Ignore:
Timestamp:
Nov 8, 2017, 5:43:33 PM (8 years ago)
Author:
Aaron Moss <a3moss@…>
Branches:
ADT, aaron-thesis, arm-eh, ast-experimental, cleanup-dtors, deferred_resn, demangler, enum, forall-pointer-decay, jacob/cs343-translation, jenkins-sandbox, master, new-ast, new-ast-unique-expr, new-env, no_list, persistent-indexer, pthread-emulation, qualifiedEnum, resolv-new, with_gc
Children:
954908d
Parents:
78315272 (diff), e35f30a (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the (diff) links above to see all the changes relative to each parent.
Message:

Merge branch 'master' of plg.uwaterloo.ca:software/cfa/cfa-cc

File:
1 edited

Legend:

Unmodified
Added
Removed
  • doc/proposals/concurrency/text/cforall.tex

    r78315272 r3f7e12cb  
    11% ======================================================================
    22% ======================================================================
    3 \chapter{Cforall crash course}
     3\chapter{Cforall Overview}
    44% ======================================================================
    55% ======================================================================
    66
    7 As mentionned in the introduction, the document presents the design for the concurrency features in \CFA. Since it is a new language here is a quick review of the language specifically tailored to the features needed to support concurrency.
     7The following is a quick introduction to the \CFA language, specifically tailored to the features needed to support concurrency.
    88
    9 \CFA is a extension of ISO C and therefore supports much of the same paradigms as C. It is a non-object oriented system level language, meaning it has very most of the major abstractions have either no runtime cost or can be opt-out easily. Like C, the basics of \CFA revolve around structures and routines, which are thin abstractions over assembly. The vast majority of the code produced by a \CFA compiler respects memory-layouts and calling-conventions laid out by C. However, while \CFA is not an object-oriented language according to a strict definition. It does have some notion of objects, most importantly construction and destruction of objects. Most of the following pieces of code can be found as is on the \CFA website : \cite{www-cfa}
     9\CFA is a extension of ISO-C and therefore supports all of the same paradigms as C. It is a non-object oriented system language, meaning most of the major abstractions have either no runtime overhead or can be opt-out easily. Like C, the basics of \CFA revolve around structures and routines, which are thin abstractions over machine code. The vast majority of the code produced by the \CFA translator respects memory-layouts and calling-conventions laid out by C. Interestingly, while \CFA is not an object-oriented language, lacking the concept of a receiver (e.g., this), it does have some notion of objects\footnote{C defines the term objects as : ``region of data storage in the execution environment, the contents of which can represent
     10values''\cite[3.15]{C11}}, most importantly construction and destruction of objects. Most of the following code examples can be found on the \CFA website \cite{www-cfa}
    1011
    1112\section{References}
    1213
    13 Like \CC, \CFA introduces references as an alternative to pointers. In regards to concurrency, the semantics difference between pointers and references aren't particularly relevant but since this document uses mostly references here is a quick overview of the semantics :
     14Like \CC, \CFA introduces rebindable references providing multiple dereferecing as an alternative to pointers. In regards to concurrency, the semantic difference between pointers and references are not particularly relevant, but since this document uses mostly references, here is a quick overview of the semantics:
    1415\begin{cfacode}
    1516int x, *p1 = &x, **p2 = &p1, ***p3 = &p2,
    16 &r1 = x,    &&r2 = r1,   &&&r3 = r2;
    17 ***p3 = 3;                                      // change x
    18 r3 = 3;                                         // change x, ***r3
    19 **p3 = ...;                                     // change p1
    20 &r3 = ...;                                      // change r1, (&*)**r3
    21 *p3 = ...;                                      // change p2
    22 &&r3 = ...;                                     // change r2, (&(&*)*)*r3
    23 &&&r3 = p3;                                     // change r3 to p3, (&(&(&*)*)*)r3
    24 int y, z, & ar[3] = { x, y, z };                // initialize array of references
    25 &ar[1] = &z;                                    // change reference array element
    26 typeof( ar[1] ) p;                              // is int, i.e., the type of referenced object
    27 typeof( &ar[1] ) q;                             // is int &, i.e., the type of reference
    28 sizeof( ar[1] ) == sizeof( int );               // is true, i.e., the size of referenced object
    29 sizeof( &ar[1] ) == sizeof( int *);             // is true, i.e., the size of a reference
     17        &r1 = x,    &&r2 = r1,   &&&r3 = r2;
     18***p3 = 3;                                                      //change x
     19r3    = 3;                                                      //change x, ***r3
     20**p3  = ...;                                            //change p1
     21*p3   = ...;                                            //change p2
     22int y, z, & ar[3] = {x, y, z};          //initialize array of references
     23typeof( ar[1]) p;                                       //is int, i.e., the type of referenced object
     24typeof(&ar[1]) q;                                       //is int &, i.e., the type of reference
     25sizeof( ar[1]) == sizeof(int);          //is true, i.e., the size of referenced object
     26sizeof(&ar[1]) == sizeof(int *);        //is true, i.e., the size of a reference
    3027\end{cfacode}
