Changeset 7527e63 for doc/user/user.tex


Ignore:
Timestamp:
Aug 16, 2016, 3:20:06 PM (9 years ago)
Author:
Thierry Delisle <tdelisle@…>
Branches:
ADT, aaron-thesis, arm-eh, ast-experimental, cleanup-dtors, ctor, deferred_resn, demangler, enum, forall-pointer-decay, jacob/cs343-translation, jenkins-sandbox, master, memory, new-ast, new-ast-unique-expr, new-env, no_list, persistent-indexer, pthread-emulation, qualifiedEnum, resolv-new, with_gc
Children:
1f6d4624
Parents:
950f7a7 (diff), 7880579 (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the (diff) links above to see all the changes relative to each parent.
Message:

Merge branch 'master' of plg.uwaterloo.ca:software/cfa/cfa-cc

File:
1 edited

Legend:

Unmodified
Added
Removed
  • doc/user/user.tex

    r950f7a7 r7527e63  
    1111%% Created On       : Wed Apr  6 14:53:29 2016
    1212%% Last Modified By : Peter A. Buhr
    13 %% Last Modified On : Wed Jul 13 08:14:39 2016
    14 %% Update Count     : 1247
     13%% Last Modified On : Sun Aug 14 08:23:06 2016
     14%% Update Count     : 1323
    1515%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    1616
     
    211211however, it largely extended the language, and did not address many existing problems.\footnote{%
    212212Two important existing problems addressed were changing the type of character literals from ©int© to ©char© and enumerator from ©int© to the type of its enumerators.}
    213 \Index*{Fortran}~\cite{Fortran08}, \Index*{Ada}~\cite{Ada12}, and \Index*{Cobol}~\cite{Cobol14} are examples of programming languages that took an evolutionary approach, where modern language features (e.g., objects, concurrency) are added and problems fixed within the framework of the existing language.
     213\Index*{Fortran}~\cite{Fortran08}, \Index*{Ada}~\cite{Ada12}, and \Index*{Cobol}~\cite{Cobol14} are examples of programming languages that took an evolutionary approach, where modern language features (\eg objects, concurrency) are added and problems fixed within the framework of the existing language.
    214214\Index*{Java}~\cite{Java8}, \Index*{Go}~\cite{Go}, \Index*{Rust}~\cite{Rust} and \Index*{D}~\cite{D} are examples of the revolutionary approach for modernizing C/\CC, resulting in a new language rather than an extension of the descendent.
    215215These languages have different syntax and semantics from C, and do not interoperate directly with C, largely because of garbage collection.
     
    226226
    227227\section{Interoperability}
     228\label{s:Interoperability}
    228229
    229230\CFA is designed to integrate well with existing C programs and libraries.
     
    265266\section[Compiling CFA Program]{Compiling \CFA Program}
    266267
    267 The command ©cfa© is used to compile \CFA program(s), and is based on the GNU \Indexc{gcc} command, e.g.:
     268The command ©cfa© is used to compile \CFA program(s), and is based on the GNU \Indexc{gcc} command, \eg:
    268269\begin{lstlisting}
    269270cfa§\indexc{cfa}\index{compilation!cfa@©cfa©}§ [ gcc-options ] C/§\CFA§-files [ assembler/loader-files ]
     
    314315The \CFA compilation message is printed at the beginning of a compilation.
    315316\textbf{This option is the default.}
     317
     318\item
     319\Indexc{-no-include-stdhdr}\index{compilation option!-no-include-stdhdr@©-no-include-stdhdr©}
     320Do not supply ©extern "C"© wrappers for \Celeven standard include files (see~\VRef{s:StandardHeaders}).
     321\textbf{This option is \emph{not} the default.}
    316322\end{description}
    317323
     
    350356\section{Underscores in Constants}
    351357
    352 Numeric constants are extended to allow \Index{underscore}s within constants\index{constant!underscore}, e.g.:
     358Numeric constants are extended to allow \Index{underscore}s within constants\index{constant!underscore}, \eg:
    353359\begin{lstlisting}
    3543602®_®147®_®483®_®648;                    §\C{// decimal constant}§
     
    366372\begin{enumerate}
    367373\item
    368 A sequence of underscores is disallowed, e.g., ©12__34© is invalid.
     374A sequence of underscores is disallowed, \eg ©12__34© is invalid.
    369375\item
    370376Underscores may only appear within a sequence of digits (regardless of the digit radix).
    371 In other words, an underscore cannot start or end a sequence of digits, e.g., ©_1©, ©1_© and ©_1_© are invalid (actually, the 1st and 3rd examples are identifier names).
     377In other words, an underscore cannot start or end a sequence of digits, \eg ©_1©, ©1_© and ©_1_© are invalid (actually, the 1st and 3rd examples are identifier names).
    372378\item
    373379A numeric prefix may end with an underscore;
     
    498504\end{quote2}
    499505
    500 All type qualifiers, e.g., ©const©, ©volatile©, etc., are used in the normal way with the new declarations and also appear left to right, e.g.:
     506All type qualifiers, \eg ©const©, ©volatile©, etc., are used in the normal way with the new declarations and also appear left to right, \eg:
    501507\begin{quote2}
    502508\begin{tabular}{@{}l@{\hspace{1em}}l@{\hspace{1em}}l@{}}
     
    518524\end{tabular}
    519525\end{quote2}
    520 All declaration qualifiers, e.g., ©extern©, ©static©, etc., are used in the normal way with the new declarations but can only appear at the start of a \CFA routine declaration,\footnote{\label{StorageClassSpecifier}
    521 The placement of a storage-class specifier other than at the beginning of the declaration specifiers in a declaration is an obsolescent feature.~\cite[\S~6.11.5(1)]{C11}} e.g.:
     526All declaration qualifiers, \eg ©extern©, ©static©, etc., are used in the normal way with the new declarations but can only appear at the start of a \CFA routine declaration,\footnote{\label{StorageClassSpecifier}
     527The placement of a storage-class specifier other than at the beginning of the declaration specifiers in a declaration is an obsolescent feature.~\cite[\S~6.11.5(1)]{C11}} \eg:
    522528\begin{quote2}
    523529\begin{tabular}{@{}l@{\hspace{3em}}l@{\hspace{2em}}l@{}}
     
    542548Unsupported are K\&R C declarations where the base type defaults to ©int©, if no type is specified,\footnote{
    543549At least one type specifier shall be given in the declaration specifiers in each declaration, and in the specifier-qualifier list in each structure declaration and type name~\cite[\S~6.7.2(2)]{C11}}
    544 e.g.:
     550\eg:
    545551\begin{lstlisting}
    546552x;                                                              §\C{// int x}§
     
    612618A \Index{pointer}/\Index{reference} is a generalization of a variable name, i.e., a mutable address that can point to more than one memory location during its lifetime.
    613619(Similarly, an integer variable can contain multiple integer literals during its lifetime versus an integer constant representing a single literal during its lifetime and may not occupy storage as the literal is embedded directly into instructions.)
    614 Hence, a pointer occupies memory to store its current address, and the pointer's value is loaded by dereferencing, e.g.:
     620Hence, a pointer occupies memory to store its current address, and the pointer's value is loaded by dereferencing, \eg:
    615621\begin{quote2}
    616622\begin{tabular}{@{}ll@{}}
     
