- Timestamp:
- May 13, 2025, 1:17:50 PM (4 months ago)
- Branches:
- master
- Children:
- 0528d79
- Parents:
- 7d02d35 (diff), 2410424 (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the(diff)
links above to see all the changes relative to each parent. - File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
doc/theses/mike_brooks_MMath/plots/string-peq-cppemu.py
r7d02d35 rbd72f517 12 12 import pandas as pd 13 13 import numpy as np 14 import sys 14 15 import os 15 16 16 infile = os.path.dirname(os.path.abspath(__file__)) + '/../benchmarks/string/result-append-pbv.csv' 17 sys.path.insert(0, os.path.dirname(__file__)) 18 from common import * 17 19 18 20 prettyFieldNames = { … … 23 25 } 24 26 25 timings = pd.read_csv( 26 infile, 27 names=['test', 'corpus', 'concatsPerReset', 'corpusItemCount', 'corpusMeanLenChars', 'concatDoneActualCount', 'execTimeActualSec'], 28 dtype={'test': str, 29 'corpus': str, 30 'concatsPerReset': 'Int64', # allows missing; https://stackoverflow.com/a/70626154 31 'corpusItemCount': np.int64, 32 'corpusMeanLenChars': np.float64, 33 'concatDoneActualCount': np.int64, 34 'execTimeActualSec': np.float64}, 35 na_values=['xxx'], 36 ) 37 # print(timings.head()) 27 timings = loadParseTimingData('result-append-pbv.csv') 38 28 29 # Filter operation=peq, corpus=100-*-1 39 30 40 # project: parse executable and corpus names 41 42 timings[['test-slug', 43 'sut-platform', 44 'operation', 45 'sut-cfa-level', 46 'sut-cfa-sharing', 47 'op-alloc']] = timings['test'].str.strip().str.split('-', expand=True) 48 timings['sut'] = timings[['sut-platform', 49 'sut-cfa-level', 50 'sut-cfa-sharing', 51 'op-alloc']].agg('-'.join, axis=1) 52 53 timings[['corpus-basename', 54 'corpus-ext']] = timings['corpus'].str.strip().str.split('.', expand=True) 55 timings[['corpus-slug', 56 'corpus-nstrs', 57 'corpus-meanlen', 58 'corpus-runid']] = timings['corpus-basename'].str.strip().str.split('-', expand=True) 59 timings["corpus-nstrs"] = pd.to_numeric(timings["corpus-nstrs"]) 60 timings["corpus-meanlen"] = pd.to_numeric(timings["corpus-meanlen"]) 61 timings["corpus-runid"] = pd.to_numeric(timings["corpus-runid"]) 62 63 64 # project: calculate fact 65 66 timings['op-duration-s'] = timings['execTimeActualSec'] / timings['concatDoneActualCount'] 67 timings['op-duration-ns'] = timings['op-duration-s'] * 1000 * 1000 * 1000 68 69 70 # Filter operation=peq 71 72 groupedOp = timings.groupby('operation') 73 tgtOpTimings = groupedOp.get_group('peq') 74 31 timings = timings.groupby('operation').get_group('peq') 32 timings = timings.groupby('corpus-nstrs').get_group(100) 33 timings = timings.groupby('corpus-runid').get_group(1) 75 34 76 35 # Emit in groups 77 36 78 groupedSut = t gtOpTimings.groupby('sut')37 groupedSut = timings.groupby('sut') 79 38 80 39 for sut, sgroup in groupedSut:
Note:
See TracChangeset
for help on using the changeset viewer.