Changes in / [882ad37:3ca540f]
- Files:
-
- 3 added
- 9 deleted
- 64 edited
Legend:
- Unmodified
- Added
- Removed
-
doc/proposals/concurrency/text/basics.tex
r882ad37 r3ca540f 4 4 % ====================================================================== 5 5 % ====================================================================== 6 Before any detailed discussion of the concurrency and parallelism in \CFA, it is important to describe the basics of concurrency and how they are expressed in \CFA user -code.6 Before any detailed discussion of the concurrency and parallelism in \CFA, it is important to describe the basics of concurrency and how they are expressed in \CFA user code. 7 7 8 8 \section{Basics of concurrency} … … 11 11 Execution with a single thread and multiple stacks where the thread is self-scheduling deterministically across the stacks is called coroutining. Execution with a single and multiple stacks but where the thread is scheduled by an oracle (non-deterministic from the thread perspective) across the stacks is called concurrency. 12 12 13 Therefore, a minimal concurrency system can be achieved by creating coroutines, which instead of context switching among each other, always ask an oracle where to context switch next. While coroutines can execute on the caller's stack-frame, stack-full coroutines allow full generality and are sufficient as the basis for concurrency. The aforementioned oracle is a scheduler and the whole system now follows a cooperative threading-model (a.k.a non-preemptive scheduling). The oracle/scheduler can either be a stack-less or stack-full entity and correspondingly require one or two contextswitches to run a different coroutine. In any case, a subset of concurrency related challenges start to appear. For the complete set of concurrency challenges to occur, the only feature missing is preemption.14 15 A scheduler introduces order of execution uncertainty, while preemption introduces uncertainty about where context -switches occur. Mutual-exclusion and synchronization are ways of limiting non-determinism in a concurrent system. Now it is important to understand that uncertainty is desirable; uncertainty can be used by runtime systems to significantly increase performance and is often the basis of giving a user the illusion that tasks are running in parallel. Optimal performance in concurrent applications is often obtained by having as much non-determinism as correctness allows.16 17 \section{\protect\CFA 18 One of the important features that is missing in C is threading. On modern architectures, a lack of threading is unacceptable~\cite{Sutter05, Sutter05b}, and therefore modern programming languages must have the proper tools to allow users to write performant concurrent programs to take advantage of parallelism. As an extension of C, \CFA needs to express these concepts in a way that is as natural as possible to programmers familiar with imperative languages. And being a system-level language means programmers expect to choose precisely which features they need and which cost they are willing to pay.19 20 \section{Coroutines: A stepping stone}\label{coroutine}21 While the main focus of this proposal is concurrency and parallelism, it is important to address coroutines, which are actually a significant building block of a concurrency system. Coroutines need to deal with context -switches and other context-management operations. Therefore, this proposal includes coroutines both as an intermediate step for the implementation of threads, and a first class feature of \CFA. Furthermore, many design challenges of threads are at least partially present in designing coroutines, which makes the design effort that much more relevant. The core \acrshort{api} of coroutines revolve around two features: independent callstacks and \code{suspend}/\code{resume}.13 Therefore, a minimal concurrency system can be achieved by creating coroutines, which instead of context-switching among each other, always ask an oracle where to context-switch next. While coroutines can execute on the caller?s stack-frame, stack-full coroutines allow full generality and are sufficient as the basis for concurrency. The aforementioned oracle is a scheduler and the whole system now follows a cooperative threading-model (aka non-preemptive scheduling). The oracle/scheduler can either be a stack-less or stack-full entity and correspondingly require one or two context-switches to run a different coroutine. In any case, a subset of concurrency related challenges start to appear. For the complete set of concurrency challenges to occur, the only feature missing is preemption. 14 15 A scheduler introduces order of execution uncertainty, while preemption introduces uncertainty about where context switches occur. Mutual exclusion and synchronization are ways of limiting non-determinism in a concurrent system. Now it is important to understand that uncertainty is desirable; uncertainty can be used by runtime systems to significantly increase performance and is often the basis of giving a user the illusion that tasks are running in parallel. Optimal performance in concurrent applications is often obtained by having as much non-determinism as correctness allows. 16 17 \section{\protect\CFA's Thread Building Blocks} 18 One of the important features that are missing in C is threading. On modern architectures, a lack of threading is unacceptable~\cite{Sutter05, Sutter05b}, and therefore modern programming languages must have the proper tools to allow users to write efficient concurrent programs to take advantage of parallelism. As an extension of C, \CFA needs to express these concepts in a way that is as natural as possible to programmers familiar with imperative languages. And being a system-level language means programmers expect to choose precisely which features they need and which cost they are willing to pay. 19 20 \section{Coroutines: A Stepping Stone}\label{coroutine} 21 While the main focus of this proposal is concurrency and parallelism, it is important to address coroutines, which are actually a significant building block of a concurrency system. Coroutines need to deal with context switches and other context-management operations. Therefore, this proposal includes coroutines both as an intermediate step for the implementation of threads, and a first-class feature of \CFA. Furthermore, many design challenges of threads are at least partially present in designing coroutines, which makes the design effort that much more relevant. The core \acrshort{api} of coroutines revolves around two features: independent call-stacks and \code{suspend}/\code{resume}. 22 22 23 23 \begin{table} … … 133 133 \end{table} 134 134 135 A good example of a problem made easier with coroutines is generators, like the Fibonacci sequence. This problem comes with the challenge of decoupling how a sequence is generated and how it is used. Table \ref{lst:fibonacci-c} shows conventional approaches to writing generators in C. All three of these approach suffer from strong coupling. The left and cent erapproaches require that the generator have knowledge of how the sequence is used, while the rightmost approach requires holding internal state between calls on behalf of the generator and makes it much harder to handle corner cases like the Fibonacci seed.135 A good example of a problem made easier with coroutines is generators, like the Fibonacci sequence. This problem comes with the challenge of decoupling how a sequence is generated and how it is used. Table \ref{lst:fibonacci-c} shows conventional approaches to writing generators in C. All three of these approach suffer from strong coupling. The left and centre approaches require that the generator have knowledge of how the sequence is used, while the rightmost approach requires holding internal state between calls on behalf of the generator and makes it much harder to handle corner cases like the Fibonacci seed. 136 136 137 137 Listing \ref{lst:fibonacci-cfa} is an example of a solution to the Fibonacci problem using \CFA coroutines, where the coroutine stack holds sufficient state for the next generation. This solution has the advantage of having very strong decoupling between how the sequence is generated and how it is used. Indeed, this version is as easy to use as the \code{fibonacci_state} solution, while the implementation is very similar to the \code{fibonacci_func} example. … … 233 233 One important design challenge for implementing coroutines and threads (shown in section \ref{threads}) is that the runtime system needs to run code after the user-constructor runs to connect the fully constructed object into the system. In the case of coroutines, this challenge is simpler since there is no non-determinism from preemption or scheduling. However, the underlying challenge remains the same for coroutines and threads. 234 234 235 The runtime system needs to create the coroutine 's stack and more importantly prepare it for the first resumption. The timing of the creation is non-trivial since users both expect to have fully constructed objects once execution enters the coroutine main and to be able to resume the coroutine from the constructor. There are several solutions to this problem but the chosen optionseffectively forces the design of the coroutine.236 237 Furthermore, \CFA faces an extra challenge as polymorphic routines create invisible thunks when cast edto non-polymorphic routines and these thunks have function scope. For example, the following code, while looking benign, can run into undefined behaviour because of thunks:235 The runtime system needs to create the coroutine?s stack and more importantly prepare it for the first resumption. The timing of the creation is non-trivial since users both expect to have fully constructed objects once execution enters the coroutine main and to be able to resume the coroutine from the constructor. There are several solutions to this problem but the chosen option effectively forces the design of the coroutine. 236 237 Furthermore, \CFA faces an extra challenge as polymorphic routines create invisible thunks when cast to non-polymorphic routines and these thunks have function scope. For example, the following code, while looking benign, can run into undefined behaviour because of thunks: 238 238 239 239 \begin{cfacode} … … 268 268 } 269 269 \end{ccode} 270 The problem in this example is a storage management issue, the function pointer \code{_thunk0} is only valid until the end of the block, which limits the viable solutions because storing the function pointer for too long causes Undefined Behavio r; i.e., the stack-based thunk being destroyed before it can be used. This challenge is an extension of challenges that come with second-class routines. Indeed, GCC nested routines also have the limitation that nested routine cannot be passed outside of the declaration scope. The case of coroutines and threads is simply an extension of this problem to multiple call-stacks.270 The problem in this example is a storage management issue, the function pointer \code{_thunk0} is only valid until the end of the block, which limits the viable solutions because storing the function pointer for too long causes Undefined Behaviour; i.e., the stack-based thunk being destroyed before it can be used. This challenge is an extension of challenges that come with second-class routines. Indeed, GCC nested routines also have the limitation that nested routine cannot be passed outside of the declaration scope. The case of coroutines and threads is simply an extension of this problem to multiple call stacks. 271 271 272 272 \subsection{Alternative: Composition} … … 310 310 symmetric_coroutine<>::yield_type 311 311 \end{cfacode} 312 Often, the canonical threading paradigm in languages is based on function pointers, pthread being one of the most well 312 Often, the canonical threading paradigm in languages is based on function pointers, pthread being one of the most well-known examples. The main problem of this approach is that the thread usage is limited to a generic handle that must otherwise be wrapped in a custom type. Since the custom type is simple to write in \CFA and solves several issues, added support for routine/lambda based coroutines adds very little. 313 313 314 314 A variation of this would be to use a simple function pointer in the same way pthread does for threads : … … 327 327 This semantics is more common for thread interfaces but coroutines work equally well. As discussed in section \ref{threads}, this approach is superseded by static approaches in terms of expressivity. 328 328 329 \subsection{Alternative: Trait- based coroutines}330 331 Finally the underlying approach, which is the one closest to \CFA idioms, is to use trait-based lazy coroutines. This approach defines a coroutine as anything that satisfies the trait \code{is_coroutine} and is used as a coroutine.329 \subsection{Alternative: Trait-Based Coroutines} 330 331 Finally, the underlying approach, which is the one closest to \CFA idioms, is to use trait-based lazy coroutines. This approach defines a coroutine as anything that satisfies the trait \code{is_coroutine} and is used as a coroutine. 332 332 333 333 \begin{cfacode} … … 369 369 370 370 \section{Thread Interface}\label{threads} 371 The basic building blocks of multi -threading in \CFA are \glspl{cfathread}. Both user and kernel threads are supported, where user threads are the concurrency mechanism and kernel threads are the parallel mechanism. User threads offer a flexible and lightweight interface. A thread can be declared using a struct declaration \code{thread} as follows:371 The basic building blocks of multithreading in \CFA are \glspl{cfathread}. Both user and kernel threads are supported, where user threads are the concurrency mechanism and kernel threads are the parallel mechanism. User threads offer a flexible and lightweight interface. A thread can be declared using a struct declaration \code{thread} as follows: 372 372 373 373 \begin{cfacode} … … 394 394 \end{cfacode} 395 395 396 In this example, threads of type \code{foo} start execution in the \code{void main(foo &)} routine, which prints \code{"Hello World!" }. While this thesis encourages this approach to enforce strongly-typed programming, users may prefer to use the routine-based thread semantics for the sake of simplicity. With the static semantics it is trivial to write a thread type that takes a function pointer as a parameter and executes it on its stack asynchronously.396 In this example, threads of type \code{foo} start execution in the \code{void main(foo &)} routine, which prints \code{"Hello World!".} While this thesis encourages this approach to enforce strongly typed programming, users may prefer to use the routine-based thread semantics for the sake of simplicity. With the static semantics it is trivial to write a thread type that takes a function pointer as a parameter and executes it on its stack asynchronously. 397 397 \begin{cfacode} 398 398 typedef void (*voidFunc)(int); … … 419 419 int main() { 420 420 FuncRunner f = {hello, 42}; 421 return 0 '422 } 423 \end{cfacode} 424 425 A consequence of the strongly -typed approach to main is that memory layout of parameters and return values to/from a thread are now explicitly specified in the \acrshort{api}.421 return 0? 422 } 423 \end{cfacode} 424 425 A consequence of the strongly typed approach to main is that memory layout of parameters and return values to/from a thread are now explicitly specified in the \acrshort{api}. 426 426 427 427 Of course for threads to be useful, it must be possible to start and stop threads and wait for them to complete execution. While using an \acrshort{api} such as \code{fork} and \code{join} is relatively common in the literature, such an interface is unnecessary. Indeed, the simplest approach is to use \acrshort{raii} principles and have threads \code{fork} after the constructor has completed and \code{join} before the destructor runs. -
doc/proposals/concurrency/text/cforall.tex
r882ad37 r3ca540f 7 7 The following is a quick introduction to the \CFA language, specifically tailored to the features needed to support concurrency. 8 8 9 \CFA is an extension of ISO-C and therefore supports all of the same paradigms as C. It is a non-object-oriented system-language, meaning most of the major abstractions have either no runtime overhead or can be opt -out easily. Like C, the basics of \CFA revolve around structures and routines, which are thin abstractions over machine code. The vast majority of the code produced by the \CFA translator respects memory-layouts and calling-conventions laid out by C. Interestingly, while \CFA is not an object-oriented language, lacking the concept of a receiver (e.g., {\tt this}), it does have some notion of objects\footnote{C defines the term objects as : ``region of data storage in the execution environment, the contents of which can represent10 values''~\cite[3.15]{C11}}, most importantly construction and destruction of objects. Most of the following code examples can be found on the \CFA website~\cite{www-cfa} 9 \CFA is an extension of ISO-C and therefore supports all of the same paradigms as C. It is a non-object-oriented system-language, meaning most of the major abstractions have either no runtime overhead or can be opted out easily. Like C, the basics of \CFA revolve around structures and routines, which are thin abstractions over machine code. The vast majority of the code produced by the \CFA translator respects memory layouts and calling conventions laid out by C. Interestingly, while \CFA is not an object-oriented language, lacking the concept of a receiver (e.g., {\tt this}), it does have some notion of objects\footnote{C defines the term objects as : ``region of data storage in the execution environment, the contents of which can represent 10 values''~\cite[3.15]{C11}}, most importantly construction and destruction of objects. Most of the following code examples can be found on the \CFA website~\cite{www-cfa}. 11 11 12 12 % ====================================================================== … … 72 72 % ====================================================================== 73 73 \section{Constructors/Destructors} 74 Object life -time is often a challenge in concurrency. \CFA uses the approach of giving concurrent meaning to object life-time as a mean of synchronization and/or mutual exclusion. Since \CFA relies heavily on the life time of objects, constructors and destructors area core feature required for concurrency and parallelism. \CFA uses the following syntax for constructors and destructors :74 Object lifetime is often a challenge in concurrency. \CFA uses the approach of giving concurrent meaning to object lifetime as a means of synchronization and/or mutual exclusion. Since \CFA relies heavily on the lifetime of objects, constructors and destructors is a core feature required for concurrency and parallelism. \CFA uses the following syntax for constructors and destructors : 75 75 \begin{cfacode} 76 76 struct S { … … 135 135 \end{cfacode} 136 136 137 Note that the type use for assertions can be either an \code{otype} or a \code{dtype}. Types declare s as \code{otype} refer to ``complete'' objects, i.e., objects with a size, a default constructor, a copy constructor, a destructor and an assignment operator. Using \code{dtype} on the other handhas none of these assumptions but is extremely restrictive, it only guarantees the object is addressable.137 Note that the type use for assertions can be either an \code{otype} or a \code{dtype}. Types declared as \code{otype} refer to ``complete'' objects, i.e., objects with a size, a default constructor, a copy constructor, a destructor and an assignment operator. Using \code{dtype,} on the other hand, has none of these assumptions but is extremely restrictive, it only guarantees the object is addressable. 138 138 139 139 % ====================================================================== -
doc/proposals/concurrency/text/concurrency.tex
r882ad37 r3ca540f 4 4 % ====================================================================== 5 5 % ====================================================================== 6 Several tool can be used to solve concurrency challenges. Since many of these challenges appear with the use of mutable shared-state, some languages and libraries simply disallow mutable shared-state (Erlang~\cite{Erlang}, Haskell~\cite{Haskell}, Akka (Scala)~\cite{Akka}). In these paradigms, interaction among concurrent objects relies on message passing~\cite{Thoth,Harmony,V-Kernel} or other paradigms closely relate to networking concepts (channels~\cite{CSP,Go} for example). However, in languages that use routine calls as their core abstraction-mechanism, these approaches force a clear distinction between concurrent and non-concurrent paradigms (i.e., message passing versus routine call). This distinction in turn means that, in order to be effective, programmers need to learn two sets of designspatterns. While this distinction can be hidden away in library code, effective use of the library still has to take both paradigms into account.6 Several tools can be used to solve concurrency challenges. Since many of these challenges appear with the use of mutable shared-state, some languages and libraries simply disallow mutable shared-state (Erlang~\cite{Erlang}, Haskell~\cite{Haskell}, Akka (Scala)~\cite{Akka}). In these paradigms, interaction among concurrent objects relies on message passing~\cite{Thoth,Harmony,V-Kernel} or other paradigms closely relate to networking concepts (channels~\cite{CSP,Go} for example). However, in languages that use routine calls as their core abstraction mechanism, these approaches force a clear distinction between concurrent and non-concurrent paradigms (i.e., message passing versus routine calls). This distinction in turn means that, in order to be effective, programmers need to learn two sets of design patterns. While this distinction can be hidden away in library code, effective use of the library still has to take both paradigms into account. 7 7 8 8 Approaches based on shared memory are more closely related to non-concurrent paradigms since they often rely on basic constructs like routine calls and shared objects. At the lowest level, concurrent paradigms are implemented as atomic operations and locks. Many such mechanisms have been proposed, including semaphores~\cite{Dijkstra68b} and path expressions~\cite{Campbell74}. However, for productivity reasons it is desirable to have a higher-level construct be the core concurrency paradigm~\cite{HPP:Study}. 9 9 10 An approach that is worth mentioning because it is gaining in popularity is transactional memory~\cite{Herlihy93}. While this approach is even pursued by system languages like \CC~\cite{Cpp-Transactions}, the performance and feature set is currently too restrictive to be the main concurrency paradigm for system s language, which is why it was rejected as the core paradigm for concurrency in \CFA.11 12 One of the most natural, elegant, and efficient mechanisms for synchronization and communication, especially for shared-memory systems, is the \emph{monitor}. Monitors were first proposed by Brinch Hansen~\cite{Hansen73} and later described and extended by C.A.R.~Hoare~\cite{Hoare74}. Many programming languages---e.g., Concurrent Pascal~\cite{ConcurrentPascal}, Mesa~\cite{Mesa}, Modula~\cite{Modula-2}, Turing~\cite{Turing:old}, Modula-3~\cite{Modula-3}, NeWS~\cite{NeWS}, Emerald~\cite{Emerald}, \uC~\cite{Buhr92a} and Java~\cite{Java}---provide monitors as explicit language constructs. In addition, operating-system kernels and device drivers have a monitor-like structure, although they often use lower-level primitives such as semaphores or locks to simulate monitors. For these reasons, this project proposes monitors as the core concurrency -construct.10 An approach that is worth mentioning because it is gaining in popularity is transactional memory~\cite{Herlihy93}. While this approach is even pursued by system languages like \CC~\cite{Cpp-Transactions}, the performance and feature set is currently too restrictive to be the main concurrency paradigm for system languages, which is why it was rejected as the core paradigm for concurrency in \CFA. 11 12 One of the most natural, elegant, and efficient mechanisms for synchronization and communication, especially for shared-memory systems, is the \emph{monitor}. Monitors were first proposed by Brinch Hansen~\cite{Hansen73} and later described and extended by C.A.R.~Hoare~\cite{Hoare74}. Many programming languages---e.g., Concurrent Pascal~\cite{ConcurrentPascal}, Mesa~\cite{Mesa}, Modula~\cite{Modula-2}, Turing~\cite{Turing:old}, Modula-3~\cite{Modula-3}, NeWS~\cite{NeWS}, Emerald~\cite{Emerald}, \uC~\cite{Buhr92a} and Java~\cite{Java}---provide monitors as explicit language constructs. In addition, operating-system kernels and device drivers have a monitor-like structure, although they often use lower-level primitives such as semaphores or locks to simulate monitors. For these reasons, this project proposes monitors as the core concurrency construct. 13 13 14 14 \section{Basics} … … 19 19 20 20 \subsection{Synchronization} 21 As for mutual-exclusion, low-level synchronization primitives often offer good performance and good flexibility at the cost of ease of use. Again, higher-level mechanism often simplify usage by adding better coupling between synchronization and data, e.g.: message passing, or offering a simpler solution to otherwise involved challenges. As mentioned above, synchronization can be expressed as guaranteeing that event \textit{X} always happens before \textit{Y}. Most of the time, synchronization happens within a critical section, where threads must acquire mutual-exclusion in a certain order. However, it may also be desirable to guarantee that event \textit{Z} does not occur between \textit{X} and \textit{Y}. Not satisfying this property is called barging. For example, where event \textit{X} tries to effect event \textit{Y} but another thread acquires the critical section and emits \textit{Z} before \textit{Y}. The classic example is the thread that finishes using a resource and unblocks a thread waiting to use the resource, but the unblocked thread must compete again to acquire the resource. Preventing or detecting barging is an involved challenge with low-level locks, which can be made much easier by higher-level constructs. This challenge is often split into two different methods, barging avoidance and barging prevention. Algorithms that use flag variables to detect barging threads are said to be using barging avoidance, while algorithms that baton-pass locks~\cite{Andrews89} between threads instead of releasing the locks are said to be using barging prevention.21 As for mutual-exclusion, low-level synchronization primitives often offer good performance and good flexibility at the cost of ease of use. Again, higher-level mechanisms often simplify usage by adding better coupling between synchronization and data, e.g.: message passing, or offering a simpler solution to otherwise involved challenges. As mentioned above, synchronization can be expressed as guaranteeing that event \textit{X} always happens before \textit{Y}. Most of the time, synchronization happens within a critical section, where threads must acquire mutual-exclusion in a certain order. However, it may also be desirable to guarantee that event \textit{Z} does not occur between \textit{X} and \textit{Y}. Not satisfying this property is called barging. For example, where event \textit{X} tries to effect event \textit{Y} but another thread acquires the critical section and emits \textit{Z} before \textit{Y}. The classic example is the thread that finishes using a resource and unblocks a thread waiting to use the resource, but the unblocked thread must compete again to acquire the resource. Preventing or detecting barging is an involved challenge with low-level locks, which can be made much easier by higher-level constructs. This challenge is often split into two different methods, barging avoidance and barging prevention. Algorithms that use flag variables to detect barging threads are said to be using barging avoidance, while algorithms that baton-pass locks~\cite{Andrews89} between threads instead of releasing the locks are said to be using barging prevention. 22 22 23 23 % ====================================================================== … … 26 26 % ====================================================================== 27 27 % ====================================================================== 28 A monitor is a set of routines that ensure mutual exclusion when accessing shared state. This concept is generally associated with Object-Oriented Languages like Java~\cite{Java} or \uC~\cite{uC++book} but does not strictly require OO semantics. The only requirement sis the ability to declare a handle to a shared object and a set of routines that act on it :28 A monitor is a set of routines that ensure mutual exclusion when accessing shared state. This concept is generally associated with Object-Oriented Languages like Java~\cite{Java} or \uC~\cite{uC++book} but does not strictly require OO semantics. The only requirement is the ability to declare a handle to a shared object and a set of routines that act on it : 29 29 \begin{cfacode} 30 30 typedef /*some monitor type*/ monitor; … … 39 39 % ====================================================================== 40 40 % ====================================================================== 41 \subsection{Call semantics} \label{call}41 \subsection{Call Semantics} \label{call} 42 42 % ====================================================================== 43 43 % ====================================================================== … … 103 103 int f5(graph(monitor*) & mutex m); 104 104 \end{cfacode} 105 The problem is to identify which object(s) should be acquired. Furthermore, each object needs to be acquired only once. In the case of simple routines like \code{f1} and \code{f2} it is easy to identify an exhaustive list of objects to acquire on entry. Adding indirections (\code{f3}) still allows the compiler and programmer to identify which object is acquired. However, adding in arrays (\code{f4}) makes it much harder. Array lengths are not necessarily known in C, and even then, making sure objects are only acquired once becomes none-trivial. This problem can be extended to absurd limits like \code{f5}, which uses a graph of monitors. To make the issue tractable, this project imposes the requirement that a routine may only acquire one monitor per parameter and it must be the type of the parameter with at most one level of indirection (ignoring potential qualifiers). Also note that while routine \code{f3} can be supported, meaning that monitor \code{**m} is be acquired, passing an array to this routine would be typesafe and yet result in undefined behaviour because only the first element of the array is acquired. However, this ambiguity is part of the C type-system with respects to arrays. For this reason, \code{mutex} is disallowed in the context where arrays may be passed:105 The problem is to identify which object(s) should be acquired. Furthermore, each object needs to be acquired only once. In the case of simple routines like \code{f1} and \code{f2} it is easy to identify an exhaustive list of objects to acquire on entry. Adding indirections (\code{f3}) still allows the compiler and programmer to identify which object is acquired. However, adding in arrays (\code{f4}) makes it much harder. Array lengths are not necessarily known in C, and even then, making sure objects are only acquired once becomes none-trivial. This problem can be extended to absurd limits like \code{f5}, which uses a graph of monitors. To make the issue tractable, this project imposes the requirement that a routine may only acquire one monitor per parameter and it must be the type of the parameter with at most one level of indirection (ignoring potential qualifiers). Also note that while routine \code{f3} can be supported, meaning that monitor \code{**m} is acquired, passing an array to this routine would be type-safe and yet result in undefined behaviour because only the first element of the array is acquired. However, this ambiguity is part of the C type-system with respects to arrays. For this reason, \code{mutex} is disallowed in the context where arrays may be passed: 106 106 \begin{cfacode} 107 107 int f1(monitor& mutex m); //Okay : recommended case … … 137 137 The \gls{multi-acq} monitor lock allows a monitor lock to be acquired by both \code{bar} or \code{baz} and acquired again in \code{foo}. In the calls to \code{bar} and \code{baz} the monitors are acquired in opposite order. 