    669675Except for auto-dereferencing by the compiler, this reference example is the same as the previous pointer example.
    670676Hence, a reference behaves like the variable name for the current variable it is pointing-to.
    671 The simplest way to understand a reference is to imagine the compiler inserting a dereference operator before the reference variable for each reference qualifier in a declaration, e.g.:
     677The simplest way to understand a reference is to imagine the compiler inserting a dereference operator before the reference variable for each reference qualifier in a declaration, \eg:
    672678\begin{lstlisting}
    673679r2 = ((r1 + r2) * (r3 - r1)) / (r3 - 15);
     
    677683®*®r2 = ((®*®r1 + ®*®r2) ®*® (®**®r3 - ®*®r1)) / (®**®r3 - 15);
    678684\end{lstlisting}
    679 When a reference operation appears beside a dereference operation, e.g., ©&*©, they cancel out.\footnote{
     685When a reference operation appears beside a dereference operation, \eg ©&*©, they cancel out.\footnote{
    680686The unary ©&© operator yields the address of its operand.
    681687If the operand has type ``type'', the result has type ``pointer to type''.
     
    721727®&®crc = &cx;                                   §\C{// error, cannot change crc}§
    722728\end{lstlisting}
    723 Hence, for type ©& const©, there is no pointer assignment, so ©&rc = &x© is disallowed, and \emph{the address value cannot be ©0© unless an arbitrary pointer is assigned to the reference}, e.g.:
     729Hence, for type ©& const©, there is no pointer assignment, so ©&rc = &x© is disallowed, and \emph{the address value cannot be ©0© unless an arbitrary pointer is assigned to the reference}, \eg:
    724730\begin{lstlisting}
    725731int & const r = *0;                             §\C{// where 0 is the int * zero}§
    726732\end{lstlisting}
    727733Otherwise, the compiler is managing the addresses for type ©& const© not the programmer, and by a programming discipline of only using references with references, address errors can be prevented.
     734Finally, the position of the ©const© qualifier \emph{after} the pointer/reference qualifier causes confuse for C programmers.
     735The ©const© qualifier cannot be moved before the pointer/reference qualifier for C style-declarations;
     736\CFA-style declarations attempt to address this issue:
     737\begin{quote2}
     738\begin{tabular}{@{}l@{\hspace{3em}}l@{}}
     739\multicolumn{1}{c@{\hspace{3em}}}{\textbf{\CFA}}        & \multicolumn{1}{c}{\textbf{C}}        \\
     740\begin{lstlisting}
     741®const® * ®const® * const int ccp;
     742®const® & ®const® & const int ccr;
     743\end{lstlisting}
     744&
     745\begin{lstlisting}
     746const int * ®const® * ®const® ccp;
     747
     748\end{lstlisting}
     749\end{tabular}
     750\end{quote2}
     751where the \CFA declaration is read left-to-right (see \VRef{s:Declarations}).
    728752
    729753\Index{Initialization} is different than \Index{assignment} because initialization occurs on the empty (uninitialized) storage on an object, while assignment occurs on possibly initialized storage of an object.
     
    783807
    784808
     809\section{Backquote Identifiers}
     810\label{s:BackquoteIdentifiers}
     811
     812\CFA accommodates keyword clashes by syntactic transformations using the \CFA backquote escape-mechanism:
     813\begin{lstlisting}
     814int `otype` = 3;                                // make keyword an identifier
     815double `choose` = 3.5;
     816\end{lstlisting}
     817Programs can be converted easily by enclosing keyword identifiers in backquotes, and the backquotes can be removed later when the identifier name is changed to an non-keyword name.
     818Clashes in C header files (see~\VRef{s:StandardHeaders}) can be handled automatically using the preprocessor, ©#include_next© and ©-I filename©:
     819\begin{lstlisting}
     820// include file uses the CFA keyword "otype".
     821#if ! defined( otype )                  // nesting ?
     822#define otype `otype`
     823#define __CFA_BFD_H__
     824#endif // ! otype
     825
     826#include_next <bfd.h>                   // must have internal check for multiple expansion
     827
     828#if defined( otype ) && defined( __CFA_BFD_H__ )        // reset only if set
     829#undef otype
     830#undef __CFA_BFD_H__
     831#endif // otype && __CFA_BFD_H__
     832\end{lstlisting}
     833
     834
    785835\section{Type Operators}
    786836
    787 The new declaration syntax can be used in other contexts where types are required, e.g., casts and the pseudo-routine ©sizeof©:
     837The new declaration syntax can be used in other contexts where types are required, \eg casts and the pseudo-routine ©sizeof©:
    788838\begin{quote2}
    789839\begin{tabular}{@{}l@{\hspace{3em}}l@{}}
     
    805855
    806856\CFA also supports a new syntax for routine definition, as well as ISO C and K\&R routine syntax.
    807 The point of the new syntax is to allow returning multiple values from a routine~\cite{Galletly96,CLU}, e.g.:
     857The point of the new syntax is to allow returning multiple values from a routine~\cite{Galletly96,CLU}, \eg:
    808858\begin{lstlisting}
    809859®[ int o1, int o2, char o3 ]® f( int i1, char i2, char i3 ) {
     
    817867\Index*{Michael Tiemann}, with help from \Index*{Doug Lea}, provided named return values in g++, circa 1989.}
    818868The value of each local return variable is automatically returned at routine termination.
    819 Declaration qualifiers can only appear at the start of a routine definition, e.g.:
     869Declaration qualifiers can only appear at the start of a routine definition, \eg:
    820870\begin{lstlisting}
    821871®extern® [ int x ] g( int y ) {§\,§}
     
    849899The inability to use \CFA declarations in these two contexts is probably a blessing because it precludes programmers from arbitrarily switching between declarations forms within a declaration contexts.
    850900
    851 C-style declarations can be used to declare parameters for \CFA style routine definitions, e.g.:
     901C-style declarations can be used to declare parameters for \CFA style routine definitions, \eg:
    852902\begin{lstlisting}
    853903[ int ] f( * int, int * );              §\C{// returns an integer, accepts 2 pointers to integers}§
     
    898948
    899949The syntax of the new routine prototype declaration follows directly from the new routine definition syntax;
    900 as well, parameter names are optional, e.g.:
     950as well, parameter names are optional, \eg:
    901951\begin{lstlisting}
    902952[ int x ] f ();                                 §\C{// returning int with no parameters}§
     
    906956\end{lstlisting}
    907957This syntax allows a prototype declaration to be created by cutting and pasting source text from the routine definition header (or vice versa).
    908 It is possible to declare multiple routine-prototypes in a single declaration, but the entire type specification is distributed across \emph{all} routine names in the declaration list (see~\VRef{s:Declarations}), e.g.:
     958It is possible to declare multiple routine-prototypes in a single declaration, but the entire type specification is distributed across \emph{all} routine names in the declaration list (see~\VRef{s:Declarations}), \eg:
    909959\begin{quote2}
    910960\begin{tabular}{@{}l@{\hspace{3em}}l@{}}
     
