Changeset b067d9b for src/ResolvExpr/Unify.cc
- Timestamp:
- Oct 29, 2019, 4:01:24 PM (6 years ago)
- Branches:
- ADT, arm-eh, ast-experimental, enum, forall-pointer-decay, jacob/cs343-translation, jenkins-sandbox, master, new-ast, new-ast-unique-expr, pthread-emulation, qualifiedEnum
- Children:
- 773db65, 9421f3d8
- Parents:
- 7951100 (diff), 8364209 (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the(diff)
links above to see all the changes relative to each parent. - File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
src/ResolvExpr/Unify.cc
r7951100 rb067d9b 9 9 // Author : Richard C. Bilson 10 10 // Created On : Sun May 17 12:27:10 2015 11 // Last Modified By : Peter A. Buhr12 // Last Modified On : Thu Mar 16 16:22:54 201713 // Update Count : 4 211 // Last Modified By : Andrew Beach 12 // Last Modified On : Wed Sep 4 10:00:00 2019 13 // Update Count : 44 14 14 // 15 15 16 #include <cassert> // for assertf, assert17 #include <iterator> // for back_insert_iterator, back_inserter18 #include <map> // for _Rb_tree_const_iterator, _Rb_tree_i...19 #include <memory> // for unique_ptr20 #include <set> // for set21 #include <string> // for string, operator==, operator!=, bas...22 #include <utility> // for pair, move23 24 #include "Common/PassVisitor.h" // for PassVisitor25 #include "FindOpenVars.h" // for findOpenVars26 #include "Parser/LinkageSpec.h" // for C27 #include "SynTree/Constant.h" // for Constant28 #include "SynTree/Declaration.h" // for TypeDecl, TypeDecl::Data, Declarati...29 #include "SynTree/Expression.h" // for TypeExpr, Expression, ConstantExpr30 #include "SynTree/Mutator.h" // for Mutator31 #include "SynTree/Type.h" // for Type, TypeInstType, FunctionType32 #include "SynTree/Visitor.h" // for Visitor33 #include "Tuples/Tuples.h" // for isTtype34 #include "TypeEnvironment.h" // for EqvClass, AssertionSet, OpenVarSet35 16 #include "Unify.h" 36 #include "typeops.h" // for flatten, occurs, commonType 17 18 #include <cassert> // for assertf, assert 19 #include <iterator> // for back_insert_iterator, back_inserter 20 #include <map> // for _Rb_tree_const_iterator, _Rb_tree_i... 21 #include <memory> // for unique_ptr 22 #include <set> // for set 23 #include <string> // for string, operator==, operator!=, bas... 24 #include <utility> // for pair, move 25 #include <vector> 26 27 #include "AST/Decl.hpp" 28 #include "AST/Node.hpp" 29 #include "AST/Pass.hpp" 30 #include "AST/Type.hpp" 31 #include "AST/TypeEnvironment.hpp" 32 #include "Common/PassVisitor.h" // for PassVisitor 33 #include "FindOpenVars.h" // for findOpenVars 34 #include "Parser/LinkageSpec.h" // for C 35 #include "SynTree/Constant.h" // for Constant 36 #include "SynTree/Declaration.h" // for TypeDecl, TypeDecl::Data, Declarati... 37 #include "SynTree/Expression.h" // for TypeExpr, Expression, ConstantExpr 38 #include "SynTree/Mutator.h" // for Mutator 39 #include "SynTree/Type.h" // for Type, TypeInstType, FunctionType 40 #include "SynTree/Visitor.h" // for Visitor 41 #include "Tuples/Tuples.h" // for isTtype 42 #include "TypeEnvironment.h" // for EqvClass, AssertionSet, OpenVarSet 43 #include "typeops.h" // for flatten, occurs, commonType 44 45 namespace ast { 46 class SymbolTable; 47 } 37 48 38 49 namespace SymTab { … … 44 55 namespace ResolvExpr { 45 56 46 struct Unify : public WithShortCircuiting {47 Unify ( Type *type2, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, const OpenVarSet &openVars, WidenMode widenMode, const SymTab::Indexer &indexer );57 struct Unify_old : public WithShortCircuiting { 58 Unify_old( Type *type2, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, const OpenVarSet &openVars, WidenMode widen, const SymTab::Indexer &indexer ); 48 59 49 60 bool get_result() const { return result; } … … 77 88 AssertionSet &haveAssertions; 78 89 const OpenVarSet &openVars; 79 WidenMode widen Mode;90 WidenMode widen; 80 91 const SymTab::Indexer &indexer; 81 92 }; … … 83 94 /// Attempts an inexact unification of type1 and type2. 84 95 /// Returns false if no such unification; if the types can be unified, sets common (unless they unify exactly and have identical type qualifiers) 85 bool unifyInexact( Type *type1, Type *type2, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, const OpenVarSet &openVars, WidenMode widenMode, const SymTab::Indexer &indexer, Type *&common ); 86 bool unifyExact( Type *type1, Type *type2, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, const OpenVarSet &openVars, WidenMode widenMode, const SymTab::Indexer &indexer ); 87 88 bool typesCompatible( Type *first, Type *second, const SymTab::Indexer &indexer, const TypeEnvironment &env ) { 96 bool unifyInexact( Type *type1, Type *type2, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, const OpenVarSet &openVars, WidenMode widen, const SymTab::Indexer &indexer, Type *&common ); 97 bool unifyExact( Type *type1, Type *type2, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, const OpenVarSet &openVars, WidenMode widen, const SymTab::Indexer &indexer ); 98 99 bool unifyExact( 100 const ast::Type * type1, const ast::Type * type2, ast::TypeEnvironment & env, 101 ast::AssertionSet & need, ast::AssertionSet & have, const ast::OpenVarSet & open, 102 WidenMode widen, const ast::SymbolTable & symtab ); 103 104 bool typesCompatible( const Type * first, const Type * second, const SymTab::Indexer & indexer, const TypeEnvironment & env ) { 89 105 TypeEnvironment newEnv; 90 106 OpenVarSet openVars, closedVars; // added closedVars 91 