138 138 139 However, such use leads to the lock acquiring order problem . In the example above, the user uses implicit ordering in the case of function \code{foo} but explicit ordering in the case of \code{bar} and \code{baz}. This subtle difference means that calling these routines concurrently may lead to deadlock and is therefore Undefined Behavior. As shown~\cite{Lister77}, solving this problem requires:139 However, such use leads to the lock acquiring order problems. In the example above, the user uses implicit ordering in the case of function \code{foo} but explicit ordering in the case of \code{bar} and \code{baz}. This subtle difference means that calling these routines concurrently may lead to deadlock and is therefore Undefined Behaviour. As shown~\cite{Lister77}, solving this problem requires: 140 140 \begin{enumerate} 141 141 \item Dynamically tracking of the monitor-call order. … … 155 155 } 156 156 \end{cfacode} 157 This example shows a trivial solution to the bank-account transfer -problem~\cite{BankTransfer}. Without \gls{multi-acq} and \gls{bulk-acq}, the solution to this problem is much more involved and requires careful engineering.157 This example shows a trivial solution to the bank-account transfer problem~\cite{BankTransfer}. Without \gls{multi-acq} and \gls{bulk-acq}, the solution to this problem is much more involved and requires careful engineering. 158 158 159 159 \subsection{\code{mutex} statement} \label{mutex-stmt} 160 160 161 The call semantics discussed above have one software engineering issue, only a named routine can acquire the mutual-exclusion of a set of monitor. \CFA offers the \code{mutex} statement to work around the need for unnecessary names, avoiding a major software engineering problem~\cite{2FTwoHardThings}. Table \ref{lst:mutex-stmt} shows an example of the \code{mutex} statement, which introduces a new scope in which the mutual-exclusion of a set of monitor is acquired. Beyond naming, the \code{mutex} statement has no semantic difference from a routine call with \code{mutex} parameters.161 The call semantics discussed above have one software engineering issue, only a named routine can acquire the mutual-exclusion of a set of monitor. \CFA offers the \code{mutex} statement to work around the need for unnecessary names, avoiding a major software engineering problem~\cite{2FTwoHardThings}. Table \ref{lst:mutex-stmt} shows an example of the \code{mutex} statement, which introduces a new scope in which the mutual-exclusion of a set of monitor is acquired. Beyond naming, the \code{mutex} statement has no semantic difference from a routine call with \code{mutex} parameters. 162 162 163 163 \begin{table} … … 196 196 % ====================================================================== 197 197 % ====================================================================== 198 Once the call semantics are established, the next step is to establish data semantics. Indeed, until now a monitor is used simply as a generic handle but in most cases monitors contain shared data. This data should be intrinsic to the monitor declaration to prevent any accidental use of data without its appropriate protection. For example, here is a complete version of the counter show edin section \ref{call}:198 Once the call semantics are established, the next step is to establish data semantics. Indeed, until now a monitor is used simply as a generic handle but in most cases monitors contain shared data. This data should be intrinsic to the monitor declaration to prevent any accidental use of data without its appropriate protection. For example, here is a complete version of the counter shown in section \ref{call}: 199 199 \begin{cfacode} 200 200 monitor counter_t { … … 227 227 % ====================================================================== 228 228 % ====================================================================== 229 \section{Internal scheduling} \label{intsched}229 \section{Internal Scheduling} \label{intsched} 230 230 % ====================================================================== 231 231 % ====================================================================== 232 232 In addition to mutual exclusion, the monitors at the core of \CFA's concurrency can also be used to achieve synchronization. With monitors, this capability is generally achieved with internal or external scheduling as in~\cite{Hoare74}. Since internal scheduling within a single monitor is mostly a solved problem, this thesis concentrates on extending internal scheduling to multiple monitors. Indeed, like the \gls{bulk-acq} semantics, internal scheduling extends to multiple monitors in a way that is natural to the user but requires additional complexity on the implementation side. 233 233 234 First, here is a simple example of internal -scheduling :234 First, here is a simple example of internal scheduling : 235 235 236 236 \begin{cfacode} … … 253 253 } 254 254 \end{cfacode} 255 There are two details to note here. First, the \code{signal} is a delayed operation, it only unblocks the waiting thread when it reaches the end of the critical section. This semantic is needed to respect mutual-exclusion, i.e., the signaller and signalled thread cannot be in the monitor simultaneously. The alternative is to return immediately after the call to \code{signal}, which is significantly more restrictive. Second, in \CFA, while it is common to store a \code{condition} as a field of the monitor, a \code{condition} variable can be stored/created independently of a monitor. Here routine \code{foo} waits for the \code{signal} from \code{bar} before making further progress, e ffectively ensuring a basic ordering.256 257 An important aspect of the implementation is that \CFA does not allow barging, which means that once function \code{bar} releases the monitor, \code{foo} is guaranteed to resume immediately after (unless some other thread waited on the same condition). This guarantee offers the benefit of not having to loop around waits to recheck that a condition is met. The main reason \CFA offers this guarantee is that users can easily introduce barging if it becomes a necessity but adding barging prevention or barging avoidance is more involved without language support. Supporting barging prevention as well as extending internal scheduling to multiple monitors is the main source of complexity in the design of \CFA concurrency.258 259 % ====================================================================== 260 % ====================================================================== 261 \subsection{Internal Scheduling - multi monitor}262 % ====================================================================== 263 % ====================================================================== 264 It is easier to understand the problem of multi-monitor scheduling using a series of pseudo-code examples. Note that for simplicity in the following snippets of pseudo-code, waiting and signalling is done using an implicit condition variable, like Java built-in monitors. Indeed, \code{wait} statements always use the implicit condition variable as parameter and explicitly names the monitors (A and B) associated with the condition. Note that in \CFA, condition variables are tied to a \emph{group} of monitors on first use (called branding), which means that using internal scheduling with distinct sets of monitors requires one condition variable per set of monitors. The example below shows the simple case of having two threads (one for each column) and a single monitor A.255 There are two details to note here. First, the \code{signal} is a delayed operation, it only unblocks the waiting thread when it reaches the end of the critical section. This semantic is needed to respect mutual-exclusion, i.e., the signaller and signalled thread cannot be in the monitor simultaneously. The alternative is to return immediately after the call to \code{signal}, which is significantly more restrictive. Second, in \CFA, while it is common to store a \code{condition} as a field of the monitor, a \code{condition} variable can be stored/created independently of a monitor. Here routine \code{foo} waits for the \code{signal} from \code{bar} before making further progress, ensuring a basic ordering. 256 257 An important aspect of the implementation is that \CFA does not allow barging, which means that once function \code{bar} releases the monitor, \code{foo} is guaranteed to resume immediately after (unless some other thread waited on the same condition). This guarantee offers the benefit of not having to loop around waits to recheck that a condition is met. The main reason \CFA offers this guarantee is that users can easily introduce barging if it becomes a necessity but adding barging prevention or barging avoidance is more involved without language support. Supporting barging prevention as well as extending internal scheduling to multiple monitors is the main source of complexity in the design and implementation of \CFA concurrency. 258 259 % ====================================================================== 260 % ====================================================================== 261 \subsection{Internal Scheduling - Multi-Monitor} 262 % ====================================================================== 263 % ====================================================================== 264 It is easier to understand the problem of multi-monitor scheduling using a series of pseudo-code examples. Note that for simplicity in the following snippets of pseudo-code, waiting and signalling is done using an implicit condition variable, like Java built-in monitors. Indeed, \code{wait} statements always use the implicit condition variable as parameters and explicitly names the monitors (A and B) associated with the condition. Note that in \CFA, condition variables are tied to a \emph{group} of monitors on first use (called branding), which means that using internal scheduling with distinct sets of monitors requires one condition variable per set of monitors. The example below shows the simple case of having two threads (one for each column) and a single monitor A. 265 265 266 266 \begin{multicols}{2} … … 297 297 \end{pseudo} 298 298 \end{multicols} 299 This version uses \gls{bulk-acq} (denoted using the {\sf\&} symbol), but the presence of multiple monitors does not add a particularly new meaning. Synchronization happens between the two threads in exactly the same way and order. The only difference is that mutual exclusion covers moremonitors. On the implementation side, handling multiple monitors does add a degree of complexity as the next few examples demonstrate.300 301 While deadlock issues can occur when nesting monitors, these issues are only a symptom of the fact that locks, and by extension monitors, are not perfectly composable. For monitors, a well 299 \noindent This version uses \gls{bulk-acq} (denoted using the {\sf\&} symbol), but the presence of multiple monitors does not add a particularly new meaning. Synchronization happens between the two threads in exactly the same way and order. The only difference is that mutual exclusion covers a group of monitors. On the implementation side, handling multiple monitors does add a degree of complexity as the next few examples demonstrate. 300 301 While deadlock issues can occur when nesting monitors, these issues are only a symptom of the fact that locks, and by extension monitors, are not perfectly composable. For monitors, a well-known deadlock problem is the Nested Monitor Problem~\cite{Lister77}, which occurs when a \code{wait} is made by a thread that holds more than one monitor. For example, the following pseudo-code runs into the nested-monitor problem : 302 302 \begin{multicols}{2} 303 303 \begin{pseudo} … … 319 319 \end{pseudo} 320 320 \end{multicols} 321 The \code{wait} only releases monitor \code{B} so the signalling thread cannot acquire monitor \code{A} to get to the \code{signal}. Attempting release of all acquired monitors at the \code{wait} introduces a different set of problems, such as releasing monitor \code{C}, which has nothing to do with the \code{signal}.321 \noindent The \code{wait} only releases monitor \code{B} so the signalling thread cannot acquire monitor \code{A} to get to the \code{signal}. Attempting release of all acquired monitors at the \code{wait} introduces a different set of problems, such as releasing monitor \code{C}, which has nothing to do with the \code{signal}. 322 322 323 323 However, for monitors as for locks, it is possible to write a program using nesting without encountering any problems if nesting is done correctly. For example, the next pseudo-code snippet acquires monitors {\sf A} then {\sf B} before waiting, while only acquiring {\sf B} when signalling, effectively avoiding the Nested Monitor Problem~\cite{Lister77}. … … 343 343 \end{multicols} 344 344 345 This simple refactoring may not be possible, forcing more complex restructuring.346 347 % ====================================================================== 348 % ====================================================================== 349 \subsection{Internal Scheduling - in depth}350 % ====================================================================== 351 % ====================================================================== 352 353 A larger example is presented to show complex issues for \gls{bulk-acq} and all the implementation options are analyzed. Listing \ref{lst:int-bulk-pseudo} shows an example where \gls{bulk-acq} adds a significant layer of complexity to the internal signalling semantics, and listing \ref{lst:int-bulk-cfa} shows the corresponding \CFA code to implement the pseudo-code in listing \ref{lst:int-bulk-pseudo}. For the purpose of translating the given pseudo-code into \CFA-code, any method of introducing a monitor is acceptable, e.g., \code{mutex} parameter , global variables, pointer parametersor using locals with the \code{mutex}-statement.345 \noindent However, this simple refactoring may not be possible, forcing more complex restructuring. 346 347 % ====================================================================== 348 % ====================================================================== 349 \subsection{Internal Scheduling - In Depth} 350 % ====================================================================== 351 % ====================================================================== 352 353 A larger example is presented to show complex issues for \gls{bulk-acq} and all the implementation options are analyzed. Listing \ref{lst:int-bulk-pseudo} shows an example where \gls{bulk-acq} adds a significant layer of complexity to the internal signalling semantics, and listing \ref{lst:int-bulk-cfa} shows the corresponding \CFA code to implement the pseudo-code in listing \ref{lst:int-bulk-pseudo}. For the purpose of translating the given pseudo-code into \CFA-code, any method of introducing a monitor is acceptable, e.g., \code{mutex} parameters, global variables, pointer parameters, or using locals with the \code{mutex}-statement. 354 354 355 355 \begin{figure}[!t] … … 376 376 |\label{line:signal1}|signal A & B 377 377 //Code Section 7 378 release A & B378 |\label{line:releaseFirst}|release A & B 379 379 //Code Section 8 380 380 |\label{line:lastRelease}|release A … … 446 446 \end{figure} 447 447 448 The complexity begins at code sections 4 and 8, which are where the existing semantics of internal scheduling need to be extended for multiple monitors. The root of the problem is that \gls{bulk-acq} is used in a context where one of the monitors is already acquired and is why it is important to define the behaviour of the previous pseudo-code. When the signaller thread reaches the location where it should ``release \code{A & B}'' (listing \ref{lst:int-bulk-pseudo} line \ref{line:signal1}), it must actually transfer ownership of monitor \code{B} to the waiting thread. This ownership transfer is required in order to prevent barging into \code{B} by another thread, since both the signalling and signalled threads still need monitor \code{A}. There are three options. 449 450 \subsubsection{Delaying signals} 451 The obvious solution to solve the problem of multi-monitor scheduling is to keep ownership of all locks until the last lock is ready to be transferred. It can be argued that that moment is when the last lock is no longer needed because this semantics fits most closely to the behaviour of single-monitor scheduling. This solution has the main benefit of transferring ownership of groups of monitors, which simplifies the semantics from multiple objects to a single group of objects, effectively making the existing single-monitor semantic viable by simply changing monitors to monitor groups. The naive approach to this solution is to only release monitors once every monitor in a group can be released. However, since some monitors are never released (i.e., the monitor of a thread), this interpretation means groups can grow but may never shrink. A more interesting interpretation is to only transfer groups as one but to recreate the groups on every operation, i.e., limit ownership transfer to one per \code{signal}/\code{release}. 452 453 However, this solution can become much more complicated depending on what is executed while secretly holding B (listing \ref{lst:int-secret} line \ref{line:secret}). 454 The goal in this solution is to avoid the need to transfer ownership of a subset of the condition monitors. However, listing \ref{lst:dependency} shows a slightly different example where a third thread is waiting on monitor \code{A}, using a different condition variable. Because the third thread is signalled when secretly holding \code{B}, the goal becomes unreachable. Depending on the order of signals (listing \ref{lst:dependency} line \ref{line:signal-ab} and \ref{line:signal-a}) two cases can happen : 448 The complexity begins at code sections 4 and 8 in listing \ref{lst:int-bulk-pseudo}, which are where the existing semantics of internal scheduling needs to be extended for multiple monitors. The root of the problem is that \gls{bulk-acq} is used in a context where one of the monitors is already acquired and is why it is important to define the behaviour of the previous pseudo-code. When the signaller thread reaches the location where it should ``release \code{A & B}'' (listing \ref{lst:int-bulk-pseudo} line \ref{line:releaseFirst}), it must actually transfer ownership of monitor \code{B} to the waiting thread. This ownership transfer is required in order to prevent barging into \code{B} by another thread, since both the signalling and signalled threads still need monitor \code{A}. There are three options. 449 450 \subsubsection{Delaying Signals} 451 The obvious solution to solve the problem of multi-monitor scheduling is to keep ownership of all locks until the last lock is ready to be transferred. It can be argued that that moment is when the last lock is no longer needed because this semantics fits most closely to the behaviour of single-monitor scheduling. This solution has the main benefit of transferring ownership of groups of monitors, which simplifies the semantics from multiple objects to a single group of objects, effectively making the existing single-monitor semantic viable by simply changing monitors to monitor groups. This solution releases the monitors once every monitor in a group can be released. However, since some monitors are never released (i.e., the monitor of a thread), this interpretation means a group might never be released. A more interesting interpretation is to transfer the group until it can be disbanded, which means the group is not passed further and a thread can retain its locks. 452 453 However, listing \ref{lst:int-secret} shows this solution can become much more complicated depending on what is executed while secretly holding B at line \ref{line:secret}, while avoiding the need to transfer ownership of a subset of the condition monitors. Listing \ref{lst:dependency} shows a slightly different example where a third thread is waiting on monitor \code{A}, using a different condition variable. Because the third thread is signalled when secretly holding \code{B}, the goal becomes unreachable. Depending on the order of signals (listing \ref{lst:dependency} line \ref{line:signal-ab} and \ref{line:signal-a}) two cases can happen : 455 454 456 455 \paragraph{Case 1: thread $\alpha$ goes first.} In this case, the problem is that monitor \code{A} needs to be passed to thread $\beta$ when thread $\alpha$ is done with it. … … 460 459 Note that ordering is not determined by a race condition but by whether signalled threads are enqueued in FIFO or FILO order. However, regardless of the answer, users can move line \ref{line:signal-a} before line \ref{line:signal-ab} and get the reverse effect for listing \ref{lst:dependency}. 461 460 462 In both cases, the threads need to be able to distinguish, on a per monitor basis, which ones need to be released and which ones need to be transferred, which means monitors cannot be handled as a single homogeneous groupand therefore effectively precludes this approach.461 In both cases, the threads need to be able to distinguish, on a per monitor basis, which ones need to be released and which ones need to be transferred, which means knowing when to dispand a group becomes complex and inefficient (see next section) and therefore effectively precludes this approach. 463 462 464 463 \subsubsection{Dependency graphs} … … 502 501 \end{figure} 503 502 504 In the listing \ref{lst:int-bulk-pseudo} pseudo-code, there is a solution that satisfies both barging prevention and mutual exclusion. If ownership of both monitors is transferred to the waiter when the signaller releases \code{A & B} and then the waiter transfers back ownership of \code{A} back to the signaller when it releases it, then the problem is solved (\code{B} is no longer in use at this point). Dynamically finding the correct order is therefore the second possible solution. The problem is effectively resolving a dependency graph of ownership requirements. Here even the simplest of code snippets requires two transfers and it seems to increase in a manner close to polynomial. This complexity explosion can be seen in listing \ref{lst:explosion}, which is just a direct extension to three monitors, requires at least three ownership transfer and has multiple solutions. Furthermore, the presence of multiple solutions for ownership transfer can cause deadlock problems if a specific solution is not consistently picked; In the same way that multiple lock acquiring order can cause deadlocks.503 In listing \ref{lst:int-bulk-pseudo}, there is a solution that satisfies both barging prevention and mutual exclusion. If ownership of both monitors is transferred to the waiter when the signaller releases \code{A & B} and then the waiter transfers back ownership of \code{A} back to the signaller when it releases it, then the problem is solved (\code{B} is no longer in use at this point). Dynamically finding the correct order is therefore the second possible solution. The problem is effectively resolving a dependency graph of ownership requirements. Here even the simplest of code snippets requires two transfers and it seems to increase in a manner close to polynomial. This complexity explosion can be seen in listing \ref{lst:explosion}, which is just a direct extension to three monitors, requires at least three ownership transfer and has multiple solutions. Furthermore, the presence of multiple solutions for ownership transfer can cause deadlock problems if a specific solution is not consistently picked; In the same way that multiple lock acquiring order can cause deadlocks. 505 504 \begin{figure} 506 505 \begin{multicols}{2} … … 531 530 \end{figure} 532 531 533 Listing \ref{lst:dependency} is the three threads example used in the delayed signals solution. Figure \ref{fig:dependency} shows the corresponding dependency graph that results, where every node is a statement of one of the three threads, and the arrows the dependency of that statement (e.g., $\alpha1$ must happen before $\alpha2$). The extra challenge is that this dependency graph is effectively post-mortem, but the runtime system needs to be able to build and solve these graphs as the dependency unfolds. Resolving dependency graphs being a complex and expensive endeavour, this solution is not the preferred one.534 535 \subsubsection{Partial signalling} \label{partial-sig}536 Finally, the solution that is chosen for \CFA is to use partial signalling. Again using listing \ref{lst:int-bulk-pseudo}, the partial signalling solution transfers ownership of monitor \code{B} at lines \ref{line:signal1} to the waiter but does not wake the waiting thread since it is still using monitor \code{A}. Only when it reaches line \ref{line:lastRelease} does it actually wake up the waiting thread. This solution has the benefit that complexity is encapsulated into only two actions, passing monitors to the next owner when they should be released and conditionally waking threads if all conditions are met. This solution has a much simpler implementation than a dependency graph solving algorithm, which is why it was chosen. Furthermore, after being fully implemented, this solution does not appear to have any significant downsides.537 538 While listing \ref{lst:dependency} is a complicated problem for previous solutions, it can be solved easily with partial signalling:532 Given the three threads example in listing \ref{lst:dependency}, figure \ref{fig:dependency} shows the corresponding dependency graph that results, where every node is a statement of one of the three threads, and the arrows the dependency of that statement (e.g., $\alpha1$ must happen before $\alpha2$). The extra challenge is that this dependency graph is effectively post-mortem, but the runtime system needs to be able to build and solve these graphs as the dependency unfolds. Resolving dependency graphs being a complex and expensive endeavour, this solution is not the preferred one. 533 534 \subsubsection{Partial Signalling} \label{partial-sig} 535 Finally, the solution that is chosen for \CFA is to use partial signalling. Again using listing \ref{lst:int-bulk-pseudo}, the partial signalling solution transfers ownership of monitor \code{B} at lines \ref{line:signal1} to the waiter but does not wake the waiting thread since it is still using monitor \code{A}. Only when it reaches line \ref{line:lastRelease} does it actually wake up the waiting thread. This solution has the benefit that complexity is encapsulated into only two actions, passing monitors to the next owner when they should be released and conditionally waking threads if all conditions are met. This solution has a much simpler implementation than a dependency graph solving algorithms, which is why it was chosen. Furthermore, after being fully implemented, this solution does not appear to have any significant downsides. 536 537 Using partial signalling, listing \ref{lst:dependency} can be solved easily : 539 538 \begin{itemize} 540 539 \item When thread $\gamma$ reaches line \ref{line:release-ab} it transfers monitor \code{B} to thread $\alpha$ and continues to hold monitor \code{A}. 541 540 \item When thread $\gamma$ reaches line \ref{line:release-a} it transfers monitor \code{A} to thread $\beta$ and wakes it up. 542 541 \item When thread $\beta$ reaches line \ref{line:release-aa} it transfers monitor \code{A} to thread $\alpha$ and wakes it up. 543 \item Problem solved!544 542 \end{itemize} 545 543 … … 654 652 An important note is that, until now, signalling a monitor was a delayed operation. The ownership of the monitor is transferred only when the monitor would have otherwise been released, not at the point of the \code{signal} statement. However, in some cases, it may be more convenient for users to immediately transfer ownership to the thread that is waiting for cooperation, which is achieved using the \code{signal_block} routine. 655 653 656 The example in table \ref{tbl:datingservice} highlights the difference in behaviour. As mentioned, \code{signal} only transfers ownership once the current critical section exits, this behaviour requires additional synchronization when a two-way handshake is needed. To avoid this explicit synchronization, the \code{condition} type offers the \code{signal_block} routine, which handles the two-way handshake as shown in the example. This feature removes the need for a second condition variables and simplifies programming. Like every other monitor semantic, \code{signal_block} uses barging prevention, which means mutual-exclusion is baton-passed both on the frond -end and the back-end of the call to \code{signal_block}, meaning no other thread can acquire the monitor either before or after the call.654 The example in table \ref{tbl:datingservice} highlights the difference in behaviour. As mentioned, \code{signal} only transfers ownership once the current critical section exits, this behaviour requires additional synchronization when a two-way handshake is needed. To avoid this explicit synchronization, the \code{condition} type offers the \code{signal_block} routine, which handles the two-way handshake as shown in the example. This feature removes the need for a second condition variables and simplifies programming. Like every other monitor semantic, \code{signal_block} uses barging prevention, which means mutual-exclusion is baton-passed both on the frond end and the back end of the call to \code{signal_block}, meaning no other thread can acquire the monitor either before or after the call. 657 655 658 656 % ====================================================================== … … 723 721 \end{tabular} 724 722 \end{center} 725 This method is more constrained and explicit, which helps users reduce the non-deterministic nature of concurrency. Indeed, as the following examples demonstrates, external scheduling allows users to wait for events from other threads without the concern of unrelated events occurring. External scheduling can generally be done either in terms of control flow (e.g., Ada with \code{accept}, \uC with \code{_Accept}) or in terms of data (e.g., Go with channels). Of course, both of these paradigms have their own strengths and weaknesses, but for this project control-flow semantics w erechosen to stay consistent with the rest of the languages semantics. Two challenges specific to \CFA arise when trying to add external scheduling with loose object definitions and multiple-monitor routines. The previous example shows a simple use \code{_Accept} versus \code{wait}/\code{signal} and its advantages. Note that while other languages often use \code{accept}/\code{select} as the core external scheduling keyword, \CFA uses \code{waitfor} to prevent name collisions with existing socket \acrshort{api}s.726 727 For the \code{P} member above using internal scheduling, the call to \code{wait} only guarantees that \code{V} is the last routine to access the monitor, allowing a third routine, say \code{isInUse()}, acquire mutual exclusion several times while routine \code{P} is waiting. On the other hand, external scheduling guarantees that while routine \code{P} is waiting, no routine otherthan \code{V} can acquire the monitor.728 729 % ====================================================================== 730 % ====================================================================== 731 \subsection{Loose object definitions}732 % ====================================================================== 733 % ====================================================================== 734 In \uC, a monitor class declaration include ean exhaustive list of monitor operations. Since \CFA is not object oriented, monitors become both more difficult to implement and less clear for a user:723 This method is more constrained and explicit, which helps users reduce the non-deterministic nature of concurrency. Indeed, as the following examples demonstrates, external scheduling allows users to wait for events from other threads without the concern of unrelated events occurring. External scheduling can generally be done either in terms of control flow (e.g., Ada with \code{accept}, \uC with \code{_Accept}) or in terms of data (e.g., Go with channels). Of course, both of these paradigms have their own strengths and weaknesses, but for this project control-flow semantics was chosen to stay consistent with the rest of the languages semantics. Two challenges specific to \CFA arise when trying to add external scheduling with loose object definitions and multiple-monitor routines. The previous example shows a simple use \code{_Accept} versus \code{wait}/\code{signal} and its advantages. Note that while other languages often use \code{accept}/\code{select} as the core external scheduling keyword, \CFA uses \code{waitfor} to prevent name collisions with existing socket \acrshort{api}s. 724 725 For the \code{P} member above using internal scheduling, the call to \code{wait} only guarantees that \code{V} is the last routine to access the monitor, allowing a third routine, say \code{isInUse()}, acquire mutual exclusion several times while routine \code{P} is waiting. On the other hand, external scheduling guarantees that while routine \code{P} is waiting, no other routine than \code{V} can acquire the monitor. 