Changeset 90152a4 for src/SymTab
- Timestamp:
- Aug 27, 2018, 4:40:34 PM (7 years ago)
- Branches:
- ADT, arm-eh, ast-experimental, cleanup-dtors, enum, forall-pointer-decay, jacob/cs343-translation, jenkins-sandbox, master, new-ast, new-ast-unique-expr, pthread-emulation, qualifiedEnum
- Children:
- b7c89aa
- Parents:
- f9feab8 (diff), 305581d (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the(diff)
links above to see all the changes relative to each parent. - Location:
- src/SymTab
- Files:
-
- 3 added
- 1 deleted
- 9 edited
Legend:
- Unmodified
- Added
- Removed
-
src/SymTab/Autogen.cc
rf9feab8 r90152a4 9 9 // Author : Rob Schluntz 10 10 // Created On : Thu Mar 03 15:45:56 2016 11 // Last Modified By : Andrew Beach12 // Last Modified On : Fri Jul 14 16:41:00 201713 // Update Count : 6 211 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Fri Apr 27 14:39:06 2018 13 // Update Count : 63 14 14 // 15 15 … … 24 24 #include <vector> // for vector 25 25 26 #include "AddVisit.h" // for addVisit27 26 #include "CodeGen/OperatorTable.h" // for isCtorDtor, isCtorDtorAssign 28 27 #include "Common/PassVisitor.h" // for PassVisitor … … 335 334 definitions.push_back( dcl ); 336 335 indexer.addId( dcl ); 337 } catch ( SemanticError err) {336 } catch ( SemanticErrorException & ) { 338 337 // okay if decl does not resolve - that means the function should not be generated 339 338 delete dcl; … … 380 379 paramType->attributes.clear(); 381 380 // add a parameter corresponding to this field 382 memCtorType->parameters.push_back( new ObjectDecl( field->name, Type::StorageClasses(), LinkageSpec::Cforall, nullptr, paramType, nullptr ) ); 381 ObjectDecl * param = new ObjectDecl( field->name, Type::StorageClasses(), LinkageSpec::Cforall, nullptr, paramType, nullptr ); 382 cloneAll_if( field->attributes, param->attributes, [](Attribute * attr) { return attr->isValidOnFuncParam(); } ); 383 memCtorType->parameters.push_back( param ); 383 384 FunctionDecl * ctor = genFunc( "?{}", memCtorType->clone(), functionNesting ); 384 385 makeFieldCtorBody( aggregateDecl->members.begin(), aggregateDecl->members.end(), ctor ); -
src/SymTab/FixFunction.cc
rf9feab8 r90152a4 30 30 // can't delete function type because it may contain assertions, so transfer ownership to new object 31 31 ObjectDecl *pointer = new ObjectDecl( functionDecl->name, functionDecl->get_storageClasses(), functionDecl->linkage, nullptr, new PointerType( Type::Qualifiers(), functionDecl->type ), nullptr, functionDecl->attributes ); 32 pointer->location = functionDecl->location; 32 33 functionDecl->attributes.clear(); 33 34 functionDecl->type = nullptr; … … 36 37 } 37 38 39 // xxx - this passes on void[], e.g. 40 // void foo(void [10]); 41 // does not cause an error 42 38 43 Type * FixFunction::postmutate(ArrayType *arrayType) { 39 44 // need to recursively mutate the base type in order for multi-dimensional arrays to work. 40 45 PointerType *pointerType = new PointerType( arrayType->get_qualifiers(), arrayType->base, arrayType->dimension, arrayType->isVarLen, arrayType->isStatic ); 46 pointerType->location = arrayType->location; 41 47 arrayType->base = nullptr; 42 48 arrayType->dimension = nullptr; … … 62 68 void FixFunction::premutate(ZeroType *) { visit_children = false; } 63 69 void FixFunction::premutate(OneType *) { visit_children = false; } 70 71 bool fixFunction( DeclarationWithType *& dwt ) { 72 PassVisitor<FixFunction> fixer; 73 dwt = dwt->acceptMutator( fixer ); 74 return fixer.pass.isVoid; 75 } 64 76 } // namespace SymTab 65 77 -
src/SymTab/FixFunction.h
rf9feab8 r90152a4 47 47 bool isVoid; 48 48 }; 49 50 bool fixFunction( DeclarationWithType *& ); 49 51 } // namespace SymTab 50 52 -
src/SymTab/Indexer.cc
rf9feab8 r90152a4 26 26 #include "Common/SemanticError.h" // for SemanticError 27 27 #include "Common/utility.h" // for cloneAll 28 #include "GenPoly/GenPoly.h" 28 29 #include "InitTweak/InitTweak.h" // for isConstructor, isCopyFunction, isC... 29 30 #include "Mangler.h" // for Mangler … … 105 106 if ( ! CodeGen::isCtorDtorAssign( id ) ) return; 106 107 107 // helpful data structure 108 // helpful data structure to organize properties for a type 108 109 struct ValueType { 109 struct DeclBall { 110 struct DeclBall { // properties for this particular decl 110 111 IdData decl; 111 bool isUserDefinedFunc; // properties for this particular decl 112 bool isDefaultCtor; 113 bool isDtor; 112 bool isUserDefinedFunc; 114 113 bool isCopyFunc; 115 114 }; 116 115 // properties for this type 117 bool existsUserDefinedFunc = false; // any user-defined function found118 bool existsUserDefinedCtor = false; // any user-defined constructor found119 bool existsUserDefinedDtor = false; // any user-defined destructor found120 116 bool existsUserDefinedCopyFunc = false; // user-defined copy ctor found 121 bool existsUserDefinedDefaultCtor = false; // user-defined default ctorfound117 BaseSyntaxNode * deleteStmt = nullptr; // non-null if a user-defined function is found 122 118 std::list< DeclBall > decls; 123 119 … … 126 122 ValueType & operator+=( IdData data ) { 127 123 DeclarationWithType * function = data.id; 128 bool isUserDefinedFunc = ! LinkageSpec::isOverridable( function->get_linkage() ); 129 bool isDefaultCtor = InitTweak::isDefaultConstructor( function ); 130 bool isDtor = InitTweak::isDestructor( function ); 131 bool isCopyFunc = InitTweak::isCopyFunction( function, function->get_name() ); 132 decls.push_back( DeclBall{ data, isUserDefinedFunc, isDefaultCtor, isDtor, isCopyFunc } ); 133 existsUserDefinedFunc = existsUserDefinedFunc || isUserDefinedFunc; 134 existsUserDefinedCtor = existsUserDefinedCtor || (isUserDefinedFunc && CodeGen::isConstructor( function->get_name() ) ); 135 existsUserDefinedDtor = existsUserDefinedDtor || (isUserDefinedFunc && isDtor); 124 bool isUserDefinedFunc = ! LinkageSpec::isOverridable( function->linkage ); 125 bool isCopyFunc = InitTweak::isCopyFunction( function, function->name ); 126 decls.push_back( DeclBall{ data, isUserDefinedFunc, isCopyFunc } ); 136 127 existsUserDefinedCopyFunc = existsUserDefinedCopyFunc || (isUserDefinedFunc && isCopyFunc); 137 existsUserDefinedDefaultCtor = existsUserDefinedDefaultCtor || (isUserDefinedFunc && isDefaultCtor); 128 if ( isUserDefinedFunc && ! deleteStmt ) { 129 // any user-defined function can act as an implicit delete statement for generated constructors. 130 // a delete stmt should not act as an implicit delete statement. 131 deleteStmt = data.id; 132 } 138 133 return *this; 139 134 } … … 147 142 for ( auto decl : copy ) { 148 143 if ( FunctionDecl * function = dynamic_cast< FunctionDecl * >( decl.id ) ) { 149 std::list< DeclarationWithType * > & params = function-> get_functionType()->get_parameters();144 std::list< DeclarationWithType * > & params = function->type->parameters; 150 145 assert( ! params.empty() ); 151 146 // use base type of pointer, so that qualifiers on the pointer type aren't considered. … … 159 154 160 155 // if a type contains user defined ctor/dtor/assign, then special rules trigger, which determine 161 // the set of ctor/dtor/assign that are seen by the requester. In particular, if the user defines 162 // a default ctor, then the generated default ctor should never be seen, likewise for copy ctor 163 // and dtor. If the user defines any ctor/dtor, then no generated field ctors should be seen. 164 // If the user defines any ctor then the generated default ctor should not be seen (intrinsic default 165 // ctor must be overridden exactly). 156 // the set of ctor/dtor/assign that can be used by the requester. In particular, if the user defines 157 // a default ctor, then the generated default ctor is unavailable, likewise for copy ctor 158 // and dtor. If the user defines any ctor/dtor, then no generated field ctors are available. 159 // If the user defines any ctor then the generated default ctor is unavailable (intrinsic default 160 // ctor must be overridden exactly). If the user defines anything that looks like a copy constructor, 161 // then the generated copy constructor is unavailable, and likewise for the assignment operator. 166 162 for ( std::pair< const std::string, ValueType > & pair : funcMap ) { 167 163 ValueType & val = pair.second; 168 164 for ( ValueType::DeclBall ball : val.decls ) { 169 bool noUserDefinedFunc = ! val.existsUserDefinedFunc; 170 bool isUserDefinedFunc = ball.isUserDefinedFunc; 171 bool isAcceptableDefaultCtor = (! val.existsUserDefinedCtor || (! val.existsUserDefinedDefaultCtor && ball.decl.id->get_linkage() == LinkageSpec::Intrinsic)) && ball.isDefaultCtor; // allow default constructors only when no user-defined constructors exist, except in the case of intrinsics, which require exact overrides 172 bool isAcceptableCopyFunc = ! val.existsUserDefinedCopyFunc && ball.isCopyFunc; // handles copy ctor and assignment operator 173 bool isAcceptableDtor = ! val.existsUserDefinedDtor && ball.isDtor; 174 if ( noUserDefinedFunc || isUserDefinedFunc || isAcceptableDefaultCtor || isAcceptableCopyFunc || isAcceptableDtor ) { 175 // decl conforms to the rules described above, so it should be seen by the requester 176 out.push_back( ball.decl ); 165 bool isNotUserDefinedFunc = ! ball.isUserDefinedFunc && ball.decl.id->linkage != LinkageSpec::Intrinsic; 166 bool isCopyFunc = ball.isCopyFunc; 167 bool existsUserDefinedCopyFunc = val.existsUserDefinedCopyFunc; 168 169 // only implicitly delete non-user defined functions that are not intrinsic, and are 170 // not copy functions (assignment or copy constructor). If a user-defined copy function exists, 171 // do not pass along the non-user-defined copy functions since signatures do not have to match, 172 // and the generated functions will often be cheaper. 173 if ( isNotUserDefinedFunc ) { 174 if ( isCopyFunc ) { 175 // Skip over non-user-defined copy functions when there is a user-defined copy function. 176 // Since their signatures do not have to be exact, deleting them is the wrong choice. 177 if ( existsUserDefinedCopyFunc ) continue; 178 } else { 179 // delete non-user-defined non-copy functions if applicable. 180 // deleteStmt will be non-null only if a user-defined function is found. 181 ball.decl.deleteStmt = val.deleteStmt; 182 } 177 183 } 184 out.push_back( ball.decl ); 178 185 } 179 186 } … … 265 272 } 266 273 274 NamedTypeDecl *Indexer::globalLookupType( const std::string &id ) const { 275 return lookupTypeAtScope( id, 0 ); 276 } 277 278 StructDecl *Indexer::globalLookupStruct( const std::string &id ) const { 279 return lookupStructAtScope( id, 0 ); 280 } 281 282 UnionDecl *Indexer::globalLookupUnion( const std::string &id ) const { 283 return lookupUnionAtScope( id, 0 ); 284 } 285 286 EnumDecl *Indexer::globalLookupEnum( const std::string &id ) const { 287 return lookupEnumAtScope( id, 0 ); 288 } 289 267 290 EnumDecl *Indexer::lookupEnum( const std::string &id ) const { 268 291 if ( ! tables ) return 0; … … 286 309 } 287 310 288 DeclarationWithType *Indexer::lookupIdAtScope( const std::string &id, const std::string &mangleName, unsigned long scope ) const {289 if ( ! tables ) return 0;290 if ( tables->scope < scope ) return 0;311 const Indexer::IdData * Indexer::lookupIdAtScope( const std::string &id, const std::string &mangleName, unsigned long scope ) const { 312 if ( ! tables ) return nullptr; 313 if ( tables->scope < scope ) return nullptr; 291 314 292 315 IdTable::const_iterator decls = tables->idTable.find( id ); … … 294 317 const MangleTable &mangleTable = decls->second; 295 318 MangleTable::const_iterator decl = mangleTable.find( mangleName ); 296 if ( decl != mangleTable.end() ) return decl->second.id;319 if ( decl != mangleTable.end() ) return &decl->second; 297 320 } 298 321 299 322 return tables->base.lookupIdAtScope( id, mangleName, scope ); 323 } 324 325 Indexer::IdData * Indexer::lookupIdAtScope( const std::string &id, const std::string &mangleName, unsigned long scope ) { 326 return const_cast<IdData *>(const_cast<const Indexer *>(this)->lookupIdAtScope( id, mangleName, scope )); 300 327 } 301 328 … … 336 363 if ( ! tables ) return 0; 337 364 if ( tables->scope < scope ) return 0; 365 if ( tables->scope > scope ) return tables->base.lookupTypeAtScope( id, scope ); 338 366 339 367 TypeTable::const_iterator ret = tables->typeTable.find( id ); … … 344 372 if ( ! tables ) return 0; 345 373 if ( tables->scope < scope ) return 0; 374 if ( tables->scope > scope ) return tables->base.lookupStructAtScope( id, scope ); 346 375 347 376 StructTable::const_iterator ret = tables->structTable.find( id ); … … 352 381 if ( ! tables ) return 0; 353 382 if ( tables->scope < scope ) return 0; 383 if ( tables->scope > scope ) return tables->base.lookupEnumAtScope( id, scope ); 354 384 355 385 EnumTable::const_iterator ret = tables->enumTable.find( id ); … … 360 390 if ( ! tables ) return 0; 361 391 if ( tables->scope < scope ) return 0; 392 if ( tables->scope > scope ) return tables->base.lookupUnionAtScope( id, scope ); 362 393 363 394 UnionTable::const_iterator ret = tables->unionTable.find( id ); … … 368 399 if ( ! tables ) return 0; 369 400 if ( tables->scope < scope ) return 0; 401 if ( tables->scope > scope ) return tables->base.lookupTraitAtScope( id, scope ); 370 402 371 403 TraitTable::const_iterator ret = tables->traitTable.find( id ); … … 373 405 } 374 406 375 bool addedIdConflicts( DeclarationWithType *existing, DeclarationWithType *added ) { 407 bool isFunction( DeclarationWithType * decl ) { 408 return GenPoly::getFunctionType( decl->get_type() ); 409 } 410 411 bool isObject( DeclarationWithType * decl ) { 412 return ! isFunction( decl ); 413 } 414 415 bool isDefinition( DeclarationWithType * decl ) { 416 if ( FunctionDecl * func = dynamic_cast< FunctionDecl * >( decl ) ) { 417 // a function is a definition if it has a body 418 return func->statements; 419 } else { 420 // an object is a definition if it is not marked extern. 