Ignore:
Timestamp:
Jan 23, 2018, 5:46:43 PM (8 years ago)
Author:
Alan Kennedy <afakenne@…>
Branches:
ADT, aaron-thesis, arm-eh, ast-experimental, cleanup-dtors, deferred_resn, demangler, enum, forall-pointer-decay, jacob/cs343-translation, jenkins-sandbox, master, new-ast, new-ast-unique-expr, new-env, no_list, persistent-indexer, pthread-emulation, qualifiedEnum, resolv-new, with_gc
Children:
258e6ad5
Parents:
b158d8f (diff), 15d248e (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the (diff) links above to see all the changes relative to each parent.
Message:

add context switch for ARM

File:
1 edited

Legend:

Unmodified
Added
Removed
  • doc/proposals/concurrency/text/basics.tex

    rb158d8f rb6838214  
    99At its core, concurrency is based on having multiple call-stacks and scheduling among threads of execution executing on these stacks. Concurrency without parallelism only requires having multiple call stacks (or contexts) for a single thread of execution.
    1010
    11 Execution with a single thread and multiple stacks where the thread is self-scheduling deterministically across the stacks is called coroutining. Execution with a single and multiple stacks but where the thread is scheduled by an oracle (non-deterministic from the thread perspective) across the stacks is called concurrency.
    12 
    13 Therefore, a minimal concurrency system can be achieved by creating coroutines, which instead of context-switching among each other, always ask an oracle where to context-switch next. While coroutines can execute on the caller?s stack-frame, stack-full coroutines allow full generality and are sufficient as the basis for concurrency. The aforementioned oracle is a scheduler and the whole system now follows a cooperative threading-model (aka non-preemptive scheduling). The oracle/scheduler can either be a stack-less or stack-full entity and correspondingly require one or two context-switches to run a different coroutine. In any case, a subset of concurrency related challenges start to appear. For the complete set of concurrency challenges to occur, the only feature missing is preemption.
     11Execution with a single thread and multiple stacks where the thread is self-scheduling deterministically across the stacks is called coroutining. Execution with a single and multiple stacks but where the thread is scheduled by an oracle (non-deterministic from the thread's perspective) across the stacks is called concurrency.
     12
     13Therefore, a minimal concurrency system can be achieved by creating coroutines (see Section \ref{coroutine}), which instead of context-switching among each other, always ask an oracle where to context-switch next. While coroutines can execute on the caller's stack-frame, stack-full coroutines allow full generality and are sufficient as the basis for concurrency. The aforementioned oracle is a scheduler and the whole system now follows a cooperative threading-model (a.k.a., non-preemptive scheduling). The oracle/scheduler can either be a stack-less or stack-full entity and correspondingly require one or two context-switches to run a different coroutine. In any case, a subset of concurrency related challenges start to appear. For the complete set of concurrency challenges to occur, the only feature missing is preemption.
    1414
    1515A scheduler introduces order of execution uncertainty, while preemption introduces uncertainty about where context switches occur. Mutual exclusion and synchronization are ways of limiting non-determinism in a concurrent system. Now it is important to understand that uncertainty is desirable; uncertainty can be used by runtime systems to significantly increase performance and is often the basis of giving a user the illusion that tasks are running in parallel. Optimal performance in concurrent applications is often obtained by having as much non-determinism as correctness allows.
    1616
    1717\section{\protect\CFA's Thread Building Blocks}
    18 One of the important features that are missing in C is threading. On modern architectures, a lack of threading is unacceptable~\cite{Sutter05, Sutter05b}, and therefore modern programming languages must have the proper tools to allow users to write efficient concurrent programs to take advantage of parallelism. As an extension of C, \CFA needs to express these concepts in a way that is as natural as possible to programmers familiar with imperative languages. And being a system-level language means programmers expect to choose precisely which features they need and which cost they are willing to pay.
     18One of the important features that are missing in C is threading\footnote{While the C11 standard defines a ``threads.h'' header, it is minimal and defined as optional. As such, library support for threading is far from widespread. At the time of writing the thesis, neither \texttt{gcc} nor \texttt{clang} support ``threads.h'' in their respective standard libraries.}. On modern architectures, a lack of threading is unacceptable~\cite{Sutter05, Sutter05b}, and therefore modern programming languages must have the proper tools to allow users to write efficient concurrent programs to take advantage of parallelism. As an extension of C, \CFA needs to express these concepts in a way that is as natural as possible to programmers familiar with imperative languages. And being a system-level language means programmers expect to choose precisely which features they need and which cost they are willing to pay.
    1919
    2020\section{Coroutines: A Stepping Stone}\label{coroutine}
    21 While the main focus of this proposal is concurrency and parallelism, it is important to address coroutines, which are actually a significant building block of a concurrency system. Coroutines need to deal with context switches and other context-management operations. Therefore, this proposal includes coroutines both as an intermediate step for the implementation of threads, and a first-class feature of \CFA. Furthermore, many design challenges of threads are at least partially present in designing coroutines, which makes the design effort that much more relevant. The core \acrshort{api} of coroutines revolves around two features: independent call-stacks and \code{suspend}/\code{resume}.
     21While the main focus of this proposal is concurrency and parallelism, it is important to address coroutines, which are actually a significant building block of a concurrency system. \textbf{Coroutine}s are generalized routines which have predefined points where execution is suspended and can be resumed at a later time. Therefore, they need to deal with context switches and other context-management operations. This proposal includes coroutines both as an intermediate step for the implementation of threads, and a first-class feature of \CFA. Furthermore, many design challenges of threads are at least partially present in designing coroutines, which makes the design effort that much more relevant. The core \acrshort{api} of coroutines revolves around two features: independent call-stacks and \code{suspend}/\code{resume}.
    2222
    2323\begin{table}
     