726 727 % ====================================================================== 728 % ====================================================================== 729 \subsection{Loose Object Definitions} 730 % ====================================================================== 731 % ====================================================================== 732 In \uC, a monitor class declaration includes an exhaustive list of monitor operations. Since \CFA is not object oriented, monitors become both more difficult to implement and less clear for a user: 735 733 736 734 \begin{cfacode} … … 748 746 \end{cfacode} 749 747 750 Furthermore, external scheduling is an example where implementation constraints become visible from the interface. Here is the pseudo 748 Furthermore, external scheduling is an example where implementation constraints become visible from the interface. Here is the pseudo-code for the entering phase of a monitor: 751 749 \begin{center} 752 750 \begin{tabular}{l} … … 763 761 \end{tabular} 764 762 \end{center} 765 For the first two conditions, it is easy to implement a check that can evaluate the condition in a few instruction . However, a fast check for \pscode{monitor accepts me} is much harder to implement depending on the constraints put on the monitors. Indeed, monitors are often expressed as an entry queue and some acceptor queue as in the following figure:763 For the first two conditions, it is easy to implement a check that can evaluate the condition in a few instructions. However, a fast check for \pscode{monitor accepts me} is much harder to implement depending on the constraints put on the monitors. Indeed, monitors are often expressed as an entry queue and some acceptor queue as in the following figure: 766 764 767 765 \begin{figure}[H] … … 772 770 \end{figure} 773 771 774 There are other alternatives to these pictures, but in the case of this picture, implementing a fast accept check is relatively easy. Restricted to a fixed number of mutex members, N, the accept check reduces to updating a bitmask when the acceptor queue changes, a check that executes in a single instruction even with a fairly large number (e.g., 128) of mutex members. This approach requires a dense unique ordering of routines with an upper-bound and that ordering must be consistent across translation units. For OO languages these constraints are common, since objects only offer adding member routines consistently across translation units via inheritence. However, in \CFA users can extend objects with mutex routines that are only visible in certain translation unit. This means that establishing a program-wide dense-ordering among mutex routines can only be done in the program linking phase, and still could have issues when using dynamically shared objects.772 There are other alternatives to these pictures, but in the case of this picture, implementing a fast accept check is relatively easy. Restricted to a fixed number of mutex members, N, the accept check reduces to updating a bitmask when the acceptor queue changes, a check that executes in a single instruction even with a fairly large number (e.g., 128) of mutex members. This approach requires a unique dense ordering of routines with an upper-bound and that ordering must be consistent across translation units. For OO languages these constraints are common, since objects only offer adding member routines consistently across translation units via inheritance. However, in \CFA users can extend objects with mutex routines that are only visible in certain translation unit. This means that establishing a program-wide dense-ordering among mutex routines can only be done in the program linking phase, and still could have issues when using dynamically shared objects. 775 773 776 774 The alternative is to alter the implementation like this: 777 778 775 \begin{center} 779 776 {\resizebox{0.4\textwidth}{!}{\input{ext_monitor}}} 780 777 \end{center} 781 782 Here, the mutex routine called is associated with a thread on the entry queue while a list of acceptable routines is kept seperately. Generating a mask dynamically means that the storage for the mask information can vary between calls to \code{waitfor}, allowing for more flexibility and extensions. Storing an array of accepted function-pointers replaces the single instruction bitmask compare with dereferencing a pointer followed by a linear search. Furthermore, supporting nested external scheduling (e.g., listing \ref{lst:nest-ext}) may now require additional searches for the \code{waitfor} statement to check if a routine is already queued. 778 Here, the mutex routine called is associated with a thread on the entry queue while a list of acceptable routines is kept separate. Generating a mask dynamically means that the storage for the mask information can vary between calls to \code{waitfor}, allowing for more flexibility and extensions. Storing an array of accepted function pointers replaces the single instruction bitmask comparison with dereferencing a pointer followed by a linear search. Furthermore, supporting nested external scheduling (e.g., listing \ref{lst:nest-ext}) may now require additional searches for the \code{waitfor} statement to check if a routine is already queued. 783 779 784 780 \begin{figure} … … 797 793 \end{figure} 798 794 799 Note that in the second picture, tasks need to always keep track of the monitors associated with mutex routines, and the routine mask needs to have both a function pointer and a set of monitors, as is bediscussed in the next section. These details are omitted from the picture for the sake of simplicity.800 801 At this point, a decision must be made between flexibility and performance. Many design decisions in \CFA achieve both flexibility and performance, for example polymorphic routines add significant flexibility but inlining them means the optimizer can easily remove any runtime cost. Here however, the cost of flexibility cannot be trivially removed. In the end, the most flexible approach has been chosen since it allows users to write programs that would otherwise be hard to write. This decision is based on the assumption that writing fast but inflexible locks is closer to a solved problemsthan writing locks that are as flexible as external scheduling in \CFA.802 803 % ====================================================================== 804 % ====================================================================== 805 \subsection{Multi- monitor scheduling}806 % ====================================================================== 807 % ====================================================================== 808 809 External scheduling, like internal scheduling, becomes significantly more complex when introducing multi-monitor syntax. Even in the simplest possible case, some new semantics need to be established:795 Note that in the second picture, tasks need to always keep track of the monitors associated with mutex routines, and the routine mask needs to have both a function pointer and a set of monitors, as is discussed in the next section. These details are omitted from the picture for the sake of simplicity. 796 797 At this point, a decision must be made between flexibility and performance. Many design decisions in \CFA achieve both flexibility and performance, for example polymorphic routines add significant flexibility but inlining them means the optimizer can easily remove any runtime cost. Here, however, the cost of flexibility cannot be trivially removed. In the end, the most flexible approach has been chosen since it allows users to write programs that would otherwise be hard to write. This decision is based on the assumption that writing fast but inflexible locks is closer to a solved problem than writing locks that are as flexible as external scheduling in \CFA. 798 799 % ====================================================================== 800 % ====================================================================== 801 \subsection{Multi-Monitor Scheduling} 802 % ====================================================================== 803 % ====================================================================== 804 805 External scheduling, like internal scheduling, becomes significantly more complex when introducing multi-monitor syntax. Even in the simplest possible case, some new semantics needs to be established: 810 806 \begin{cfacode} 811 807 monitor M {}; … … 837 833 838 834 void g(M & mutex a, M & mutex b) { 839 //wait for call to f with argument a and b835 //wait for call to f with arguments a and b 840 836 waitfor(f, a, b); 841 837 } … … 870 866 % ====================================================================== 871 867 % ====================================================================== 872 \subsection{\code{waitfor} semantics}873 % ====================================================================== 874 % ====================================================================== 875 876 Syntactically, the \code{waitfor} statement takes a function identifier and a set of monitors. While the set of monitors can be any list of expression , the function name is more restricted because the compiler validates at compile time the validity of the function type and the parameters used with the \code{waitfor} statement. It checks that the set of monitors passed in matches the requirements for a function call. Listing \ref{lst:waitfor} shows various usageof the waitfor statement and which are acceptable. The choice of the function type is made ignoring any non-\code{mutex} parameter. One limitation of the current implementation is that it does not handle overloading but overloading is possible.868 \subsection{\code{waitfor} Semantics} 869 % ====================================================================== 870 % ====================================================================== 871 872 Syntactically, the \code{waitfor} statement takes a function identifier and a set of monitors. While the set of monitors can be any list of expressions, the function name is more restricted because the compiler validates at compile time the validity of the function type and the parameters used with the \code{waitfor} statement. It checks that the set of monitors passed in matches the requirements for a function call. Listing \ref{lst:waitfor} shows various usages of the waitfor statement and which are acceptable. The choice of the function type is made ignoring any non-\code{mutex} parameter. One limitation of the current implementation is that it does not handle overloading but overloading is possible. 877 873 \begin{figure} 878 874 \begin{cfacode}[caption={Various correct and incorrect uses of the waitfor statement},label={lst:waitfor}] … … 908 904 \end{figure} 909 905 910 Finally, for added flexibility, \CFA supports constructing a complex \code{waitfor} statement using the \code{or}, \code{timeout} and \code{else}. Indeed, multiple \code{waitfor} clauses can be chained together using \code{or}; this chain forms a single statement that uses baton -pass to any onefunction that fits one of the function+monitor set passed in. To enable users to tell which accepted function executed, \code{waitfor}s are followed by a statement (including the null statement \code{;}) or a compound statement, which is executed after the clause is triggered. A \code{waitfor} chain can also be followed by a \code{timeout}, to signify an upper bound on the wait, or an \code{else}, to signify that the call should be non-blocking, which checks for a matching function call already arrived and otherwise continues. Any and all of these clauses can be preceded by a \code{when} condition to dynamically toggle the accept clauses on or off based on some current state. Listing \ref{lst:waitfor2}, demonstrates several complex masks and some incorrect ones.906 Finally, for added flexibility, \CFA supports constructing a complex \code{waitfor} statement using the \code{or}, \code{timeout} and \code{else}. Indeed, multiple \code{waitfor} clauses can be chained together using \code{or}; this chain forms a single statement that uses baton pass to any function that fits one of the function+monitor set passed in. To enable users to tell which accepted function executed, \code{waitfor}s are followed by a statement (including the null statement \code{;}) or a compound statement, which is executed after the clause is triggered. A \code{waitfor} chain can also be followed by a \code{timeout}, to signify an upper bound on the wait, or an \code{else}, to signify that the call should be non-blocking, which checks for a matching function call already arrived and otherwise continues. Any and all of these clauses can be preceded by a \code{when} condition to dynamically toggle the accept clauses on or off based on some current state. Listing \ref{lst:waitfor2}, demonstrates several complex masks and some incorrect ones. 911 907 912 908 \begin{figure} … … 973 969 % ====================================================================== 974 970 % ====================================================================== 975 \subsection{Waiting for the destructor}976 % ====================================================================== 977 % ====================================================================== 978 An interesting use for the \code{waitfor} statement is destructor semantics. Indeed, the \code{waitfor} statement can accept any \code{mutex} routine, which includes the destructor (see section \ref{data}). However, with the semantics discussed until now, waiting for the destructor does not make any sense since using an object after its destructor is called is undefined behaviour. The simplest approach is to disallow \code{waitfor} on a destructor. However, a more expressive approach is to flip execution orderingwhen waiting for the destructor, meaning that waiting for the destructor allows the destructor to run after the current \code{mutex} routine, similarly to how a condition is signalled.971 \subsection{Waiting For The Destructor} 972 % ====================================================================== 973 % ====================================================================== 974 An interesting use for the \code{waitfor} statement is destructor semantics. Indeed, the \code{waitfor} statement can accept any \code{mutex} routine, which includes the destructor (see section \ref{data}). However, with the semantics discussed until now, waiting for the destructor does not make any sense since using an object after its destructor is called is undefined behaviour. The simplest approach is to disallow \code{waitfor} on a destructor. However, a more expressive approach is to flip ordering of execution when waiting for the destructor, meaning that waiting for the destructor allows the destructor to run after the current \code{mutex} routine, similarly to how a condition is signalled. 979 975 \begin{figure} 980 976 \begin{cfacode}[caption={Example of an executor which executes action in series until the destructor is called.},label={lst:dtor-order}] -
doc/proposals/concurrency/text/frontpgs.tex
r882ad37 r3ca540f 80 80 \begin{center}\textbf{Abstract}\end{center} 81 81 82 \CFA is a modern, non-object-oriented extension of the C programming language. This thesis serves as a definition and an implementation for the concurrency and parallelism \CFA offers. These features are created from scratch due to the lack of concurrency in ISO C. Monitors are introduced as a high-level tool for control-flow based concurrency. In addition, lightweight threads are also introduced into the language. Specifically, the contribution of this thesis is two-fold: it extends the existing semantics of monitors introduce by~\cite{Hoare74} to handle monitors in groups and also details the engineering effort needed to introduce these features as core language features. Indeed, these features are added in respect with expectations of C programmers and are backwards compatible as much as possible.82 \CFA is a modern, non-object-oriented extension of the C programming language. This thesis serves as a definition and an implementation for the concurrency and parallelism \CFA offers. These features are created from scratch due to the lack of concurrency in ISO C. Lightweight threads are introduced into the language. In addition, monitors are introduced as a high-level tool for control-flow based synchronization and mutual-exclusion. The main contributions of this thesis are two-fold: it extends the existing semantics of monitors introduce by~\cite{Hoare74} to handle monitors in groups and also details the engineering effort needed to introduce these features as core language features. Indeed, these features are added with respect to expectations of C programmers, and integrate with the \CFA type-system and other language features. 83 83 84 84 … … 95 95 I would like to thank Professors Martin Karsten and Gregor Richards, for reading my thesis and providing helpful feedback. 96 96 97 Thanks to Aaron Moss, Rob Schluntz and Andrew Beach for their work on the \CFA project as well as all the discussions which have help me concretize the ideas in this thesis.97 Thanks to Aaron Moss, Rob Schluntz and Andrew Beach for their work on the \CFA project as well as all the discussions which have helped me concretize the ideas in this thesis. 98 98 99 Finally, I acknowledge that this as been possible thanks to the financial help offered by the David R. Cheriton School of Computer Science and the corperate partnership with Huawei Ltd.99 Finally, I acknowledge that this has been possible thanks to the financial help offered by the David R. Cheriton School of Computer Science and the corporate partnership with Huawei Ltd. 100 100 101 101 \cleardoublepage -
doc/proposals/concurrency/text/future.tex
r882ad37 r3ca540f 1 1 2 2 \chapter{Conclusion} 3 As mentionned in the introduction, this thesis provides a minimal concurrency \acrshort{api} that is simple, efficient and usable as the basis for higher-level features. The approach presented is based on a lighweight thread system for parallelism which sits on top of clusters of processors. This M:N model is jugded to be both more efficient and allow more flexibility for users. Furthermore, this document introduces monitors as the main concurrency tool for users. This thesis also offers a novel approach which allows using multiple monitors at once without running into the Nested Monitor Problem~\cite{Lister77}. It also offers a full implmentation of the concurrency runtime wirtten enterily in \CFA, effectively the largest \CFA code base to date.3 This thesis has achieved a minimal concurrency \acrshort{api} that is simple, efficient and usable as the basis for higher-level features. The approach presented is based on a lightweight thread-system for parallelism, which sits on top of clusters of processors. This M:N model is judged to be both more efficient and allow more flexibility for users. Furthermore, this document introduces monitors as the main concurrency tool for users. This thesis also offers a novel approach allowing multiple monitors to be accessed simultaneously without running into the Nested Monitor Problem~\cite{Lister77}. It also offers a full implementation of the concurrency runtime written entirely in \CFA, effectively the largest \CFA code base to date. 4 4 5 5 … … 11 11 12 12 \subsection{Performance} \label{futur:perf} 13 This thesis presents a first implementation of the \CFA runtime. Therefore, there is still significant work to do to improve performance. Many of the data structures and algorithms will change in the future to more efficient versions. For example, \CFA the number of monitors in a single \gls{bulk-acq} is only bound by the stack size, this is probably unnecessarily generous. It may be possible that limiting the number helpincrease performance. However, it is not obvious that the benefit would be significant.13 This thesis presents a first implementation of the \CFA runtime. Therefore, there is still significant work to improve performance. Many of the data structures and algorithms may change in the future to more efficient versions. For example, the number of monitors in a single \gls{bulk-acq} is only bound by the stack size, this is probably unnecessarily generous. It may be possible that limiting the number helps increase performance. However, it is not obvious that the benefit would be significant. 14 14 15 15 \subsection{Flexible Scheduling} \label{futur:sched} 16 An important part of concurrency is scheduling. Different scheduling algorithm can affect performance (both in terms of average and variation). However, no single scheduler is optimal for all workloads and therefore there is value in being able to change the scheduler for given programs. One solution is to offer various tweaking options to users, allowing the scheduler to be adjusted to the requirements of the workload. However, in order to be truly flexible, it would be interesting to allow users to add arbitrary data and arbitrary scheduling algorithms to the scheduler. For example, a web server could attach Type-of-Service information to threads and have a ``ToS aware'' scheduling algorithm tailored to this specific web server. This path of flexible schedulers will be explored for \CFA.16 An important part of concurrency is scheduling. Different scheduling algorithms can affect performance (both in terms of average and variation). However, no single scheduler is optimal for all workloads and therefore there is value in being able to change the scheduler for given programs. One solution is to offer various tweaking options to users, allowing the scheduler to be adjusted to the requirements of the workload. However, in order to be truly flexible, it would be interesting to allow users to add arbitrary data and arbitrary scheduling algorithms. For example, a web server could attach Type-of-Service information to threads and have a ``ToS aware'' scheduling algorithm tailored to this specific web server. This path of flexible schedulers will be explored for \CFA. 17 17 18 18 \subsection{Non-Blocking IO} \label{futur:nbio} 19 While most of the parallelism tools are aimed at data parallelism and control-flow parallelism, many modern workloads are not bound on computation but on IO operations, a common case being web -servers and XaaS (anything as a service). These type of workloads often require significant engineering around amortizing costs of blocking IO operations. At its core, Non-Blocking IO is a operating system level feature that allows queuing IO operations (e.g., network operations) and registering for notifications instead of waiting for requests to complete. In this context, the role of the language makeNon-Blocking IO easily available and with low overhead. The current trend is to use asynchronous programming using tools like callbacks and/or futures and promises, which can be seen in frameworks like Node.js~\cite{NodeJs} for JavaScript, Spring MVC~\cite{SpringMVC} for Java and Django~\cite{Django} for Python. However, while these are valid solutions, they lead to code that is harder to read and maintain because it is much less linear.19 While most of the parallelism tools are aimed at data parallelism and control-flow parallelism, many modern workloads are not bound on computation but on IO operations, a common case being web servers and XaaS (anything as a service). These types of workloads often require significant engineering around amortizing costs of blocking IO operations. At its core, Non-Blocking IO is an operating system level feature that allows queuing IO operations (e.g., network operations) and registering for notifications instead of waiting for requests to complete. In this context, the role of the language makes Non-Blocking IO easily available and with low overhead. The current trend is to use asynchronous programming using tools like callbacks and/or futures and promises, which can be seen in frameworks like Node.js~\cite{NodeJs} for JavaScript, Spring MVC~\cite{SpringMVC} for Java and Django~\cite{Django} for Python. However, while these are valid solutions, they lead to code that is harder to read and maintain because it is much less linear. 20 20 21 \subsection{Other concurrency tools} \label{futur:tools}22 While monitors offer a flexible and powerful concurrent core for \CFA, other concurrency tools are also necessary for a complete multi-paradigm concurrency package. Example of such tools can include simple locks and condition variables, futures and promises~\cite{promises}, executors and actors. These additional features are useful when monitors offer a level of abstraction that is inadequate for certain tasks.21 \subsection{Other Concurrency Tools} \label{futur:tools} 22 While monitors offer a flexible and powerful concurrent core for \CFA, other concurrency tools are also necessary for a complete multi-paradigm concurrency package. Examples of such tools can include simple locks and condition variables, futures and promises~\cite{promises}, executors and actors. These additional features are useful when monitors offer a level of abstraction that is inadequate for certain tasks. 23 23 24 \subsection{Implicit threading} \label{futur:implcit}25 Simpler applications can benefit greatly from having implicit parallelism. That is, parallelism that does not rely on the user to write concurrency. This type of parallelism can be achieved both at the language level and at the library level. The canonical example of implicit parallelism is parallel for loops, which are the simplest example of a divide and conquer algorithm ~\cite{uC++book}. Table \ref{lst:parfor} shows three different code examples that accomplish point-wise sums of large arrays. Note that none of these examples explicitly declare any concurrency or parallelism objects.24 \subsection{Implicit Threading} \label{futur:implcit} 25 Simpler applications can benefit greatly from having implicit parallelism. That is, parallelism that does not rely on the user to write concurrency. This type of parallelism can be achieved both at the language level and at the library level. The canonical example of implicit parallelism is parallel for loops, which are the simplest example of a divide and conquer algorithms~\cite{uC++book}. Table \ref{lst:parfor} shows three different code examples that accomplish point-wise sums of large arrays. Note that none of these examples explicitly declare any concurrency or parallelism objects. 26 26 27 27 \begin{table} … … 108 108 \end{table} 109 109 110 Implicit parallelism is a restrictive solution and therefore has its limitations. However, it is a quick and simple approach to parallelism, which may very well be sufficient for smaller applications and reduces the amount of boiler -plate needed to start benefiting from parallelism in modern CPUs.110 Implicit parallelism is a restrictive solution and therefore has its limitations. However, it is a quick and simple approach to parallelism, which may very well be sufficient for smaller applications and reduces the amount of boilerplate needed to start benefiting from parallelism in modern CPUs. 111 111 112 112 -
doc/proposals/concurrency/text/internals.tex