    31 The important thing to take away from this code snippet is that references offer a handle to an object much like pointers but which is automatically derefferenced when convinient.
     28The important take away from this code example is that references offer a handle to an object, much like pointers, but which is automatically dereferenced for convinience.
    3229
    3330\section{Overloading}
    3431
    35 Another important feature \CFA has in common with \CC is function overloading :
     32Another important feature of \CFA is function overloading as in Java and \CC, where routines with the same name are selected based on the number and type of the arguments. As well, \CFA uses the return type as part of the selection criteria, as in Ada\cite{Ada}. For routines with multiple parameters and returns, the selection is complex.
    3633\begin{cfacode}
    37 // selection based on type and number of parameters
    38 void f( void );                                 // (1)
    39 void f( char );                                 // (2)
    40 void f( int, double );                          // (3)
    41 f();                                            // select (1)
    42 f( 'a' );                                       // select (2)
    43 f( 3, 5.2 );                                    // select (3)
     34//selection based on type and number of parameters
     35void f(void);                   //(1)
     36void f(char);                   //(2)
     37void f(int, double);    //(3)
     38f();                                    //select (1)
     39f('a');                                 //select (2)
     40f(3, 5.2);                              //select (3)
    4441
    45 // selection based on  type and number of returns
    46 char f( int );                                  // (1)
    47 double f( int );                                // (2)
    48 [ int, double ] f( int );                       // (3)
    49 char c = f( 3 );                                // select (1)
    50 double d = f( 4 );                              // select (2)
    51 [ int, double ] t = f( 5 );                     // select (3)
     42//selection based on  type and number of returns
     43char   f(int);                  //(1)
     44double f(int);                  //(2)
     45char   c = f(3);                //select (1)
     46double d = f(4);                //select (2)
    5247\end{cfacode}
    53 This feature is particularly important for concurrency since the runtime system relies on creating different types do represent concurrency objects. Therefore, overloading is necessary to prevent the need for long prefixes and other naming conventions that prevent clashes. As seen in chapter \ref{basics}, the main is an example of routine that benefits from overloading when concurrency in introduced.
     48This feature is particularly important for concurrency since the runtime system relies on creating different types to represent concurrency objects. Therefore, overloading is necessary to prevent the need for long prefixes and other naming conventions that prevent name clashes. As seen in chapter \ref{basics}, routine \code{main} is an example that benefits from overloading.
    5449
    5550\section{Operators}
    56 Overloading also extends to operators. The syntax for denoting operator-overloading is to name a routine with the symbol of the operator and question marks where the arguments of the operation would be, like so :
     51Overloading also extends to operators. The syntax for denoting operator-overloading is to name a routine with the symbol of the operator and question marks where the arguments of the operation occur, e.g.:
    5752\begin{cfacode}
    58 int ++?( int op );                              // unary prefix increment
    59 int ?++( int op );                              // unary postfix increment
    60 int ?+?( int op1, int op2 );                    // binary plus
    61 int ?<=?( int op1, int op2 );                   // binary less than
    62 int ?=?( int & op1, int op2 );                  // binary assignment
    63 int ?+=?( int & op1, int op2 );                 // binary plus-assignment
     53int ++? (int op);                       //unary prefix increment
     54int ?++ (int op);                       //unary postfix increment
     55int ?+? (int op1, int op2);             //binary plus
     56int ?<=?(int op1, int op2);             //binary less than
     57int ?=? (int & op1, int op2);           //binary assignment
     58int ?+=?(int & op1, int op2);           //binary plus-assignment
    6459
    65 struct S { int i, j; };
    66 S ?+?( S op1, S op2 ) {                         // add two structures
    67         return (S){ op1.i + op2.i, op1.j + op2.j };
     60struct S {int i, j;};
     61S ?+?(S op1, S op2) {                           //add two structures
     62        return (S){op1.i + op2.i, op1.j + op2.j};
    6863}
    69 S s1 = { 1, 2 }, s2 = { 2, 3 }, s3;
    70 s3 = s1 + s2;                                   // compute sum: s3 == { 2, 5 }
     64S s1 = {1, 2}, s2 = {2, 3}, s3;
     65s3 = s1 + s2;                                           //compute sum: s3 == {2, 5}
    7166\end{cfacode}
    72 
    73 Since concurrency does not use operator overloading, this feature is more important as an introduction for the syntax of constructors.
     67While concurrency does not use operator overloading directly, this feature is more important as an introduction for the syntax of constructors.
    7468
    7569\section{Constructors/Destructors}
    76 \CFA uses the following syntax for constructors and destructors :
     70Object life-time is often a challenge in concurrency. \CFA uses the approach of giving concurrent meaning to object life-time as a mean of synchronization and/or mutual exclusion. Since \CFA relies heavily on the life time of objects, constructors and destructors are a core feature required for concurrency and parallelism. \CFA uses the following syntax for constructors and destructors :
    7771\begin{cfacode}
    7872struct S {
     
