Changeset 6e1e2d0 for src/ResolvExpr
- Timestamp:
- May 1, 2023, 4:19:09 PM (2 years ago)
- Branches:
- ADT, ast-experimental, master
- Children:
- c083c3d
- Parents:
- a50fdfb (diff), 985b624 (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the(diff)
links above to see all the changes relative to each parent. - Location:
- src/ResolvExpr
- Files:
-
- 4 edited
Legend:
- Unmodified
- Added
- Removed
-
src/ResolvExpr/CandidateFinder.cpp
ra50fdfb r6e1e2d0 55 55 namespace ResolvExpr { 56 56 57 /// Unique identifier for matching expression resolutions to their requesting expression 58 UniqueId globalResnSlot = 0; 59 60 namespace { 61 /// First index is which argument, second is which alternative, third is which exploded element 62 using ExplodedArgs_new = std::deque< std::vector< ExplodedArg > >; 63 64 /// Returns a list of alternatives with the minimum cost in the given list 65 CandidateList findMinCost( const CandidateList & candidates ) { 66 CandidateList out; 67 Cost minCost = Cost::infinity; 68 for ( const CandidateRef & r : candidates ) { 69 if ( r->cost < minCost ) { 70 minCost = r->cost; 71 out.clear(); 72 out.emplace_back( r ); 73 } else if ( r->cost == minCost ) { 74 out.emplace_back( r ); 75 } 76 } 77 return out; 78 } 79 80 /// Computes conversion cost for a given expression to a given type 81 const ast::Expr * computeExpressionConversionCost( 82 const ast::Expr * arg, const ast::Type * paramType, const ast::SymbolTable & symtab, const ast::TypeEnvironment & env, Cost & outCost 83 ) { 84 Cost convCost = computeConversionCost( 85 arg->result, paramType, arg->get_lvalue(), symtab, env ); 86 outCost += convCost; 87 88 // If there is a non-zero conversion cost, ignoring poly cost, then the expression requires 89 // conversion. Ignore poly cost for now, since this requires resolution of the cast to 90 // infer parameters and this does not currently work for the reason stated below 91 Cost tmpCost = convCost; 92 tmpCost.incPoly( -tmpCost.get_polyCost() ); 93 if ( tmpCost != Cost::zero ) { 94 ast::ptr< ast::Type > newType = paramType; 95 env.apply( newType ); 96 return new ast::CastExpr{ arg, newType }; 97 98 // xxx - *should* be able to resolve this cast, but at the moment pointers are not 99 // castable to zero_t, but are implicitly convertible. This is clearly inconsistent, 100 // once this is fixed it should be possible to resolve the cast. 101 // xxx - this isn't working, it appears because type1 (parameter) is seen as widenable, 102 // but it shouldn't be because this makes the conversion from DT* to DT* since 103 // commontype(zero_t, DT*) is DT*, rather than nothing 104 105 // CandidateFinder finder{ symtab, env }; 106 // finder.find( arg, ResolvMode::withAdjustment() ); 107 // assertf( finder.candidates.size() > 0, 108 // "Somehow castable expression failed to find alternatives." ); 109 // assertf( finder.candidates.size() == 1, 110 // "Somehow got multiple alternatives for known cast expression." ); 111 // return finder.candidates.front()->expr; 112 } 113 114 return arg; 115 } 116 117 /// Computes conversion cost for a given candidate 118 Cost computeApplicationConversionCost( 119 CandidateRef cand, const ast::SymbolTable & symtab 120 ) { 121 auto appExpr = cand->expr.strict_as< ast::ApplicationExpr >(); 122 auto pointer = appExpr->func->result.strict_as< ast::PointerType >(); 123 auto function = pointer->base.strict_as< ast::FunctionType >(); 124 125 Cost convCost = Cost::zero; 126 const auto & params = function->params; 127 auto param = params.begin(); 128 auto & args = appExpr->args; 129 130 for ( unsigned i = 0; i < args.size(); ++i ) { 131 const ast::Type * argType = args[i]->result; 132 PRINT( 133 std::cerr << "arg expression:" << std::endl; 134 ast::print( std::cerr, args[i], 2 ); 135 std::cerr << "--- results are" << std::endl; 136 ast::print( std::cerr, argType, 2 ); 137 ) 138 139 if ( param == params.end() ) { 140 if ( function->isVarArgs ) { 141 convCost.incUnsafe(); 142 PRINT( std::cerr << "end of params with varargs function: inc unsafe: " 143 << convCost << std::endl; ; ) 144 // convert reference-typed expressions into value-typed expressions 145 cand->expr = ast::mutate_field_index( 146 appExpr, &ast::ApplicationExpr::args, i, 147 referenceToRvalueConversion( args[i], convCost ) ); 148 continue; 149 } else return Cost::infinity; 150 } 151 152 if ( auto def = args[i].as< ast::DefaultArgExpr >() ) { 153 // Default arguments should be free - don't include conversion cost. 154 // Unwrap them here because they are not relevant to the rest of the system 155 cand->expr = ast::mutate_field_index( 156 appExpr, &ast::ApplicationExpr::args, i, def->expr ); 157 ++param; 158 continue; 159 } 160 161 // mark conversion cost and also specialization cost of param type 162 // const ast::Type * paramType = (*param)->get_type(); 163 cand->expr = ast::mutate_field_index( 164 appExpr, &ast::ApplicationExpr::args, i, 165 computeExpressionConversionCost( 166 args[i], *param, symtab, cand->env, convCost ) ); 167 convCost.decSpec( specCost( *param ) ); 168 ++param; // can't be in for-loop update because of the continue 169 } 170 171 if ( param != params.end() ) return Cost::infinity; 172 173 // specialization cost of return types can't be accounted for directly, it disables 174 // otherwise-identical calls, like this example based on auto-newline in the I/O lib: 175 // 176 // forall(otype OS) { 177 // void ?|?(OS&, int); // with newline 178 // OS& ?|?(OS&, int); // no newline, always chosen due to more specialization 179 // } 180 181 // mark type variable and specialization cost of forall clause 182 convCost.incVar( function->forall.size() ); 183 convCost.decSpec( function->assertions.size() ); 184 185 return convCost; 186 } 187 188 void makeUnifiableVars( 189 const ast::FunctionType * type, ast::OpenVarSet & unifiableVars, 190 ast::AssertionSet & need 191 ) { 192 for ( auto & tyvar : type->forall ) { 193 unifiableVars[ *tyvar ] = ast::TypeData{ tyvar->base }; 194 } 195 for ( auto & assn : type->assertions ) { 196 need[ assn ].isUsed = true; 197 } 198 } 199 200 /// Gets a default value from an initializer, nullptr if not present 201 const ast::ConstantExpr * getDefaultValue( const ast::Init * init ) { 202 if ( auto si = dynamic_cast< const ast::SingleInit * >( init ) ) { 203 if ( auto ce = si->value.as< ast::CastExpr >() ) { 204 return ce->arg.as< ast::ConstantExpr >(); 205 } else { 206 return si->value.as< ast::ConstantExpr >(); 207 } 208 } 209 return nullptr; 210 } 211 212 /// State to iteratively build a match of parameter expressions to arguments 213 struct ArgPack { 214 std::size_t parent; ///< Index of parent pack 215 ast::ptr< ast::Expr > expr; ///< The argument stored here 216 Cost cost; ///< The cost of this argument 217 ast::TypeEnvironment env; ///< Environment for this pack 218 ast::AssertionSet need; ///< Assertions outstanding for this pack 219 ast::AssertionSet have; ///< Assertions found for this pack 220 ast::OpenVarSet open; ///< Open variables for this pack 221 unsigned nextArg; ///< Index of next argument in arguments list 222 unsigned tupleStart; ///< Number of tuples that start at this index 223 unsigned nextExpl; ///< Index of next exploded element 224 unsigned explAlt; ///< Index of alternative for nextExpl > 0 225 226 ArgPack() 227 : parent( 0 ), expr(), cost( Cost::zero ), env(), need(), have(), open(), nextArg( 0 ), 228 tupleStart( 0 ), nextExpl( 0 ), explAlt( 0 ) {} 229 230 ArgPack( 231 const ast::TypeEnvironment & env, const ast::AssertionSet & need, 232 const ast::AssertionSet & have, const ast::OpenVarSet & open ) 233 : parent( 0 ), expr(), cost( Cost::zero ), env( env ), need( need ), have( have ), 234 open( open ), nextArg( 0 ), tupleStart( 0 ), nextExpl( 0 ), explAlt( 0 ) {} 235 236 ArgPack( 237 std::size_t parent, const ast::Expr * expr, ast::TypeEnvironment && env, 238 ast::AssertionSet && need, ast::AssertionSet && have, ast::OpenVarSet && open, 239 unsigned nextArg, unsigned tupleStart = 0, Cost cost = Cost::zero, 240 unsigned nextExpl = 0, unsigned explAlt = 0 ) 241 : parent(parent), expr( expr ), cost( cost ), env( std::move( env ) ), need( std::move( need ) ), 242 have( std::move( have ) ), open( std::move( open ) ), nextArg( nextArg ), tupleStart( tupleStart ), 243 nextExpl( nextExpl ), explAlt( explAlt ) {} 244 245 ArgPack( 246 const ArgPack & o, ast::TypeEnvironment && env, ast::AssertionSet && need, 247 ast::AssertionSet && have, ast::OpenVarSet && open, unsigned nextArg, Cost added ) 248 : parent( o.parent ), expr( o.expr ), cost( o.cost + added ), env( std::move( env ) ), 249 need( std::move( need ) ), have( std::move( have ) ), open( std::move( open ) ), nextArg( nextArg ), 250 tupleStart( o.tupleStart ), nextExpl( 0 ), explAlt( 0 ) {} 251 252 /// true if this pack is in the middle of an exploded argument 253 bool hasExpl() const { return nextExpl > 0; } 254 255 /// Gets the list of exploded candidates for this pack 256 const ExplodedArg & getExpl( const ExplodedArgs_new & args ) const { 257 return args[ nextArg-1 ][ explAlt ]; 258 } 259 260 /// Ends a tuple expression, consolidating the appropriate args 261 void endTuple( const std::vector< ArgPack > & packs ) { 262 // add all expressions in tuple to list, summing cost 263 std::deque< const ast::Expr * > exprs; 264 const ArgPack * pack = this; 265 if ( expr ) { exprs.emplace_front( expr ); } 266 while ( pack->tupleStart == 0 ) { 267 pack = &packs[pack->parent]; 268 exprs.emplace_front( pack->expr ); 269 cost += pack->cost; 270 } 271 // reset pack to appropriate tuple 272 std::vector< ast::ptr< ast::Expr > > exprv( exprs.begin(), exprs.end() ); 273 expr = new ast::TupleExpr{ expr->location, std::move( exprv ) }; 274 tupleStart = pack->tupleStart - 1; 275 parent = pack->parent; 276 } 277 }; 278 279 /// Instantiates an argument to match a parameter, returns false if no matching results left 280 bool instantiateArgument( 281 const CodeLocation & location, 282 const ast::Type * paramType, const ast::Init * init, const ExplodedArgs_new & args, 283 std::vector< ArgPack > & results, std::size_t & genStart, const ast::SymbolTable & symtab, 284 unsigned nTuples = 0 285 ) { 286 if ( auto tupleType = dynamic_cast< const ast::TupleType * >( paramType ) ) { 287 // paramType is a TupleType -- group args into a TupleExpr 288 ++nTuples; 289 for ( const ast::Type * type : *tupleType ) { 290 // xxx - dropping initializer changes behaviour from previous, but seems correct 291 // ^^^ need to handle the case where a tuple has a default argument 292 if ( ! instantiateArgument( location, 293 type, nullptr, args, results, genStart, symtab, nTuples ) ) return false; 294 nTuples = 0; 295 } 296 // re-constitute tuples for final generation 297 for ( auto i = genStart; i < results.size(); ++i ) { 298 results[i].endTuple( results ); 299 } 300 return true; 301 } else if ( const ast::TypeInstType * ttype = Tuples::isTtype( paramType ) ) { 302 // paramType is a ttype, consumes all remaining arguments 303 304 // completed tuples; will be spliced to end of results to finish 305 std::vector< ArgPack > finalResults{}; 306 307 // iterate until all results completed 308 std::size_t genEnd; 309 ++nTuples; 310 do { 311 genEnd = results.size(); 312 313 // add another argument to results 314 for ( std::size_t i = genStart; i < genEnd; ++i ) { 315 unsigned nextArg = results[i].nextArg; 316 317 // use next element of exploded tuple if present 318 if ( results[i].hasExpl() ) { 319 const ExplodedArg & expl = results[i].getExpl( args ); 320 321 unsigned nextExpl = results[i].nextExpl + 1; 322 if ( nextExpl == expl.exprs.size() ) { nextExpl = 0; } 323 324 results.emplace_back( 325 i, expl.exprs[ results[i].nextExpl ], copy( results[i].env ), 326 copy( results[i].need ), copy( results[i].have ), 327 copy( results[i].open ), nextArg, nTuples, Cost::zero, nextExpl, 328 results[i].explAlt ); 329 330 continue; 331 } 332 333 // finish result when out of arguments 334 if ( nextArg >= args.size() ) { 335 ArgPack newResult{ 336 results[i].env, results[i].need, results[i].have, results[i].open }; 337 newResult.nextArg = nextArg; 338 const ast::Type * argType = nullptr; 339 340 if ( nTuples > 0 || ! results[i].expr ) { 341 // first iteration or no expression to clone, 342 // push empty tuple expression 343 newResult.parent = i; 344 newResult.expr = new ast::TupleExpr( location, {} ); 345 argType = newResult.expr->result; 346 } else { 347 // clone result to collect tuple 348 newResult.parent = results[i].parent; 349 newResult.cost = results[i].cost; 350 newResult.tupleStart = results[i].tupleStart; 351 newResult.expr = results[i].expr; 352 argType = newResult.expr->result; 353 354 if ( results[i].tupleStart > 0 && Tuples::isTtype( argType ) ) { 355 // the case where a ttype value is passed directly is special, 356 // e.g. for argument forwarding purposes 357 // xxx - what if passing multiple arguments, last of which is 358 // ttype? 359 // xxx - what would happen if unify was changed so that unifying 360 // tuple 361 // types flattened both before unifying lists? then pass in 362 // TupleType (ttype) below. 363 --newResult.tupleStart; 364 } else { 365 // collapse leftover arguments into tuple 366 newResult.endTuple( results ); 367 argType = newResult.expr->result; 368 } 369 } 370 371 // check unification for ttype before adding to final 372 if ( 373 unify( 374 ttype, argType, newResult.env, newResult.need, newResult.have, 375 newResult.open, symtab ) 376 ) { 377 finalResults.emplace_back( std::move( newResult ) ); 378 } 379 380 continue; 381 } 382 383 // add each possible next argument 384 for ( std::size_t j = 0; j < args[nextArg].size(); ++j ) { 385 const ExplodedArg & expl = args[nextArg][j]; 386 387 // fresh copies of parent parameters for this iteration 388 ast::TypeEnvironment env = results[i].env; 389 ast::OpenVarSet open = results[i].open; 390 391 env.addActual( expl.env, open ); 392 393 // skip empty tuple arguments by (nearly) cloning parent into next gen 394 if ( expl.exprs.empty() ) { 395 results.emplace_back( 396 results[i], std::move( env ), copy( results[i].need ), 397 copy( results[i].have ), std::move( open ), nextArg + 1, expl.cost ); 398 399 continue; 400 } 401 402 // add new result 403 results.emplace_back( 404 i, expl.exprs.front(), std::move( env ), copy( results[i].need ), 405 copy( results[i].have ), std::move( open ), nextArg + 1, nTuples, 406 expl.cost, expl.exprs.size() == 1 ? 0 : 1, j ); 407 } 408 } 409 410 // reset for next round 411 genStart = genEnd; 412 nTuples = 0; 413 } while ( genEnd != results.size() ); 414 415 // splice final results onto results 416 for ( std::size_t i = 0; i < finalResults.size(); ++i ) { 417 results.emplace_back( std::move( finalResults[i] ) ); 418 } 419 return ! finalResults.empty(); 420 } 421 422 // iterate each current subresult 423 std::size_t genEnd = results.size(); 424 for ( std::size_t i = genStart; i < genEnd; ++i ) { 425 unsigned nextArg = results[i].nextArg; 426 427 // use remainder of exploded tuple if present 428 if ( results[i].hasExpl() ) { 429 const ExplodedArg & expl = results[i].getExpl( args ); 430 const ast::Expr * expr = expl.exprs[ results[i].nextExpl ]; 431 432 ast::TypeEnvironment env = results[i].env; 433 ast::AssertionSet need = results[i].need, have = results[i].have; 434 ast::OpenVarSet open = results[i].open; 435 436 const ast::Type * argType = expr->result; 437 438 PRINT( 439 std::cerr << "param type is "; 440 ast::print( std::cerr, paramType ); 441 std::cerr << std::endl << "arg type is "; 442 ast::print( std::cerr, argType ); 443 std::cerr << std::endl; 444 ) 445 446 if ( unify( paramType, argType, env, need, have, open, symtab ) ) { 447 unsigned nextExpl = results[i].nextExpl + 1; 448 if ( nextExpl == expl.exprs.size() ) { nextExpl = 0; } 449 450 results.emplace_back( 451 i, expr, std::move( env ), std::move( need ), std::move( have ), std::move( open ), nextArg, 452 nTuples, Cost::zero, nextExpl, results[i].explAlt ); 453 } 454 455 continue; 456 } 457 458 // use default initializers if out of arguments 459 if ( nextArg >= args.size() ) { 460 if ( const ast::ConstantExpr * cnst = getDefaultValue( init ) ) { 461 ast::TypeEnvironment env = results[i].env; 462 ast::AssertionSet need = results[i].need, have = results[i].have; 463 ast::OpenVarSet open = results[i].open; 464 465 if ( unify( paramType, cnst->result, env, need, have, open, symtab ) ) { 466 results.emplace_back( 467 i, new ast::DefaultArgExpr{ cnst->location, cnst }, std::move( env ), 468 std::move( need ), std::move( have ), std::move( open ), nextArg, nTuples ); 469 } 470 } 471 472 continue; 473 } 474 475 // Check each possible next argument 476 for ( std::size_t j = 0; j < args[nextArg].size(); ++j ) { 477 const ExplodedArg & expl = args[nextArg][j]; 478 479 // fresh copies of parent parameters for this iteration 480 ast::TypeEnvironment env = results[i].env; 481 ast::AssertionSet need = results[i].need, have = results[i].have; 482 ast::OpenVarSet open = results[i].open; 483 484 env.addActual( expl.env, open ); 485 486 // skip empty tuple arguments by (nearly) cloning parent into next gen 487 if ( expl.exprs.empty() ) { 488 results.emplace_back( 489 results[i], std::move( env ), std::move( need ), std::move( have ), std::move( open ), 490 nextArg + 1, expl.cost ); 491 492 continue; 493 } 494 495 // consider only first exploded arg 496 const ast::Expr * expr = expl.exprs.front(); 497 const ast::Type * argType = expr->result; 498 499 PRINT( 500 std::cerr << "param type is "; 501 ast::print( std::cerr, paramType ); 502 std::cerr << std::endl << "arg type is "; 503 ast::print( std::cerr, argType ); 504 std::cerr << std::endl; 505 ) 506 507 // attempt to unify types 508 if ( unify( paramType, argType, env, need, have, open, symtab ) ) { 509 // add new result 510 results.emplace_back( 511 i, expr, std::move( env ), std::move( need ), std::move( have ), std::move( open ), 512 nextArg + 1, nTuples, expl.cost, expl.exprs.size() == 1 ? 0 : 1, j ); 513 } 514 } 515 } 516 517 // reset for next parameter 518 genStart = genEnd; 519 520 return genEnd != results.size(); // were any new results added? 