    919969\end{tabular}
    920970\end{quote2}
    921 Declaration qualifiers can only appear at the start of a \CFA routine declaration,\footref{StorageClassSpecifier} e.g.:
     971Declaration qualifiers can only appear at the start of a \CFA routine declaration,\footref{StorageClassSpecifier} \eg:
    922972\begin{lstlisting}
    923973extern [ int ] f (int);
     
    928978\section{Routine Pointers}
    929979
    930 The syntax for pointers to \CFA routines specifies the pointer name on the right, e.g.:
     980The syntax for pointers to \CFA routines specifies the pointer name on the right, \eg:
    931981\begin{lstlisting}
    932982* [ int x ] () fp;                      §\C{// pointer to routine returning int with no parameters}§
     
    9871037Alternatively, prototype definitions can be eliminated by using a two-pass compilation, and implicitly creating header files for exports.
    9881038The former is easy to do, while the latter is more complex.
    989 Currently, \CFA does \emph{not} attempt to support named arguments.
     1039
     1040Furthermore, named arguments do not work well in a \CFA-style programming-languages because they potentially introduces a new criteria for type matching.
     1041For example, it is technically possible to disambiguate between these two overloaded definitions of ©f© based on named arguments at the call site:
     1042\begin{lstlisting}
     1043int f( int i, int j );
     1044int f( int x, double y );
     1045
     1046f( j : 3, i : 4 );                              §\C{// 1st f}§
     1047f( x : 7, y : 8.1 );                    §\C{// 2nd f}§
     1048f( 4, 5 );                                              §\C{// ambiguous call}§
     1049\end{lstlisting}
     1050However, named arguments compound routine resolution in conjunction with conversions:
     1051\begin{lstlisting}
     1052f( i : 3, 5.7 );                                §\C{// ambiguous call ?}§
     1053\end{lstlisting}
     1054Depending on the cost associated with named arguments, this call could be resolvable or ambiguous.
     1055Adding named argument into the routine resolution algorithm does not seem worth the complexity.
     1056Therefore, \CFA does \emph{not} attempt to support named arguments.
    9901057
    9911058\item[Default Arguments]
     
    9971064the allowable positional calls are:
    9981065\begin{lstlisting}
    999 p();                            §\C{// rewrite $\Rightarrow$ p( 1, 2, 3 )}§
    1000 p( 4 );                         §\C{// rewrite $\Rightarrow$ p( 4, 2, 3 )}§
    1001 p( 4, 4 );                      §\C{// rewrite $\Rightarrow$ p( 4, 4, 3 )}§
    1002 p( 4, 4, 4 );           §\C{// rewrite $\Rightarrow$ p( 4, 4, 4 )}§
     1066p();                                                    §\C{// rewrite $\Rightarrow$ p( 1, 2, 3 )}§
     1067p( 4 );                                                 §\C{// rewrite $\Rightarrow$ p( 4, 2, 3 )}§
     1068p( 4, 4 );                                              §\C{// rewrite $\Rightarrow$ p( 4, 4, 3 )}§
     1069p( 4, 4, 4 );                                   §\C{// rewrite $\Rightarrow$ p( 4, 4, 4 )}§
    10031070// empty arguments
    1004 p(  , 4, 4 );           §\C{// rewrite $\Rightarrow$ p( 1, 4, 4 )}§
    1005 p( 4,  , 4 );           §\C{// rewrite $\Rightarrow$ p( 4, 2, 4 )}§
    1006 p( 4, 4,   );           §\C{// rewrite $\Rightarrow$ p( 4, 4, 3 )}§
    1007 p( 4,  ,   );           §\C{// rewrite $\Rightarrow$ p( 4, 2, 3 )}§
    1008 p(  , 4,   );           §\C{// rewrite $\Rightarrow$ p( 1, 4, 3 )}§
    1009 p(  ,  , 4 );           §\C{// rewrite $\Rightarrow$ p( 1, 2, 4 )}§
    1010 p(  ,  ,   );           §\C{// rewrite $\Rightarrow$ p( 1, 2, 3 )}§
     1071p(  , 4, 4 );                                   §\C{// rewrite $\Rightarrow$ p( 1, 4, 4 )}§
     1072p( 4,  , 4 );                                   §\C{// rewrite $\Rightarrow$ p( 4, 2, 4 )}§
     1073p( 4, 4,   );                                   §\C{// rewrite $\Rightarrow$ p( 4, 4, 3 )}§
     1074p( 4,  ,   );                                   §\C{// rewrite $\Rightarrow$ p( 4, 2, 3 )}§
     1075p(  , 4,   );                                   §\C{// rewrite $\Rightarrow$ p( 1, 4, 3 )}§
     1076p(  ,  , 4 );                                   §\C{// rewrite $\Rightarrow$ p( 1, 2, 4 )}§
     1077p(  ,  ,   );                                   §\C{// rewrite $\Rightarrow$ p( 1, 2, 3 )}§
    10111078\end{lstlisting}
    10121079Here the missing arguments are inserted from the default values in the parameter list.
     
    10431110The conflict occurs because both named and ellipse arguments must appear after positional arguments, giving two possibilities:
    10441111\begin{lstlisting}
    1045 p( /* positional */, . . ., /* named */ );
    1046 p( /* positional */, /* named */, . . . );
    1047 \end{lstlisting}
    1048 While it is possible to implement both approaches, the first possibly is more complex than the second, e.g.:
    1049 \begin{lstlisting}
    1050 p( int x, int y, int z, . . . );
    1051 p( 1, 4, 5, 6, z : 3, y : 2 ); §\C{// assume p( /* positional */, . . ., /* named */ );}§
    1052 p( 1, z : 3, y : 2, 4, 5, 6 ); §\C{// assume p( /* positional */, /* named */, . . . );}§
     1112p( /* positional */, ... , /* named */ );
     1113p( /* positional */, /* named */, ... );
     1114\end{lstlisting}
     1115While it is possible to implement both approaches, the first possibly is more complex than the second, \eg:
     1116\begin{lstlisting}
     1117p( int x, int y, int z, ... );
     1118p( 1, 4, 5, 6, z : 3, y : 2 ); §\C{// assume p( /* positional */, ... , /* named */ );}§
     1119p( 1, z : 3, y : 2, 4, 5, 6 ); §\C{// assume p( /* positional */, /* named */, ... );}§
    10531120\end{lstlisting}
    10541121In the first call, it is necessary for the programmer to conceptually rewrite the call, changing named arguments into positional, before knowing where the ellipse arguments begin.
     