    8074        int * ia;
    8175};
    82 void ?{}( S & s, int asize ) with s {           // constructor operator
    83         size = asize;                           // initialize fields
    84         ia = calloc( size, sizeof( S ) );
     76void ?{}(S & s, int asize) {    //constructor operator
     77        s.size = asize;                         //initialize fields
     78        s.ia = calloc(size, sizeof(S));
    8579}
    86 void ^?{}( S & s ) with s {                     // destructor operator
    87         free( ia );                             // de-initialization fields
     80void ^?{}(S & s) {                              //destructor operator
     81        free(ia);                                       //de-initialization fields
    8882}
    8983int main() {
    90         S x = { 10 }, y = { 100 };              // implict calls: ?{}( x, 10 ), ?{}( y, 100 )
    91         ...                                     // use x and y
    92         ^x{};  ^y{};                            // explicit calls to de-initialize
    93         x{ 20 };  y{ 200 };                     // explicit calls to reinitialize
    94         ...                                     // reuse x and y
    95 }                                               // implict calls: ^?{}( y ), ^?{}( x )
     84        S x = {10}, y = {100};          //implict calls: ?{}(x, 10), ?{}(y, 100)
     85        ...                                                     //use x and y
     86        ^x{};  ^y{};                            //explicit calls to de-initialize
     87        x{20};  y{200};                         //explicit calls to reinitialize
     88        ...                                                     //reuse x and y
     89}                                                               //implict calls: ^?{}(y), ^?{}(x)
    9690\end{cfacode}
    97 The language guarantees that every object and all their fields are constructed. Like \CC construction is automatically done on declaration and destruction done when the declared variables reach the end of its scope.
     91The language guarantees that every object and all their fields are constructed. Like \CC, construction of an object is automatically done on allocation and destruction of the object is done on deallocation. Allocation and deallocation can occur on the stack or on the heap.
     92\begin{cfacode}
     93{
     94        struct S s = {10};      //allocation, call constructor
     95        ...
     96}                                               //deallocation, call destructor
     97struct S * s = new();   //allocation, call constructor
     98...
     99delete(s);                              //deallocation, call destructor
     100\end{cfacode}
     101Note that like \CC, \CFA introduces \code{new} and \code{delete}, which behave like \code{malloc} and \code{free} in addition to constructing and destructing objects, after calling \code{malloc} and before calling \code{free} respectively.
    98102
    99 For more information see \cite{cforall-ug,rob-thesis,www-cfa}.
     103\section{Parametric Polymorphism}
     104Routines in \CFA can also be reused for multiple types. This capability is done using the \code{forall} clause which gives \CFA its name. \code{forall} clauses allow separately compiled routines to support generic usage over multiple types. For example, the following sum function works for any type that supports construction from 0 and addition :
     105\begin{cfacode}
     106//constraint type, 0 and +
     107forall(otype T | { void ?{}(T *, zero_t); T ?+?(T, T); })
     108T sum(T a[ ], size_t size) {
     109        T total = 0;                            //construct T from 0
     110        for(size_t i = 0; i < size; i++)
     111                total = total + a[i];   //select appropriate +
     112        return total;
     113}
     114
     115S sa[5];
     116int i = sum(sa, 5);                             //use S's 0 construction and +
     117\end{cfacode}
     118
     119Since writing constraints on types can become cumbersome for more constrained functions, \CFA also has the concept of traits. Traits are named collection of constraints that can be used both instead and in addition to regular constraints:
     120\begin{cfacode}
     121trait sumable( otype T ) {
     122        void ?{}(T *, zero_t);          //constructor from 0 literal
     123        T ?+?(T, T);                            //assortment of additions
     124        T ?+=?(T *, T);
     125        T ++?(T *);
     126        T ?++(T *);
     127};
     128forall( otype T | sumable(T) )  //use trait
     129T sum(T a[], size_t size);
     130\end{cfacode}
     131
     132\section{with Clause/Statement}
     133Since \CFA lacks the concept of a receiver, certain functions end-up needing to repeat variable names often. To remove this inconvenience, \CFA provides the \code{with} statement, which opens an aggregate scope making its fields directly accessible (like Pascal).
     134\begin{cfacode}
     135struct S { int i, j; };
     136int mem(S & this) with (this)           //with clause
     137        i = 1;                                          //this->i
     138        j = 2;                                          //this->j
     139}
     140int foo() {
     141        struct S1 { ... } s1;
     142        struct S2 { ... } s2;
     143        with (s1)                                       //with statement
     144        {
     145                //access fields of s1
     146                //without qualification
     147                with (s2)                                       //nesting
     148                {
     149                        //access fields of s1 and s2
     150                        //without qualification
     151                }
     152        }
     153        with (s1, s2)                           //scopes open in parallel
     154        {
     155                //access fields of s1 and s2
     156                //without qualification
     157        }
     158}
     159\end{cfacode}
     160
     161For more information on \CFA see \cite{cforall-ug,rob-thesis,www-cfa}.
Note: See TracChangeset for help on using the changeset viewer.