521 } 522 523 /// Generate a cast expression from `arg` to `toType` 524 const ast::Expr * restructureCast( 525 ast::ptr< ast::Expr > & arg, const ast::Type * toType, ast::GeneratedFlag isGenerated = ast::GeneratedCast 526 ) { 527 if ( 528 arg->result->size() > 1 529 && ! toType->isVoid() 530 && ! dynamic_cast< const ast::ReferenceType * >( toType ) 531 ) { 532 // Argument is a tuple and the target type is neither void nor a reference. Cast each 533 // member of the tuple to its corresponding target type, producing the tuple of those 534 // cast expressions. If there are more components of the tuple than components in the 535 // target type, then excess components do not come out in the result expression (but 536 // UniqueExpr ensures that the side effects will still be produced) 537 if ( Tuples::maybeImpureIgnoreUnique( arg ) ) { 538 // expressions which may contain side effects require a single unique instance of 539 // the expression 540 arg = new ast::UniqueExpr{ arg->location, arg }; 541 } 542 std::vector< ast::ptr< ast::Expr > > components; 543 for ( unsigned i = 0; i < toType->size(); ++i ) { 544 // cast each component 545 ast::ptr< ast::Expr > idx = new ast::TupleIndexExpr{ arg->location, arg, i }; 546 components.emplace_back( 547 restructureCast( idx, toType->getComponent( i ), isGenerated ) ); 548 } 549 return new ast::TupleExpr{ arg->location, std::move( components ) }; 550 } else { 551 // handle normally 552 return new ast::CastExpr{ arg->location, arg, toType, isGenerated }; 553 } 554 } 555 556 /// Gets the name from an untyped member expression (must be NameExpr) 557 const std::string & getMemberName( const ast::UntypedMemberExpr * memberExpr ) { 558 if ( memberExpr->member.as< ast::ConstantExpr >() ) { 559 SemanticError( memberExpr, "Indexed access to struct fields unsupported: " ); 560 } 561 562 return memberExpr->member.strict_as< ast::NameExpr >()->name; 563 } 564 565 /// Actually visits expressions to find their candidate interpretations 566 class Finder final : public ast::WithShortCircuiting { 567 const ResolveContext & context; 568 const ast::SymbolTable & symtab; 569 public: 570 // static size_t traceId; 571 CandidateFinder & selfFinder; 572 CandidateList & candidates; 573 const ast::TypeEnvironment & tenv; 574 ast::ptr< ast::Type > & targetType; 575 576 enum Errors { 577 NotFound, 578 NoMatch, 579 ArgsToFew, 580 ArgsToMany, 581 RetsToFew, 582 RetsToMany, 583 NoReason 584 }; 585 586 struct { 587 Errors code = NotFound; 588 } reason; 589 590 Finder( CandidateFinder & f ) 591 : context( f.context ), symtab( context.symtab ), selfFinder( f ), 592 candidates( f.candidates ), tenv( f.env ), targetType( f.targetType ) {} 593 594 void previsit( const ast::Node * ) { visit_children = false; } 595 596 /// Convenience to add candidate to list 597 template<typename... Args> 598 void addCandidate( Args &&... args ) { 599 candidates.emplace_back( new Candidate{ std::forward<Args>( args )... } ); 600 reason.code = NoReason; 601 } 602 603 void postvisit( const ast::ApplicationExpr * applicationExpr ) { 604 addCandidate( applicationExpr, tenv ); 605 } 606 607 /// Set up candidate assertions for inference 608 void inferParameters( CandidateRef & newCand, CandidateList & out ); 609 610 /// Completes a function candidate with arguments located 611 void validateFunctionCandidate( 612 const CandidateRef & func, ArgPack & result, const std::vector< ArgPack > & results, 613 CandidateList & out ); 614 615 /// Builds a list of candidates for a function, storing them in out 616 void makeFunctionCandidates( 617 const CodeLocation & location, 618 const CandidateRef & func, const ast::FunctionType * funcType, 619 const ExplodedArgs_new & args, CandidateList & out ); 620 621 /// Adds implicit struct-conversions to the alternative list 622 void addAnonConversions( const CandidateRef & cand ); 623 624 /// Adds aggregate member interpretations 625 void addAggMembers( 626 const ast::BaseInstType * aggrInst, const ast::Expr * expr, 627 const Candidate & cand, const Cost & addedCost, const std::string & name 628 ); 629 630 /// Adds tuple member interpretations 631 void addTupleMembers( 632 const ast::TupleType * tupleType, const ast::Expr * expr, const Candidate & cand, 633 const Cost & addedCost, const ast::Expr * member 634 ); 635 636 /// true if expression is an lvalue 637 static bool isLvalue( const ast::Expr * x ) { 638 return x->result && ( x->get_lvalue() || x->result.as< ast::ReferenceType >() ); 639 } 640 641 void postvisit( const ast::UntypedExpr * untypedExpr ); 642 void postvisit( const ast::VariableExpr * variableExpr ); 643 void postvisit( const ast::ConstantExpr * constantExpr ); 644 void postvisit( const ast::SizeofExpr * sizeofExpr ); 645 void postvisit( const ast::AlignofExpr * alignofExpr ); 646 void postvisit( const ast::AddressExpr * addressExpr ); 647 void postvisit( const ast::LabelAddressExpr * labelExpr ); 648 void postvisit( const ast::CastExpr * castExpr ); 649 void postvisit( const ast::VirtualCastExpr * castExpr ); 650 void postvisit( const ast::KeywordCastExpr * castExpr ); 651 void postvisit( const ast::UntypedMemberExpr * memberExpr ); 652 void postvisit( const ast::MemberExpr * memberExpr ); 653 void postvisit( const ast::NameExpr * nameExpr ); 654 void postvisit( const ast::UntypedOffsetofExpr * offsetofExpr ); 655 void postvisit( const ast::OffsetofExpr * offsetofExpr ); 656 void postvisit( const ast::OffsetPackExpr * offsetPackExpr ); 657 void postvisit( const ast::LogicalExpr * logicalExpr ); 658 void postvisit( const ast::ConditionalExpr * conditionalExpr ); 659 void postvisit( const ast::CommaExpr * commaExpr ); 660 void postvisit( const ast::ImplicitCopyCtorExpr * ctorExpr ); 661 void postvisit( const ast::ConstructorExpr * ctorExpr ); 662 void postvisit( const ast::RangeExpr * rangeExpr ); 663 void postvisit( const ast::UntypedTupleExpr * tupleExpr ); 664 void postvisit( const ast::TupleExpr * tupleExpr ); 665 void postvisit( const ast::TupleIndexExpr * tupleExpr ); 666 void postvisit( const ast::TupleAssignExpr * tupleExpr ); 667 void postvisit( const ast::UniqueExpr * unqExpr ); 668 void postvisit( const ast::StmtExpr * stmtExpr ); 669 void postvisit( const ast::UntypedInitExpr * initExpr ); 670 671 void postvisit( const ast::InitExpr * ) { 672 assertf( false, "CandidateFinder should never see a resolved InitExpr." ); 673 } 674 675 void postvisit( const ast::DeletedExpr * ) { 676 assertf( false, "CandidateFinder should never see a DeletedExpr." ); 677 } 678 679 void postvisit( const ast::GenericExpr * ) { 680 assertf( false, "_Generic is not yet supported." ); 681 } 682 }; 683 684 /// Set up candidate assertions for inference 685 void Finder::inferParameters( CandidateRef & newCand, CandidateList & out ) { 686 // Set need bindings for any unbound assertions 687 UniqueId crntResnSlot = 0; // matching ID for this expression's assertions 688 for ( auto & assn : newCand->need ) { 689 // skip already-matched assertions 690 if ( assn.second.resnSlot != 0 ) continue; 691 // assign slot for expression if needed 692 if ( crntResnSlot == 0 ) { crntResnSlot = ++globalResnSlot; } 693 // fix slot to assertion 694 assn.second.resnSlot = crntResnSlot; 695 } 696 // pair slot to expression 697 if ( crntResnSlot != 0 ) { 698 newCand->expr.get_and_mutate()->inferred.resnSlots().emplace_back( crntResnSlot ); 699 } 700 701 // add to output list; assertion satisfaction will occur later 702 out.emplace_back( newCand ); 703 } 704 705 /// Completes a function candidate with arguments located 706 void Finder::validateFunctionCandidate( 707 const CandidateRef & func, ArgPack & result, const std::vector< ArgPack > & results, 708 CandidateList & out 709 ) { 710 ast::ApplicationExpr * appExpr = 711 new ast::ApplicationExpr{ func->expr->location, func->expr }; 712 // sum cost and accumulate arguments 713 std::deque< const ast::Expr * > args; 714 Cost cost = func->cost; 715 const ArgPack * pack = &result; 716 while ( pack->expr ) { 717 args.emplace_front( pack->expr ); 718 cost += pack->cost; 719 pack = &results[pack->parent]; 720 } 721 std::vector< ast::ptr< ast::Expr > > vargs( args.begin(), args.end() ); 722 appExpr->args = std::move( vargs ); 723 // build and validate new candidate 724 auto newCand = 725 std::make_shared<Candidate>( appExpr, result.env, result.open, result.need, cost ); 726 PRINT( 727 std::cerr << "instantiate function success: " << appExpr << std::endl; 728 std::cerr << "need assertions:" << std::endl; 729 ast::print( std::cerr, result.need, 2 ); 730 ) 731 inferParameters( newCand, out ); 732 } 733 734 /// Builds a list of candidates for a function, storing them in out 735 void Finder::makeFunctionCandidates( 736 const CodeLocation & location, 737 const CandidateRef & func, const ast::FunctionType * funcType, 738 const ExplodedArgs_new & args, CandidateList & out 739 ) { 740 ast::OpenVarSet funcOpen; 741 ast::AssertionSet funcNeed, funcHave; 742 ast::TypeEnvironment funcEnv{ func->env }; 743 makeUnifiableVars( funcType, funcOpen, funcNeed ); 744 // add all type variables as open variables now so that those not used in the 745 // parameter list are still considered open 746 funcEnv.add( funcType->forall ); 747 748 if ( targetType && ! targetType->isVoid() && ! funcType->returns.empty() ) { 749 // attempt to narrow based on expected target type 750 const ast::Type * returnType = funcType->returns.front(); 751 if ( ! unify( 752 returnType, targetType, funcEnv, funcNeed, funcHave, funcOpen, symtab ) 753 ) { 754 // unification failed, do not pursue this candidate 755 return; 756 } 757 } 758 759 // iteratively build matches, one parameter at a time 760 std::vector< ArgPack > results; 761 results.emplace_back( funcEnv, funcNeed, funcHave, funcOpen ); 762 std::size_t genStart = 0; 763 764 // xxx - how to handle default arg after change to ftype representation? 765 if (const ast::VariableExpr * varExpr = func->expr.as<ast::VariableExpr>()) { 766 if (const ast::FunctionDecl * funcDecl = varExpr->var.as<ast::FunctionDecl>()) { 767 // function may have default args only if directly calling by name 768 // must use types on candidate however, due to RenameVars substitution 769 auto nParams = funcType->params.size(); 770 771 for (size_t i=0; i<nParams; ++i) { 772 auto obj = funcDecl->params[i].strict_as<ast::ObjectDecl>(); 773 if (!instantiateArgument( location, 774 funcType->params[i], obj->init, args, results, genStart, symtab)) return; 775 } 776 goto endMatch; 777 } 778 } 779 for ( const auto & param : funcType->params ) { 780 // Try adding the arguments corresponding to the current parameter to the existing 781 // matches 782 // no default args for indirect calls 783 if ( ! instantiateArgument( location, 784 param, nullptr, args, results, genStart, symtab ) ) return; 785 } 786 787 endMatch: 788 if ( funcType->isVarArgs ) { 789 // append any unused arguments to vararg pack 790 std::size_t genEnd; 791 do { 792 genEnd = results.size(); 793 794 // iterate results 795 for ( std::size_t i = genStart; i < genEnd; ++i ) { 796 unsigned nextArg = results[i].nextArg; 797 798 // use remainder of exploded tuple if present 799 if ( results[i].hasExpl() ) { 800 const ExplodedArg & expl = results[i].getExpl( args ); 801 802 unsigned nextExpl = results[i].nextExpl + 1; 803 if ( nextExpl == expl.exprs.size() ) { nextExpl = 0; } 804 805 results.emplace_back( 806 i, expl.exprs[ results[i].nextExpl ], copy( results[i].env ), 807 copy( results[i].need ), copy( results[i].have ), 808 copy( results[i].open ), nextArg, 0, Cost::zero, nextExpl, 809 results[i].explAlt ); 810 811 continue; 812 } 813 814 // finish result when out of arguments 815 if ( nextArg >= args.size() ) { 816 validateFunctionCandidate( func, results[i], results, out ); 817 818 continue; 819 } 820 821 // add each possible next argument 822 for ( std::size_t j = 0; j < args[nextArg].size(); ++j ) { 823 const ExplodedArg & expl = args[nextArg][j]; 824 825 // fresh copies of parent parameters for this iteration 826 ast::TypeEnvironment env = results[i].env; 827 ast::OpenVarSet open = results[i].open; 828 829 env.addActual( expl.env, open ); 830 831 // skip empty tuple arguments by (nearly) cloning parent into next gen 832 if ( expl.exprs.empty() ) { 833 results.emplace_back( 834 results[i], std::move( env ), copy( results[i].need ), 835 copy( results[i].have ), std::move( open ), nextArg + 1, 836 expl.cost ); 837 838 continue; 839 } 840 841 // add new result 842 results.emplace_back( 843 i, expl.exprs.front(), std::move( env ), copy( results[i].need ), 844 copy( results[i].have ), std::move( open ), nextArg + 1, 0, expl.cost, 845 expl.exprs.size() == 1 ? 0 : 1, j ); 846 } 847 } 848 849 genStart = genEnd; 850 } while( genEnd != results.size() ); 851 } else { 852 // filter out the results that don't use all the arguments 853 for ( std::size_t i = genStart; i < results.size(); ++i ) { 854 ArgPack & result = results[i]; 855 if ( ! result.hasExpl() && result.nextArg >= args.size() ) { 856 validateFunctionCandidate( func, result, results, out ); 857 } 858 } 859 } 860 } 861 862 /// Adds implicit struct-conversions to the alternative list 863 void Finder::addAnonConversions( const CandidateRef & cand ) { 864 // adds anonymous member interpretations whenever an aggregate value type is seen. 865 // it's okay for the aggregate expression to have reference type -- cast it to the 866 // base type to treat the aggregate as the referenced value 867 ast::ptr< ast::Expr > aggrExpr( cand->expr ); 868 ast::ptr< ast::Type > & aggrType = aggrExpr.get_and_mutate()->result; 869 cand->env.apply( aggrType ); 870 871 if ( aggrType.as< ast::ReferenceType >() ) { 872 aggrExpr = new ast::CastExpr{ aggrExpr, aggrType->stripReferences() }; 873 } 874 875 if ( auto structInst = aggrExpr->result.as< ast::StructInstType >() ) { 876 addAggMembers( structInst, aggrExpr, *cand, Cost::safe, "" ); 877 } else if ( auto unionInst = aggrExpr->result.as< ast::UnionInstType >() ) { 878 addAggMembers( unionInst, aggrExpr, *cand, Cost::safe, "" ); 879 } 880 } 881 882 /// Adds aggregate member interpretations 883 void Finder::addAggMembers( 884 const ast::BaseInstType * aggrInst, const ast::Expr * expr, 885 const Candidate & cand, const Cost & addedCost, const std::string & name 886 ) { 887 for ( const ast::Decl * decl : aggrInst->lookup( name ) ) { 888 auto dwt = strict_dynamic_cast< const ast::DeclWithType * >( decl ); 889 CandidateRef newCand = std::make_shared<Candidate>( 890 cand, new ast::MemberExpr{ expr->location, dwt, expr }, addedCost ); 891 // add anonymous member interpretations whenever an aggregate value type is seen 892 // as a member expression 893 addAnonConversions( newCand ); 894 candidates.emplace_back( std::move( newCand ) ); 895 } 896 } 897 898 /// Adds tuple member interpretations 899 void Finder::addTupleMembers( 900 const ast::TupleType * tupleType, const ast::Expr * expr, const Candidate & cand, 901 const Cost & addedCost, const ast::Expr * member 902 ) { 903 if ( auto constantExpr = dynamic_cast< const ast::ConstantExpr * >( member ) ) { 904 // get the value of the constant expression as an int, must be between 0 and the 905 // length of the tuple to have meaning 906 long long val = constantExpr->intValue(); 907 if ( val >= 0 && (unsigned long long)val < tupleType->size() ) { 908 addCandidate( 909 cand, new ast::TupleIndexExpr{ expr->location, expr, (unsigned)val }, 910 addedCost ); 911 } 912 } 913 } 914 915 void Finder::postvisit( const ast::UntypedExpr * untypedExpr ) { 916 std::vector< CandidateFinder > argCandidates = 917 selfFinder.findSubExprs( untypedExpr->args ); 918 919 // take care of possible tuple assignments 920 // if not tuple assignment, handled as normal function call 921 Tuples::handleTupleAssignment( selfFinder, untypedExpr, argCandidates ); 922 923 CandidateFinder funcFinder( context, tenv ); 924 if (auto nameExpr = untypedExpr->func.as<ast::NameExpr>()) { 925 auto kind = ast::SymbolTable::getSpecialFunctionKind(nameExpr->name); 926 if (kind != ast::SymbolTable::SpecialFunctionKind::NUMBER_OF_KINDS) { 927 assertf(!argCandidates.empty(), "special function call without argument"); 928 for (auto & firstArgCand: argCandidates[0]) { 929 ast::ptr<ast::Type> argType = firstArgCand->expr->result; 930 firstArgCand->env.apply(argType); 931 // strip references 932 // xxx - is this correct? 933 while (argType.as<ast::ReferenceType>()) argType = argType.as<ast::ReferenceType>()->base; 934 935 // convert 1-tuple to plain type 936 if (auto tuple = argType.as<ast::TupleType>()) { 937 if (tuple->size() == 1) { 938 argType = tuple->types[0]; 939 } 940 } 941 942 // if argType is an unbound type parameter, all special functions need to be searched. 943 if (isUnboundType(argType)) { 944 funcFinder.otypeKeys.clear(); 945 break; 946 } 947 948 if (argType.as<ast::PointerType>()) funcFinder.otypeKeys.insert(Mangle::Encoding::pointer); 949 // else if (const ast::EnumInstType * enumInst = argType.as<ast::EnumInstType>()) { 950 // const ast::EnumDecl * enumDecl = enumInst->base; // Here 951 // if ( const ast::Type* enumType = enumDecl->base ) { 952 // // instance of enum (T) is a instance of type (T) 953 // funcFinder.otypeKeys.insert(Mangle::mangle(enumType, Mangle::NoGenericParams | Mangle::Type)); 954 // } else { 955 // // instance of an untyped enum is techically int 956 // funcFinder.otypeKeys.insert(Mangle::mangle(enumDecl, Mangle::NoGenericParams | Mangle::Type)); 957 // } 958 // } 959 else funcFinder.otypeKeys.insert(Mangle::mangle(argType, Mangle::NoGenericParams | Mangle::Type)); 960 } 961 } 962 } 963 // if candidates are already produced, do not fail 964 // xxx - is it possible that handleTupleAssignment and main finder both produce candidates? 965 // this means there exists ctor/assign functions with a tuple as first parameter. 966 ResolvMode mode = { 967 true, // adjust 968 !untypedExpr->func.as<ast::NameExpr>(), // prune if not calling by name 969 selfFinder.candidates.empty() // failfast if other options are not found 970 }; 971 funcFinder.find( untypedExpr->func, mode ); 972 // short-circuit if no candidates 973 // if ( funcFinder.candidates.empty() ) return; 974 975 reason.code = NoMatch; 976 977 // find function operators 978 ast::ptr< ast::Expr > opExpr = new ast::NameExpr{ untypedExpr->location, "?()" }; // ??? why not ?{} 979 CandidateFinder opFinder( context, tenv ); 980 // okay if there aren't any function operations 981 opFinder.find( opExpr, ResolvMode::withoutFailFast() ); 982 PRINT( 983 std::cerr << "known function ops:" << std::endl; 984 print( std::cerr, opFinder.candidates, 1 ); 985 ) 986 987 // pre-explode arguments 988 ExplodedArgs_new argExpansions; 989 for ( const CandidateFinder & args : argCandidates ) { 990 argExpansions.emplace_back(); 991 auto & argE = argExpansions.back(); 992 for ( const CandidateRef & arg : args ) { argE.emplace_back( *arg, symtab ); } 993 } 994 995 // Find function matches 996 CandidateList found; 997 SemanticErrorException errors; 998 for ( CandidateRef & func : funcFinder ) { 999 try { 1000 PRINT( 1001 std::cerr << "working on alternative:" << std::endl; 1002 print( std::cerr, *func, 2 ); 1003 ) 1004 1005 // check if the type is a pointer to function 1006 const ast::Type * funcResult = func->expr->result->stripReferences(); 1007 if ( auto pointer = dynamic_cast< const ast::PointerType * >( funcResult ) ) { 1008 if ( auto function = pointer->base.as< ast::FunctionType >() ) { 1009 CandidateRef newFunc{ new Candidate{ *func } }; 1010 newFunc->expr = 1011 referenceToRvalueConversion( newFunc->expr, newFunc->cost ); 1012 makeFunctionCandidates( untypedExpr->location, 1013 newFunc, function, argExpansions, found ); 1014 } 1015 } else if ( 1016 auto inst = dynamic_cast< const ast::TypeInstType * >( funcResult ) 1017 ) { 1018 if ( const ast::EqvClass * clz = func->env.lookup( *inst ) ) { 1019 if ( auto function = clz->bound.as< ast::FunctionType >() ) { 1020 CandidateRef newFunc{ new Candidate{ *func } }; 1021 newFunc->expr = 1022 referenceToRvalueConversion( newFunc->expr, newFunc->cost ); 1023 makeFunctionCandidates( untypedExpr->location, 1024 newFunc, function, argExpansions, found ); 1025 } 1026 } 1027 } 1028 } catch ( SemanticErrorException & e ) { errors.append( e ); } 1029 } 1030 1031 // Find matches on function operators `?