    10561123In the second call, the named arguments separate the positional and ellipse arguments, making it trivial to read the call.
    10571124
    1058 The problem is exacerbated with default arguments, e.g.:
    1059 \begin{lstlisting}
    1060 void p( int x, int y = 2, int z = 3. . . );
    1061 p( 1, 4, 5, 6, z : 3 );         §\C{// assume p( /* positional */, . . ., /* named */ );}§
    1062 p( 1, z : 3, 4, 5, 6 );         §\C{// assume p( /* positional */, /* named */, . . . );}§
     1125The problem is exacerbated with default arguments, \eg:
     1126\begin{lstlisting}
     1127void p( int x, int y = 2, int z = 3... );
     1128p( 1, 4, 5, 6, z : 3 );         §\C{// assume p( /* positional */, ... , /* named */ );}§
     1129p( 1, z : 3, 4, 5, 6 );         §\C{// assume p( /* positional */, /* named */, ... );}§
    10631130\end{lstlisting}
    10641131The first call is an error because arguments 4 and 5 are actually positional not ellipse arguments;
     
    11051172\subsection{Type Nesting}
    11061173
    1107 \CFA allows \Index{type nesting}, and type qualification of the nested types (see \VRef[Figure]{f:TypeNestingQualification}), where as C hoists\index{type hoisting} (refactors) nested types into the enclosing scope and has no type qualification.
     1174\CFA allows \Index{type nesting}, and type qualification of the nested typres (see \VRef[Figure]{f:TypeNestingQualification}), where as C hoists\index{type hoisting} (refactors) nested types into the enclosing scope and has no type qualification.
    11081175\begin{figure}
     1176\centering
    11091177\begin{tabular}{@{}l@{\hspace{3em}}l|l@{}}
    11101178\multicolumn{1}{c@{\hspace{3em}}}{\textbf{C Type Nesting}}      & \multicolumn{1}{c}{\textbf{C Implicit Hoisting}}      & \multicolumn{1}{|c}{\textbf{\CFA}}    \\
     
    12641332
    12651333As mentioned, tuples can appear in contexts requiring a list of value, such as an argument list of a routine call.
    1266 In unambiguous situations, the tuple brackets may be omitted, e.g., a tuple that appears as an argument may have its
     1334In unambiguous situations, the tuple brackets may be omitted, \eg a tuple that appears as an argument may have its
    12671335square brackets omitted for convenience; therefore, the following routine invocations are equivalent:
    12681336\begin{lstlisting}
     
    13031371
    13041372Type qualifiers, i.e., const and volatile, may modify a tuple type.
    1305 The meaning is the same as for a type qualifier modifying an aggregate type [Int99, x 6.5.2.3(7),x 6.7.3(11)], i.e., the qualifier is distributed across all of the types in the tuple, e.g.:
     1373The meaning is the same as for a type qualifier modifying an aggregate type [Int99, x 6.5.2.3(7),x 6.7.3(11)], i.e., the qualifier is distributed across all of the types in the tuple, \eg:
    13061374\begin{lstlisting}
    13071375const volatile [ int, float, const int ] x;
     
    13111379[ const volatile int, const volatile float, const volatile int ] x;
    13121380\end{lstlisting}
    1313 Declaration qualifiers can only appear at the start of a \CFA tuple declaration4, e.g.:
     1381Declaration qualifiers can only appear at the start of a \CFA tuple declaration4, \eg:
    13141382\begin{lstlisting}
    13151383extern [ int, int ] w1;
     
    13191387Unfortunately, C's syntax for subscripts precluded treating them as tuples.
    13201388The C subscript list has the form ©[i][j]...© and not ©[i, j, ...]©.
    1321 Therefore, there is no syntactic way for a routine returning multiple values to specify the different subscript values, e.g., ©f[g()]© always means a single subscript value because there is only one set of brackets.
     1389Therefore, there is no syntactic way for a routine returning multiple values to specify the different subscript values, \eg ©f[g()]© always means a single subscript value because there is only one set of brackets.
    13221390Fixing this requires a major change to C because the syntactic form ©M[i, j, k]© already has a particular meaning: ©i, j, k© is a comma expression.
    13231391\end{rationale}
     
    13731441Mass assignment has the following form:
    13741442\begin{lstlisting}
    1375 [ §\emph{lvalue}§, ..., §\emph{lvalue}§ ] = §\emph{expr}§;
     1443[ §\emph{lvalue}§, ... , §\emph{lvalue}§ ] = §\emph{expr}§;
    13761444\end{lstlisting}
    13771445\index{lvalue}
     
    13801448Clearly, the types of the entities being assigned must be type compatible with the value of the expression.
    13811449
    1382 Mass assignment has parallel semantics, e.g., the statement:
     1450Mass assignment has parallel semantics, \eg the statement:
    13831451\begin{lstlisting}
    13841452[ x, y, z ] = 1.5;
     
    14131481Multiple assignment has the following form:
    14141482\begin{lstlisting}
    1415 [ §\emph{lvalue}§, . . ., §\emph{lvalue}§ ] = [ §\emph{expr}§, . . ., §\emph{expr}§ ];
     1483[ §\emph{lvalue}§, ... , §\emph{lvalue}§ ] = [ §\emph{expr}§, ... , §\emph{expr}§ ];
    14161484\end{lstlisting}
    14171485\index{lvalue}
     
    14691537\section{Unnamed Structure Fields}
    14701538
    1471 C requires each field of a structure to have a name, except for a bit field associated with a basic type, e.g.:
     1539C requires each field of a structure to have a name, except for a bit field associated with a basic type, \eg:
    14721540\begin{lstlisting}
    14731541struct {
    1474         int f1;                 // named field
    1475         int f2 : 4;             // named field with bit field size
    1476         int : 3;                // unnamed field for basic type with bit field size
    1477         int ;                   // disallowed, unnamed field
    1478         int *;                  // disallowed, unnamed field
    1479         int (*)(int);   // disallowed, unnamed field
     1542        int f1;                                 §\C{// named field}§
     1543        int f2 : 4;                             §\C{// named field with bit field size}§
     1544        int : 3;                                §\C{// unnamed field for basic type with bit field size}§
     1545        int ;                                   §\C{// disallowed, unnamed field}§
     1546        int *;                                  §\C{// disallowed, unnamed field}§
     1547        int (*)(int);                   §\C{// disallowed, unnamed field}§
    14801548};
    14811549\end{lstlisting}
    14821550This requirement is relaxed by making the field name optional for all field declarations; therefore, all the field declarations in the example are allowed.
    14831551As for unnamed bit fields, an unnamed field is used for padding a structure to a particular size.
    1484 A list of unnamed fields is also supported, e.g.:
     1552A list of unnamed fields is also supported, \eg:
    14851553\begin{lstlisting}
    14861554struct {
    1487         int , , ;               // 3 unnamed fields
     1555        int , , ;                               §\C{// 3 unnamed fields}§
    14881556}
    14891557\end{lstlisting}
     
    14981566§\emph{expr}§ -> [ §\emph{fieldlist}§ ]
    14991567\end{lstlisting}
    1500 \emph{expr} is any expression yielding a value of type record, e.g., ©struct©, ©union©.
     1568\emph{expr} is any expression yielding a value of type record, \eg ©struct©, ©union©.
    15011569Each element of \emph{ fieldlist} is an element of the record specified by \emph{expr}.
    15021570A record-field tuple may be used anywhere a tuple can be used. An example of the use of a record-field tuple is
     