r882ad37 r3ca540f 1 1 2 \chapter{Behind the scene}3 There are several challenges specific to \CFA when implementing concurrency. These challenges are a direct result of \gls{bulk-acq} and loose object -definitions. These two constraints are the root cause of most design decisions in the implementation. Furthermore, to avoid contention from dynamically allocating memory in a concurrent environment, the internal-scheduling design is (almost) entirely free of mallocs. This approach avoids the chicken and egg problem~\cite{Chicken} of having a memory allocator that relies on the threading system and a threading system that relies on the runtime. This extra goal means that memory management is a constant concern in the design of the system.4 5 The main memory concern for concurrency is queues. All blocking operations are made by parking threads onto queues and all queues are designed with intrusive nodes, where each no t has pre-allocated link fields for chaining, to avoid the need for memory allocation. Since several concurrency operations can use an unbound amount of memory (depending on \gls{bulk-acq}), statically defining information in the intrusive fields of threads is insufficient.The only way to use a variable amount of memory without requiring memory allocation is to pre-allocate large buffers of memory eagerly and store the information in these buffers. Conveniently, the callstack fits that description and is easy to use, which is why it is used heavily in the implementation of internal scheduling, particularly variable-length arrays. Since stack allocation is based around scope, the first step of the implementation is to identify the scopes that are available to store the information, and which of these can have a variable-length array. The threads and the condition both have a fixed amount of memory, while mutex-routines and the actual blocking callallow for an unbound amount, within the stack size.2 \chapter{Behind the Scenes} 3 There are several challenges specific to \CFA when implementing concurrency. These challenges are a direct result of \gls{bulk-acq} and loose object definitions. These two constraints are the root cause of most design decisions in the implementation. Furthermore, to avoid contention from dynamically allocating memory in a concurrent environment, the internal-scheduling design is (almost) entirely free of mallocs. This approach avoids the chicken and egg problem~\cite{Chicken} of having a memory allocator that relies on the threading system and a threading system that relies on the runtime. This extra goal means that memory management is a constant concern in the design of the system. 4 5 The main memory concern for concurrency is queues. All blocking operations are made by parking threads onto queues and all queues are designed with intrusive nodes, where each node has pre-allocated link fields for chaining, to avoid the need for memory allocation. Since several concurrency operations can use an unbound amount of memory (depending on \gls{bulk-acq}), statically defining information in the intrusive fields of threads is insufficient.The only way to use a variable amount of memory without requiring memory allocation is to pre-allocate large buffers of memory eagerly and store the information in these buffers. Conveniently, the call stack fits that description and is easy to use, which is why it is used heavily in the implementation of internal scheduling, particularly variable-length arrays. Since stack allocation is based on scopes, the first step of the implementation is to identify the scopes that are available to store the information, and which of these can have a variable-length array. The threads and the condition both have a fixed amount of memory, while mute routines and blocking calls allow for an unbound amount, within the stack size. 6 6 7 7 Note that since the major contributions of this thesis are extending monitor semantics to \gls{bulk-acq} and loose object definitions, any challenges that are not resulting of these characteristics of \CFA are considered as solved problems and therefore not discussed. … … 9 9 % ====================================================================== 10 10 % ====================================================================== 11 \section{Mutex routines}12 % ====================================================================== 13 % ====================================================================== 14 15 The first step towards the monitor implementation is simple mute x-routines. In the single monitor case, mutual-exclusion is done using the entry/exit procedure in listing \ref{lst:entry1}. The entry/exit procedures do not have to be extended to support multiple monitors. Indeed it is sufficient to enter/leave monitors one-by-one as long as the order is correct to prevent deadlock~\cite{Havender68}. In \CFA, ordering of monitor acquisition relies on memory ordering. This approach is sufficient because all objects are guaranteed to have distinct non-overlapping memory layouts and mutual-exclusion for a monitor is only defined for its lifetime, meaning that destroying a monitor while it is acquired is Undefined Behavior. When a mutex call is made, the concerned monitors are aggregated into a variable-length pointer-array and sorted based on pointer values. This array persists for the entire duration of the mutual-exclusion and its ordering reused extensively.11 \section{Mutex Routines} 12 % ====================================================================== 13 % ====================================================================== 14 15 The first step towards the monitor implementation is simple mute routines. In the single monitor case, mutual-exclusion is done using the entry/exit procedure in listing \ref{lst:entry1}. The entry/exit procedures do not have to be extended to support multiple monitors. Indeed it is sufficient to enter/leave monitors one-by-one as long as the order is correct to prevent deadlock~\cite{Havender68}. In \CFA, ordering of monitor acquisition relies on memory ordering. This approach is sufficient because all objects are guaranteed to have distinct non-overlapping memory layouts and mutual-exclusion for a monitor is only defined for its lifetime, meaning that destroying a monitor while it is acquired is Undefined Behaviour. When a mutex call is made, the concerned monitors are aggregated into a variable-length pointer array and sorted based on pointer values. This array persists for the entire duration of the mutual-exclusion and its ordering reused extensively. 16 16 \begin{figure} 17 17 \begin{multicols}{2} … … 109 109 \end{cfacode} 110 110 111 Both entry -point and \gls{callsite-locking} are feasible implementations. The current \CFA implementations uses entry-point locking because it requires less work when using \gls{raii}, effectively transferring the burden of implementation to object construction/destruction. It is harder to use \gls{raii} for call-site locking, as it does not necessarily have an existing scope that matches exactly the scope of the mutual exclusion, i.e.: the function body. For example, the monitor call can appear in the middle of an expression. Furthermore, entry-point locking requires less code generation since any useful routine multiple times, but there is only one entry-point for many call-sites.111 Both entry point and \gls{callsite-locking} are feasible implementations. The current \CFA implementation uses entry-point locking because it requires less work when using \gls{raii}, effectively transferring the burden of implementation to object construction/destruction. It is harder to use \gls{raii} for call-site locking, as it does not necessarily have an existing scope that matches exactly the scope of the mutual exclusion, i.e.: the function body. For example, the monitor call can appear in the middle of an expression. Furthermore, entry-point locking requires less code generation since any useful routine multiple times, but there is only one entry point for many call sites. 112 112 113 113 % ====================================================================== … … 117 117 % ====================================================================== 118 118 119 Figure \ref{fig:system1} shows a high-level picture if the \CFA runtime system in regards to concurrency. Each component of the picture is explained in detail sin the flowing sections.119 Figure \ref{fig:system1} shows a high-level picture if the \CFA runtime system in regards to concurrency. Each component of the picture is explained in detail in the flowing sections. 120 120 121 121 \begin{figure} … … 128 128 129 129 \subsection{Context Switching} 130 As mentioned in section \ref{coroutine}, coroutines are a stepping stone for implementing threading, because they share the same mechanism for context-switching between different stacks. To improve performance and simplicity, context-switching is implemented using the following assumption: all context-switches happen inside a specific function call. This assumption means that the context-switch only has to copy the callee-saved registers onto the stack and then switch the stack registers with the ones of the target coroutine/thread. Note that the instruction pointer can be left untouched since the context-switch is always inside the same function. Threads however do not context-switch between each other directly. They context-switch to the scheduler. This method is called a 2-step context-switch and has the advantage of having a clear distinction between user code and the kernel where scheduling and other system operationhappen. Obviously, this doubles the context-switch cost because threads must context-switch to an intermediate stack. The alternative 1-step context-switch uses the stack of the ``from'' thread to schedule and then context-switches directly to the ``to'' thread. However, the performance of the 2-step context-switch is still superior to a \code{pthread_yield} (see section \ref{results}). Additionally, for users in need for optimal performance, it is important to note that having a 2-step context-switch as the default does not prevent \CFA from offering a 1-step context-switch (akin to the Microsoft \code{SwitchToFiber}~\cite{switchToWindows} routine). This option is not currently present in \CFA but the changes required to add it are strictly additive.130 As mentioned in section \ref{coroutine}, coroutines are a stepping stone for implementing threading, because they share the same mechanism for context-switching between different stacks. To improve performance and simplicity, context-switching is implemented using the following assumption: all context-switches happen inside a specific function call. This assumption means that the context-switch only has to copy the callee-saved registers onto the stack and then switch the stack registers with the ones of the target coroutine/thread. Note that the instruction pointer can be left untouched since the context-switch is always inside the same function. Threads, however, do not context-switch between each other directly. They context-switch to the scheduler. This method is called a 2-step context-switch and has the advantage of having a clear distinction between user code and the kernel where scheduling and other system operations happen. Obviously, this doubles the context-switch cost because threads must context-switch to an intermediate stack. The alternative 1-step context-switch uses the stack of the ``from'' thread to schedule and then context-switches directly to the ``to'' thread. However, the performance of the 2-step context-switch is still superior to a \code{pthread_yield} (see section \ref{results}). Additionally, for users in need for optimal performance, it is important to note that having a 2-step context-switch as the default does not prevent \CFA from offering a 1-step context-switch (akin to the Microsoft \code{SwitchToFiber}~\cite{switchToWindows} routine). This option is not currently present in \CFA but the changes required to add it are strictly additive. 131 131 132 132 \subsection{Processors} 133 Parallelism in \CFA is built around using processors to specify how much parallelism is desired. \CFA processors are object wrappers around kernel threads, specifically pthreads in the current implementation of \CFA. Indeed, any parallelism must go through operating-system libraries. However, \glspl{uthread} are still the main source of concurrency, processors are simply the underlying source of parallelism. Indeed, processor \glspl{kthread} simply fetch a \gls{uthread} from the scheduler and run it; they are effectively executers for user-threads. The main benefit of this approach is that it offers a well 134 135 \subsection{Stack management}136 One of the challenges of this system is to reduce the footprint as much as possible. Specifically, all pthreads created also have a stack created with them, which should be used as much as possible. Normally, coroutines also create there own stack to run on, however, in the case of the coroutines used for processors, these coroutines run directly on the \gls{kthread} stack, effectively stealing the processor stack. The exception to this rule is the Main Processor, i.e. the initial \gls{kthread} that is given to any program. In order to respect C user -expectations, the stack of the initial kernel thread, the main stack of the program, is used by the main user thread rather than the main processor, which can grow very large133 Parallelism in \CFA is built around using processors to specify how much parallelism is desired. \CFA processors are object wrappers around kernel threads, specifically pthreads in the current implementation of \CFA. Indeed, any parallelism must go through operating-system libraries. However, \glspl{uthread} are still the main source of concurrency, processors are simply the underlying source of parallelism. Indeed, processor \glspl{kthread} simply fetch a \gls{uthread} from the scheduler and run it; they are effectively executers for user-threads. The main benefit of this approach is that it offers a well-defined boundary between kernel code and user code, for example, kernel thread quiescing, scheduling and interrupt handling. Processors internally use coroutines to take advantage of the existing context-switching semantics. 134 135 \subsection{Stack Management} 136 One of the challenges of this system is to reduce the footprint as much as possible. Specifically, all pthreads created also have a stack created with them, which should be used as much as possible. Normally, coroutines also create there own stack to run on, however, in the case of the coroutines used for processors, these coroutines run directly on the \gls{kthread} stack, effectively stealing the processor stack. The exception to this rule is the Main Processor, i.e. the initial \gls{kthread} that is given to any program. In order to respect C user expectations, the stack of the initial kernel thread, the main stack of the program, is used by the main user thread rather than the main processor, which can grow very large. 137 137 138 138 \subsection{Preemption} \label{preemption} 139 Finally, an important aspect for any complete threading system is preemption. As mentioned in chapter \ref{basics}, preemption introduces an extra degree of uncertainty, which enables users to have multiple threads interleave transparently, rather than having to cooperate among threads for proper scheduling and CPU distribution. Indeed, preemption is desirable because it adds a degree of isolation among threads. In a fully cooperative system, any thread that runs a long loop can starve other threads, while in a preemptive system, starvation can still occur but it does not rely on every thread having to yield or block on a regular basis, which reduces significantly a programmer burden. Obviously, preemption is not optimal for every workload , however any preemptive system can become a cooperative system by making the time-slices extremely large. Therefore, \CFA uses a preemptive threading system.139 Finally, an important aspect for any complete threading system is preemption. As mentioned in chapter \ref{basics}, preemption introduces an extra degree of uncertainty, which enables users to have multiple threads interleave transparently, rather than having to cooperate among threads for proper scheduling and CPU distribution. Indeed, preemption is desirable because it adds a degree of isolation among threads. In a fully cooperative system, any thread that runs a long loop can starve other threads, while in a preemptive system, starvation can still occur but it does not rely on every thread having to yield or block on a regular basis, which reduces significantly a programmer burden. Obviously, preemption is not optimal for every workload. However any preemptive system can become a cooperative system by making the time slices extremely large. Therefore, \CFA uses a preemptive threading system. 140 140 141 141 Preemption in \CFA is based on kernel timers, which are used to run a discrete-event simulation. Every processor keeps track of the current time and registers an expiration time with the preemption system. When the preemption system receives a change in preemption, it inserts the time in a sorted order and sets a kernel timer for the closest one, effectively stepping through preemption events on each signal sent by the timer. These timers use the Linux signal {\tt SIGALRM}, which is delivered to the process rather than the kernel-thread. This results in an implementation problem, because when delivering signals to a process, the kernel can deliver the signal to any kernel thread for which the signal is not blocked, i.e. : … … 146 146 For the sake of simplicity and in order to prevent the case of having two threads receiving alarms simultaneously, \CFA programs block the {\tt SIGALRM} signal on every kernel thread except one. Now because of how involuntary context-switches are handled, the kernel thread handling {\tt SIGALRM} cannot also be a processor thread. 147 147 148 Involuntary context-switching is done by sending signal {\tt SIGUSER1} to the corresponding proces\-sor and having the thread yield from inside the signal handler. This approach effectively context-switches away from the signal -handler back to the kernel and the signal-handler frame is eventually unwound when the thread is scheduled again. As a result, a signal-handler can start on one kernel thread and terminate on a second kernel thread (but the same user thread). It is important to note that signal-handlers save and restore signal masks because user-thread migration can cause a signal mask to migrate from one kernel thread to another. This behaviour is only a problem if all kernel threads, among which a user thread can migrate, differ in terms of signal masks\footnote{Sadly, official POSIX documentation is silent on what distinguishes ``async-signal-safe'' functions from other functions.}. However, since the kernel thread handling preemption requires a different signal mask, executing user threads on the kernel-alarm thread can cause deadlocks. For this reason, the alarm thread is in a tight loop around a system call to \code{sigwaitinfo}, requiring very little CPU time for preemption. One final detail about the alarm thread is how to wake it when additional communication is required (e.g., on thread termination). This unblocking is also done using {\tt SIGALRM}, but sent through the \code{pthread_sigqueue}. Indeed, \code{sigwait} can differentiate signals sent from \code{pthread_sigqueue} from signals sent from alarms or the kernel.148 Involuntary context-switching is done by sending signal {\tt SIGUSER1} to the corresponding proces\-sor and having the thread yield from inside the signal handler. This approach effectively context-switches away from the signal handler back to the kernel and the signal-handler frame is eventually unwound when the thread is scheduled again. As a result, a signal-handler can start on one kernel thread and terminate on a second kernel thread (but the same user thread). It is important to note that signal-handlers save and restore signal masks because user-thread migration can cause a signal mask to migrate from one kernel thread to another. This behaviour is only a problem if all kernel threads, among which a user thread can migrate, differ in terms of signal masks\footnote{Sadly, official POSIX documentation is silent on what distinguishes ``async-signal-safe'' functions from other functions.}. However, since the kernel thread handling preemption requires a different signal mask, executing user threads on the kernel-alarm thread can cause deadlocks. For this reason, the alarm thread is in a tight loop around a system call to \code{sigwaitinfo}, requiring very little CPU time for preemption. One final detail about the alarm thread is how to wake it when additional communication is required (e.g., on thread termination). This unblocking is also done using {\tt SIGALRM}, but sent through the \code{pthread_sigqueue}. Indeed, \code{sigwait} can differentiate signals sent from \code{pthread_sigqueue} from signals sent from alarms or the kernel. 149 149 150 150 \subsection{Scheduler} … … 153 153 % ====================================================================== 154 154 % ====================================================================== 155 \section{Internal scheduling} \label{impl:intsched}155 \section{Internal Scheduling} \label{impl:intsched} 156 156 % ====================================================================== 157 157 % ====================================================================== … … 165 165 \end{figure} 166 166 167 This picture has several components, the two most important being the entry -queue and the AS-stack. The entry-queue is an (almost) FIFO list where threads waiting to enter are parked, while the acceptor-signaler (AS) stack is a FILO list used for threads that have been signalled or otherwise marked as running next.167 This picture has several components, the two most important being the entry queue and the AS-stack. The entry queue is an (almost) FIFO list where threads waiting to enter are parked, while the acceptor/signaller (AS) stack is a FILO list used for threads that have been signalled or otherwise marked as running next. 168 168 169 169 For \CFA, this picture does not have support for blocking multiple monitors on a single condition. To support \gls{bulk-acq} two changes to this picture are required. First, it is no longer helpful to attach the condition to \emph{a single} monitor. Secondly, the thread waiting on the condition has to be separated across multiple monitors, seen in figure \ref{fig:monitor_cfa}. … … 173 173 {\resizebox{0.8\textwidth}{!}{\input{int_monitor}}} 174 174 \end{center} 175 \caption{Illustration of \CFA monitor}175 \caption{Illustration of \CFA Monitor} 176 176 \label{fig:monitor_cfa} 177 177 \end{figure} 178 178 179 This picture and the proper entry and leave algorithms (see listing \ref{lst:entry2}) is the fundamental implementation of internal scheduling. Note that when a thread is moved from the condition to the AS-stack, it is conceptually split the thread into N pieces, where N is the number of monitors specified in the parameter list. The thread is woken up when all the pieces have popped from the AS-stacks and made active. In this picture, the threads are split into halves but this is only because there are two monitors. For a specific signal ing operation every monitor needs a piece of thread on its AS-stack.179 This picture and the proper entry and leave algorithms (see listing \ref{lst:entry2}) is the fundamental implementation of internal scheduling. Note that when a thread is moved from the condition to the AS-stack, it is conceptually split the thread into N pieces, where N is the number of monitors specified in the parameter list. The thread is woken up when all the pieces have popped from the AS-stacks and made active. In this picture, the threads are split into halves but this is only because there are two monitors. For a specific signalling operation every monitor needs a piece of thread on its AS-stack. 180 180 181 181 \begin{figure}[b] … … 210 210 \end{figure} 211 211 212 Some important things to notice about the exit routine. The solution discussed in \ref{intsched} can be seen in the exit routine of listing \ref{lst:entry2}. Basically, the solution boils down to having a separate data structure for the condition queue and the AS-stack, and unconditionally transferring ownership of the monitors but only unblocking the thread when the last monitor has transferred ownership. This solution is deadlock safe as well as preventing any potential barging. The data structure used for the AS-stack are reused extensively for external scheduling, but in the case of internal scheduling, the data is allocated using variable-length arrays on the call-stack of the \code{wait} and \code{signal_block} routines.212 Some important things to notice about the exit routine. The solution discussed in \ref{intsched} can be seen in the exit routine of listing \ref{lst:entry2}. Basically, the solution boils down to having a separate data structure for the condition queue and the AS-stack, and unconditionally transferring ownership of the monitors but only unblocking the thread when the last monitor has transferred ownership. This solution is deadlock safe as well as preventing any potential barging. The data structures used for the AS-stack are reused extensively for external scheduling, but in the case of internal scheduling, the data is allocated using variable-length arrays on the call stack of the \code{wait} and \code{signal_block} routines. 213 213 214 214 \begin{figure}[H] … … 220 220 \end{figure} 221 221 222 Figure \ref{fig:structs} shows a high-level representation of these data -structures. The main idea behind them is that, a thread cannot contain an arbitrary number of intrusive stacks for linking onto monitor. The \code{condition node} is the data structure that is queued onto a condition variable and, when signaled, the condition queue is popped and each \code{condition criterion} are moved to the AS-stack. Once all the criterion have be popped from their respective AS-stacks, the thread is woken-up, which is what is shown in listing \ref{lst:entry2}.223 224 % ====================================================================== 225 % ====================================================================== 226 \section{External scheduling}222 Figure \ref{fig:structs} shows a high-level representation of these data structures. The main idea behind them is that, a thread cannot contain an arbitrary number of intrusive stacks for linking onto monitor. The \code{condition node} is the data structure that is queued onto a condition variable and, when signalled, the condition queue is popped and each \code{condition criterion} is moved to the AS-stack. Once all the criteria have been popped from their respective AS-stacks, the thread is woken up, which is what is shown in listing \ref{lst:entry2}. 223 224 % ====================================================================== 225 % ====================================================================== 226 \section{External Scheduling} 227 227 % ====================================================================== 228 228 % ====================================================================== … … 232 232 \begin{itemize} 233 233 \item The queue of the monitor with the lowest address is no longer a true FIFO queue because threads can be moved to the front of the queue. These queues need to contain a set of monitors for each of the waiting threads. Therefore, another thread whose set contains the same lowest address monitor but different lower priority monitors may arrive first but enter the critical section after a thread with the correct pairing. 234 \item The queue of the lowest priority monitor is both required and potentially unused. Indeed, since it is not known at compile time which monitor is the monitor w ith havethe lowest address, every monitor needs to have the correct queues even though it is possible that some queues go unused for the entire duration of the program, for example if a monitor is only used in a specific pair.234 \item The queue of the lowest priority monitor is both required and potentially unused. Indeed, since it is not known at compile time which monitor is the monitor which has the lowest address, every monitor needs to have the correct queues even though it is possible that some queues go unused for the entire duration of the program, for example if a monitor is only used in a specific pair. 235 235 \end{itemize} 236 236 Therefore, the following modifications need to be made to support external scheduling : … … 241 241 \end{itemize} 242 242 243 \subsection{External scheduling - destructors}244 Finally, to support the ordering inversion of destructors, the code generation needs to be modified to use a special entry routine. This routine is needed because of the storage requirements of the call order inversion. Indeed, when waiting for the destructors, storage is need for the waiting context and the lifetime of said storage needs to outlive the waiting operation it is needed for. For regular \code{waitfor} statements, the call-stack of the routine itself matches this requirement but it is no longer the case when waiting for the destructor since it is pushed on to the AS-stack for later. The waitfor semantics can then be adjusted correspondingly, as seen in listing \ref{lst:entry-dtor}243 \subsection{External Scheduling - Destructors} 244 Finally, to support the ordering inversion of destructors, the code generation needs to be modified to use a special entry routine. This routine is needed because of the storage requirements of the call order inversion. Indeed, when waiting for the destructors, storage is needed for the waiting context and the lifetime of said storage needs to outlive the waiting operation it is needed for. For regular \code{waitfor} statements, the call stack of the routine itself matches this requirement but it is no longer the case when waiting for the destructor since it is pushed on to the AS-stack for later. The waitfor semantics can then be adjusted correspondingly, as seen in listing \ref{lst:entry-dtor} 245 245 246 246 \begin{figure} … … 253 253 continue 254 254 elif matches waitfor mask 255 push criteri onsto AS-stack255 push criteria to AS-stack 256 256 continue 257 257 else -
doc/proposals/concurrency/text/parallelism.tex
r882ad37 r3ca540f 10 10 11 11 \section{Paradigms} 12 \subsection{User- level threads}13 A direct improvement on the \gls{kthread} approach is to use \glspl{uthread}. These threads offer most of the same features that the operating system already provide but can be used on a much larger scale. This approach is the most powerful solution as it allows all the features of multi-threading, while removing several of the more expensive costs of kernel threads. The downside is that almost none of the low-level threading problems are hidden; users still have to think about data races, deadlocks and synchronization issues. These issues can be somewhat alleviated by a concurrency toolkit with strong guarantees but the parallelism toolkit offers very little to reduce complexity in itself.12 \subsection{User-Level Threads} 13 A direct improvement on the \gls{kthread} approach is to use \glspl{uthread}. These threads offer most of the same features that the operating system already provides but can be used on a much larger scale. This approach is the most powerful solution as it allows all the features of multithreading, while removing several of the more expensive costs of kernel threads. The downside is that almost none of the low-level threading problems are hidden; users still have to think about data races, deadlocks and synchronization issues. These issues can be somewhat alleviated by a concurrency toolkit with strong guarantees but the parallelism toolkit offers very little to reduce complexity in itself. 14 14 15 15 Examples of languages that support \glspl{uthread} are Erlang~\cite{Erlang} and \uC~\cite{uC++book}. 16 16 17 \subsection{Fibers : user-level threads without preemption} \label{fibers}18 A popular variant of \glspl{uthread} is what is often referred to as \glspl{fiber}. However, \glspl{fiber} do not present meaningful semantic al differences with \glspl{uthread}. The significant difference between \glspl{uthread} and \glspl{fiber} is the lack of \gls{preemption} in the latter. Advocates of \glspl{fiber} list their high performance and ease of implementation as majorsstrengths but the performance difference between \glspl{uthread} and \glspl{fiber} is controversial, and the ease of implementation, while true, is a weak argument in the context of language design. Therefore this proposal largely ignores fibers.17 \subsection{Fibers : User-Level Threads Without Preemption} \label{fibers} 18 A popular variant of \glspl{uthread} is what is often referred to as \glspl{fiber}. However, \glspl{fiber} do not present meaningful semantic differences with \glspl{uthread}. The significant difference between \glspl{uthread} and \glspl{fiber} is the lack of \gls{preemption} in the latter. Advocates of \glspl{fiber} list their high performance and ease of implementation as major strengths but the performance difference between \glspl{uthread} and \glspl{fiber} is controversial, and the ease of implementation, while true, is a weak argument in the context of language design. Therefore this proposal largely ignores fibers. 19 19 20 20 An example of a language that uses fibers is Go~\cite{Go} 21 21 22 \subsection{Jobs and thread pools}23 An approach on the opposite end of the spectrum is to base parallelism on \glspl{pool}. Indeed, \glspl{pool} offer limited flexibility but at the benefit of a simpler user interface. In \gls{pool} based systems, users express parallelism as units of work, called jobs, and a dependency graph (either explicit or implicit) that tie them together. This approach means users need not worry about concurrency but significantly limit the interaction that can occur among jobs. Indeed, any \gls{job} that blocks also blocks the underlying worker, which effectively means the CPU utilization, and therefore throughput, suffers noticeably. It can be argued that a solution to this problem is to use more workers than available cores. However, unless the number of jobs and the number of workers are comparable, having a significant amountof blocked jobs always results in idles cores.22 \subsection{Jobs and Thread Pools} 23 An approach on the opposite end of the spectrum is to base parallelism on \glspl{pool}. Indeed, \glspl{pool} offer limited flexibility but at the benefit of a simpler user interface. In \gls{pool} based systems, users express parallelism as units of work, called jobs, and a dependency graph (either explicit or implicit) that ties them together. This approach means users need not worry about concurrency but significantly limit the interaction that can occur among jobs. Indeed, any \gls{job} that blocks also block the underlying worker, which effectively means the CPU utilization, and therefore throughput, suffers noticeably. It can be argued that a solution to this problem is to use more workers than available cores. However, unless the number of jobs and the number of workers are comparable, having a significant number of blocked jobs always results in idles cores. 24 24 25 25 The gold standard of this implementation is Intel's TBB library~\cite{TBB}. 26 26 27 \subsection{Paradigm performance}28 While the choice between the three paradigms listed above may have significant performance implication, it is difficult to pin -down the performance implications of choosing a model at the language level. Indeed, in many situations one of these paradigms may show better performance but it all strongly depends on the workload. Having a large amount of mostly independent units of work to execute almost guarantees that the \gls{pool}based system has the best performance thanks to the lower memory overhead (i.e., no thread stack per job). However, interactions among jobs can easily exacerbate contention. User-level threads allow fine-grain context switching, which results in better resource utilization, but a context switch is more expensive and the extra control means users need to tweak more variables to get the desired performance. Finally, if the units of uninterrupted work are large enough the paradigm choice is largely amortized by the actual work done.27 \subsection{Paradigm Performance} 28 While the choice between the three paradigms listed above may have significant performance implication, it is difficult to pin down the performance implications of choosing a model at the language level. Indeed, in many situations one of these paradigms may show better performance but it all strongly depends on the workload. Having a large amount of mostly independent units of work to execute almost guarantees that the \gls{pool}-based system has the best performance thanks to the lower memory overhead (i.e., no thread stack per job). However, interactions among jobs can easily exacerbate contention. User-level threads allow fine-grain context switching, which results in better resource utilization, but a context switch is more expensive and the extra control means users need to tweak more variables to get the desired performance. Finally, if the units of uninterrupted work are large enough the paradigm choice is largely amortized by the actual work done. 29 29 30 30 \section{The \protect\CFA\ Kernel : Processors, Clusters and Threads}\label{kernel} … … 33 33 \Glspl{cfacluster} have not been fully implemented in the context of this thesis, currently \CFA only supports one \gls{cfacluster}, the initial one. 34 34 35 \subsection{Future Work: Machine setup}\label{machine}35 \subsection{Future Work: Machine Setup}\label{machine} 36 36 While this was not done in the context of this thesis, another important aspect of clusters is affinity. While many common desktop and laptop PCs have homogeneous CPUs, other devices often have more heterogeneous setups. For example, a system using \acrshort{numa} configurations may benefit from users being able to tie clusters and\/or kernel threads to certain CPU cores. OS support for CPU affinity is now common~\cite{affinityLinux, affinityWindows, affinityFreebsd, affinityNetbsd, affinityMacosx} which means it is both possible and desirable for \CFA to offer an abstraction mechanism for portable CPU affinity. 37 37 38 38 \subsection{Paradigms}\label{cfaparadigms} 39 Given these building blocks, it is possible to reproduce all three of the popular paradigms. Indeed, \glspl{uthread} is the default paradigm in \CFA. However, disabling \gls{preemption} on the \gls{cfacluster} means \glspl{cfathread} effectively become \glspl{fiber}. Since several \glspl{cfacluster} with different scheduling policy can coexist in the same application, this allows \glspl{fiber} and \glspl{uthread} to coexist in the runtime of an application. Finally, it is possible to build executors for thread pools from \glspl{uthread} or \glspl{fiber}, which includes specialize jobs like actors~\cite{Actors}.39 Given these building blocks, it is possible to reproduce all three of the popular paradigms. Indeed, \glspl{uthread} is the default paradigm in \CFA. However, disabling \gls{preemption} on the \gls{cfacluster} means \glspl{cfathread} effectively become \glspl{fiber}. Since several \glspl{cfacluster} with different scheduling policy can coexist in the same application, this allows \glspl{fiber} and \glspl{uthread} to coexist in the runtime of an application. Finally, it is possible to build executors for thread pools from \glspl{uthread} or \glspl{fiber}, which includes specialized jobs like actors~\cite{Actors}. -