107 AssertionSet needAssertions, haveAssertions; 92 Type * newFirst = first->clone(), *newSecond = second->clone();108 Type * newFirst = first->clone(), * newSecond = second->clone(); 93 109 env.apply( newFirst ); 94 110 env.apply( newSecond ); … … 105 121 } 106 122 107 bool typesCompatibleIgnoreQualifiers( Type *first, Type *second, const SymTab::Indexer &indexer, const TypeEnvironment &env ) { 123 bool typesCompatible( 124 const ast::Type * first, const ast::Type * second, const ast::SymbolTable & symtab, 125 const ast::TypeEnvironment & env ) { 126 ast::TypeEnvironment newEnv; 127 ast::OpenVarSet open, closed; 128 ast::AssertionSet need, have; 129 130 ast::ptr<ast::Type> newFirst{ first }, newSecond{ second }; 131 env.apply( newFirst ); 132 env.apply( newSecond ); 133 134 findOpenVars( newFirst, open, closed, need, have, FirstClosed ); 135 findOpenVars( newSecond, open, closed, need, have, FirstOpen ); 136 137 return unifyExact( 138 newFirst, newSecond, newEnv, need, have, open, noWiden(), symtab ); 139 } 140 141 bool typesCompatibleIgnoreQualifiers( const Type * first, const Type * second, const SymTab::Indexer &indexer, const TypeEnvironment &env ) { 108 142 TypeEnvironment newEnv; 109 143 OpenVarSet openVars; … … 129 163 } 130 164 131 bool isFtype( Type *type ) { 132 if ( dynamic_cast< FunctionType* >( type ) ) { 133 return true; 134 } else if ( TypeInstType *typeInst = dynamic_cast< TypeInstType* >( type ) ) { 135 return typeInst->get_isFtype(); 136 } // if 137 return false; 138 } 139 140 bool tyVarCompatible( const TypeDecl::Data & data, Type *type ) { 141 switch ( data.kind ) { 142 case TypeDecl::Dtype: 143 // to bind to an object type variable, the type must not be a function type. 144 // if the type variable is specified to be a complete type then the incoming 145 // type must also be complete 146 // xxx - should this also check that type is not a tuple type and that it's not a ttype? 147 return ! isFtype( type ) && (! data.isComplete || type->isComplete() ); 148 case TypeDecl::Ftype: 149 return isFtype( type ); 150 case TypeDecl::Ttype: 151 // ttype unifies with any tuple type 152 return dynamic_cast< TupleType * >( type ) || Tuples::isTtype( type ); 153 } // switch 154 return false; 155 } 156 157 bool bindVar( TypeInstType *typeInst, Type *other, const TypeDecl::Data & data, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, const OpenVarSet &openVars, WidenMode widenMode, const SymTab::Indexer &indexer ) { 158 // remove references from other, so that type variables can only bind to value types 159 other = other->stripReferences(); 160 OpenVarSet::const_iterator tyvar = openVars.find( typeInst->get_name() ); 161 assert( tyvar != openVars.end() ); 162 if ( ! tyVarCompatible( tyvar->second, other ) ) { 163 return false; 164 } // if 165 if ( occurs( other, typeInst->get_name(), env ) ) { 166 return false; 167 } // if 168 if ( const EqvClass *curClass = env.lookup( typeInst->get_name() ) ) { 169 if ( curClass->type ) { 170 Type *common = 0; 171 // attempt to unify equivalence class type (which has qualifiers stripped, so they must be restored) with the type to bind to 172 std::unique_ptr< Type > newType( curClass->type->clone() ); 173 newType->get_qualifiers() = typeInst->get_qualifiers(); 174 if ( unifyInexact( newType.get(), other, env, needAssertions, haveAssertions, openVars, widenMode & WidenMode( curClass->allowWidening, true ), indexer, common ) ) { 175 if ( common ) { 176 common->get_qualifiers() = Type::Qualifiers(); 177 env.add( EqvClass{ *curClass, common } ); 178 } // if 179 return true; 180 } else { 181 return false; 182 } // if 183 } else { 184 EqvClass newClass { *curClass, other }; 185 newClass.type->get_qualifiers() = Type::Qualifiers(); 186 newClass.allowWidening = widenMode.widenFirst && widenMode.widenSecond; 187 env.add( std::move(newClass) ); 188 } // if 189 } else { 190 EqvClass newClass; 191 newClass.vars.insert( typeInst->get_name() ); 192 newClass.type = other->clone(); 193 newClass.type->get_qualifiers() = Type::Qualifiers(); 194 newClass.allowWidening = widenMode.widenFirst && widenMode.widenSecond; 195 newClass.data = data; 196 env.add( newClass ); 197 } // if 198 return true; 199 } 200 201 bool bindVarToVar( TypeInstType *var1, TypeInstType *var2, const TypeDecl::Data & data, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, const OpenVarSet &openVars, WidenMode widenMode, const SymTab::Indexer &indexer ) { 202 bool result = true; 203 const EqvClass *class1 = env.lookup( var1->get_name() ); 204 const EqvClass *class2 = env.lookup( var2->get_name() ); 205 bool widen1 = false, widen2 = false; 206 Type *type1 = nullptr, *type2 = nullptr; 207 208 if ( class1 ) { 209 if ( class1->type ) { 210 if ( occurs( class1->type, var2->get_name(), env ) ) { 211 return false; 212 } // if 213 type1 = class1->type->clone(); 214 } // if 215 widen1 = widenMode.widenFirst && class1->allowWidening; 216 } // if 217 if ( class2 ) { 218 if ( class2->type ) { 219 if ( occurs( class2->type, var1->get_name(), env ) ) { 220 return false; 221 } // if 222 type2 = class2->type->clone(); 223 } // if 224 widen2 = widenMode.widenSecond && class2->allowWidening; 225 } // if 226 227 if ( type1 && type2 ) { 228 // std::cerr << "has type1 && type2" << std::endl; 229 WidenMode newWidenMode ( widen1, widen2 ); 230 Type *common = 0; 231 if ( unifyInexact( type1, type2, env, needAssertions, haveAssertions, openVars, newWidenMode, indexer, common ) ) { 232 EqvClass newClass1 = *class1; 233 