    17601828}
    17611829\end{lstlisting}
    1762 While the declaration of the local variable ©y© is useful and its scope is across all ©case© clauses, the initialization for such a variable is defined to never be executed because control always transfers over it.
    1763 Furthermore, any statements before the first ©case© clause can only be executed if labelled and transferred to using a ©goto©, either from outside or inside of the ©switch©.
    1764 As mentioned, transfer into control structures should be forbidden;
    1765 transfers from within the ©switch© body using a ©goto© are equally unpalatable.
    1766 As well, the declaration of ©z© is cannot occur after the ©case© because a label can only be attached to a statement, and without a fall through to case 3, ©z© is uninitialized.
     1830While the declaration of the local variable ©y© is useful with a scope across all ©case© clauses, the initialization for such a variable is defined to never be executed because control always transfers over it.
     1831Furthermore, any statements before the first ©case© clause can only be executed if labelled and transferred to using a ©goto©, either from outside or inside of the ©switch©, both of which are problematic.
     1832As well, the declaration of ©z© cannot occur after the ©case© because a label can only be attached to a statement, and without a fall through to case 3, ©z© is uninitialized.
     1833The key observation is that the ©switch© statement branches into control structure, i.e., there are multiple entry points into its statement body.
    17671834\end{enumerate}
    17681835
     
    17781845and there is only a medium amount of fall-through from one ©case© clause to the next, and most of these result from a list of case values executing common code, rather than a sequence of case actions that compound.
    17791846\end{itemize}
    1780 These observations help to put the suggested changes to the ©switch© into perspective.
     1847These observations help to put the \CFA changes to the ©switch© into perspective.
    17811848\begin{enumerate}
    17821849\item
    17831850Eliminating default fall-through has the greatest potential for affecting existing code.
    1784 However, even if fall-through is removed, most ©switch© statements would continue to work because of the explicit transfers already present at the end of each ©case© clause, the common placement of the ©default© clause at the end of the case list, and the most common use of fall-through, i.e., a list of ©case© clauses executing common code, e.g.:
    1785 \begin{lstlisting}
     1851However, even if fall-through is removed, most ©switch© statements would continue to work because of the explicit transfers already present at the end of each ©case© clause, the common placement of the ©default© clause at the end of the case list, and the most common use of fall-through, i.e., a list of ©case© clauses executing common code, \eg:
     1852 \begin{lstlisting}
    17861853case 1:  case 2:  case 3: ...
    17871854\end{lstlisting}
    17881855still work.
    17891856Nevertheless, reversing the default action would have a non-trivial effect on case actions that compound, such as the above example of processing shell arguments.
    1790 Therefore, to preserve backwards compatibility, it is necessary to introduce a new kind of ©switch© statement, called ©choose©, with no implicit fall-through semantics and an explicit fall-through if the last statement of a case-clause ends with the new keyword ©fallthru©, e.g.:
     1857<<<<<<< HEAD
     1858Therefore, to preserve backwards compatibility, it is necessary to introduce a new kind of ©switch© statement, called ©choose©, with no implicit fall-through semantics and an explicit fall-through if the last statement of a case-clause ends with the new keyword ©fallthru©, \eg:
     1859=======
     1860Therefore, to preserve backwards compatibility, it is necessary to introduce a new kind of ©switch© statement, called ©choose©, with no implicit fall-through semantics and an explicit fall-through if the last statement of a case-clause ends with the new keyword ©fallthrough©/©fallthru©, e.g.:
     1861>>>>>>> 080615890f586cb9954c252b55cab47f52c25758
    17911862\begin{lstlisting}
    17921863®choose® ( i ) {
     
    18151886Therefore, no change is made for this issue.
    18161887\item
    1817 Dealing with unreachable code in a ©switch©/©choose© body is solved by restricting declarations and associated initialization to the start of statement body, which is executed \emph{before} the transfer to the appropriate ©case© clause.\footnote{
    1818 Essentially, these declarations are hoisted before the statement and both declarations and statement are surrounded by a compound statement.} and precluding statements before the first ©case© clause.
    1819 Further declaration in the statement body are disallowed.
     1888Dealing with unreachable code in a ©switch©/©choose© body is solved by restricting declarations and associated initialization to the start of statement body, which is executed \emph{before} the transfer to the appropriate ©case© clause\footnote{
     1889Essentially, these declarations are hoisted before the ©switch©/©choose© statement and both declarations and statement are surrounded by a compound statement.} and precluding statements before the first ©case© clause.
     1890Further declarations at the same nesting level as the statement body are disallowed to ensure every transfer into the body is sound.
    18201891\begin{lstlisting}
    18211892switch ( x ) {
    1822         ®int i = 0;®                            §\C{// allowed
     1893        ®int i = 0;®                            §\C{// allowed only at start
    18231894  case 0:
    18241895        ...
    1825         ®int i = 0;®                            §\C{// disallowed}§
     1896        ®int j = 0;®                            §\C{// disallowed}§
    18261897  case 1:
    18271898    {
    1828                 ®int i = 0;®                    §\C{// allowed in any compound statement
     1899                ®int k = 0;®                    §\C{// allowed at different nesting levels
    18291900                ...
    18301901        }
     
    18461917\begin{lstlisting}
    18471918switch ( i ) {
    1848   ®case 1, 3, 5®:
     1919  case ®1, 3, 5®:
    18491920        ...
    1850   ®case 2, 4, 6®:
     1921  case ®2, 4, 6®:
    18511922        ...
    18521923}
     
    18791950\begin{lstlisting}
    18801951switch ( i ) {
    1881   ®case 1~5:®
     1952  case ®1~5:®
    18821953        ...
    1883   ®case 10~15:®
     1954  case ®10~15:®
    18841955        ...
    18851956}
     
    18881959\begin{lstlisting}
    18891960switch ( i )
    1890   case 1 ... 5:
     1961  case ®1 ... 5®:
    18911962        ...
    1892   case 10 ... 15:
     1963  case ®10 ... 15®:
    18931964        ...
    18941965}
     
    27072778Like the \Index*[C++]{\CC} lexical problem with closing template-syntax, e.g, ©Foo<Bar<int®>>®©, this issue can be solved with a more powerful lexer/parser.
    27082779
    2709 There are several ambiguous cases with operator identifiers, e.g., ©int *?*?()©, where the string ©*?*?© can be lexed as ©*©/©?*?© or ©*?©/©*?©.
    2710 Since it is common practise to put a unary operator juxtaposed to an identifier, e.g., ©*i©, users will be annoyed if they cannot do this with respect to operator identifiers.
     2780There are several ambiguous cases with operator identifiers, \eg ©int *?*?()©, where the string ©*?*?© can be lexed as ©*©/©?*?© or ©*?©/©*?©.
     2781Since it is common practise to put a unary operator juxtaposed to an identifier, \eg ©*i©, users will be annoyed if they cannot do this with respect to operator identifiers.
    27112782Even with this special hack, there are 5 general cases that cannot be handled.
    27122783The first case is for the function-call identifier ©?()©:
     