doc/proposals/concurrency/text/results.tex
r882ad37 r3ca540f 1 1 % ====================================================================== 2 2 % ====================================================================== 3 \chapter{Performance results} \label{results}3 \chapter{Performance Results} \label{results} 4 4 % ====================================================================== 5 5 % ====================================================================== 6 \section{Machine setup}7 Table \ref{tab:machine} shows the characteristics of the machine used to run the benchmarks. All tests w here made on this machine.6 \section{Machine Setup} 7 Table \ref{tab:machine} shows the characteristics of the machine used to run the benchmarks. All tests were made on this machine. 8 8 \begin{table}[H] 9 9 \begin{center} … … 37 37 \end{table} 38 38 39 \section{Micro benchmarks}39 \section{Micro Benchmarks} 40 40 All benchmarks are run using the same harness to produce the results, seen as the \code{BENCH()} macro in the following examples. This macro uses the following logic to benchmark the code : 41 41 \begin{pseudo} … … 46 46 result = (after - before) / N; 47 47 \end{pseudo} 48 The method used to get time is \code{clock_gettime(CLOCK_THREAD_CPUTIME_ID);}. Each benchmark is using many iterations of a simple call to measure the cost of the call. The specific number of iteration depends on the specific benchmark.49 50 \subsection{Context- switching}51 The first interesting benchmark is to measure how long context-switches take. The simplest approach to do this is to yield on a thread, which executes a 2-step context switch. In order to make the comparison fair, coroutines also execute a 2-step context-switch (\gls{uthread} to \gls{kthread} then \gls{kthread} to \gls{uthread}), which is a resume/suspend cycle instead of a yield. Listing \ref{lst:ctx-switch} shows the code for coroutines and threads w hith the results in table \ref{tab:ctx-switch}. All omitted tests are functionally identical to one of these tests.48 The method used to get time is \code{clock_gettime(CLOCK_THREAD_CPUTIME_ID);}. Each benchmark is using many iterations of a simple call to measure the cost of the call. The specific number of iterations depends on the specific benchmark. 49 50 \subsection{Context-Switching} 51 The first interesting benchmark is to measure how long context-switches take. The simplest approach to do this is to yield on a thread, which executes a 2-step context switch. In order to make the comparison fair, coroutines also execute a 2-step context-switch (\gls{uthread} to \gls{kthread} then \gls{kthread} to \gls{uthread}), which is a resume/suspend cycle instead of a yield. Listing \ref{lst:ctx-switch} shows the code for coroutines and threads with the results in table \ref{tab:ctx-switch}. All omitted tests are functionally identical to one of these tests. 52 52 \begin{figure} 53 53 \begin{multicols}{2} … … 114 114 \end{table} 115 115 116 \subsection{Mutual- exclusion}117 The next interesting benchmark is to measure the overhead to enter/leave a critical-section. For monitors, the simplest approach is to measure how long it takes to enter and leave a monitor routine. Listing \ref{lst:mutex} shows the code for \CFA. To put the results in context, the cost of entering a non-inline function and the cost of acquiring and releasing a pthread mutex lock arealso measured. The results can be shown in table \ref{tab:mutex}.116 \subsection{Mutual-Exclusion} 117 The next interesting benchmark is to measure the overhead to enter/leave a critical-section. For monitors, the simplest approach is to measure how long it takes to enter and leave a monitor routine. Listing \ref{lst:mutex} shows the code for \CFA. To put the results in context, the cost of entering a non-inline function and the cost of acquiring and releasing a pthread mutex lock is also measured. The results can be shown in table \ref{tab:mutex}. 118 118 119 119 \begin{figure} … … 156 156 \end{table} 157 157 158 \subsection{Internal scheduling}158 \subsection{Internal Scheduling} 159 159 The internal-scheduling benchmark measures the cost of waiting on and signalling a condition variable. Listing \ref{lst:int-sched} shows the code for \CFA, with results table \ref{tab:int-sched}. As with all other benchmarks, all omitted tests are functionally identical to one of these tests. 160 160 … … 211 211 \end{table} 212 212 213 \subsection{External scheduling}213 \subsection{External Scheduling} 214 214 The Internal scheduling benchmark measures the cost of the \code{waitfor} statement (\code{_Accept} in \uC). Listing \ref{lst:ext-sched} shows the code for \CFA, with results in table \ref{tab:ext-sched}. As with all other benchmarks, all omitted tests are functionally identical to one of these tests. 215 215 … … 264 264 \end{table} 265 265 266 \subsection{Object creation}267 Finally, the last benchmark measur s the cost of creation for concurrent objects. Listing \ref{lst:creation} shows the code for pthreads and \CFA threads, with results shown in table \ref{tab:creation}. As with all other benchmarks, all omitted tests are functionally identical to one of these tests. The only note here is that the call-stacks of \CFA coroutines are lazily created, therefore without priming the coroutine, the creation cost is very low.266 \subsection{Object Creation} 267 Finally, the last benchmark measures the cost of creation for concurrent objects. Listing \ref{lst:creation} shows the code for pthreads and \CFA threads, with results shown in table \ref{tab:creation}. As with all other benchmarks, all omitted tests are functionally identical to one of these tests. The only note here is that the call stacks of \CFA coroutines are lazily created, therefore without priming the coroutine, the creation cost is very low. 268 268 269 269 \begin{figure} … … 327 327 \end{tabular} 328 328 \end{center} 329 \caption{Creation comparison. All numbers are in nanoseconds(\si{\nano\second}) }329 \caption{Creation comparison. All numbers are in nanoseconds(\si{\nano\second}).} 330 330 \label{tab:creation} 331 331 \end{table} -
doc/proposals/concurrency/text/together.tex
r882ad37 r3ca540f 1 1 % ====================================================================== 2 2 % ====================================================================== 3 \chapter{Putting it all together}3 \chapter{Putting It All Together} 4 4 % ====================================================================== 5 5 % ====================================================================== 6 6 7 7 8 \section{Threads as monitors}8 \section{Threads As Monitors} 9 9 As it was subtly alluded in section \ref{threads}, \code{thread}s in \CFA are in fact monitors, which means that all monitor features are available when using threads. For example, here is a very simple two thread pipeline that could be used for a simulator of a game engine : 10 10 \begin{figure}[H] -
doc/proposals/concurrency/version
r882ad37 r3ca540f 1 0.11.2 801 0.11.299 -
src/CodeGen/FixNames.cc
r882ad37 r3ca540f 19 19 #include <string> // for string, operator!=, operator== 20 20 21 #include "Common/PassVisitor.h" 21 22 #include "Common/SemanticError.h" // for SemanticError 22 23 #include "FixMain.h" // for FixMain … … 32 33 33 34 namespace CodeGen { 34 class FixNames : public Visitor{35 class FixNames : public WithGuards { 35 36 public: 36 v irtual voidvisit( ObjectDecl *objectDecl );37 v irtual voidvisit( FunctionDecl *functionDecl );37 void postvisit( ObjectDecl *objectDecl ); 38 void postvisit( FunctionDecl *functionDecl ); 38 39 39 v irtual voidvisit( CompoundStmt *compoundStmt );40 void previsit( CompoundStmt *compoundStmt ); 40 41 private: 41 42 int scopeLevel = 1; … … 93 94 } 94 95 95 void fixNames( std::list< Declaration* > translationUnit ) {96 FixNamesfixer;96 void fixNames( std::list< Declaration* > & translationUnit ) { 97 PassVisitor<FixNames> fixer; 97 98 acceptAll( translationUnit, fixer ); 98 99 } 99 100 100 void FixNames::fixDWT( DeclarationWithType * dwt ) {101 void FixNames::fixDWT( DeclarationWithType * dwt ) { 101 102 if ( dwt->get_name() != "" ) { 102 103 if ( LinkageSpec::isMangled( dwt->get_linkage() ) ) { … … 107 108 } 108 109 109 void FixNames::visit( ObjectDecl *objectDecl ) { 110 Visitor::visit( objectDecl ); 110 void FixNames::postvisit( ObjectDecl * objectDecl ) { 111 111 fixDWT( objectDecl ); 112 112 } 113 113 114 void FixNames::visit( FunctionDecl *functionDecl ) { 115 Visitor::visit( functionDecl ); 114 void FixNames::postvisit( FunctionDecl * functionDecl ) { 116 115 fixDWT( functionDecl ); 117 116 … … 121 120 throw SemanticError("Main expected to have 0, 2 or 3 arguments\n", functionDecl); 122 121 } 123 functionDecl->get_statements()->get_kids().push_back( new ReturnStmt( n oLabels, new ConstantExpr( Constant::from_int( 0 ) ) ) );122 functionDecl->get_statements()->get_kids().push_back( new ReturnStmt( new ConstantExpr( Constant::from_int( 0 ) ) ) ); 124 123 CodeGen::FixMain::registerMain( functionDecl ); 125 124 } 126 125 } 127 126 128 void FixNames:: visit( CompoundStmt *compoundStmt) {127 void FixNames::previsit( CompoundStmt * ) { 129 128 scopeLevel++; 130 Visitor::visit( compoundStmt ); 131 scopeLevel--; 129 GuardAction( [this](){ scopeLevel--; } ); 132 130 } 133 131 } // namespace CodeGen -
src/CodeGen/FixNames.h
r882ad37 r3ca540f 5 5 // file "LICENCE" distributed with Cforall. 6 6 // 7 // FixNames.h -- 7 // FixNames.h -- 8 8 // 9 9 // Author : Richard C. Bilson … … 22 22 namespace CodeGen { 23 23 /// mangles object and function names 24 void fixNames( std::list< Declaration* > translationUnit );24 void fixNames( std::list< Declaration* > & translationUnit ); 25 25 } // namespace CodeGen 26 26 -
src/Common/PassVisitor.impl.h
r882ad37 r3ca540f 55 55 it, 56 56 [](Declaration * decl) -> auto { 57 return new DeclStmt( noLabels,decl );57 return new DeclStmt( decl ); 58 58 } 59 59 ); … … 251 251 || ( empty( beforeDecls ) && empty( afterDecls )) ); 252 252 253 CompoundStmt *compound = new CompoundStmt( noLabels);253 CompoundStmt *compound = new CompoundStmt(); 254 254 if( !empty(beforeDecls) ) { splice( std::back_inserter( compound->get_kids() ), beforeDecls ); } 255 255 if( !empty(beforeStmts) ) { compound->get_kids().splice( compound->get_kids().end(), *beforeStmts ); } -
src/Concurrency/Keywords.cc
r882ad37 r3ca540f 38 38 39 39 namespace Concurrency { 40 41 namespace {42 const std::list<Label> noLabels;43 const std::list< Attribute * > noAttributes;44 Type::StorageClasses noStorage;45 Type::Qualifiers noQualifiers;46 }47 48 40 //============================================================================================= 49 41 // Pass declarations … … 296 288 ObjectDecl * this_decl = new ObjectDecl( 297 289 "this", 298 noStorage ,290 noStorageClasses, 299 291 LinkageSpec::Cforall, 300 292 nullptr, … … 313 305 new ObjectDecl( 314 306 "ret", 315 noStorage ,307 noStorageClasses, 316 308 LinkageSpec::Cforall, 317 309 nullptr, … … 346 338 main_decl = new FunctionDecl( 347 339 "main", 348 noStorage ,340 noStorageClasses, 349 341 LinkageSpec::Cforall, 350 342 main_type, … … 363 355 ObjectDecl * field = new ObjectDecl( 364 356 field_name, 365 noStorage ,357 noStorageClasses, 366 358 LinkageSpec::Cforall, 367 359 nullptr, … … 379 371 380 372 void ConcurrentSueKeyword::addRoutines( ObjectDecl * field, FunctionDecl * func ) { 381 CompoundStmt * statement = new CompoundStmt( noLabels);373 CompoundStmt * statement = new CompoundStmt(); 382 374 statement->push_back( 383 375 new ReturnStmt( 384 noLabels,385 376 new AddressExpr( 386 377 new MemberExpr( … … 488 479 ObjectDecl * monitors = new ObjectDecl( 489 480 "__monitor", 490 noStorage ,481 noStorageClasses, 491 482 LinkageSpec::Cforall, 492 483 nullptr, … … 509 500 // monitor_guard_t __guard = { __monitors, #, func }; 510 501 body->push_front( 511 new DeclStmt( n oLabels, new ObjectDecl(502 new DeclStmt( new ObjectDecl( 512 503 "__guard", 513 noStorage ,504 noStorageClasses, 514 505 LinkageSpec::Cforall, 515 506 nullptr, … … 530 521 531 522 //monitor_desc * __monitors[] = { get_monitor(a), get_monitor(b) }; 532 body->push_front( new DeclStmt( noLabels,monitors) );523 body->push_front( new DeclStmt( monitors) ); 533 524 } 534 525 … … 536 527 ObjectDecl * monitors = new ObjectDecl( 537 528 "__monitors", 538 noStorage ,529 noStorageClasses, 539 530 LinkageSpec::Cforall, 540 531 nullptr, … … 569 560 // monitor_guard_t __guard = { __monitors, #, func }; 570 561 body->push_front( 571 new DeclStmt( n oLabels, new ObjectDecl(562 new DeclStmt( new ObjectDecl( 572 563 "__guard", 573 noStorage ,564 noStorageClasses, 574 565 LinkageSpec::Cforall, 575 566 nullptr, … … 591 582 592 583 //monitor_desc * __monitors[] = { get_monitor(a), get_monitor(b) }; 593 body->push_front( new DeclStmt( noLabels,monitors) );584 body->push_front( new DeclStmt( monitors) ); 594 585 } 595 586 … … 631 622 stmt->push_back( 632 623 new ExprStmt( 633 noLabels,634 624 new UntypedExpr( 635 625 new NameExpr( "__thrd_start" ), -
src/Concurrency/Waitfor.cc
r882ad37 r3ca540f 100 100 101 101 namespace Concurrency { 102 103 namespace {104 const std::list<Label> noLabels;105 const std::list< Attribute * > noAttributes;106 Type::StorageClasses noStorage;107 Type::Qualifiers noQualifiers;108 }109 110 102 //============================================================================================= 111 103 // Pass declarations … … 203 195 ResolvExpr::findVoidExpression( expr, indexer ); 204 196 205 return new ExprStmt( noLabels,expr );197 return new ExprStmt( expr ); 206 198 } 207 199 … … 259 251 if( !decl_monitor || !decl_acceptable || !decl_mask ) throw SemanticError( "waitfor keyword requires monitors to be in scope, add #include <monitor>", waitfor ); 260 252 261 CompoundStmt * stmt = new CompoundStmt( noLabels);253 CompoundStmt * stmt = new CompoundStmt(); 262 254 263 255 ObjectDecl * acceptables = declare( waitfor->clauses.size(), stmt ); … … 281 273 ); 282 274 283 CompoundStmt * compound = new CompoundStmt( noLabels);275 CompoundStmt * compound = new CompoundStmt(); 284 276 stmt->push_back( new IfStmt( 285 noLabels,286 277 safeCond( new VariableExpr( flag ) ), 287 278 compound, … … 313 304 ); 314 305 315 stmt->push_back( new DeclStmt( noLabels,acceptables) );306 stmt->push_back( new DeclStmt( acceptables) ); 316 307 317 308 Expression * set = new UntypedExpr( … … 326 317 ResolvExpr::findVoidExpression( set, indexer ); 327 318 328 stmt->push_back( new ExprStmt( noLabels,set ) );319 stmt->push_back( new ExprStmt( set ) ); 329 320 330 321 return acceptables; … … 341 332 ); 342 333 343 stmt->push_back( new DeclStmt( noLabels,flag) );334 stmt->push_back( new DeclStmt( flag) ); 344 335 345 336 return flag; … … 357 348 ResolvExpr::findVoidExpression( expr, indexer ); 358 349 359 return new ExprStmt( noLabels,expr );350 return new ExprStmt( expr ); 360 351 } 361 352 … … 399 390 ); 400 391 401 stmt->push_back( new DeclStmt( noLabels,mon) );392 stmt->push_back( new DeclStmt( mon) ); 402 393 403 394 return mon; … … 411 402 412 403 stmt->push_back( new IfStmt( 413 noLabels,414 404 safeCond( clause.condition ), 415 405 new CompoundStmt({ … … 447 437 ); 448 438 449 stmt->push_back( new DeclStmt( noLabels,timeout ) );439 stmt->push_back( new DeclStmt( timeout ) ); 450 440 451 441 if( time ) { 452 442 stmt->push_back( new IfStmt( 453 noLabels,454 443 safeCond( time_cond ), 455 444 new CompoundStmt({ 456 445 new ExprStmt( 457 noLabels,458 446 makeOpAssign( 459 447 new VariableExpr( timeout ), … … 471 459 if( has_else ) { 472 460 stmt->push_back( new IfStmt( 473 noLabels,474 461 safeCond( else_cond ), 475 462 new CompoundStmt({ 476 463 new ExprStmt( 477 noLabels,478 464 makeOpAssign( 479 465 new VariableExpr( timeout ), … … 511 497 ); 512 498 513 stmt->push_back( new DeclStmt( noLabels,index ) );499 stmt->push_back( new DeclStmt( index ) ); 514 500 515 501 ObjectDecl * mask = ObjectDecl::newObject( … … 526 512 ); 527 513 528 stmt->push_back( new DeclStmt( noLabels,mask ) );514 stmt->push_back( new DeclStmt( mask ) ); 529 515 530 516 stmt->push_back( new ExprStmt( 531 noLabels,532 517 new ApplicationExpr( 533 518 VariableExpr::functionPointer( decl_waitfor ), … … 557 542 ) { 558 543 SwitchStmt * swtch = new SwitchStmt( 559 noLabels,560 544 result, 561 545 std::list<Statement *>() … … 566 550 swtch->statements.push_back( 567 551 new CaseStmt( 568 noLabels,569 552 new ConstantExpr( Constant::from_ulong( i++ ) ), 570 553 { 571 554 clause.statement, 572 555 new BranchStmt( 573 noLabels,574 556 "", 575 557 BranchStmt::Break … … 583 565 swtch->statements.push_back( 584 566 new CaseStmt( 585 noLabels,586 567 new ConstantExpr( Constant::from_int( -2 ) ), 587 568 { 588 569 waitfor->timeout.statement, 589 570 new BranchStmt( 590 noLabels,591 571 "", 592 572 BranchStmt::Break … … 600 580 swtch->statements.push_back( 601 581 new CaseStmt( 602 noLabels,603 582 new ConstantExpr( Constant::from_int( -1 ) ), 604 583 { 605 584 waitfor->orelse.statement, 606 585 new BranchStmt( 607 noLabels,608 586 "", 609 587 BranchStmt::Break -
src/ControlStruct/ExceptTranslate.cc
r882ad37 r3ca540f 30 30 #include "SynTree/Expression.h" // for UntypedExpr, ConstantExpr, Name... 31 31 #include "SynTree/Initializer.h" // for SingleInit, ListInit 32 #include "SynTree/Label.h" // for Label , noLabels32 #include "SynTree/Label.h" // for Label 33 33 #include "SynTree/Mutator.h" // for mutateAll 34 34 #include "SynTree/Statement.h" // for CompoundStmt, CatchStmt, ThrowStmt … … 57 57 58 58 void appendDeclStmt( CompoundStmt * block, Declaration * item ) { 59 block->push_back(new DeclStmt( noLabels,item));59 block->push_back(new DeclStmt(item)); 60 60 } 61 61 … … 205 205 throwStmt->set_expr( nullptr ); 206 206 delete throwStmt; 207 return new ExprStmt( noLabels,call );207 return new ExprStmt( call ); 208 208 } 209 209 … … 211 211 ThrowStmt *throwStmt ) { 212 212 // __throw_terminate( `throwStmt->get_name()` ); } 213 return create_given_throw( "__cfa ehm__throw_terminate", throwStmt );213 return create_given_throw( "__cfaabi_ehm__throw_terminate", throwStmt ); 214 214 } 215 215 … … 220 220 assert( handler_except_decl ); 221 221 222 CompoundStmt * result = new CompoundStmt( throwStmt->get_labels() ); 223 result->push_back( new ExprStmt( noLabels, UntypedExpr::createAssign( 222 CompoundStmt * result = new CompoundStmt(); 223 result->labels = throwStmt->labels; 224 result->push_back( new ExprStmt( UntypedExpr::createAssign( 224 225 nameOf( handler_except_decl ), 225 226 new ConstantExpr( Constant::null( … … 231 232 ) ) ); 232 233 result->push_back( new ExprStmt( 233 noLabels, 234 new UntypedExpr( new NameExpr( "__cfaehm__rethrow_terminate" ) ) 234 new UntypedExpr( new NameExpr( "__cfaabi_ehm__rethrow_terminate" ) ) 235 235 ) ); 236 236 delete throwStmt; … … 241 241 ThrowStmt *throwStmt ) { 242 242 // __throw_resume( `throwStmt->get_name` ); 243 return create_given_throw( "__cfa ehm__throw_resume", throwStmt );243 return create_given_throw( "__cfaabi_ehm__throw_resume", throwStmt ); 244 244 } 245 245 … … 248 248 // return false; 249 249 Statement * result = new ReturnStmt( 250 throwStmt->get_labels(),251 250 new ConstantExpr( Constant::from_bool( false ) ) 252 251 ); 252 result->labels = throwStmt->labels; 253 253 delete throwStmt; 254 254 return result; … … 291 291 // } 292 292 // return; 293 CompoundStmt * block = new CompoundStmt( noLabels);293 CompoundStmt * block = new CompoundStmt(); 294 294 295 295 // Just copy the exception value. (Post Validation) … … 304 304 ) }) 305 305 ); 306 block->push_back( new DeclStmt( noLabels,local_except ) );306 block->push_back( new DeclStmt( local_except ) ); 307 307 308 308 // Add the cleanup attribute. 309 309 local_except->get_attributes().push_back( new Attribute( 310 310 "cleanup", 311 { new NameExpr( "__cfa ehm__cleanup_terminate" ) }311 { new NameExpr( "__cfaabi_ehm__cleanup_terminate" ) } 312 312 ) ); 313 313 … … 324 324 325 325 std::list<Statement *> caseBody 326 { block, new ReturnStmt( n oLabels, nullptr ) };326 { block, new ReturnStmt( nullptr ) }; 327 327 handler_wrappers.push_back( new CaseStmt( 328 noLabels,329 328 new ConstantExpr( Constant::from_int( index ) ), 330 329 caseBody … … 340 339 341 340 SwitchStmt * handler_lookup = new SwitchStmt( 342 noLabels,343 341 nameOf( index_obj ), 344 342 stmt_handlers 345 343 ); 346 CompoundStmt * body = new CompoundStmt( noLabels);344 CompoundStmt * body = new CompoundStmt(); 347 345 body->push_back( handler_lookup ); 348 346 … … 363 361 // } 364 362 365 CompoundStmt * block = new CompoundStmt( noLabels);363 CompoundStmt * block = new CompoundStmt(); 366 364 367 365 // Local Declaration … … 369 367 dynamic_cast<ObjectDecl *>( modded_handler->get_decl() ); 370 368 assert( local_except ); 371 block->push_back( new DeclStmt( noLabels,local_except ) );369 block->push_back( new DeclStmt( local_except ) ); 372 370 373 371 // Check for type match. … … 381 379 } 382 380 // Construct the match condition. 383 block->push_back( new IfStmt( noLabels,381 block->push_back( new IfStmt( 384 382 cond, modded_handler->get_body(), nullptr ) ); 385 383 … … 397 395 // } 398 396 399 CompoundStmt * body = new CompoundStmt( noLabels);397 CompoundStmt * body = new CompoundStmt(); 400 398 401 399 FunctionType * func_type = match_func_t.clone(); … … 413 411 414 412 // Create new body. 415 handler->set_body( new ReturnStmt( noLabels,413 handler->set_body( new ReturnStmt( 416 414 new ConstantExpr( Constant::from_int( index ) ) ) ); 417 415 … … 421 419 } 422 420 423 body->push_back( new ReturnStmt( noLabels,421 body->push_back( new ReturnStmt( 424 422 new ConstantExpr( Constant::from_int( 0 ) ) ) ); 425 423 … … 432 430 FunctionDecl * terminate_catch, 433 431 FunctionDecl * terminate_match ) { 434 // { __cfa ehm__try_terminate(`try`, `catch`, `match`); }432 // { __cfaabi_ehm__try_terminate(`try`, `catch`, `match`); } 435 433 436 434 UntypedExpr * caller = new UntypedExpr( new NameExpr( 437 "__cfa ehm__try_terminate" ) );435 "__cfaabi_ehm__try_terminate" ) ); 438 436 std::list<Expression *>& args = caller->get_args(); 439 437 args.push_back( nameOf( try_wrapper ) ); … … 441 439 args.push_back( nameOf( terminate_match ) ); 442 440 443 CompoundStmt * callStmt = new CompoundStmt( noLabels);444 callStmt->push_back( new ExprStmt( noLabels,caller ) );441 CompoundStmt * callStmt = new CompoundStmt(); 442 callStmt->push_back( new ExprStmt( caller ) ); 445 443 return callStmt; 446 444 } … … 451 449 // HANDLER WRAPPERS { `hander->body`; return true; } 452 450 // } 453 CompoundStmt * body = new CompoundStmt( noLabels);451 CompoundStmt * body = new CompoundStmt(); 454 452 455 453 FunctionType * func_type = handle_func_t.clone(); … … 464 462 dynamic_cast<CompoundStmt*>( handler->get_body() ); 465 463 if ( ! handling_code ) { 466 handling_code = new CompoundStmt( noLabels);464 handling_code = new CompoundStmt(); 467 465 handling_code->push_back( handler->get_body() ); 468 466 } 469 handling_code->push_back( new ReturnStmt( noLabels,467 handling_code->push_back( new ReturnStmt( 470 468 new ConstantExpr( Constant::from_bool( true ) ) ) ); 471 469 handler->set_body( handling_code ); … … 476 474 } 477 475 478 body->push_back( new ReturnStmt( noLabels,476 body->push_back( new ReturnStmt( 479 477 new ConstantExpr( Constant::from_bool( false ) ) ) ); 480 478 … … 486 484 Statement * wraps, 487 485 FunctionDecl * resume_handler ) { 488 CompoundStmt * body = new CompoundStmt( noLabels);486 CompoundStmt * body = new CompoundStmt(); 489 487 490 488 // struct __try_resume_node __resume_node 491 // __attribute__((cleanup( __cfa ehm__try_resume_cleanup )));489 // __attribute__((cleanup( __cfaabi_ehm__try_resume_cleanup ))); 492 490 // ** unwinding of the stack here could cause problems ** 493 491 // ** however I don't think that can happen currently ** 494 // __cfa ehm__try_resume_setup( &__resume_node, resume_handler );492 // __cfaabi_ehm__try_resume_setup( &__resume_node, resume_handler ); 495 493 496 494 std::list< Attribute * > attributes; … … 498 496 std::list< Expression * > attr_params; 499 497 attr_params.push_back( new NameExpr( 500 "__cfa ehm__try_resume_cleanup" ) );498 "__cfaabi_ehm__try_resume_cleanup" ) ); 501 499 attributes.push_back( new Attribute( "cleanup", attr_params ) ); 502 500 } … … 517 515 518 516 UntypedExpr *setup = new UntypedExpr( new NameExpr( 519 "__cfa ehm__try_resume_setup" ) );517 "__cfaabi_ehm__try_resume_setup" ) ); 520 518 setup->get_args().push_back( new AddressExpr( nameOf( obj ) ) ); 521 519 setup->get_args().push_back( nameOf( resume_handler ) ); 522 520 523 body->push_back( new ExprStmt( noLabels,setup ) );521 body->push_back( new ExprStmt( setup ) ); 524 522 525 523 body->push_back( wraps ); … … 542 540 ObjectDecl * ExceptionMutatorCore::create_finally_hook( 543 541 FunctionDecl * finally_wrapper ) { 544 // struct __cfa ehm__cleanup_hook __finally_hook542 // struct __cfaabi_ehm__cleanup_hook __finally_hook 545 543 // __attribute__((cleanup( finally_wrapper ))); 546 544 … … 596 594 // Skip children? 597 595 return; 598 } else if ( structDecl->get_name() == "__cfa ehm__base_exception_t" ) {596 } else if ( structDecl->get_name() == "__cfaabi_ehm__base_exception_t" ) { 599 597 assert( nullptr == except_decl ); 600 598 except_decl = structDecl; 601 599 init_func_types(); 602 } else if ( structDecl->get_name() == "__cfa ehm__try_resume_node" ) {600 } else if ( structDecl->get_name() == "__cfaabi_ehm__try_resume_node" ) { 603 601 assert( nullptr == node_decl ); 604 602 node_decl = structDecl; 605 } else if ( structDecl->get_name() == "__cfa ehm__cleanup_hook" ) {603 } else if ( structDecl->get_name() == "__cfaabi_ehm__cleanup_hook" ) { 606 604 assert( nullptr == hook_decl ); 607 605 hook_decl = structDecl; … … 646 644 // Generate a prefix for the function names? 647 645 648 CompoundStmt * block = new CompoundStmt( noLabels);646 CompoundStmt * block = new CompoundStmt(); 649 647 CompoundStmt * inner = take_try_block( tryStmt ); 650 648 -
src/ControlStruct/ForExprMutator.cc
r882ad37 r3ca540f 29 29 // Create compound statement, move initializers outside, 30 30 // the resut of the original stays as is. 31 CompoundStmt *block = new CompoundStmt( std::list< Label >());31 CompoundStmt *block = new CompoundStmt(); 32 32 std::list<Statement *> &stmts = block->get_kids(); 33 33 stmts.splice( stmts.end(), init ); -
src/ControlStruct/LabelFixer.cc
r882ad37 r3ca540f 37 37 } 38 38 39 void LabelFixer:: visit( FunctionDecl *functionDecl) {39 void LabelFixer::previsit( FunctionDecl * ) { 40 40 // need to go into a nested function in a fresh state 41 std::map < Label, Entry *> oldLabelTable = labelTable;41 GuardValue( labelTable ); 42 42 labelTable.clear(); 43 } 43 44 44 maybeAccept( functionDecl->get_statements(), *this ); 45 45 void LabelFixer::postvisit( FunctionDecl * functionDecl ) { 46 46 MLEMutator mlemut( resolveJumps(), generator ); 47 47 functionDecl->acceptMutator( mlemut ); 48 49 // and remember the outer function's labels when50 // returning to it51 labelTable = oldLabelTable;52 48 } 53 49 54 50 // prune to at most one label definition for each statement 55 void LabelFixer:: visit( Statement *stmt ) {51 void LabelFixer::previsit( Statement *stmt ) { 56 52 std::list< Label > &labels = stmt->get_labels(); 57 53 … … 62 58 } 63 59 64 void LabelFixer:: visit( BranchStmt *branchStmt ) {65 visit ( ( Statement *)branchStmt );60 void LabelFixer::previsit( BranchStmt *branchStmt ) { 61 previsit( ( Statement *)branchStmt ); 66 62 67 63 // for labeled branches, add an entry to the label table … … 72 68 } 73 69 74 void LabelFixer::visit( UntypedExpr *untyped ) { 75 if ( NameExpr * func = dynamic_cast< NameExpr * >( untyped->get_function() ) ) { 76 if ( func->get_name() == "&&" ) { 77 NameExpr * arg = dynamic_cast< NameExpr * >( untyped->get_args().front() ); 78 Label target = arg->get_name(); 79 assert( target != "" ); 80 setLabelsUsg( target, untyped ); 81 } else { 82 Visitor::visit( untyped ); 83 } 84 } 70 void LabelFixer::previsit( LabelAddressExpr * addrExpr ) { 71 Label & target = addrExpr->arg; 72 assert( target != "" ); 73 setLabelsUsg( target, addrExpr ); 85 74 } 86 75 -
src/ControlStruct/LabelFixer.h