421 // both objects must be marked extern 422 return ! decl->get_storageClasses().is_extern; 423 } 424 } 425 426 bool addedIdConflicts( Indexer::IdData & existing, DeclarationWithType *added, BaseSyntaxNode * deleteStmt, Indexer::ConflictFunction handleConflicts ) { 376 427 // if we're giving the same name mangling to things of different types then there is something wrong 377 assert( ( dynamic_cast<ObjectDecl*>( added ) && dynamic_cast<ObjectDecl*>( existing) )378 || ( dynamic_cast<FunctionDecl*>( added ) && dynamic_cast<FunctionDecl*>( existing) ) );379 380 if ( LinkageSpec::isOverridable( existing ->get_linkage() ) ) {428 assert( (isObject( added ) && isObject( existing.id ) ) 429 || ( isFunction( added ) && isFunction( existing.id ) ) ); 430 431 if ( LinkageSpec::isOverridable( existing.id->get_linkage() ) ) { 381 432 // new definition shadows the autogenerated one, even at the same scope 382 433 return false; 383 } else if ( LinkageSpec::isMangled( added->get_linkage() ) || ResolvExpr::typesCompatible( added->get_type(), existing->get_type(), Indexer() ) ) { 384 // typesCompatible doesn't really do the right thing here. When checking compatibility of function types, 385 // we should ignore outermost pointer qualifiers, except _Atomic? 386 FunctionDecl *newentry = dynamic_cast< FunctionDecl* >( added ); 387 FunctionDecl *oldentry = dynamic_cast< FunctionDecl* >( existing ); 388 if ( newentry && oldentry ) { 389 if ( newentry->get_statements() && oldentry->get_statements() ) { 390 throw SemanticError( "duplicate function definition for ", added ); 391 } // if 392 } else { 393 // two objects with the same mangled name defined in the same scope. 394 // both objects must be marked extern or both must be intrinsic for this to be okay 395 // xxx - perhaps it's actually if either is intrinsic then this is okay? 396 // might also need to be same storage class? 397 ObjectDecl *newobj = dynamic_cast< ObjectDecl* >( added ); 398 ObjectDecl *oldobj = dynamic_cast< ObjectDecl* >( existing ); 399 if ( ! newobj->get_storageClasses().is_extern && ! oldobj->get_storageClasses().is_extern ) { 400 throw SemanticError( "duplicate object definition for ", added ); 434 } else if ( LinkageSpec::isMangled( added->get_linkage() ) || ResolvExpr::typesCompatible( added->get_type(), existing.id->get_type(), Indexer() ) ) { 435 436 // it is a conflict if one declaration is deleted and the other is not 437 if ( deleteStmt && ! existing.deleteStmt ) { 438 return handleConflicts( existing, "deletion of defined identifier " ); 439 } else if ( ! deleteStmt && existing.deleteStmt ) { 440 return handleConflicts( existing, "definition of deleted identifier " ); 441 } 442 443 if ( isDefinition( added ) && isDefinition( existing.id ) ) { 444 if ( isFunction( added ) ) { 445 return handleConflicts( existing, "duplicate function definition for " ); 446 } else { 447 return handleConflicts( existing, "duplicate object definition for " ); 401 448 } // if 402 449 } // if 403 450 } else { 404 throw SemanticError( "duplicate definition for ", added);451 return handleConflicts( existing, "duplicate definition for " ); 405 452 } // if 406 453 … … 408 455 } 409 456 410 void Indexer::addId( DeclarationWithType *decl, Expression * baseExpr ) { 457 void Indexer::addId( DeclarationWithType *decl, ConflictFunction handleConflicts, Expression * baseExpr, BaseSyntaxNode * deleteStmt ) { 458 if ( decl->name == "" ) return; 411 459 debugPrint( "Adding Id " << decl->name << std::endl ); 412 460 makeWritable(); … … 430 478 // isomorphic to C type-compatibility, which it may not be. 431 479 if ( hasIncompatibleCDecl( name, mangleName, scope ) ) { 432 throw SemanticError( "conflicting overload of C function ", decl);433 } 434 } else { 435 // Check that a Cforall declaration doesn't over loadany C declaration480 SemanticError( decl, "conflicting overload of C function " ); 481 } 482 } else { 483 // Check that a Cforall declaration doesn't override any C declaration 436 484 if ( hasCompatibleCDecl( name, mangleName, scope ) ) { 437 throw SemanticError( "Cforall declaration hides C function ", decl);485 SemanticError( decl, "Cforall declaration hides C function " ); 438 486 } 439 487 } 440 488 441 489 // Skip repeat declarations of the same identifier 442 DeclarationWithType *existing = lookupIdAtScope( name, mangleName, scope );443 if ( existing && addedIdConflicts( existing, decl) ) return;490 IdData * existing = lookupIdAtScope( name, mangleName, scope ); 491 if ( existing && existing->id && addedIdConflicts( *existing, decl, deleteStmt, handleConflicts ) ) return; 444 492 445 493 // add to indexer 446 tables->idTable[ name ][ mangleName ] = { decl, baseExpr};494 tables->idTable[ name ][ mangleName ] = IdData{ decl, baseExpr, deleteStmt }; 447 495 ++tables->size; 448 496 } 449 497 498 void Indexer::addId( DeclarationWithType * decl, Expression * baseExpr ) { 499 // default handling of conflicts is to raise an error 500 addId( decl, [decl](IdData &, const std::string & msg) { SemanticError( decl, msg ); return true; }, baseExpr, decl->isDeleted ? decl : nullptr ); 501 } 502 503 void Indexer::addDeletedId( DeclarationWithType * decl, BaseSyntaxNode * deleteStmt ) { 504 // default handling of conflicts is to raise an error 505 addId( decl, [decl](IdData &, const std::string & msg) { SemanticError( decl, msg ); return true; }, nullptr, deleteStmt ); 506 } 507 450 508 bool addedTypeConflicts( NamedTypeDecl *existing, NamedTypeDecl *added ) { 451 if ( existing-> get_base() == 0) {509 if ( existing->base == nullptr ) { 452 510 return false; 453 } else if ( added-> get_base() == 0) {511 } else if ( added->base == nullptr ) { 454 512 return true; 455 513 } else { 456 throw SemanticError( "redeclaration of ", added ); 457 } 514 assert( existing->base && added->base ); 515 // typedef redeclarations are errors only if types are different 516 if ( ! ResolvExpr::typesCompatible( existing->base, added->base, Indexer() ) ) { 517 SemanticError( added->location, "redeclaration of " + added->name ); 518 } 519 } 520 // does not need to be added to the table if both existing and added have a base that are the same 521 return true; 458 522 } 459 523 … … 462 526 makeWritable(); 463 527 464 const std::string &id = decl-> get_name();528 const std::string &id = decl->name; 465 529 TypeTable::iterator existing = tables->typeTable.find( id ); 466 530 if ( existing == tables->typeTable.end() ) { … … 478 542 479 543 bool addedDeclConflicts( AggregateDecl *existing, AggregateDecl *added ) { 480 if ( existing->get_members().empty()) {544 if ( ! existing->body ) { 481 545 return false; 482 } else if ( ! added->get_members().empty()) {483 throw SemanticError( "redeclaration of ", added);546 } else if ( added->body ) { 547 SemanticError( added, "redeclaration of " ); 484 548 } // if 485 549 return true; … … 495 559 makeWritable(); 496 560 497 const std::string &id = decl-> get_name();561 const std::string &id = decl->name; 498 562 StructTable::iterator existing = tables->structTable.find( id ); 499 563 if ( existing == tables->structTable.end() ) { … … 514 578 makeWritable(); 515 579 516 const std::string &id = decl-> get_name();580 const std::string &id = decl->name; 517 581 EnumTable::iterator existing = tables->enumTable.find( id ); 518 582 if ( existing == tables->enumTable.end() ) { … … 538 602 makeWritable(); 539 603 540 const std::string &id = decl-> get_name();604 const std::string &id = decl->name; 541 605 UnionTable::iterator existing = tables->unionTable.find( id ); 542 606 if ( existing == tables->unionTable.end() ) { … … 557 621 makeWritable(); 558 622 559 const std::string &id = decl-> get_name();623 const std::string &id = decl->name; 560 624 TraitTable::iterator existing = tables->traitTable.find( id ); 561 625 if ( existing == tables->traitTable.end() ) { … … 572 636 } 573 637 574 void Indexer::addWith( WithStmt * stmt ) { 575 for ( Expression * expr : stmt->exprs ) { 638 void Indexer::addMembers( AggregateDecl * aggr, Expression * expr, ConflictFunction handleConflicts ) { 639 for ( Declaration * decl : aggr->members ) { 640 if ( DeclarationWithType * dwt = dynamic_cast< DeclarationWithType * >( decl ) ) { 641 addId( dwt, handleConflicts, expr ); 642 if ( dwt->name == "" ) { 643 Type * t = dwt->get_type()->stripReferences(); 644 if ( dynamic_cast< StructInstType * >( t ) || dynamic_cast< UnionInstType * >( t ) ) { 645 Expression * base = expr->clone(); 646 ResolvExpr::Cost cost = ResolvExpr::Cost::zero; // xxx - carry this cost into the indexer as a base cost? 647 ResolvExpr::referenceToRvalueConversion( base, cost ); 648 addMembers( t->getAggr(), new MemberExpr( dwt, base ), handleConflicts ); 649 } 650 } 651 } 652 } 653 } 654 655 void Indexer::addWith( std::list< Expression * > & withExprs, BaseSyntaxNode * withStmt ) { 656 for ( Expression * expr : withExprs ) { 576 657 if ( expr->result ) { 577 658 AggregateDecl * aggr = expr->result->stripReferences()->getAggr(); 578 659 assertf( aggr, "WithStmt expr has non-aggregate type: %s", toString( expr->result ).c_str() ); 579 660 580 for ( Declaration * decl : aggr->members) {581 if ( DeclarationWithType * dwt = dynamic_cast< DeclarationWithType * >( decl ) ) {582 addId( dwt, expr );583 }584 } 661 addMembers( aggr, expr, [withStmt](IdData & existing, const std::string &) { 662 // on conflict, delete the identifier 663 existing.deleteStmt = withStmt; 664 return true; 665 }); 585 666 } 586 667 } … … 641 722 642 723 void Indexer::print( std::ostream &os, int indent ) const { 643 724 using std::cerr; 644 725 645 726 if ( tables ) { … … 666 747 } 667 748 668 Expression * Indexer::IdData::combine() const { 749 Expression * Indexer::IdData::combine( ResolvExpr::Cost & cost ) const { 750 Expression * ret = nullptr; 669 751 if ( baseExpr ) { 670 752 Expression * base = baseExpr->clone(); 671 ResolvExpr::referenceToRvalueConversion( base );672 Expression *ret = new MemberExpr( id, base );753 ResolvExpr::referenceToRvalueConversion( base, cost ); 754 ret = new MemberExpr( id, base ); 673 755 // xxx - this introduces hidden environments, for now remove them. 674 756 // std::swap( base->env, ret->env ); 675 757 delete base->env; 676 758 base->env = nullptr; 677 return ret; 678 } else { 679 return new VariableExpr( id ); 680 } 759 } else { 760 ret = new VariableExpr( id ); 761 } 762 if ( deleteStmt ) ret = new DeletedExpr( ret, deleteStmt ); 763 return ret; 681 764 } 682 765 } // namespace SymTab -
src/SymTab/Indexer.h