newClass1.vars.insert( class2->vars.begin(), class2->vars.end() ); 234 newClass1.allowWidening = widen1 && widen2; 235 if ( common ) { 236 common->get_qualifiers() = Type::Qualifiers(); 237 delete newClass1.type; 238 newClass1.type = common; 239 } // if 240 env.add( std::move(newClass1) ); 241 } else { 242 result = false; 243 } // if 244 } else if ( class1 && class2 ) { 245 if ( type1 ) { 246 EqvClass newClass1 = *class1; 247 newClass1.vars.insert( class2->vars.begin(), class2->vars.end() ); 248 newClass1.allowWidening = widen1; 249 env.add( std::move(newClass1) ); 250 } else { 251 EqvClass newClass2 = *class2; 252 newClass2.vars.insert( class1->vars.begin(), class1->vars.end() ); 253 newClass2.allowWidening = widen2; 254 env.add( std::move(newClass2) ); 255 } // if 256 } else if ( class1 ) { 257 EqvClass newClass1 = *class1; 258 newClass1.vars.insert( var2->get_name() ); 259 newClass1.allowWidening = widen1; 260 env.add( std::move(newClass1) ); 261 } else if ( class2 ) { 262 EqvClass newClass2 = *class2; 263 newClass2.vars.insert( var1->get_name() ); 264 newClass2.allowWidening = widen2; 265 env.add( std::move(newClass2) ); 266 } else { 267 EqvClass newClass; 268 newClass.vars.insert( var1->get_name() ); 269 newClass.vars.insert( var2->get_name() ); 270 newClass.allowWidening = widen1 && widen2; 271 newClass.data = data; 272 env.add( newClass ); 273 } // if 274 delete type1; 275 delete type2; 276 return result; 165 bool typesCompatibleIgnoreQualifiers( 166 const ast::Type * first, const ast::Type * second, const ast::SymbolTable & symtab, 167 const ast::TypeEnvironment & env ) { 168 ast::TypeEnvironment newEnv; 169 ast::OpenVarSet open; 170 ast::AssertionSet need, have; 171 172 ast::ptr<ast::Type> newFirst{ first }, newSecond{ second }; 173 env.apply( newFirst ); 174 env.apply( newSecond ); 175 reset_qualifiers( newFirst ); 176 reset_qualifiers( newSecond ); 177 178 return unifyExact( 179 newFirst, newSecond, newEnv, need, have, open, noWiden(), symtab ); 277 180 } 278 181 … … 299 202 } 300 203 301 bool unifyExact( Type *type1, Type *type2, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, const OpenVarSet &openVars, WidenMode widen Mode, const SymTab::Indexer &indexer ) {204 bool unifyExact( Type *type1, Type *type2, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, const OpenVarSet &openVars, WidenMode widen, const SymTab::Indexer &indexer ) { 302 205 #ifdef DEBUG 303 206 TypeEnvironment debugEnv( env ); … … 320 223 bool isopen2 = var2 && ( entry2 != openVars.end() ); 321 224 322 if ( isopen1 && isopen2 && entry1->second == entry2->second ) { 323 result = bindVarToVar( var1, var2, entry1->second, env, needAssertions, haveAssertions, openVars, widenMode, indexer ); 225 if ( isopen1 && isopen2 ) { 226 if ( entry1->second.kind != entry2->second.kind ) { 227 result = false; 228 } else { 229 result = env.bindVarToVar( 230 var1, var2, TypeDecl::Data{ entry1->second, entry2->second }, needAssertions, 231 haveAssertions, openVars, widen, indexer ); 232 } 324 233 } else if ( isopen1 ) { 325 result = bindVar( var1, type2, entry1->second, env, needAssertions, haveAssertions, openVars, widenMode, indexer );326 } else if ( isopen2 ) { // TODO: swap widen Modevalues in call, since type positions are flipped?327 result = bindVar( var2, type1, entry2->second, env, needAssertions, haveAssertions, openVars, widenMode, indexer );234 result = env.bindVar( var1, type2, entry1->second, needAssertions, haveAssertions, openVars, widen, indexer ); 235 } else if ( isopen2 ) { // TODO: swap widen values in call, since type positions are flipped? 236 result = env.bindVar( var2, type1, entry2->second, needAssertions, haveAssertions, openVars, widen, indexer ); 328 237 } else { 329 PassVisitor<Unify > comparator( type2, env, needAssertions, haveAssertions, openVars, widenMode, indexer );238 PassVisitor<Unify_old> comparator( type2, env, needAssertions, haveAssertions, openVars, widen, indexer ); 330 239 type1->accept( comparator ); 331 240 result = comparator.pass.get_result(); … … 352 261 } 353 262 354 bool unifyInexact( Type *type1, Type *type2, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, const OpenVarSet &openVars, WidenMode widen Mode, const SymTab::Indexer &indexer, Type *&common ) {263 bool unifyInexact( Type *type1, Type *type2, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, const OpenVarSet &openVars, WidenMode widen, const SymTab::Indexer &indexer, Type *&common ) { 355 264 Type::Qualifiers tq1 = type1->get_qualifiers(), tq2 = type2->get_qualifiers(); 356 265 type1->get_qualifiers() = Type::Qualifiers(); … … 364 273 std::cerr << std::endl; 365 274 #endif 366 if ( ! unifyExact( type1, type2, env, needAssertions, haveAssertions, openVars, widen Mode, indexer ) ) {275 if ( ! unifyExact( type1, type2, env, needAssertions, haveAssertions, openVars, widen, indexer ) ) { 367 276 #ifdef DEBUG 368 277 std::cerr << "unifyInexact: no exact unification found" << std::endl; 369 278 #endif 370 if ( ( common = commonType( type1, type2, widen Mode.widenFirst, widenMode.widenSecond, indexer, env, openVars ) ) ) {371 common-> get_qualifiers() = tq1 | tq2;279 if ( ( common = commonType( type1, type2, widen.first, widen.second, indexer, env, openVars ) ) ) { 280 common->tq = tq1.unify( tq2 ); 372 281 #ifdef DEBUG 373 282 std::cerr << "unifyInexact: common type is "; … … 384 293 } else { 385 294 if ( tq1 != tq2 ) { 386 if ( ( tq1 > tq2 || widen Mode.widenFirst ) && ( tq2 > tq1 || widenMode.widenSecond ) ) {295 if ( ( tq1 > tq2 || widen.first ) && ( tq2 > tq1 || widen.second ) ) { 387 296 common = type1->clone(); 388 common-> get_qualifiers() = tq1 | tq2;297 common->tq = tq1.unify( tq2 ); 389 298 result = true; 390 299 } else { … … 393 302 } else { 394 303 common = type1->clone(); 395 common-> get_qualifiers() = tq1 | tq2;304 common->tq = tq1.unify( tq2 ); 396 305 result = true; 397 306 } // if … … 402 311 } 403 312 404 Unify ::Unify( Type *type2, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, const OpenVarSet &openVars, WidenMode widenMode, const SymTab::Indexer &indexer )405 : result( false ), type2( type2 ), env( env ), needAssertions( needAssertions ), haveAssertions( haveAssertions ), openVars( openVars ), widen Mode( widenMode), indexer( indexer ) {406 } 407 408 void Unify ::postvisit( __attribute__((unused)) VoidType *voidType) {313 Unify_old::Unify_old( Type *type2, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, const OpenVarSet &openVars, WidenMode widen, const SymTab::Indexer &indexer ) 314 : result( false ), type2( type2 ), env( env ), needAssertions( needAssertions ), haveAssertions( haveAssertions ), openVars( openVars ), widen( widen ), indexer( indexer ) { 315 } 316 317 void Unify_old::postvisit( __attribute__((unused)) VoidType *voidType) { 409 318 result = dynamic_cast< VoidType* >( type2 ); 410 319 } 411 320 412 void Unify ::postvisit(BasicType *basicType) {321 void Unify_old::postvisit(BasicType *basicType) { 413 322 if ( BasicType *otherBasic = dynamic_cast< BasicType* >( type2 ) ) { 414 323 result = basicType->get_kind() == otherBasic->get_kind(); … … 438 347 } 439 348 440 void Unify ::postvisit(PointerType *pointerType) {349 void Unify_old::postvisit(PointerType *pointerType) { 441 350 if ( PointerType *otherPointer = dynamic_cast< PointerType* >( type2 ) ) { 442 351 result = unifyExact( pointerType->get_base(), otherPointer->get_base(), env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer ); … … 446 355 } 447 356 448 void Unify ::postvisit(ReferenceType *refType) {357 void Unify_old::postvisit(ReferenceType *refType) { 449 358 if ( ReferenceType *otherRef = dynamic_cast< ReferenceType* >( type2 ) ) { 450 359 result = unifyExact( refType->get_base(), otherRef->get_base(), env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer ); … … 454 363 } 455 364 456 void Unify ::postvisit(ArrayType *arrayType) {365 void Unify_old::postvisit(ArrayType *arrayType) { 457 366 ArrayType *otherArray = dynamic_cast< ArrayType* >( type2 ); 458 367 // to unify, array types must both be VLA or both not VLA … … 534 443 /// If this isn't done then argument lists can have wildly different 535 444 /// size and structure, when they should be compatible. 536 struct TtypeExpander : public WithShortCircuiting {445 struct TtypeExpander_old : public WithShortCircuiting { 537 446 TypeEnvironment & tenv; 538 TtypeExpander ( TypeEnvironment & tenv ) : tenv( tenv ) {}447 TtypeExpander_old( TypeEnvironment & tenv ) : tenv( tenv ) {} 539 448 void premutate( TypeInstType * ) { visit_children = false; } 540 449 Type * postmutate( TypeInstType * typeInst ) { … … 555 464 dst.clear(); 556 465 for ( DeclarationWithType * dcl : src ) { 557 PassVisitor<TtypeExpander > expander( env );466 PassVisitor<TtypeExpander_old> expander( env ); 558 467 dcl->acceptMutator( expander ); 559 468 std::list< Type * > types; … … 570 479 } 571 480 572 void Unify ::postvisit(FunctionType *functionType) {481 void Unify_old::postvisit(FunctionType *functionType) { 573 482 FunctionType *otherFunction = dynamic_cast< FunctionType* >( type2 ); 574 483 if ( otherFunction && functionType->get_isVarArgs() == otherFunction->get_isVarArgs() ) { … … 581 490 582 491 // sizes don't have to match if ttypes are involved; need to be more precise wrt where the ttype is to prevent errors 583 if ( (flatFunc->parameters.size() == flatOther->parameters.size() && flatFunc->returnVals.size() == flatOther->returnVals.size()) || flatFunc->isTtype() || flatOther->isTtype() ) { 492 if ( 493 (flatFunc->parameters.size() == flatOther->parameters.size() && 494 flatFunc->returnVals.size() == flatOther->returnVals.size()) 495 || flatFunc->isTtype() 496 || flatOther->isTtype() 497 ) { 584 498 if ( unifyDeclList( flatFunc->parameters.begin(), flatFunc->parameters.end(), flatOther->parameters.begin(), flatOther->parameters.end(), env, needAssertions, haveAssertions, openVars, indexer ) ) { 585 499 if ( unifyDeclList( flatFunc->returnVals.begin(), flatFunc->returnVals.end(), flatOther->returnVals.begin(), flatOther->returnVals.end(), env, needAssertions, haveAssertions, openVars, indexer ) ) { … … 597 511 598 512 template< typename RefType > 599 void Unify ::handleRefType( RefType *inst, Type *other ) {513 void Unify_old::handleRefType( RefType *inst, Type *other ) { 600 514 // check that other type is compatible and named the same 601 515 RefType *otherStruct = dynamic_cast< RefType* >( other ); … … 604 518 605 519 template< typename RefType > 606 void Unify ::handleGenericRefType( RefType *inst, Type *other ) {520 void Unify_old::handleGenericRefType( RefType *inst, Type *other ) { 607 521 // Check that other type is compatible and named the same 608 522 handleRefType( inst, other ); … … 672 586 } 673 587 674 void Unify ::postvisit(StructInstType *structInst) {588 void Unify_old::postvisit(StructInstType *structInst) { 675 589 handleGenericRefType( structInst, type2 ); 676 590 } 677 591 678 void Unify ::postvisit(UnionInstType *unionInst) {592 void