r882ad37 r3ca540f 19 19 #include <map> // for map 20 20 21 #include "Common/PassVisitor.h" 21 22 #include "Common/SemanticError.h" // for SemanticError 22 23 #include "SynTree/Label.h" // for Label … … 26 27 namespace ControlStruct { 27 28 /// normalizes label definitions and generates multi-level exit labels 28 class LabelGenerator;29 class LabelGenerator; 29 30 30 class LabelFixer final : public Visitor { 31 typedef Visitor Parent; 31 class LabelFixer final : public WithGuards { 32 32 public: 33 33 LabelFixer( LabelGenerator *gen = 0 ); … … 35 35 std::map < Label, Statement * > *resolveJumps() throw ( SemanticError ); 36 36 37 using Visitor::visit;38 39 37 // Declarations 40 virtual void visit( FunctionDecl *functionDecl ) override; 38 void previsit( FunctionDecl *functionDecl ); 39 void postvisit( FunctionDecl *functionDecl ); 41 40 42 41 // Statements 43 void visit( Statement *stmt ); 42 void previsit( Statement *stmt ); 43 void previsit( BranchStmt *branchStmt ); 44 44 45 virtual void visit( CompoundStmt *stmt ) override { visit( (Statement *)stmt ); return Parent::visit( stmt ); } 46 virtual void visit( NullStmt *stmt ) override { visit( (Statement *)stmt ); return Parent::visit( stmt ); } 47 virtual void visit( ExprStmt *stmt ) override { visit( (Statement *)stmt ); return Parent::visit( stmt ); } 48 virtual void visit( IfStmt *stmt ) override { visit( (Statement *)stmt ); return Parent::visit( stmt ); } 49 virtual void visit( WhileStmt *stmt ) override { visit( (Statement *)stmt ); return Parent::visit( stmt ); } 50 virtual void visit( ForStmt *stmt ) override { visit( (Statement *)stmt ); return Parent::visit( stmt ); } 51 virtual void visit( SwitchStmt *stmt ) override { visit( (Statement *)stmt ); return Parent::visit( stmt ); } 52 virtual void visit( CaseStmt *stmt ) override { visit( (Statement *)stmt ); return Parent::visit( stmt ); } 53 virtual void visit( ReturnStmt *stmt ) override { visit( (Statement *)stmt ); return Parent::visit( stmt ); } 54 virtual void visit( TryStmt *stmt ) override { visit( (Statement *)stmt ); return Parent::visit( stmt ); } 55 virtual void visit( CatchStmt *stmt ) override { visit( (Statement *)stmt ); return Parent::visit( stmt ); } 56 virtual void visit( DeclStmt *stmt ) override { visit( (Statement *)stmt ); return Parent::visit( stmt ); } 57 virtual void visit( BranchStmt *branchStmt ) override; 58 virtual void visit( UntypedExpr *untyped ) override; 45 // Expressions 46 void previsit( LabelAddressExpr *addrExpr ); 59 47 60 48 Label setLabelsDef( std::list< Label > &, Statement *definition ); -
src/ControlStruct/MLEMutator.cc
r882ad37 r3ca540f 149 149 150 150 if ( CaseStmt * c = dynamic_cast< CaseStmt * >( statements.back() ) ) { 151 std::list<Label> temp; temp.push_back( brkLabel ); 152 c->get_statements().push_back( new BranchStmt( temp, Label("brkLabel"), BranchStmt::Break ) ); 151 Statement * stmt = new BranchStmt( Label("brkLabel"), BranchStmt::Break ); 152 stmt->labels.push_back( brkLabel ); 153 c->get_statements().push_back( stmt ); 153 154 } else assert(0); // as of this point, all statements of a switch are still CaseStmts 154 155 } // if … … 232 233 // transform break/continue statements into goto to simplify later handling of branches 233 234 delete branchStmt; 234 return new BranchStmt( std::list<Label>(),exitLabel, BranchStmt::Goto );235 return new BranchStmt( exitLabel, BranchStmt::Goto ); 235 236 } 236 237 … … 239 240 CompoundStmt *newBody; 240 241 if ( ! (newBody = dynamic_cast<CompoundStmt *>( bodyLoop )) ) { 241 newBody = new CompoundStmt( std::list< Label >());242 newBody = new CompoundStmt(); 242 243 newBody->get_kids().push_back( bodyLoop ); 243 244 } // if -
src/ControlStruct/Mutate.cc
r882ad37 r3ca540f 24 24 #include "SynTree/Declaration.h" // for Declaration 25 25 #include "SynTree/Mutator.h" // for mutateAll 26 //#include "ExceptMutator.h"27 26 28 27 #include "Common/PassVisitor.h" // for PassVisitor … … 37 36 38 37 // normalizes label definitions and generates multi-level exit labels 39 LabelFixer lfix; 40 41 //ExceptMutator exc; 38 PassVisitor<LabelFixer> lfix; 42 39 43 40 mutateAll( translationUnit, formut ); 44 41 acceptAll( translationUnit, lfix ); 45 //mutateAll( translationUnit, exc );46 42 } 47 43 } // namespace CodeGen -
src/GenPoly/Box.cc
r882ad37 r3ca540f 49 49 #include "SynTree/Expression.h" // for ApplicationExpr, UntypedExpr 50 50 #include "SynTree/Initializer.h" // for SingleInit, Initializer, Lis... 51 #include "SynTree/Label.h" // for Label , noLabels51 #include "SynTree/Label.h" // for Label 52 52 #include "SynTree/Mutator.h" // for maybeMutate, Mutator, mutateAll 53 53 #include "SynTree/Statement.h" // for ExprStmt, DeclStmt, ReturnStmt … … 293 293 FunctionDecl *layoutDecl = new FunctionDecl( layoutofName( typeDecl ), 294 294 functionNesting > 0 ? Type::StorageClasses() : Type::StorageClasses( Type::Static ), 295 LinkageSpec::AutoGen, layoutFnType, new CompoundStmt( noLabels),295 LinkageSpec::AutoGen, layoutFnType, new CompoundStmt(), 296 296 std::list< Attribute * >(), Type::FuncSpecifiers( Type::Inline ) ); 297 297 layoutDecl->fixUniqueId(); … … 321 321 /// makes an if-statement with a single-expression if-block and no then block 322 322 Statement *makeCond( Expression *cond, Expression *ifPart ) { 323 return new IfStmt( noLabels, cond, new ExprStmt( noLabels,ifPart ), 0 );323 return new IfStmt( cond, new ExprStmt( ifPart ), 0 ); 324 324 } 325 325 … … 340 340 /// adds an expression to a compound statement 341 341 void addExpr( CompoundStmt *stmts, Expression *expr ) { 342 stmts->get_kids().push_back( new ExprStmt( noLabels,expr ) );342 stmts->get_kids().push_back( new ExprStmt( expr ) ); 343 343 } 344 344 … … 629 629 ObjectDecl *Pass1::makeTemporary( Type *type ) { 630 630 ObjectDecl *newObj = new ObjectDecl( tempNamer.newName(), Type::StorageClasses(), LinkageSpec::C, 0, type, 0 ); 631 stmtsToAddBefore.push_back( new DeclStmt( n oLabels, newObj ) );631 stmtsToAddBefore.push_back( new DeclStmt( newObj ) ); 632 632 return newObj; 633 633 } … … 740 740 ObjectDecl *newObj = ObjectDecl::newObject( tempNamer.newName(), newType, nullptr ); 741 741 newObj->get_type()->get_qualifiers() = Type::Qualifiers(); // TODO: is this right??? 742 stmtsToAddBefore.push_back( new DeclStmt( n oLabels, newObj ) );742 stmtsToAddBefore.push_back( new DeclStmt( newObj ) ); 743 743 UntypedExpr *assign = new UntypedExpr( new NameExpr( "?=?" ) ); // TODO: why doesn't this just use initialization syntax? 744 744 assign->get_args().push_back( new VariableExpr( newObj ) ); 745 745 assign->get_args().push_back( arg ); 746 stmtsToAddBefore.push_back( new ExprStmt( noLabels,assign ) );746 stmtsToAddBefore.push_back( new ExprStmt( assign ) ); 747 747 arg = new AddressExpr( new VariableExpr( newObj ) ); 748 748 } // if … … 888 888 // void return 889 889 addAdapterParams( adapteeApp, arg, param, adapterType->get_parameters().end(), realParam, tyVars ); 890 bodyStmt = new ExprStmt( noLabels,adapteeApp );890 bodyStmt = new ExprStmt( adapteeApp ); 891 891 } else if ( isDynType( adaptee->get_returnVals().front()->get_type(), tyVars ) ) { 892 892 // return type T … … 900 900 addAdapterParams( adapteeApp, arg, param, adapterType->get_parameters().end(), realParam, tyVars ); 901 901 assign->get_args().push_back( adapteeApp ); 902 bodyStmt = new ExprStmt( noLabels,assign );902 bodyStmt = new ExprStmt( assign ); 903 903 } else { 904 904 // adapter for a function that returns a monomorphic value 905 905 addAdapterParams( adapteeApp, arg, param, adapterType->get_parameters().end(), realParam, tyVars ); 906 bodyStmt = new ReturnStmt( noLabels,adapteeApp );906 bodyStmt = new ReturnStmt( adapteeApp ); 907 907 } // if 908 CompoundStmt *adapterBody = new CompoundStmt( noLabels);908 CompoundStmt *adapterBody = new CompoundStmt(); 909 909 adapterBody->get_kids().push_back( bodyStmt ); 910 910 std::string adapterName = makeAdapterName( mangleName ); … … 952 952 std::pair< AdapterIter, bool > answer = adapters.insert( std::pair< std::string, DeclarationWithType *>( mangleName, newAdapter ) ); 953 953 adapter = answer.first; 954 stmtsToAddBefore.push_back( new DeclStmt( n oLabels, newAdapter ) );954 stmtsToAddBefore.push_back( new DeclStmt( newAdapter ) ); 955 955 } // if 956 956 assert( adapter != adapters.end() ); … … 1279 1279 retval->set_name( "_retval" ); 1280 1280 } 1281 functionDecl->get_statements()->get_kids().push_front( new DeclStmt( noLabels,retval ) );1281 functionDecl->get_statements()->get_kids().push_front( new DeclStmt( retval ) ); 1282 1282 DeclarationWithType * newRet = retval->clone(); // for ownership purposes 1283 1283 ftype->get_returnVals().front() = newRet; … … 1519 1519 // (alloca was previously used, but can't be safely used in loops) 1520 1520 ObjectDecl *newBuf = ObjectDecl::newObject( bufNamer.newName(), polyToMonoType( objectDecl->type ), nullptr ); 1521 stmtsToAddBefore.push_back( new DeclStmt( n oLabels, newBuf ) );1521 stmtsToAddBefore.push_back( new DeclStmt( newBuf ) ); 1522 1522 1523 1523 delete objectDecl->get_init(); … … 1598 1598 ObjectDecl *PolyGenericCalculator::makeVar( const std::string &name, Type *type, Initializer *init ) { 1599 1599 ObjectDecl *newObj = new ObjectDecl( name, Type::StorageClasses(), LinkageSpec::C, 0, type, init ); 1600 stmtsToAddBefore.push_back( new DeclStmt( n oLabels, newObj ) );1600 stmtsToAddBefore.push_back( new DeclStmt( newObj ) ); 1601 1601 return newObj; 1602 1602 } … … 1677 1677 addOtypeParamsToLayoutCall( layoutCall, otypeParams ); 1678 1678 1679 stmtsToAddBefore.push_back( new ExprStmt( noLabels,layoutCall ) );1679 stmtsToAddBefore.push_back( new ExprStmt( layoutCall ) ); 1680 1680 } 1681 1681 … … 1703 1703 addOtypeParamsToLayoutCall( layoutCall, otypeParams ); 1704 1704 1705 stmtsToAddBefore.push_back( new ExprStmt( noLabels,layoutCall ) );1705 stmtsToAddBefore.push_back( new ExprStmt( layoutCall ) ); 1706 1706 1707 1707 return true; -
src/GenPoly/InstantiateGeneric.cc
r882ad37 r3ca540f 517 517 Expression * init = new CastExpr( new AddressExpr( memberExpr ), new PointerType( Type::Qualifiers(), concType->clone() ) ); 518 518 ObjectDecl * tmp = ObjectDecl::newObject( tmpNamer.newName(), new ReferenceType( Type::Qualifiers(), concType ), new SingleInit( init ) ); 519 stmtsToAddBefore.push_back( new DeclStmt( noLabels,tmp ) );519 stmtsToAddBefore.push_back( new DeclStmt( tmp ) ); 520 520 return new VariableExpr( tmp ); 521 521 } else { -
src/GenPoly/Specialize.cc
r882ad37 r3ca540f 35 35 #include "SynTree/Declaration.h" // for FunctionDecl, DeclarationWit... 36 36 #include "SynTree/Expression.h" // for ApplicationExpr, Expression 37 #include "SynTree/Label.h" // for Label , noLabels37 #include "SynTree/Label.h" // for Label 38 38 #include "SynTree/Mutator.h" // for mutateAll 39 39 #include "SynTree/Statement.h" // for CompoundStmt, DeclStmt, Expr... … … 234 234 } // if 235 235 // create new thunk with same signature as formal type (C linkage, empty body) 236 FunctionDecl *thunkFunc = new FunctionDecl( thunkNamer.newName(), Type::StorageClasses(), LinkageSpec::C, newType, new CompoundStmt( noLabels) );236 FunctionDecl *thunkFunc = new FunctionDecl( thunkNamer.newName(), Type::StorageClasses(), LinkageSpec::C, newType, new CompoundStmt() ); 237 237 thunkFunc->fixUniqueId(); 238 238 … … 287 287 Statement *appStmt; 288 288 if ( funType->returnVals.empty() ) { 289 appStmt = new ExprStmt( noLabels,appExpr );290 } else { 291 appStmt = new ReturnStmt( noLabels,appExpr );289 appStmt = new ExprStmt( appExpr ); 290 } else { 291 appStmt = new ReturnStmt( appExpr ); 292 292 } // if 293 293 thunkFunc->statements->kids.push_back( appStmt ); 294 294 295 295 // add thunk definition to queue of statements to add 296 stmtsToAddBefore.push_back( new DeclStmt( noLabels,thunkFunc ) );296 stmtsToAddBefore.push_back( new DeclStmt( thunkFunc ) ); 297 297 // return address of thunk function as replacement expression 298 298 return new AddressExpr( new VariableExpr( thunkFunc ) ); -
src/InitTweak/FixGlobalInit.cc
r882ad37 r3ca540f 20 20 #include <algorithm> // for replace_if 21 21 22 #include "Common/PassVisitor.h" 22 23 #include "Common/SemanticError.h" // for SemanticError 23 24 #include "Common/UniqueName.h" // for UniqueName … … 29 30 #include "SynTree/Expression.h" // for ConstantExpr, Expression (ptr only) 30 31 #include "SynTree/Initializer.h" // for ConstructorInit, Initializer 31 #include "SynTree/Label.h" // for Label , noLabels32 #include "SynTree/Label.h" // for Label 32 33 #include "SynTree/Statement.h" // for CompoundStmt, Statement (ptr only) 33 34 #include "SynTree/Type.h" // for Type, Type::StorageClasses, Functi... … … 35 36 36 37 namespace InitTweak { 37 class GlobalFixer : public Visitor{38 class GlobalFixer : public WithShortCircuiting { 38 39 public: 39 40 GlobalFixer( const std::string & name, bool inLibrary ); 40 41 41 v irtual voidvisit( ObjectDecl *objDecl );42 v irtual voidvisit( FunctionDecl *functionDecl );43 v irtual voidvisit( StructDecl *aggregateDecl );44 v irtual voidvisit( UnionDecl *aggregateDecl );45 v irtual voidvisit( EnumDecl *aggregateDecl );46 v irtual voidvisit( TraitDecl *aggregateDecl );47 v irtual voidvisit( TypeDecl *typeDecl );42 void previsit( ObjectDecl *objDecl ); 43 void previsit( FunctionDecl *functionDecl ); 44 void previsit( StructDecl *aggregateDecl ); 45 void previsit( UnionDecl *aggregateDecl ); 46 void previsit( EnumDecl *aggregateDecl ); 47 void previsit( TraitDecl *aggregateDecl ); 48 void previsit( TypeDecl *typeDecl ); 48 49 49 50 UniqueName tempNamer; … … 53 54 54 55 void fixGlobalInit( std::list< Declaration * > & translationUnit, const std::string & name, bool inLibrary ) { 55 GlobalFixer fixer( name, inLibrary ); 56 acceptAll( translationUnit, fixer ); 56 PassVisitor<GlobalFixer> visitor( name, inLibrary ); 57 acceptAll( translationUnit, visitor ); 58 GlobalFixer & fixer = visitor.pass; 57 59 // don't need to include function if it's empty 58 60 if ( fixer.initFunction->get_statements()->get_kids().empty() ) { … … 92 94 dtorParameters.push_back( new ConstantExpr( Constant::from_int( 102 ) ) ); 93 95 } 94 initFunction = new FunctionDecl( "_init_" + fixedName, Type::StorageClasses( Type::Static ), LinkageSpec::C, new FunctionType( Type::Qualifiers(), false ), new CompoundStmt( noLabels) );96 initFunction = new FunctionDecl( "_init_" + fixedName, Type::StorageClasses( Type::Static ), LinkageSpec::C, new FunctionType( Type::Qualifiers(), false ), new CompoundStmt() ); 95 97 initFunction->get_attributes().push_back( new Attribute( "constructor", ctorParameters ) ); 96 destroyFunction = new FunctionDecl( "_destroy_" + fixedName, Type::StorageClasses( Type::Static ), LinkageSpec::C, new FunctionType( Type::Qualifiers(), false ), new CompoundStmt( noLabels) );98 destroyFunction = new FunctionDecl( "_destroy_" + fixedName, Type::StorageClasses( Type::Static ), LinkageSpec::C, new FunctionType( Type::Qualifiers(), false ), new CompoundStmt() ); 97 99 destroyFunction->get_attributes().push_back( new Attribute( "destructor", dtorParameters ) ); 98 100 } 99 101 100 void GlobalFixer:: visit( ObjectDecl *objDecl ) {102 void GlobalFixer::previsit( ObjectDecl *objDecl ) { 101 103 std::list< Statement * > & initStatements = initFunction->get_statements()->get_kids(); 102 104 std::list< Statement * > & destroyStatements = destroyFunction->get_statements()->get_kids(); … … 134 136 135 137 // only modify global variables 136 void GlobalFixer:: visit( __attribute__((unused)) FunctionDecl *functionDecl ) {}137 void GlobalFixer:: visit( __attribute__((unused)) StructDecl *aggregateDecl ) {}138 void GlobalFixer:: visit( __attribute__((unused)) UnionDecl *aggregateDecl ) {}139 void GlobalFixer:: visit( __attribute__((unused)) EnumDecl *aggregateDecl ) {}140 void GlobalFixer:: visit( __attribute__((unused)) TraitDecl *aggregateDecl ) {}141 void GlobalFixer:: visit( __attribute__((unused)) TypeDecl *typeDecl ) {}138 void GlobalFixer::previsit( FunctionDecl * ) { visit_children = false; } 139 void GlobalFixer::previsit( StructDecl * ) { visit_children = false; } 140 void GlobalFixer::previsit( UnionDecl * ) { visit_children = false; } 141 void GlobalFixer::previsit( EnumDecl * ) { visit_children = false; } 142 void GlobalFixer::previsit( TraitDecl * ) { visit_children = false; } 143 void GlobalFixer::previsit( TypeDecl * ) { visit_children = false; } 142 144 143 145 } // namespace InitTweak -
src/InitTweak/FixInit.cc
r882ad37 r3ca540f 49 49 #include "SynTree/Expression.h" // for UniqueExpr, VariableExpr, Unty... 50 50 #include "SynTree/Initializer.h" // for ConstructorInit, SingleInit 51 #include "SynTree/Label.h" // for Label, noLabels,operator<51 #include "SynTree/Label.h" // for Label, operator< 52 52 #include "SynTree/Mutator.h" // for mutateAll, Mutator, maybeMutate 53 53 #include "SynTree/Statement.h" // for ExprStmt, CompoundStmt, Branch... … … 544 544 // add all temporary declarations and their constructors 545 545 for ( ObjectDecl * obj : tempDecls ) { 546 stmtsToAddBefore.push_back( new DeclStmt( noLabels,obj ) );546 stmtsToAddBefore.push_back( new DeclStmt( obj ) ); 547 547 } // for 548 548 for ( ObjectDecl * obj : returnDecls ) { 549 stmtsToAddBefore.push_back( new DeclStmt( noLabels,obj ) );549 stmtsToAddBefore.push_back( new DeclStmt( obj ) ); 550 550 } // for 551 551 552 552 // add destructors after current statement 553 553 for ( Expression * dtor : dtors ) { 554 stmtsToAddAfter.push_back( new ExprStmt( noLabels,dtor ) );554 stmtsToAddAfter.push_back( new ExprStmt( dtor ) ); 555 555 } // for 556 556 … … 598 598 if ( ! result->isVoid() ) { 599 599 for ( ObjectDecl * obj : stmtExpr->get_returnDecls() ) { 600 stmtsToAddBefore.push_back( new DeclStmt( noLabels,obj ) );600 stmtsToAddBefore.push_back( new DeclStmt( obj ) ); 601 601 } // for 602 602 // add destructors after current statement 603 603 for ( Expression * dtor : stmtExpr->get_dtors() ) { 604 stmtsToAddAfter.push_back( new ExprStmt( noLabels,dtor ) );604 stmtsToAddAfter.push_back( new ExprStmt( dtor ) ); 605 605 } // for 606 606 // must have a non-empty body, otherwise it wouldn't have a result 607 607 assert( ! stmts.empty() ); 608 608 assert( ! stmtExpr->get_returnDecls().empty() ); 609 stmts.push_back( new ExprStmt( n oLabels, new VariableExpr( stmtExpr->get_returnDecls().front() ) ) );609 stmts.push_back( new ExprStmt( new VariableExpr( stmtExpr->get_returnDecls().front() ) ) ); 610 610 stmtExpr->get_returnDecls().clear(); 611 611 stmtExpr->get_dtors().clear(); … … 685 685 686 686 // generate body of if 687 CompoundStmt * initStmts = new CompoundStmt( noLabels);687 CompoundStmt * initStmts = new CompoundStmt(); 688 688 std::list< Statement * > & body = initStmts->get_kids(); 689 689 body.push_back( ctor ); 690 body.push_back( new ExprStmt( noLabels,setTrue ) );690 body.push_back( new ExprStmt( setTrue ) ); 691 691 692 692 // put it all together 693 IfStmt * ifStmt = new IfStmt( n oLabels, new VariableExpr( isUninitializedVar ), initStmts, 0 );694 stmtsToAddAfter.push_back( new DeclStmt( noLabels,isUninitializedVar ) );693 IfStmt * ifStmt = new IfStmt( new VariableExpr( isUninitializedVar ), initStmts, 0 ); 694 stmtsToAddAfter.push_back( new DeclStmt( isUninitializedVar ) ); 695 695 stmtsToAddAfter.push_back( ifStmt ); 696 696 … … 707 707 708 708 // void __objName_dtor_atexitN(...) {...} 709 FunctionDecl * dtorCaller = new FunctionDecl( objDecl->get_mangleName() + dtorCallerNamer.newName(), Type::StorageClasses( Type::Static ), LinkageSpec::C, new FunctionType( Type::Qualifiers(), false ), new CompoundStmt( noLabels) );709 FunctionDecl * dtorCaller = new FunctionDecl( objDecl->get_mangleName() + dtorCallerNamer.newName(), Type::StorageClasses( Type::Static ), LinkageSpec::C, new FunctionType( Type::Qualifiers(), false ), new CompoundStmt() ); 710 710 dtorCaller->fixUniqueId(); 711 711 dtorCaller->get_statements()->push_back( dtorStmt ); … … 715 715 callAtexit->get_args().push_back( new VariableExpr( dtorCaller ) ); 716 716 717 body.push_back( new ExprStmt( noLabels,callAtexit ) );717 body.push_back( new ExprStmt( callAtexit ) ); 718 718 719 719 // hoist variable and dtor caller decls to list of decls that will be added into global scope -
src/InitTweak/InitTweak.cc
r882ad37 r3ca540f 5 5 #include <memory> // for __shared_ptr 6 6 7 #include "Common/PassVisitor.h" 7 8 #include "Common/SemanticError.h" // for SemanticError 8 9 #include "Common/UniqueName.h" // for UniqueName … … 19 20 #include "SynTree/Expression.h" // for Expression, UntypedExpr, Applicati... 20 21 #include "SynTree/Initializer.h" // for Initializer, ListInit, Designation 21 #include "SynTree/Label.h" // for Label , noLabels22 #include "SynTree/Label.h" // for Label 22 23 #include "SynTree/Statement.h" // for CompoundStmt, ExprStmt, BranchStmt 23 24 #include "SynTree/Type.h" // for FunctionType, ArrayType, PointerType … … 29 30 namespace InitTweak { 30 31 namespace { 31 class HasDesignations : public Visitor { 32 public: 32 struct HasDesignations : public WithShortCircuiting { 33 33 bool hasDesignations = false; 34 virtual void visit( Designation * des ) { 35 if ( ! des->get_designators().empty() ) hasDesignations = true; 36 else Visitor::visit( des ); 34 35 void previsit( BaseSyntaxNode * ) { 36 // short circuit if we already know there are designations 37 if ( hasDesignations ) visit_children = false; 38 } 39 40 void previsit( Designation * des ) { 41 // short circuit if we already know there are designations 42 if ( hasDesignations ) visit_children = false; 43 else if ( ! des->get_designators().empty() ) { 44 hasDesignations = true; 45 visit_children = false; 46 } 37 47 } 38 48 }; 39 49 40 class InitDepthChecker : public Visitor { 41 public: 50 struct InitDepthChecker : public WithGuards { 42 51 bool depthOkay = true; 43 52 Type * type; … … 51 60 maxDepth++; 52 61 } 53 v irtual void visit( ListInit * listInit) {62 void previsit( ListInit * ) { 54 63 curDepth++; 64 GuardAction( [this]() { curDepth--; } ); 55 65 if ( curDepth > maxDepth ) depthOkay = false; 56 Visitor::visit( listInit );57 curDepth--;58 66 } 59 67 }; 60 68 61 class InitFlattener : public Visitor { 62 public: 63 virtual void visit( SingleInit * singleInit ); 64 virtual void visit( ListInit * listInit ); 69 struct InitFlattener : public WithShortCircuiting { 70 void previsit( SingleInit * singleInit ) { 71 visit_children = false; 72 argList.push_back( singleInit->value->clone() ); 73 } 65 74 std::list< Expression * > argList; 66 75 }; 67 76 68 void InitFlattener::visit( SingleInit * singleInit ) {69 argList.push_back( singleInit->get_value()->clone() );70 }71 72 void InitFlattener::visit( ListInit * listInit ) {73 // flatten nested list inits74 std::list<Initializer*>::iterator it = listInit->begin();75 for ( ; it != listInit->end(); ++it ) {76 (*it)->accept( *this );77 }78 }79 77 } 80 78 81 79 std::list< Expression * > makeInitList( Initializer * init ) { 82 InitFlattenerflattener;80 PassVisitor<InitFlattener> flattener; 83 81 maybeAccept( init, flattener ); 84 return flattener. argList;82 return flattener.pass.argList; 85 83 } 86 84 87 85 bool isDesignated( Initializer * init ) { 88 HasDesignationsfinder;86 PassVisitor<HasDesignations> finder; 89 87 maybeAccept( init, finder ); 90 return finder. hasDesignations;88 return finder.pass.hasDesignations; 91 89 } 92 90 93 91 bool checkInitDepth( ObjectDecl * objDecl ) { 94 InitDepthChecker checker( objDecl->get_type());95 maybeAccept( objDecl-> get_init(), checker );96 return checker. depthOkay;92 PassVisitor<InitDepthChecker> checker( objDecl->type ); 93 maybeAccept( objDecl->init, checker ); 94 return checker.pass.depthOkay; 97 95 } 98 96 … … 195 193 callExpr->get_args().splice( callExpr->get_args().end(), args ); 196 194 197 *out++ = new IfStmt( noLabels, cond, new ExprStmt( noLabels,callExpr ), nullptr );195 *out++ = new IfStmt( cond, new ExprStmt( callExpr ), nullptr ); 198 196 199 197 UntypedExpr * increment = new UntypedExpr( new NameExpr( "++?" ) ); 200 198 increment->get_args().push_back( index->clone() ); 201 *out++ = new ExprStmt( noLabels,increment );199 *out++ = new ExprStmt( increment ); 202 200 } 203 201 … … 244 242 std::list< Statement * > stmts; 245 243 build( callExpr, idx, idxEnd, init, back_inserter( stmts ) ); 246 stmts.push_back( new BranchStmt( noLabels,switchLabel, BranchStmt::Break ) );247 CaseStmt * caseStmt = new CaseStmt( noLabels,condition, stmts );244 stmts.push_back( new BranchStmt( switchLabel, BranchStmt::Break ) ); 245 CaseStmt * caseStmt = new CaseStmt( condition, stmts ); 248 246 branches.push_back( caseStmt ); 249 247 } 250 *out++ = new SwitchStmt( noLabels,index->clone(), branches );251 *out++ = new NullStmt( std::list<Label>{ switchLabel } );248 *out++ = new SwitchStmt( index->clone(), branches ); 249 *out++ = new NullStmt( { switchLabel } ); 252 250 } 253 251 } … … 262 260 Statement * InitImpl::buildListInit( UntypedExpr * dst, std::list< Expression * > & indices ) { 263 261 if ( ! init ) return nullptr; 264 CompoundStmt * block = new CompoundStmt( noLabels);262 CompoundStmt * block = new CompoundStmt(); 265 263 build( dst, indices.begin(), indices.end(), init, back_inserter( block->get_kids() ) ); 266 264 if ( block->get_kids().empty() ) { … … 309 307 } 310 308 311 class CallFinder : public Visitor { 312 public: 313 typedef Visitor Parent; 309 struct CallFinder { 314 310 CallFinder( const std::list< std::string > & names ) : names( names ) {} 315 311 316 v irtual voidvisit( ApplicationExpr * appExpr ) {312 void postvisit( ApplicationExpr * appExpr ) { 317 313 handleCallExpr( appExpr ); 318 314 } 319 315 320 v irtual voidvisit( UntypedExpr * untypedExpr ) {316 void postvisit( UntypedExpr * untypedExpr ) { 321 317 handleCallExpr( untypedExpr ); 322 318 } … … 328 324 template< typename CallExpr > 329 325 void handleCallExpr( CallExpr * expr ) { 330 Parent::visit( expr );331 326 std::string fname = getFunctionName( expr ); 332 327 if ( std::find( names.begin(), names.end(), fname ) != names.end() ) { … … 337 332 338 333 void collectCtorDtorCalls( Statement * stmt, std::list< Expression * > & matches ) { 339 static CallFinderfinder( std::list< std::string >{ "?{}", "^?{}" } );340 finder. matches = &matches;334 static PassVisitor<CallFinder> finder( std::list< std::string >{ "?{}", "^?{}" } ); 335 finder.pass.matches = &matches; 341 336 maybeAccept( stmt, finder ); 342 337 } … … 544 539 } 545 540 546 class ConstExprChecker : public Visitor { 547 public: 548 ConstExprChecker() : isConstExpr( true ) {} 549 550 using Visitor::visit; 551 552 virtual void visit( ApplicationExpr * ) { isConstExpr = false; } 553 virtual void visit( UntypedExpr * ) { isConstExpr = false; } 554 virtual void visit( NameExpr * ) { isConstExpr = false; } 555 // virtual void visit( CastExpr *castExpr ) { isConstExpr = false; } 556 virtual void visit( AddressExpr *addressExpr ) { 541 struct ConstExprChecker : public WithShortCircuiting { 542 // most expressions are not const expr 543 void previsit( Expression * ) { isConstExpr = false; visit_children = false; } 544 545 void previsit( AddressExpr *addressExpr ) { 546 visit_children = false; 547 557 548 // address of a variable or member expression is constexpr 558 549 Expression * arg = addressExpr->get_arg(); 559 550 if ( ! dynamic_cast< NameExpr * >( arg) && ! dynamic_cast< VariableExpr * >( arg ) && ! dynamic_cast< MemberExpr * >( arg ) && ! dynamic_cast< UntypedMemberExpr * >( arg ) ) isConstExpr = false; 560 551 } 561 virtual void visit( UntypedMemberExpr * ) { isConstExpr = false; } 562 virtual void visit( MemberExpr * ) { isConstExpr = false; } 563 virtual void visit( VariableExpr * ) { isConstExpr = false; } 564 // these might be okay? 565 // virtual void visit( SizeofExpr *sizeofExpr ); 566 // virtual void visit( AlignofExpr *alignofExpr ); 567 // virtual void visit( UntypedOffsetofExpr *offsetofExpr ); 568 // virtual void visit( OffsetofExpr *offsetofExpr ); 569 // virtual void visit( OffsetPackExpr *offsetPackExpr ); 570 // virtual void visit( AttrExpr *attrExpr ); 571 // virtual void visit( CommaExpr *commaExpr ); 572 // virtual void visit( LogicalExpr *logicalExpr ); 573 // virtual void visit( ConditionalExpr *conditionalExpr ); 574 virtual void visit( TypeExpr * ) { isConstExpr = false; } 575 virtual void visit( AsmExpr * ) { isConstExpr = false; } 576 virtual void visit( UntypedValofExpr * ) { isConstExpr = false; } 577 virtual void visit( CompoundLiteralExpr * ) { isConstExpr = false; } 578 virtual void visit( UntypedTupleExpr * ) { isConstExpr = false; } 579 virtual void visit( TupleExpr * ) { isConstExpr = false; } 580 virtual void visit( TupleAssignExpr * ) { isConstExpr = false; } 581 582 bool isConstExpr; 552 553 // these expressions may be const expr, depending on their children 554 void previsit( SizeofExpr * ) {} 555 void previsit( AlignofExpr * ) {} 556 void previsit( UntypedOffsetofExpr * ) {} 557 void previsit( OffsetofExpr * ) {} 558 void previsit( OffsetPackExpr * ) {} 559 void previsit( AttrExpr * ) {} 560 void previsit( CommaExpr * ) {} 561 void previsit( LogicalExpr * ) {} 562 void previsit( ConditionalExpr * ) {} 563 void previsit( CastExpr * ) {} 564 void previsit( ConstantExpr * ) {} 565 566 bool isConstExpr = true; 583 567 }; 584 568 585 569 bool isConstExpr( Expression * expr ) { 586 570 if ( expr ) { 587 ConstExprCheckerchecker;571 PassVisitor<ConstExprChecker> checker; 588 572 expr->accept( checker ); 589 return checker. isConstExpr;573 return checker.pass.isConstExpr; 590 574 } 591 575 return true; … … 594 578 bool isConstExpr( Initializer * init ) { 595 579 if ( init ) { 596 ConstExprCheckerchecker;580 PassVisitor<ConstExprChecker> checker; 597 581 init->accept( checker ); 598 return checker. isConstExpr;582 return checker.pass.isConstExpr; 599 583 } // if 600 584 // for all intents and purposes, no initializer means const expr -
src/MakeLibCfa.cc
r882ad37 r3ca540f 116 116 } // for 117 117 118 funcDecl->set_statements( new CompoundStmt( std::list< Label >()) );118 funcDecl->set_statements( new CompoundStmt() ); 119 119 newDecls.push_back( funcDecl ); 120 120 … … 130 130 case CodeGen::OT_INFIXASSIGN: 131 131 // return the recursive call 132 stmt = new ReturnStmt( n oLabels, newExpr );132 stmt = new ReturnStmt( newExpr ); 133 133 break; 134 134 case CodeGen::OT_CTOR: 135 135 case CodeGen::OT_DTOR: 136 136 // execute the recursive call 137 stmt = new ExprStmt( n oLabels, newExpr );137 stmt = new ExprStmt( newExpr ); 138 138 break; 139 139 case CodeGen::OT_CONSTANT: -
src/Makefile.in