()` 1032 if ( ! opFinder.candidates.empty() ) { 1033 // add exploded function alternatives to front of argument list 1034 std::vector< ExplodedArg > funcE; 1035 funcE.reserve( funcFinder.candidates.size() ); 1036 for ( const CandidateRef & func : funcFinder ) { 1037 funcE.emplace_back( *func, symtab ); 1038 } 1039 argExpansions.emplace_front( std::move( funcE ) ); 1040 1041 for ( const CandidateRef & op : opFinder ) { 1042 try { 1043 // check if type is pointer-to-function 1044 const ast::Type * opResult = op->expr->result->stripReferences(); 1045 if ( auto pointer = dynamic_cast< const ast::PointerType * >( opResult ) ) { 1046 if ( auto function = pointer->base.as< ast::FunctionType >() ) { 1047 CandidateRef newOp{ new Candidate{ *op} }; 1048 newOp->expr = 1049 referenceToRvalueConversion( newOp->expr, newOp->cost ); 1050 makeFunctionCandidates( untypedExpr->location, 1051 newOp, function, argExpansions, found ); 1052 } 1053 } 1054 } catch ( SemanticErrorException & e ) { errors.append( e ); } 1055 } 1056 } 1057 1058 // Implement SFINAE; resolution errors are only errors if there aren't any non-error 1059 // candidates 1060 if ( found.empty() && ! errors.isEmpty() ) { throw errors; } 1061 1062 // Compute conversion costs 1063 for ( CandidateRef & withFunc : found ) { 1064 Cost cvtCost = computeApplicationConversionCost( withFunc, symtab ); 1065 1066 PRINT( 1067 auto appExpr = withFunc->expr.strict_as< ast::ApplicationExpr >(); 1068 auto pointer = appExpr->func->result.strict_as< ast::PointerType >(); 1069 auto function = pointer->base.strict_as< ast::FunctionType >(); 1070 1071 std::cerr << "Case +++++++++++++ " << appExpr->func << std::endl; 1072 std::cerr << "parameters are:" << std::endl; 1073 ast::printAll( std::cerr, function->params, 2 ); 1074 std::cerr << "arguments are:" << std::endl; 1075 ast::printAll( std::cerr, appExpr->args, 2 ); 1076 std::cerr << "bindings are:" << std::endl; 1077 ast::print( std::cerr, withFunc->env, 2 ); 1078 std::cerr << "cost is: " << withFunc->cost << std::endl; 1079 std::cerr << "cost of conversion is:" << cvtCost << std::endl; 1080 ) 1081 1082 if ( cvtCost != Cost::infinity ) { 1083 withFunc->cvtCost = cvtCost; 1084 candidates.emplace_back( std::move( withFunc ) ); 1085 } 1086 } 1087 found = std::move( candidates ); 1088 1089 // use a new list so that candidates are not examined by addAnonConversions twice 1090 CandidateList winners = findMinCost( found ); 1091 promoteCvtCost( winners ); 1092 1093 // function may return a struct/union value, in which case we need to add candidates 1094 // for implicit conversions to each of the anonymous members, which must happen after 1095 // `findMinCost`, since anon conversions are never the cheapest 1096 for ( const CandidateRef & c : winners ) { 1097 addAnonConversions( c ); 1098 } 1099 spliceBegin( candidates, winners ); 1100 1101 if ( candidates.empty() && targetType && ! targetType->isVoid() ) { 1102 // If resolution is unsuccessful with a target type, try again without, since it 1103 // will sometimes succeed when it wouldn't with a target type binding. 1104 // For example: 1105 // forall( otype T ) T & ?[]( T *, ptrdiff_t ); 1106 // const char * x = "hello world"; 1107 // unsigned char ch = x[0]; 1108 // Fails with simple return type binding (xxx -- check this!) as follows: 1109 // * T is bound to unsigned char 1110 // * (x: const char *) is unified with unsigned char *, which fails 1111 // xxx -- fix this better 1112 targetType = nullptr; 1113 postvisit( untypedExpr ); 1114 } 1115 } 1116 1117 void Finder::postvisit( const ast::AddressExpr * addressExpr ) { 1118 CandidateFinder finder( context, tenv ); 1119 finder.find( addressExpr->arg ); 1120 1121 if ( finder.candidates.empty() ) return; 1122 1123 reason.code = NoMatch; 1124 1125 for ( CandidateRef & r : finder.candidates ) { 1126 if ( ! isLvalue( r->expr ) ) continue; 1127 addCandidate( *r, new ast::AddressExpr{ addressExpr->location, r->expr } ); 1128 } 1129 } 1130 1131 void Finder::postvisit( const ast::LabelAddressExpr * labelExpr ) { 1132 addCandidate( labelExpr, tenv ); 1133 } 1134 1135 void Finder::postvisit( const ast::CastExpr * castExpr ) { 1136 ast::ptr< ast::Type > toType = castExpr->result; 1137 assert( toType ); 1138 toType = resolveTypeof( toType, context ); 1139 toType = adjustExprType( toType, tenv, symtab ); 1140 1141 CandidateFinder finder( context, tenv, toType ); 1142 finder.find( castExpr->arg, ResolvMode::withAdjustment() ); 1143 1144 if ( !finder.candidates.empty() ) reason.code = NoMatch; 1145 1146 CandidateList matches; 1147 for ( CandidateRef & cand : finder.candidates ) { 1148 ast::AssertionSet need( cand->need.begin(), cand->need.end() ), have; 1149 ast::OpenVarSet open( cand->open ); 1150 1151 cand->env.extractOpenVars( open ); 1152 1153 // It is possible that a cast can throw away some values in a multiply-valued 1154 // expression, e.g. cast-to-void, one value to zero. Figure out the prefix of the 1155 // subexpression results that are cast directly. The candidate is invalid if it 1156 // has fewer results than there are types to cast to. 1157 int discardedValues = cand->expr->result->size() - toType->size(); 1158 if ( discardedValues < 0 ) continue; 1159 1160 // unification run for side-effects 1161 unify( toType, cand->expr->result, cand->env, need, have, open, symtab ); 1162 Cost thisCost = 1163 (castExpr->isGenerated == ast::GeneratedFlag::GeneratedCast) 1164 ? conversionCost( cand->expr->result, toType, cand->expr->get_lvalue(), symtab, cand->env ) 1165 : castCost( cand->expr->result, toType, cand->expr->get_lvalue(), symtab, cand->env ); 1166 1167 PRINT( 1168 std::cerr << "working on cast with result: " << toType << std::endl; 1169 std::cerr << "and expr type: " << cand->expr->result << std::endl; 1170 std::cerr << "env: " << cand->env << std::endl; 1171 ) 1172 if ( thisCost != Cost::infinity ) { 1173 PRINT( 1174 std::cerr << "has finite cost." << std::endl; 1175 ) 1176 // count one safe conversion for each value that is thrown away 1177 thisCost.incSafe( discardedValues ); 1178 CandidateRef newCand = std::make_shared<Candidate>( 1179 restructureCast( cand->expr, toType, castExpr->isGenerated ), 1180 copy( cand->env ), std::move( open ), std::move( need ), cand->cost, 1181 cand->cost + thisCost ); 1182 inferParameters( newCand, matches ); 1183 } 1184 } 1185 1186 // select first on argument cost, then conversion cost 1187 CandidateList minArgCost = findMinCost( matches ); 1188 promoteCvtCost( minArgCost ); 1189 candidates = findMinCost( minArgCost ); 1190 } 1191 1192 void Finder::postvisit( const ast::VirtualCastExpr * castExpr ) { 1193 assertf( castExpr->result, "Implicit virtual cast targets not yet supported." ); 1194 CandidateFinder finder( context, tenv ); 1195 // don't prune here, all alternatives guaranteed to have same type 1196 finder.find( castExpr->arg, ResolvMode::withoutPrune() ); 1197 for ( CandidateRef & r : finder.candidates ) { 1198 addCandidate( 1199 *r, 1200 new ast::VirtualCastExpr{ castExpr->location, r->expr, castExpr->result } ); 1201 } 1202 } 1203 1204 void Finder::postvisit( const ast::KeywordCastExpr * castExpr ) { 1205 const auto & loc = castExpr->location; 1206 assertf( castExpr->result, "Cast target should have been set in Validate." ); 1207 auto ref = castExpr->result.strict_as<ast::ReferenceType>(); 1208 auto inst = ref->base.strict_as<ast::StructInstType>(); 1209 auto target = inst->base.get(); 1210 1211 CandidateFinder finder( context, tenv ); 1212 1213 auto pick_alternatives = [target, this](CandidateList & found, bool expect_ref) { 1214 for (auto & cand : found) { 1215 const ast::Type * expr = cand->expr->result.get(); 1216 if (expect_ref) { 1217 auto res = dynamic_cast<const ast::ReferenceType*>(expr); 1218 if (!res) { continue; } 1219 expr = res->base.get(); 1220 } 1221 1222 if (auto insttype = dynamic_cast<const ast::TypeInstType*>(expr)) { 1223 auto td = cand->env.lookup(*insttype); 1224 if (!td) { continue; } 1225 expr = td->bound.get(); 1226 } 1227 1228 if (auto base = dynamic_cast<const ast::StructInstType*>(expr)) { 1229 if (base->base == target) { 1230 candidates.push_back( std::move(cand) ); 1231 reason.code = NoReason; 1232 } 1233 } 1234 } 1235 }; 1236 1237 try { 1238 // Attempt 1 : turn (thread&)X into (thread$&)X.__thrd 1239 // Clone is purely for memory management 1240 std::unique_ptr<const ast::Expr> tech1 { new ast::UntypedMemberExpr(loc, new ast::NameExpr(loc, castExpr->concrete_target.field), castExpr->arg) }; 1241 1242 // don't prune here, since it's guaranteed all alternatives will have the same type 1243 finder.find( tech1.get(), ResolvMode::withoutPrune() ); 1244 pick_alternatives(finder.candidates, false); 1245 1246 return; 1247 } catch(SemanticErrorException & ) {} 1248 1249 // Fallback : turn (thread&)X into (thread$&)get_thread(X) 1250 std::unique_ptr<const ast::Expr> fallback { ast::UntypedExpr::createDeref(loc, new ast::UntypedExpr(loc, new ast::NameExpr(loc, castExpr->concrete_target.getter), { castExpr->arg })) }; 1251 // don't prune here, since it's guaranteed all alternatives will have the same type 1252 finder.find( fallback.get(), ResolvMode::withoutPrune() ); 1253 1254 pick_alternatives(finder.candidates, true); 1255 1256 // Whatever happens here, we have no more fallbacks 1257 } 1258 1259 void Finder::postvisit( const ast::UntypedMemberExpr * memberExpr ) { 1260 CandidateFinder aggFinder( context, tenv ); 1261 aggFinder.find( memberExpr->aggregate, ResolvMode::withAdjustment() ); 1262 for ( CandidateRef & agg : aggFinder.candidates ) { 1263 // it's okay for the aggregate expression to have reference type -- cast it to the 1264 // base type to treat the aggregate as the referenced value 1265 Cost addedCost = Cost::zero; 1266 agg->expr = referenceToRvalueConversion( agg->expr, addedCost ); 1267 1268 // find member of the given type 1269 if ( auto structInst = agg->expr->result.as< ast::StructInstType >() ) { 1270 addAggMembers( 1271 structInst, agg->expr, *agg, addedCost, getMemberName( memberExpr ) ); 1272 } else if ( auto unionInst = agg->expr->result.as< ast::UnionInstType >() ) { 1273 addAggMembers( 1274 unionInst, agg->expr, *agg, addedCost, getMemberName( memberExpr ) ); 1275 } else if ( auto tupleType = agg->expr->result.as< ast::TupleType >() ) { 1276 addTupleMembers( tupleType, agg->expr, *agg, addedCost, memberExpr->member ); 1277 } 1278 } 1279 } 1280 1281 void Finder::postvisit( const ast::MemberExpr * memberExpr ) { 1282 addCandidate( memberExpr, tenv ); 1283 } 1284 1285 void Finder::postvisit( const ast::NameExpr * nameExpr ) { 1286 std::vector< ast::SymbolTable::IdData > declList; 1287 if (!selfFinder.otypeKeys.empty()) { 1288 auto kind = ast::SymbolTable::getSpecialFunctionKind(nameExpr->name); 1289 assertf(kind != ast::SymbolTable::SpecialFunctionKind::NUMBER_OF_KINDS, "special lookup with non-special target: %s", nameExpr->name.c_str()); 1290 1291 for (auto & otypeKey: selfFinder.otypeKeys) { 1292 auto result = symtab.specialLookupId(kind, otypeKey); 1293 declList.insert(declList.end(), std::make_move_iterator(result.begin()), std::make_move_iterator(result.end())); 1294 } 1295 } else { 1296 declList = symtab.lookupId( nameExpr->name ); 1297 } 1298 PRINT( std::cerr << "nameExpr is " << nameExpr->name << std::endl; ) 1299 1300 if ( declList.empty() ) return; 1301 1302 reason.code = NoMatch; 1303 1304 for ( auto & data : declList ) { 1305 Cost cost = Cost::zero; 1306 ast::Expr * newExpr = data.combine( nameExpr->location, cost ); 1307 1308 CandidateRef newCand = std::make_shared<Candidate>( 1309 newExpr, copy( tenv ), ast::OpenVarSet{}, ast::AssertionSet{}, Cost::zero, 1310 cost ); 1311 1312 if (newCand->expr->env) { 1313 newCand->env.add(*newCand->expr->env); 1314 auto mutExpr = newCand->expr.get_and_mutate(); 1315 mutExpr->env = nullptr; 1316 newCand->expr = mutExpr; 1317 } 1318 1319 PRINT( 1320 std::cerr << "decl is "; 1321 ast::print( std::cerr, data.id ); 1322 std::cerr << std::endl; 1323 std::cerr << "newExpr is "; 1324 ast::print( std::cerr, newExpr ); 1325 std::cerr << std::endl; 1326 ) 1327 newCand->expr = ast::mutate_field( 1328 newCand->expr.get(), &ast::Expr::result, 1329 renameTyVars( newCand->expr->result ) ); 1330 // add anonymous member interpretations whenever an aggregate value type is seen 1331 // as a name expression 1332 addAnonConversions( newCand ); 1333 candidates.emplace_back( std::move( newCand ) ); 1334 } 1335 } 1336 1337 void Finder::postvisit( const ast::VariableExpr * variableExpr ) { 1338 // not sufficient to just pass `variableExpr` here, type might have changed since 1339 // creation 1340 addCandidate( 1341 new ast::VariableExpr{ variableExpr->location, variableExpr->var }, tenv ); 1342 } 1343 1344 void Finder::postvisit( const ast::ConstantExpr * constantExpr ) { 1345 addCandidate( constantExpr, tenv ); 1346 } 1347 1348 void Finder::postvisit( const ast::SizeofExpr * sizeofExpr ) { 1349 if ( sizeofExpr->type ) { 1350 addCandidate( 1351 new ast::SizeofExpr{ 1352 sizeofExpr->location, resolveTypeof( sizeofExpr->type, context ) }, 1353 tenv ); 1354 } else { 1355 // find all candidates for the argument to sizeof 1356 CandidateFinder finder( context, tenv ); 1357 finder.find( sizeofExpr->expr ); 1358 // find the lowest-cost candidate, otherwise ambiguous 1359 CandidateList winners = findMinCost( finder.candidates ); 1360 if ( winners.size() != 1 ) { 1361 SemanticError( 1362 sizeofExpr->expr.get(), "Ambiguous expression in sizeof operand: " ); 1363 } 1364 // return the lowest-cost candidate 1365 CandidateRef & choice = winners.front(); 1366 choice->expr = referenceToRvalueConversion( choice->expr, choice->cost ); 1367 choice->cost = Cost::zero; 1368 addCandidate( *choice, new ast::SizeofExpr{ sizeofExpr->location, choice->expr } ); 1369 } 1370 } 1371 1372 void Finder::postvisit( const ast::AlignofExpr * alignofExpr ) { 1373 if ( alignofExpr->type ) { 1374 addCandidate( 1375 new ast::AlignofExpr{ 1376 alignofExpr->location, resolveTypeof( alignofExpr->type, context ) }, 1377 tenv ); 1378 } else { 1379 // find all candidates for the argument to alignof 1380 CandidateFinder finder( context, tenv ); 1381 finder.find( alignofExpr->expr ); 1382 // find the lowest-cost candidate, otherwise ambiguous 1383 CandidateList winners = findMinCost( finder.candidates ); 1384 if ( winners.size() != 1 ) { 1385 SemanticError( 1386 alignofExpr->expr.get(), "Ambiguous expression in alignof operand: " ); 1387 } 1388 // return the lowest-cost candidate 1389 CandidateRef & choice = winners.front(); 1390 choice->expr = referenceToRvalueConversion( choice->expr, choice->cost ); 1391 choice->cost = Cost::zero; 1392 addCandidate( 1393 *choice, new ast::AlignofExpr{ alignofExpr->location, choice->expr } ); 1394 } 1395 } 1396 1397 void Finder::postvisit( const ast::UntypedOffsetofExpr * offsetofExpr ) { 1398 const ast::BaseInstType * aggInst; 1399 if (( aggInst = offsetofExpr->type.as< ast::StructInstType >() )) ; 1400 else if (( aggInst = offsetofExpr->type.as< ast::UnionInstType >() )) ; 1401 else return; 1402 1403 for ( const ast::Decl * member : aggInst->lookup( offsetofExpr->member ) ) { 1404 auto dwt = strict_dynamic_cast< const ast::DeclWithType * >( member ); 1405 addCandidate( 1406 new ast::OffsetofExpr{ offsetofExpr->location, aggInst, dwt }, tenv ); 1407 } 1408 } 1409 1410 void Finder::postvisit( const ast::OffsetofExpr * offsetofExpr ) { 1411 addCandidate( offsetofExpr, tenv ); 1412 } 1413 1414 void Finder::postvisit( const ast::OffsetPackExpr * offsetPackExpr ) { 1415 addCandidate( offsetPackExpr, tenv ); 1416 } 1417 1418 void Finder::postvisit( const ast::LogicalExpr * logicalExpr ) { 1419 CandidateFinder finder1( context, tenv ); 1420 finder1.find( logicalExpr->arg1, ResolvMode::withAdjustment() ); 1421 if ( finder1.candidates.empty() ) return; 1422 1423 CandidateFinder finder2( context, tenv ); 1424 finder2.find( logicalExpr->arg2, ResolvMode::withAdjustment() ); 1425 if ( finder2.candidates.empty() ) return; 1426 1427 reason.code = NoMatch; 1428 1429 for ( const CandidateRef & r1 : finder1.candidates ) { 1430 for ( const CandidateRef & r2 : finder2.candidates ) { 1431 ast::TypeEnvironment env{ r1->env }; 1432 env.simpleCombine( r2->env ); 1433 ast::OpenVarSet open{ r1->open }; 1434 mergeOpenVars( open, r2->open ); 1435 ast::AssertionSet need; 1436 mergeAssertionSet( need, r1->need ); 1437 mergeAssertionSet( need, r2->need ); 1438 1439 addCandidate( 1440 new ast::LogicalExpr{ 1441 logicalExpr->location, r1->expr, r2->expr, logicalExpr->isAnd }, 1442 std::move( env ), std::move( open ), std::move( need ), r1->cost + r2->cost ); 1443 } 1444 } 1445 } 1446 1447 void Finder::postvisit( const ast::ConditionalExpr * conditionalExpr ) { 1448 // candidates for condition 1449 CandidateFinder finder1( context, tenv ); 1450 finder1.find( conditionalExpr->arg1, ResolvMode::withAdjustment() ); 1451 if ( finder1.candidates.empty() ) return; 1452 1453 // candidates for true result 1454 CandidateFinder finder2( context, tenv ); 1455 finder2.find( conditionalExpr->arg2, ResolvMode::withAdjustment() ); 1456 if ( finder2.candidates.empty() ) return; 1457 1458 // candidates for false result 1459 CandidateFinder finder3( context, tenv ); 1460 finder3.find( conditionalExpr->arg3, ResolvMode::withAdjustment() ); 1461 if ( finder3.candidates.empty() ) return; 1462 1463 reason.code = NoMatch; 1464 1465 for ( const CandidateRef & r1 : finder1.candidates ) { 1466 for ( const CandidateRef & r2 : finder2.candidates ) { 1467 for ( const CandidateRef & r3 : finder3.candidates ) { 1468 ast::TypeEnvironment env{ r1->env }; 1469 env.simpleCombine( r2->env ); 1470 env.simpleCombine( r3->env ); 1471 ast::OpenVarSet open{ r1->open }; 1472 mergeOpenVars( open, r2->open ); 1473 mergeOpenVars( open, r3->open ); 1474 ast::AssertionSet need; 1475 mergeAssertionSet( need, r1->need ); 1476 mergeAssertionSet( need, r2->need ); 1477 mergeAssertionSet( need, r3->need ); 1478 ast::AssertionSet have; 1479 1480 // unify true and false results, then infer parameters to produce new 1481 // candidates 1482 ast::ptr< ast::Type > common; 1483 if ( 1484 unify( 1485 r2->expr->result, r3->expr->result, env, need, have, open, symtab, 1486 common ) 1487 ) { 1488 // generate typed expression 1489 ast::ConditionalExpr * newExpr = new ast::ConditionalExpr{ 1490 