Ignore:
Timestamp:
May 13, 2025, 1:17:50 PM (4 months ago)
Author:
Mike Brooks <mlbrooks@…>
Branches:
master
Children:
0528d79
Parents:
7d02d35 (diff), 2410424 (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the (diff) links above to see all the changes relative to each parent.
Message:

Merge branch 'master' of plg.uwaterloo.ca:software/cfa/cfa-cc

File:
1 edited

Legend:

Unmodified
Added
Removed
  • doc/theses/mike_brooks_MMath/plots/string-peq-cppemu.py

    r7d02d35 rbd72f517  
    1212import pandas as pd
    1313import numpy as np
     14import sys
    1415import os
    1516
    16 infile = os.path.dirname(os.path.abspath(__file__)) + '/../benchmarks/string/result-append-pbv.csv'
     17sys.path.insert(0, os.path.dirname(__file__))
     18from common import *
    1719
    1820prettyFieldNames = {
     
    2325}
    2426
    25 timings = pd.read_csv(
    26     infile,
    27     names=['test', 'corpus', 'concatsPerReset', 'corpusItemCount', 'corpusMeanLenChars', 'concatDoneActualCount', 'execTimeActualSec'],
    28     dtype={'test':                  str,
    29            'corpus':                str,
    30            'concatsPerReset':       'Int64', # allows missing; https://stackoverflow.com/a/70626154
    31            'corpusItemCount':       np.int64,
    32            'corpusMeanLenChars':    np.float64,
    33            'concatDoneActualCount': np.int64,
    34            'execTimeActualSec':     np.float64},
    35     na_values=['xxx'],
    36 )
    37 # print(timings.head())
     27timings = loadParseTimingData('result-append-pbv.csv')
    3828
     29# Filter operation=peq, corpus=100-*-1
    3930
    40 # project: parse executable and corpus names
    41 
    42 timings[['test-slug',
    43      'sut-platform',
    44      'operation',
    45      'sut-cfa-level',
    46      'sut-cfa-sharing',
    47      'op-alloc']] = timings['test'].str.strip().str.split('-', expand=True)
    48 timings['sut'] = timings[['sut-platform',
    49                     'sut-cfa-level',
    50                     'sut-cfa-sharing',
    51                     'op-alloc']].agg('-'.join, axis=1)
    52 
    53 timings[['corpus-basename',
    54      'corpus-ext']] = timings['corpus'].str.strip().str.split('.', expand=True)
    55 timings[['corpus-slug',
    56      'corpus-nstrs',
    57      'corpus-meanlen',
    58      'corpus-runid']] = timings['corpus-basename'].str.strip().str.split('-', expand=True)
    59 timings["corpus-nstrs"] = pd.to_numeric(timings["corpus-nstrs"])
    60 timings["corpus-meanlen"] = pd.to_numeric(timings["corpus-meanlen"])
    61 timings["corpus-runid"] = pd.to_numeric(timings["corpus-runid"])
    62 
    63 
    64 # project: calculate fact
    65 
    66 timings['op-duration-s'] = timings['execTimeActualSec'] / timings['concatDoneActualCount']
    67 timings['op-duration-ns'] = timings['op-duration-s'] * 1000 * 1000 * 1000
    68 
    69 
    70 # Filter operation=peq
    71 
    72 groupedOp = timings.groupby('operation')
    73 tgtOpTimings = groupedOp.get_group('peq')
    74 
     31timings = timings.groupby('operation').get_group('peq')
     32timings = timings.groupby('corpus-nstrs').get_group(100)
     33timings = timings.groupby('corpus-runid').get_group(1)
    7534
    7635# Emit in groups
    7736
    78 groupedSut = tgtOpTimings.groupby('sut')
     37groupedSut = timings.groupby('sut')
    7938
    8039for sut, sgroup in groupedSut:
Note: See TracChangeset for help on using the changeset viewer.