    27732844This means that a function requiring mutual exclusion could block if the lock is already held by another thread.
    27742845Blocking on a monitor lock does not block the kernel thread, it simply blocks the user thread, which yields its kernel thread while waiting to obtain the lock.
    2775 If multiple mutex parameters are specified, they will be locked in parameter order (i.e. first parameter is locked first) and unlocked in the
     2846If multiple mutex parameters are specified, they will be locked in parameter order (\ie first parameter is locked first) and unlocked in the
    27762847reverse order.
    27772848\begin{lstlisting}
     
    43504421\begin{description}
    43514422\item[Change:] add new keywords \\
    4352 New keywords are added to \CFA.
     4423New keywords are added to \CFA (see~\VRef{s:NewKeywords}).
    43534424\item[Rationale:] keywords added to implement new semantics of \CFA.
    43544425\item[Effect on original feature:] change to semantics of well-defined feature. \\
    43554426Any ISO C programs using these keywords as identifiers are invalid \CFA programs.
    4356 \item[Difficulty of converting:] keyword clashes are accommodated by syntactic transformations using the \CFA backquote escape-mechanism:
    4357 \begin{lstlisting}
    4358 int `otype` = 3;                                // make keyword an identifier
    4359 double `choose` = 3.5;
    4360 \end{lstlisting}
    4361 Programs can be converted automatically by enclosing keyword identifiers in backquotes, and the backquotes can be remove later when the identifier name is changed.
    4362 Clashes in C system libraries (include files) can be handled automatically using preprocessor, ©#include_next© and ©-Ifilename©:
    4363 \begin{lstlisting}
    4364 // include file uses the CFA keyword "otype".
    4365 #if ! defined( otype )                  // nesting ?
    4366 #define otype `otype`
    4367 #define __CFA_BFD_H__
    4368 #endif // ! otype
    4369 
    4370 #include_next <bfd.h>                   // must have internal check for multiple expansion
    4371 
    4372 #if defined( otype ) && defined( __CFA_BFD_H__ )        // reset only if set
    4373 #undef otype
    4374 #undef __CFA_BFD_H__
    4375 #endif // otype && __CFA_BFD_H__
    4376 \end{lstlisting}
     4427\item[Difficulty of converting:] keyword clashes are accommodated by syntactic transformations using the \CFA backquote escape-mechanism (see~\VRef{s:BackquoteIdentifiers}):
    43774428\item[How widely used:] clashes among new \CFA keywords and existing identifiers are rare.
    43784429\end{description}
     
    43844435int rtn( int i );
    43854436int rtn( char c );
    4386 rtn( 'x' );                                             // programmer expects 2nd rtn to be called
     4437rtn( 'x' );                                             §\C{// programmer expects 2nd rtn to be called}§
    43874438\end{lstlisting}
    43884439\item[Rationale:] it is more intuitive for the call to ©rtn© to match the second version of definition of ©rtn© rather than the first.
     
    44064457\item[Change:] make string literals ©const©:
    44074458\begin{lstlisting}
    4408 char * p = "abc";                               // valid in C, deprecated in §\CFA§
    4409 char * q = expr ? "abc" : "de"; // valid in C, invalid in §\CFA§
     4459char * p = "abc";                               §\C{// valid in C, deprecated in \CFA}§
     4460char * q = expr ? "abc" : "de"; §\C{// valid in C, invalid in \CFA}§
    44104461\end{lstlisting}
    44114462The type of a string literal is changed from ©[] char© to ©const [] char©.
     
    44144465\begin{lstlisting}
    44154466char * p = "abc";
    4416 p[0] = 'w';                                             // segment fault or change constant literal
     4467p[0] = 'w';                                             §\C{// segment fault or change constant literal}§
    44174468\end{lstlisting}
    44184469The same problem occurs when passing a string literal to a routine that changes its argument.
     
    44264477\item[Change:] remove \newterm{tentative definitions}, which only occurs at file scope:
    44274478\begin{lstlisting}
    4428 int i;                                                  // forward definition
    4429 int *j = ®&i®;                                  // forward reference, valid in C, invalid in §\CFA§
    4430 int i = 0;                                              // definition
     4479int i;                                                  §\C{// forward definition}§
     4480int *j = ®&i®;                                  §\C{// forward reference, valid in C, invalid in \CFA}§
     4481int i = 0;                                              §\C{// definition}§
    44314482\end{lstlisting}
    44324483is valid in C, and invalid in \CFA because duplicate overloaded object definitions at the same scope level are disallowed.
     
    44344485\begin{lstlisting}
    44354486struct X { int i; struct X *next; };
    4436 static struct X a;                              // forward definition
    4437 static struct X b = { 0, ®&a® };        // forward reference, valid in C, invalid in §\CFA§
    4438 static struct X a = { 1, &b };  // definition
     4487static struct X a;                              §\C{// forward definition}§
     4488static struct X b = { 0, ®&a® };        §\C{// forward reference, valid in C, invalid in \CFA}§
     4489static struct X a = { 1, &b };  §\C{// definition}§
    44394490\end{lstlisting}
    44404491\item[Rationale:] avoids having different initialization rules for builtin types and userdefined types.
     
    44464497\item
    44474498\begin{description}
    4448 \item[Change:] have ©struct© introduce a scope for nested types
    4449 In C, the name of the nested types belongs to the same scope as the name of the outermost enclosing
    4450 Example:
     4499\item[Change:] have ©struct© introduce a scope for nested types:
    44514500\begin{lstlisting}
    44524501enum ®Colour® { R, G, B, Y, C, M };
    44534502struct Person {
    4454         enum ®Colour® { R, G, B };      // nested type
    4455         struct Face {                           // nested type
    4456                 ®Colour® Eyes, Hair;            // type defined outside (1 level)
     4503        enum ®Colour® { R, G, B };      §\C{// nested type}§
     4504        struct Face {                           §\C{// nested type}§
     4505                ®Colour® Eyes, Hair;    §\C{// type defined outside (1 level)}§
    44574506        };
    4458         ß.ß®Colour® shirt;                              // type defined outside (top level)
    4459         ®Colour® pants;                         // type defined same level
    4460         Face looks[10];                         // type defined same level
     4507        ß.ß®Colour® shirt;                      §\C{// type defined outside (top level)}§
     4508        ®Colour® pants;                         §\C{// type defined same level}§
     4509        Face looks[10];                         §\C{// type defined same level}§
    44614510};
    4462 ®Colour® c = R;                                 // type/enum defined same level
    4463 Personß.ß®Colour® pc = Personß.ßR;      // type/enum defined inside
    4464 Personß.ßFace pretty;                           // type defined inside
    4465 \end{lstlisting}
     4511®Colour® c = R;                                 §\C{// type/enum defined same level}§
     4512Personß.ß®Colour® pc = Personß.ßR;      §\C{// type/enum defined inside}§
     4513Personß.ßFace pretty;                   §\C{// type defined inside}§
     4514\end{lstlisting}
     4515In C, the name of the nested types belongs to the same scope as the name of the outermost enclosing structure, i.e., the nested types are hoisted to the scope of the outer-most type, which is not useful and confusing.
     4516\CFA is C \emph{incompatible} on this issue, and provides semantics similar to \Index*[C++]{\CC}.
     4517Nested types are not hoisted and can be referenced using the field selection operator ``©.©'', unlike the \CC scope-resolution operator ``©::©''.
    44664518\item[Rationale:] ©struct© scope is crucial to \CFA as an information structuring and hiding mechanism.
    44674519\item[Effect on original feature:] change to semantics of well-defined feature.
    44684520\item[Difficulty of converting:] Semantic transformation.
    44694521\item[How widely used:] C programs rarely have nest types because they are equivalent to the hoisted version.
    4470 
    4471 \CFA is C \emph{incompatible} on this issue, and provides semantics similar to \Index*[C++]{\CC}.
    4472 Nested types are not hoisted and can be referenced using the field selection operator ``©.©'', unlike the \CC scope-resolution operator ``©::©''.
    4473 Given that nested types in C are equivalent to not using them, i.e., they are essentially useless, it is unlikely there are any realistic usages that break because of this incompatibility.
    44744522\end{description}
    44754523
     