conditionalExpr->location, r1->expr, r2->expr, r3->expr }; 1491 newExpr->result = common ? common : r2->expr->result; 1492 // convert both options to result type 1493 Cost cost = r1->cost + r2->cost + r3->cost; 1494 newExpr->arg2 = computeExpressionConversionCost( 1495 newExpr->arg2, newExpr->result, symtab, env, cost ); 1496 newExpr->arg3 = computeExpressionConversionCost( 1497 newExpr->arg3, newExpr->result, symtab, env, cost ); 1498 // output candidate 1499 CandidateRef newCand = std::make_shared<Candidate>( 1500 newExpr, std::move( env ), std::move( open ), std::move( need ), cost ); 1501 inferParameters( newCand, candidates ); 1502 } 1503 } 1504 } 1505 } 1506 } 1507 1508 void Finder::postvisit( const ast::CommaExpr * commaExpr ) { 1509 ast::TypeEnvironment env{ tenv }; 1510 ast::ptr< ast::Expr > arg1 = resolveInVoidContext( commaExpr->arg1, context, env ); 1511 1512 CandidateFinder finder2( context, env ); 1513 finder2.find( commaExpr->arg2, ResolvMode::withAdjustment() ); 1514 1515 for ( const CandidateRef & r2 : finder2.candidates ) { 1516 addCandidate( *r2, new ast::CommaExpr{ commaExpr->location, arg1, r2->expr } ); 1517 } 1518 } 1519 1520 void Finder::postvisit( const ast::ImplicitCopyCtorExpr * ctorExpr ) { 1521 addCandidate( ctorExpr, tenv ); 1522 } 1523 1524 void Finder::postvisit( const ast::ConstructorExpr * ctorExpr ) { 1525 CandidateFinder finder( context, tenv ); 1526 finder.find( ctorExpr->callExpr, ResolvMode::withoutPrune() ); 1527 for ( CandidateRef & r : finder.candidates ) { 1528 addCandidate( *r, new ast::ConstructorExpr{ ctorExpr->location, r->expr } ); 1529 } 1530 } 1531 1532 void Finder::postvisit( const ast::RangeExpr * rangeExpr ) { 1533 // resolve low and high, accept candidates where low and high types unify 1534 CandidateFinder finder1( context, tenv ); 1535 finder1.find( rangeExpr->low, ResolvMode::withAdjustment() ); 1536 if ( finder1.candidates.empty() ) return; 1537 1538 CandidateFinder finder2( context, tenv ); 1539 finder2.find( rangeExpr->high, ResolvMode::withAdjustment() ); 1540 if ( finder2.candidates.empty() ) return; 1541 1542 reason.code = NoMatch; 1543 1544 for ( const CandidateRef & r1 : finder1.candidates ) { 1545 for ( const CandidateRef & r2 : finder2.candidates ) { 1546 ast::TypeEnvironment env{ r1->env }; 1547 env.simpleCombine( r2->env ); 1548 ast::OpenVarSet open{ r1->open }; 1549 mergeOpenVars( open, r2->open ); 1550 ast::AssertionSet need; 1551 mergeAssertionSet( need, r1->need ); 1552 mergeAssertionSet( need, r2->need ); 1553 ast::AssertionSet have; 1554 1555 ast::ptr< ast::Type > common; 1556 if ( 1557 unify( 1558 r1->expr->result, r2->expr->result, env, need, have, open, symtab, 1559 common ) 1560 ) { 1561 // generate new expression 1562 ast::RangeExpr * newExpr = 1563 new ast::RangeExpr{ rangeExpr->location, r1->expr, r2->expr }; 1564 newExpr->result = common ? common : r1->expr->result; 1565 // add candidate 1566 CandidateRef newCand = std::make_shared<Candidate>( 1567 newExpr, std::move( env ), std::move( open ), std::move( need ), 1568 r1->cost + r2->cost ); 1569 inferParameters( newCand, candidates ); 1570 } 1571 } 1572 } 1573 } 1574 1575 void Finder::postvisit( const ast::UntypedTupleExpr * tupleExpr ) { 1576 std::vector< CandidateFinder > subCandidates = 1577 selfFinder.findSubExprs( tupleExpr->exprs ); 1578 std::vector< CandidateList > possibilities; 1579 combos( subCandidates.begin(), subCandidates.end(), back_inserter( possibilities ) ); 1580 1581 for ( const CandidateList & subs : possibilities ) { 1582 std::vector< ast::ptr< ast::Expr > > exprs; 1583 exprs.reserve( subs.size() ); 1584 for ( const CandidateRef & sub : subs ) { exprs.emplace_back( sub->expr ); } 1585 1586 ast::TypeEnvironment env; 1587 ast::OpenVarSet open; 1588 ast::AssertionSet need; 1589 for ( const CandidateRef & sub : subs ) { 1590 env.simpleCombine( sub->env ); 1591 mergeOpenVars( open, sub->open ); 1592 mergeAssertionSet( need, sub->need ); 1593 } 1594 1595 addCandidate( 1596 new ast::TupleExpr{ tupleExpr->location, std::move( exprs ) }, 1597 std::move( env ), std::move( open ), std::move( need ), sumCost( subs ) ); 1598 } 1599 } 1600 1601 void Finder::postvisit( const ast::TupleExpr * tupleExpr ) { 1602 addCandidate( tupleExpr, tenv ); 1603 } 1604 1605 void Finder::postvisit( const ast::TupleIndexExpr * tupleExpr ) { 1606 addCandidate( tupleExpr, tenv ); 1607 } 1608 1609 void Finder::postvisit( const ast::TupleAssignExpr * tupleExpr ) { 1610 addCandidate( tupleExpr, tenv ); 1611 } 1612 1613 void Finder::postvisit( const ast::UniqueExpr * unqExpr ) { 1614 CandidateFinder finder( context, tenv ); 1615 finder.find( unqExpr->expr, ResolvMode::withAdjustment() ); 1616 for ( CandidateRef & r : finder.candidates ) { 1617 // ensure that the the id is passed on so that the expressions are "linked" 1618 addCandidate( *r, new ast::UniqueExpr{ unqExpr->location, r->expr, unqExpr->id } ); 1619 } 1620 } 1621 1622 void Finder::postvisit( const ast::StmtExpr * stmtExpr ) { 1623 addCandidate( resolveStmtExpr( stmtExpr, context ), tenv ); 1624 } 1625 1626 void Finder::postvisit( const ast::UntypedInitExpr * initExpr ) { 1627 // handle each option like a cast 1628 CandidateList matches; 1629 PRINT( 1630 std::cerr << "untyped init expr: " << initExpr << std::endl; 1631 ) 1632 // O(n^2) checks of d-types with e-types 1633 for ( const ast::InitAlternative & initAlt : initExpr->initAlts ) { 1634 // calculate target type 1635 const ast::Type * toType = resolveTypeof( initAlt.type, context ); 1636 toType = adjustExprType( toType, tenv, symtab ); 1637 // The call to find must occur inside this loop, otherwise polymorphic return 1638 // types are not bound to the initialization type, since return type variables are 1639 // only open for the duration of resolving the UntypedExpr. 1640 CandidateFinder finder( context, tenv, toType ); 1641 finder.find( initExpr->expr, ResolvMode::withAdjustment() ); 1642 for ( CandidateRef & cand : finder.candidates ) { 1643 if (reason.code == NotFound) reason.code = NoMatch; 1644 1645 ast::TypeEnvironment env{ cand->env }; 1646 ast::AssertionSet need( cand->need.begin(), cand->need.end() ), have; 1647 ast::OpenVarSet open{ cand->open }; 1648 1649 PRINT( 1650 std::cerr << " @ " << toType << " " << initAlt.designation << std::endl; 1651 ) 1652 1653 // It is possible that a cast can throw away some values in a multiply-valued 1654 // expression, e.g. cast-to-void, one value to zero. Figure out the prefix of 1655 // the subexpression results that are cast directly. The candidate is invalid 1656 // if it has fewer results than there are types to cast to. 1657 int discardedValues = cand->expr->result->size() - toType->size(); 1658 if ( discardedValues < 0 ) continue; 1659 1660 // unification run for side-effects 1661 bool canUnify = unify( toType, cand->expr->result, env, need, have, open, symtab ); 1662 (void) canUnify; 1663 Cost thisCost = computeConversionCost( cand->expr->result, toType, cand->expr->get_lvalue(), 1664 symtab, env ); 1665 PRINT( 1666 Cost legacyCost = castCost( cand->expr->result, toType, cand->expr->get_lvalue(), 1667 symtab, env ); 1668 std::cerr << "Considering initialization:"; 1669 std::cerr << std::endl << " FROM: " << cand->expr->result << std::endl; 1670 std::cerr << std::endl << " TO: " << toType << std::endl; 1671 std::cerr << std::endl << " Unification " << (canUnify ? "succeeded" : "failed"); 1672 std::cerr << std::endl << " Legacy cost " << legacyCost; 1673 std::cerr << std::endl << " New cost " << thisCost; 1674 std::cerr << std::endl; 1675 ) 1676 if ( thisCost != Cost::infinity ) { 1677 // count one safe conversion for each value that is thrown away 1678 thisCost.incSafe( discardedValues ); 1679 CandidateRef newCand = std::make_shared<Candidate>( 1680 new ast::InitExpr{ 1681 initExpr->location, restructureCast( cand->expr, toType ), 1682 initAlt.designation }, 1683 std::move(env), std::move( open ), std::move( need ), cand->cost, thisCost ); 1684 inferParameters( newCand, matches ); 1685 } 1686 } 1687 } 1688 1689 // select first on argument cost, then conversion cost 1690 CandidateList minArgCost = findMinCost( matches ); 1691 promoteCvtCost( minArgCost ); 1692 candidates = findMinCost( minArgCost ); 1693 } 1694 1695 // size_t Finder::traceId = Stats::Heap::new_stacktrace_id("Finder"); 1696 /// Prunes a list of candidates down to those that have the minimum conversion cost for a given 1697 /// return type. Skips ambiguous candidates. 1698 1699 } // anonymous namespace 1700 1701 bool CandidateFinder::pruneCandidates( CandidateList & candidates, CandidateList & out, std::vector<std::string> & errors ) { 1702 struct PruneStruct { 1703 CandidateRef candidate; 1704 bool ambiguous; 1705 1706 PruneStruct() = default; 1707 PruneStruct( const CandidateRef & c ) : candidate( c ), ambiguous( false ) {} 1708 }; 1709 1710 // find lowest-cost candidate for each type 1711 std::unordered_map< std::string, PruneStruct > selected; 1712 // attempt to skip satisfyAssertions on more expensive alternatives if better options have been found 1713 std::sort(candidates.begin(), candidates.end(), [](const CandidateRef & x, const CandidateRef & y){return x->cost < y->cost;}); 1714 for ( CandidateRef & candidate : candidates ) { 1715 std::string mangleName; 1716 { 1717 ast::ptr< ast::Type > newType = candidate->expr->result; 1718 assertf(candidate->expr->result, "Result of expression %p for candidate is null", candidate->expr.get()); 1719 candidate->env.apply( newType ); 1720 mangleName = Mangle::mangle( newType ); 1721 } 1722 1723 auto found = selected.find( mangleName ); 1724 if (found != selected.end() && found->second.candidate->cost < candidate->cost) { 1725 PRINT( 1726 std::cerr << "cost " << candidate->cost << " loses to " 1727 << found->second.candidate->cost << std::endl; 1728 ) 1729 continue; 1730 } 1731 1732 // xxx - when do satisfyAssertions produce more than 1 result? 1733 // this should only happen when initial result type contains 1734 // unbound type parameters, then it should never be pruned by 1735 // the previous step, since renameTyVars guarantees the mangled name 1736 // is unique. 1737 CandidateList satisfied; 1738 bool needRecomputeKey = false; 1739 if (candidate->need.empty()) { 1740 satisfied.emplace_back(candidate); 1741 } 1742 else { 1743 satisfyAssertions(candidate, context.symtab, satisfied, errors); 1744 needRecomputeKey = true; 1745 } 1746 1747 for (auto & newCand : satisfied) { 1748 // recomputes type key, if satisfyAssertions changed it 1749 if (needRecomputeKey) 1750 { 1751 ast::ptr< ast::Type > newType = newCand->expr->result; 1752 assertf(newCand->expr->result, "Result of expression %p for candidate is null", newCand->expr.get()); 1753 newCand->env.apply( newType ); 1754 mangleName = Mangle::mangle( newType ); 1755 } 1756 auto found = selected.find( mangleName ); 1757 if ( found != selected.end() ) { 1758 if ( newCand->cost < found->second.candidate->cost ) { 1759 PRINT( 1760 std::cerr << "cost " << newCand->cost << " beats " 1761 << found->second.candidate->cost << std::endl; 1762 ) 1763 1764 found->second = PruneStruct{ newCand }; 1765 } else if ( newCand->cost == found->second.candidate->cost ) { 1766 // if one of the candidates contains a deleted identifier, can pick the other, 1767 // since deleted expressions should not be ambiguous if there is another option 1768 // that is at least as good 1769 if ( findDeletedExpr( newCand->expr ) ) { 1770 // do nothing 1771 PRINT( std::cerr << "candidate is deleted" << std::endl; ) 1772 } else if ( findDeletedExpr( found->second.candidate->expr ) ) { 1773 PRINT( std::cerr << "current is deleted" << std::endl; ) 1774 found->second = PruneStruct{ newCand }; 1775 } else { 1776 PRINT( std::cerr << "marking ambiguous" << std::endl; ) 1777 found->second.ambiguous = true; 1778 } 1779 } else { 1780 // xxx - can satisfyAssertions increase the cost? 1781 PRINT( 1782 std::cerr << "cost " << newCand->cost << " loses to " 1783 << found->second.candidate->cost << std::endl; 1784 ) 1785 } 1786 } else { 1787 selected.emplace_hint( found, mangleName, newCand ); 1788 } 1789 } 1790 } 1791 1792 // report unambiguous min-cost candidates 1793 // CandidateList out; 1794 for ( auto & target : selected ) { 1795 if ( target.second.ambiguous ) continue; 1796 1797 CandidateRef cand = target.second.candidate; 1798 1799 ast::ptr< ast::Type > newResult = cand->expr->result; 1800 cand->env.applyFree( newResult ); 1801 cand->expr = ast::mutate_field( 1802 cand->expr.get(), &ast::Expr::result, std::move( newResult ) ); 1803 1804 out.emplace_back( cand ); 1805 } 1806 // if everything is lost in satisfyAssertions, report the error 1807 return !selected.empty(); 1808 } 1809 1810 void CandidateFinder::find( const ast::Expr * expr, ResolvMode mode ) { 1811 // Find alternatives for expression 1812 ast::Pass<Finder> finder{ *this }; 1813 expr->accept( finder ); 1814 1815 if ( mode.failFast && candidates.empty() ) { 1816 switch(finder.core.reason.code) { 1817 case Finder::NotFound: 1818 { SemanticError( expr, "No alternatives for expression " ); break; } 1819 case Finder::NoMatch: 1820 { SemanticError( expr, "Invalid application of existing declaration(s) in expression " ); break; } 1821 case Finder::ArgsToFew: 1822 case Finder::ArgsToMany: 1823 case Finder::RetsToFew: 1824 case Finder::RetsToMany: 1825 case Finder::NoReason: 1826 default: 1827 { SemanticError( expr->location, "No reasonable alternatives for expression : reasons unkown" ); } 1828 } 1829 } 1830 1831 /* 1832 if ( mode.satisfyAssns || mode.prune ) { 1833 // trim candidates to just those where the assertions are satisfiable 1834 // - necessary pre-requisite to pruning 1835 CandidateList satisfied; 1836 std::vector< std::string > errors; 1837 for ( CandidateRef & candidate : candidates ) { 1838 satisfyAssertions( candidate, localSyms, satisfied, errors ); 1839 } 1840 1841 // fail early if none such 1842 if ( mode.failFast && satisfied.empty() ) { 1843 std::ostringstream stream; 1844 stream << "No alternatives with satisfiable assertions for " << expr << "\n"; 1845 for ( const auto& err : errors ) { 1846 stream << err; 1847 } 1848 SemanticError( expr->location, stream.str() ); 1849 } 1850 1851 // reset candidates 1852 candidates = move( satisfied ); 1853 } 1854 */ 1855 1856 if ( mode.prune ) { 1857 // trim candidates to single best one 1858 PRINT( 1859 std::cerr << "alternatives before prune:" << std::endl; 1860 print( std::cerr, candidates ); 1861 ) 1862 1863 CandidateList pruned; 1864 std::vector<std::string> errors; 1865 bool found = pruneCandidates( candidates, pruned, errors ); 1866 1867 if ( mode.failFast && pruned.empty() ) { 1868 std::ostringstream stream; 1869 if (found) { 1870 CandidateList winners = findMinCost( candidates ); 1871 stream << "Cannot choose between " << winners.size() << " alternatives for " 1872 "expression\n"; 1873 ast::print( stream, expr ); 1874 stream << " Alternatives are:\n"; 1875 print( stream, winners, 1 ); 1876 SemanticError( expr->location, stream.str() ); 1877 } 1878 else { 1879 stream << "No alternatives with satisfiable assertions for " << expr << "\n"; 1880 for ( const auto& err : errors ) { 1881 stream << err; 1882 } 1883 SemanticError( expr->location, stream.str() ); 1884 } 1885 } 1886 1887 auto oldsize = candidates.size(); 1888 candidates = std::move( pruned ); 1889 1890 PRINT( 1891 std::cerr << "there are " << oldsize << " alternatives before elimination" << std::endl; 1892 ) 1893 PRINT( 1894 std::cerr << "there are " << candidates.size() << " alternatives after elimination" 1895 << std::endl; 1896 ) 1897 } 1898 1899 // adjust types after pruning so that types substituted by pruneAlternatives are correctly 1900 // adjusted 1901 if ( mode.adjust ) { 1902 for ( CandidateRef & r : candidates ) { 1903 r->expr = ast::mutate_field( 1904 r->expr.get(), &ast::Expr::result, 1905 adjustExprType( r->expr->result, r->env, context.symtab ) ); 1906 } 1907 } 1908 1909 // Central location to handle gcc extension keyword, etc. for all expressions 1910 for ( CandidateRef & r : candidates ) { 1911 if ( r->expr->extension != expr->extension ) { 1912 r->expr.get_and_mutate()->extension = expr->extension; 1913 } 1914 } 1915 } 1916 1917 std::vector< CandidateFinder > CandidateFinder::findSubExprs( 1918 const std::vector< ast::ptr< ast::Expr > > & xs 1919 ) { 1920 std::vector< CandidateFinder > out; 1921 1922 for ( const auto & x : xs ) { 1923 out.emplace_back( context, env ); 1924 out.back().find( x, ResolvMode::withAdjustment() ); 1925 1926 PRINT( 1927 std::cerr << "findSubExprs" << std::endl; 1928 print( std::cerr, out.back().candidates ); 1929 ) 1930 } 1931 1932 return out; 1933 } 1934 57 1935 const ast::Expr * referenceToRvalueConversion( const ast::Expr * expr, Cost & cost ) { 58 1936 if ( expr->result.as< ast::ReferenceType >() ) { … … 64 1942 return expr; 65 1943 } 66 67 /// Unique identifier for matching expression resolutions to their requesting expression68 UniqueId globalResnSlot = 0;69 1944 70 1945 Cost computeConversionCost( … … 93 1968 } 94 1969 95 namespace {96 /// First index is which argument, second is which alternative, third is which exploded element97 using ExplodedArgs_new = std::deque< std::vector< ExplodedArg > >;98 99 /// Returns a list of alternatives with the minimum cost in the given list100 CandidateList findMinCost( const CandidateList & candidates ) {101 CandidateList out;102 Cost minCost = Cost::infinity;103 for ( const CandidateRef & r : candidates ) {104 if ( r->cost < minCost ) {105 minCost = r->cost;106 out.clear();107 out.emplace_back( r );108 } else if ( r->cost == minCost ) {109 out.emplace_back( r );110 }111 }112 return out;113 }114 115 /// Computes conversion cost for a given expression to a given type116 const ast::Expr * computeExpressionConversionCost(117 const ast::Expr * arg, const ast::Type * paramType, const ast::SymbolTable & symtab, const ast::TypeEnvironment & env, Cost & outCost118 ) {119 Cost convCost = computeConversionCost(120 arg->result, paramType, arg->get_lvalue(), symtab, env );121 outCost += convCost;122 123 // If there is a non-zero conversion cost, ignoring poly cost, then the expression requires124 // conversion. Ignore poly cost for now, since this requires resolution of the cast to125 // infer parameters and this does not currently work for the reason stated below126 Cost tmpCost = convCost;127 tmpCost.incPoly( -tmpCost.get_polyCost() );128 if ( tmpCost != Cost::zero ) {129 ast::ptr< ast::Type > newType = paramType;130 env.apply( newType );131 return new ast::CastExpr{ arg, newType };132 133 // xxx - *should* be able to resolve this cast, but at the moment pointers are not134 // castable to zero_t, but are implicitly convertible. This is clearly inconsistent,135 // once this is fixed it should be possible to resolve the cast.136 // xxx - this isn't working, it appears because type1 (parameter) is seen as widenable,137 // but it shouldn't be because this makes the conversion from DT* to DT* since138 // commontype(zero_t, DT*) is DT*, rather than nothing139 140 // CandidateFinder finder{ symtab, env };141 // finder.find( arg, ResolvMode::withAdjustment() );142 // assertf( finder.candidates.size() > 0,143 // "Somehow castable expression failed to find alternatives." );144 // assertf( finder.candidates.size() == 1,145 // "Somehow got multiple alternatives for known cast expression." );146 // return finder.candidates.front()->expr;147 }148 149 return arg;150 }151 152 /// Computes conversion cost for a given candidate153 Cost computeApplicationConversionCost(154 CandidateRef cand, const ast::SymbolTable & symtab155 ) {156 auto appExpr = cand->expr.strict_as< ast::ApplicationExpr >();157 auto pointer = appExpr->func->result.strict_as< ast::PointerType >();158 auto function = pointer->base.strict_as< ast::FunctionType >();159 160 Cost convCost = Cost::zero;161 const auto & params = function->params;162 auto param = params.begin();163 auto & args = appExpr->args;164 165 for ( unsigned i = 0; i < args.size(); ++i ) {166 const ast::Type * argType = args[i]->result;167 PRINT(168 std::cerr << "arg expression:" << std::endl;169 ast::print( std::cerr, args[i], 2 );170 std::cerr << "--- results are" << std::endl;171 ast::print( std::cerr, argType, 2 );172 )173 174 if ( param == params.end() ) {175 if ( function->isVarArgs ) {176 convCost.incUnsafe();177 PRINT( std::cerr << "end of params with varargs function: inc unsafe: "178 << convCost << std::endl; ; )179 // convert reference-typed expressions into value-typed expressions180 cand->expr = ast::mutate_field_index(181 appExpr, &ast::ApplicationExpr::args, i,182 referenceToRvalueConversion( args[i], convCost ) );183 continue;184 } else return Cost::infinity;185 }186 187 if ( auto def = args[i].as< ast::DefaultArgExpr >() ) {188 // Default arguments should be free - don't include conversion cost.189 // Unwrap them here because they are not relevant to the rest of the system190 cand->expr = ast::mutate_field_index(191 appExpr, &ast::ApplicationExpr::args, i, def->expr );192 ++param;193 continue;194 }195 196 // mark conversion cost and also specialization cost of param type197 // const ast::Type * paramType = (*param)->get_type();198 cand->expr = ast::mutate_field_index(199 appExpr, &ast::ApplicationExpr::args, i,200 computeExpressionConversionCost(201 args[i], *param, symtab, cand->env, convCost ) );202 convCost.decSpec( specCost( *param ) );203 ++param; // can't be in for-loop update because of the continue204 }205 206 if ( param != params.end() ) return Cost::infinity;207 208 // specialization cost of return types can't be accounted for directly, it disables209 // otherwise-identical calls, like this example based on auto-newline in the I/O lib:210 //211 // forall(otype OS) {212 // void ?|?(OS&, int); // with newline213 // OS& ?|?(OS&, int); // no newline, always chosen due to more specialization214 // }215 216 // mark type variable and specialization cost of forall clause217 convCost.incVar( function->forall.size() );218 convCost.decSpec( function->assertions.size() );219 220 return convCost;221 }222 223 void makeUnifiableVars(224 const ast::FunctionType * type, ast::OpenVarSet & unifiableVars,225 ast::AssertionSet & need226 ) {227 for ( auto & tyvar : type->forall ) {228 unifiableVars[ *tyvar ] = ast::TypeData{ tyvar->base };229 }230 for ( auto & assn : type->assertions ) {231 need[ assn ].isUsed = true;232 }233 }234 235 /// Gets a default value from an initializer, nullptr if not present236 const ast::ConstantExpr * getDefaultValue( const ast::Init * init ) {237 if ( auto si = dynamic_cast< const ast::SingleInit * >( init ) ) {238 if ( auto ce = si->value.as< ast::CastExpr >() ) {239 return ce->arg.as< ast::ConstantExpr >();240 } else {241 return si->value.as< ast::ConstantExpr >();242 }243 }244 return nullptr;245 }246 247 /// State to iteratively build a match of parameter expressions to arguments248 struct ArgPack {249 std::size_t parent; ///< Index of parent pack250 ast::ptr< ast::Expr > expr; ///< The argument stored here251 Cost cost; ///< The cost of this argument252 ast::TypeEnvironment env; ///< Environment for this pack253 ast::AssertionSet need; ///< Assertions outstanding for this pack254 ast::AssertionSet have; ///< Assertions found for this pack255 ast::OpenVarSet open; ///< Open variables for this pack256 unsigned nextArg; ///< Index of next argument in arguments list257 unsigned tupleStart; ///< Number of tuples that start at this index258 unsigned nextExpl; ///< Index of next exploded element259 unsigned explAlt; ///< Index of alternative for nextExpl > 0260 261 ArgPack()262 : parent( 0 ), expr(), cost( Cost::zero ), env(), need(), have(), open(), nextArg( 0 ),263 tupleStart( 0 ), nextExpl( 0 ), explAlt( 0 ) {}264 265 ArgPack(266 const ast::TypeEnvironment & env, const ast::AssertionSet & need,267 const ast::AssertionSet & have, const ast::OpenVarSet & open )268 : parent( 0 ), expr(), cost( Cost::zero ), env( env ), need( need ), have( have ),269 open( open ), nextArg( 0 ), tupleStart( 0 ), nextExpl( 0 ), explAlt( 0 ) {}270 271 ArgPack(272 std::size_t parent, const ast::Expr * expr, ast::TypeEnvironment && env,273 ast::AssertionSet && need, ast::AssertionSet && have, ast::OpenVarSet && open,274 unsigned nextArg, unsigned tupleStart = 0, Cost cost = Cost::zero,275 unsigned nextExpl = 0, unsigned explAlt = 0 )276 : parent(parent), expr( expr ), cost( cost ), env( std::move( env ) ), need( std::move( need ) ),277 have( std::move( have ) ), open( std::move( open ) ), nextArg( nextArg ), tupleStart( tupleStart ),278 nextExpl( nextExpl ), explAlt( explAlt ) {}279 280 ArgPack(281 const ArgPack & o, ast::TypeEnvironment && env, ast::AssertionSet && need,282 ast::AssertionSet && have, ast::OpenVarSet && open, unsigned nextArg, Cost added )283 : parent( o.parent ), expr( o.expr ), cost( o.cost + added ), env( std::move( env ) ),284 need( std::move( need ) ), have( std::move( have ) ), open( std::move( open ) ), nextArg( nextArg ),285 tupleStart( o.tupleStart ), nextExpl( 0 ), explAlt( 0 ) {}286 287 /// true if this pack is in the middle of an exploded argument288 bool hasExpl() const { return nextExpl > 0; }289 290 /// Gets the list of exploded candidates for this pack291 const ExplodedArg & getExpl( const ExplodedArgs_new & args ) const {292 return args[ nextArg-1 ][ explAlt ];293 }294 295 /// Ends a tuple expression, consolidating the appropriate args296 void endTuple( const std::vector< ArgPack > & packs ) {297 // add all expressions in tuple to list, summing cost298 std::deque< const ast::Expr * > exprs;299 const ArgPack * pack = this;300 if ( expr ) { exprs.emplace_front( expr ); }301 while ( pack->tupleStart == 0 ) {302 pack = &packs[pack->parent];303 exprs.emplace_front( pack->expr );304 cost += pack->cost;305 }306 // reset pack to appropriate tuple307 std::vector< ast::ptr< ast::Expr > > exprv( exprs.begin(), exprs.end() );308 expr = new ast::TupleExpr{ expr->location, std::move( exprv ) };309 tupleStart = pack->tupleStart - 1;310 parent = pack->parent;311 }312 };313 314 /// Instantiates an argument to match a parameter, returns false if no matching results left315 bool instantiateArgument(316 const ast::Type * paramType, const ast::Init * init, const ExplodedArgs_new & args,317 std::vector< ArgPack > & results, std::size_t & genStart, const ast::SymbolTable & symtab,318 unsigned nTuples = 0319 ) {320 if ( auto tupleType = dynamic_cast< const ast::TupleType * >( paramType ) ) {321 // paramType is a TupleType -- group args into a TupleExpr322 ++nTuples;323 for ( const ast::Type * type : *tupleType ) {324 // xxx - dropping initializer changes behaviour from previous, but seems correct325 // ^^^ need to handle the case where a tuple has a default argument326 if ( ! instantiateArgument(327 type, nullptr, args, results, genStart, symtab, nTuples ) ) return false;328 nTuples = 0;329 }330 // re-constitute tuples for final generation331 for ( auto i = genStart; i < results.size(); ++i ) {332 results[i].endTuple( results );333 }334 return true;335 } else if ( const ast::TypeInstType * ttype = Tuples::isTtype( paramType ) ) {336 // paramType is a ttype, consumes all remaining arguments337 338 // completed tuples; will be spliced to end of results to finish339 std::vector< ArgPack > finalResults{};340 341 // iterate until all results completed342 std::size_t genEnd;343 ++nTuples;344 do {345 genEnd = results.size();346 347 // add another argument to results348 for ( std::size_t i = genStart; i < genEnd; ++i ) {349 unsigned nextArg = results[i].nextArg;350 351 // use next element of exploded tuple if present352 if ( results[i].hasExpl() ) {353 const ExplodedArg & expl = results[i].getExpl( args );354 355 unsigned nextExpl = results[i].nextExpl + 1;356 if ( nextExpl == expl.exprs.size() ) { nextExpl = 0; }357 358 results.emplace_back(359 i, expl.exprs[ results[i].nextExpl ], copy( results[i].env ),360 copy( results[i].need ), copy( results[i].have ),361 copy( results[i].open ), nextArg, nTuples, Cost::zero, nextExpl,362 results[i].explAlt );363 364 continue;365 }366 367 // finish result when out of arguments368 if ( nextArg >= args.size() ) {369 ArgPack newResult{370 results[i].env, results[i].need, results[i].have, results[i].open };371 newResult.nextArg = nextArg;372 const ast::Type * argType = nullptr;373 374 if ( nTuples > 0 || ! results[i].expr ) {375 // first iteration or no expression to clone,376 // push empty tuple expression377 newResult.parent = i;378 newResult.expr = new ast::TupleExpr{ CodeLocation{}, {} };379 argType = newResult.expr->result;380 } else {381 // clone result to collect tuple382 newResult.parent = results[i].parent;383 newResult.cost = results[i].cost;384 newResult.tupleStart = results[i].tupleStart;385 newResult.expr = results[i].expr;386 argType = newResult.expr->result;387 388 if ( results[i].tupleStart > 0 && Tuples::isTtype( argType ) ) {389 // the case where a ttype value is passed directly is special,390 // e.g. for argument forwarding purposes391 // xxx - what if passing multiple arguments, last of which is392 // ttype?393 // xxx - what would happen if unify was changed so that unifying394 // tuple395 // types flattened both before unifying lists? then pass in396 // TupleType (ttype) below.397 --newResult.tupleStart;398 } else {399 // collapse leftover arguments into tuple400 newResult.endTuple( results );401 argType = newResult.expr->result;402 }403 }404 405 // check unification for ttype before adding to final406 if (407 unify(408 ttype, argType, newResult.env, newResult.need, newResult.have,409 newResult.open, symtab )410 ) {411 finalResults.emplace_back( std::move( newResult ) );412 }413 414 continue;415 }416 417 // add each possible next argument418 for ( std::size_t j = 0; j < args[nextArg].size(); ++j ) {419 const ExplodedArg & expl = args[nextArg][j];420 421 // fresh copies of parent parameters for this iteration422 ast::TypeEnvironment env = results[i].env;423 ast::OpenVarSet open = results[i].open;424 425 env.addActual( expl.env, open );426 427 // skip empty tuple arguments by (nearly) cloning parent into next gen428 if ( expl.exprs.empty() ) {429 results.emplace_back(430 results[i], std::move( env ), copy( results[i].need ),431 copy( results[i].have ), std::move( open ), nextArg + 1, expl.cost );432 433 continue;434 }435 436 // add new result437 results.emplace_back(438 i, expl.exprs.front(), std::move( env ), copy( results[i].need ),439 copy( results[i].have ), std::move( open ), nextArg + 1, nTuples,440 expl.cost, expl.exprs.size() == 1 ? 0 : 1, j );441 }442 }443 444 // reset for next round445 genStart = genEnd;446 nTuples = 0;447 } while ( genEnd != results.size() );448 449 // splice final results onto results450 for ( std::size_t i = 0; i < finalResults.size(); ++i ) {451 results.emplace_back( std::move( finalResults[i] ) );452 }453 return ! finalResults.empty();454 }455 456 // iterate each current subresult457 std::size_t genEnd = results.size();458 for ( std::size_t i = genStart; i < genEnd; ++i ) {459 unsigned nextArg = results[i].nextArg;460 461 // use remainder of exploded tuple if present462 if ( results[i].hasExpl() ) {463 const ExplodedArg & expl = results[i].getExpl( args );464 const ast::Expr * expr = expl.exprs[ results[i].nextExpl ];465 466 ast::TypeEnvironment env = results[i].env;467 ast::AssertionSet need = results[i].need, have = results[i].have;468 ast::OpenVarSet open = results[i].open;469 470 const ast::Type * argType = expr->result;471 472 PRINT(473 std::cerr << "param type is ";474 ast::print( std::cerr, paramType );475 std::cerr << std::endl << "arg type is ";476 ast::print( std::cerr, argType );477 std::cerr << std::endl;478 )479 480 if ( unify( paramType, argType, env, need, have, open, symtab ) ) {481 unsigned nextExpl = results[i].nextExpl + 1;482 if ( nextExpl == expl.exprs.size() ) { nextExpl = 0; }483 484 results.emplace_back(485 i, expr, std::move( env ), std::move( need ), std::move( have ), std::move( open ), nextArg,486 nTuples, Cost::zero, nextExpl, results[i].explAlt );487 }488 489 continue;490 }491 492 // use default initializers if out of arguments493 if ( nextArg >= args.size() ) {494 if ( const ast::ConstantExpr * cnst = getDefaultValue( init ) ) {495 ast::TypeEnvironment env = results[i].env;496 ast::AssertionSet need = results[i].need, have = results[i].have;497 ast::OpenVarSet open = results[i].open;498 499 if ( unify( paramType, cnst->result, env, need, have, open, symtab ) ) {500 results.emplace_back(501 i, new ast::DefaultArgExpr{ cnst->location, cnst }, std::move( env ),502 std::move( need ), std::move( have ), std::move( open ), nextArg, nTuples );503 }504 }505 506 continue;507 }508 509 // Check each possible next argument510 for ( std::size_t j = 0; j < args[nextArg].size(); ++j ) {511 const ExplodedArg & expl = args[nextArg][j];512 513 // fresh copies of parent parameters for this iteration514 ast::TypeEnvironment env = results[i].env;515 ast::AssertionSet need = results[i].need, have = results[i].have;516 ast::OpenVarSet open = results[i].open;517 518 env.addActual( expl.env, open );519 520 // skip empty tuple arguments by (nearly) cloning parent into next gen521 if ( expl.exprs.empty() ) {522 results.emplace_back(523 results[i], std::move( env ), std::move( need ), std::move( have ), std::move( open ),524 nextArg + 1, expl.cost );525 526 continue;527 }528 529 // consider only first exploded arg530 const ast::Expr * expr = expl.exprs.front();531 const ast::Type * argType = expr->result;532 533 PRINT(534 std::cerr << "param type is ";535 ast::print( std::cerr, paramType );536 std::cerr << std::endl << "arg type is ";537 ast::print( std::cerr, argType );538 std::cerr << std::endl;539 )540 541 // attempt to unify types542 if ( unify( paramType, argType, env, need, have, open, symtab ) ) {543 // add new result544 results.emplace_back(545 i, expr, std::move( env ), std::move( need ), std::move( have ), std::move( open ),546 nextArg + 1, nTuples, expl.cost, expl.exprs.size() == 1 ? 0 : 1, j );547 }548 }549 }550 551 // reset for next parameter552 genStart = genEnd;553 554 return genEnd != results.size(); // were any new results added?555 }556 557 /// Generate a cast expression from `arg` to `toType`558 const ast::Expr * restructureCast(559 ast::ptr< ast::Expr > & arg, const ast::Type * toType, ast::GeneratedFlag isGenerated = ast::GeneratedCast560 ) {561 if (562 arg->result->size() > 1563 && ! toType->isVoid()564 && ! dynamic_cast< const ast::ReferenceType * >( toType )565 ) {566 // Argument is a tuple and the target type is neither void nor a reference. Cast each567 // member of the tuple to its corresponding target type, producing the tuple of those568 // cast expressions. If there are more components of the tuple than components in the569 // target type, then excess components do not come out in the result expression (but570 // UniqueExpr ensures that the side effects will still be produced)571 if ( Tuples::maybeImpureIgnoreUnique( arg ) ) {572 // expressions which may contain side effects require a single unique instance of573 // the expression574 arg = new ast::UniqueExpr{ arg->location, arg };575 }576 std::vector< ast::ptr< ast::Expr > > components;577 for ( unsigned i = 0; i < toType->size(); ++i ) {578 // cast each component579 ast::ptr< ast::Expr > idx = new ast::TupleIndexExpr{ arg->location, arg, i };580 components.emplace_back(581 restructureCast( idx, toType->getComponent( i ), isGenerated ) );582 }583 return new ast::TupleExpr{ arg->location, std::move( components ) };584 } else {585 // handle normally586 return new ast::CastExpr{ arg->location, arg, toType, isGenerated };587 }588 }589 590 /// Gets the name from an untyped member expression (must be NameExpr)591 const std::string & getMemberName( const ast::UntypedMemberExpr * memberExpr ) {592 if ( memberExpr->member.as< ast::ConstantExpr >() ) {593 SemanticError( memberExpr, "Indexed access to struct fields unsupported: " );594 }595 596 return memberExpr->member.strict_as< ast::NameExpr >()->name;597 }598 599 /// Actually visits expressions to find their candidate interpretations600 class Finder final : public ast::WithShortCircuiting {601 const ResolveContext & context;602 const ast::SymbolTable & symtab;603 public:604 // static size_t traceId;605 CandidateFinder & selfFinder;606 CandidateList & candidates;607 const ast::TypeEnvironment & tenv;608 ast::ptr< ast::Type > & targetType;609 610 enum Errors {611 NotFound,612 NoMatch,613 ArgsToFew,614 ArgsToMany,615 RetsToFew,616 RetsToMany,617 NoReason618 };619 620 struct {621 Errors code = NotFound;622 } reason;623 624 Finder( CandidateFinder & f )625 : context( f.context ), symtab( context.symtab ), selfFinder( f ),626 candidates( f.candidates ), tenv( f.env ), targetType( f.targetType ) {}627 628 void previsit( const ast::Node * ) { visit_children = false; }629 630 /// Convenience to add candidate to list631 template<typename... Args>632 void addCandidate( Args &&... args ) {633 candidates.emplace_back( new Candidate{ std::forward<Args>( args )... } );634 reason.code = NoReason;635 }636 637 void postvisit( const ast::ApplicationExpr * applicationExpr ) {638 addCandidate( applicationExpr, tenv );639 }640 641 /// Set up candidate assertions for inference642 void inferParameters( CandidateRef & newCand, CandidateList & out ) {643 // Set need bindings for any unbound assertions644 UniqueId crntResnSlot = 0; // matching ID for this expression's assertions645 for ( auto & assn : newCand->need ) {646 // skip already-matched assertions647 if ( assn.second.resnSlot != 0 ) continue;648 // assign slot for expression if needed649 if ( crntResnSlot == 0 ) { crntResnSlot = ++globalResnSlot; }650 // fix slot to assertion651 assn.second.resnSlot = crntResnSlot;652 }653 // pair slot to expression654 if ( crntResnSlot != 0 ) {655 