- Timestamp:
- Feb 4, 2022, 10:10:34 PM (4 years ago)
- Branches:
- ADT, ast-experimental, enum, forall-pointer-decay, master, pthread-emulation, qualifiedEnum
- Children:
- f8143a6
- Parents:
- 5f3ba11 (diff), 67e86ae6 (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the(diff)
links above to see all the changes relative to each parent. - File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
doc/theses/thierry_delisle_PhD/thesis/text/eval_micro.tex
r5f3ba11 rb56ad5e 2 2 3 3 The first step of evaluation is always to test-out small controlled cases, to ensure that the basics are working properly. 4 This sections presents f ourdifferent experimental setup, evaluating some of the basic features of \CFA's scheduler.4 This sections presents five different experimental setup, evaluating some of the basic features of \CFA's scheduler. 5 5 6 6 \section{Cycling latency} 7 7 The most basic evaluation of any ready queue is to evaluate the latency needed to push and pop one element from the ready-queue. 8 While these two operation also describe a \texttt{yield} operation, many systems use this as the most basic benchmark.9 However, yielding can be treated as a special case, since it also carries the information that the length of the ready queuewill not change.8 Since these two operation also describe a \texttt{yield} operation, many systems use this as the most basic benchmark. 9 However, yielding can be treated as a special case, since it also carries the information that the number of the ready \glspl{at} will not change. 10 10 Not all systems use this information, but those which do may appear to have better performance than they would for disconnected push/pop pairs. 11 11 For this reason, I chose a different first benchmark, which I call the Cycle Benchmark. 12 This benchmark arranges many threads into multiple rings of threads.12 This benchmark arranges many \glspl{at} into multiple rings of \glspl{at}. 13 13 Each ring is effectively a circular singly-linked list. 14 At runtime, each thread unparks the next threadbefore parking itself.14 At runtime, each \gls{at} unparks the next \gls{at} before parking itself. 15 15 This corresponds to the desired pair of ready queue operations. 16 Unparking the next thread requires pushing that thread onto the ready queue and the ensuing park will cause the runtime to pop a threadfrom the ready-queue.16 Unparking the next \gls{at} requires pushing that \gls{at} onto the ready queue and the ensuing park will cause the runtime to pop a \gls{at} from the ready-queue. 17 17 Figure~\ref{fig:cycle} shows a visual representation of this arrangement. 18 18 19 The goal of this ring is that the underlying runtime cannot rely on the guarantee that the number of ready threads will stay constant over the duration of the experiment. 20 In fact, the total number of threads waiting on the ready is expected to vary a little because of the race between the next thread unparking and the current thread parking. 21 The size of the cycle is also decided based on this race: cycles that are too small may see the 22 chain of unparks go full circle before the first thread can park. 19 The goal of this ring is that the underlying runtime cannot rely on the guarantee that the number of ready \glspl{at} will stay constant over the duration of the experiment. 20 In fact, the total number of \glspl{at} waiting on the ready queue is expected to vary because of the race between the next \gls{at} unparking and the current \gls{at} parking. 21 The size of the cycle is also decided based on this race: cycles that are too small may see the chain of unparks go full circle before the first \gls{at} can park. 23 22 While this would not be a correctness problem, every runtime system must handle that race, it could lead to pushes and pops being optimized away. 24 Since silently omitting ready-queue operations would throw off the measuring of these operations. 25 Therefore the ring of threads must be big enough so the threads have the time to fully park before they are unparked. 23 Since silently omitting ready-queue operations would throw off the measuring of these operations, the ring of \glspl{at} must be big enough so the \glspl{at} have the time to fully park before they are unparked. 26 24 Note that this problem is only present on SMP machines and is significantly mitigated by the fact that there are multiple rings in the system. 27 25 … … 29 27 \centering 30 28 \input{cycle.pstex_t} 31 \caption[Cycle benchmark]{Cycle benchmark\smallskip\newline Each thread unparks the next threadin the cycle before parking itself.}29 \caption[Cycle benchmark]{Cycle benchmark\smallskip\newline Each \gls{at} unparks the next \gls{at} in the cycle before parking itself.} 32 30 \label{fig:cycle} 33 31 \end{figure} 34 32 35 33 \todo{check term ``idle sleep handling''} 36 To avoid this benchmark from being dominated by the idle sleep handling, the number of rings is kept at least as high as the number of processorsavailable.34 To avoid this benchmark from being dominated by the idle sleep handling, the number of rings is kept at least as high as the number of \glspl{proc} available. 37 35 Beyond this point, adding more rings serves to mitigate even more the idle sleep handling. 38 This is to avoid the case where one of the worker threads runs out of work because of the variation on the number of ready threadsmentionned above.36 This is to avoid the case where one of the worker \glspl{at} runs out of work because of the variation on the number of ready \glspl{at} mentionned above. 