Changeset 3364962 for doc/proposals/concurrency/text/parallelism.tex
- Timestamp:
- Oct 12, 2017, 3:15:19 PM (6 years ago)
- Branches:
- ADT, aaron-thesis, arm-eh, cleanup-dtors, deferred_resn, demangler, enum, forall-pointer-decay, jacob/cs343-translation, jenkins-sandbox, master, new-ast, new-ast-unique-expr, new-env, no_list, persistent-indexer, pthread-emulation, qualifiedEnum, resolv-new, with_gc
- Children:
- 0aaac0e
- Parents:
- b7778c1
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
doc/proposals/concurrency/text/parallelism.tex
rb7778c1 r3364962 21 21 22 22 \subsection{Jobs and thread pools} 23 The approach on the opposite end of the spectrum is to base parallelism on \glspl{pool}. Indeed, \glspl{pool} offer limited flexibility but at the benefit of a simpler user interface. In \gls{pool} based systems, users express parallelism as units of work, called jobs, and a dependency graph (either explicit or implicit) that tie them together. This approach means users need not worry about concurrency but significantly limitsthe interaction that can occur among jobs. Indeed, any \gls{job} that blocks also blocks the underlying worker, which effectively means the CPU utilization, and therefore throughput, suffers noticeably. It can be argued that a solution to this problem is to use more workers than available cores. However, unless the number of jobs and the number of workers are comparable, having a significant amount of blocked jobs always results in idles cores.23 An approach on the opposite end of the spectrum is to base parallelism on \glspl{pool}. Indeed, \glspl{pool} offer limited flexibility but at the benefit of a simpler user interface. In \gls{pool} based systems, users express parallelism as units of work, called jobs, and a dependency graph (either explicit or implicit) that tie them together. This approach means users need not worry about concurrency but significantly limit the interaction that can occur among jobs. Indeed, any \gls{job} that blocks also blocks the underlying worker, which effectively means the CPU utilization, and therefore throughput, suffers noticeably. It can be argued that a solution to this problem is to use more workers than available cores. However, unless the number of jobs and the number of workers are comparable, having a significant amount of blocked jobs always results in idles cores. 24 24 25 25 The gold standard of this implementation is Intel's TBB library~\cite{TBB}. 26 26 27 27 \subsection{Paradigm performance} 28 While the choice between the three paradigms listed above may have significant performance implication, it is difficult to pindown the performance implications of chosing a model at the language level. Indeed, in many situations one of these paradigms may show better performance but it all strongly depends on the workload. Having a large amount of mostly independent units of work to execute almost guarantess that the \gls{pool} based system has the best performance thanks to the lower memory overhead (i.e., not thread stack per job). However, interactions among jobs can easily exacerbate contention. User-level threads allow fine-grain context switching, which results in better resource utilisation, but context switches is more expansive and the extra control means users need to tweak more variables to get the desired performance. Finally, if the units of uninterrupted work are large enough the paradigm choice is largely amortised by the actual work done.28 While the choice between the three paradigms listed above may have significant performance implication, it is difficult to pindown the performance implications of chosing a model at the language level. Indeed, in many situations one of these paradigms may show better performance but it all strongly depends on the workload. Having a large amount of mostly independent units of work to execute almost guarantess that the \gls{pool} based system has the best performance thanks to the lower memory overhead (i.e., not thread stack per job). However, interactions among jobs can easily exacerbate contention. User-level threads allow fine-grain context switching, which results in better resource utilisation, but a context switch is more expensive and the extra control means users need to tweak more variables to get the desired performance. Finally, if the units of uninterrupted work are large enough the paradigm choice is largely amortised by the actual work done. 29 29 30 30 \TODO … … 33 33 34 34 35 \subs ubsection{Future Work: Machine setup}\label{machine}36 While this was not done in the context of this proposal, another important aspect of clusters is affinity. While many common desktop and laptop PCs have homogeneous CPUs, other devices often have more heteregenous setups. For example, system using \acrshort{numa} configurations may benefit from users being able to tie clusters and/or kernel threads to certains CPU cores. OS support for CPU affinity is now common \cit, which means it is both possible and desirable for \CFA to offer an abstraction mechanism for portable CPU affinity.35 \subsection{Future Work: Machine setup}\label{machine} 36 While this was not done in the context of this thesis, another important aspect of clusters is affinity. While many common desktop and laptop PCs have homogeneous CPUs, other devices often have more heteregenous setups. For example, system using \acrshort{numa} configurations may benefit from users being able to tie clusters and/or kernel threads to certains CPU cores. OS support for CPU affinity is now common \cit, which means it is both possible and desirable for \CFA to offer an abstraction mechanism for portable CPU affinity. 37 37 38 38 \subsection{Paradigms}\label{cfaparadigms}
Note: See TracChangeset
for help on using the changeset viewer.