r882ad37 r3ca540f 215 215 SymTab/driver_cfa_cpp-Validate.$(OBJEXT) \ 216 216 SymTab/driver_cfa_cpp-FixFunction.$(OBJEXT) \ 217 SymTab/driver_cfa_cpp-ImplementationType.$(OBJEXT) \218 SymTab/driver_cfa_cpp-TypeEquality.$(OBJEXT) \219 217 SymTab/driver_cfa_cpp-Autogen.$(OBJEXT) \ 220 218 SynTree/driver_cfa_cpp-Type.$(OBJEXT) \ … … 514 512 ResolvExpr/CurrentObject.cc ResolvExpr/ExplodedActual.cc \ 515 513 SymTab/Indexer.cc SymTab/Mangler.cc SymTab/Validate.cc \ 516 SymTab/FixFunction.cc SymTab/ImplementationType.cc \ 517 SymTab/TypeEquality.cc SymTab/Autogen.cc SynTree/Type.cc \ 514 SymTab/FixFunction.cc SymTab/Autogen.cc SynTree/Type.cc \ 518 515 SynTree/VoidType.cc SynTree/BasicType.cc \ 519 516 SynTree/PointerType.cc SynTree/ArrayType.cc \ … … 844 841 SymTab/driver_cfa_cpp-FixFunction.$(OBJEXT): SymTab/$(am__dirstamp) \ 845 842 SymTab/$(DEPDIR)/$(am__dirstamp) 846 SymTab/driver_cfa_cpp-ImplementationType.$(OBJEXT): \847 SymTab/$(am__dirstamp) SymTab/$(DEPDIR)/$(am__dirstamp)848 SymTab/driver_cfa_cpp-TypeEquality.$(OBJEXT): SymTab/$(am__dirstamp) \849 SymTab/$(DEPDIR)/$(am__dirstamp)850 843 SymTab/driver_cfa_cpp-Autogen.$(OBJEXT): SymTab/$(am__dirstamp) \ 851 844 SymTab/$(DEPDIR)/$(am__dirstamp) … … 1040 1033 @AMDEP_TRUE@@am__include@ @am__quote@SymTab/$(DEPDIR)/driver_cfa_cpp-Autogen.Po@am__quote@ 1041 1034 @AMDEP_TRUE@@am__include@ @am__quote@SymTab/$(DEPDIR)/driver_cfa_cpp-FixFunction.Po@am__quote@ 1042 @AMDEP_TRUE@@am__include@ @am__quote@SymTab/$(DEPDIR)/driver_cfa_cpp-ImplementationType.Po@am__quote@1043 1035 @AMDEP_TRUE@@am__include@ @am__quote@SymTab/$(DEPDIR)/driver_cfa_cpp-Indexer.Po@am__quote@ 1044 1036 @AMDEP_TRUE@@am__include@ @am__quote@SymTab/$(DEPDIR)/driver_cfa_cpp-Mangler.Po@am__quote@ 1045 @AMDEP_TRUE@@am__include@ @am__quote@SymTab/$(DEPDIR)/driver_cfa_cpp-TypeEquality.Po@am__quote@1046 1037 @AMDEP_TRUE@@am__include@ @am__quote@SymTab/$(DEPDIR)/driver_cfa_cpp-Validate.Po@am__quote@ 1047 1038 @AMDEP_TRUE@@am__include@ @am__quote@SynTree/$(DEPDIR)/driver_cfa_cpp-AddressExpr.Po@am__quote@ … … 2039 2030 @AMDEP_TRUE@@am__fastdepCXX_FALSE@ DEPDIR=$(DEPDIR) $(CXXDEPMODE) $(depcomp) @AMDEPBACKSLASH@ 2040 2031 @am__fastdepCXX_FALSE@ $(AM_V_CXX@am__nodep@)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(driver_cfa_cpp_CXXFLAGS) $(CXXFLAGS) -c -o SymTab/driver_cfa_cpp-FixFunction.obj `if test -f 'SymTab/FixFunction.cc'; then $(CYGPATH_W) 'SymTab/FixFunction.cc'; else $(CYGPATH_W) '$(srcdir)/SymTab/FixFunction.cc'; fi` 2041 2042 SymTab/driver_cfa_cpp-ImplementationType.o: SymTab/ImplementationType.cc2043 @am__fastdepCXX_TRUE@ $(AM_V_CXX)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(driver_cfa_cpp_CXXFLAGS) $(CXXFLAGS) -MT SymTab/driver_cfa_cpp-ImplementationType.o -MD -MP -MF SymTab/$(DEPDIR)/driver_cfa_cpp-ImplementationType.Tpo -c -o SymTab/driver_cfa_cpp-ImplementationType.o `test -f 'SymTab/ImplementationType.cc' || echo '$(srcdir)/'`SymTab/ImplementationType.cc2044 @am__fastdepCXX_TRUE@ $(AM_V_at)$(am__mv) SymTab/$(DEPDIR)/driver_cfa_cpp-ImplementationType.Tpo SymTab/$(DEPDIR)/driver_cfa_cpp-ImplementationType.Po2045 @AMDEP_TRUE@@am__fastdepCXX_FALSE@ $(AM_V_CXX)source='SymTab/ImplementationType.cc' object='SymTab/driver_cfa_cpp-ImplementationType.o' libtool=no @AMDEPBACKSLASH@2046 @AMDEP_TRUE@@am__fastdepCXX_FALSE@ DEPDIR=$(DEPDIR) $(CXXDEPMODE) $(depcomp) @AMDEPBACKSLASH@2047 @am__fastdepCXX_FALSE@ $(AM_V_CXX@am__nodep@)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(driver_cfa_cpp_CXXFLAGS) $(CXXFLAGS) -c -o SymTab/driver_cfa_cpp-ImplementationType.o `test -f 'SymTab/ImplementationType.cc' || echo '$(srcdir)/'`SymTab/ImplementationType.cc2048 2049 SymTab/driver_cfa_cpp-ImplementationType.obj: SymTab/ImplementationType.cc2050 @am__fastdepCXX_TRUE@ $(AM_V_CXX)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(driver_cfa_cpp_CXXFLAGS) $(CXXFLAGS) -MT SymTab/driver_cfa_cpp-ImplementationType.obj -MD -MP -MF SymTab/$(DEPDIR)/driver_cfa_cpp-ImplementationType.Tpo -c -o SymTab/driver_cfa_cpp-ImplementationType.obj `if test -f 'SymTab/ImplementationType.cc'; then $(CYGPATH_W) 'SymTab/ImplementationType.cc'; else $(CYGPATH_W) '$(srcdir)/SymTab/ImplementationType.cc'; fi`2051 @am__fastdepCXX_TRUE@ $(AM_V_at)$(am__mv) SymTab/$(DEPDIR)/driver_cfa_cpp-ImplementationType.Tpo SymTab/$(DEPDIR)/driver_cfa_cpp-ImplementationType.Po2052 @AMDEP_TRUE@@am__fastdepCXX_FALSE@ $(AM_V_CXX)source='SymTab/ImplementationType.cc' object='SymTab/driver_cfa_cpp-ImplementationType.obj' libtool=no @AMDEPBACKSLASH@2053 @AMDEP_TRUE@@am__fastdepCXX_FALSE@ DEPDIR=$(DEPDIR) $(CXXDEPMODE) $(depcomp) @AMDEPBACKSLASH@2054 @am__fastdepCXX_FALSE@ $(AM_V_CXX@am__nodep@)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(driver_cfa_cpp_CXXFLAGS) $(CXXFLAGS) -c -o SymTab/driver_cfa_cpp-ImplementationType.obj `if test -f 'SymTab/ImplementationType.cc'; then $(CYGPATH_W) 'SymTab/ImplementationType.cc'; else $(CYGPATH_W) '$(srcdir)/SymTab/ImplementationType.cc'; fi`2055 2056 SymTab/driver_cfa_cpp-TypeEquality.o: SymTab/TypeEquality.cc2057 @am__fastdepCXX_TRUE@ $(AM_V_CXX)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(driver_cfa_cpp_CXXFLAGS) $(CXXFLAGS) -MT SymTab/driver_cfa_cpp-TypeEquality.o -MD -MP -MF SymTab/$(DEPDIR)/driver_cfa_cpp-TypeEquality.Tpo -c -o SymTab/driver_cfa_cpp-TypeEquality.o `test -f 'SymTab/TypeEquality.cc' || echo '$(srcdir)/'`SymTab/TypeEquality.cc2058 @am__fastdepCXX_TRUE@ $(AM_V_at)$(am__mv) SymTab/$(DEPDIR)/driver_cfa_cpp-TypeEquality.Tpo SymTab/$(DEPDIR)/driver_cfa_cpp-TypeEquality.Po2059 @AMDEP_TRUE@@am__fastdepCXX_FALSE@ $(AM_V_CXX)source='SymTab/TypeEquality.cc' object='SymTab/driver_cfa_cpp-TypeEquality.o' libtool=no @AMDEPBACKSLASH@2060 @AMDEP_TRUE@@am__fastdepCXX_FALSE@ DEPDIR=$(DEPDIR) $(CXXDEPMODE) $(depcomp) @AMDEPBACKSLASH@2061 @am__fastdepCXX_FALSE@ $(AM_V_CXX@am__nodep@)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(driver_cfa_cpp_CXXFLAGS) $(CXXFLAGS) -c -o SymTab/driver_cfa_cpp-TypeEquality.o `test -f 'SymTab/TypeEquality.cc' || echo '$(srcdir)/'`SymTab/TypeEquality.cc2062 2063 SymTab/driver_cfa_cpp-TypeEquality.obj: SymTab/TypeEquality.cc2064 @am__fastdepCXX_TRUE@ $(AM_V_CXX)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(driver_cfa_cpp_CXXFLAGS) $(CXXFLAGS) -MT SymTab/driver_cfa_cpp-TypeEquality.obj -MD -MP -MF SymTab/$(DEPDIR)/driver_cfa_cpp-TypeEquality.Tpo -c -o SymTab/driver_cfa_cpp-TypeEquality.obj `if test -f 'SymTab/TypeEquality.cc'; then $(CYGPATH_W) 'SymTab/TypeEquality.cc'; else $(CYGPATH_W) '$(srcdir)/SymTab/TypeEquality.cc'; fi`2065 @am__fastdepCXX_TRUE@ $(AM_V_at)$(am__mv) SymTab/$(DEPDIR)/driver_cfa_cpp-TypeEquality.Tpo SymTab/$(DEPDIR)/driver_cfa_cpp-TypeEquality.Po2066 @AMDEP_TRUE@@am__fastdepCXX_FALSE@ $(AM_V_CXX)source='SymTab/TypeEquality.cc' object='SymTab/driver_cfa_cpp-TypeEquality.obj' libtool=no @AMDEPBACKSLASH@2067 @AMDEP_TRUE@@am__fastdepCXX_FALSE@ DEPDIR=$(DEPDIR) $(CXXDEPMODE) $(depcomp) @AMDEPBACKSLASH@2068 @am__fastdepCXX_FALSE@ $(AM_V_CXX@am__nodep@)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(driver_cfa_cpp_CXXFLAGS) $(CXXFLAGS) -c -o SymTab/driver_cfa_cpp-TypeEquality.obj `if test -f 'SymTab/TypeEquality.cc'; then $(CYGPATH_W) 'SymTab/TypeEquality.cc'; else $(CYGPATH_W) '$(srcdir)/SymTab/TypeEquality.cc'; fi`2069 2032 2070 2033 SymTab/driver_cfa_cpp-Autogen.o: SymTab/Autogen.cc -
src/Parser/StatementNode.cc
r882ad37 r3ca540f 37 37 DeclarationNode *agg = decl->extractAggregate(); 38 38 if ( agg ) { 39 StatementNode *nextStmt = new StatementNode( new DeclStmt( noLabels,maybeBuild< Declaration >( decl ) ) );39 StatementNode *nextStmt = new StatementNode( new DeclStmt( maybeBuild< Declaration >( decl ) ) ); 40 40 set_next( nextStmt ); 41 41 if ( decl->get_next() ) { … … 50 50 agg = decl; 51 51 } // if 52 stmt.reset( new DeclStmt( noLabels,maybeMoveBuild< Declaration >(agg) ) );52 stmt.reset( new DeclStmt( maybeMoveBuild< Declaration >(agg) ) ); 53 53 } // StatementNode::StatementNode 54 54 … … 75 75 76 76 if ( e ) 77 return new ExprStmt( noLabels,e );77 return new ExprStmt( e ); 78 78 else 79 return new NullStmt( noLabels);79 return new NullStmt(); 80 80 } 81 81 … … 113 113 } 114 114 delete ctl; 115 return new IfStmt( noLabels,cond, thenb, elseb, init );115 return new IfStmt( cond, thenb, elseb, init ); 116 116 } 117 117 … … 120 120 buildMoveList< Statement, StatementNode >( stmt, branches ); 121 121 // branches.size() == 0 for switch (...) {}, i.e., no declaration or statements 122 return new SwitchStmt( noLabels,maybeMoveBuild< Expression >(ctl), branches );122 return new SwitchStmt( maybeMoveBuild< Expression >(ctl), branches ); 123 123 } 124 124 Statement *build_case( ExpressionNode *ctl ) { 125 125 std::list< Statement * > branches; 126 return new CaseStmt( noLabels,maybeMoveBuild< Expression >(ctl), branches );126 return new CaseStmt( maybeMoveBuild< Expression >(ctl), branches ); 127 127 } 128 128 Statement *build_default() { 129 129 std::list< Statement * > branches; 130 return new CaseStmt( n oLabels, nullptr, branches, true );130 return new CaseStmt( nullptr, branches, true ); 131 131 } 132 132 … … 135 135 buildMoveList< Statement, StatementNode >( stmt, branches ); 136 136 assert( branches.size() == 1 ); 137 return new WhileStmt( no Labels, notZeroExpr( maybeMoveBuild< Expression >(ctl) ), branches.front(), kind );137 return new WhileStmt( notZeroExpr( maybeMoveBuild< Expression >(ctl) ), branches.front(), kind ); 138 138 } 139 139 … … 157 157 158 158 delete forctl; 159 return new ForStmt( noLabels,init, cond, incr, branches.front() );159 return new ForStmt( init, cond, incr, branches.front() ); 160 160 } 161 161 162 162 Statement *build_branch( BranchStmt::Type kind ) { 163 Statement * ret = new BranchStmt( noLabels,"", kind );163 Statement * ret = new BranchStmt( "", kind ); 164 164 return ret; 165 165 } 166 166 Statement *build_branch( std::string *identifier, BranchStmt::Type kind ) { 167 Statement * ret = new BranchStmt( noLabels,*identifier, kind );167 Statement * ret = new BranchStmt( *identifier, kind ); 168 168 delete identifier; // allocated by lexer 169 169 return ret; 170 170 } 171 171 Statement *build_computedgoto( ExpressionNode *ctl ) { 172 return new BranchStmt( noLabels,maybeMoveBuild< Expression >(ctl), BranchStmt::Goto );172 return new BranchStmt( maybeMoveBuild< Expression >(ctl), BranchStmt::Goto ); 173 173 } 174 174 … … 176 176 std::list< Expression * > exps; 177 177 buildMoveList( ctl, exps ); 178 return new ReturnStmt( noLabels,exps.size() > 0 ? exps.back() : nullptr );178 return new ReturnStmt( exps.size() > 0 ? exps.back() : nullptr ); 179 179 } 180 180 … … 183 183 buildMoveList( ctl, exps ); 184 184 assertf( exps.size() < 2, "This means we are leaking memory"); 185 return new ThrowStmt( noLabels,ThrowStmt::Terminate, !exps.empty() ? exps.back() : nullptr );185 return new ThrowStmt( ThrowStmt::Terminate, !exps.empty() ? exps.back() : nullptr ); 186 186 } 187 187 … … 190 190 buildMoveList( ctl, exps ); 191 191 assertf( exps.size() < 2, "This means we are leaking memory"); 192 return new ThrowStmt( noLabels,ThrowStmt::Resume, !exps.empty() ? exps.back() : nullptr );192 return new ThrowStmt( ThrowStmt::Resume, !exps.empty() ? exps.back() : nullptr ); 193 193 } 194 194 … … 204 204 CompoundStmt *tryBlock = strict_dynamic_cast< CompoundStmt * >(maybeMoveBuild< Statement >(try_stmt)); 205 205 FinallyStmt *finallyBlock = dynamic_cast< FinallyStmt * >(maybeMoveBuild< Statement >(finally_stmt) ); 206 return new TryStmt( noLabels,tryBlock, branches, finallyBlock );206 return new TryStmt( tryBlock, branches, finallyBlock ); 207 207 } 208 208 Statement *build_catch( CatchStmt::Kind kind, DeclarationNode *decl, ExpressionNode *cond, StatementNode *body ) { … … 210 210 buildMoveList< Statement, StatementNode >( body, branches ); 211 211 assert( branches.size() == 1 ); 212 return new CatchStmt( noLabels,kind, maybeMoveBuild< Declaration >(decl), maybeMoveBuild< Expression >(cond), branches.front() );212 return new CatchStmt( kind, maybeMoveBuild< Declaration >(decl), maybeMoveBuild< Expression >(cond), branches.front() ); 213 213 } 214 214 Statement *build_finally( StatementNode *stmt ) { … … 216 216 buildMoveList< Statement, StatementNode >( stmt, branches ); 217 217 assert( branches.size() == 1 ); 218 return new FinallyStmt( noLabels,dynamic_cast< CompoundStmt * >( branches.front() ) );218 return new FinallyStmt( dynamic_cast< CompoundStmt * >( branches.front() ) ); 219 219 } 220 220 … … 296 296 297 297 Statement *build_compound( StatementNode *first ) { 298 CompoundStmt *cs = new CompoundStmt( noLabels);298 CompoundStmt *cs = new CompoundStmt(); 299 299 buildMoveList( first, cs->get_kids() ); 300 300 return cs; … … 308 308 buildMoveList( input, in ); 309 309 buildMoveList( clobber, clob ); 310 return new AsmStmt( noLabels,voltile, instruction, out, in, clob, gotolabels ? gotolabels->labels : noLabels );310 return new AsmStmt( voltile, instruction, out, in, clob, gotolabels ? gotolabels->labels : noLabels ); 311 311 } 312 312 -
src/ResolvExpr/Resolver.cc
r882ad37 r3ca540f 370 370 if ( throwStmt->get_expr() ) { 371 371 StructDecl * exception_decl = 372 indexer.lookupStruct( "__cfa ehm__base_exception_t" );372 indexer.lookupStruct( "__cfaabi_ehm__base_exception_t" ); 373 373 assert( exception_decl ); 374 374 Type * exceptType = new PointerType( noQualifiers, new StructInstType( noQualifiers, exception_decl ) ); -
src/SymTab/AddVisit.h
r882ad37 r3ca540f 24 24 // add any new declarations after the previous statement 25 25 for ( std::list< Declaration* >::iterator decl = visitor.declsToAddAfter.begin(); decl != visitor.declsToAddAfter.end(); ++decl ) { 26 DeclStmt *declStmt = new DeclStmt( noLabels,*decl );26 DeclStmt *declStmt = new DeclStmt( *decl ); 27 27 stmts.insert( stmt, declStmt ); 28 28 } … … 36 36 // add any new declarations before the statement 37 37 for ( std::list< Declaration* >::iterator decl = visitor.declsToAdd.begin(); decl != visitor.declsToAdd.end(); ++decl ) { 38 DeclStmt *declStmt = new DeclStmt( noLabels,*decl );38 DeclStmt *declStmt = new DeclStmt( *decl ); 39 39 stmts.insert( stmt, declStmt ); 40 40 } -
src/SymTab/Autogen.cc
r882ad37 r3ca540f 264 264 Type::StorageClasses scs = functionNesting > 0 ? Type::StorageClasses() : Type::StorageClasses( Type::Static ); 265 265 LinkageSpec::Spec spec = isIntrinsic ? LinkageSpec::Intrinsic : LinkageSpec::AutoGen; 266 FunctionDecl * decl = new FunctionDecl( fname, scs, spec, ftype, new CompoundStmt( noLabels),266 FunctionDecl * decl = new FunctionDecl( fname, scs, spec, ftype, new CompoundStmt(), 267 267 std::list< Attribute * >(), Type::FuncSpecifiers( Type::Inline ) ); 268 268 decl->fixUniqueId(); … … 299 299 assert( assignType->returnVals.size() == 1 ); 300 300 ObjectDecl * dstParam = strict_dynamic_cast< ObjectDecl * >( assignType->parameters.front() ); 301 dcl->statements->push_back( new ReturnStmt( n oLabels, new VariableExpr( dstParam ) ) );301 dcl->statements->push_back( new ReturnStmt( new VariableExpr( dstParam ) ) ); 302 302 } 303 303 resolve( dcl ); … … 468 468 copy->args.push_back( new AddressExpr( new VariableExpr( srcParam ) ) ); 469 469 copy->args.push_back( new SizeofExpr( srcParam->get_type()->clone() ) ); 470 *out++ = new ExprStmt( noLabels,copy );470 *out++ = new ExprStmt( copy ); 471 471 } 472 472 … … 544 544 callExpr->get_args().push_back( new VariableExpr( dstParam ) ); 545 545 callExpr->get_args().push_back( new VariableExpr( srcParam ) ); 546 funcDecl->statements->push_back( new ExprStmt( noLabels,callExpr ) );546 funcDecl->statements->push_back( new ExprStmt( callExpr ) ); 547 547 } else { 548 548 // default ctor/dtor body is empty - add unused attribute to parameter to silence warnings … … 569 569 expr->args.push_back( new CastExpr( new VariableExpr( dst ), new ReferenceType( Type::Qualifiers(), typeDecl->base->clone() ) ) ); 570 570 if ( src ) expr->args.push_back( new CastExpr( new VariableExpr( src ), typeDecl->base->clone() ) ); 571 dcl->statements->kids.push_back( new ExprStmt( noLabels,expr ) );571 dcl->statements->kids.push_back( new ExprStmt( expr ) ); 572 572 }; 573 573 … … 664 664 untyped->get_args().push_back( new VariableExpr( ftype->get_parameters().back() ) ); 665 665 } 666 function->get_statements()->get_kids().push_back( new ExprStmt( noLabels,untyped ) );667 function->get_statements()->get_kids().push_back( new ReturnStmt( noLabels,UntypedExpr::createDeref( new VariableExpr( ftype->get_parameters().front() ) ) ) );666 function->get_statements()->get_kids().push_back( new ExprStmt( untyped ) ); 667 function->get_statements()->get_kids().push_back( new ReturnStmt( UntypedExpr::createDeref( new VariableExpr( ftype->get_parameters().front() ) ) ) ); 668 668 } 669 669 -
src/SymTab/Autogen.h
r882ad37 r3ca540f 104 104 fExpr->args.splice( fExpr->args.end(), args ); 105 105 106 *out++ = new ExprStmt( noLabels,fExpr );106 *out++ = new ExprStmt( fExpr ); 107 107 108 108 srcParam.clearArrayIndices(); … … 162 162 163 163 // for stmt's body, eventually containing call 164 CompoundStmt * body = new CompoundStmt( noLabels);164 CompoundStmt * body = new CompoundStmt(); 165 165 Statement * listInit = genCall( srcParam, dstParam, fname, back_inserter( body->kids ), array->base, addCast, forward ); 166 166 167 167 // block containing for stmt and index variable 168 168 std::list<Statement *> initList; 169 CompoundStmt * block = new CompoundStmt( noLabels);170 block->push_back( new DeclStmt( noLabels,index ) );169 CompoundStmt * block = new CompoundStmt(); 170 block->push_back( new DeclStmt( index ) ); 171 171 if ( listInit ) block->get_kids().push_back( listInit ); 172 block->push_back( new ForStmt( noLabels,initList, cond, inc, body ) );172 block->push_back( new ForStmt( initList, cond, inc, body ) ); 173 173 174 174 *out++ = block; -
src/SymTab/Validate.cc
r882ad37 r3ca540f 81 81 82 82 namespace SymTab { 83 class HoistStruct final : public Visitor { 84 template< typename Visitor > 85 friend void acceptAndAdd( std::list< Declaration * > &translationUnit, Visitor &visitor ); 86 template< typename Visitor > 87 friend void addVisitStatementList( std::list< Statement* > &stmts, Visitor &visitor ); 88 public: 83 struct HoistStruct final : public WithDeclsToAdd, public WithGuards { 89 84 /// Flattens nested struct types 90 85 static void hoistStruct( std::list< Declaration * > &translationUnit ); 91 86 92 std::list< Declaration * > &get_declsToAdd() { return declsToAdd; } 93 94 virtual void visit( EnumInstType *enumInstType ); 95 virtual void visit( StructInstType *structInstType ); 96 virtual void visit( UnionInstType *unionInstType ); 97 virtual void visit( StructDecl *aggregateDecl ); 98 virtual void visit( UnionDecl *aggregateDecl ); 99 100 virtual void visit( CompoundStmt *compoundStmt ); 101 virtual void visit( SwitchStmt *switchStmt ); 87 void previsit( EnumInstType * enumInstType ); 88 void previsit( StructInstType * structInstType ); 89 void previsit( UnionInstType * unionInstType ); 90 void previsit( StructDecl * aggregateDecl ); 91 void previsit( UnionDecl * aggregateDecl ); 92 102 93 private: 103 HoistStruct();104 105 94 template< typename AggDecl > void handleAggregate( AggDecl *aggregateDecl ); 106 95 107 std::list< Declaration * > declsToAdd, declsToAddAfter; 108 bool inStruct; 96 bool inStruct = false; 109 97 }; 110 98 … … 305 293 306 294 void HoistStruct::hoistStruct( std::list< Declaration * > &translationUnit ) { 307 HoistStruct hoister; 308 acceptAndAdd( translationUnit, hoister ); 309 } 310 311 HoistStruct::HoistStruct() : inStruct( false ) { 295 PassVisitor<HoistStruct> hoister; 296 acceptAll( translationUnit, hoister ); 312 297 } 313 298 … … 320 305 if ( inStruct ) { 321 306 // Add elements in stack order corresponding to nesting structure. 322 declsToAdd.push_front( aggregateDecl ); 323 Visitor::visit( aggregateDecl ); 307 declsToAddBefore.push_front( aggregateDecl ); 324 308 } else { 309 GuardValue( inStruct ); 325 310 inStruct = true; 326 Visitor::visit( aggregateDecl );327 inStruct = false;328 311 } // if 329 312 // Always remove the hoisted aggregate from the inner structure. 330 filter( aggregateDecl->get_members(), isStructOrUnion, false);331 } 332 333 void HoistStruct:: visit( EnumInstType *structInstType) {334 if ( structInstType->get_baseEnum()) {335 declsToAdd .push_front( structInstType->get_baseEnum());336 } 337 } 338 339 void HoistStruct:: visit( StructInstType *structInstType) {340 if ( structInstType->get_baseStruct()) {341 declsToAdd .push_front( structInstType->get_baseStruct());342 } 343 } 344 345 void HoistStruct:: visit( UnionInstType *structInstType) {346 if ( structInstType->get_baseUnion()) {347 declsToAdd .push_front( structInstType->get_baseUnion());348 } 349 } 350 351 void HoistStruct:: visit( StructDecl *aggregateDecl ) {313 GuardAction( [this, aggregateDecl]() { filter( aggregateDecl->members, isStructOrUnion, false ); } ); 314 } 315 316 void HoistStruct::previsit( EnumInstType * inst ) { 317 if ( inst->baseEnum ) { 318 declsToAddBefore.push_front( inst->baseEnum ); 319 } 320 } 321 322 void HoistStruct::previsit( StructInstType * inst ) { 323 if ( inst->baseStruct ) { 324 declsToAddBefore.push_front( inst->baseStruct ); 325 } 326 } 327 328 void HoistStruct::previsit( UnionInstType * inst ) { 329 if ( inst->baseUnion ) { 330 declsToAddBefore.push_front( inst->baseUnion ); 331 } 332 } 333 334 void HoistStruct::previsit( StructDecl * aggregateDecl ) { 352 335 handleAggregate( aggregateDecl ); 353 336 } 354 337 355 void HoistStruct:: visit( UnionDecl *aggregateDecl ) {338 void HoistStruct::previsit( UnionDecl * aggregateDecl ) { 356 339 handleAggregate( aggregateDecl ); 357 }358 359 void HoistStruct::visit( CompoundStmt *compoundStmt ) {360 addVisit( compoundStmt, *this );361 }362 363 void HoistStruct::visit( SwitchStmt *switchStmt ) {364 addVisit( switchStmt, *this );365 340 } 366 341 -
src/SymTab/module.mk
r882ad37 r3ca540f 19 19 SymTab/Validate.cc \ 20 20 SymTab/FixFunction.cc \ 21 SymTab/ImplementationType.cc \22 SymTab/TypeEquality.cc \23 21 SymTab/Autogen.cc -
src/SynTree/CompoundStmt.cc
r882ad37 r3ca540f 28 28 using std::endl; 29 29 30 CompoundStmt::CompoundStmt( std::list<Label> labels ) : Statement( labels) {30 CompoundStmt::CompoundStmt() : Statement() { 31 31 } 32 32 33 CompoundStmt::CompoundStmt( std::list<Statement *> stmts ) : Statement( noLabels), kids( stmts ) {33 CompoundStmt::CompoundStmt( std::list<Statement *> stmts ) : Statement(), kids( stmts ) { 34 34 } 35 35 -
src/SynTree/DeclStmt.cc
r882ad37 r3ca540f 23 23 #include "SynTree/Label.h" // for Label 24 24 25 DeclStmt::DeclStmt( std::list<Label> labels, Declaration *decl ) : Statement( labels), decl( decl ) {25 DeclStmt::DeclStmt( Declaration *decl ) : Statement(), decl( decl ) { 26 26 } 27 27 -
src/SynTree/Statement.cc
r882ad37 r3ca540f 32 32 using std::endl; 33 33 34 Statement::Statement( std::list<Label>labels ) : labels( labels ) {}34 Statement::Statement( const std::list<Label> & labels ) : labels( labels ) {} 35 35 36 36 void Statement::print( std::ostream & os, Indenter ) const { … … 46 46 Statement::~Statement() {} 47 47 48 ExprStmt::ExprStmt( std::list<Label> labels, Expression *expr ) : Statement( labels), expr( expr ) {}48 ExprStmt::ExprStmt( Expression *expr ) : Statement(), expr( expr ) {} 49 49 50 50 ExprStmt::ExprStmt( const ExprStmt &other ) : Statement( other ), expr( maybeClone( other.expr ) ) {} … … 60 60 61 61 62 AsmStmt::AsmStmt( std::list<Label> labels, bool voltile, Expression *instruction, std::list<Expression *> output, std::list<Expression *> input, std::list<ConstantExpr *> clobber, std::list<Label> gotolabels ) : Statement( labels), voltile( voltile ), instruction( instruction ), output( output ), input( input ), clobber( clobber ), gotolabels( gotolabels ) {}62 AsmStmt::AsmStmt( bool voltile, Expression *instruction, std::list<Expression *> output, std::list<Expression *> input, std::list<ConstantExpr *> clobber, std::list<Label> gotolabels ) : Statement(), voltile( voltile ), instruction( instruction ), output( output ), input( input ), clobber( clobber ), gotolabels( gotolabels ) {} 63 63 64 64 AsmStmt::AsmStmt( const AsmStmt & other ) : Statement( other ), voltile( other.voltile ), instruction( maybeClone( other.instruction ) ), gotolabels( other.gotolabels ) { … … 96 96 const char *BranchStmt::brType[] = { "Goto", "Break", "Continue" }; 97 97 98 BranchStmt::BranchStmt( std::list<Label> labels,Label target, Type type ) throw ( SemanticError ) :99 Statement( labels), originalTarget( target ), target( target ), computedTarget( nullptr ), type( type ) {98 BranchStmt::BranchStmt( Label target, Type type ) throw ( SemanticError ) : 99 Statement(), originalTarget( target ), target( target ), computedTarget( nullptr ), type( type ) { 100 100 //actually this is a syntactic error signaled by the parser 101 101 if ( type == BranchStmt::Goto && target.empty() ) { … … 104 104 } 105 105 106 BranchStmt::BranchStmt( std::list<Label> labels,Expression *computedTarget, Type type ) throw ( SemanticError ) :107 Statement( labels), computedTarget( computedTarget ), type( type ) {106 BranchStmt::BranchStmt( Expression *computedTarget, Type type ) throw ( SemanticError ) : 107 Statement(), computedTarget( computedTarget ), type( type ) { 108 108 if ( type != BranchStmt::Goto || computedTarget == nullptr ) { 109 109 throw SemanticError("Computed target not valid in branch statement"); … … 118 118 } 119 119 120 ReturnStmt::ReturnStmt( std::list<Label> labels, Expression *expr ) : Statement( labels), expr( expr ) {}120 ReturnStmt::ReturnStmt( Expression *expr ) : Statement(), expr( expr ) {} 121 121 122 122 ReturnStmt::ReturnStmt( const ReturnStmt & other ) : Statement( other ), expr( maybeClone( other.expr ) ) {} … … 135 135 } 136 136 137 IfStmt::IfStmt( std::list<Label> labels,Expression *condition, Statement *thenPart, Statement *elsePart, std::list<Statement *> initialization ):138 Statement( labels), condition( condition ), thenPart( thenPart ), elsePart( elsePart ), initialization( initialization ) {}137 IfStmt::IfStmt( Expression *condition, Statement *thenPart, Statement *elsePart, std::list<Statement *> initialization ): 138 Statement(), condition( condition ), thenPart( thenPart ), elsePart( elsePart ), initialization( initialization ) {} 139 139 140 140 IfStmt::IfStmt( const IfStmt & other ) : … … 176 176 } 177 177 178 SwitchStmt::SwitchStmt( std::list<Label> labels,Expression * condition, const std::list<Statement *> &statements ):179 Statement( labels), condition( condition ), statements( statements ) {178 SwitchStmt::SwitchStmt( Expression * condition, const std::list<Statement *> &statements ): 179 Statement(), condition( condition ), statements( statements ) { 180 180 } 181 181 … … 201 201 } 202 202 203 CaseStmt::CaseStmt( std::list<Label> labels,Expression *condition, const std::list<Statement *> &statements, bool deflt ) throw ( SemanticError ) :204 Statement( labels), condition( condition ), stmts( statements ), _isDefault( deflt ) {203 CaseStmt::CaseStmt( Expression *condition, const std::list<Statement *> &statements, bool deflt ) throw ( SemanticError ) : 204 Statement(), condition( condition ), stmts( statements ), _isDefault( deflt ) { 205 205 if ( isDefault() && condition != 0 ) throw SemanticError("default case with condition: ", condition); 206 206 } … … 216 216 } 217 217 218 CaseStmt * CaseStmt::makeDefault( std::list<Label> labels, std::list<Statement *> stmts ) { 219 return new CaseStmt( labels, 0, stmts, true ); 218 CaseStmt * CaseStmt::makeDefault( const std::list<Label> & labels, std::list<Statement *> stmts ) { 219 CaseStmt * stmt = new CaseStmt( nullptr, stmts, true ); 220 stmt->labels = labels; 221 return stmt; 220 222 } 221 223 … … 233 235 } 234 236 235 WhileStmt::WhileStmt( std::list<Label> labels,Expression *condition, Statement *body, bool isDoWhile ):236 Statement( labels), condition( condition), body( body), isDoWhile( isDoWhile) {237 WhileStmt::WhileStmt( Expression *condition, Statement *body, bool isDoWhile ): 238 Statement(), condition( condition), body( body), isDoWhile( isDoWhile) { 237 239 } 238 240 … … 255 257 } 256 258 257 ForStmt::ForStmt( std::list< Label> labels, std::list<Statement *> initialization, Expression *condition, Expression *increment, Statement *body ):258 Statement( labels), initialization( initialization ), condition( condition ), increment( increment ), body( body ) {259 ForStmt::ForStmt( std::list<Statement *> initialization, Expression *condition, Expression *increment, Statement *body ): 260 Statement(), initialization( initialization ), condition( condition ), increment( increment ), body( body ) { 259 261 } 260 262 … … 302 304 } 303 305 304 ThrowStmt::ThrowStmt( std::list<Label> labels,Kind kind, Expression * expr, Expression * target ) :305 Statement( labels), kind(kind), expr(expr), target(target) {306 ThrowStmt::ThrowStmt( Kind kind, Expression * expr, Expression * target ) : 307 Statement(), kind(kind), expr(expr), target(target) { 306 308 assertf(Resume == kind || nullptr == target, "Non-local termination throw is not accepted." ); 307 309 } … … 326 328 } 327 329 328 TryStmt::TryStmt( std::list<Label> labels,CompoundStmt *tryBlock, std::list<CatchStmt *> &handlers, FinallyStmt *finallyBlock ) :329 Statement( labels), block( tryBlock ), handlers( handlers ), finallyBlock( finallyBlock ) {330 TryStmt::TryStmt( CompoundStmt *tryBlock, std::list<CatchStmt *> &handlers, FinallyStmt *finallyBlock ) : 331 Statement(), block( tryBlock ), handlers( handlers ), finallyBlock( finallyBlock ) { 330 332 } 331 333 … … 359 361 } 360 362 361 CatchStmt::CatchStmt( std::list<Label> labels,Kind kind, Declaration *decl, Expression *cond, Statement *body ) :362 Statement( labels), kind ( kind ), decl ( decl ), cond ( cond ), body( body ) {363 CatchStmt::CatchStmt( Kind kind, Declaration *decl, Expression *cond, Statement *body ) : 364 Statement(), kind ( kind ), decl ( decl ), cond ( cond ), body( body ) { 363 365 assertf( decl, "Catch clause must have a declaration." ); 364 366 } … … 391 393 392 394 393 FinallyStmt::FinallyStmt( std::list<Label> labels, CompoundStmt *block ) : Statement( labels ), block( block ) { 394 assert( labels.empty() ); // finally statement cannot be labeled 395 FinallyStmt::FinallyStmt( CompoundStmt *block ) : Statement(), block( block ) { 395 396 } 396 397 … … 408 409 } 409 410 410 WaitForStmt::WaitForStmt( std::list<Label> labels ) : Statement( labels) {411 WaitForStmt::WaitForStmt() : Statement() { 411 412 timeout.time = nullptr; 412 413 timeout.statement = nullptr; … … 456 457 457 458 458 WithStmt::WithStmt( const std::list< Expression * > & exprs, Statement * stmt ) : Statement( std::list<Label>()), exprs( exprs ), stmt( stmt ) {}459 WithStmt::WithStmt( const std::list< Expression * > & exprs, Statement * stmt ) : Statement(), exprs( exprs ), stmt( stmt ) {} 459 460 WithStmt::WithStmt( const WithStmt & other ) : Statement( other ), stmt( maybeClone( other.stmt ) ) { 460 461 cloneAll( other.exprs, exprs ); … … 472 473 473 474 474 NullStmt::NullStmt( std::list<Label> labels ) : Statement( labels ) {}475 NullStmt::NullStmt() : Statement( std::list<Label>() ) {}475 NullStmt::NullStmt( const std::list<Label> & labels ) : Statement( labels ) { 476 } 476 477 477 478 void NullStmt::print( std::ostream &os, Indenter ) const { … … 479 480 } 480 481 481 ImplicitCtorDtorStmt::ImplicitCtorDtorStmt( Statement * callStmt ) : Statement( std::list<Label>()), callStmt( callStmt ) {482 ImplicitCtorDtorStmt::ImplicitCtorDtorStmt( Statement * callStmt ) : Statement(), callStmt( callStmt ) { 482 483 assert( callStmt ); 483 484 } -
src/SynTree/Statement.h
r882ad37 r3ca540f 37 37 std::list<Label> labels; 38 38 39 Statement( std::list<Label> labels);39 Statement( const std::list<Label> & labels = {} ); 40 40 virtual ~Statement(); 41 41 … … 53 53 std::list<Statement*> kids; 54 54 55 CompoundStmt( std::list<Label> labels);55 CompoundStmt(); 56 56 CompoundStmt( std::list<Statement *> stmts ); 57 57 CompoundStmt( const CompoundStmt &other ); … … 70 70 class NullStmt : public Statement { 71 71 public: 72 NullStmt(); 73 NullStmt( std::list<Label> labels ); 72 NullStmt( const std::list<Label> & labels = {} ); 74 73 75 74 virtual NullStmt *clone() const override { return new NullStmt( *this ); } … … 83 82 Expression *expr; 84 83 85 ExprStmt( std::list<Label> labels,Expression *expr );84 ExprStmt( Expression *expr ); 86 85 ExprStmt( const ExprStmt &other ); 87 86 virtual ~ExprStmt(); … … 104 103 std::list<Label> gotolabels; 105 104 106 AsmStmt( std::list<Label> labels,bool voltile, Expression *instruction, std::list<Expression *> output, std::list<Expression *> input, std::list<ConstantExpr *> clobber, std::list<Label> gotolabels );105 AsmStmt( bool voltile, Expression *instruction, std::list<Expression *> output, std::list<Expression *> input, std::list<ConstantExpr *> clobber, std::list<Label> gotolabels ); 107 106 AsmStmt( const AsmStmt &other ); 108 107 virtual ~AsmStmt(); … … 134 133 std::list<Statement *> initialization; 135 134 136 IfStmt( std::list<Label> labels,Expression *condition, Statement *thenPart, Statement *elsePart,135 IfStmt( Expression *condition, Statement *thenPart, Statement *elsePart, 137 136 std::list<Statement *> initialization = std::list<Statement *>() ); 138 137 IfStmt( const IfStmt &other ); … … 158 157 std::list<Statement *> statements; 159 158 160 SwitchStmt( std::list<Label> labels,Expression *condition, const std::list<Statement *> &statements );159 SwitchStmt( Expression *condition, const std::list<Statement *> &statements ); 161 160 SwitchStmt( const SwitchStmt &other ); 162 161 virtual ~SwitchStmt(); … … 180 179 std::list<Statement *> stmts; 181 180 182 CaseStmt( std::list<Label> labels,Expression *conditions, const std::list<Statement *> &stmts, bool isdef = false ) throw(SemanticError);181 CaseStmt( Expression *conditions, const std::list<Statement *> &stmts, bool isdef = false ) throw(SemanticError); 183 182 CaseStmt( const CaseStmt &other ); 184 183 virtual ~CaseStmt(); 185 184 186 static CaseStmt * makeDefault( std::list<Label> labels = std::list<Label>(), std::list<Statement *> stmts = std::list<Statement *>() );185 static CaseStmt * makeDefault( const std::list<Label> & labels = {}, std::list<Statement *> stmts = std::list<Statement *>() ); 187 186 188 187 bool isDefault() const { return _isDefault; } … … 210 209 bool isDoWhile; 211 210 212 WhileStmt( std::list<Label> labels,Expression *condition,211 WhileStmt( Expression *condition, 213 212 Statement *body, bool isDoWhile = false ); 214 213 WhileStmt( const WhileStmt &other ); … … 235 234 Statement *body; 236 235 237 ForStmt( std::list< Label> labels, std::list<Statement *> initialization,236 ForStmt( std::list<Statement *> initialization, 238 237 Expression *condition = 0, Expression *increment = 0, Statement *body = 0 ); 239 238 ForStmt( const ForStmt &other ); … … 264 263 Type type; 265 264 266 BranchStmt( std::list<Label> labels,Label target, Type ) throw (SemanticError);267 BranchStmt( std::list<Label> labels,Expression *computedTarget, Type ) throw (SemanticError);265 BranchStmt( Label target, Type ) throw (SemanticError); 266 BranchStmt( Expression *computedTarget, Type ) throw (SemanticError); 268 267 269 268 Label get_originalTarget() { return originalTarget; } … … 289 288 Expression *expr; 290 289 291 ReturnStmt( std::list<Label> labels,Expression *expr );290 ReturnStmt( Expression *expr ); 292 291 ReturnStmt( const ReturnStmt &other ); 293 292 virtual ~ReturnStmt(); … … 310 309 Expression * target; 311 310 312 ThrowStmt( std::list<Label> labels,Kind kind, Expression * expr, Expression * target = nullptr );311 ThrowStmt( Kind kind, Expression * expr, Expression * target = nullptr ); 313 312 ThrowStmt( const ThrowStmt &other ); 314 313 virtual ~ThrowStmt(); … … 332 331 FinallyStmt * finallyBlock; 333 332 334 TryStmt( std::list<Label> labels,CompoundStmt *tryBlock, std::list<CatchStmt *> &handlers, FinallyStmt *finallyBlock = 0 );333 TryStmt( CompoundStmt *tryBlock, std::list<CatchStmt *> &handlers, FinallyStmt *finallyBlock = 0 ); 335 334 TryStmt( const TryStmt &other ); 336 335 virtual ~TryStmt(); … … 358 357 Statement *body; 359 358 360 CatchStmt( std::list<Label> labels,Kind kind, Declaration *decl,359 CatchStmt( Kind kind, Declaration *decl, 361 360 Expression *cond, Statement *body ); 362 361 CatchStmt( const CatchStmt &other ); … … 381 380 CompoundStmt *block; 382 381 383 FinallyStmt( std::list<Label> labels,CompoundStmt *block );382 FinallyStmt( CompoundStmt *block ); 384 383 FinallyStmt( const FinallyStmt &other ); 385 384 virtual ~FinallyStmt(); … … 408 407 }; 409 408 410 WaitForStmt( std::list<Label> labels = noLabels);409 WaitForStmt(); 411 410 WaitForStmt( const WaitForStmt & ); 412 411 virtual ~WaitForStmt(); … … 453 452 Declaration *decl; 454 453 455 DeclStmt( std::list<Label> labels,Declaration *decl );454 DeclStmt( Declaration *decl ); 456 455 DeclStmt( const DeclStmt &other ); 457 456 virtual ~DeclStmt(); -