newCand->expr.get_and_mutate()->inferred.resnSlots().emplace_back( crntResnSlot );656 }657 658 // add to output list; assertion satisfaction will occur later659 out.emplace_back( newCand );660 }661 662 /// Completes a function candidate with arguments located663 void validateFunctionCandidate(664 const CandidateRef & func, ArgPack & result, const std::vector< ArgPack > & results,665 CandidateList & out666 ) {667 ast::ApplicationExpr * appExpr =668 new ast::ApplicationExpr{ func->expr->location, func->expr };669 // sum cost and accumulate arguments670 std::deque< const ast::Expr * > args;671 Cost cost = func->cost;672 const ArgPack * pack = &result;673 while ( pack->expr ) {674 args.emplace_front( pack->expr );675 cost += pack->cost;676 pack = &results[pack->parent];677 }678 std::vector< ast::ptr< ast::Expr > > vargs( args.begin(), args.end() );679 appExpr->args = std::move( vargs );680 // build and validate new candidate681 auto newCand =682 std::make_shared<Candidate>( appExpr, result.env, result.open, result.need, cost );683 PRINT(684 std::cerr << "instantiate function success: " << appExpr << std::endl;685 std::cerr << "need assertions:" << std::endl;686 ast::print( std::cerr, result.need, 2 );687 )688 inferParameters( newCand, out );689 }690 691 /// Builds a list of candidates for a function, storing them in out692 void makeFunctionCandidates(693 const CandidateRef & func, const ast::FunctionType * funcType,694 const ExplodedArgs_new & args, CandidateList & out695 ) {696 ast::OpenVarSet funcOpen;697 ast::AssertionSet funcNeed, funcHave;698 ast::TypeEnvironment funcEnv{ func->env };699 makeUnifiableVars( funcType, funcOpen, funcNeed );700 // add all type variables as open variables now so that those not used in the701 // parameter list are still considered open702 funcEnv.add( funcType->forall );703 704 if ( targetType && ! targetType->isVoid() && ! funcType->returns.empty() ) {705 // attempt to narrow based on expected target type706 const ast::Type * returnType = funcType->returns.front();707 if ( ! unify(708 returnType, targetType, funcEnv, funcNeed, funcHave, funcOpen, symtab )709 ) {710 // unification failed, do not pursue this candidate711 return;712 }713 }714 715 // iteratively build matches, one parameter at a time716 std::vector< ArgPack > results;717 results.emplace_back( funcEnv, funcNeed, funcHave, funcOpen );718 std::size_t genStart = 0;719 720 // xxx - how to handle default arg after change to ftype representation?721 if (const ast::VariableExpr * varExpr = func->expr.as<ast::VariableExpr>()) {722 if (const ast::FunctionDecl * funcDecl = varExpr->var.as<ast::FunctionDecl>()) {723 // function may have default args only if directly calling by name724 // must use types on candidate however, due to RenameVars substitution725 auto nParams = funcType->params.size();726 727 for (size_t i=0; i<nParams; ++i) {728 auto obj = funcDecl->params[i].strict_as<ast::ObjectDecl>();729 if (!instantiateArgument(730 funcType->params[i], obj->init, args, results, genStart, symtab)) return;731 }732 goto endMatch;733 }734 }735 for ( const auto & param : funcType->params ) {736 // Try adding the arguments corresponding to the current parameter to the existing737 // matches738 // no default args for indirect calls739 if ( ! instantiateArgument(740 param, nullptr, args, results, genStart, symtab ) ) return;741 }742 743 endMatch:744 if ( funcType->isVarArgs ) {745 // append any unused arguments to vararg pack746 std::size_t genEnd;747 do {748 genEnd = results.size();749 750 // iterate results751 for ( std::size_t i = genStart; i < genEnd; ++i ) {752 unsigned nextArg = results[i].nextArg;753 754 // use remainder of exploded tuple if present755 if ( results[i].hasExpl() ) {756 const ExplodedArg & expl = results[i].getExpl( args );757 758 unsigned nextExpl = results[i].nextExpl + 1;759 if ( nextExpl == expl.exprs.size() ) { nextExpl = 0; }760 761 results.emplace_back(762 i, expl.exprs[ results[i].nextExpl ], copy( results[i].env ),763 copy( results[i].need ), copy( results[i].have ),764 copy( results[i].open ), nextArg, 0, Cost::zero, nextExpl,765 results[i].explAlt );766 767 continue;768 }769 770 // finish result when out of arguments771 if ( nextArg >= args.size() ) {772 validateFunctionCandidate( func, results[i], results, out );773 774 continue;775 }776 777 // add each possible next argument778 for ( std::size_t j = 0; j < args[nextArg].size(); ++j ) {779 const ExplodedArg & expl = args[nextArg][j];780 781 // fresh copies of parent parameters for this iteration782 ast::TypeEnvironment env = results[i].env;783 ast::OpenVarSet open = results[i].open;784 785 env.addActual( expl.env, open );786 787 // skip empty tuple arguments by (nearly) cloning parent into next gen788 if ( expl.exprs.empty() ) {789 results.emplace_back(790 results[i], std::move( env ), copy( results[i].need ),791 copy( results[i].have ), std::move( open ), nextArg + 1,792 expl.cost );793 794 continue;795 }796 797 // add new result798 results.emplace_back(799 i, expl.exprs.front(), std::move( env ), copy( results[i].need ),800 copy( results[i].have ), std::move( open ), nextArg + 1, 0, expl.cost,801 expl.exprs.size() == 1 ? 0 : 1, j );802 }803 }804 805 genStart = genEnd;806 } while( genEnd != results.size() );807 } else {808 // filter out the results that don't use all the arguments809 for ( std::size_t i = genStart; i < results.size(); ++i ) {810 ArgPack & result = results[i];811 if ( ! result.hasExpl() && result.nextArg >= args.size() ) {812 validateFunctionCandidate( func, result, results, out );813 }814 }815 }816 }817 818 /// Adds implicit struct-conversions to the alternative list819 void addAnonConversions( const CandidateRef & cand ) {820 // adds anonymous member interpretations whenever an aggregate value type is seen.821 // it's okay for the aggregate expression to have reference type -- cast it to the822 // base type to treat the aggregate as the referenced value823 ast::ptr< ast::Expr > aggrExpr( cand->expr );824 ast::ptr< ast::Type > & aggrType = aggrExpr.get_and_mutate()->result;825 cand->env.apply( aggrType );826 827 if ( aggrType.as< ast::ReferenceType >() ) {828 aggrExpr = new ast::CastExpr{ aggrExpr, aggrType->stripReferences() };829 }830 831 if ( auto structInst = aggrExpr->result.as< ast::StructInstType >() ) {832 addAggMembers( structInst, aggrExpr, *cand, Cost::safe, "" );833 } else if ( auto unionInst = aggrExpr->result.as< ast::UnionInstType >() ) {834 addAggMembers( unionInst, aggrExpr, *cand, Cost::safe, "" );835 }836 }837 838 /// Adds aggregate member interpretations839 void addAggMembers(840 const ast::BaseInstType * aggrInst, const ast::Expr * expr,841 const Candidate & cand, const Cost & addedCost, const std::string & name842 ) {843 for ( const ast::Decl * decl : aggrInst->lookup( name ) ) {844 auto dwt = strict_dynamic_cast< const ast::DeclWithType * >( decl );845 CandidateRef newCand = std::make_shared<Candidate>(846 cand, new ast::MemberExpr{ expr->location, dwt, expr }, addedCost );847 // add anonymous member interpretations whenever an aggregate value type is seen848 // as a member expression849 addAnonConversions( newCand );850 candidates.emplace_back( std::move( newCand ) );851 }852 }853 854 /// Adds tuple member interpretations855 void addTupleMembers(856 const ast::TupleType * tupleType, const ast::Expr * expr, const Candidate & cand,857 const Cost & addedCost, const ast::Expr * member858 ) {859 if ( auto constantExpr = dynamic_cast< const ast::ConstantExpr * >( member ) ) {860 // get the value of the constant expression as an int, must be between 0 and the861 // length of the tuple to have meaning862 long long val = constantExpr->intValue();863 if ( val >= 0 && (unsigned long long)val < tupleType->size() ) {864 addCandidate(865 cand, new ast::TupleIndexExpr{ expr->location, expr, (unsigned)val },866 addedCost );867 }868 }869 }870 871 void postvisit( const ast::UntypedExpr * untypedExpr ) {872 std::vector< CandidateFinder > argCandidates =873 selfFinder.findSubExprs( untypedExpr->args );874 875 // take care of possible tuple assignments876 // if not tuple assignment, handled as normal function call877 Tuples::handleTupleAssignment( selfFinder, untypedExpr, argCandidates );878 879 CandidateFinder funcFinder( context, tenv );880 if (auto nameExpr = untypedExpr->func.as<ast::NameExpr>()) {881 auto kind = ast::SymbolTable::getSpecialFunctionKind(nameExpr->name);882 if (kind != ast::SymbolTable::SpecialFunctionKind::NUMBER_OF_KINDS) {883 assertf(!argCandidates.empty(), "special function call without argument");884 for (auto & firstArgCand: argCandidates[0]) {885 ast::ptr<ast::Type> argType = firstArgCand->expr->result;886 firstArgCand->env.apply(argType);887 // strip references888 // xxx - is this correct?889 while (argType.as<ast::ReferenceType>()) argType = argType.as<ast::ReferenceType>()->base;890 891 // convert 1-tuple to plain type892 if (auto tuple = argType.as<ast::TupleType>()) {893 if (tuple->size() == 1) {894 argType = tuple->types[0];895 }896 }897 898 // if argType is an unbound type parameter, all special functions need to be searched.899 if (isUnboundType(argType)) {900 funcFinder.otypeKeys.clear();901 break;902 }903 904 if (argType.as<ast::PointerType>()) funcFinder.otypeKeys.insert(Mangle::Encoding::pointer);905 // else if (const ast::EnumInstType * enumInst = argType.as<ast::EnumInstType>()) {906 // const ast::EnumDecl * enumDecl = enumInst->base; // Here907 // if ( const ast::Type* enumType = enumDecl->base ) {908 // // instance of enum (T) is a instance of type (T)909 // funcFinder.otypeKeys.insert(Mangle::mangle(enumType, Mangle::NoGenericParams | Mangle::Type));910 // } else {911 // // instance of an untyped enum is techically int912 // funcFinder.otypeKeys.insert(Mangle::mangle(enumDecl, Mangle::NoGenericParams | Mangle::Type));913 // }914 // }915 else funcFinder.otypeKeys.insert(Mangle::mangle(argType, Mangle::NoGenericParams | Mangle::Type));916 }917 }918 }919 // if candidates are already produced, do not fail920 // xxx - is it possible that handleTupleAssignment and main finder both produce candidates?921 // this means there exists ctor/assign functions with a tuple as first parameter.922 ResolvMode mode = {923 true, // adjust924 !untypedExpr->func.as<ast::NameExpr>(), // prune if not calling by name925 selfFinder.candidates.empty() // failfast if other options are not found926 };927 funcFinder.find( untypedExpr->func, mode );928 // short-circuit if no candidates929 // if ( funcFinder.candidates.empty() ) return;930 931 reason.code = NoMatch;932 933 // find function operators934 ast::ptr< ast::Expr > opExpr = new ast::NameExpr{ untypedExpr->location, "?()" }; // ??? why not ?{}935 CandidateFinder opFinder( context, tenv );936 // okay if there aren't any function operations937 opFinder.find( opExpr, ResolvMode::withoutFailFast() );938 PRINT(939 std::cerr << "known function ops:" << std::endl;940 print( std::cerr, opFinder.candidates, 1 );941 )942 943 // pre-explode arguments944 ExplodedArgs_new argExpansions;945 for ( const CandidateFinder & args : argCandidates ) {946 argExpansions.emplace_back();947 auto & argE = argExpansions.back();948 for ( const CandidateRef & arg : args ) { argE.emplace_back( *arg, symtab ); }949 }950 951 // Find function matches952 CandidateList found;953 SemanticErrorException errors;954 for ( CandidateRef & func : funcFinder ) {955 try {956 PRINT(957 std::cerr << "working on alternative:" << std::endl;958 print( std::cerr, *func, 2 );959 )960 961 // check if the type is a pointer to function962 const ast::Type * funcResult = func->expr->result->stripReferences();963 if ( auto pointer = dynamic_cast< const ast::PointerType * >( funcResult ) ) {964 if ( auto function = pointer->base.as< ast::FunctionType >() ) {965 CandidateRef newFunc{ new Candidate{ *func } };966 newFunc->expr =967 referenceToRvalueConversion( newFunc->expr, newFunc->cost );968 makeFunctionCandidates( newFunc, function, argExpansions, found );969 }970 } else if (971 auto inst = dynamic_cast< const ast::TypeInstType * >( funcResult )972 ) {973 if ( const ast::EqvClass * clz = func->env.lookup( *inst ) ) {974 if ( auto function = clz->bound.as< ast::FunctionType >() ) {975 CandidateRef newFunc{ new Candidate{ *func } };976 newFunc->expr =977 referenceToRvalueConversion( newFunc->expr, newFunc->cost );978 makeFunctionCandidates( newFunc, function, argExpansions, found );979 }980 }981 }982 } catch ( SemanticErrorException & e ) { errors.append( e ); }983 }984 985 // Find matches on function operators `?()`986 if ( ! opFinder.candidates.empty() ) {987 // add exploded function alternatives to front of argument list988 std::vector< ExplodedArg > funcE;989 funcE.reserve( funcFinder.candidates.size() );990 for ( const CandidateRef & func : funcFinder ) {991 funcE.emplace_back( *func, symtab );992 }993 argExpansions.emplace_front( std::move( funcE ) );994 995 for ( const CandidateRef & op : opFinder ) {996 try {997 // check if type is pointer-to-function998 const ast::Type * opResult = op->expr->result->stripReferences();999 if ( auto pointer = dynamic_cast< const ast::PointerType * >( opResult ) ) {1000 if ( auto function = pointer->base.as< ast::FunctionType >() ) {1001 CandidateRef newOp{ new Candidate{ *op} };1002 newOp->expr =1003 referenceToRvalueConversion( newOp->expr, newOp->cost );1004 makeFunctionCandidates( newOp, function, argExpansions, found );1005 }1006 }1007 } catch ( SemanticErrorException & e ) { errors.append( e ); }1008 }1009 }1010 1011 // Implement SFINAE; resolution errors are only errors if there aren't any non-error1012 // candidates1013 if ( found.empty() && ! errors.isEmpty() ) { throw errors; }1014 1015 // Compute conversion costs1016 for ( CandidateRef & withFunc : found ) {1017 Cost cvtCost = computeApplicationConversionCost( withFunc, symtab );1018 1019 PRINT(1020 auto appExpr = withFunc->expr.strict_as< ast::ApplicationExpr >();1021 auto pointer = appExpr->func->result.strict_as< ast::PointerType >();1022 auto function = pointer->base.strict_as< ast::FunctionType >();1023 1024 std::cerr << "Case +++++++++++++ " << appExpr->func << std::endl;1025 std::cerr << "parameters are:" << std::endl;1026 ast::printAll( std::cerr, function->params, 2 );1027 std::cerr << "arguments are:" << std::endl;1028 ast::printAll( std::cerr, appExpr->args, 2 );1029 std::cerr << "bindings are:" << std::endl;1030 ast::print( std::cerr, withFunc->env, 2 );1031 std::cerr << "cost is: " << withFunc->cost << std::endl;1032 std::cerr << "cost of conversion is:" << cvtCost << std::endl;1033 )1034 1035 if ( cvtCost != Cost::infinity ) {1036 withFunc->cvtCost = cvtCost;1037 candidates.emplace_back( std::move( withFunc ) );1038 }1039 }1040 found = std::move( candidates );1041 1042 // use a new list so that candidates are not examined by addAnonConversions twice1043 CandidateList winners = findMinCost( found );1044 promoteCvtCost( winners );1045 1046 // function may return a struct/union value, in which case we need to add candidates1047 // for implicit conversions to each of the anonymous members, which must happen after1048 // `findMinCost`, since anon conversions are never the cheapest1049 for ( const CandidateRef & c : winners ) {1050 addAnonConversions( c );1051 }1052 spliceBegin( candidates, winners );1053 1054 if ( candidates.empty() && targetType && ! targetType->isVoid() ) {1055 // If resolution is unsuccessful with a target type, try again without, since it1056 // will sometimes succeed when it wouldn't with a target type binding.1057 // For example:1058 // forall( otype T ) T & ?[]( T *, ptrdiff_t );1059 // const char * x = "hello world";1060 // unsigned char ch = x[0];1061 // Fails with simple return type binding (xxx -- check this!) as follows:1062 // * T is bound to unsigned char1063 // * (x: const char *) is unified with unsigned char *, which fails1064 // xxx -- fix this better1065 targetType = nullptr;1066 postvisit( untypedExpr );1067 }1068 }1069 1070 /// true if expression is an lvalue1071 static bool isLvalue( const ast::Expr * x ) {1072 return x->result && ( x->get_lvalue() || x->result.as< ast::ReferenceType >() );1073 }1074 1075 void postvisit( const ast::AddressExpr * addressExpr ) {1076 CandidateFinder finder( context, tenv );1077 finder.find( addressExpr->arg );1078 1079 if( finder.candidates.empty() ) return;1080 1081 reason.code = NoMatch;1082 1083 for ( CandidateRef & r : finder.candidates ) {1084 if ( ! isLvalue( r->expr ) ) continue;1085 addCandidate( *r, new ast::AddressExpr{ addressExpr->location, r->expr } );1086 }1087 }1088 1089 void postvisit( const ast::LabelAddressExpr * labelExpr ) {1090 addCandidate( labelExpr, tenv );1091 }1092 1093 void postvisit( const ast::CastExpr * castExpr ) {1094 ast::ptr< ast::Type > toType = castExpr->result;1095 assert( toType );1096 toType = resolveTypeof( toType, context );1097 toType = adjustExprType( toType, tenv, symtab );1098 1099 CandidateFinder finder( context, tenv, toType );1100 finder.find( castExpr->arg, ResolvMode::withAdjustment() );1101 1102 if( !finder.candidates.empty() ) reason.code = NoMatch;1103 1104 CandidateList matches;1105 for ( CandidateRef & cand : finder.candidates ) {1106 ast::AssertionSet need( cand->need.begin(), cand->need.end() ), have;1107 ast::OpenVarSet open( cand->open );1108 1109 cand->env.extractOpenVars( open );1110 1111 // It is possible that a cast can throw away some values in a multiply-valued1112 // expression, e.g. cast-to-void, one value to zero. Figure out the prefix of the1113 // subexpression results that are cast directly. The candidate is invalid if it1114 // has fewer results than there are types to cast to.1115 int discardedValues = cand->expr->result->size() - toType->size();1116 if ( discardedValues < 0 ) continue;1117 1118 // unification run for side-effects1119 unify( toType, cand->expr->result, cand->env, need, have, open, symtab );1120 Cost thisCost =1121 (castExpr->isGenerated == ast::GeneratedFlag::GeneratedCast)1122 ? conversionCost( cand->expr->result, toType, cand->expr->get_lvalue(), symtab, cand->env )1123 : castCost( cand->expr->result, toType, cand->expr->get_lvalue(), symtab, cand->env );1124 1125 PRINT(1126 std::cerr << "working on cast with result: " << toType << std::endl;1127 std::cerr << "and expr type: " << cand->expr->result << std::endl;1128 std::cerr << "env: " << cand->env << std::endl;1129 )1130 if ( thisCost != Cost::infinity ) {1131 PRINT(1132 std::cerr << "has finite cost." << std::endl;1133 )1134 // count one safe conversion for each value that is thrown away1135 thisCost.incSafe( discardedValues );1136 CandidateRef newCand = std::make_shared<Candidate>(1137 restructureCast( cand->expr, toType, castExpr->isGenerated ),1138 copy( cand->env ), std::move( open ), std::move( need ), cand->cost,1139 cand->cost + thisCost );1140 inferParameters( newCand, matches );1141 }1142 }1143 1144 // select first on argument cost, then conversion cost1145 CandidateList minArgCost = findMinCost( matches );1146 promoteCvtCost( minArgCost );1147 candidates = findMinCost( minArgCost );1148 }1149 1150 void postvisit( const ast::VirtualCastExpr * castExpr ) {1151 assertf( castExpr->result, "Implicit virtual cast targets not yet supported." );1152 CandidateFinder finder( context, tenv );1153 // don't prune here, all alternatives guaranteed to have same type1154 finder.find( castExpr->arg, ResolvMode::withoutPrune() );1155 for ( CandidateRef & r : finder.candidates ) {1156 addCandidate(1157 *r,1158 new ast::VirtualCastExpr{ castExpr->location, r->expr, castExpr->result } );1159 }1160 }1161 1162 void postvisit( const ast::KeywordCastExpr * castExpr ) {1163 const auto & loc = castExpr->location;1164 assertf( castExpr->result, "Cast target should have been set in Validate." );1165 auto ref = castExpr->result.strict_as<ast::ReferenceType>();1166 auto inst = ref->base.strict_as<ast::StructInstType>();1167 auto target = inst->base.get();1168 1169 CandidateFinder finder( context, tenv );1170 1171 auto pick_alternatives = [target, this](CandidateList & found, bool expect_ref) {1172 for(auto & cand : found) {1173 const ast::Type * expr = cand->expr->result.get();1174 if(expect_ref) {1175 auto res = dynamic_cast<const ast::ReferenceType*>(expr);1176 if(!res) { continue; }1177 expr = res->base.get();1178 }1179 1180 if(auto insttype = dynamic_cast<const ast::TypeInstType*>(expr)) {1181 auto td = cand->env.lookup(*insttype);1182 if(!td) { continue; }1183 expr = td->bound.get();1184 }1185 1186 if(auto base = dynamic_cast<const ast::StructInstType*>(expr)) {1187 if(base->base == target) {1188 candidates.push_back( std::move(cand) );1189 reason.code = NoReason;1190 }1191 }1192 }1193 };1194 1195 try {1196 // Attempt 1 : turn (thread&)X into (thread$&)X.