rf9feab8 r90152a4 19 19 #include <list> // for list 20 20 #include <string> // for string 21 #include <functional> // for function 21 22 22 23 #include "SynTree/Visitor.h" // for Visitor 23 24 #include "SynTree/SynTree.h" // for AST nodes 25 26 namespace ResolvExpr { 27 class Cost; 28 } 24 29 25 30 namespace SymTab { … … 40 45 41 46 struct IdData { 42 DeclarationWithType * id ;43 Expression * baseExpr ; // WithExpr47 DeclarationWithType * id = nullptr; 48 Expression * baseExpr = nullptr; // WithExpr 44 49 45 Expression * combine() const; 50 /// non-null if this declaration is deleted 51 BaseSyntaxNode * deleteStmt = nullptr; 52 53 // NOTE: shouldn't need either of these constructors, but gcc-4 does not properly support initializer lists with default members. 54 IdData() = default; 55 IdData( DeclarationWithType * id, Expression * baseExpr, BaseSyntaxNode * deleteStmt ) : id( id ), baseExpr( baseExpr ), deleteStmt( deleteStmt ) {} 56 57 Expression * combine( ResolvExpr::Cost & cost ) const; 46 58 }; 47 59 … … 59 71 TraitDecl *lookupTrait( const std::string &id ) const; 60 72 73 /// Gets the type declaration with the given ID at global scope 74 NamedTypeDecl *globalLookupType( const std::string &id ) const; 75 /// Gets the struct declaration with the given ID at global scope 76 StructDecl *globalLookupStruct( const std::string &id ) const; 77 /// Gets the union declaration with the given ID at global scope 78 UnionDecl *globalLookupUnion( const std::string &id ) const; 79 /// Gets the enum declaration with the given ID at global scope 80 EnumDecl *globalLookupEnum( const std::string &id ) const; 81 61 82 void print( std::ostream &os, int indent = 0 ) const; 62 83 63 84 /// looks up a specific mangled ID at the given scope 64 DeclarationWithType *lookupIdAtScope( const std::string &id, const std::string &mangleName, unsigned long scope ) const; 85 IdData * lookupIdAtScope( const std::string &id, const std::string &mangleName, unsigned long scope ); 86 const IdData * lookupIdAtScope( const std::string &id, const std::string &mangleName, unsigned long scope ) const; 65 87 /// returns true if there exists a declaration with C linkage and the given name with a different mangled name 66 88 bool hasIncompatibleCDecl( const std::string &id, const std::string &mangleName, unsigned long scope ) const; … … 74 96 TraitDecl *lookupTraitAtScope( const std::string &id, unsigned long scope ) const; 75 97 76 void addId( DeclarationWithType *decl, Expression * baseExpr = nullptr ); 98 typedef std::function<bool(IdData &, const std::string &)> ConflictFunction; 99 100 void addId( DeclarationWithType * decl, Expression * baseExpr = nullptr ); 101 void addDeletedId( DeclarationWithType * decl, BaseSyntaxNode * deleteStmt ); 102 77 103 void addType( NamedTypeDecl *decl ); 78 104 void addStruct( const std::string &id ); … … 84 110 85 111 /// adds all of the IDs from WithStmt exprs 86 void addWith( WithStmt * ); 112 void addWith( std::list< Expression * > & withExprs, BaseSyntaxNode * withStmt ); 113 114 /// adds all of the members of the Aggregate (addWith helper) 115 void addMembers( AggregateDecl * aggr, Expression * expr, ConflictFunction ); 87 116 88 117 /// convenience function for adding a list of Ids to the indexer … … 114 143 /// Ensures that tables variable is writable (i.e. allocated, uniquely owned by this Indexer, and at the current scope) 115 144 void makeWritable(); 145 146 /// common code for addId, addDeletedId, etc. 147 void addId( DeclarationWithType * decl, ConflictFunction, Expression * baseExpr = nullptr, BaseSyntaxNode * deleteStmt = nullptr ); 116 148 }; 117 149 } // namespace SymTab -
src/SymTab/Mangler.cc
rf9feab8 r90152a4 23 23 24 24 #include "CodeGen/OperatorTable.h" // for OperatorInfo, operatorLookup 25 #include "Common/PassVisitor.h" 25 26 #include "Common/SemanticError.h" // for SemanticError 26 27 #include "Common/utility.h" // for toString … … 31 32 32 33 namespace SymTab { 33 std::string Mangler::mangleType( Type * ty ) { 34 Mangler mangler( false, true, true ); 35 maybeAccept( ty, mangler ); 36 return mangler.get_mangleName(); 37 } 38 39 std::string Mangler::mangleConcrete( Type* ty ) { 40 Mangler mangler( false, false, false ); 41 maybeAccept( ty, mangler ); 42 return mangler.get_mangleName(); 43 } 44 45 Mangler::Mangler( bool mangleOverridable, bool typeMode, bool mangleGenericParams ) 46 : nextVarNum( 0 ), isTopLevel( true ), mangleOverridable( mangleOverridable ), typeMode( typeMode ), mangleGenericParams( mangleGenericParams ) {} 47 48 Mangler::Mangler( const Mangler &rhs ) : mangleName() { 49 varNums = rhs.varNums; 50 nextVarNum = rhs.nextVarNum; 51 isTopLevel = rhs.isTopLevel; 52 mangleOverridable = rhs.mangleOverridable; 53 typeMode = rhs.typeMode; 54 } 55 56 void Mangler::mangleDecl( DeclarationWithType * declaration ) { 57 bool wasTopLevel = isTopLevel; 58 if ( isTopLevel ) { 59 varNums.clear(); 60 nextVarNum = 0; 61 isTopLevel = false; 62 } // if 63 mangleName << "__"; 64 CodeGen::OperatorInfo opInfo; 65 if ( operatorLookup( declaration->get_name(), opInfo ) ) { 66 mangleName << opInfo.outputName; 67 } else { 68 mangleName << declaration->get_name(); 69 } // if 70 mangleName << "__"; 71 maybeAccept( declaration->get_type(), *this ); 72 if ( mangleOverridable && LinkageSpec::isOverridable( declaration->get_linkage() ) ) { 73 // want to be able to override autogenerated and intrinsic routines, 74 // so they need a different name mangling 75 if ( declaration->get_linkage() == LinkageSpec::AutoGen ) { 76 mangleName << "autogen__"; 77 } else if ( declaration->get_linkage() == LinkageSpec::Intrinsic ) { 78 mangleName << "intrinsic__"; 79 } else { 80 // if we add another kind of overridable function, this has to change 81 assert( false && "unknown overrideable linkage" ); 82 } // if 34 namespace Mangler { 35 namespace { 36 /// Mangles names to a unique C identifier 37 struct Mangler : public WithShortCircuiting, public WithVisitorRef<Mangler>, public WithGuards { 38 Mangler( bool mangleOverridable, bool typeMode, bool mangleGenericParams ); 39 Mangler( const Mangler & ) = delete; 40 41 void previsit( BaseSyntaxNode * ) { visit_children = false; } 42 43 void postvisit( ObjectDecl * declaration ); 44 void postvisit( FunctionDecl * declaration ); 45 void postvisit( TypeDecl * declaration ); 46 47 void postvisit( VoidType * voidType ); 48 void postvisit( BasicType * basicType ); 49 void postvisit( PointerType * pointerType ); 50 void postvisit( ArrayType * arrayType ); 51 void postvisit( ReferenceType * refType ); 52 void postvisit( FunctionType * functionType ); 53 void postvisit( StructInstType * aggregateUseType ); 54 void postvisit( UnionInstType * aggregateUseType ); 55 void postvisit( EnumInstType * aggregateUseType ); 56 void postvisit( TypeInstType * aggregateUseType ); 57 void postvisit( TraitInstType * inst ); 58 void postvisit( TupleType * tupleType ); 59 void postvisit( VarArgsType * varArgsType ); 60 void postvisit( ZeroType * zeroType ); 61 void postvisit( OneType * oneType ); 62 void postvisit( QualifiedType * qualType ); 63 64 std::string get_mangleName() { return mangleName.str(); } 65 private: 66 std::ostringstream mangleName; ///< Mangled name being constructed 67 typedef std::map< std::string, std::pair< int, int > > VarMapType; 68 VarMapType varNums; ///< Map of type variables to indices 69 int nextVarNum; ///< Next type variable index 70 bool isTopLevel; ///< Is the Mangler at the top level 71 bool mangleOverridable; ///< Specially mangle overridable built-in methods 72 bool typeMode; ///< Produce a unique mangled name for a type 73 bool mangleGenericParams; ///< Include generic parameters in name mangling if true 74 bool inFunctionType = false; ///< Include type qualifiers if false. 75 bool inQualifiedType = false; ///< Add start/end delimiters around qualified type 76 77 void mangleDecl( DeclarationWithType *declaration ); 78 void mangleRef( ReferenceToType *refType, std::string prefix ); 79 80 void printQualifiers( Type *type ); 81 }; // Mangler 82 } // namespace 83 84 std::string mangle( BaseSyntaxNode * decl, bool mangleOverridable, bool typeMode, bool mangleGenericParams ) { 85 PassVisitor<Mangler> mangler( mangleOverridable, typeMode, mangleGenericParams ); 86 maybeAccept( decl, mangler ); 87 return mangler.pass.get_mangleName(); 83 88 } 84 isTopLevel = wasTopLevel; 85 } 86 87 void Mangler::visit( ObjectDecl * declaration ) { 88 mangleDecl( declaration ); 89 } 90 91 void Mangler::visit( FunctionDecl * declaration ) { 92 mangleDecl( declaration ); 93 } 94 95 void Mangler::visit( VoidType * voidType ) { 96 printQualifiers( voidType ); 97 mangleName << "v"; 98 } 99 100 void Mangler::visit( BasicType * basicType ) { 101 static const char *btLetter[] = { 102 "b", // Bool 103 "c", // Char 104 "Sc", // SignedChar 105 "Uc", // UnsignedChar 106 "s", // ShortSignedInt 107 "Us", // ShortUnsignedInt 108 "i", // SignedInt 109 "Ui", // UnsignedInt 110 "l", // LongSignedInt 111 "Ul", // LongUnsignedInt 112 "q", // LongLongSignedInt 113 "Uq", // LongLongUnsignedInt 114 "f", // Float 115 "d", // Double 116 "r", // LongDouble 117 "Xf", // FloatComplex 118 "Xd", // DoubleComplex 119 "Xr", // LongDoubleComplex 120 "If", // FloatImaginary 121 "Id", // DoubleImaginary 122 "Ir", // LongDoubleImaginary 123 "w", // SignedInt128 124 "Uw", // UnsignedInt128 125 }; 126 127 printQualifiers( basicType ); 128 mangleName << btLetter[ basicType->get_kind() ]; 129 } 130 131 void Mangler::visit( PointerType * pointerType ) { 132 printQualifiers( pointerType ); 133 mangleName << "P"; 134 maybeAccept( pointerType->get_base(), *this ); 135 } 136 137 void Mangler::visit( ArrayType * arrayType ) { 138 // TODO: encode dimension 139 printQualifiers( arrayType ); 140 mangleName << "A0"; 141 maybeAccept( arrayType->get_base(), *this ); 142 } 143 144 void Mangler::visit( ReferenceType * refType ) { 145 printQualifiers( refType ); 146 mangleName << "R"; 147 maybeAccept( refType->get_base(), *this ); 148 } 149 150 namespace { 151 inline std::list< Type* > getTypes( const std::list< DeclarationWithType* > decls ) { 152 std::list< Type* > ret; 153 std::transform( decls.begin(), decls.end(), std::back_inserter( ret ), 154 std::mem_fun( &DeclarationWithType::get_type ) ); 155 return ret; 89 90 std::string mangleType( Type * ty ) { 91 PassVisitor<Mangler> mangler( false, true, true ); 92 maybeAccept( ty, mangler ); 93 return mangler.pass.get_mangleName(); 156 94 } 157 } 158 159 void Mangler::visit( FunctionType * functionType ) { 160 printQualifiers( functionType ); 161 mangleName << "F"; 162 std::list< Type* > returnTypes = getTypes( functionType->get_returnVals() ); 163 acceptAll( returnTypes, *this ); 164 mangleName << "_"; 165 std::list< Type* > paramTypes = getTypes( functionType->get_parameters() ); 166 acceptAll( paramTypes, *this ); 167 mangleName << "_"; 168 } 169 170 void Mangler::mangleRef( ReferenceToType * refType, std::string prefix ) { 171 printQualifiers( refType ); 172 173 mangleName << ( refType->get_name().length() + prefix.length() ) << prefix << refType->get_name(); 174 175 if ( mangleGenericParams ) { 176 std::list< Expression* >& params = refType->get_parameters(); 177 if ( ! params.empty() ) { 95 96 std::string mangleConcrete( Type * ty ) { 97 PassVisitor<Mangler> mangler( false, false, false ); 98 maybeAccept( ty, mangler ); 99 return mangler.pass.get_mangleName(); 100 } 101 102 namespace { 103 Mangler::Mangler( bool mangleOverridable, bool typeMode, bool mangleGenericParams ) 104 : nextVarNum( 0 ), isTopLevel( true ), mangleOverridable( mangleOverridable ), typeMode( typeMode ), mangleGenericParams( mangleGenericParams ) {} 105 106 void Mangler::mangleDecl( DeclarationWithType * declaration ) { 107 bool wasTopLevel = isTopLevel; 108 if ( isTopLevel ) { 109 varNums.clear(); 110 nextVarNum = 0; 111 isTopLevel = false; 112 } // if 113 mangleName << Encoding::manglePrefix; 114 CodeGen::OperatorInfo opInfo; 115 if ( operatorLookup( declaration->get_name(), opInfo ) ) { 116 mangleName << opInfo.outputName.size() << opInfo.outputName; 117 } else { 118 mangleName << declaration->name.size() << declaration->name; 119 } // if 120 maybeAccept( declaration->get_type(), *visitor ); 121 if ( mangleOverridable && LinkageSpec::isOverridable( declaration->get_linkage() ) ) { 122 // want to be able to override autogenerated and intrinsic routines, 123 // so they need a different name mangling 124 if ( declaration->get_linkage() == LinkageSpec::AutoGen ) { 125 mangleName << Encoding::autogen; 126 } else if ( declaration->get_linkage() == LinkageSpec::Intrinsic ) { 127 mangleName << Encoding::intrinsic; 128 } else { 129 // if we add another kind of overridable function, this has to change 130 assert( false && "unknown overrideable linkage" ); 131 } // if 132 } 133 isTopLevel = wasTopLevel; 134 } 135 136 void Mangler::postvisit( ObjectDecl * declaration ) { 137 mangleDecl( declaration ); 138 } 139 140 void Mangler::postvisit( FunctionDecl * declaration ) { 141 mangleDecl( declaration ); 142 } 143 144 void Mangler::postvisit( VoidType * voidType ) { 145 printQualifiers( voidType ); 146 mangleName << Encoding::void_t; 147 } 148 149 void Mangler::postvisit( BasicType * basicType ) { 150 printQualifiers( basicType ); 151 assertf( basicType->get_kind() < BasicType::NUMBER_OF_BASIC_TYPES, "Unhandled basic type: %d", basicType->get_kind() ); 152 mangleName << Encoding::basicTypes[ basicType->get_kind() ]; 153 } 154 155 void Mangler::postvisit( PointerType * pointerType ) { 156 printQualifiers( pointerType ); 157 // mangle void (*f)() and void f() to the same name to prevent overloading on functions and function pointers 158 if ( ! dynamic_cast<FunctionType *>( pointerType->base ) ) mangleName << Encoding::pointer; 159 maybeAccept( pointerType->base, *visitor ); 160 } 161 162 void Mangler::postvisit( ArrayType * arrayType ) { 163 // TODO: encode dimension 164 printQualifiers( arrayType ); 165 mangleName << Encoding::array << "0"; 166 maybeAccept( arrayType->base, *visitor ); 167 } 168 169 void Mangler::postvisit( ReferenceType * refType ) { 170 // don't print prefix (e.g. 'R') for reference types so that references and non-references do not overload. 171 // Further, do not print the qualifiers for a reference type (but do run printQualifers because of TypeDecls, etc.), 172 // by pretending every reference type is a function parameter. 