    129129\end{tabular}
    130130\end{center}
    131 \caption{Different implementations of a Fibonacci sequence generator in C.},
     131\caption{Different implementations of a Fibonacci sequence generator in C.}
    132132\label{lst:fibonacci-c}
    133133\end{table}
    134134
    135 A good example of a problem made easier with coroutines is generators, like the Fibonacci sequence. This problem comes with the challenge of decoupling how a sequence is generated and how it is used. Table \ref{lst:fibonacci-c} shows conventional approaches to writing generators in C. All three of these approach suffer from strong coupling. The left and centre approaches require that the generator have knowledge of how the sequence is used, while the rightmost approach requires holding internal state between calls on behalf of the generator and makes it much harder to handle corner cases like the Fibonacci seed.
     135A good example of a problem made easier with coroutines is generators, e.g., generating the Fibonacci sequence. This problem comes with the challenge of decoupling how a sequence is generated and how it is used. Listing \ref{lst:fibonacci-c} shows conventional approaches to writing generators in C. All three of these approach suffer from strong coupling. The left and centre approaches require that the generator have knowledge of how the sequence is used, while the rightmost approach requires holding internal state between calls on behalf of the generator and makes it much harder to handle corner cases like the Fibonacci seed.
    136136
    137137Listing \ref{lst:fibonacci-cfa} is an example of a solution to the Fibonacci problem using \CFA coroutines, where the coroutine stack holds sufficient state for the next generation. This solution has the advantage of having very strong decoupling between how the sequence is generated and how it is used. Indeed, this version is as easy to use as the \code{fibonacci_state} solution, while the implementation is very similar to the \code{fibonacci_func} example.
     
    233233One important design challenge for implementing coroutines and threads (shown in section \ref{threads}) is that the runtime system needs to run code after the user-constructor runs to connect the fully constructed object into the system. In the case of coroutines, this challenge is simpler since there is no non-determinism from preemption or scheduling. However, the underlying challenge remains the same for coroutines and threads.
    234234
    235 The runtime system needs to create the coroutine?s stack and more importantly prepare it for the first resumption. The timing of the creation is non-trivial since users both expect to have fully constructed objects once execution enters the coroutine main and to be able to resume the coroutine from the constructor. There are several solutions to this problem but the chosen option effectively forces the design of the coroutine.
     235The runtime system needs to create the coroutine's stack and, more importantly, prepare it for the first resumption. The timing of the creation is non-trivial since users expect both to have fully constructed objects once execution enters the coroutine main and to be able to resume the coroutine from the constructor. There are several solutions to this problem but the chosen option effectively forces the design of the coroutine.
    236236
    237237Furthermore, \CFA faces an extra challenge as polymorphic routines create invisible thunks when cast to non-polymorphic routines and these thunks have function scope. For example, the following code, while looking benign, can run into undefined behaviour because of thunks:
     
    268268}
    269269\end{ccode}
    270 The problem in this example is a storage management issue, the function pointer \code{_thunk0} is only valid until the end of the block, which limits the viable solutions because storing the function pointer for too long causes Undefined Behaviour; i.e., the stack-based thunk being destroyed before it can be used. This challenge is an extension of challenges that come with second-class routines. Indeed, GCC nested routines also have the limitation that nested routine cannot be passed outside of the declaration scope. The case of coroutines and threads is simply an extension of this problem to multiple call stacks.
     270The problem in this example is a storage management issue, the function pointer \code{_thunk0} is only valid until the end of the block, which limits the viable solutions because storing the function pointer for too long causes undefined behaviour; i.e., the stack-based thunk being destroyed before it can be used. This challenge is an extension of challenges that come with second-class routines. Indeed, GCC nested routines also have the limitation that nested routine cannot be passed outside of the declaration scope. The case of coroutines and threads is simply an extension of this problem to multiple call stacks.
    271271
    272272\subsection{Alternative: Composition}
     