39 37 40 38 The actual benchmark is more complicated to handle termination, but that simply requires using a binary semphore or a channel instead of raw \texttt{park}/\texttt{unpark} and carefully picking the order of the \texttt{P} and \texttt{V} with respect to the loop condition. 41 39 42 \todo{mention where to get the code.} 40 \todo{code, setup, results} 41 \begin{lstlisting} 42 Thread.main() { 43 count := 0 44 for { 45 wait() 46 this.next.wake() 47 count ++ 48 if must_stop() { break } 49 } 50 global.count += count 51 } 52 \end{lstlisting} 53 43 54 44 55 \section{Yield} 45 56 For completion, I also include the yield benchmark. 46 This benchmark is much simpler than the cycle tests, it simply creates many threads that call \texttt{yield}. 57 This benchmark is much simpler than the cycle tests, it simply creates many \glspl{at} that call \texttt{yield}. 58 As mentionned in the previous section, this benchmark may be less representative of usages that only make limited use of \texttt{yield}, due to potential shortcuts in the routine. 59 Its only interesting variable is the number of \glspl{at} per \glspl{proc}, where ratios close to 1 means the ready queue(s) could be empty. 60 This sometimes puts more strain on the idle sleep handling, compared to scenarios where there is clearly plenty of work to be done. 61 62 \todo{code, setup, results} 63 64 \begin{lstlisting} 65 Thread.main() { 66 count := 0 67 while !stop { 68 yield() 69 count ++ 70 } 71 global.count += count 72 } 73 \end{lstlisting} 74 75 76 \section{Churn} 77 The Cycle and Yield benchmark represents an ``easy'' scenario for a scheduler, \eg, an embarrassingly parallel application. 78 In these benchmarks, \glspl{at} can be easily partitioned over the different \glspl{proc} up-front and none of the \glspl{at} communicate with each other. 79 80 The Churn benchmark represents more chaotic usages, where there is no relation between the last \gls{proc} on which a \gls{at} ran and the \gls{proc} that unblocked it. 81 When a \gls{at} is unblocked from a different \gls{proc} than the one on which it last ran, the unblocking \gls{proc} must either ``steal'' the \gls{at} or place it on a remote queue. 82 This results can result in either contention on the remote queue or \glspl{rmr} on \gls{at} data structure. 83 In either case, this benchmark aims to highlight how each scheduler handles these cases, since both cases can lead to performance degradation if they are not handled correctly. 84 85 To achieve this the benchmark uses a fixed size array of \newterm{chair}s, where a chair is a data structure that holds a single blocked \gls{at}. 86 When a \gls{at} attempts to block on the chair, it must first unblocked the \gls{at} currently blocked on said chair, if any. 87 This creates a flow where \glspl{at} push each other out of the chairs before being pushed out themselves. 88 For this benchmark to work however, the number of \glspl{at} must be equal or greater to the number of chairs plus the number of \glspl{proc}. 89 90 \todo{code, setup, results} 91 \begin{lstlisting} 92 Thread.main() { 93 count := 0 94 for { 95 r := random() % len(spots) 96 next := xchg(spots[r], this) 97 if next { next.wake() } 98 wait() 99 count ++ 100 if must_stop() { break } 101 } 102 global.count += count 103 } 104 \end{lstlisting} 47 105 48 106 \section{Locality} 49 107 108 \todo{code, setup, results} 109 50 110 \section{Transfer} 111 The last benchmark is more exactly characterize as an experiment than a benchmark. 112 It tests the behavior of the schedulers for a particularly misbehaved workload. 113 In this workload, one of the \gls{at} is selected at random to be the leader. 114 The leader then spins in a tight loop until it has observed that all other \glspl{at} have acknowledged its leadership. 115 The leader \gls{at} then picks a new \gls{at} to be the ``spinner'' and the cycle repeats. 116 117 The benchmark comes in two flavours for the behavior of the non-leader \glspl{at}: 118 once they acknowledged the leader, they either block on a semaphore or yield repeatadly. 119 120 This experiment is designed to evaluate the short term load balancing of the scheduler. 121 Indeed, schedulers where the runnable \glspl{at} are partitioned on the \glspl{proc} may need to balance the \glspl{at} for this experient to terminate. 122 This is because the spinning \gls{at} is effectively preventing the \gls{proc} from runnning any other \glspl{thrd}. 123 In the semaphore flavour, the number of runnable \glspl{at} will eventually dwindle down to only the leader. 124 This is a simpler case to handle for schedulers since \glspl{proc} eventually run out of work. 125 In the yielding flavour, the number of runnable \glspl{at} stays constant. 126 This is a harder case to handle because corrective measures must be taken even if work is still available. 127 Note that languages that have mandatory preemption do circumvent this problem by forcing the spinner to yield. 128 129 \todo{code, setup, results} 130 \begin{lstlisting} 131 Thread.lead() { 132 this.idx_seen = ++lead_idx 133 if lead_idx > stop_idx { 134 done := true 135 return 136 } 137 138 // Wait for everyone to acknowledge my leadership 139 start: = timeNow() 140 for t in threads { 141 while t.idx_seen != lead_idx { 142 asm pause 143 if (timeNow() - start) > 5 seconds { error() } 144 } 145 } 146 147 // pick next leader 148 leader := threads[ prng() % len(threads) ] 149 150 // wake every one 151 if !exhaust { 152 for t in threads { 153 if t != me { t.wake() } 154 } 155 } 156 } 157 158 Thread.wait() { 159 this.idx_seen := lead_idx 160 if exhaust { wait() } 161 else { yield() } 162 } 163 164 Thread.main() { 165 while !done { 166 if leader == me { this.lead() } 167 else { this.wait() } 168 } 169 } 170 \end{lstlisting}
Note:
See TracChangeset
for help on using the changeset viewer.