Unify_old::postvisit(UnionInstType *unionInst) { 679 593 handleGenericRefType( unionInst, type2 ); 680 594 } 681 595 682 void Unify ::postvisit(EnumInstType *enumInst) {596 void Unify_old::postvisit(EnumInstType *enumInst) { 683 597 handleRefType( enumInst, type2 ); 684 598 } 685 599 686 void Unify ::postvisit(TraitInstType *contextInst) {600 void Unify_old::postvisit(TraitInstType *contextInst) { 687 601 handleRefType( contextInst, type2 ); 688 602 } 689 603 690 void Unify ::postvisit(TypeInstType *typeInst) {604 void Unify_old::postvisit(TypeInstType *typeInst) { 691 605 assert( openVars.find( typeInst->get_name() ) == openVars.end() ); 692 606 TypeInstType *otherInst = dynamic_cast< TypeInstType* >( type2 ); … … 743 657 } 744 658 745 void Unify ::postvisit(TupleType *tupleType) {659 void Unify_old::postvisit(TupleType *tupleType) { 746 660 if ( TupleType *otherTuple = dynamic_cast< TupleType* >( type2 ) ) { 747 661 std::unique_ptr<TupleType> flat1( tupleType->clone() ); … … 749 663 std::list<Type *> types1, types2; 750 664 751 PassVisitor<TtypeExpander > expander( env );665 PassVisitor<TtypeExpander_old> expander( env ); 752 666 flat1->acceptMutator( expander ); 753 667 flat2->acceptMutator( expander ); … … 760 674 } 761 675 762 void Unify ::postvisit( __attribute__((unused)) VarArgsType *varArgsType ) {676 void Unify_old::postvisit( __attribute__((unused)) VarArgsType *varArgsType ) { 763 677 result = dynamic_cast< VarArgsType* >( type2 ); 764 678 } 765 679 766 void Unify ::postvisit( __attribute__((unused)) ZeroType *zeroType ) {680 void Unify_old::postvisit( __attribute__((unused)) ZeroType *zeroType ) { 767 681 result = dynamic_cast< ZeroType* >( type2 ); 768 682 } 769 683 770 void Unify ::postvisit( __attribute__((unused)) OneType *oneType ) {684 void Unify_old::postvisit( __attribute__((unused)) OneType *oneType ) { 771 685 result = dynamic_cast< OneType* >( type2 ); 772 686 } 773 687 774 // xxx - compute once and store in the FunctionType?775 688 Type * extractResultType( FunctionType * function ) { 776 689 if ( function->get_returnVals().size() == 0 ) { … … 786 699 } 787 700 } 701 702 class Unify_new final : public ast::WithShortCircuiting { 703 const ast::Type * type2; 704 ast::TypeEnvironment & tenv; 705 ast::AssertionSet & need; 706 ast::AssertionSet & have; 707 const ast::OpenVarSet & open; 708 WidenMode widen; 709 const ast::SymbolTable & symtab; 710 public: 711 bool result; 712 713 Unify_new( 714 const ast::Type * type2, ast::TypeEnvironment & env, ast::AssertionSet & need, 715 ast::AssertionSet & have, const ast::OpenVarSet & open, WidenMode widen, 716 const ast::SymbolTable & symtab ) 717 : type2(type2), tenv(env), need(need), have(have), open(open), widen(widen), 718 symtab(symtab), result(false) {} 719 720 void previsit( const ast::Node * ) { visit_children = false; } 721 722 void postvisit( const ast::VoidType * ) { 723 result = dynamic_cast< const ast::VoidType * >( type2 ); 724 } 725 726 void postvisit( const ast::BasicType * basic ) { 727 if ( auto basic2 = dynamic_cast< const ast::BasicType * >( type2 ) ) { 728 result = basic->kind == basic2->kind; 729 } 730 } 731 732 void postvisit( const ast::PointerType * pointer ) { 733 if ( auto pointer2 = dynamic_cast< const ast::PointerType * >( type2 ) ) { 734 result = unifyExact( 735 pointer->base, pointer2->base, tenv, need, have, open, 736 noWiden(), symtab ); 737 } 738 } 739 740 void postvisit( const ast::ArrayType * array ) { 741 auto array2 = dynamic_cast< const ast::ArrayType * >( type2 ); 742 if ( ! array2 ) return; 743 744 // to unify, array types must both be VLA or both not VLA and both must have a 745 // dimension expression or not have a dimension 746 if ( array->isVarLen != array2->isVarLen ) return; 747 if ( ! array->isVarLen && ! array2->isVarLen 748 && array->dimension && array2->dimension ) { 749 auto ce1 = array->dimension.as< ast::ConstantExpr >(); 750 auto ce2 = array2->dimension.as< ast::ConstantExpr >(); 751 752 // see C11 Reference Manual 6.7.6.2.6 753 // two array types with size specifiers that are integer constant expressions are 754 // compatible if both size specifiers have the same constant value 755 if ( ce1 && ce2 && ce1->intValue() != ce2->intValue() ) return; 756 } 757 758 result = unifyExact( 759 array->base, array2->base, tenv, need, have, open, noWiden(), 760 symtab ); 761 } 762 763 void postvisit( const ast::ReferenceType * ref ) { 764 if ( auto ref2 = dynamic_cast< const ast::ReferenceType * >( type2 ) ) { 765 result = unifyExact( 766 ref->base, ref2->base, tenv, need, have, open, noWiden(), 767 symtab ); 768 } 769 } 770 771 private: 772 /// Replaces ttype variables with their bound types. 773 /// If this isn't done when satifying ttype assertions, then argument lists can have 774 /// different size and structure when they should be compatible. 775 struct TtypeExpander_new : public ast::WithShortCircuiting { 776 ast::TypeEnvironment & tenv; 777 778 TtypeExpander_new( ast::TypeEnvironment & env ) : tenv( env ) {} 779 780 const ast::Type * postvisit( const ast::TypeInstType * typeInst ) { 781 if ( const ast::EqvClass * clz = tenv.lookup( typeInst->name ) ) { 782 // expand ttype parameter into its actual type 783 if ( clz->data.kind == ast::TypeVar::Ttype && clz->bound ) { 784 return clz->bound; 785 } 786 } 787 return typeInst; 788 } 789 }; 790 791 /// returns flattened version of `src` 792 static std::vector< ast::ptr< ast::DeclWithType > > flattenList( 793 const std::vector< ast::ptr< ast::DeclWithType > > & src, ast::TypeEnvironment & env 794 ) { 795 std::vector< ast::ptr< ast::DeclWithType > > dst; 796 dst.reserve( src.size() ); 797 for ( const ast::DeclWithType * d : src ) { 798 ast::Pass<TtypeExpander_new> expander{ env }; 799 d = d->accept( expander ); 800 auto types = flatten( d->get_type() ); 801 for ( ast::ptr< ast::Type > & t : types ) { 802 // outermost const, volatile, _Atomic qualifiers in parameters should not play 803 // a role in the unification of function types, since they do not determine 804 // whether a function is callable. 