173 GuardValue( inFunctionType ); 174 inFunctionType = true; 175 printQualifiers( refType ); 176 maybeAccept( refType->base, *visitor ); 177 } 178 179 namespace { 180 inline std::list< Type* > getTypes( const std::list< DeclarationWithType* > decls ) { 181 std::list< Type* > ret; 182 std::transform( decls.begin(), decls.end(), std::back_inserter( ret ), 183 std::mem_fun( &DeclarationWithType::get_type ) ); 184 return ret; 185 } 186 } 187 188 void Mangler::postvisit( FunctionType * functionType ) { 189 printQualifiers( functionType ); 190 mangleName << Encoding::function; 191 // turn on inFunctionType so that printQualifiers does not print most qualifiers for function parameters, 192 // since qualifiers on outermost parameter type do not differentiate function types, e.g., 193 // void (*)(const int) and void (*)(int) are the same type, but void (*)(const int *) and void (*)(int *) are different 194 GuardValue( inFunctionType ); 195 inFunctionType = true; 196 std::list< Type* > returnTypes = getTypes( functionType->returnVals ); 197 if (returnTypes.empty()) mangleName << Encoding::void_t; 198 else acceptAll( returnTypes, *visitor ); 178 199 mangleName << "_"; 179 for ( std::list< Expression* >::const_iterator param = params.begin(); param != params.end(); ++param ) { 180 TypeExpr *paramType = dynamic_cast< TypeExpr* >( *param ); 181 assertf(paramType, "Aggregate parameters should be type expressions: %s", toString(*param).c_str()); 182 maybeAccept( paramType->get_type(), *this ); 183 } 200 std::list< Type* > paramTypes = getTypes( functionType->parameters ); 201 acceptAll( paramTypes, *visitor ); 184 202 mangleName << "_"; 185 203 } 186 } 187 } 188 189 void Mangler::visit( StructInstType * aggregateUseType ) { 190 mangleRef( aggregateUseType, "s" ); 191 } 192 193 void Mangler::visit( UnionInstType * aggregateUseType ) { 194 mangleRef( aggregateUseType, "u" ); 195 } 196 197 void Mangler::visit( EnumInstType * aggregateUseType ) { 198 mangleRef( aggregateUseType, "e" ); 199 } 200 201 void Mangler::visit( TypeInstType * typeInst ) { 202 VarMapType::iterator varNum = varNums.find( typeInst->get_name() ); 203 if ( varNum == varNums.end() ) { 204 mangleRef( typeInst, "t" ); 205 } else { 206 printQualifiers( typeInst ); 207 std::ostringstream numStream; 208 numStream << varNum->second.first; 209 switch ( (TypeDecl::Kind )varNum->second.second ) { 210 case TypeDecl::Dtype: 211 mangleName << "d"; 212 break; 213 case TypeDecl::Ftype: 214 mangleName << "f"; 215 break; 216 case TypeDecl::Ttype: 217 mangleName << "tVARGS"; 218 break; 219 default: 220 assert( false ); 221 } // switch 222 mangleName << numStream.str(); 223 } // if 224 } 225 226 void Mangler::visit( TupleType * tupleType ) { 227 printQualifiers( tupleType ); 228 mangleName << "T"; 229 acceptAll( tupleType->types, *this ); 230 mangleName << "_"; 231 } 232 233 void Mangler::visit( VarArgsType * varArgsType ) { 234 printQualifiers( varArgsType ); 235 mangleName << "VARGS"; 236 } 237 238 void Mangler::visit( ZeroType * ) { 239 mangleName << "Z"; 240 } 241 242 void Mangler::visit( OneType * ) { 243 mangleName << "O"; 244 } 245 246 void Mangler::visit( TypeDecl * decl ) { 247 static const char *typePrefix[] = { "BT", "BD", "BF" }; 248 mangleName << typePrefix[ decl->get_kind() ] << ( decl->name.length() + 1 ) << decl->name; 249 } 250 251 void printVarMap( const std::map< std::string, std::pair< int, int > > &varMap, std::ostream &os ) { 252 for ( std::map< std::string, std::pair< int, int > >::const_iterator i = varMap.begin(); i != varMap.end(); ++i ) { 253 os << i->first << "(" << i->second.first << "/" << i->second.second << ")" << std::endl; 254 } // for 255 } 256 257 void Mangler::printQualifiers( Type * type ) { 258 // skip if not including qualifiers 259 if ( typeMode ) return; 260 261 if ( ! type->get_forall().empty() ) { 262 std::list< std::string > assertionNames; 263 int tcount = 0, dcount = 0, fcount = 0, vcount = 0; 264 mangleName << "A"; 265 for ( Type::ForallList::iterator i = type->forall.begin(); i != type->forall.end(); ++i ) { 266 switch ( (*i)->get_kind() ) { 267 case TypeDecl::Dtype: 268 dcount++; 269 break; 270 case TypeDecl::Ftype: 271 fcount++; 272 break; 273 case TypeDecl::Ttype: 274 vcount++; 275 break; 276 default: 277 assert( false ); 278 } // switch 279 varNums[ (*i)->name ] = std::pair< int, int >( nextVarNum++, (int)(*i)->get_kind() ); 280 for ( std::list< DeclarationWithType* >::iterator assert = (*i)->assertions.begin(); assert != (*i)->assertions.end(); ++assert ) { 281 Mangler sub_mangler( mangleOverridable, typeMode, mangleGenericParams ); 282 sub_mangler.nextVarNum = nextVarNum; 283 sub_mangler.isTopLevel = false; 284 sub_mangler.varNums = varNums; 285 (*assert)->accept( sub_mangler ); 286 assertionNames.push_back( sub_mangler.mangleName.str() ); 204 205 void Mangler::mangleRef( ReferenceToType * refType, std::string prefix ) { 206 printQualifiers( refType ); 207 208 mangleName << prefix << refType->name.length() << refType->name; 209 210 if ( mangleGenericParams ) { 211 std::list< Expression* >& params = refType->parameters; 212 if ( ! params.empty() ) { 213 mangleName << "_"; 214 for ( std::list< Expression* >::const_iterator param = params.begin(); param != params.end(); ++param ) { 215 TypeExpr *paramType = dynamic_cast< TypeExpr* >( *param ); 216 assertf(paramType, "Aggregate parameters should be type expressions: %s", toCString(*param)); 217 maybeAccept( paramType->type, *visitor ); 218 } 219 mangleName << "_"; 220 } 221 } 222 } 223 224 void Mangler::postvisit( StructInstType * aggregateUseType ) { 225 mangleRef( aggregateUseType, Encoding::struct_t ); 226 } 227 228 void Mangler::postvisit( UnionInstType * aggregateUseType ) { 229 mangleRef( aggregateUseType, Encoding::union_t ); 230 } 231 232 void Mangler::postvisit( EnumInstType * aggregateUseType ) { 233 mangleRef( aggregateUseType, Encoding::enum_t ); 234 } 235 236 void Mangler::postvisit( TypeInstType * typeInst ) { 237 VarMapType::iterator varNum = varNums.find( typeInst->get_name() ); 238 if ( varNum == varNums.end() ) { 239 mangleRef( typeInst, Encoding::type ); 240 } else { 241 printQualifiers( typeInst ); 242 // Note: Can't use name here, since type variable names do not actually disambiguate a function, e.g. 243 // forall(dtype T) void f(T); 244 // forall(dtype S) void f(S); 245 // are equivalent and should mangle the same way. This is accomplished by numbering the type variables when they 246 // are first found and prefixing with the appropriate encoding for the type class. 247 assertf( varNum->second.second < TypeDecl::NUMBER_OF_KINDS, "Unhandled type variable kind: %d", varNum->second.second ); 248 mangleName << Encoding::typeVariables[varNum->second.second] << varNum->second.first; 249 } // if 250 } 251 252 void Mangler::postvisit( TraitInstType * inst ) { 253 printQualifiers( inst ); 254 mangleName << inst->name.size() << inst->name; 255 } 256 257 void Mangler::postvisit( TupleType * tupleType ) { 258 printQualifiers( tupleType ); 259 mangleName << Encoding::tuple << tupleType->types.size(); 260 acceptAll( tupleType->types, *visitor ); 261 } 262 263 void Mangler::postvisit( VarArgsType * varArgsType ) { 264 printQualifiers( varArgsType ); 265 static const std::string vargs = "__builtin_va_list"; 266 mangleName << Encoding::type << vargs.size() << vargs; 267 } 268 269 void Mangler::postvisit( ZeroType * ) { 270 mangleName << Encoding::zero; 271 } 272 273 void Mangler::postvisit( OneType * ) { 274 mangleName << Encoding::one; 275 } 276 277 void Mangler::postvisit( QualifiedType * qualType ) { 278 bool inqual = inQualifiedType; 279 if (! inqual ) { 280 // N marks the start of a qualified type 281 inQualifiedType = true; 282 mangleName << Encoding::qualifiedTypeStart; 283 } 284 maybeAccept( qualType->parent, *visitor ); 285 maybeAccept( qualType->child, *visitor ); 286 if ( ! inqual ) { 287 // E marks the end of a qualified type 288 inQualifiedType = false; 289 mangleName << Encoding::qualifiedTypeEnd; 290 } 291 } 292 293 void Mangler::postvisit( TypeDecl * decl ) { 294 // TODO: is there any case where mangling a TypeDecl makes sense? If so, this code needs to be 295 // fixed to ensure that two TypeDecls mangle to the same name when they are the same type and vice versa. 296 // Note: The current scheme may already work correctly for this case, I have not thought about this deeply 297 // and the case has not yet come up in practice. Alternatively, if not then this code can be removed 298 // aside from the assert false. 299 assertf(false, "Mangler should not visit typedecl: %s", toCString(decl)); 300 assertf( decl->get_kind() < TypeDecl::NUMBER_OF_KINDS, "Unhandled type variable kind: %d", decl->get_kind() ); 301 mangleName << Encoding::typeVariables[ decl->get_kind() ] << ( decl->name.length() ) << decl->name; 302 } 303 304 __attribute__((unused)) void printVarMap( const std::map< std::string, std::pair< int, int > > &varMap, std::ostream &os ) { 305 for ( std::map< std::string, std::pair< int, int > >::const_iterator i = varMap.begin(); i != varMap.end(); ++i ) { 306 os << i->first << "(" << i->second.first << "/" << i->second.second << ")" << std::endl; 287 307 } // for 288 } // for 289 mangleName << tcount << "_" << dcount << "_" << fcount << "_" << vcount << "_"; 290 std::copy( assertionNames.begin(), assertionNames.end(), std::ostream_iterator< std::string >( mangleName, "" ) ); 291 mangleName << "_"; 292 } // if 293 if ( type->get_const() ) { 294 mangleName << "C"; 295 } // if 296 if ( type->get_volatile() ) { 297 mangleName << "V"; 298 } // if 299 if ( type->get_mutex() ) { 300 mangleName << "M"; 301 } // if 302 // Removed due to restrict not affecting function compatibility in GCC 303 // if ( type->get_isRestrict() ) { 304 // mangleName << "E"; 305 // } // if 306 if ( type->get_lvalue() ) { 307 // mangle based on whether the type is lvalue, so that the resolver can differentiate lvalues and rvalues 308 mangleName << "L"; 309 } 310 if ( type->get_atomic() ) { 311 mangleName << "A"; 312 } // if 313 } 308 } 309 310 void Mangler::printQualifiers( Type * type ) { 311 // skip if not including qualifiers 312 if ( typeMode ) return; 313 if ( ! type->get_forall().empty() ) { 314 std::list< std::string > assertionNames; 315 int dcount = 0, fcount = 0, vcount = 0, acount = 0; 316 mangleName << Encoding::forall; 317 for ( Type::ForallList::iterator i = type->forall.begin(); i != type->forall.end(); ++i ) { 318 switch ( (*i)->get_kind() ) { 319 case TypeDecl::Dtype: 320 dcount++; 321 break; 322 case TypeDecl::Ftype: 323 fcount++; 324 break; 325 case TypeDecl::Ttype: 326 vcount++; 327 break; 328 default: 329 assert( false ); 330 } // switch 331 varNums[ (*i)->name ] = std::pair< int, int >( nextVarNum++, (int)(*i)->get_kind() ); 332 for ( std::list< DeclarationWithType* >::iterator assert = (*i)->assertions.begin(); assert != (*i)->assertions.end(); ++assert ) { 333 PassVisitor<Mangler> sub_mangler( mangleOverridable, typeMode, mangleGenericParams ); 334 sub_mangler.pass.nextVarNum = nextVarNum; 335 sub_mangler.pass.isTopLevel = false; 336 sub_mangler.pass.varNums = varNums; 337 (*assert)->accept( sub_mangler ); 338 assertionNames.push_back( sub_mangler.pass.mangleName.str() ); 339 acount++; 340 } // for 341 } // for 342 mangleName << dcount << "_" << fcount << "_" << vcount << "_" << acount << "_"; 343 std::copy( assertionNames.begin(), assertionNames.end(), std::ostream_iterator< std::string >( mangleName, "" ) ); 344 mangleName << "_"; 345 } // if 346 if ( ! inFunctionType ) { 347 // these qualifiers do not distinguish the outermost type of a function parameter 348 if ( type->get_const() ) { 349 mangleName << Encoding::qualifiers.at(Type::Const); 350 } // if 351 if ( type->get_volatile() ) { 352 mangleName << Encoding::qualifiers.at(Type::Volatile); 353 } // if 354 // Removed due to restrict not affecting function compatibility in GCC 355 // if ( type->get_isRestrict() ) { 356 // mangleName << "E"; 357 // } // if 358 if ( type->get_atomic() ) { 359 mangleName << Encoding::qualifiers.at(Type::Atomic); 360 } // if 361 } 362 if ( type->get_mutex() ) { 363 mangleName << Encoding::qualifiers.at(Type::Mutex); 364 } // if 365 if ( type->get_lvalue() ) { 366 // mangle based on whether the type is lvalue, so that the resolver can differentiate lvalues and rvalues 367 mangleName << Encoding::qualifiers.at(Type::Lvalue); 368 } 369 370 if ( inFunctionType ) { 371 // turn off inFunctionType so that types can be differentiated for nested qualifiers 372 GuardValue( inFunctionType ); 373 inFunctionType = false; 374 } 375 } 376 } // namespace 377 } // namespace Mangler 314 378 } // namespace SymTab 315 379 -
src/SymTab/Mangler.h
