
6 | inline exp_backoff_then_block_lock; |
---|
7 | }; |
---|
8 | |
---|
9 | // have to override these by hand to get around plan 9 inheritance bug where resolver can't find the appropriate routine to call |
---|
10 | static inline void ?{}( no_reacq_lock & this ) { ((exp_backoff_then_block_lock &)this){}; } |
---|
11 | static inline bool try_lock(no_reacq_lock & this) { return try_lock(((exp_backoff_then_block_lock &)this)); } |
---|
12 | static inline void lock(no_reacq_lock & this) { lock(((exp_backoff_then_block_lock &)this)); } |
---|
13 | static inline void unlock(no_reacq_lock & this) { unlock(((exp_backoff_then_block_lock &)this)); } |
---|
14 | static inline void on_notify(no_reacq_lock & this, struct thread$ * t ) { on_notify(((exp_backoff_then_block_lock &)this), t); } |
---|
15 | static inline size_t on_wait(no_reacq_lock & this) { return on_wait(((exp_backoff_then_block_lock &)this)); } |
---|
16 | // override wakeup so that we don't reacquire the lock if using a condvar |
---|
17 | static inline void on_wakeup( no_reacq_lock & this, size_t recursion ) {} |
---|
18 | |
---|
19 | #define __PREVENTION_CHANNEL |
---|
20 | #ifdef __PREVENTION_CHANNEL |
---|
21 | forall( T ) { |
---|
22 | struct channel { |
---|
23 | size_t size; |
---|
24 | size_t front, back, count; |
---|
25 | T * buffer; |
---|
26 | thread$ * chair; |
---|
27 | T * chair_elem; |
---|
28 | exp_backoff_then_block_lock c_lock, p_lock; |
---|
29 | __spinlock_t mutex_lock; |
---|
30 | }; |
---|
31 | |
---|
32 | static inline void ?{}( channel(T) &c, size_t _size ) with(c) { |
---|
33 | size = _size; |
---|
34 | front = back = count = 0; |
---|
35 | buffer = anew( size ); |
---|
36 | chair = 0p; |
---|
37 | mutex_lock{}; |
---|
38 | c_lock{}; |
---|
39 | p_lock{}; |
---|
40 | } |
---|
41 | |
---|
42 | static inline void ?{}( channel(T) &c ){ ((channel(T) &)c){ 0 }; } |
---|
43 | static inline void ^?{}( channel(T) &c ) with(c) { delete( buffer ); } |
---|
44 | static inline size_t get_count( channel(T) & chan ) with(chan) { return count; } |
---|
45 | static inline size_t get_size( channel(T) & chan ) with(chan) { return size; } |
---|
46 | static inline bool has_waiters( channel(T) & chan ) with(chan) { return chair != 0p; } |
---|
47 | |
---|
48 | static inline void insert_( channel(T) & chan, T & elem ) with(chan) { |
---|
49 | memcpy((void *)&buffer[back], (void *)&elem, sizeof(T)); |
---|
50 | count += 1; |
---|
51 | back++; |
---|
52 | if ( back == size ) back = 0; |
---|
53 | } |
---|
54 | |
---|
55 | static inline void insert( channel(T) & chan, T elem ) with( chan ) { |
---|
56 | lock( p_lock ); |
---|
57 | lock( mutex_lock __cfaabi_dbg_ctx2 ); |
---|
58 | |
---|
59 | // have to check for the zero size channel case |
---|
60 | if ( size == 0 && chair != 0p ) { |
---|
61 | memcpy((void *)chair_elem, (void *)&elem, sizeof(T)); |
---|
62 | unpark( chair ); |
---|
63 | chair = 0p; |
---|
64 | unlock( mutex_lock ); |
---|
65 | unlock( p_lock ); |
---|
66 | unlock( c_lock ); |
---|
67 | return; |
---|
68 | } |
---|
69 | |
---|
70 | // wait if buffer is full, work will be completed by someone else |
---|
71 | if ( count == size ) { |
---|
72 | chair = active_thread(); |
---|
73 | chair_elem = &elem; |
---|
74 | unlock( mutex_lock ); |
---|
75 | park( ); |
---|
76 | return; |
---|
77 | } // if |
---|
78 | |
---|
79 | if ( chair != 0p ) { |
---|
80 | memcpy((void *)chair_elem, (void *)&elem, sizeof(T)); |
---|
81 | unpark( chair ); |
---|
82 | chair = 0p; |
---|
83 | unlock( mutex_lock ); |
---|
84 | unlock( p_lock ); |
---|
85 | unlock( c_lock ); |
---|
86 | return; |
---|
87 | } |
---|
88 | else insert_( chan, elem ); |
---|
89 | |
---|
90 | unlock( mutex_lock ); |
---|
91 | unlock( p_lock ); |
---|
92 | } |
---|
93 | |
---|
94 | static inline T remove( channel(T) & chan ) with(chan) { |
---|
95 | lock( c_lock ); |
---|
96 | lock( mutex_lock __cfaabi_dbg_ctx2 ); |
---|
97 | T retval; |
---|
98 | |
---|
99 | // have to check for the zero size channel case |
---|
100 | if ( size == 0 && chair != 0p ) { |
---|
101 | memcpy((void *)&retval, (void *)chair_elem, sizeof(T)); |
---|
102 | unpark( chair ); |
---|
103 | chair = 0p; |
---|
104 | unlock( mutex_lock ); |
---|
105 | unlock( p_lock ); |
---|
106 | unlock( c_lock ); |
---|
107 | return retval; |
---|
108 | } |
---|
109 | |
---|
110 | // wait if buffer is empty, work will be completed by someone else |
---|
111 | if ( count == 0 ) { |
---|
112 | chair = active_thread(); |
---|
113 | chair_elem = &retval; |
---|