    44804528\item[Difficulty of converting:] Semantic transformation. To make the struct type name visible in the scope of the enclosing struct, the struct tag could be declared in the scope of the enclosing struct, before the enclosing struct is defined. Example:
    44814529\begin{lstlisting}
    4482 struct Y; // struct Y and struct X are at the same scope
     4530struct Y;                                               §\C{// struct Y and struct X are at the same scope}§
    44834531struct X {
    44844532struct Y { /* ... */ } y;
     
    45014549
    45024550
     4551\section{New Keywords}
     4552\label{s:NewKeywords}
     4553
     4554\begin{quote2}
     4555\begin{tabular}{lll}
     4556©catch©                 & ©fallthrough© & ©otype©               \\
     4557©catchResume©   & ©fallthru©    & ©throw©               \\
     4558©choose©                & ©finally©             & ©throwResume© \\
     4559©disable©               & ©forall©              & ©trait©               \\
     4560©dtype©                 & ©ftype©               & ©try©                 \\
     4561©enable©                & ©lvalue©              &                               \\
     4562\end{tabular}
     4563\end{quote2}
     4564
     4565
     4566\section{Standard Headers}
     4567\label{s:StandardHeaders}
     4568
     4569C prescribes the following standard header-files~\cite[\S~7.1.2]{C11}:
     4570\begin{quote2}
     4571\begin{minipage}{\linewidth}
     4572\begin{tabular}{lll}
     4573assert.h        & math.h                & stdlib.h              \\
     4574complex.h       & setjmp.h              & stdnoreturn.h \\
     4575ctype.h         & signal.h              & string.h              \\
     4576errno.h         & stdalign.h    & tgmath.h              \\
     4577fenv.h          & stdarg.h              & threads.h             \\
     4578float.h         & stdatomic.h   & time.h                \\
     4579inttypes.h      & stdbool.h             & uchar.h               \\
     4580iso646.h        & stddef.h              & wchar.h               \\
     4581limits.h        & stdint.h              & wctype.h              \\
     4582locale.h        & stdio.h               & unistd.h\footnote{\CFA extension}
     4583\end{tabular}
     4584\end{minipage}
     4585\end{quote2}
     4586For the prescribed head-files, \CFA implicitly wraps their includes in an ©extern "C"©;
     4587hence, names in these include files are not mangled\index{mangling!name} (see~\VRef{s:Interoperability}).
     4588All other C header files must be explicitly wrapped in ©extern "C"© to prevent name mangling.
     4589
     4590
    45034591\section{I/O Library}
    45044592\label{s:IOLibrary}
     
    45704658%$
    45714659\begin{lstlisting}[mathescape=off]
    4572 sout | "x (" | 1 | "x [" | 2 | "x {" | 3 | "x $" | 4 | "x £" | 5 | "x ¥" | 6 | "x ¡" | 7 | "x ¿" | 8 | "x «" | 9 | endl;
     4660sout | "x (" | 1 | "x [" | 2 | "x {" | 3 | "x $" | 4 | "x £" | 5 | "x ¥" | 6 | "x ¡" | 7
     4661         | "x ¿" | 8 | "x «" | 9 | endl;
    45734662\end{lstlisting}
    45744663%$
     
    45804669A seperator does not appear after a C string ending with the (extended) \Index{ASCII}\index{ASCII!extended} characters: ©,.:;!?)]}%¢»©
    45814670\begin{lstlisting}[belowskip=0pt]
    4582 sout | 1 | ", x" | 2 | ". x" | 3 | ": x" | 4 | "; x" | 5 | "! x" | 6 | "? x" | 7 | ") x" | 8 | "] x" | 9 | "} x"
    4583          | 10 | "% x" | 11 | "¢ x" | 12 | "» x" | endl;
     4671sout | 1 | ", x" | 2 | ". x" | 3 | ": x" | 4 | "; x" | 5 | "! x" | 6 | "? x" | 7
     4672         | ") x" | 8 | "] x" | 9 | "} x" | 10 | "% x" | 11 | "¢ x" | 12 | "» x" | endl;
    45844673\end{lstlisting}
    45854674\begin{lstlisting}[mathescape=off,showspaces=true,aboveskip=0pt,belowskip=0pt]
     
    45974686The following \CC-style \Index{manipulator}s allow further control over implicit seperation.
    45984687\begin{lstlisting}[mathescape=off,belowskip=0pt]
    4599 sout | sepOn | 1 | 2 | 3 | sepOn | endl;        // separator at start of line
     4688sout | sepOn | 1 | 2 | 3 | sepOn | endl;        §\C{// separator at start of line}§
    46004689\end{lstlisting}
    46014690\begin{lstlisting}[mathescape=off,showspaces=true,aboveskip=0pt,belowskip=0pt]
     
    46034692\end{lstlisting}
    46044693\begin{lstlisting}[mathescape=off,aboveskip=0pt,belowskip=0pt]
    4605 sout | 1 | sepOff | 2 | 3 | endl;                       // turn off implicit separator temporarily
     4694sout | 1 | sepOff | 2 | 3 | endl;                       §\C{// turn off implicit separator temporarily}§
    46064695\end{lstlisting}
    46074696\begin{lstlisting}[mathescape=off,showspaces=true,aboveskip=0pt,belowskip=0pt]
     
    46094698\end{lstlisting}
    46104699\begin{lstlisting}[mathescape=off,aboveskip=0pt,belowskip=0pt]
    4611 sout | sepDisable | 1 | 2 | 3 | endl;           // turn off implicit separation, affects all subsequent prints
     4700sout | sepDisable | 1 | 2 | 3 | endl;           §\C{// turn off implicit separation, affects all subsequent prints}§
    46124701\end{lstlisting}
    46134702\begin{lstlisting}[mathescape=off,showspaces=true,aboveskip=0pt,belowskip=0pt]
     