__thrd1197 // Clone is purely for memory management1198 std::unique_ptr<const ast::Expr> tech1 { new ast::UntypedMemberExpr(loc, new ast::NameExpr(loc, castExpr->concrete_target.field), castExpr->arg) };1199 1200 // don't prune here, since it's guaranteed all alternatives will have the same type1201 finder.find( tech1.get(), ResolvMode::withoutPrune() );1202 pick_alternatives(finder.candidates, false);1203 1204 return;1205 } catch(SemanticErrorException & ) {}1206 1207 // Fallback : turn (thread&)X into (thread$&)get_thread(X)1208 std::unique_ptr<const ast::Expr> fallback { ast::UntypedExpr::createDeref(loc, new ast::UntypedExpr(loc, new ast::NameExpr(loc, castExpr->concrete_target.getter), { castExpr->arg })) };1209 // don't prune here, since it's guaranteed all alternatives will have the same type1210 finder.find( fallback.get(), ResolvMode::withoutPrune() );1211 1212 pick_alternatives(finder.candidates, true);1213 1214 // Whatever happens here, we have no more fallbacks1215 }1216 1217 void postvisit( const ast::UntypedMemberExpr * memberExpr ) {1218 CandidateFinder aggFinder( context, tenv );1219 aggFinder.find( memberExpr->aggregate, ResolvMode::withAdjustment() );1220 for ( CandidateRef & agg : aggFinder.candidates ) {1221 // it's okay for the aggregate expression to have reference type -- cast it to the1222 // base type to treat the aggregate as the referenced value1223 Cost addedCost = Cost::zero;1224 agg->expr = referenceToRvalueConversion( agg->expr, addedCost );1225 1226 // find member of the given type1227 if ( auto structInst = agg->expr->result.as< ast::StructInstType >() ) {1228 addAggMembers(1229 structInst, agg->expr, *agg, addedCost, getMemberName( memberExpr ) );1230 } else if ( auto unionInst = agg->expr->result.as< ast::UnionInstType >() ) {1231 addAggMembers(1232 unionInst, agg->expr, *agg, addedCost, getMemberName( memberExpr ) );1233 } else if ( auto tupleType = agg->expr->result.as< ast::TupleType >() ) {1234 addTupleMembers( tupleType, agg->expr, *agg, addedCost, memberExpr->member );1235 }1236 }1237 }1238 1239 void postvisit( const ast::MemberExpr * memberExpr ) {1240 addCandidate( memberExpr, tenv );1241 }1242 1243 void postvisit( const ast::NameExpr * nameExpr ) {1244 std::vector< ast::SymbolTable::IdData > declList;1245 if (!selfFinder.otypeKeys.empty()) {1246 auto kind = ast::SymbolTable::getSpecialFunctionKind(nameExpr->name);1247 assertf(kind != ast::SymbolTable::SpecialFunctionKind::NUMBER_OF_KINDS, "special lookup with non-special target: %s", nameExpr->name.c_str());1248 1249 for (auto & otypeKey: selfFinder.otypeKeys) {1250 auto result = symtab.specialLookupId(kind, otypeKey);1251 declList.insert(declList.end(), std::make_move_iterator(result.begin()), std::make_move_iterator(result.end()));1252 }1253 }1254 else {1255 declList = symtab.lookupId( nameExpr->name );1256 }1257 PRINT( std::cerr << "nameExpr is " << nameExpr->name << std::endl; )1258 1259 if( declList.empty() ) return;1260 1261 reason.code = NoMatch;1262 1263 for ( auto & data : declList ) {1264 Cost cost = Cost::zero;1265 ast::Expr * newExpr = data.combine( nameExpr->location, cost );1266 1267 CandidateRef newCand = std::make_shared<Candidate>(1268 newExpr, copy( tenv ), ast::OpenVarSet{}, ast::AssertionSet{}, Cost::zero,1269 cost );1270 1271 if (newCand->expr->env) {1272 newCand->env.add(*newCand->expr->env);1273 auto mutExpr = newCand->expr.get_and_mutate();1274 mutExpr->env = nullptr;1275 newCand->expr = mutExpr;1276 }1277 1278 PRINT(1279 std::cerr << "decl is ";1280 ast::print( std::cerr, data.id );1281 std::cerr << std::endl;1282 std::cerr << "newExpr is ";1283 ast::print( std::cerr, newExpr );1284 std::cerr << std::endl;1285 )1286 newCand->expr = ast::mutate_field(1287 newCand->expr.get(), &ast::Expr::result,1288 renameTyVars( newCand->expr->result ) );1289 // add anonymous member interpretations whenever an aggregate value type is seen1290 // as a name expression1291 addAnonConversions( newCand );1292 candidates.emplace_back( std::move( newCand ) );1293 }1294 }1295 1296 void postvisit( const ast::VariableExpr * variableExpr ) {1297 // not sufficient to just pass `variableExpr` here, type might have changed since1298 // creation1299 addCandidate(1300 new ast::VariableExpr{ variableExpr->location, variableExpr->var }, tenv );1301 }1302 1303 void postvisit( const ast::ConstantExpr * constantExpr ) {1304 addCandidate( constantExpr, tenv );1305 }1306 1307 void postvisit( const ast::SizeofExpr * sizeofExpr ) {1308 if ( sizeofExpr->type ) {1309 addCandidate(1310 new ast::SizeofExpr{1311 sizeofExpr->location, resolveTypeof( sizeofExpr->type, context ) },1312 tenv );1313 } else {1314 // find all candidates for the argument to sizeof1315 CandidateFinder finder( context, tenv );1316 finder.find( sizeofExpr->expr );1317 // find the lowest-cost candidate, otherwise ambiguous1318 CandidateList winners = findMinCost( finder.candidates );1319 if ( winners.size() != 1 ) {1320 SemanticError(1321 sizeofExpr->expr.get(), "Ambiguous expression in sizeof operand: " );1322 }1323 // return the lowest-cost candidate1324 CandidateRef & choice = winners.front();1325 choice->expr = referenceToRvalueConversion( choice->expr, choice->cost );1326 choice->cost = Cost::zero;1327 addCandidate( *choice, new ast::SizeofExpr{ sizeofExpr->location, choice->expr } );1328 }1329 }1330 1331 void postvisit( const ast::AlignofExpr * alignofExpr ) {1332 if ( alignofExpr->type ) {1333 addCandidate(1334 new ast::AlignofExpr{1335 alignofExpr->location, resolveTypeof( alignofExpr->type, context ) },1336 tenv );1337 } else {1338 // find all candidates for the argument to alignof1339 CandidateFinder finder( context, tenv );1340 finder.find( alignofExpr->expr );1341 // find the lowest-cost candidate, otherwise ambiguous1342 CandidateList winners = findMinCost( finder.candidates );1343 if ( winners.size() != 1 ) {1344 SemanticError(1345 alignofExpr->expr.get(), "Ambiguous expression in alignof operand: " );1346 }1347 // return the lowest-cost candidate1348 CandidateRef & choice = winners.front();1349 choice->expr = referenceToRvalueConversion( choice->expr, choice->cost );1350 choice->cost = Cost::zero;1351 addCandidate(1352 *choice, new ast::AlignofExpr{ alignofExpr->location, choice->expr } );1353 }1354 }1355 1356 void postvisit( const ast::UntypedOffsetofExpr * offsetofExpr ) {1357 const ast::BaseInstType * aggInst;1358 if (( aggInst = offsetofExpr->type.as< ast::StructInstType >() )) ;1359 else if (( aggInst = offsetofExpr->type.as< ast::UnionInstType >() )) ;1360 else return;1361 1362 for ( const ast::Decl * member : aggInst->lookup( offsetofExpr->member ) ) {1363 auto dwt = strict_dynamic_cast< const ast::DeclWithType * >( member );1364 addCandidate(1365 new ast::OffsetofExpr{ offsetofExpr->location, aggInst, dwt }, tenv );1366 }1367 }1368 1369 void postvisit( const ast::OffsetofExpr * offsetofExpr ) {1370 addCandidate( offsetofExpr, tenv );1371 }1372 1373 void postvisit( const ast::OffsetPackExpr * offsetPackExpr ) {1374 addCandidate( offsetPackExpr, tenv );1375 }1376 1377 void postvisit( const ast::LogicalExpr * logicalExpr ) {1378 CandidateFinder finder1( context, tenv );1379 finder1.find( logicalExpr->arg1, ResolvMode::withAdjustment() );1380 if ( finder1.candidates.empty() ) return;1381 1382 CandidateFinder finder2( context, tenv );1383 finder2.find( logicalExpr->arg2, ResolvMode::withAdjustment() );1384 if ( finder2.candidates.empty() ) return;1385 1386 reason.code = NoMatch;1387 1388 for ( const CandidateRef & r1 : finder1.candidates ) {1389 for ( const CandidateRef & r2 : finder2.candidates ) {1390 ast::TypeEnvironment env{ r1->env };1391 env.simpleCombine( r2->env );1392 ast::OpenVarSet open{ r1->open };1393 mergeOpenVars( open, r2->open );1394 ast::AssertionSet need;1395 mergeAssertionSet( need, r1->need );1396 mergeAssertionSet( need, r2->need );1397 1398 addCandidate(1399 new ast::LogicalExpr{1400 logicalExpr->location, r1->expr, r2->expr, logicalExpr->isAnd },1401 std::move( env ), std::move( open ), std::move( need ), r1->cost + r2->cost );1402 }1403 }1404 }1405 1406 void postvisit( const ast::ConditionalExpr * conditionalExpr ) {1407 // candidates for condition1408 CandidateFinder finder1( context, tenv );1409 finder1.find( conditionalExpr->arg1, ResolvMode::withAdjustment() );1410 if ( finder1.candidates.empty() ) return;1411 1412 // candidates for true result1413 CandidateFinder finder2( context, tenv );1414 finder2.find( conditionalExpr->arg2, ResolvMode::withAdjustment() );1415 if ( finder2.candidates.empty() ) return;1416 1417 // candidates for false result1418 CandidateFinder finder3( context, tenv );1419 finder3.find( conditionalExpr->arg3, ResolvMode::withAdjustment() );1420 if ( finder3.candidates.empty() ) return;1421 1422 reason.code = NoMatch;1423 1424 for ( const CandidateRef & r1 : finder1.candidates ) {1425 for ( const CandidateRef & r2 : finder2.candidates ) {1426 for ( const CandidateRef & r3 : finder3.candidates ) {1427 ast::TypeEnvironment env{ r1->env };1428 env.simpleCombine( r2->env );1429 env.simpleCombine( r3->env );1430 ast::OpenVarSet open{ r1->open };1431 mergeOpenVars( open, r2->open );1432 mergeOpenVars( open, r3->open );1433 ast::AssertionSet need;1434 mergeAssertionSet( need, r1->need );1435 mergeAssertionSet( need, r2->need );1436 mergeAssertionSet( need, r3->need );1437 ast::AssertionSet have;1438 1439 // unify true and false results, then infer parameters to produce new1440 // candidates1441 ast::ptr< ast::Type > common;1442 if (1443 unify(1444 r2->expr->result, r3->expr->result, env, need, have, open, symtab,1445 common )1446 ) {1447 // generate typed expression1448 ast::ConditionalExpr * newExpr = new ast::ConditionalExpr{1449 conditionalExpr->location, r1->expr, r2->expr, r3->expr };1450 newExpr->result = common ? common : r2->expr->result;1451 // convert both options to result type1452 Cost cost = r1->cost + r2->cost + r3->cost;1453 newExpr->arg2 = computeExpressionConversionCost(1454 newExpr->arg2, newExpr->result, symtab, env, cost );1455 newExpr->arg3 = computeExpressionConversionCost(1456 newExpr->arg3, newExpr->result, symtab, env, cost );1457 // output candidate1458 CandidateRef newCand = std::make_shared<Candidate>(1459 newExpr, std::move( env ), std::move( open ), std::move( need ), cost );1460 inferParameters( newCand, candidates );1461 }1462 }1463 }1464 }1465 }1466 1467 void postvisit( const ast::CommaExpr * commaExpr ) {1468 ast::TypeEnvironment env{ tenv };1469 ast::ptr< ast::Expr > arg1 = resolveInVoidContext( commaExpr->arg1, context, env );1470 1471 CandidateFinder finder2( context, env );1472 finder2.find( commaExpr->arg2, ResolvMode::withAdjustment() );1473 1474 for ( const CandidateRef & r2 : finder2.candidates ) {1475 addCandidate( *r2, new ast::CommaExpr{ commaExpr->location, arg1, r2->expr } );1476 }1477 }1478 1479 void postvisit( const ast::ImplicitCopyCtorExpr * ctorExpr ) {1480 addCandidate( ctorExpr, tenv );1481 }1482 1483 void postvisit( const ast::ConstructorExpr * ctorExpr ) {1484 CandidateFinder finder( context, tenv );1485 finder.find( ctorExpr->callExpr, ResolvMode::withoutPrune() );1486 for ( CandidateRef & r : finder.candidates ) {1487 addCandidate( *r, new ast::ConstructorExpr{ ctorExpr->location, r->expr } );1488 }1489 }1490 1491 void postvisit( const ast::RangeExpr * rangeExpr ) {1492 // resolve low and high, accept candidates where low and high types unify1493 CandidateFinder finder1( context, tenv );1494 finder1.find( rangeExpr->low, ResolvMode::withAdjustment() );1495 if ( finder1.candidates.empty() ) return;1496 1497 CandidateFinder finder2( context, tenv );1498 finder2.find( rangeExpr->high, ResolvMode::withAdjustment() );1499 if ( finder2.candidates.empty() ) return;1500 1501 reason.code = NoMatch;1502 1503 for ( const CandidateRef & r1 : finder1.candidates ) {1504 for ( const CandidateRef & r2 : finder2.candidates ) {1505 ast::TypeEnvironment env{ r1->env };1506 env.simpleCombine( r2->env );1507 ast::OpenVarSet open{ r1->open };1508 mergeOpenVars( open, r2->open );1509 ast::AssertionSet need;1510 mergeAssertionSet( need, r1->need );1511 mergeAssertionSet( need, r2->need );1512 ast::AssertionSet have;1513 1514 ast::ptr< ast::Type > common;1515 if (1516 unify(1517 r1->expr->result, r2->expr->result, env, need, have, open, symtab,1518 common )1519 ) {1520 // generate new expression1521 ast::RangeExpr * newExpr =1522 new ast::RangeExpr{ rangeExpr->location, r1->expr, r2->expr };1523 newExpr->result = common ? common : r1->expr->result;1524 // add candidate1525 CandidateRef newCand = std::make_shared<Candidate>(1526 newExpr, std::move( env ), std::move( open ), std::move( need ),1527 r1->cost + r2->cost );1528 inferParameters( newCand, candidates );1529 }1530 }1531 }1532 }1533 1534 void postvisit( const ast::UntypedTupleExpr * tupleExpr ) {1535 std::vector< CandidateFinder > subCandidates =1536 selfFinder.findSubExprs( tupleExpr->exprs );1537 std::vector< CandidateList > possibilities;1538 combos( subCandidates.begin(), subCandidates.end(), back_inserter( possibilities ) );1539 1540 for ( const CandidateList & subs : possibilities ) {1541 std::vector< ast::ptr< ast::Expr > > exprs;1542 exprs.reserve( subs.size() );1543 for ( const CandidateRef & sub : subs ) { exprs.emplace_back( sub->expr ); }1544 1545 ast::TypeEnvironment env;1546 ast::OpenVarSet open;1547 ast::AssertionSet need;1548 for ( const CandidateRef & sub : subs ) {1549 env.simpleCombine( sub->env );1550 mergeOpenVars( open, sub->open );1551 mergeAssertionSet( need, sub->need );1552 }1553 1554 addCandidate(1555 new ast::TupleExpr{ tupleExpr->location, std::move( exprs ) },1556 std::move( env ), std::move( open ), std::move( need ), sumCost( subs ) );1557 }1558 }1559 1560 void postvisit( const ast::TupleExpr * tupleExpr ) {1561 addCandidate( tupleExpr, tenv );1562 }1563 1564 void postvisit( const ast::TupleIndexExpr * tupleExpr ) {1565 addCandidate( tupleExpr, tenv );1566 }1567 1568 void postvisit( const ast::TupleAssignExpr * tupleExpr ) {1569 addCandidate( tupleExpr, tenv );1570 }1571 1572 void postvisit( const ast::UniqueExpr * unqExpr ) {1573 CandidateFinder finder( context, tenv );1574 finder.find( unqExpr->expr, ResolvMode::withAdjustment() );1575 for ( CandidateRef & r : finder.candidates ) {1576 // ensure that the the id is passed on so that the expressions are "linked"1577 addCandidate( *r, new ast::UniqueExpr{ unqExpr->location, r->expr, unqExpr->id } );1578 }1579 }1580 1581 void postvisit( const ast::StmtExpr * stmtExpr ) {1582 addCandidate( resolveStmtExpr( stmtExpr, context ), tenv );1583 }1584 1585 void postvisit( const ast::UntypedInitExpr * initExpr ) {1586 // handle each option like a cast1587 CandidateList matches;1588 PRINT(1589 std::cerr << "untyped init expr: " << initExpr << std::endl;1590 )1591 // O(n^2) checks of d-types with e-types1592 for ( const ast::InitAlternative & initAlt : initExpr->initAlts ) {1593 // calculate target type1594 const ast::Type * toType = resolveTypeof( initAlt.type, context );1595 toType = adjustExprType( toType, tenv, symtab );1596 // The call to find must occur inside this loop, otherwise polymorphic return1597 // types are not bound to the initialization type, since return type variables are1598 // only open for the duration of resolving the UntypedExpr.1599 CandidateFinder finder( context, tenv, toType );1600 finder.find( initExpr->expr, ResolvMode::withAdjustment() );1601 for ( CandidateRef & cand : finder.candidates ) {1602 if(reason.code == NotFound) reason.code = NoMatch;1603 1604 ast::TypeEnvironment env{ cand->env };1605 ast::AssertionSet need( cand->need.begin(), cand->need.end() ), have;1606 ast::OpenVarSet open{ cand->open };1607 1608 PRINT(1609 std::cerr << " @ " << toType << " " << initAlt.designation << std::endl;1610 )1611 1612 // It is possible that a cast can throw away some values in a multiply-valued1613 // expression, e.g. cast-to-void, one value to zero. Figure out the prefix of1614 // the subexpression results that are cast directly. The candidate is invalid1615 // if it has fewer results than there are types to cast to.1616 int discardedValues = cand->expr->result->size() - toType->size();1617 if ( discardedValues < 0 ) continue;1618 1619 // unification run for side-effects1620 bool canUnify = unify( toType, cand->expr->result, env, need, have, open, symtab );1621 (void) canUnify;1622 Cost thisCost = computeConversionCost( cand->expr->result, toType, cand->expr->get_lvalue(),1623 symtab, env );1624 PRINT(1625 Cost legacyCost = castCost( cand->expr->result, toType, cand->expr->get_lvalue(),1626 symtab, env );1627 std::cerr << "Considering initialization:";1628 std::cerr << std::endl << " FROM: " << cand->expr->result << std::endl;1629 std::cerr << std::endl << " TO: " << toType << std::endl;1630 std::cerr << std::endl << " Unification " << (canUnify ? "succeeded" : "failed");1631 std::cerr << std::endl << " Legacy cost " << legacyCost;1632 std::cerr << std::endl << " New cost " << thisCost;1633 std::cerr << std::endl;1634 )1635 if ( thisCost != Cost::infinity ) {1636 // count