805 // NOTE: **must** consider at least mutex qualifier, since functions can be 806 // overloaded on outermost mutex and a mutex function has different 807 // requirements than a non-mutex function 808 remove_qualifiers( t, ast::CV::Const | ast::CV::Volatile | ast::CV::Atomic ); 809 dst.emplace_back( new ast::ObjectDecl{ d->location, "", t } ); 810 } 811 } 812 return dst; 813 } 814 815 /// Creates a tuple type based on a list of DeclWithType 816 template< typename Iter > 817 static ast::ptr< ast::Type > tupleFromDecls( Iter crnt, Iter end ) { 818 std::vector< ast::ptr< ast::Type > > types; 819 while ( crnt != end ) { 820 // it is guaranteed that a ttype variable will be bound to a flat tuple, so ensure 821 // that this results in a flat tuple 822 flatten( (*crnt)->get_type(), types ); 823 824 ++crnt; 825 } 826 827 return { new ast::TupleType{ std::move(types) } }; 828 } 829 830 template< typename Iter > 831 static bool unifyDeclList( 832 Iter crnt1, Iter end1, Iter crnt2, Iter end2, ast::TypeEnvironment & env, 833 ast::AssertionSet & need, ast::AssertionSet & have, const ast::OpenVarSet & open, 834 const ast::SymbolTable & symtab 835 ) { 836 while ( crnt1 != end1 && crnt2 != end2 ) { 837 const ast::Type * t1 = (*crnt1)->get_type(); 838 const ast::Type * t2 = (*crnt2)->get_type(); 839 bool isTuple1 = Tuples::isTtype( t1 ); 840 bool isTuple2 = Tuples::isTtype( t2 ); 841 842 // assumes here that ttype *must* be last parameter 843 if ( isTuple1 && ! isTuple2 ) { 844 // combine remainder of list2, then unify 845 return unifyExact( 846 t1, tupleFromDecls( crnt2, end2 ), env, need, have, open, 847 noWiden(), symtab ); 848 } else if ( ! isTuple1 && isTuple2 ) { 849 // combine remainder of list1, then unify 850 return unifyExact( 851 tupleFromDecls( crnt1, end1 ), t2, env, need, have, open, 852 noWiden(), symtab ); 853 } 854 855 if ( ! unifyExact( 856 t1, t2, env, need, have, open, noWiden(), symtab ) 857 ) return false; 858 859 ++crnt1; ++crnt2; 860 } 861 862 // May get to the end of one argument list before the other. This is only okay if the 863 // other is a ttype 864 if ( crnt1 != end1 ) { 865 // try unifying empty tuple with ttype 866 const ast::Type * t1 = (*crnt1)->get_type(); 867 if ( ! Tuples::isTtype( t1 ) ) return false; 868 return unifyExact( 869 t1, tupleFromDecls( crnt2, end2 ), env, need, have, open, 870 noWiden(), symtab ); 871 } else if ( crnt2 != end2 ) { 872 // try unifying empty tuple with ttype 873 const ast::Type * t2 = (*crnt2)->get_type(); 874 if ( ! Tuples::isTtype( t2 ) ) return false; 875 return unifyExact( 876 tupleFromDecls( crnt1, end1 ), t2, env, need, have, open, 877 noWiden(), symtab ); 878 } 879 880 return true; 881 } 882 883 static bool unifyDeclList( 884 const std::vector< ast::ptr< ast::DeclWithType > > & list1, 885 const std::vector< ast::ptr< ast::DeclWithType > > & list2, 886 ast::TypeEnvironment & env, ast::AssertionSet & need, ast::AssertionSet & have, 887 const ast::OpenVarSet & open, const ast::SymbolTable & symtab 888 ) { 889 return unifyDeclList( 890 list1.begin(), list1.end(), list2.begin(), list2.end(), env, need, have, open, 891 symtab ); 892 } 893 894 static void markAssertionSet( ast::AssertionSet & assns, const ast::DeclWithType * assn ) { 895 auto i = assns.find( assn ); 896 if ( i != assns.end() ) { 897 i->second.isUsed = true; 898 } 899 } 900 901 /// mark all assertions in `type` used in both `assn1` and `assn2` 902 static void markAssertions( 903 ast::AssertionSet & assn1, ast::AssertionSet & assn2, 904 const ast::ParameterizedType * type 905 ) { 906 for ( const auto & tyvar : type->forall ) { 907 for ( const ast::DeclWithType * assert : tyvar->assertions ) { 908 markAssertionSet( assn1, assert ); 909 markAssertionSet( assn2, assert ); 910 } 911 } 912 } 913 914 public: 915 void postvisit( const ast::FunctionType * func ) { 916 auto func2 = dynamic_cast< const ast::FunctionType * >( type2 ); 917 if ( ! func2 ) return; 918 919 if ( func->isVarArgs != func2->isVarArgs ) return; 920 921 // Flatten the parameter lists for both functions so that tuple structure does not 922 // affect unification. Does not actually mutate function parameters. 