rf9feab8 r90152a4 24 24 #include "SynTree/Visitor.h" // for Visitor, maybeAccept 25 25 26 // https://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling 27 // The CFA name mangling scheme is based closely on the itanium C++ name mangling scheme, with the following key differences: 28 // * Variable names are also mangled to include type information, not just functions 29 // * CFA does not have template expansion, so the rules for function specialization do not apply. 30 // * CFA instead has to handle type parameters and assertion parameters. 31 // * Currently name compression is not implemented. 32 26 33 namespace SymTab { 27 /// Mangles names to a unique C identifier 28 class Mangler : public Visitor { 29 public: 34 namespace Mangler { 30 35 /// Mangle syntax tree object; primary interface to clients 31 template< typename SynTreeClass >32 static std::string mangle( SynTreeClass *decl, bool mangleOverridable = true, bool typeMode = false, bool mangleGenericParams = true ); 36 std::string mangle( BaseSyntaxNode * decl, bool mangleOverridable = true, bool typeMode = false, bool mangleGenericParams = true ); 37 33 38 /// Mangle a type name; secondary interface 34 st atic std::string mangleType( Type* ty );39 std::string mangleType( Type* ty ); 35 40 /// Mangle ignoring generic type parameters 36 st atic std::string mangleConcrete( Type* ty );41 std::string mangleConcrete( Type* ty ); 37 42 43 namespace Encoding { 44 extern const std::string manglePrefix; 45 extern const std::string basicTypes[]; 46 extern const std::map<int, std::string> qualifiers; 38 47 39 virtual void visit( ObjectDecl *declaration );40 virtual void visit( FunctionDecl *declaration );41 virtual void visit( TypeDecl *declaration );48 extern const std::string void_t; 49 extern const std::string zero; 50 extern const std::string one; 42 51 43 virtual void visit( VoidType *voidType ); 44 virtual void visit( BasicType *basicType ); 45 virtual void visit( PointerType *pointerType ); 46 virtual void visit( ArrayType *arrayType ); 47 virtual void visit( ReferenceType *refType ); 48 virtual void visit( FunctionType *functionType ); 49 virtual void visit( StructInstType *aggregateUseType ); 50 virtual void visit( UnionInstType *aggregateUseType ); 51 virtual void visit( EnumInstType *aggregateUseType ); 52 virtual void visit( TypeInstType *aggregateUseType ); 53 virtual void visit( TupleType *tupleType ); 54 virtual void visit( VarArgsType *varArgsType ); 55 virtual void visit( ZeroType *zeroType ); 56 virtual void visit( OneType *oneType ); 52 extern const std::string function; 53 extern const std::string tuple; 54 extern const std::string pointer; 55 extern const std::string array; 56 extern const std::string qualifiedTypeStart; 57 extern const std::string qualifiedTypeEnd; 57 58 58 std::string get_mangleName() { return mangleName.str(); } 59 private: 60 std::ostringstream mangleName; ///< Mangled name being constructed 61 typedef std::map< std::string, std::pair< int, int > > VarMapType; 62 VarMapType varNums; ///< Map of type variables to indices 63 int nextVarNum; ///< Next type variable index 64 bool isTopLevel; ///< Is the Mangler at the top level 65 bool mangleOverridable; ///< Specially mangle overridable built-in methods 66 bool typeMode; ///< Produce a unique mangled name for a type 67 bool mangleGenericParams; ///< Include generic parameters in name mangling if true 59 extern const std::string forall; 60 extern const std::string typeVariables[]; 68 61 69 Mangler( bool mangleOverridable, bool typeMode, bool mangleGenericParams ); 70 Mangler( const Mangler & ); 62 extern const std::string struct_t; 63 extern const std::string union_t; 64 extern const std::string enum_t; 65 extern const std::string type; 71 66 72 void mangleDecl( DeclarationWithType *declaration ); 73 void mangleRef( ReferenceToType *refType, std::string prefix ); 67 extern const std::string autogen; 68 extern const std::string intrinsic; 69 }; 70 } // Mangler 71 } // SymTab 74 72 75 void printQualifiers( Type *type ); 76 }; // Mangler 77 78 template< typename SynTreeClass > 79 std::string Mangler::mangle( SynTreeClass *decl, bool mangleOverridable, bool typeMode, bool mangleGenericParams ) { 80 Mangler mangler( mangleOverridable, typeMode, mangleGenericParams ); 81 maybeAccept( decl, mangler ); 82 return mangler.get_mangleName(); 83 } 84 } // SymTab 73 extern "C" { 74 char * cforall_demangle(const char *, int); 75 } 85 76 86 77 // Local Variables: // -
src/SymTab/Validate.cc
rf9feab8 r90152a4 48 48 #include "CodeGen/CodeGenerator.h" // for genName 49 49 #include "CodeGen/OperatorTable.h" // for isCtorDtor, isCtorDtorAssign 50 #include "ControlStruct/Mutate.h" // for ForExprMutator 50 51 #include "Common/PassVisitor.h" // for PassVisitor, WithDeclsToAdd 51 52 #include "Common/ScopedMap.h" // for ScopedMap … … 60 61 #include "Parser/LinkageSpec.h" // for C 61 62 #include "ResolvExpr/typeops.h" // for typesCompatible 62 #include "SymTab/AddVisit.h" // for addVisit 63 #include "ResolvExpr/Resolver.h" // for findSingleExpression 64 #include "ResolvExpr/ResolveTypeof.h" // for resolveTypeof 63 65 #include "SymTab/Autogen.h" // for SizeType 64 66 #include "SynTree/Attribute.h" // for noAttributes, Attribute … … 72 74 #include "SynTree/TypeSubstitution.h" // for TypeSubstitution 73 75 #include "SynTree/Visitor.h" // for Visitor 76 #include "Validate/HandleAttributes.h" // for handleAttributes 74 77 75 78 class CompoundStmt; … … 77 80 class SwitchStmt; 78 81 79 80 #define debugPrint( x ) if ( doDebug ) { std::cout << x; } 82 #define debugPrint( x ) if ( doDebug ) x 81 83 82 84 namespace SymTab { 85 /// hoists declarations that are difficult to hoist while parsing 86 struct HoistTypeDecls final : public WithDeclsToAdd { 87 void previsit( SizeofExpr * ); 88 void previsit( AlignofExpr * ); 89 void previsit( UntypedOffsetofExpr * ); 90 void previsit( CompoundLiteralExpr * ); 91 void handleType( Type * ); 92 }; 93 94 struct FixQualifiedTypes final : public WithIndexer { 95 Type * postmutate( QualifiedType * ); 96 }; 97 83 98 struct HoistStruct final : public WithDeclsToAdd, public WithGuards { 84 99 /// Flattens nested struct types 85 100 static void hoistStruct( std::list< Declaration * > &translationUnit ); 86 101 87 void previsit( EnumInstType * enumInstType );88 void previsit( StructInstType * structInstType );89 void previsit( UnionInstType * unionInstType );90 102 void previsit( StructDecl * aggregateDecl ); 91 103 void previsit( UnionDecl * aggregateDecl ); 104 void previsit( StaticAssertDecl * assertDecl ); 105 void previsit( StructInstType * type ); 106 void previsit( UnionInstType * type ); 107 void previsit( EnumInstType * type ); 92 108 93 109 private: 94 110 template< typename AggDecl > void handleAggregate( AggDecl *aggregateDecl ); 95 111 96 bool inStruct = false;112 AggregateDecl * parentAggr = nullptr; 97 113 }; 98 114 … … 112 128 113 129 /// Associates forward declarations of aggregates with their definitions 114 struct LinkReferenceToTypes final : public WithIndexer, public WithGuards {130 struct LinkReferenceToTypes final : public WithIndexer, public WithGuards, public WithVisitorRef<LinkReferenceToTypes>, public WithShortCircuiting { 115 131 LinkReferenceToTypes( const Indexer *indexer ); 116 132 void postvisit( TypeInstType *typeInst ); … … 120 136 void postvisit( UnionInstType *unionInst ); 121 137 void postvisit( TraitInstType *traitInst ); 138 void previsit( QualifiedType * qualType ); 139 void postvisit( QualifiedType * qualType ); 122 140 123 141 void postvisit( EnumDecl *enumDecl ); … … 148 166 void previsit( ObjectDecl * object ); 149 167 void previsit( FunctionDecl * func ); 168 void previsit( FunctionType * ftype ); 150 169 void previsit( StructDecl * aggrDecl ); 151 170 void previsit( UnionDecl * aggrDecl ); … … 164 183 }; 165 184 166 struct EliminateTypedef final : public WithVisitorRef<EliminateTypedef>, public WithGuards{167 EliminateTypedef() : scopeLevel( 0 ) {}185 struct ReplaceTypedef final : public WithVisitorRef<ReplaceTypedef>, public WithGuards, public WithShortCircuiting, public WithDeclsToAdd { 186 ReplaceTypedef() : scopeLevel( 0 ) {} 168 187 /// Replaces typedefs by forward declarations 169 static void eliminateTypedef( std::list< Declaration * > &translationUnit ); 170 188 static void replaceTypedef( std::list< Declaration * > &translationUnit ); 189 190 void premutate( QualifiedType * ); 191 Type * postmutate( QualifiedType * qualType ); 171 192 Type * postmutate( TypeInstType * aggregateUseType ); 172 193 Declaration * postmutate( TypedefDecl * typeDecl ); … … 179 200 180 201 void premutate( CompoundStmt * compoundStmt ); 181 CompoundStmt * postmutate( CompoundStmt * compoundStmt );182 202 183 203 void premutate( StructDecl * structDecl ); 184 Declaration * postmutate( StructDecl * structDecl );185 204 void premutate( UnionDecl * unionDecl ); 186 Declaration * postmutate( UnionDecl * unionDecl );187 205 void premutate( EnumDecl * enumDecl ); 188 Declaration * postmutate( EnumDecl * enumDecl ); 189 Declaration * postmutate( TraitDecl * contextDecl ); 206 void premutate( TraitDecl * ); 190 207 191 208 void premutate( FunctionType * ftype ); … … 193 210 private: 194 211 template<typename AggDecl> 195 AggDecl *handleAggregate( AggDecl * aggDecl );196 197 template<typename AggDecl>198 212 void addImplicitTypedef( AggDecl * aggDecl ); 213 template< typename AggDecl > 214 void handleAggregate( AggDecl * aggr ); 199 215 200 216 typedef std::unique_ptr<TypedefDecl> TypedefDeclPtr; 201 217 typedef ScopedMap< std::string, std::pair< TypedefDeclPtr, int > > TypedefMap; 202 typedef std::map< std::string, TypeDecl * > TypeDeclMap;218 typedef ScopedMap< std::string, TypeDecl * > TypeDeclMap; 203 219 TypedefMap typedefNames; 204 220 TypeDeclMap typedeclNames; 205 221 int scopeLevel; 206 222 bool inFunctionType = false; 223 }; 224 225 struct EliminateTypedef { 226 /// removes TypedefDecls from the AST 227 static void eliminateTypedef( std::list< Declaration * > &translationUnit ); 228 229 template<typename AggDecl> 230 void handleAggregate( AggDecl *aggregateDecl ); 231 232 void previsit( StructDecl * aggregateDecl ); 233 void previsit( UnionDecl * aggregateDecl ); 234 void previsit( CompoundStmt * compoundStmt ); 207 235 }; 208 236 … … 222 250 }; 223 251 224 struct ArrayLength { 252 struct FixObjectType : public WithIndexer { 253 /// resolves typeof type in object, function, and type declarations 254 static void fix( std::list< Declaration * > & translationUnit ); 255 256 void previsit( ObjectDecl * ); 257 void previsit( FunctionDecl * ); 258 void previsit( TypeDecl * ); 259 }; 260 261 struct ArrayLength : public WithIndexer { 225 262 /// for array types without an explicit length, compute the length and store it so that it 226 263 /// is known to the rest of the phases. For example, … … 233 270 234 271 void previsit( ObjectDecl * objDecl ); 272 void previsit( ArrayType * arrayType ); 235 273 }; 236 274 … … 262 300 PassVisitor<FindSpecialDeclarations> finder; 263 301 PassVisitor<LabelAddressFixer> labelAddrFixer; 264 265 EliminateTypedef::eliminateTypedef( translationUnit ); 266 HoistStruct::hoistStruct( translationUnit ); // must happen after EliminateTypedef, so that aggregate typedefs occur in the correct order 302 PassVisitor<HoistTypeDecls> hoistDecls; 303 PassVisitor<FixQualifiedTypes> fixQual; 304 305 acceptAll( translationUnit, hoistDecls ); 306 ReplaceTypedef::replaceTypedef( translationUnit ); 267 307 ReturnTypeFixer::fix( translationUnit ); // must happen before autogen 268 308 acceptAll( translationUnit, epc ); // must happen before VerifyCtorDtorAssign, because void return objects should not exist; before LinkReferenceToTypes because it is an indexer and needs correct types for mangling 269 309 acceptAll( translationUnit, lrt ); // must happen before autogen, because sized flag needs to propagate to generated functions 310 mutateAll( translationUnit, fixQual ); // must happen after LinkReferenceToTypes, because aggregate members are accessed 311 HoistStruct::hoistStruct( translationUnit ); // must happen after EliminateTypedef, so that aggregate typedefs occur in the correct order 312 EliminateTypedef::eliminateTypedef( translationUnit ); // 270 313 acceptAll( translationUnit, genericParams ); // check as early as possible - can't happen before LinkReferenceToTypes 271 314 VerifyCtorDtorAssign::verify( translationUnit ); // must happen before autogen, because autogen examines existing ctor/dtors … … 274 317 Concurrency::applyKeywords( translationUnit ); 275 318 acceptAll( translationUnit, fpd ); // must happen before autogenerateRoutines, after Concurrency::applyKeywords because uniqueIds must be set on declaration before resolution 319 ControlStruct::hoistControlDecls( translationUnit ); // hoist initialization out of for statements; must happen before autogenerateRoutines 276 320 autogenerateRoutines( translationUnit ); // moved up, used to be below compoundLiteral - currently needs EnumAndPointerDecay 277 321 Concurrency::implementMutexFuncs( translationUnit ); 278 322 Concurrency::implementThreadStarter( translationUnit ); 279 323 mutateAll( translationUnit, compoundliteral ); 324 ResolvExpr::resolveWithExprs( translationUnit ); // must happen before FixObjectType because user-code is resolved and may contain with variables 325 FixObjectType::fix( translationUnit ); 280 326 