    310310symmetric_coroutine<>::yield_type
    311311\end{cfacode}
    312 Often, the canonical threading paradigm in languages is based on function pointers, pthread being one of the most well-known examples. The main problem of this approach is that the thread usage is limited to a generic handle that must otherwise be wrapped in a custom type. Since the custom type is simple to write in \CFA and solves several issues, added support for routine/lambda based coroutines adds very little.
    313 
    314 A variation of this would be to use a simple function pointer in the same way pthread does for threads :
     312Often, the canonical threading paradigm in languages is based on function pointers, \texttt{pthread} being one of the most well-known examples. The main problem of this approach is that the thread usage is limited to a generic handle that must otherwise be wrapped in a custom type. Since the custom type is simple to write in \CFA and solves several issues, added support for routine/lambda based coroutines adds very little.
     313
     314A variation of this would be to use a simple function pointer in the same way \texttt{pthread} does for threads:
    315315\begin{cfacode}
    316316void foo( coroutine_t cid, void* arg ) {
     
    329329\subsection{Alternative: Trait-Based Coroutines}
    330330
    331 Finally, the underlying approach, which is the one closest to \CFA idioms, is to use trait-based lazy coroutines. This approach defines a coroutine as anything that satisfies the trait \code{is_coroutine} and is used as a coroutine.
     331Finally, the underlying approach, which is the one closest to \CFA idioms, is to use trait-based lazy coroutines. This approach defines a coroutine as anything that satisfies the trait \code{is_coroutine} (as defined below) and is used as a coroutine.
    332332
    333333\begin{cfacode}
     
    340340forall( dtype T | is_coroutine(T) ) void resume (T&);
    341341\end{cfacode}
    342 This ensures an object is not a coroutine until \code{resume} is called on the object. Correspondingly, any object that is passed to \code{resume} is a coroutine since it must satisfy the \code{is_coroutine} trait to compile. The advantage of this approach is that users can easily create different types of coroutines, for example, changing the memory layout of a coroutine is trivial when implementing the \code{get_coroutine} routine. The \CFA keyword \code{coroutine} only has the effect of implementing the getter and forward declarations required for users to implement the main routine.
     342This ensures that an object is not a coroutine until \code{resume} is called on the object. Correspondingly, any object that is passed to \code{resume} is a coroutine since it must satisfy the \code{is_coroutine} trait to compile. The advantage of this approach is that users can easily create different types of coroutines, for example, changing the memory layout of a coroutine is trivial when implementing the \code{get_coroutine} routine. The \CFA keyword \code{coroutine} simply has the effect of implementing the getter and forward declarations required for users to implement the main routine.
    343343
    344344\begin{center}
     
    385385\end{cfacode}
    386386
    387 Obviously, for this thread implementation to be useful it must run some user code. Several other threading interfaces use a function-pointer representation as the interface of threads (for example \Csharp~\cite{Csharp} and Scala~\cite{Scala}). However, this proposal considers that statically tying a \code{main} routine to a thread supersedes this approach. Since the \code{main} routine is already a special routine in \CFA (where the program begins), it is a natural extension of the semantics using overloading to declare mains for different threads (the normal main being the main of the initial thread). As such the \code{main} routine of a thread can be defined as
     387Obviously, for this thread implementation to be useful it must run some user code. Several other threading interfaces use a function-pointer representation as the interface of threads (for example \Csharp~\cite{Csharp} and Scala~\cite{Scala}). However, this proposal considers that statically tying a \code{main} routine to a thread supersedes this approach. Since the \code{main} routine is already a special routine in \CFA (where the program begins), it is a natural extension of the semantics to use overloading to declare mains for different threads (the normal main being the main of the initial thread). As such the \code{main} routine of a thread can be defined as
    388388\begin{cfacode}
    389389thread foo {};
     
    425425A consequence of the strongly typed approach to main is that memory layout of parameters and return values to/from a thread are now explicitly specified in the \acrshort{api}.
    426426
    427 Of course for threads to be useful, it must be possible to start and stop threads and wait for them to complete execution. While using an \acrshort{api} such as \code{fork} and \code{join} is relatively common in the literature, such an interface is unnecessary. Indeed, the simplest approach is to use \acrshort{raii} principles and have threads \code{fork} after the constructor has completed and \code{join} before the destructor runs.
     427Of course, for threads to be useful, it must be possible to start and stop threads and wait for them to complete execution. While using an \acrshort{api} such as \code{fork} and \code{join} is relatively common in the literature, such an interface is unnecessary. Indeed, the simplest approach is to use \acrshort{raii} principles and have threads \code{fork} after the constructor has completed and \code{join} before the destructor runs.
    428428\begin{cfacode}
    429429thread World;
     
    466466\end{cfacode}
    467467
    468 However, one of the drawbacks of this approach is that threads always form a lattice, i.e., they are always destroyed in the opposite order of construction because of block structure. This restriction is relaxed by using dynamic allocation, so threads can outlive the scope in which they are created, much like dynamically allocating memory lets objects outlive the scope in which they are created.
     468However, one of the drawbacks of this approach is that threads always form a tree where nodes must always outlive their children, i.e., they are always destroyed in the opposite order of construction because of C scoping rules. This restriction is relaxed by using dynamic allocation, so threads can outlive the scope in which they are created, much like dynamically allocating memory lets objects outlive the scope in which they are created.
    469469
    470470\begin{cfacode}
Note: See TracChangeset for help on using the changeset viewer.