923 auto params = flattenList( func->params, tenv ); 924 auto params2 = flattenList( func2->params, tenv ); 925 926 // sizes don't have to match if ttypes are involved; need to be more precise w.r.t. 927 // where the ttype is to prevent errors 928 if ( 929 ( params.size() != params2.size() || func->returns.size() != func2->returns.size() ) 930 && ! func->isTtype() 931 && ! func2->isTtype() 932 ) return; 933 934 if ( ! unifyDeclList( params, params2, tenv, need, have, open, symtab ) ) return; 935 if ( ! unifyDeclList( 936 func->returns, func2->returns, tenv, need, have, open, symtab ) ) return; 937 938 markAssertions( have, need, func ); 939 markAssertions( have, need, func2 ); 940 941 result = true; 942 } 943 944 private: 945 template< typename RefType > 946 const RefType * handleRefType( const RefType * inst, const ast::Type * other ) { 947 // check that the other type is compatible and named the same 948 auto otherInst = dynamic_cast< const RefType * >( other ); 949 result = otherInst && inst->name == otherInst->name; 950 return otherInst; 951 } 952 953 /// Creates a tuple type based on a list of TypeExpr 954 template< typename Iter > 955 static const ast::Type * tupleFromExprs( 956 const ast::TypeExpr * param, Iter & crnt, Iter end, ast::CV::Qualifiers qs 957 ) { 958 std::vector< ast::ptr< ast::Type > > types; 959 do { 960 types.emplace_back( param->type ); 961 962 ++crnt; 963 if ( crnt == end ) break; 964 param = strict_dynamic_cast< const ast::TypeExpr * >( crnt->get() ); 965 } while(true); 966 967 return new ast::TupleType{ std::move(types), qs }; 968 } 969 970 template< typename RefType > 971 void handleGenericRefType( const RefType * inst, const ast::Type * other ) { 972 // check that other type is compatible and named the same 973 const RefType * inst2 = handleRefType( inst, other ); 974 if ( ! inst2 ) return; 975 976 // check that parameters of types unify, if any 977 const std::vector< ast::ptr< ast::Expr > > & params = inst->params; 978 const std::vector< ast::ptr< ast::Expr > > & params2 = inst2->params; 979 980 auto it = params.begin(); 981 auto jt = params2.begin(); 982 for ( ; it != params.end() && jt != params2.end(); ++it, ++jt ) { 983 auto param = strict_dynamic_cast< const ast::TypeExpr * >( it->get() ); 984 auto param2 = strict_dynamic_cast< const ast::TypeExpr * >( jt->get() ); 985 986 ast::ptr< ast::Type > pty = param->type; 987 ast::ptr< ast::Type > pty2 = param2->type; 988 989 bool isTuple = Tuples::isTtype( pty ); 990 bool isTuple2 = Tuples::isTtype( pty2 ); 991 992 if ( isTuple && isTuple2 ) { 993 ++it; ++jt; // skip ttype parameters before break 994 } else if ( isTuple ) { 995 // bundle remaining params into tuple 996 pty2 = tupleFromExprs( param2, jt, params2.end(), pty->qualifiers ); 997 ++it; // skip ttype parameter for break 998 } else if ( isTuple2 ) { 999 // bundle remaining params into tuple 1000 pty = tupleFromExprs( param, it, params.end(), pty2->qualifiers ); 1001 ++jt; // skip ttype parameter for break 1002 } 1003 1004 if ( ! unifyExact( 1005 pty, pty2, tenv, need, have, open, noWiden(), symtab ) ) { 1006 result = false; 1007 return; 1008 } 1009 1010 // ttype parameter should be last 1011 if ( isTuple || isTuple2 ) break; 1012 } 1013 result = it == params.end() && jt == params2.end(); 1014 } 1015 1016 public: 1017 void postvisit( const ast::StructInstType * aggrType ) { 1018 handleGenericRefType( aggrType, type2 ); 1019 } 1020 1021 void postvisit( const ast::UnionInstType * aggrType ) { 1022 handleGenericRefType( aggrType, type2 ); 1023 } 1024 1025 void postvisit( const ast::EnumInstType * aggrType ) { 1026 handleRefType( aggrType, type2 ); 1027 } 1028 1029 void postvisit( const ast::TraitInstType * aggrType ) { 1030 handleRefType( aggrType, type2 ); 1031 } 1032 1033 void postvisit( const ast::TypeInstType * typeInst ) { 1034 assert( open.find( typeInst->name ) == open.end() ); 1035 handleRefType( typeInst, type2 ); 1036 } 1037 1038 private: 1039 /// Creates a tuple type based on a list of Type 1040 static ast::ptr< ast::Type > tupleFromTypes( 1041 const std::vector< ast::ptr< ast::Type > > & tys 1042 ) { 1043 std::vector< ast::ptr< ast::Type > > out; 1044 for ( const ast::Type * ty : tys ) { 1045 // it is guaranteed that a ttype variable will be bound to a flat tuple, so ensure 1046 // that this results in a flat tuple 1047 flatten( ty, out ); 1048 } 1049 1050 return { new ast::TupleType{ std::move(out) } }; 1051 } 1052 1053 static bool unifyList( 1054 const std::vector< ast::ptr< ast::Type > > & list1, 1055 const std::vector< ast::ptr< ast::Type > > & list2, ast::TypeEnvironment & env, 1056 ast::AssertionSet & need, ast::AssertionSet & have, const ast::OpenVarSet & open, 1057 const ast::SymbolTable & symtab 1058 ) { 1059 auto crnt1 = list1.begin(); 1060 auto crnt2 = list2.begin(); 1061 while ( crnt1 != list1.end() && crnt2 != list2.end() ) { 1062 const ast::Type * t1 = *crnt1; 1063 const ast::Type * t2 = *crnt2; 1064 bool isTuple1 = Tuples::isTtype( t1 ); 1065 bool isTuple2 = Tuples::isTtype( t2 ); 1066 1067 // assumes ttype must be last parameter 1068 if ( isTuple1 && ! isTuple2 ) { 1069 // combine entirety of list2, then unify 1070 return unifyExact( 1071 t1, tupleFromTypes( list2 ), env, need, have, open, 1072 noWiden(), symtab ); 1073 } else if ( ! isTuple1 && isTuple2 ) { 1074 // combine entirety of list1, then unify 1075 return unifyExact( 1076 tupleFromTypes( list1 ), t2, env, need, have, open, 1077 noWiden(), symtab ); 1078 } 1079 1080 if ( ! unifyExact( 1081 t1, t2, env, need, have, open, noWiden(), symtab ) 1082 ) return false; 1083 1084 ++crnt1; ++crnt2; 1085 } 1086 1087 if ( crnt1 != list1.end() ) { 1088 // try unifying empty tuple type with ttype 1089 const ast::Type * t1 = *crnt1; 1090 if ( ! Tuples::isTtype( t1 ) ) return false; 1091 // xxx - this doesn't generate an empty tuple, contrary to comment; both ported 1092 // from Rob's code 1093 return unifyExact( 1094 t1, tupleFromTypes( list2 ), env, need, have, open, 1095 noWiden(), symtab ); 1096 } else if ( crnt2 != list2.end() ) { 1097 // try unifying empty tuple with ttype 1098 const ast::Type * t2 = *crnt2; 1099 if ( ! Tuples::isTtype( t2 ) ) return false; 1100 // xxx - this doesn't generate an empty tuple, contrary to comment; both ported 1101 // from Rob's code 1102 return