ArrayLength::computeLength( translationUnit ); 281 327 acceptAll( translationUnit, finder ); // xxx - remove this pass soon 282 328 mutateAll( translationUnit, labelAddrFixer ); 329 Validate::handleAttributes( translationUnit ); 283 330 } 284 331 … … 292 339 } 293 340 341 342 void HoistTypeDecls::handleType( Type * type ) { 343 // some type declarations are buried in expressions and not easy to hoist during parsing; hoist them here 344 AggregateDecl * aggr = nullptr; 345 if ( StructInstType * inst = dynamic_cast< StructInstType * >( type ) ) { 346 aggr = inst->baseStruct; 347 } else if ( UnionInstType * inst = dynamic_cast< UnionInstType * >( type ) ) { 348 aggr = inst->baseUnion; 349 } else if ( EnumInstType * inst = dynamic_cast< EnumInstType * >( type ) ) { 350 aggr = inst->baseEnum; 351 } 352 if ( aggr && aggr->body ) { 353 declsToAddBefore.push_front( aggr ); 354 } 355 } 356 357 void HoistTypeDecls::previsit( SizeofExpr * expr ) { 358 handleType( expr->type ); 359 } 360 361 void HoistTypeDecls::previsit( AlignofExpr * expr ) { 362 handleType( expr->type ); 363 } 364 365 void HoistTypeDecls::previsit( UntypedOffsetofExpr * expr ) { 366 handleType( expr->type ); 367 } 368 369 void HoistTypeDecls::previsit( CompoundLiteralExpr * expr ) { 370 handleType( expr->result ); 371 } 372 373 374 Type * FixQualifiedTypes::postmutate( QualifiedType * qualType ) { 375 Type * parent = qualType->parent; 376 Type * child = qualType->child; 377 if ( dynamic_cast< GlobalScopeType * >( qualType->parent ) ) { 378 // .T => lookup T at global scope 379 if ( TypeInstType * inst = dynamic_cast< TypeInstType * >( child ) ) { 380 auto td = indexer.globalLookupType( inst->name ); 381 if ( ! td ) { 382 SemanticError( qualType->location, toString("Use of undefined global type ", inst->name) ); 383 } 384 auto base = td->base; 385 assert( base ); 386 Type * ret = base->clone(); 387 ret->get_qualifiers() = qualType->get_qualifiers(); 388 return ret; 389 } else { 390 // .T => T is not a type name 391 assertf( false, "unhandled global qualified child type: %s", toCString(child) ); 392 } 393 } else { 394 // S.T => S must be an aggregate type, find the declaration for T in S. 395 AggregateDecl * aggr = nullptr; 396 if ( StructInstType * inst = dynamic_cast< StructInstType * >( parent ) ) { 397 aggr = inst->baseStruct; 398 } else if ( UnionInstType * inst = dynamic_cast< UnionInstType * > ( parent ) ) { 399 aggr = inst->baseUnion; 400 } else { 401 SemanticError( qualType->location, toString("Qualified type requires an aggregate on the left, but has: ", parent) ); 402 } 403 assert( aggr ); // TODO: need to handle forward declarations 404 for ( Declaration * member : aggr->members ) { 405 if ( StructInstType * inst = dynamic_cast< StructInstType * >( child ) ) { 406 if ( StructDecl * aggr = dynamic_cast< StructDecl * >( member ) ) { 407 if ( aggr->name == inst->name ) { 408 // TODO: is this case, and other non-TypeInstType cases, necessary? 409 return new StructInstType( qualType->get_qualifiers(), aggr ); 410 } 411 } 412 } else if ( UnionInstType * inst = dynamic_cast< UnionInstType * >( child ) ) { 413 if ( UnionDecl * aggr = dynamic_cast< UnionDecl * > ( member ) ) { 414 if ( aggr->name == inst->name ) { 415 return new UnionInstType( qualType->get_qualifiers(), aggr ); 416 } 417 } 418 } else if ( EnumInstType * inst = dynamic_cast< EnumInstType * >( child ) ) { 419 if ( EnumDecl * aggr = dynamic_cast< EnumDecl * > ( member ) ) { 420 if ( aggr->name == inst->name ) { 421 return new EnumInstType( qualType->get_qualifiers(), aggr ); 422 } 423 } 424 } else if ( TypeInstType * inst = dynamic_cast< TypeInstType * >( child ) ) { 425 // name on the right is a typedef 426 if ( NamedTypeDecl * aggr = dynamic_cast< NamedTypeDecl * > ( member ) ) { 427 if ( aggr->name == inst->name ) { 428 assert( aggr->base ); 429 Type * ret = aggr->base->clone(); 430 ret->get_qualifiers() = qualType->get_qualifiers(); 431 return ret; 432 } 433 } 434 } else { 435 // S.T - S is not an aggregate => error 436 assertf( false, "unhandled qualified child type: %s", toCString(qualType) ); 437 } 438 } 439 // failed to find a satisfying definition of type 440 SemanticError( qualType->location, toString("Undefined type in qualified type: ", qualType) ); 441 } 442 443 // ... may want to link canonical SUE definition to each forward decl so that it becomes easier to lookup? 444 } 445 446 294 447 void HoistStruct::hoistStruct( std::list< Declaration * > &translationUnit ) { 295 448 PassVisitor<HoistStruct> hoister; … … 297 450 } 298 451 299 bool isStructOrUnion( Declaration *decl ) { 300 return dynamic_cast< StructDecl * >( decl ) || dynamic_cast< UnionDecl * >( decl ); 452 bool shouldHoist( Declaration *decl ) { 453 return dynamic_cast< StructDecl * >( decl ) || dynamic_cast< UnionDecl * >( decl ) || dynamic_cast< StaticAssertDecl * >( decl ); 454 } 455 456 namespace { 457 void qualifiedName( AggregateDecl * aggr, std::ostringstream & ss ) { 458 if ( aggr->parent ) qualifiedName( aggr->parent, ss ); 459 ss << "__" << aggr->name; 460 } 461 462 // mangle nested type names using entire parent chain 463 std::string qualifiedName( AggregateDecl * aggr ) { 464 std::ostringstream ss; 465 qualifiedName( aggr, ss ); 466 return ss.str(); 467 } 301 468 } 302 469 303 470 template< typename AggDecl > 304 471 void HoistStruct::handleAggregate( AggDecl *aggregateDecl ) { 305 if ( inStruct ) { 472 if ( parentAggr ) { 473 aggregateDecl->parent = parentAggr; 474 aggregateDecl->name = qualifiedName( aggregateDecl ); 306 475 // Add elements in stack order corresponding to nesting structure. 307 476 declsToAddBefore.push_front( aggregateDecl ); 308 477 } else { 309 GuardValue( inStruct);310 inStruct = true;478 GuardValue( parentAggr ); 479 parentAggr = aggregateDecl; 311 480 } // if 312 481 // Always remove the hoisted aggregate from the inner structure. 313 GuardAction( [aggregateDecl]() { filter( aggregateDecl->members, isStructOrUnion, false ); } ); 314 } 315 316 void HoistStruct::previsit( EnumInstType * inst ) { 317 if ( inst->baseEnum ) { 318 declsToAddBefore.push_front( inst->baseEnum ); 319 } 320 } 321 322 void HoistStruct::previsit( StructInstType * inst ) { 323 if ( inst->baseStruct ) { 324 declsToAddBefore.push_front( inst->baseStruct ); 325 } 326 } 327 328 void HoistStruct::previsit( UnionInstType * inst ) { 329 if ( inst->baseUnion ) { 330 declsToAddBefore.push_front( inst->baseUnion ); 482 GuardAction( [aggregateDecl]() { filter( aggregateDecl->members, shouldHoist, false ); } ); 483 } 484 485 void HoistStruct::previsit( StaticAssertDecl * assertDecl ) { 486 if ( parentAggr ) { 487 declsToAddBefore.push_back( assertDecl ); 331 488 } 332 489 } … … 340 497 } 341 498 499 void HoistStruct::previsit( StructInstType * type ) { 500 // need to reset type name after expanding to qualified name 501 assert( type->baseStruct ); 502 type->name = type->baseStruct->name; 503 } 504 505 void HoistStruct::previsit( UnionInstType * type ) { 506 assert( type->baseUnion ); 507 type->name = type->baseUnion->name; 508 } 509 510 void HoistStruct::previsit( EnumInstType * type ) { 511 assert( type->baseEnum ); 512 type->name = type->baseEnum->name; 513 } 514 515 516 bool isTypedef( Declaration *decl ) { 517 return dynamic_cast< TypedefDecl * >( decl ); 518 } 519 520 void EliminateTypedef::eliminateTypedef( std::list< Declaration * > &translationUnit ) { 521 PassVisitor<EliminateTypedef> eliminator; 522 acceptAll( translationUnit, eliminator ); 523 filter( translationUnit, isTypedef, true ); 524 } 525 526 template< typename AggDecl > 527 void EliminateTypedef::handleAggregate( AggDecl *aggregateDecl ) { 528 filter( aggregateDecl->members, isTypedef, true ); 529 } 530 531 void EliminateTypedef::previsit( StructDecl * aggregateDecl ) { 532 handleAggregate( aggregateDecl ); 533 } 534 535 void EliminateTypedef::previsit( UnionDecl * aggregateDecl ) { 536 handleAggregate( aggregateDecl ); 537 } 538 539 void EliminateTypedef::previsit( CompoundStmt * compoundStmt ) { 540 // remove and delete decl stmts 541 filter( compoundStmt->kids, [](Statement * stmt) { 542 if ( DeclStmt *declStmt = dynamic_cast< DeclStmt * >( stmt ) ) { 543 if ( dynamic_cast< TypedefDecl * >( declStmt->decl ) ) { 544 return true; 545 } // if 546 } // if 547 return false; 548 }, true); 549 } 550 342 551 void EnumAndPointerDecay::previsit( EnumDecl *enumDecl ) { 343 552 // Set the type of each member of the enumeration to be EnumConstant 344 for ( std::list< Declaration * >::iterator i = enumDecl-> get_members().begin(); i != enumDecl->get_members().end(); ++i ) {553 for ( std::list< Declaration * >::iterator i = enumDecl->members.begin(); i != enumDecl->members.end(); ++i ) { 345 554 ObjectDecl * obj = dynamic_cast< ObjectDecl * >( *i ); 346 555 assert( obj ); 347 obj->set_type( new EnumInstType( Type::Qualifiers( Type::Const ), enumDecl-> get_name()) );556 obj->set_type( new EnumInstType( Type::Qualifiers( Type::Const ), enumDecl->name ) ); 348 557 } // for 349 558 } … … 351 560 namespace { 352 561 template< typename DWTList > 353 void fixFunctionList( DWTList & dwts, FunctionType * func ) { 354 // the only case in which "void" is valid is where it is the only one in the list; then it should be removed 355 // entirely. other fix ups are handled by the FixFunction class 356 typedef typename DWTList::iterator DWTIterator; 357 DWTIterator begin( dwts.begin() ), end( dwts.end() ); 358 if ( begin == end ) return; 359 PassVisitor<FixFunction> fixer; 360 DWTIterator i = begin; 361 *i = (*i)->acceptMutator( fixer ); 362 if ( fixer.pass.isVoid ) { 363 DWTIterator j = i; 364 ++i; 365 delete *j; 366 dwts.erase( j ); 367 if ( i != end ) { 368 throw SemanticError( "invalid type void in function type ", func ); 369 } // if 370 } else { 371 ++i; 372 for ( ; i != end; ++i ) { 373 PassVisitor<FixFunction> fixer; 374 *i = (*i)->acceptMutator( fixer ); 375 if ( fixer.pass.isVoid ) { 376 throw SemanticError( "invalid type void in function type ", func ); 377 } // if 378 } // for 379 } // if 562 void fixFunctionList( DWTList & dwts, bool isVarArgs, FunctionType * func ) { 563 auto nvals = dwts.size(); 564 bool containsVoid = false; 565 for ( auto & dwt : dwts ) { 566 // fix each DWT and record whether a void was found 567 containsVoid |= fixFunction( dwt ); 568 } 569 570 // the only case in which "void" is valid is where it is the only one in the list 571 if ( containsVoid && ( nvals > 1 || isVarArgs ) ) { 572 SemanticError( func, "invalid type void in function type " ); 573 } 574 575 // one void is the only thing in the list; remove it. 576 if ( containsVoid ) { 577 delete dwts.front(); 578 dwts.clear(); 579 } 380 580 } 381 581 } … … 383 583 void EnumAndPointerDecay::previsit( FunctionType *func ) { 384 584 // Fix up parameters and return types 385 fixFunctionList( func-> get_parameters(), func );386 fixFunctionList( func-> get_returnVals(), func );585 fixFunctionList( func->parameters, func->isVarArgs, func ); 586 fixFunctionList( func->returnVals, false, func ); 387 587 } 388 588 … … 396 596 397 597 void LinkReferenceToTypes::postvisit( EnumInstType *enumInst ) { 398 EnumDecl *st = local_indexer->lookupEnum( enumInst-> get_name());598 EnumDecl *st = local_indexer->lookupEnum( enumInst->name ); 399 599 // it's not a semantic error if the enum is not found, just an implicit forward declaration 400 600 if ( st ) { 401 //assert( ! enumInst->get_baseEnum() || enumInst->get_baseEnum()->get_members().empty() || ! st->get_members().empty() ); 402 enumInst->set_baseEnum( st ); 403 } // if 404 if ( ! st || st->get_members().empty() ) { 601 enumInst->baseEnum = st; 602 } // if 603 if ( ! st || ! st->body ) { 405 604 // use of forward declaration 406 forwardEnums[ enumInst-> get_name()].push_back( enumInst );605 forwardEnums[ enumInst->name ].push_back( enumInst ); 407 606 } // if 408 607 } … … 411 610 for ( Expression * param : inst->parameters ) { 412 611 if ( ! dynamic_cast< TypeExpr * >( param ) ) { 413 throw SemanticError( "Expression parameters for generic types are currently unsupported: ", inst);612 SemanticError( inst, "Expression parameters for generic types are currently unsupported: " ); 414 613 } 415 614 } … … 417 616 418 617 void LinkReferenceToTypes::postvisit( StructInstType *structInst ) { 419 StructDecl *st = local_indexer->lookupStruct( structInst-> get_name());618 StructDecl *st = local_indexer->lookupStruct( structInst->name ); 420 619 // it's not a semantic error if the struct is not found, just an implicit forward declaration 421 620 if ( st ) { 422 //assert( ! structInst->get_baseStruct() || structInst->get_baseStruct()->get_members().empty() || ! st->get_members().empty() ); 423 structInst->set_baseStruct( st ); 424 } // if 425 if ( ! st || st->get_members().empty() ) { 621 structInst->baseStruct = st; 622 } // if 623 if ( ! st || ! st->body ) { 426 624 // use of forward declaration 427 forwardStructs[ structInst-> get_name()].push_back( structInst );625 forwardStructs[ structInst->name ].push_back( structInst ); 428 626 } // if 429 627 checkGenericParameters( structInst ); … … 431 629 432 630 void LinkReferenceToTypes::postvisit( UnionInstType *unionInst ) { 433 UnionDecl *un = local_indexer->lookupUnion( unionInst-> get_name());631 UnionDecl *un = local_indexer->lookupUnion( unionInst->name ); 434 632 // it's not a semantic error if the union is not found, just an implicit forward declaration 435 633 if ( un ) { 436 unionInst-> set_baseUnion( un );437 } // if 438 if ( ! un || un->get_members().empty()) {634 unionInst->baseUnion = un; 635 } // if 636 if ( ! un || ! un->body ) { 439 637 // use of forward declaration 440 forwardUnions[ unionInst-> get_name()].push_back( unionInst );638 forwardUnions[ unionInst->name ].push_back( unionInst ); 441 639 } // if 442 640 checkGenericParameters( unionInst ); 641 } 642 643 void LinkReferenceToTypes::previsit( QualifiedType * ) { 644 visit_children = false; 645 } 646 647 void LinkReferenceToTypes::postvisit( QualifiedType * qualType ) { 648 // linking only makes sense for the 'oldest ancestor' of the qualified type 649 qualType->parent->accept( *visitor ); 443 650 } 444 651 … … 451 658 DeclarationWithType * dwt2 = dynamic_cast<DeclarationWithType *>( d2 ); 452 659 if ( dwt1 && dwt2 ) { 453 if ( dwt1-> get_name() == dwt2->get_name()&& ResolvExpr::typesCompatible( dwt1->get_type(), dwt2->get_type(), SymTab::Indexer() ) ) {660 if ( dwt1->name == dwt2->name && ResolvExpr::typesCompatible( dwt1->get_type(), dwt2->get_type(), SymTab::Indexer() ) ) { 454 661 // std::cerr << "=========== equal:" << std::endl; 455 662 // std::cerr << "d1: " << d1 << std::endl; … … 476 683 template< typename Iterator > 477 684 void expandAssertions( TraitInstType * inst, Iterator out ) { 478 assertf( inst->baseTrait, "Trait instance not linked to base trait: %s", to String( inst ).c_str() );685 assertf( inst->baseTrait, "Trait instance not linked to base trait: %s", toCString( inst ) ); 479 686 std::list< DeclarationWithType * > asserts; 480 687 for ( Declaration * decl : inst->baseTrait->members ) { … … 511 718 TraitDecl *traitDecl = local_indexer->lookupTrait( traitInst->name ); 512 719 if ( ! traitDecl ) { 513 throw SemanticError("use of undeclared trait " + traitInst->name );514 } // if 515 if ( traitDecl-> get_parameters().size() != traitInst->get_parameters().size() ) {516 throw SemanticError( "incorrect number of trait parameters: ", traitInst);720 SemanticError( traitInst->location, "use of undeclared trait " + traitInst->name ); 721 } // if 722 if ( traitDecl->parameters.size() != traitInst->parameters.size() ) { 723 SemanticError( traitInst, "incorrect number of trait parameters: " ); 517 724 } // if 518 725 traitInst->baseTrait = traitDecl; 519 726 520 727 // need to carry over the 'sized' status of each decl in the instance 521 for ( auto p : group_iterate( traitDecl-> get_parameters(), traitInst->get_parameters()) ) {728 for ( auto p : group_iterate( traitDecl->parameters, traitInst->parameters ) ) { 522 729 TypeExpr * expr = dynamic_cast< TypeExpr * >( std::get<1>(p) ); 523 730 if ( ! expr ) { 524 throw SemanticError( "Expression parameters for trait instances are currently unsupported: ", std::get<1>(p));731 SemanticError( std::get<1>(p), "Expression parameters for trait instances are currently unsupported: " ); 525 732 } 526 733 if ( TypeInstType * inst = dynamic_cast< TypeInstType * >( expr->get_type() ) ) { 527 734 TypeDecl * formalDecl = std::get<0>(p); 528 TypeDecl * instDecl = inst-> get_baseType();735 TypeDecl * instDecl = inst->baseType; 529 736 if ( formalDecl->get_sized() ) instDecl->set_sized( true ); 530 737 } … … 535 742 void LinkReferenceToTypes::postvisit( EnumDecl *enumDecl ) { 536 743 // visit enum members first so that the types of self-referencing members are updated properly 537 if ( ! enumDecl->get_members().empty()) {538 ForwardEnumsType::iterator fwds = forwardEnums.find( enumDecl-> get_name());744 if ( enumDecl->body ) { 745 ForwardEnumsType::iterator fwds = forwardEnums.find( enumDecl->name ); 539 746 if ( fwds != forwardEnums.end() ) { 540 747 for ( std::list< EnumInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) { 541 (*inst )->set_baseEnum( enumDecl );748 (*inst)->baseEnum = enumDecl; 542 749 } // for 543 750 forwardEnums.erase( fwds ); 544 751 } // if 752 753 for ( Declaration * member : enumDecl->members ) { 754 ObjectDecl * field = strict_dynamic_cast<ObjectDecl *>( member ); 755 if ( field->init ) { 756 // need to resolve enumerator initializers early so that other passes that determine if an expression is constexpr have the appropriate information. 757 SingleInit * init = strict_dynamic_cast<SingleInit *>( field->init ); 758 ResolvExpr::findSingleExpression( init->value, new BasicType( Type::Qualifiers(), BasicType::SignedInt ), indexer ); 759 } 760 } 545 761 } // if 546 762 } … … 575 791 // visit struct members first so that the types of self-referencing members are updated properly 576 792 // xxx - need to ensure that type parameters match up between forward declarations and definition (most importantly, number of type parameters and their defaults) 577 if ( ! structDecl->get_members().empty()) {578 ForwardStructsType::iterator fwds = forwardStructs.find( structDecl-> get_name());793 if ( structDecl->body ) { 794 ForwardStructsType::iterator fwds = forwardStructs.find( structDecl->name ); 579 795 if ( fwds != forwardStructs.end() ) { 580 796 for ( std::list< StructInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) { 581 (*inst )->set_baseStruct( structDecl );797 (*inst)->baseStruct = structDecl; 582 798 } // for 583 799 forwardStructs.erase( fwds ); … … 587 803 588 804 void LinkReferenceToTypes::postvisit( UnionDecl *unionDecl ) { 589 if ( ! unionDecl->get_members().empty()) {590 ForwardUnionsType::iterator fwds = forwardUnions.find( unionDecl-> get_name());805 if ( unionDecl->body ) { 806 ForwardUnionsType::iterator fwds = forwardUnions.find( unionDecl->name ); 591 807 if ( fwds != forwardUnions.end() ) { 592 808 for ( std::list< UnionInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) { 593 (*inst )->set_baseUnion( unionDecl );809 (*inst)->baseUnion = unionDecl; 594 810 } // for 595 811 forwardUnions.erase( fwds ); … … 601 817 // ensure generic parameter instances are renamed like the base type 602 818 if ( inGeneric && typeInst->baseType ) typeInst->name = typeInst->baseType->name; 603 if ( NamedTypeDecl *namedTypeDecl = local_indexer->lookupType( typeInst-> get_name()) ) {819 if ( NamedTypeDecl *namedTypeDecl = local_indexer->lookupType( typeInst->name ) ) { 604 820 if ( TypeDecl *typeDecl = dynamic_cast< TypeDecl * >( namedTypeDecl ) ) { 605 821 typeInst->set_isFtype( typeDecl->get_kind() == TypeDecl::Ftype ); … … 626 842 // apply FixFunction to every assertion to check for invalid void type 627 843 for ( DeclarationWithType *& assertion : type->assertions ) { 628 PassVisitor<FixFunction> fixer; 629 assertion = assertion->acceptMutator( fixer ); 630 if ( fixer.pass.isVoid ) { 631 throw SemanticError( "invalid type void in assertion of function ", node ); 844 bool isVoid = fixFunction( assertion ); 845 if ( isVoid ) { 846 SemanticError( node, "invalid type void in assertion of function " ); 632 847 } // if 633 848 } // for … … 637 852 638 853 void ForallPointerDecay::previsit( ObjectDecl *object ) { 639 forallFixer( object->type->forall, object );640 if ( PointerType *pointer = dynamic_cast< PointerType * >( object->type) ) {641 forallFixer( pointer->base->forall, object);642 } // if854 // ensure that operator names only apply to functions or function pointers 855 if ( CodeGen::isOperator( object->name ) && ! dynamic_cast< FunctionType * >( object->type->stripDeclarator() ) ) { 856 SemanticError( object->location, toCString( "operator ", object->name.c_str(), " is not a function or function pointer." ) ); 857 } 643 858 object->fixUniqueId(); 644 859 } 645 860 646 861 void ForallPointerDecay::previsit( FunctionDecl *func ) { 647 forallFixer( func->type->forall, func );648 862 func->fixUniqueId(); 863 } 864 865 void ForallPointerDecay::previsit( FunctionType * ftype ) { 866 forallFixer( ftype->forall, ftype ); 649 867 } 650 868 … … 673 891 // were cast to void. 674 892 if ( ! returnStmt->get_expr() && returnVals.size() != 0 ) { 675 throw SemanticError( "Non-void function returns no values: " , returnStmt ); 676 } 677 } 678 679 680 bool isTypedef( Declaration *decl ) { 681 return dynamic_cast< TypedefDecl * >( decl ); 682 } 683 684 void EliminateTypedef::eliminateTypedef( std::list< Declaration * > &translationUnit ) { 685 PassVisitor<EliminateTypedef> eliminator; 893 SemanticError( returnStmt, "Non-void function returns no values: " ); 894 } 895 } 896 897 898 void ReplaceTypedef::replaceTypedef( std::list< Declaration * > &translationUnit ) { 899 PassVisitor<ReplaceTypedef> eliminator; 686 900 mutateAll( translationUnit, eliminator ); 687 901 if ( eliminator.pass.typedefNames.count( "size_t" ) ) { 688 902 // grab and remember declaration of size_t 689 SizeType = eliminator.pass.typedefNames["size_t"].first-> get_base()->clone();903 SizeType = eliminator.pass.typedefNames["size_t"].first->base->clone(); 690 904 } else { 691 905 // xxx - missing global typedef for size_t - default to long unsigned int, even though that may be wrong … … 693 907 SizeType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ); 694 908 } 695 filter( translationUnit, isTypedef, true ); 696 } 697 698 Type * EliminateTypedef::postmutate( TypeInstType * typeInst ) { 909 } 910 911 void ReplaceTypedef::premutate( QualifiedType * ) { 912 visit_children = false; 913 } 914 915 Type * ReplaceTypedef::postmutate( QualifiedType * qualType ) { 916 // replacing typedefs only makes sense for the 'oldest ancestor' of the qualified type 917 qualType->parent = qualType->parent->acceptMutator( *visitor ); 918 return qualType; 919 } 920 921 Type * ReplaceTypedef::postmutate( TypeInstType * typeInst ) { 699 922 // instances of typedef types will come here. If it is an instance 700 923 // of a typdef type, link the instance to its actual type. 701 TypedefMap::const_iterator def = typedefNames.find( typeInst-> get_name());924 TypedefMap::const_iterator def = typedefNames.find( typeInst->name ); 702 925 if ( def != typedefNames.end() ) { 703 926 Type *ret = def->second.first->base->clone(); 927 ret->location = typeInst->location; 704 928 ret->get_qualifiers() |= typeInst->get_qualifiers(); 705 929 // attributes are not carried over from typedef to function parameters/return values … … 714 938 ReferenceToType *rtt = dynamic_cast<ReferenceToType*>(ret); 715 939 if ( ! rtt ) { 716 throw SemanticError("Cannot apply type parameters to base type of " + typeInst->name);940 SemanticError( typeInst->location, "Cannot apply type parameters to base type of " + typeInst->name ); 717 941 } 718 rtt-> get_parameters().clear();942 rtt->parameters.clear(); 719 943 cloneAll( typeInst->parameters, rtt->parameters ); 720 944 mutateAll( rtt->parameters, *visitor ); // recursively fix typedefs on parameters … … 723 947 return ret; 724 948 } else { 725 TypeDeclMap::const_iterator base = typedeclNames.find( typeInst->get_name() ); 726 assertf( base != typedeclNames.end(), "Cannot find typedecl name %s", typeInst->name.c_str() ); 949 TypeDeclMap::const_iterator base = typedeclNames.find( typeInst->name ); 950 if ( base == typedeclNames.end() ) { 951 SemanticError( typeInst->location, toString("Use of undefined type ", typeInst->name) ); 952 } 727 953 typeInst->set_baseType( base->second ); 728 } // if 729 return typeInst; 954 return typeInst; 955 } // if 956 assert( false ); 730 957 } 731 958 … … 744 971 } 745 972 746 Declaration * EliminateTypedef::postmutate( TypedefDecl * tyDecl ) {747 if ( typedefNames.count( tyDecl-> get_name() ) == 1 && typedefNames[ tyDecl->get_name()].second == scopeLevel ) {973 Declaration * ReplaceTypedef::postmutate( TypedefDecl * tyDecl ) { 974 if ( typedefNames.count( tyDecl->name ) == 1 && typedefNames[ tyDecl->name ].second == scopeLevel ) { 748 975 // typedef to the same name from the same scope 749 976 // must be from the same type 750 977 751 Type * t1 = tyDecl-> get_base();752 Type * t2 = typedefNames[ tyDecl-> get_name() ].first->get_base();978 Type * t1 = tyDecl->base; 979 Type * t2 = typedefNames[ tyDecl->name ].first->base; 753 980 if ( ! ResolvExpr::typesCompatible( t1, t2, Indexer() ) ) { 754 throw SemanticError( "Cannot redefine typedef: " + tyDecl->name ); 755 } 756 // cannot redefine VLA typedefs 981 SemanticError( tyDecl->location, "Cannot redefine typedef: " + tyDecl->name ); 982 } 983 // Cannot redefine VLA typedefs. Note: this is slightly incorrect, because our notion of VLAs 984 // at this point in the translator is imprecise. In particular, this will disallow redefining typedefs 985 // with arrays whose dimension is an enumerator or a cast of a constant/enumerator. The effort required 986 // to fix this corner case likely outweighs the utility of allowing it. 757 987 if ( isVariableLength( t1 ) || isVariableLength( t2 ) ) { 758 throw SemanticError("Cannot redefine typedef: " + tyDecl->name );988 SemanticError( tyDecl->location, "Cannot redefine typedef: " + tyDecl->name ); 759 989 } 760 990 } else { 761 typedefNames[ tyDecl-> get_name()] = std::make_pair( TypedefDeclPtr( tyDecl ), scopeLevel );991 typedefNames[ tyDecl->name ] = std::make_pair( TypedefDeclPtr( tyDecl ), scopeLevel ); 762 992 } // if 763 993 … … 771 1001 // Note, qualifiers on the typedef are superfluous for the forward declaration. 