src/SynTree/TupleExpr.cc
r882ad37 r3ca540f 23 23 #include "Declaration.h" // for ObjectDecl 24 24 #include "Expression.h" // for Expression, TupleExpr, TupleIndexExpr 25 #include "SynTree/Label.h" // for Label , noLabels25 #include "SynTree/Label.h" // for Label 26 26 #include "SynTree/Statement.h" // for CompoundStmt, DeclStmt, ExprStmt, Sta... 27 27 #include "Tuples/Tuples.h" // for makeTupleType … … 89 89 // convert internally into a StmtExpr which contains the declarations and produces the tuple of the assignments 90 90 set_result( Tuples::makeTupleType( assigns ) ); 91 CompoundStmt * compoundStmt = new CompoundStmt( noLabels);91 CompoundStmt * compoundStmt = new CompoundStmt(); 92 92 std::list< Statement * > & stmts = compoundStmt->get_kids(); 93 93 for ( ObjectDecl * obj : tempDecls ) { 94 stmts.push_back( new DeclStmt( noLabels,obj ) );94 stmts.push_back( new DeclStmt( obj ) ); 95 95 } 96 96 TupleExpr * tupleExpr = new TupleExpr( assigns ); 97 97 assert( tupleExpr->get_result() ); 98 stmts.push_back( new ExprStmt( noLabels,tupleExpr ) );98 stmts.push_back( new ExprStmt( tupleExpr ) ); 99 99 stmtExpr = new StmtExpr( compoundStmt ); 100 100 } -
src/Tuples/TupleAssignment.cc
r882ad37 r3ca540f 23 23 24 24 #include "CodeGen/OperatorTable.h" 25 #include "Common/PassVisitor.h" 25 26 #include "Common/UniqueName.h" // for UniqueName 26 27 #include "Common/utility.h" // for zipWith … … 61 62 struct Matcher { 62 63 public: 63 Matcher( TupleAssignSpotter &spotter, const ResolvExpr::AltList& lhs, const 64 Matcher( TupleAssignSpotter &spotter, const ResolvExpr::AltList& lhs, const 64 65 ResolvExpr::AltList& rhs ); 65 66 virtual ~Matcher() {} … … 75 76 struct MassAssignMatcher : public Matcher { 76 77 public: 77 MassAssignMatcher( TupleAssignSpotter &spotter, const ResolvExpr::AltList& lhs, 78 MassAssignMatcher( TupleAssignSpotter &spotter, const ResolvExpr::AltList& lhs, 78 79 const ResolvExpr::AltList& rhs ) : Matcher(spotter, lhs, rhs) {} 79 80 virtual void match( std::list< Expression * > &out ); … … 82 83 struct MultipleAssignMatcher : public Matcher { 83 84 public: 84 MultipleAssignMatcher( TupleAssignSpotter &spotter, const ResolvExpr::AltList& lhs, 85 MultipleAssignMatcher( TupleAssignSpotter &spotter, const ResolvExpr::AltList& lhs, 85 86 const ResolvExpr::AltList& rhs ) : Matcher(spotter, lhs, rhs) {} 86 87 virtual void match( std::list< Expression * > &out ); … … 119 120 } 120 121 121 void handleTupleAssignment( ResolvExpr::AlternativeFinder & currentFinder, UntypedExpr * expr, 122 void handleTupleAssignment( ResolvExpr::AlternativeFinder & currentFinder, UntypedExpr * expr, 122 123 std::vector<ResolvExpr::AlternativeFinder> &args ) { 123 124 TupleAssignSpotter spotter( currentFinder ); … … 128 129 : currentFinder(f) {} 129 130 130 void TupleAssignSpotter::spot( UntypedExpr * expr, 131 void TupleAssignSpotter::spot( UntypedExpr * expr, 131 132 std::vector<ResolvExpr::AlternativeFinder> &args ) { 132 133 if ( NameExpr *op = dynamic_cast< NameExpr * >(expr->get_function()) ) { … … 137 138 if ( args.size() == 0 ) return; 138 139 139 // if an assignment only takes 1 argument, that's odd, but maybe someone wrote 140 // if an assignment only takes 1 argument, that's odd, but maybe someone wrote 140 141 // the function, in which case AlternativeFinder will handle it normally 141 142 if ( args.size() == 1 && CodeGen::isAssignment( fname ) ) return; … … 146 147 if ( ! refToTuple(lhsAlt.expr) ) continue; 147 148 148 // explode is aware of casts - ensure every LHS expression is sent into explode 149 // explode is aware of casts - ensure every LHS expression is sent into explode 149 150 // with a reference cast 150 // xxx - this seems to change the alternatives before the normal 151 // xxx - this seems to change the alternatives before the normal 151 152 // AlternativeFinder flow; maybe this is desired? 152 153 if ( ! dynamic_cast<CastExpr*>( lhsAlt.expr ) ) { 153 lhsAlt.expr = new CastExpr( lhsAlt.expr, 154 new ReferenceType( Type::Qualifiers(), 154 lhsAlt.expr = new CastExpr( lhsAlt.expr, 155 new ReferenceType( Type::Qualifiers(), 155 156 lhsAlt.expr->get_result()->clone() ) ); 156 157 } … … 160 161 explode( lhsAlt, currentFinder.get_indexer(), back_inserter(lhs), true ); 161 162 for ( ResolvExpr::Alternative& alt : lhs ) { 162 // each LHS value must be a reference - some come in with a cast expression, 163 // each LHS value must be a reference - some come in with a cast expression, 163 164 // if not just cast to reference here 164 165 if ( ! dynamic_cast<ReferenceType*>( alt.expr->get_result() ) ) { 165 alt.expr = new CastExpr( alt.expr, 166 new ReferenceType( Type::Qualifiers(), 166 alt.expr = new CastExpr( alt.expr, 167 new ReferenceType( Type::Qualifiers(), 167 168 alt.expr->get_result()->clone() ) ); 168 169 } … … 178 179 // TODO build iterative version of this instead of using combos 179 180 std::vector< ResolvExpr::AltList > rhsAlts; 180 combos( std::next(args.begin(), 1), args.end(), 181 combos( std::next(args.begin(), 1), args.end(), 181 182 std::back_inserter( rhsAlts ) ); 182 183 for ( const ResolvExpr::AltList& rhsAlt : rhsAlts ) { 183 184 // multiple assignment 184 185 ResolvExpr::AltList rhs; 185 explode( rhsAlt, currentFinder.get_indexer(), 186 explode( rhsAlt, currentFinder.get_indexer(), 186 187 std::back_inserter(rhs), true ); 187 188 matcher.reset( new MultipleAssignMatcher( *this, lhs, rhs ) ); … … 193 194 if ( isTuple(rhsAlt.expr) ) { 194 195 // multiple assignment 195 explode( rhsAlt, currentFinder.get_indexer(), 196 explode( rhsAlt, currentFinder.get_indexer(), 196 197 std::back_inserter(rhs), true ); 197 198 matcher.reset( new MultipleAssignMatcher( *this, lhs, rhs ) ); … … 222 223 ResolvExpr::AltList current; 223 224 // now resolve new assignments 224 for ( std::list< Expression * >::iterator i = new_assigns.begin(); 225 for ( std::list< Expression * >::iterator i = new_assigns.begin(); 225 226 i != new_assigns.end(); ++i ) { 226 227 PRINT( … … 229 230 ) 230 231 231 ResolvExpr::AlternativeFinder finder{ currentFinder.get_indexer(), 232 ResolvExpr::AlternativeFinder finder{ currentFinder.get_indexer(), 232 233 currentFinder.get_environ() }; 233 234 try { … … 253 254 // xxx -- was push_front 254 255 currentFinder.get_alternatives().push_back( ResolvExpr::Alternative( 255 new TupleAssignExpr(solved_assigns, matcher->tmpDecls), matcher->compositeEnv, 256 new TupleAssignExpr(solved_assigns, matcher->tmpDecls), matcher->compositeEnv, 256 257 ResolvExpr::sumCost( current ) + matcher->baseCost ) ); 257 258 } 258 259 259 TupleAssignSpotter::Matcher::Matcher( TupleAssignSpotter &spotter, 260 const ResolvExpr::AltList &lhs, const ResolvExpr::AltList &rhs ) 261 : lhs(lhs), rhs(rhs), spotter(spotter), 260 TupleAssignSpotter::Matcher::Matcher( TupleAssignSpotter &spotter, 261 const ResolvExpr::AltList &lhs, const ResolvExpr::AltList &rhs ) 262 : lhs(lhs), rhs(rhs), spotter(spotter), 262 263 baseCost( ResolvExpr::sumCost( lhs ) + ResolvExpr::sumCost( rhs ) ) { 263 264 simpleCombineEnvironments( lhs.begin(), lhs.end(), compositeEnv ); … … 277 278 // xxx - maybe this should happen in alternative finder for every StmtExpr? 278 279 // xxx - it's possible that these environments could contain some useful information. Maybe the right thing to do is aggregate the environments and pass the aggregate back to be added into the compositeEnv 279 struct EnvRemover : public Visitor { 280 virtual void visit( ExprStmt * stmt ) { 281 delete stmt->get_expr()->get_env(); 282 stmt->get_expr()->set_env( nullptr ); 283 Visitor::visit( stmt ); 280 struct EnvRemover { 281 void previsit( ExprStmt * stmt ) { 282 delete stmt->expr->env; 283 stmt->expr->env = nullptr; 284 284 } 285 285 }; … … 293 293 ret->set_init( ctorInit ); 294 294 ResolvExpr::resolveCtorInit( ctorInit, spotter.currentFinder.get_indexer() ); // resolve ctor/dtors for the new object 295 EnvRemoverrm; // remove environments from subexpressions of StmtExprs295 PassVisitor<EnvRemover> rm; // remove environments from subexpressions of StmtExprs 296 296 ctorInit->accept( rm ); 297 297 } -
src/Tuples/TupleExpansion.cc
r882ad37 r3ca540f 315 315 namespace { 316 316 /// determines if impurity (read: side-effects) may exist in a piece of code. Currently gives a very crude approximation, wherein any function call expression means the code may be impure 317 class ImpurityDetector : public Visitor { 318 public: 317 struct ImpurityDetector : public WithShortCircuiting { 319 318 ImpurityDetector( bool ignoreUnique ) : ignoreUnique( ignoreUnique ) {} 320 319 321 typedef Visitor Parent;322 virtual void visit( ApplicationExpr * appExpr ) {320 void previsit( ApplicationExpr * appExpr ) { 321 visit_children = false; 323 322 if ( DeclarationWithType * function = InitTweak::getFunction( appExpr ) ) { 324 323 if ( function->get_linkage() == LinkageSpec::Intrinsic ) { 325 324 if ( function->get_name() == "*?" || function->get_name() == "?[?]" ) { 326 325 // intrinsic dereference, subscript are pure, but need to recursively look for impurity 327 Parent::visit( appExpr );326 visit_children = true; 328 327 return; 329 328 } … … 332 331 maybeImpure = true; 333 332 } 334 v irtual void visit( UntypedExpr * ) { maybeImpure = true; }335 v irtual void visit( UniqueExpr * unq) {333 void previsit( UntypedExpr * ) { maybeImpure = true; visit_children = false; } 334 void previsit( UniqueExpr * ) { 336 335 if ( ignoreUnique ) { 337 336 // bottom out at unique expression. 338 337 // The existence of a unique expression doesn't change the purity of an expression. 339 338 // That is, even if the wrapped expression is impure, the wrapper protects the rest of the expression. 339 visit_children = false; 340 340 return; 341 341 } 342 maybeAccept( unq->expr, *this );343 342 } 344 343 … … 349 348 350 349 bool maybeImpure( Expression * expr ) { 351 ImpurityDetectordetector( false );350 PassVisitor<ImpurityDetector> detector( false ); 352 351 expr->accept( detector ); 353 return detector. maybeImpure;352 return detector.pass.maybeImpure; 354 353 } 355 354 356 355 bool maybeImpureIgnoreUnique( Expression * expr ) { 357 ImpurityDetectordetector( true );356 PassVisitor<ImpurityDetector> detector( true ); 358 357 expr->accept( detector ); 359 return detector. maybeImpure;358 return detector.pass.maybeImpure; 360 359 } 361 360 } // namespace Tuples -
src/driver/cfa.cc
r882ad37 r3ca540f 275 275 args[nargs] = "-Xlinker"; 276 276 nargs += 1; 277 args[nargs] = "--undefined=__ lib_debug_write";277 args[nargs] = "--undefined=__cfaabi_dbg_bits_write"; 278 278 nargs += 1; 279 279 -
src/libcfa/Makefile.am
r882ad37 r3ca540f 55 55 56 56 libobjs = ${headers:=.o} 57 libsrc = libcfa-prelude.c interpose.c libhdr/libdebug.c ${headers:=.c} \57 libsrc = libcfa-prelude.c interpose.c bits/debug.c ${headers:=.c} \ 58 58 assert.c exception.c virtual.c 59 59 … … 100 100 math \ 101 101 gmp \ 102 bits/align.h \ 102 103 bits/containers.h \ 103 104 bits/defs.h \ 105 bits/debug.h \ 104 106 bits/locks.h \ 105 concurrency/invoke.h \ 106 libhdr.h \ 107 libhdr/libalign.h \ 108 libhdr/libdebug.h \ 109 libhdr/libtools.h 107 concurrency/invoke.h 110 108 111 109 CLEANFILES = libcfa-prelude.c -
src/libcfa/Makefile.in
r882ad37 r3ca540f 149 149 libcfa_d_a_LIBADD = 150 150 am__libcfa_d_a_SOURCES_DIST = libcfa-prelude.c interpose.c \ 151 libhdr/libdebug.c fstream.c iostream.c iterator.c limits.c \151 bits/debug.c fstream.c iostream.c iterator.c limits.c \ 152 152 rational.c stdlib.c containers/maybe.c containers/pair.c \ 153 153 containers/result.c containers/vector.c \ … … 175 175 @BUILD_CONCURRENCY_TRUE@ concurrency/libcfa_d_a-preemption.$(OBJEXT) 176 176 am__objects_4 = libcfa_d_a-libcfa-prelude.$(OBJEXT) \ 177 libcfa_d_a-interpose.$(OBJEXT) \178 libhdr/libcfa_d_a-libdebug.$(OBJEXT) $(am__objects_2) \179 libcfa_d_a- assert.$(OBJEXT) libcfa_d_a-exception.$(OBJEXT) \180 libcfa_d_a-virtual.$(OBJEXT)$(am__objects_3)177 libcfa_d_a-interpose.$(OBJEXT) bits/libcfa_d_a-debug.$(OBJEXT) \ 178 $(am__objects_2) libcfa_d_a-assert.$(OBJEXT) \ 179 libcfa_d_a-exception.$(OBJEXT) libcfa_d_a-virtual.$(OBJEXT) \ 180 $(am__objects_3) 181 181 am_libcfa_d_a_OBJECTS = $(am__objects_4) 182 182 libcfa_d_a_OBJECTS = $(am_libcfa_d_a_OBJECTS) 183 183 libcfa_a_AR = $(AR) $(ARFLAGS) 184 184 libcfa_a_LIBADD = 185 am__libcfa_a_SOURCES_DIST = libcfa-prelude.c interpose.c \ 186 libhdr/libdebug.c fstream.c iostream.c iterator.c limits.c \ 187 rational.c stdlib.c containers/maybe.c containers/pair.c \ 188 containers/result.c containers/vector.c \ 189 concurrency/coroutine.c concurrency/thread.c \ 190 concurrency/kernel.c concurrency/monitor.c assert.c \ 191 exception.c virtual.c concurrency/CtxSwitch-@MACHINE_TYPE@.S \ 192 concurrency/alarm.c concurrency/invoke.c \ 193 concurrency/preemption.c 185 am__libcfa_a_SOURCES_DIST = libcfa-prelude.c interpose.c bits/debug.c \ 186 fstream.c iostream.c iterator.c limits.c rational.c stdlib.c \ 187 containers/maybe.c containers/pair.c containers/result.c \ 188 containers/vector.c concurrency/coroutine.c \ 189 concurrency/thread.c concurrency/kernel.c \ 190 concurrency/monitor.c assert.c exception.c virtual.c \ 191 concurrency/CtxSwitch-@MACHINE_TYPE@.S concurrency/alarm.c \ 192 concurrency/invoke.c concurrency/preemption.c 194 193 @BUILD_CONCURRENCY_TRUE@am__objects_5 = concurrency/libcfa_a-coroutine.$(OBJEXT) \ 195 194 @BUILD_CONCURRENCY_TRUE@ concurrency/libcfa_a-thread.$(OBJEXT) \ … … 208 207 @BUILD_CONCURRENCY_TRUE@ concurrency/libcfa_a-preemption.$(OBJEXT) 209 208 am__objects_8 = libcfa_a-libcfa-prelude.$(OBJEXT) \ 210 libcfa_a-interpose.$(OBJEXT) \211 libhdr/libcfa_a-libdebug.$(OBJEXT) $(am__objects_6) \212 libcfa_a- assert.$(OBJEXT) libcfa_a-exception.$(OBJEXT) \213 libcfa_a-virtual.$(OBJEXT)$(am__objects_7)209 libcfa_a-interpose.$(OBJEXT) bits/libcfa_a-debug.$(OBJEXT) \ 210 $(am__objects_6) libcfa_a-assert.$(OBJEXT) \ 211 libcfa_a-exception.$(OBJEXT) libcfa_a-virtual.$(OBJEXT) \ 212 $(am__objects_7) 214 213 am_libcfa_a_OBJECTS = $(am__objects_8) 215 214 libcfa_a_OBJECTS = $(am_libcfa_a_OBJECTS) … … 264 263 containers/result containers/vector concurrency/coroutine \ 265 264 concurrency/thread concurrency/kernel concurrency/monitor \ 266 ${shell echo stdhdr/*} math gmp bits/containers.h bits/defs.h \ 267 bits/locks.h concurrency/invoke.h libhdr.h libhdr/libalign.h \ 268 libhdr/libdebug.h libhdr/libtools.h 265 ${shell echo stdhdr/*} math gmp bits/align.h bits/containers.h \ 266 bits/defs.h bits/debug.h bits/locks.h concurrency/invoke.h 269 267 HEADERS = $(nobase_cfa_include_HEADERS) 270 268 am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) … … 424 422 containers/vector $(am__append_3) 425 423 libobjs = ${headers:=.o} 426 libsrc = libcfa-prelude.c interpose.c libhdr/libdebug.c ${headers:=.c} \424 libsrc = libcfa-prelude.c interpose.c bits/debug.c ${headers:=.c} \ 427 425 assert.c exception.c virtual.c $(am__append_4) 428 426 libcfa_a_SOURCES = ${libsrc} … … 437 435 math \ 438 436 gmp \ 437 bits/align.h \ 439 438 bits/containers.h \ 440 439 bits/defs.h \ 440 bits/debug.h \ 441 441 bits/locks.h \ 442 concurrency/invoke.h \ 443 libhdr.h \ 444 libhdr/libalign.h \ 445 libhdr/libdebug.h \ 446 libhdr/libtools.h 442 concurrency/invoke.h 447 443 448 444 CLEANFILES = libcfa-prelude.c … … 511 507 clean-libLIBRARIES: 512 508 -test -z "$(lib_LIBRARIES)" || rm -f $(lib_LIBRARIES) 513 libhdr/$(am__dirstamp):514 @$(MKDIR_P) libhdr515 @: > libhdr/$(am__dirstamp)516 libhdr/$(DEPDIR)/$(am__dirstamp):517 @$(MKDIR_P) libhdr/$(DEPDIR)518 @: > libhdr/$(DEPDIR)/$(am__dirstamp)519 libhdr/libcfa_d_a-libdebug.$(OBJEXT): libhdr/$(am__dirstamp) \520 libhdr/$(DEPDIR)/$(am__dirstamp)509 bits/$(am__dirstamp): 510 @$(MKDIR_P) bits 511 @: > bits/$(am__dirstamp) 512 bits/$(DEPDIR)/$(am__dirstamp): 513 @$(MKDIR_P) bits/$(DEPDIR) 514 @: > bits/$(DEPDIR)/$(am__dirstamp) 515 bits/libcfa_d_a-debug.$(OBJEXT): bits/$(am__dirstamp) \ 516 bits/$(DEPDIR)/$(am__dirstamp) 521 517 containers/$(am__dirstamp): 522 518 @$(MKDIR_P) containers … … 563 559 $(AM_V_AR)$(libcfa_d_a_AR) libcfa-d.a $(libcfa_d_a_OBJECTS) $(libcfa_d_a_LIBADD) 564 560 $(AM_V_at)$(RANLIB) libcfa-d.a 565 libhdr/libcfa_a-libdebug.$(OBJEXT): libhdr/$(am__dirstamp) \566 libhdr/$(DEPDIR)/$(am__dirstamp)561 bits/libcfa_a-debug.$(OBJEXT): bits/$(am__dirstamp) \ 562 bits/$(DEPDIR)/$(am__dirstamp) 567 563 containers/libcfa_a-maybe.$(OBJEXT): containers/$(am__dirstamp) \ 568 564 containers/$(DEPDIR)/$(am__dirstamp) … … 596 592 mostlyclean-compile: 597 593 -rm -f *.$(OBJEXT) 594 -rm -f bits/*.$(OBJEXT) 598 595 -rm -f concurrency/*.$(OBJEXT) 599 596 -rm -f containers/*.$(OBJEXT) 600 -rm -f libhdr/*.$(OBJEXT)601 597 602 598 distclean-compile: … … 625 621 @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libcfa_d_a-stdlib.Po@am__quote@ 626 622 @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libcfa_d_a-virtual.Po@am__quote@ 623 @AMDEP_TRUE@@am__include@ @am__quote@bits/$(DEPDIR)/libcfa_a-debug.Po@am__quote@ 624 @AMDEP_TRUE@@am__include@ @am__quote@bits/$(DEPDIR)/libcfa_d_a-debug.Po@am__quote@ 627 625 @AMDEP_TRUE@@am__include@ @am__quote@concurrency/$(DEPDIR)/CtxSwitch-@MACHINE_TYPE@.Po@am__quote@ 628 626 @AMDEP_TRUE@@am__include@ @am__quote@concurrency/$(DEPDIR)/libcfa_a-alarm.Po@am__quote@ … … 648 646 @AMDEP_TRUE@@am__include@ @am__quote@containers/$(DEPDIR)/libcfa_d_a-result.Po@am__quote@ 649 647 @AMDEP_TRUE@@am__include@ @am__quote@containers/$(DEPDIR)/libcfa_d_a-vector.Po@am__quote@ 650 @AMDEP_TRUE@@am__include@ @am__quote@libhdr/$(DEPDIR)/libcfa_a-libdebug.Po@am__quote@651 @AMDEP_TRUE@@am__include@ @am__quote@libhdr/$(DEPDIR)/libcfa_d_a-libdebug.Po@am__quote@652 648 653 649 .S.o: … … 704 700 @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_d_a_CFLAGS) $(CFLAGS) -c -o libcfa_d_a-interpose.obj `if test -f 'interpose.c'; then $(CYGPATH_W) 'interpose.c'; else $(CYGPATH_W) '$(srcdir)/interpose.c'; fi` 705 701 706 libhdr/libcfa_d_a-libdebug.o: libhdr/libdebug.c707 @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_d_a_CFLAGS) $(CFLAGS) -MT libhdr/libcfa_d_a-libdebug.o -MD -MP -MF libhdr/$(DEPDIR)/libcfa_d_a-libdebug.Tpo -c -o libhdr/libcfa_d_a-libdebug.o `test -f 'libhdr/libdebug.c' || echo '$(srcdir)/'`libhdr/libdebug.c708 @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) libhdr/$(DEPDIR)/libcfa_d_a-libdebug.Tpo libhdr/$(DEPDIR)/libcfa_d_a-libdebug.Po709 @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source=' libhdr/libdebug.c' object='libhdr/libcfa_d_a-libdebug.o' libtool=no @AMDEPBACKSLASH@710 @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ 711 @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_d_a_CFLAGS) $(CFLAGS) -c -o libhdr/libcfa_d_a-libdebug.o `test -f 'libhdr/libdebug.c' || echo '$(srcdir)/'`libhdr/libdebug.c712 713 libhdr/libcfa_d_a-libdebug.obj: libhdr/libdebug.c714 @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_d_a_CFLAGS) $(CFLAGS) -MT libhdr/libcfa_d_a-libdebug.obj -MD -MP -MF libhdr/$(DEPDIR)/libcfa_d_a-libdebug.Tpo -c -o libhdr/libcfa_d_a-libdebug.obj `if test -f 'libhdr/libdebug.c'; then $(CYGPATH_W) 'libhdr/libdebug.c'; else $(CYGPATH_W) '$(srcdir)/libhdr/libdebug.c'; fi`715 @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) libhdr/$(DEPDIR)/libcfa_d_a-libdebug.Tpo libhdr/$(DEPDIR)/libcfa_d_a-libdebug.Po716 @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source=' libhdr/libdebug.c' object='libhdr/libcfa_d_a-libdebug.obj' libtool=no @AMDEPBACKSLASH@717 @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ 718 @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_d_a_CFLAGS) $(CFLAGS) -c -o libhdr/libcfa_d_a-libdebug.obj `if test -f 'libhdr/libdebug.c'; then $(CYGPATH_W) 'libhdr/libdebug.c'; else $(CYGPATH_W) '$(srcdir)/libhdr/libdebug.c'; fi`702 bits/libcfa_d_a-debug.o: bits/debug.c 703 @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_d_a_CFLAGS) $(CFLAGS) -MT bits/libcfa_d_a-debug.o -MD -MP -MF bits/$(DEPDIR)/libcfa_d_a-debug.Tpo -c -o bits/libcfa_d_a-debug.o `test -f 'bits/debug.c' || echo '$(srcdir)/'`bits/debug.c 704 @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) bits/$(DEPDIR)/libcfa_d_a-debug.Tpo bits/$(DEPDIR)/libcfa_d_a-debug.Po 705 @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='bits/debug.c' object='bits/libcfa_d_a-debug.o' libtool=no @AMDEPBACKSLASH@ 706 @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ 707 @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_d_a_CFLAGS) $(CFLAGS) -c -o bits/libcfa_d_a-debug.o `test -f 'bits/debug.c' || echo '$(srcdir)/'`bits/debug.c 708 709 bits/libcfa_d_a-debug.obj: bits/debug.c 710 @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_d_a_CFLAGS) $(CFLAGS) -MT bits/libcfa_d_a-debug.obj -MD -MP -MF bits/$(DEPDIR)/libcfa_d_a-debug.Tpo -c -o bits/libcfa_d_a-debug.obj `if test -f 'bits/debug.c'; then $(CYGPATH_W) 'bits/debug.c'; else $(CYGPATH_W) '$(srcdir)/bits/debug.c'; fi` 711 @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) bits/$(DEPDIR)/libcfa_d_a-debug.Tpo bits/$(DEPDIR)/libcfa_d_a-debug.Po 712 @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='bits/debug.c' object='bits/libcfa_d_a-debug.obj' libtool=no @AMDEPBACKSLASH@ 713 @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ 714 @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_d_a_CFLAGS) $(CFLAGS) -c -o bits/libcfa_d_a-debug.obj `if test -f 'bits/debug.c'; then $(CYGPATH_W) 'bits/debug.c'; else $(CYGPATH_W) '$(srcdir)/bits/debug.c'; fi` 719 715 720 716 libcfa_d_a-fstream.o: fstream.c … … 998 994 @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_a_CFLAGS) $(CFLAGS) -c -o libcfa_a-interpose.obj `if test -f 'interpose.c'; then $(CYGPATH_W) 'interpose.c'; else $(CYGPATH_W) '$(srcdir)/interpose.c'; fi` 999 995 1000 libhdr/libcfa_a-libdebug.o: libhdr/libdebug.c1001 @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_a_CFLAGS) $(CFLAGS) -MT libhdr/libcfa_a-libdebug.o -MD -MP -MF libhdr/$(DEPDIR)/libcfa_a-libdebug.Tpo -c -o libhdr/libcfa_a-libdebug.o `test -f 'libhdr/libdebug.c' || echo '$(srcdir)/'`libhdr/libdebug.c1002 @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) libhdr/$(DEPDIR)/libcfa_a-libdebug.Tpo libhdr/$(DEPDIR)/libcfa_a-libdebug.Po1003 @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source=' libhdr/libdebug.c' object='libhdr/libcfa_a-libdebug.o' libtool=no @AMDEPBACKSLASH@1004 @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ 1005 @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_a_CFLAGS) $(CFLAGS) -c -o libhdr/libcfa_a-libdebug.o `test -f 'libhdr/libdebug.c' || echo '$(srcdir)/'`libhdr/libdebug.c1006 1007 libhdr/libcfa_a-libdebug.obj: libhdr/libdebug.c1008 @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_a_CFLAGS) $(CFLAGS) -MT libhdr/libcfa_a-libdebug.obj -MD -MP -MF libhdr/$(DEPDIR)/libcfa_a-libdebug.Tpo -c -o libhdr/libcfa_a-libdebug.obj `if test -f 'libhdr/libdebug.c'; then $(CYGPATH_W) 'libhdr/libdebug.c'; else $(CYGPATH_W) '$(srcdir)/libhdr/libdebug.c'; fi`1009 @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) libhdr/$(DEPDIR)/libcfa_a-libdebug.Tpo libhdr/$(DEPDIR)/libcfa_a-libdebug.Po1010 @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source=' libhdr/libdebug.c' object='libhdr/libcfa_a-libdebug.obj' libtool=no @AMDEPBACKSLASH@1011 @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ 1012 @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_a_CFLAGS) $(CFLAGS) -c -o libhdr/libcfa_a-libdebug.obj `if test -f 'libhdr/libdebug.c'; then $(CYGPATH_W) 'libhdr/libdebug.c'; else $(CYGPATH_W) '$(srcdir)/libhdr/libdebug.c'; fi`996 bits/libcfa_a-debug.o: bits/debug.c 997 @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_a_CFLAGS) $(CFLAGS) -MT bits/libcfa_a-debug.o -MD -MP -MF bits/$(DEPDIR)/libcfa_a-debug.Tpo -c -o bits/libcfa_a-debug.o `test -f 'bits/debug.c' || echo '$(srcdir)/'`bits/debug.c 998 @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) bits/$(DEPDIR)/libcfa_a-debug.Tpo bits/$(DEPDIR)/libcfa_a-debug.Po 999 @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='bits/debug.c' object='bits/libcfa_a-debug.o' libtool=no @AMDEPBACKSLASH@ 1000 @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ 1001 @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_a_CFLAGS) $(CFLAGS) -c -o bits/libcfa_a-debug.o `test -f 'bits/debug.c' || echo '$(srcdir)/'`bits/debug.c 1002 1003 bits/libcfa_a-debug.obj: bits/debug.c 1004 @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_a_CFLAGS) $(CFLAGS) -MT bits/libcfa_a-debug.obj -MD -MP -MF bits/$(DEPDIR)/libcfa_a-debug.Tpo -c -o bits/libcfa_a-debug.obj `if test -f 'bits/debug.c'; then $(CYGPATH_W) 'bits/debug.c'; else $(CYGPATH_W) '$(srcdir)/bits/debug.c'; fi` 1005 @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) bits/$(DEPDIR)/libcfa_a-debug.Tpo bits/$(DEPDIR)/libcfa_a-debug.Po 1006 @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='bits/debug.c' object='bits/libcfa_a-debug.obj' libtool=no @AMDEPBACKSLASH@ 1007 @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ 1008 @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_a_CFLAGS) $(CFLAGS) -c -o bits/libcfa_a-debug.obj `if test -f 'bits/debug.c'; then $(CYGPATH_W) 'bits/debug.c'; else $(CYGPATH_W) '$(srcdir)/bits/debug.c'; fi` 1013 1009 1014 1010 libcfa_a-fstream.o: fstream.c … … 1411 1407 -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) 1412 1408 -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) 1409 -rm -f bits/$(DEPDIR)/$(am__dirstamp) 1410 -rm -f bits/$(am__dirstamp) 1413 1411 -rm -f concurrency/$(DEPDIR)/$(am__dirstamp) 1414 1412 -rm -f concurrency/$(am__dirstamp) 1415 1413 -rm -f containers/$(DEPDIR)/$(am__dirstamp) 1416 1414 -rm -f containers/$(am__dirstamp) 1417 -rm -f libhdr/$(DEPDIR)/$(am__dirstamp)1418 -rm -f libhdr/$(am__dirstamp)1419 1415 1420 1416 maintainer-clean-generic: … … 1426 1422 1427 1423 distclean: distclean-am 1428 -rm -rf ./$(DEPDIR) concurrency/$(DEPDIR) containers/$(DEPDIR) libhdr/$(DEPDIR)1424 -rm -rf ./$(DEPDIR) bits/$(DEPDIR) concurrency/$(DEPDIR) containers/$(DEPDIR) 1429 1425 -rm -f Makefile 1430 1426 distclean-am: clean-am distclean-compile distclean-generic \ … … 1472 1468 1473 1469 maintainer-clean: maintainer-clean-am 1474 -rm -rf ./$(DEPDIR) concurrency/$(DEPDIR) containers/$(DEPDIR) libhdr/$(DEPDIR)1470 -rm -rf ./$(DEPDIR) bits/$(DEPDIR) concurrency/$(DEPDIR) containers/$(DEPDIR) 1475 1471 -rm -f Makefile 1476 1472 maintainer-clean-am: distclean-am maintainer-clean-generic \ -
src/libcfa/assert.c
r882ad37 r3ca540f 17 17 #include <stdarg.h> // varargs 18 18 #include <stdio.h> // fprintf 19 #include " libhdr/libdebug.h"19 #include "bits/debug.h" 20 20 21 21 extern "C" { … … 26 26 // called by macro assert in assert.h 27 27 void __assert_fail( const char *assertion, const char *file, unsigned int line, const char *function ) { 28 __ lib_debug_print_safe( CFA_ASSERT_FMT ".\n", __progname, function, line, file );28 __cfaabi_dbg_bits_print_safe( CFA_ASSERT_FMT ".\n", __progname, function, line, file ); 29 29 abort(); 30 30 } … … 32 32 // called by macro assertf 33 33 void __assert_fail_f( const char *assertion, const char *file, unsigned int line, const char *function, const char *fmt, ... ) { 34 __ lib_debug_acquire();35 __ lib_debug_print_nolock( CFA_ASSERT_FMT ": ", __progname, function, line, file );34 __cfaabi_dbg_bits_acquire(); 35 __cfaabi_dbg_bits_print_nolock( CFA_ASSERT_FMT ": ", __progname, function, line, file ); 36 36 37 37 va_list args; 38 38 va_start( args, fmt ); 39 __ lib_debug_print_vararg( fmt, args );39 __cfaabi_dbg_bits_print_vararg( fmt, args ); 40 40 va_end( args ); 41 41 42 __ lib_debug_print_nolock( "\n" );43 __ lib_debug_release();42 __cfaabi_dbg_bits_print_nolock( "\n" ); 43 __cfaabi_dbg_bits_release(); 44 44 abort(); 45 45 } -
src/libcfa/bits/containers.h
r882ad37 r3ca540f 15 15 #pragma once 16 16 17 #include "bits/align.h" 17 18 #include "bits/defs.h" 18 #include "libhdr.h"19 19 20 20 //----------------------------------------------------------------------------- -
src/libcfa/bits/defs.h
r882ad37 r3ca540f 32 32 #define __cfa_anonymous_object __cfa_anonymous_object 33 33 #endif 34 35 #ifdef __cforall 36 extern "C" { 37 #endif 38 void abortf( const char fmt[], ... ) __attribute__ ((__nothrow__, __leaf__, __noreturn__)); 39 #ifdef __cforall 40 } 41 #endif -
src/libcfa/bits/locks.h
r882ad37 r3ca540f 16 16 #pragma once 17 17 18 #include "bits/debug.h" 18 19 #include "bits/defs.h" 19 20 #include "libhdr.h"21 20 22 21 // pause to prevent excess processor bus usage … … 65 64 66 65 // Lock the spinlock, return false if already acquired 67 static inline _Bool try_lock ( __spinlock_t & this DEBUG_CTX_PARAM2 ) {66 static inline _Bool try_lock ( __spinlock_t & this __cfaabi_dbg_ctx_param2 ) { 68 67 _Bool result = __lock_test_and_test_and_set( this.lock ); 69 LIB_DEBUG_DO(68 __cfaabi_dbg_debug_do( 70 69 if( result ) { 71 70 this.prev_name = caller; … … 77 76 78 77 // Lock the spinlock, spin if already acquired 79 static inline void lock( __spinlock_t & this DEBUG_CTX_PARAM2 ) {78 static inline void lock( __spinlock_t & this __cfaabi_dbg_ctx_param2 ) { 80 79 #ifndef NOEXPBACK 81 80 enum { SPIN_START = 4, SPIN_END = 64 * 1024, }; … … 98 97 #endif 99 98 } 100 LIB_DEBUG_DO(99 __cfaabi_dbg_debug_do( 101 100 this.prev_name = caller; 102 101 this.prev_thrd = this_thread; … … 105 104 106 105 // Lock the spinlock, spin if already acquired 107 static inline void lock_yield( __spinlock_t & this DEBUG_CTX_PARAM2 ) {106 static inline void lock_yield( __spinlock_t & this __cfaabi_dbg_ctx_param2 ) { 108 107 for ( unsigned int i = 1;; i += 1 ) { 109 108 if ( __lock_test_and_test_and_set( this.lock ) ) break; 110 109 yield( i ); 111 110 } 112 LIB_DEBUG_DO(111 __cfaabi_dbg_debug_do( 113 112 this.prev_name = caller; 114 113 this.prev_thrd = this_thread; -
src/libcfa/concurrency/alarm.c
r882ad37 r3ca540f 23 23 } 24 24 25 #include "libhdr.h"26 27 25 #include "alarm.h" 28 26 #include "kernel_private.h" … … 110 108 } 111 109 112 LIB_DEBUG_DO( bool validate( alarm_list_t * this ) {110 __cfaabi_dbg_debug_do( bool validate( alarm_list_t * this ) { 113 111 alarm_node_t ** it = &this->head; 114 112 while( (*it) ) { … … 186 184 187 185 disable_interrupts(); 188 lock( event_kernel->lock DEBUG_CTX2 );186 lock( event_kernel->lock __cfaabi_dbg_ctx2 ); 189 187 { 190 188 verify( validate( alarms ) );