one safe conversion for each value that is thrown away1637 thisCost.incSafe( discardedValues );1638 CandidateRef newCand = std::make_shared<Candidate>(1639 new ast::InitExpr{1640 initExpr->location, restructureCast( cand->expr, toType ),1641 initAlt.designation },1642 std::move(env), std::move( open ), std::move( need ), cand->cost, thisCost );1643 inferParameters( newCand, matches );1644 }1645 }1646 1647 }1648 1649 // select first on argument cost, then conversion cost1650 CandidateList minArgCost = findMinCost( matches );1651 promoteCvtCost( minArgCost );1652 candidates = findMinCost( minArgCost );1653 }1654 1655 void postvisit( const ast::InitExpr * ) {1656 assertf( false, "CandidateFinder should never see a resolved InitExpr." );1657 }1658 1659 void postvisit( const ast::DeletedExpr * ) {1660 assertf( false, "CandidateFinder should never see a DeletedExpr." );1661 }1662 1663 void postvisit( const ast::GenericExpr * ) {1664 assertf( false, "_Generic is not yet supported." );1665 }1666 };1667 1668 // size_t Finder::traceId = Stats::Heap::new_stacktrace_id("Finder");1669 /// Prunes a list of candidates down to those that have the minimum conversion cost for a given1670 /// return type. Skips ambiguous candidates.1671 1672 } // anonymous namespace1673 1674 bool CandidateFinder::pruneCandidates( CandidateList & candidates, CandidateList & out, std::vector<std::string> & errors ) {1675 struct PruneStruct {1676 CandidateRef candidate;1677 bool ambiguous;1678 1679 PruneStruct() = default;1680 PruneStruct( const CandidateRef & c ) : candidate( c ), ambiguous( false ) {}1681 };1682 1683 // find lowest-cost candidate for each type1684 std::unordered_map< std::string, PruneStruct > selected;1685 // attempt to skip satisfyAssertions on more expensive alternatives if better options have been found1686 std::sort(candidates.begin(), candidates.end(), [](const CandidateRef & x, const CandidateRef & y){return x->cost < y->cost;});1687 for ( CandidateRef & candidate : candidates ) {1688 std::string mangleName;1689 {1690 ast::ptr< ast::Type > newType = candidate->expr->result;1691 assertf(candidate->expr->result, "Result of expression %p for candidate is null", candidate->expr.get());1692 candidate->env.apply( newType );1693 mangleName = Mangle::mangle( newType );1694 }1695 1696 auto found = selected.find( mangleName );1697 if (found != selected.end() && found->second.candidate->cost < candidate->cost) {1698 PRINT(1699 std::cerr << "cost " << candidate->cost << " loses to "1700 << found->second.candidate->cost << std::endl;1701 )1702 continue;1703 }1704 1705 // xxx - when do satisfyAssertions produce more than 1 result?1706 // this should only happen when initial result type contains1707 // unbound type parameters, then it should never be pruned by1708 // the previous step, since renameTyVars guarantees the mangled name1709 // is unique.1710 CandidateList satisfied;1711 bool needRecomputeKey = false;1712 if (candidate->need.empty()) {1713 satisfied.emplace_back(candidate);1714 }1715 else {1716 satisfyAssertions(candidate, context.symtab, satisfied, errors);1717 needRecomputeKey = true;1718 }1719 1720 for (auto & newCand : satisfied) {1721 // recomputes type key, if satisfyAssertions changed it1722 if (needRecomputeKey)1723 {1724 ast::ptr< ast::Type > newType = newCand->expr->result;1725 assertf(newCand->expr->result, "Result of expression %p for candidate is null", newCand->expr.get());1726 newCand->env.apply( newType );1727 mangleName = Mangle::mangle( newType );1728 }1729 auto found = selected.find( mangleName );1730 if ( found != selected.end() ) {1731 if ( newCand->cost < found->second.candidate->cost ) {1732 PRINT(1733 std::cerr << "cost " << newCand->cost << " beats "1734 << found->second.candidate->cost << std::endl;1735 )1736 1737 found->second = PruneStruct{ newCand };1738 } else if ( newCand->cost == found->second.candidate->cost ) {1739 // if one of the candidates contains a deleted identifier, can pick the other,1740 // since deleted expressions should not be ambiguous if there is another option1741 // that is at least as good1742 if ( findDeletedExpr( newCand->expr ) ) {1743 // do nothing1744 PRINT( std::cerr << "candidate is deleted" << std::endl; )1745 } else if ( findDeletedExpr( found->second.candidate->expr ) ) {1746 PRINT( std::cerr << "current is deleted" << std::endl; )1747 found->second = PruneStruct{ newCand };1748 } else {1749 PRINT( std::cerr << "marking ambiguous" << std::endl; )1750 found->second.ambiguous = true;1751 }1752 } else {1753 // xxx - can satisfyAssertions increase the cost?1754 PRINT(1755 std::cerr << "cost " << newCand->cost << " loses to "1756 << found->second.candidate->cost << std::endl;1757 )1758 }1759 } else {1760 selected.emplace_hint( found, mangleName, newCand );1761 }1762 }1763 }1764 1765 // report unambiguous min-cost candidates1766 // CandidateList out;1767 for ( auto & target : selected ) {1768 if ( target.second.ambiguous ) continue;1769 1770 CandidateRef cand = target.second.candidate;1771 1772 ast::ptr< ast::Type > newResult = cand->expr->result;1773 cand->env.applyFree( newResult );1774 cand->expr = ast::mutate_field(1775 cand->expr.get(), &ast::Expr::result, std::move( newResult ) );1776 1777 out.emplace_back( cand );1778 }1779 // if everything is lost in satisfyAssertions, report the error1780 return !selected.empty();1781 }1782 1783 void CandidateFinder::find( const ast::Expr * expr, ResolvMode mode ) {1784 // Find alternatives for expression1785 ast::Pass<Finder> finder{ *this };1786 expr->accept( finder );1787 1788 if ( mode.failFast && candidates.empty() ) {1789 switch(finder.core.reason.code) {1790 case Finder::NotFound:1791 { SemanticError( expr, "No alternatives for expression " ); break; }1792 case Finder::NoMatch:1793 { SemanticError( expr, "Invalid application of existing declaration(s) in expression " ); break; }1794 case Finder::ArgsToFew:1795 case Finder::ArgsToMany:1796 case Finder::RetsToFew:1797 case Finder::RetsToMany:1798 case Finder::NoReason:1799 default:1800 { SemanticError( expr->location, "No reasonable alternatives for expression : reasons unkown" ); }1801 }1802 }1803 1804 /*1805 if ( mode.satisfyAssns || mode.prune ) {1806 // trim candidates to just those where the assertions are satisfiable1807 // - necessary pre-requisite to pruning1808 CandidateList satisfied;1809 std::vector< std::string > errors;1810 for ( CandidateRef & candidate : candidates ) {1811 satisfyAssertions( candidate, localSyms, satisfied, errors );1812 }1813 1814 // fail early if none such1815 if ( mode.failFast && satisfied.empty() ) {1816 std::ostringstream stream;1817 stream << "No alternatives with satisfiable assertions for " << expr << "\n";1818 for ( const auto& err : errors ) {1819 stream << err;1820 }1821 SemanticError( expr->location, stream.str() );1822 }1823 1824 // reset candidates1825 candidates = move( satisfied );1826 }1827 */1828 1829 if ( mode.prune ) {1830 // trim candidates to single best one1831 PRINT(1832 std::cerr << "alternatives before prune:" << std::endl;1833 print( std::cerr, candidates );1834 )1835 1836 CandidateList pruned;1837 std::vector<std::string> errors;1838 bool found = pruneCandidates( candidates, pruned, errors );1839 1840 if ( mode.failFast && pruned.empty() ) {1841 std::ostringstream stream;1842 if (found) {1843 CandidateList winners = findMinCost( candidates );1844 stream << "Cannot choose between " << winners.size() << " alternatives for "1845 "expression\n";1846 ast::print( stream, expr );1847 stream << " Alternatives are:\n";1848 print( stream, winners, 1 );1849 SemanticError( expr->location, stream.str() );1850 }1851 else {1852 stream << "No alternatives with satisfiable assertions for " << expr << "\n";1853 for ( const auto& err : errors ) {1854 stream << err;1855 }1856 SemanticError( expr->location, stream.str() );1857 }1858 }1859 1860 auto oldsize = candidates.size();1861 candidates = std::move( pruned );1862 1863 PRINT(1864 std::cerr << "there are " << oldsize << " alternatives before elimination" << std::endl;1865 )1866 PRINT(1867 std::cerr << "there are " << candidates.size() << " alternatives after elimination"1868 << std::endl;1869 )1870 }1871 1872 // adjust types after pruning so that types substituted by pruneAlternatives are correctly1873 // adjusted1874 if ( mode.adjust ) {1875 for ( CandidateRef & r : candidates ) {1876 r->expr = ast::mutate_field(1877 r->expr.get(), &ast::Expr::result,1878 adjustExprType( r->expr->result, r->env, context.symtab ) );1879 }1880 }1881 1882 // Central location to handle gcc extension keyword, etc. for all expressions1883 for ( CandidateRef & r : candidates ) {1884 if ( r->expr->extension != expr->extension ) {1885 r->expr.get_and_mutate()->extension = expr->extension;1886 }1887 }1888 }1889 1890 std::vector< CandidateFinder > CandidateFinder::findSubExprs(1891 const std::vector< ast::ptr< ast::Expr > > & xs1892 ) {1893 std::vector< CandidateFinder > out;1894 1895 for ( const auto & x : xs ) {1896 out.emplace_back( context, env );1897 out.back().find( x, ResolvMode::withAdjustment() );1898 1899 PRINT(1900 std::cerr << "findSubExprs" << std::endl;1901 print( std::cerr, out.back().candidates );1902 )1903 }1904 1905 return out;1906 }1907 1908 1970 } // namespace ResolvExpr 1909 1971 -
src/ResolvExpr/CurrentObject.cc
ra50fdfb r6e1e2d0 9 9 // Author : Rob Schluntz 10 10 // Created On : Tue Jun 13 15:28:32 2017 11 // Last Modified By : Peter A. Buhr12 // Last Modified On : Fri Jul 1 09:16:01 202213 // Update Count : 1 511 // Last Modified By : Andrew Beach 12 // Last Modified On : Mon Apr 10 9:40:00 2023 13 // Update Count : 18 14 14 // 15 15 … … 593 593 594 594 namespace ast { 595 /// Iterates members of a type by initializer. 596 class MemberIterator { 597 public: 598 virtual ~MemberIterator() {} 599 600 /// Internal set position based on iterator ranges. 601 virtual void setPosition( 602 std::deque< ptr< Expr > >::const_iterator it, 603 std::deque< ptr< Expr > >::const_iterator end ) = 0; 604 605 /// Walks the current object using the given designators as a guide. 606 void setPosition( const std::deque< ptr< Expr > > & designators ) { 607 setPosition( designators.begin(), designators.end() ); 608 } 609 610 /// Retrieve the list of possible (Type,Designation) pairs for the 611 /// current position in the current object. 612 virtual std::deque< InitAlternative > operator* () const = 0; 613 614 /// True if the iterator is not currently at the end. 615 virtual operator bool() const = 0; 616 617 /// Moves the iterator by one member in the current object. 618 virtual MemberIterator & bigStep() = 0; 619 620 /// Moves the iterator by one member in the current subobject. 621 virtual MemberIterator & smallStep() = 0; 622 623 /// The type of the current object. 624 virtual const Type * getType() = 0; 625 626 /// The type of the current subobject. 627 virtual const Type * getNext() = 0; 628 629 /// Helper for operator*; aggregates must add designator to each init 630 /// alternative, but adding designators in operator* creates duplicates. 631 virtual std::deque< InitAlternative > first() const = 0; 632 }; 633 595 634 /// create a new MemberIterator that traverses a type correctly 596 635 MemberIterator * createMemberIterator( const CodeLocation & loc, const Type * type ); … … 632 671 }; 633 672 634 /// Iterates array types 635 class ArrayIterator final : public MemberIterator { 673 /// Iterates over an indexed type: 674 class IndexIterator : public MemberIterator { 675 protected: 636 676 CodeLocation location; 637 const ArrayType * array = nullptr;638 const Type * base = nullptr;639 677 size_t index = 0; 640 678 size_t size = 0; 641 std::unique_ptr< MemberIterator > memberIter; 642 643 void setSize( const Expr * expr ) { 644 auto res = eval( expr ); 645 if ( ! res.second ) { 646 SemanticError( location, toString( "Array designator must be a constant expression: ", expr ) ); 647 } 648 size = res.first; 649 } 650 651 public: 652 ArrayIterator( const CodeLocation & loc, const ArrayType * at ) : location( loc ), array( at ), base( at->base ) { 653 PRINT( std::cerr << "Creating array iterator: " << at << std::endl; ) 654 memberIter.reset( createMemberIterator( loc, base ) ); 655 if ( at->isVarLen ) { 656 SemanticError( location, at, "VLA initialization does not support @=: " ); 657 } 658 setSize( at->dimension ); 659 } 679 std::unique_ptr<MemberIterator> memberIter; 680 public: 681 IndexIterator( const CodeLocation & loc, size_t size ) : 682 location( loc ), size( size ) 683 {} 660 684 661 685 void setPosition( const Expr * expr ) { … … 666 690 auto arg = eval( expr ); 667 691 index = arg.first; 668 return;669 692 670 693 // if ( auto constExpr = dynamic_cast< const ConstantExpr * >( expr ) ) { … … 684 707 685 708 void setPosition( 686 std::deque< ptr< Expr >>::const_iterator begin,687 std::deque< ptr< Expr >>::const_iterator end709 std::deque<ast::ptr<ast::Expr>>::const_iterator begin, 710 std::deque<ast::ptr<ast::Expr>>::const_iterator end 688 711 ) override { 689 712 if ( begin == end ) return; … … 696 719 697 720 operator bool() const override { return index < size; } 721 }; 722 723 /// Iterates over the members of array types: 724 class ArrayIterator final : public IndexIterator { 725 const ArrayType * array = nullptr; 726 const Type * base = nullptr; 727 728 size_t getSize( const Expr * expr ) { 729 auto res = eval( expr ); 730 if ( !res.second ) { 731 SemanticError( location, toString( "Array designator must be a constant expression: ", expr ) ); 732 } 733 return res.first; 734 } 735 736 public: 737 ArrayIterator( const CodeLocation & loc, const ArrayType * at ) : 738 IndexIterator( loc, getSize( at->dimension) ), 739 array( at ), base( at->base ) { 740 PRINT( std::cerr << "Creating array iterator: " << at << std::endl; ) 741 memberIter.reset( createMemberIterator( loc, base ) ); 742 if ( at->isVarLen ) { 743 SemanticError( location, at, "VLA initialization does not support @=: " ); 744 } 745 } 698 746 699 747 ArrayIterator & bigStep() override { … … 834 882 835 883 const Type * getNext() final { 836 return ( memberIter && *memberIter ) ? memberIter->getType() : nullptr; 884 bool hasMember = memberIter && *memberIter; 885 return hasMember ? memberIter->getType() : nullptr; 837 886 } 838 887 … … 898 947 }; 899 948 900 class TupleIterator final : public AggregateIterator { 901 public: 902 TupleIterator( const CodeLocation & loc, const TupleType * inst ) 903 : AggregateIterator( 904 loc, "TupleIterator", toString("Tuple", inst->size()), inst, inst->members 905 ) {} 906 907 operator bool() const override { 908 return curMember != members.end() || (memberIter && *memberIter); 949 /// Iterates across the positions in a tuple: 950 class TupleIterator final : public IndexIterator { 951 ast::TupleType const * const tuple; 952 953 const ast::Type * typeAtIndex() const { 954 assert( index < size ); 955 return tuple->types[ index ].get(); 956 } 957 958 public: 959 TupleIterator( const CodeLocation & loc, const TupleType * type ) 960 : IndexIterator( loc, type->size() ), tuple( type ) { 961 PRINT( std::cerr << "Creating tuple iterator: " << type << std::endl; ) 962 memberIter.reset( createMemberIterator( loc, typeAtIndex() ) ); 909 963 } 910 964 911 965 TupleIterator & bigStep() override { 912 PRINT( std::cerr << "bigStep in " << kind << std::endl; ) 913 atbegin = false; 914 memberIter = nullptr; 915 curType = nullptr; 916 while ( curMember != members.end() ) { 917 ++curMember; 918 if ( init() ) return *this; 919 } 966 ++index; 967 memberIter.reset( index < size ? 968 createMemberIterator( location, typeAtIndex() ) : nullptr ); 920 969 return *this; 970 } 971 972 TupleIterator & smallStep() override { 973 if ( memberIter ) { 974 PRINT( std::cerr << "has member iter: " << *memberIter << std::endl; ) 975 memberIter->smallStep(); 976 if ( !memberIter ) { 977 PRINT( std::cerr << "has valid member iter" << std::endl; ) 978 return *this; 979 } 980 } 981 return bigStep(); 982 } 983 984 const ast::Type * getType() override { 985 return tuple; 986 } 987 988 const ast::Type * getNext() override { 989 bool hasMember = memberIter && *memberIter; 990 return hasMember ? memberIter->getType() : nullptr; 991 } 992 993 std::deque< InitAlternative > first() const override { 994 PRINT( std::cerr << "first in TupleIterator (" << index << "/" << size << ")" << std::endl; ) 995 if ( memberIter && *memberIter ) { 996 std::deque< InitAlternative > ret = memberIter->first(); 997 for ( InitAlternative & alt : ret ) { 998 alt.designation.get_and_mutate()->designators.emplace_front( 999 ConstantExpr::from_ulong( location, index ) ); 1000 } 1001 return ret; 1002 } 1003 return {}; 921 1004 } 922 1005 }; -
src/ResolvExpr/CurrentObject.h
ra50fdfb r6e1e2d0 9 9 // Author : Rob Schluntz 10 10 // Created On : Thu Jun 8 11:07:25 2017 11 // Last Modified By : Peter A. Buhr12 // Last Modified On : Sat Jul 22 09:36:48 201713 // Update Count : 311 // Last Modified By : Andrew Beach 12 // Last Modified On : Thu Apr 6 16:14:00 2023 13 // Update Count : 4 14 14 // 15 15 … … 65 65 66 66 /// Iterates members of a type by initializer 67 class MemberIterator { 68 public: 69 virtual ~MemberIterator() {} 70 71 /// Internal set position based on iterator ranges 72 virtual void setPosition( 73 std::deque< ptr< Expr > >::const_iterator it, 74 std::deque< ptr< Expr > >::const_iterator end ) = 0; 75 76 /// walks the current object using the given designators as a guide 77 void setPosition( const std::deque< ptr< Expr > > & designators ) { 78 setPosition( designators.begin(), designators.end() ); 79 } 80 81 /// retrieve the list of possible (Type,Designation) pairs for the current position in the 82 /// current object 83 virtual std::deque< InitAlternative > operator* () const = 0; 84 85 /// true if the iterator is not currently at the end 86 virtual operator bool() const = 0; 87 88 /// moves the iterator by one member in the current object 89 virtual MemberIterator & bigStep() = 0; 90 91 /// moves the iterator by one member in the current subobject 92 virtual MemberIterator & smallStep() = 0; 93 94 /// the type of the current object 95 virtual const Type * getType() = 0; 96 97 /// the type of the current subobject 98 virtual const Type * getNext() = 0; 99 100 /// helper for operator*; aggregates must add designator to each init alternative, but 101 /// adding designators in operator* creates duplicates 102 virtual std::deque< InitAlternative > first() const = 0; 103 }; 67 class MemberIterator; 104 68 105 69 /// Builds initializer lists in resolution -
src/ResolvExpr/ExplodedArg.hpp
ra50fdfb r6e1e2d0 35 35 ExplodedArg() : env(), cost( Cost::zero ), exprs() {} 36 36 ExplodedArg( const Candidate & arg, const ast::SymbolTable & symtab ); 37 37 38 38 ExplodedArg( ExplodedArg && ) = default; 39 39 ExplodedArg & operator= ( ExplodedArg && ) = default;
Note:
See TracChangeset
for help on using the changeset viewer.