772 1002 773 Type *designatorType = tyDecl-> get_base()->stripDeclarator();1003 Type *designatorType = tyDecl->base->stripDeclarator(); 774 1004 if ( StructInstType *aggDecl = dynamic_cast< StructInstType * >( designatorType ) ) { 775 return new StructDecl( aggDecl->get_name(), DeclarationNode::Struct, noAttributes, tyDecl->get_linkage() );1005 declsToAddBefore.push_back( new StructDecl( aggDecl->name, DeclarationNode::Struct, noAttributes, tyDecl->linkage ) ); 776 1006 } else if ( UnionInstType *aggDecl = dynamic_cast< UnionInstType * >( designatorType ) ) { 777 return new UnionDecl( aggDecl->get_name(), noAttributes, tyDecl->get_linkage() );1007 declsToAddBefore.push_back( new UnionDecl( aggDecl->name, noAttributes, tyDecl->linkage ) ); 778 1008 } else if ( EnumInstType *enumDecl = dynamic_cast< EnumInstType * >( designatorType ) ) { 779 return new EnumDecl( enumDecl->get_name(), noAttributes, tyDecl->get_linkage() ); 780 } else { 781 return tyDecl->clone(); 782 } // if 783 } 784 785 void EliminateTypedef::premutate( TypeDecl * typeDecl ) { 786 TypedefMap::iterator i = typedefNames.find( typeDecl->get_name() ); 1009 declsToAddBefore.push_back( new EnumDecl( enumDecl->name, noAttributes, tyDecl->linkage ) ); 1010 } // if 1011 return tyDecl->clone(); 1012 } 1013 1014 void ReplaceTypedef::premutate( TypeDecl * typeDecl ) { 1015 TypedefMap::iterator i = typedefNames.find( typeDecl->name ); 787 1016 if ( i != typedefNames.end() ) { 788 1017 typedefNames.erase( i ) ; 789 1018 } // if 790 1019 791 typedeclNames [ typeDecl->get_name() ] = typeDecl;792 } 793 794 void EliminateTypedef::premutate( FunctionDecl * ) {1020 typedeclNames.insert( typeDecl->name, typeDecl ); 1021 } 1022 1023 void ReplaceTypedef::premutate( FunctionDecl * ) { 795 1024 GuardScope( typedefNames ); 796 } 797 798 void EliminateTypedef::premutate( ObjectDecl * ) { 1025 GuardScope( typedeclNames ); 1026 } 1027 1028 void ReplaceTypedef::premutate( ObjectDecl * ) { 799 1029 GuardScope( typedefNames ); 800 } 801 802 DeclarationWithType *EliminateTypedef::postmutate( ObjectDecl * objDecl ) { 803 if ( FunctionType *funtype = dynamic_cast<FunctionType *>( objDecl->get_type() ) ) { // function type? 1030 GuardScope( typedeclNames ); 1031 } 1032 1033 DeclarationWithType * ReplaceTypedef::postmutate( ObjectDecl * objDecl ) { 1034 if ( FunctionType *funtype = dynamic_cast<FunctionType *>( objDecl->type ) ) { // function type? 804 1035 // replace the current object declaration with a function declaration 805 FunctionDecl * newDecl = new FunctionDecl( objDecl-> get_name(), objDecl->get_storageClasses(), objDecl->get_linkage(), funtype, 0, objDecl->get_attributes(), objDecl->get_funcSpec() );806 objDecl-> get_attributes().clear();1036 FunctionDecl * newDecl = new FunctionDecl( objDecl->name, objDecl->get_storageClasses(), objDecl->linkage, funtype, 0, objDecl->attributes, objDecl->get_funcSpec() ); 1037 objDecl->attributes.clear(); 807 1038 objDecl->set_type( nullptr ); 808 1039 delete objDecl; … … 812 1043 } 813 1044 814 void EliminateTypedef::premutate( CastExpr * ) {1045 void ReplaceTypedef::premutate( CastExpr * ) { 815 1046 GuardScope( typedefNames ); 816 } 817 818 void EliminateTypedef::premutate( CompoundStmt * ) { 1047 GuardScope( typedeclNames ); 1048 } 1049 1050 void ReplaceTypedef::premutate( CompoundStmt * ) { 819 1051 GuardScope( typedefNames ); 1052 GuardScope( typedeclNames ); 820 1053 scopeLevel += 1; 821 1054 GuardAction( [this](){ scopeLevel -= 1; } ); 822 1055 } 823 1056 824 CompoundStmt *EliminateTypedef::postmutate( CompoundStmt * compoundStmt ) {825 // remove and delete decl stmts826 filter( compoundStmt->kids, [](Statement * stmt) {827 if ( DeclStmt *declStmt = dynamic_cast< DeclStmt * >( stmt ) ) {828 if ( dynamic_cast< TypedefDecl * >( declStmt->get_decl() ) ) {829 return true;830 } // if831 } // if832 return false;833 }, true);834 return compoundStmt;835 }836 837 // there may be typedefs nested within aggregates. in order for everything to work properly, these should be removed838 // as well839 1057 template<typename AggDecl> 840 AggDecl *EliminateTypedef::handleAggregate( AggDecl * aggDecl ) { 841 filter( aggDecl->members, isTypedef, true ); 842 return aggDecl; 843 } 844 845 template<typename AggDecl> 846 void EliminateTypedef::addImplicitTypedef( AggDecl * aggDecl ) { 1058 void ReplaceTypedef::addImplicitTypedef( AggDecl * aggDecl ) { 847 1059 if ( typedefNames.count( aggDecl->get_name() ) == 0 ) { 848 1060 Type *type = nullptr; … … 854 1066 type = new EnumInstType( Type::Qualifiers(), newDeclEnumDecl->get_name() ); 855 1067 } // if 856 TypedefDeclPtr tyDecl( new TypedefDecl( aggDecl->get_name(), Type::StorageClasses(), type, aggDecl->get_linkage() ) );1068 TypedefDeclPtr tyDecl( new TypedefDecl( aggDecl->get_name(), aggDecl->location, Type::StorageClasses(), type, aggDecl->get_linkage() ) ); 857 1069 typedefNames[ aggDecl->get_name() ] = std::make_pair( std::move( tyDecl ), scopeLevel ); 858 } // if 859 } 860 861 void EliminateTypedef::premutate( StructDecl * structDecl ) { 1070 // add the implicit typedef to the AST 1071 declsToAddBefore.push_back( new TypedefDecl( aggDecl->get_name(), aggDecl->location, Type::StorageClasses(), type->clone(), aggDecl->get_linkage() ) ); 1072 } // if 1073 } 1074 1075 template< typename AggDecl > 1076 void ReplaceTypedef::handleAggregate( AggDecl * aggr ) { 1077 SemanticErrorException errors; 1078 1079 ValueGuard< std::list<Declaration * > > oldBeforeDecls( declsToAddBefore ); 1080 ValueGuard< std::list<Declaration * > > oldAfterDecls ( declsToAddAfter ); 1081 declsToAddBefore.clear(); 1082 declsToAddAfter.clear(); 1083 1084 GuardScope( typedefNames ); 1085 GuardScope( typedeclNames ); 1086 mutateAll( aggr->parameters, *visitor ); 1087 1088 // unroll mutateAll for aggr->members so that implicit typedefs for nested types are added to the aggregate body. 1089 for ( std::list< Declaration * >::iterator i = aggr->members.begin(); i != aggr->members.end(); ++i ) { 1090 if ( !declsToAddAfter.empty() ) { aggr->members.splice( i, declsToAddAfter ); } 1091 1092 try { 1093 *i = maybeMutate( *i, *visitor ); 1094 } catch ( SemanticErrorException &e ) { 1095 errors.append( e ); 1096 } 1097 1098 if ( !declsToAddBefore.empty() ) { aggr->members.splice( i, declsToAddBefore ); } 1099 } 1100 1101 if ( !declsToAddAfter.empty() ) { aggr->members.splice( aggr->members.end(), declsToAddAfter ); } 1102 if ( !errors.isEmpty() ) { throw errors; } 1103 } 1104 1105 void ReplaceTypedef::premutate( StructDecl * structDecl ) { 1106 visit_children = false; 862 1107 addImplicitTypedef( structDecl ); 863 } 864 865 866 Declaration *EliminateTypedef::postmutate( StructDecl * structDecl ) { 867 return handleAggregate( structDecl ); 868 } 869 870 void EliminateTypedef::premutate( UnionDecl * unionDecl ) { 1108 handleAggregate( structDecl ); 1109 } 1110 1111 void ReplaceTypedef::premutate( UnionDecl * unionDecl ) { 1112 visit_children = false; 871 1113 addImplicitTypedef( unionDecl ); 872 } 873 874 Declaration *EliminateTypedef::postmutate( UnionDecl * unionDecl ) { 875 return handleAggregate( unionDecl ); 876 } 877 878 void EliminateTypedef::premutate( EnumDecl * enumDecl ) { 1114 handleAggregate( unionDecl ); 1115 } 1116 1117 void ReplaceTypedef::premutate( EnumDecl * enumDecl ) { 879 1118 addImplicitTypedef( enumDecl ); 880 1119 } 881 1120 882 Declaration *EliminateTypedef::postmutate( EnumDecl * enumDecl ) { 883 return handleAggregate( enumDecl ); 884 } 885 886 Declaration *EliminateTypedef::postmutate( TraitDecl * traitDecl ) { 887 return handleAggregate( traitDecl ); 888 } 889 890 void EliminateTypedef::premutate( FunctionType * ) { 1121 void ReplaceTypedef::premutate( FunctionType * ) { 891 1122 GuardValue( inFunctionType ); 892 1123 inFunctionType = true; 1124 } 1125 1126 void ReplaceTypedef::premutate( TraitDecl * ) { 1127 GuardScope( typedefNames ); 1128 GuardScope( typedeclNames); 893 1129 } 894 1130 … … 905 1141 if ( CodeGen::isCtorDtorAssign( funcDecl->get_name() ) ) { // TODO: also check /=, etc. 906 1142 if ( params.size() == 0 ) { 907 throw SemanticError( "Constructors, destructors, and assignment functions require at least one parameter ", funcDecl);1143 SemanticError( funcDecl, "Constructors, destructors, and assignment functions require at least one parameter " ); 908 1144 } 909 1145 ReferenceType * refType = dynamic_cast< ReferenceType * >( params.front()->get_type() ); 910 1146 if ( ! refType ) { 911 throw SemanticError( "First parameter of a constructor, destructor, or assignment function must be a reference ", funcDecl);1147 SemanticError( funcDecl, "First parameter of a constructor, destructor, or assignment function must be a reference " ); 912 1148 } 913 1149 if ( CodeGen::isCtorDtor( funcDecl->get_name() ) && returnVals.size() != 0 ) { 914 throw SemanticError( "Constructors and destructors cannot have explicit return values ", funcDecl);1150 SemanticError( funcDecl, "Constructors and destructors cannot have explicit return values " ); 915 1151 } 916 1152 } … … 947 1183 948 1184 sub.apply( inst ); 949 if ( args.size() < params->size() ) throw SemanticError( "Too few type arguments in generic type ", inst);950 if ( args.size() > params->size() ) throw SemanticError( "Too many type arguments in generic type ", inst);1185 if ( args.size() < params->size() ) SemanticError( inst, "Too few type arguments in generic type " ); 1186 if ( args.size() > params->size() ) SemanticError( inst, "Too many type arguments in generic type " ); 951 1187 } 952 1188 } … … 1014 1250 } 1015 1251 1252 void FixObjectType::fix( std::list< Declaration * > & translationUnit ) { 1253 PassVisitor<FixObjectType> fixer; 1254 acceptAll( translationUnit, fixer ); 1255 } 1256 1257 void FixObjectType::previsit( ObjectDecl * objDecl ) { 1258 Type *new_type = ResolvExpr::resolveTypeof( objDecl->get_type(), indexer ); 1259 new_type->get_qualifiers() -= Type::Lvalue; // even if typeof is lvalue, variable can never have lvalue-qualified type 1260 objDecl->set_type( new_type ); 1261 } 1262 1263 void FixObjectType::previsit( FunctionDecl * funcDecl ) { 1264 Type *new_type = ResolvExpr::resolveTypeof( funcDecl->type, indexer ); 1265 new_type->get_qualifiers() -= Type::Lvalue; // even if typeof is lvalue, variable can never have lvalue-qualified type 1266 funcDecl->set_type( new_type ); 1267 } 1268 1269 void FixObjectType::previsit( TypeDecl *typeDecl ) { 1270 if ( typeDecl->get_base() ) { 1271 Type *new_type = ResolvExpr::resolveTypeof( typeDecl->get_base(), indexer ); 1272 new_type->get_qualifiers() -= Type::Lvalue; // even if typeof is lvalue, variable can never have lvalue-qualified type 1273 typeDecl->set_base( new_type ); 1274 } // if 1275 } 1276 1016 1277 void ArrayLength::computeLength( std::list< Declaration * > & translationUnit ) { 1017 1278 PassVisitor<ArrayLength> len; … … 1020 1281 1021 1282 void ArrayLength::previsit( ObjectDecl * objDecl ) { 1022 if ( ArrayType * at = dynamic_cast< ArrayType * >( objDecl->get_type() ) ) { 1023 if ( at->get_dimension() ) return; 1024 if ( ListInit * init = dynamic_cast< ListInit * >( objDecl->get_init() ) ) { 1025 at->set_dimension( new ConstantExpr( Constant::from_ulong( init->get_initializers().size() ) ) ); 1026 } 1283 if ( ArrayType * at = dynamic_cast< ArrayType * >( objDecl->type ) ) { 1284 if ( at->dimension ) return; 1285 if ( ListInit * init = dynamic_cast< ListInit * >( objDecl->init ) ) { 1286 at->dimension = new ConstantExpr( Constant::from_ulong( init->initializers.size() ) ); 1287 } 1288 } 1289 } 1290 1291 void ArrayLength::previsit( ArrayType * type ) { 1292 if ( type->dimension ) { 1293 // need to resolve array dimensions early so that constructor code can correctly determine 1294 // if a type is a VLA (and hence whether its elements need to be constructed) 1295 ResolvExpr::findSingleExpression( type->dimension, SymTab::SizeType->clone(), indexer ); 1296 1297 // must re-evaluate whether a type is a VLA, now that more information is available 1298 // (e.g. the dimension may have been an enumerator, which was unknown prior to this step) 1299 type->isVarLen = ! InitTweak::isConstExpr( type->dimension ); 1027 1300 } 1028 1301 } -
src/SymTab/module.mk
rf9feab8 r90152a4 17 17 SRC += SymTab/Indexer.cc \ 18 18 SymTab/Mangler.cc \ 19 SymTab/ManglerCommon.cc \ 19 20 SymTab/Validate.cc \ 20 21 SymTab/FixFunction.cc \
Note:
See TracChangeset
for help on using the changeset viewer.