Ignore:
Timestamp:
Sep 26, 2017, 5:06:55 PM (7 years ago)
Author:
Thierry Delisle <tdelisle@…>
Branches:
ADT, aaron-thesis, arm-eh, ast-experimental, cleanup-dtors, deferred_resn, demangler, enum, forall-pointer-decay, jacob/cs343-translation, jenkins-sandbox, master, new-ast, new-ast-unique-expr, new-env, no_list, persistent-indexer, pthread-emulation, qualifiedEnum, resolv-new, with_gc
Children:
af58ee0
Parents:
b462670
Message:

Update 0.10 of the thesis

File:
1 edited

Legend:

Unmodified
Added
Removed
  • doc/proposals/concurrency/text/concurrency.tex

    rb462670 r8d722cc  
    6969int f5(graph(monitor*) & mutex m);
    7070\end{cfacode}
    71 The problem is to indentify which object(s) should be acquired. Furthermore, each object needs to be acquired only once. In the case of simple routines like \code{f1} and \code{f2} it is easy to identify an exhaustive list of objects to acquire on entry. Adding indirections (\code{f3}) still allows the compiler and programmer to indentify which object is acquired. However, adding in arrays (\code{f4}) makes it much harder. Array lengths are not necessarily known in C, and even then making sure objects are only acquired once becomes none-trivial. This can be extended to absurd limits like \code{f5}, which uses a graph of monitors. To keep everyone as sane as possible~\cite{Chicken}, this projects imposes the requirement that a routine may only acquire one monitor per parameter and it must be the type of the parameter with one level of indirection (ignoring potential qualifiers). Also note that while routine \code{f3} can be supported, meaning that monitor \code{**m} is be acquired, passing an array to this routine would be type safe and yet result in undefined behavior because only the first element of the array is acquired. This is specially true for non-copyable objects like monitors, where an array of pointers is simplest way to express a group of monitors. However, this ambiguity is part of the C type-system with respects to arrays. For this reason, \code{mutex} is disallowed in the context where arrays may be passed:
     71The problem is to indentify which object(s) should be acquired. Furthermore, each object needs to be acquired only once. In the case of simple routines like \code{f1} and \code{f2} it is easy to identify an exhaustive list of objects to acquire on entry. Adding indirections (\code{f3}) still allows the compiler and programmer to indentify which object is acquired. However, adding in arrays (\code{f4}) makes it much harder. Array lengths are not necessarily known in C, and even then making sure objects are only acquired once becomes none-trivial. This can be extended to absurd limits like \code{f5}, which uses a graph of monitors. To make the issue tractable, this projects imposes the requirement that a routine may only acquire one monitor per parameter and it must be the type of the parameter with one level of indirection (ignoring potential qualifiers). Also note that while routine \code{f3} can be supported, meaning that monitor \code{**m} is be acquired, passing an array to this routine would be type safe and yet result in undefined behavior because only the first element of the array is acquired. This is specially true for non-copyable objects like monitors, where an array of pointers is simplest way to express a group of monitors. However, this ambiguity is part of the C type-system with respects to arrays. For this reason, \code{mutex} is disallowed in the context where arrays may be passed:
    7272
    7373\begin{cfacode}
     
    608608% ======================================================================
    609609% ======================================================================
    610 There are several challenges specific to \CFA when implementing internal scheduling. These challenges are direct results of \gls{group-acquire} and loose object definitions. These two constraints are to root cause of most design decisions in the implementation of internal scheduling. Furthermore, to avoid the head-aches of dynamically allocating memory in a concurrent environment, the internal-scheduling design is entirely free of mallocs and other dynamic memory allocation scheme. This is to avoid the chicken and egg problem of having a memory allocator that relies on the threading system and a threading system that relies on the runtime. This extra goal, means that memory management is a constant concern in the design of the system.
     610There are several challenges specific to \CFA when implementing internal scheduling. These challenges are direct results of \gls{group-acquire} and loose object definitions. These two constraints are to root cause of most design decisions in the implementation of internal scheduling. Furthermore, to avoid the head-aches of dynamically allocating memory in a concurrent environment, the internal-scheduling design is entirely free of mallocs and other dynamic memory allocation scheme. This is to avoid the chicken and egg problem \cite{Chicken} of having a memory allocator that relies on the threading system and a threading system that relies on the runtime. This extra goal, means that memory management is a constant concern in the design of the system.
    611611
    612612The main memory concern for concurrency is queues. All blocking operations are made by parking threads onto queues. These queues need to be intrinsic\cit to avoid the need memory allocation. This entails that all the fields needed to keep track of all needed information. Since internal scheduling can use an unbound amount of memory (depending on \gls{group-acquire}) statically defining information information in the intrusive fields of threads is insufficient. The only variable sized container that does not require memory allocation is the callstack, which is heavily used in the implementation of internal scheduling. Particularly the GCC extension variable length arrays which is used extensively.
     
    832832To support multi-monitor external scheduling means that some kind of entry-queues must be used that is aware of both monitors. However, acceptable routines must be aware of the entry queues which means they must be stored inside at least one of the monitors that will be acquired. This in turn adds the requirement a systematic algorithm of disambiguating which queue is relavant regardless of user ordering. The proposed algorithm is to fall back on monitors lock ordering and specify that the monitor that is acquired first is the lock with the relevant entry queue. This assumes that the lock acquiring order is static for the lifetime of all concerned objects but that is a reasonable constraint. This algorithm choice has two consequences, the entry queue of the highest priority monitor is no longer a true FIFO queue and the queue of the lowest priority monitor is both required and probably unused. The queue can no longer be a FIFO queue because instead of simply containing the waiting threads in order arrival, they also contain the second mutex. Therefore, another thread with the same highest priority monitor but a different lowest priority monitor may arrive first but enter the critical section after a thread with the correct pairing. Secondly, since it may not be known at compile time which monitor will be the lowest priority monitor, every monitor needs to have the correct queues even though it is probable that half the multi-monitor queues will go unused for the entire duration of the program.
    833833
    834 % ======================================================================
    835 % ======================================================================
    836 \section{Other concurrency tools}
    837 % ======================================================================
    838 % ======================================================================
    839 % \TODO
     834
     835\subsection{Internals}
     836The complete mask can be pushed to any one, we are in a context where we already have full ownership of (at least) every concerned monitor and therefore monitors will refuse all calls no matter what.
Note: See TracChangeset for help on using the changeset viewer.