unifyExact( 1103 tupleFromTypes( list1 ), t2, env, need, have, open, 1104 noWiden(), symtab ); 1105 } 1106 1107 return true; 1108 } 1109 1110 public: 1111 void postvisit( const ast::TupleType * tuple ) { 1112 auto tuple2 = dynamic_cast< const ast::TupleType * >( type2 ); 1113 if ( ! tuple2 ) return; 1114 1115 ast::Pass<TtypeExpander_new> expander{ tenv }; 1116 const ast::Type * flat = tuple->accept( expander ); 1117 const ast::Type * flat2 = tuple2->accept( expander ); 1118 1119 auto types = flatten( flat ); 1120 auto types2 = flatten( flat2 ); 1121 1122 result = unifyList( types, types2, tenv, need, have, open, symtab ); 1123 } 1124 1125 void postvisit( const ast::VarArgsType * ) { 1126 result = dynamic_cast< const ast::VarArgsType * >( type2 ); 1127 } 1128 1129 void postvisit( const ast::ZeroType * ) { 1130 result = dynamic_cast< const ast::ZeroType * >( type2 ); 1131 } 1132 1133 void postvisit( const ast::OneType * ) { 1134 result = dynamic_cast< const ast::OneType * >( type2 ); 1135 } 1136 1137 private: 1138 template< typename RefType > void handleRefType( RefType *inst, Type *other ); 1139 template< typename RefType > void handleGenericRefType( RefType *inst, Type *other ); 1140 }; 1141 1142 bool unify( 1143 const ast::ptr<ast::Type> & type1, const ast::ptr<ast::Type> & type2, 1144 ast::TypeEnvironment & env, ast::AssertionSet & need, ast::AssertionSet & have, 1145 ast::OpenVarSet & open, const ast::SymbolTable & symtab 1146 ) { 1147 ast::ptr<ast::Type> common; 1148 return unify( type1, type2, env, need, have, open, symtab, common ); 1149 } 1150 1151 bool unify( 1152 const ast::ptr<ast::Type> & type1, const ast::ptr<ast::Type> & type2, 1153 ast::TypeEnvironment & env, ast::AssertionSet & need, ast::AssertionSet & have, 1154 ast::OpenVarSet & open, const ast::SymbolTable & symtab, ast::ptr<ast::Type> & common 1155 ) { 1156 ast::OpenVarSet closed; 1157 findOpenVars( type1, open, closed, need, have, FirstClosed ); 1158 findOpenVars( type2, open, closed, need, have, FirstOpen ); 1159 return unifyInexact( 1160 type1, type2, env, need, have, open, WidenMode{ true, true }, symtab, common ); 1161 } 1162 1163 bool unifyExact( 1164 const ast::Type * type1, const ast::Type * type2, ast::TypeEnvironment & env, 1165 ast::AssertionSet & need, ast::AssertionSet & have, const ast::OpenVarSet & open, 1166 WidenMode widen, const ast::SymbolTable & symtab 1167 ) { 1168 if ( type1->qualifiers != type2->qualifiers ) return false; 1169 1170 auto var1 = dynamic_cast< const ast::TypeInstType * >( type1 ); 1171 auto var2 = dynamic_cast< const ast::TypeInstType * >( type2 ); 1172 ast::OpenVarSet::const_iterator 1173 entry1 = var1 ? open.find( var1->name ) : open.end(), 1174 entry2 = var2 ? open.find( var2->name ) : open.end(); 1175 bool isopen1 = entry1 != open.end(); 1176 bool isopen2 = entry2 != open.end(); 1177 1178 if ( isopen1 && isopen2 ) { 1179 if ( entry1->second.kind != entry2->second.kind ) return false; 1180 return env.bindVarToVar( 1181 var1, var2, ast::TypeDecl::Data{ entry1->second, entry2->second }, need, have, 1182 open, widen, symtab ); 1183 } else if ( isopen1 ) { 1184 return env.bindVar( var1, type2, entry1->second, need, have, open, widen, symtab ); 1185 } else if ( isopen2 ) { 1186 return env.bindVar( var2, type1, entry2->second, need, have, open, widen, symtab ); 1187 } else { 1188 ast::Pass<Unify_new> comparator{ type2, env, need, have, open, widen, symtab }; 1189 type1->accept( comparator ); 1190 return comparator.pass.result; 1191 } 1192 } 1193 1194 bool unifyInexact( 1195 const ast::ptr<ast::Type> & type1, const ast::ptr<ast::Type> & type2, 1196 ast::TypeEnvironment & env, ast::AssertionSet & need, ast::AssertionSet & have, 1197 const ast::OpenVarSet & open, WidenMode widen, const ast::SymbolTable & symtab, 1198 ast::ptr<ast::Type> & common 1199 ) { 1200 ast::CV::Qualifiers q1 = type1->qualifiers, q2 = type2->qualifiers; 1201 1202 // force t1 and t2 to be cloned if their qualifiers must be stripped, so that type1 and 1203 // type2 are left unchanged; calling convention forces type{1,2}->strong_ref >= 1 1204 ast::ptr<ast::Type> t1{ type1 }, t2{ type2 }; 1205 reset_qualifiers( t1 ); 1206 reset_qualifiers( t2 ); 1207 1208 if ( unifyExact( t1, t2, env, need, have, open, widen, symtab ) ) { 1209 t1 = nullptr; t2 = nullptr; // release t1, t2 to avoid spurious clones 1210 1211 // if exact unification on unqualified types, try to merge qualifiers 1212 if ( q1 == q2 || ( ( q1 > q2 || widen.first ) && ( q2 > q1 || widen.second ) ) ) { 1213 common = type1; 1214 reset_qualifiers( common, q1 | q2 ); 1215 return true; 1216 } else { 1217 return false; 1218 } 1219 1220 } else if (( common = commonType( t1, t2, widen, symtab, env, open ) )) { 1221 t1 = nullptr; t2 = nullptr; // release t1, t2 to avoid spurious clones 1222 1223 // no exact unification, but common type 1224 reset_qualifiers( common, q1 | q2 ); 1225 return true; 1226 } else { 1227 return false; 1228 } 1229 } 1230 1231 ast::ptr<ast::Type> extractResultType( const ast::FunctionType * func ) { 1232 if ( func->returns.empty() ) return new ast::VoidType{}; 1233 if ( func->returns.size() == 1 ) return func->returns[0]->get_type(); 1234 1235 std::vector<ast::ptr<ast::Type>> tys; 1236 for ( const ast::DeclWithType * decl : func->returns ) { 1237 tys.emplace_back( decl->get_type() ); 1238 } 1239 return new ast::TupleType{ std::move(tys) }; 1240 } 788 1241 } // namespace ResolvExpr 789 1242
Note:
See TracChangeset
for help on using the changeset viewer.