    46154704\end{lstlisting}
    46164705\begin{lstlisting}[mathescape=off,aboveskip=0pt,belowskip=0pt]
    4617 sout | 1 | sepOn | 2 | 3 | endl;                        // turn on implicit separator temporarily
     4706sout | 1 | sepOn | 2 | 3 | endl;                        §\C{// turn on implicit separator temporarily}§
    46184707\end{lstlisting}
    46194708\begin{lstlisting}[mathescape=off,showspaces=true,aboveskip=0pt,belowskip=0pt]
     
    46214710\end{lstlisting}
    46224711\begin{lstlisting}[mathescape=off,aboveskip=0pt,belowskip=0pt]
    4623 sout | sepEnable | 1 | 2 | 3 | endl;            // turn on implicit separation, affects all subsequent prints
     4712sout | sepEnable | 1 | 2 | 3 | endl;            §\C{// turn on implicit separation, affects all subsequent prints}§
    46244713\end{lstlisting}
    46254714\begin{lstlisting}[mathescape=off,showspaces=true,aboveskip=0pt,belowskip=0pt]
     
    46274716\end{lstlisting}
    46284717\begin{lstlisting}[mathescape=off,aboveskip=0pt,aboveskip=0pt,belowskip=0pt]
    4629 sepSet( sout, ", $" );                                          // change separator from " " to ", $"
     4718sepSet( sout, ", $" );                                          §\C{// change separator from " " to ", \$"}§
    46304719sout | 1 | 2 | 3 | endl;
    46314720\end{lstlisting}
     
    46734762\subsection{malloc}
    46744763
     4764\leavevmode
    46754765\begin{lstlisting}[aboveskip=0pt,belowskip=0pt]
    46764766forall( otype T ) T * malloc( void );§\indexc{malloc}§
     
    46894779forall( otype T ) T * memset( T * ptr );                                // remove when default value available
    46904780\end{lstlisting}
    4691 \
     4781
    46924782
    46934783\subsection{ato / strto}
    46944784
     4785\leavevmode
    46954786\begin{lstlisting}[aboveskip=0pt,belowskip=0pt]
    46964787int ato( const char * ptr );§\indexc{ato}§
     
    47204811long double _Complex strto( const char * sptr, char ** eptr );
    47214812\end{lstlisting}
    4722 \
    47234813
    47244814
    47254815\subsection{bsearch / qsort}
    47264816
     4817\leavevmode
    47274818\begin{lstlisting}[aboveskip=0pt,belowskip=0pt]
    47284819forall( otype T | { int ?<?( T, T ); } )
     
    47324823void qsort( const T * arr, size_t dimension );§\indexc{qsort}§
    47334824\end{lstlisting}
    4734 \
    47354825
    47364826
    47374827\subsection{abs}
    47384828
     4829\leavevmode
    47394830\begin{lstlisting}[aboveskip=0pt,belowskip=0pt]
    47404831char abs( char );§\indexc{abs}§
     
    47494840long double abs( long double _Complex );
    47504841\end{lstlisting}
    4751 \
    47524842
    47534843
    47544844\subsection{random}
    47554845
     4846\leavevmode
    47564847\begin{lstlisting}[aboveskip=0pt,belowskip=0pt]
    47574848void rand48seed( long int s );§\indexc{rand48seed}§
     
    47674858long double _Complex rand48();
    47684859\end{lstlisting}
    4769 \
    47704860
    47714861
    47724862\subsection{min / max / clamp / swap}
    47734863
     4864\leavevmode
    47744865\begin{lstlisting}[aboveskip=0pt,belowskip=0pt]
    47754866forall( otype T | { int ?<?( T, T ); } )
     
    47854876void swap( T * t1, T * t2 );§\indexc{swap}§
    47864877\end{lstlisting}
    4787 \
    47884878
    47894879
     
    47964886\subsection{General}
    47974887
     4888\leavevmode
    47984889\begin{lstlisting}[aboveskip=0pt,belowskip=0pt]
    47994890float fabs( float );§\indexc{fabs}§
     
    48414932long double nan( const char * );
    48424933\end{lstlisting}
    4843 \
    48444934
    48454935
    48464936\subsection{Exponential}
    48474937
     4938\leavevmode
    48484939\begin{lstlisting}[aboveskip=0pt,belowskip=0pt]
    48494940float exp( float );§\indexc{exp}§
     
    48984989long double logb( long double );
    48994990\end{lstlisting}
    4900 \
    49014991
    49024992
    49034993\subsection{Power}
    49044994
     4995\leavevmode
    49054996\begin{lstlisting}[aboveskip=0pt,belowskip=0pt]
    49064997float sqrt( float );§\indexc{sqrt}§
     
    49265017long double _Complex pow( long double _Complex, long double _Complex );
    49275018\end{lstlisting}
    4928 \
    49295019
    49305020
    49315021\subsection{Trigonometric}
    49325022
     5023\leavevmode
    49335024\begin{lstlisting}[aboveskip=0pt,belowskip=0pt]
    49345025float sin( float );§\indexc{sin}§
     
    49825073long double atan( long double, long double );
    49835074\end{lstlisting}
    4984 \
    49855075
    49865076
    49875077\subsection{Hyperbolic}
    49885078
     5079\leavevmode
    49895080\begin{lstlisting}[aboveskip=0pt,belowskip=0pt]
    49905081float sinh( float );§\indexc{sinh}§
     
    50305121long double _Complex atanh( long double _Complex );
    50315122\end{lstlisting}
    5032 \
    50335123
    50345124
    50355125\subsection{Error / Gamma}
    50365126
     5127\leavevmode
    50375128\begin{lstlisting}[aboveskip=0pt,belowskip=0pt]
    50385129float erf( float );§\indexc{erf}§
     
    50615152long double tgamma( long double );
    50625153\end{lstlisting}
    5063 \
    50645154
    50655155
    50665156\subsection{Nearest Integer}
    50675157
     5158\leavevmode
    50685159\begin{lstlisting}[aboveskip=0pt,belowskip=0pt]
    50695160float floor( float );§\indexc{floor}§
     
    51155206long long int llround( long double );
    51165207\end{lstlisting}
    5117 \
    51185208
    51195209
    51205210\subsection{Manipulation}
    51215211
     5212\leavevmode
    51225213\begin{lstlisting}[aboveskip=0pt,belowskip=0pt]
    51235214float copysign( float, float );§\indexc{copysign}§
     
    51565247long double scalbln( long double, long int );
    51575248\end{lstlisting}
    5158 \
    51595249
    51605250
     
    51625252\label{s:RationalNumbers}
    51635253
    5164 Rational numbers are numbers written as a ratio, i.e., as a fraction, where the numerator (top number) and the denominator (bottom number) are whole numbers.
     5254Rational numbers are numbers written as a ratio, \ie as a fraction, where the numerator (top number) and the denominator (bottom number) are whole numbers.
    51655255When creating and computing with rational numbers, results are constantly reduced to keep the numerator and denominator as small as possible.
    51665256
Note: See TracChangeset for help on using the changeset viewer.