114 | unlock( mutex_lock ); |
---|
115 | park( ); |
---|
116 | return retval; |
---|
117 | } |
---|
118 | |
---|
119 | // Remove from buffer |
---|
120 | memcpy((void *)&retval, (void *)&buffer[front], sizeof(T)); |
---|
121 | count -= 1; |
---|
122 | front = (front + 1) % size; |
---|
123 | |
---|
124 | if ( chair != 0p ) { |
---|
125 | insert_( chan, *chair_elem ); // do waiting producer work |
---|
126 | unpark( chair ); |
---|
127 | chair = 0p; |
---|
128 | unlock( mutex_lock ); |
---|
129 | unlock( p_lock ); |
---|
130 | unlock( c_lock ); |
---|
131 | return retval; |
---|
132 | } |
---|
133 | |
---|
134 | unlock( mutex_lock ); |
---|
135 | unlock( c_lock ); |
---|
136 | return retval; |
---|
137 | } |
---|
138 | |
---|
139 | } // forall( T ) |
---|
140 | #endif |
---|
141 | |
---|
142 | #ifndef __PREVENTION_CHANNEL |
---|
143 | forall( T ) { |
---|
144 | struct channel { |
---|
145 | size_t size; |
---|
146 | size_t front, back, count; |
---|
147 | T * buffer; |
---|
148 | fast_cond_var( no_reacq_lock ) prods, cons; |
---|
149 | no_reacq_lock mutex_lock; |
---|
150 | }; |
---|
151 | |
---|
152 | static inline void ?{}( channel(T) &c, size_t _size ) with(c) { |
---|
153 | size = _size; |
---|
154 | front = back = count = 0; |
---|
155 | buffer = anew( size ); |
---|
156 | prods{}; |
---|
157 | cons{}; |
---|
158 | mutex_lock{}; |
---|
159 | } |
---|
160 | |
---|
161 | static inline void ?{}( channel(T) &c ){ ((channel(T) &)c){ 0 }; } |
---|
162 | static inline void ^?{}( channel(T) &c ) with(c) { delete( buffer ); } |
---|
163 | static inline size_t get_count( channel(T) & chan ) with(chan) { return count; } |
---|
164 | static inline size_t get_size( channel(T) & chan ) with(chan) { return size; } |
---|
165 | static inline bool has_waiters( channel(T) & chan ) with(chan) { return !empty( cons ) || !empty( prods ); } |
---|
166 | static inline bool has_waiting_consumers( channel(T) & chan ) with(chan) { return !empty( cons ); } |
---|
167 | static inline bool has_waiting_producers( channel(T) & chan ) with(chan) { return !empty( prods ); } |
---|
168 | |
---|
169 | static inline void insert_( channel(T) & chan, T & elem ) with(chan) { |
---|
170 | memcpy((void *)&buffer[back], (void *)&elem, sizeof(T)); |
---|
171 | count += 1; |
---|
172 | back++; |
---|
173 | if ( back == size ) back = 0; |
---|
174 | } |
---|
175 | |
---|
176 | |
---|
177 | static inline void insert( channel(T) & chan, T elem ) with(chan) { |
---|
178 | lock( mutex_lock ); |
---|
179 | |
---|
180 | // have to check for the zero size channel case |
---|
181 | if ( size == 0 && !empty( cons ) ) { |
---|
182 | memcpy((void *)front( cons ), (void *)&elem, sizeof(T)); |
---|
183 | notify_one( cons ); |
---|
184 | unlock( mutex_lock ); |
---|
185 | return; |
---|
186 | } |
---|
187 | |
---|
188 | // wait if buffer is full, work will be completed by someone else |
---|
189 | if ( count == size ) { |
---|
190 | wait( prods, mutex_lock, (uintptr_t)&elem ); |
---|
191 | return; |
---|
192 | } // if |
---|
193 | |
---|
194 | if ( count == 0 && !empty( cons ) ) |
---|
195 | // do waiting consumer work |
---|
196 | memcpy((void *)front( cons ), (void *)&elem, sizeof(T)); |
---|
197 | else insert_( chan, elem ); |
---|
198 | |
---|
199 | notify_one( cons ); |
---|
200 | unlock( mutex_lock ); |
---|
201 | } |
---|
202 | |
---|
203 | static inline T remove( channel(T) & chan ) with(chan) { |
---|
204 | lock( mutex_lock ); |
---|
205 | T retval; |
---|
206 | |
---|
207 | // have to check for the zero size channel case |
---|
208 | if ( size == 0 && !empty( prods ) ) { |
---|
209 | memcpy((void *)&retval, (void *)front( prods ), sizeof(T)); |
---|
210 | notify_one( prods ); |
---|
211 | unlock( mutex_lock ); |
---|
212 | return retval; |
---|
213 | } |
---|
214 | |
---|
215 | // wait if buffer is empty, work will be completed by someone else |
---|
216 | if (count == 0) { |
---|
217 | wait( cons, mutex_lock, (uintptr_t)&retval ); |
---|
218 | return retval; |
---|
219 | } |
---|
220 | |
---|
221 | // Remove from buffer |
---|
222 | memcpy((void *)&retval, (void *)&buffer[front], sizeof(T)); |
---|
223 | count -= 1; |
---|
224 | front = (front + 1) % size; |
---|
225 | |
---|
226 | if (count == size - 1 && !empty( prods ) ) |
---|
227 | insert_( chan, *((T *)front( prods )) ); // do waiting producer work |
---|
228 | |
---|
229 | notify_one( prods ); |
---|
230 | unlock( mutex_lock ); |
---|
231 | return retval; |
---|
232 | } |
---|
233 | |
---|
234 | } // forall( T ) |
---|
235 | #endif |
---|