Changeset 15215f02
- Timestamp:
- Apr 22, 2024, 11:37:36 PM (20 months ago)
- Branches:
- master
- Children:
- 13de4478
- Parents:
- 0fe07be (diff), d7c0ad5 (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the(diff)links above to see all the changes relative to each parent. - Files:
-
- 1 deleted
- 35 edited
-
doc/LaTeXmacros/common.sty (modified) (5 diffs)
-
doc/LaTeXmacros/common.tex (modified) (5 diffs)
-
doc/LaTeXmacros/lstlang.sty (modified) (2 diffs)
-
doc/bibliography/pl.bib (modified) (1 diff)
-
doc/theses/jiada_liang_MMath/CFAenum.tex (modified) (1 diff)
-
doc/theses/jiada_liang_MMath/Makefile (modified) (1 diff)
-
doc/theses/jiada_liang_MMath/background.tex (modified) (1 diff)
-
doc/theses/jiada_liang_MMath/intro.tex (modified) (6 diffs)
-
doc/theses/jiada_liang_MMath/relatedwork.tex (modified) (28 diffs)
-
doc/theses/jiada_liang_MMath/uw-ethesis.bib (modified) (1 diff)
-
doc/uC++toCFA/Makefile (modified) (1 diff)
-
doc/uC++toCFA/uC++toCFA.tex (modified) (14 diffs)
-
doc/user/Makefile (modified) (2 diffs)
-
doc/user/user.tex (modified) (17 diffs)
-
libcfa/src/concurrency/actor.hfa (modified) (2 diffs)
-
src/AST/Pass.hpp (modified) (1 diff)
-
src/AST/Print.cpp (modified) (1 diff)
-
src/AST/Type.hpp (modified) (2 diffs)
-
src/AST/porting.md (deleted)
-
src/BasicTypes-gen.cc (modified) (1 diff)
-
src/Common/PersistentMap.h (modified) (6 diffs)
-
src/Common/VectorMap.h (modified) (5 diffs)
-
src/Concurrency/Actors.cpp (modified) (3 diffs)
-
src/Concurrency/Corun.cpp (modified) (1 diff)
-
src/Concurrency/Keywords.cpp (modified) (11 diffs)
-
src/Concurrency/Waituntil.cpp (modified) (20 diffs)
-
src/ResolvExpr/CandidateFinder.cpp (modified) (2 diffs)
-
src/ResolvExpr/CommonType.cc (modified) (2 diffs)
-
src/ResolvExpr/ConversionCost.cc (modified) (1 diff)
-
src/ResolvExpr/PolyCost.cc (modified) (2 diffs)
-
src/ResolvExpr/Unify.cc (modified) (3 diffs)
-
src/SymTab/Mangler.cc (modified) (1 diff)
-
src/Validate/ForallPointerDecay.hpp (modified) (1 diff)
-
src/Validate/HoistStruct.cpp (modified) (1 diff)
-
src/Validate/ImplementEnumFunc.cpp (modified) (1 diff)
-
src/Virtual/VirtualDtor.cpp (modified) (2 diffs)
Legend:
- Unmodified
- Added
- Removed
-
doc/LaTeXmacros/common.sty
r0fe07be r15215f02 11 11 %% Created On : Sat Apr 9 10:06:17 2016 12 12 %% Last Modified By : Peter A. Buhr 13 %% Last Modified On : Sun Feb 25 23:30:09202414 %% Update Count : 6 4513 %% Last Modified On : Thu Apr 18 09:14:02 2024 14 %% Update Count : 657 15 15 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 16 16 … … 108 108 \renewcommand\subparagraph{\@startsection{subparagraph}{4}{\z@}{-1.5ex \@plus -1ex \@minus -.2ex}{-1em}{\normalfont\normalsize\bfseries\itshape}} 109 109 110 % index macros111 110 \newcommand{\italic}[1]{\emph{\hyperpage{#1}}} 112 111 \newcommand{\Definition}[1]{\textbf{\hyperpage{#1}}} 113 \newcommand{\see}[1]{(see #1)} 112 \newcommand{\see}{\protect\@ifstar\@ssee\@see} 113 \newcommand{\@ssee}[1]{(See #1)} 114 \newcommand{\@see}[1]{(see #1)} 115 116 % index macros 114 117 115 118 % Define some commands that produce formatted index entries suitable for cross-references. … … 152 155 \newcommand{\newtermFontInline}{\emph} 153 156 \newcommand{\newterm}{\protect\@ifstar\@snewterm\@newterm} 157 \newcommand{\@snewterm}[2][\@empty]{{\newtermFontInline{#2}}\ifx#1\@empty\index{#2}\else\index{#1@{\protect#2}}\fi} 154 158 \newcommand{\@newterm}[2][\@empty]{\lowercase{\def\temp{#2}}{\newtermFontInline{#2}}\ifx#1\@empty\index{\temp}\else\index{#1@{\protect#2}}\fi} 155 \newcommand{\@snewterm}[2][\@empty]{{\newtermFontInline{#2}}\ifx#1\@empty\index{#2}\else\index{#1@{\protect#2}}\fi}156 159 157 160 % \snake{<identifier>} … … 202 205 203 206 \newenvironment{cquote}{% 204 \list{}{\ lstset{resetmargins=true,aboveskip=0pt,belowskip=0pt}\topsep=4pt\parsep=0pt\leftmargin=\parindentlnth\rightmargin\leftmargin}%207 \list{}{\topsep=\lst@aboveskip\parskip=0pt\partopsep=0pt\itemsep=0pt\parsep=0pt\listparindent=0pt\leftmargin=\parindentlnth\rightmargin=0pt}% 205 208 \item\relax 209 \lstset{resetmargins=true} 206 210 }{% 207 211 \endlist … … 345 349 \fi% 346 350 351 \usepackage{tabularx} % if @ is used for lstMakeShortInline, allows @{} 352 347 353 % Local Variables: % 348 354 % tab-width: 4 % -
doc/LaTeXmacros/common.tex
r0fe07be r15215f02 11 11 %% Created On : Sat Apr 9 10:06:17 2016 12 12 %% Last Modified By : Peter A. Buhr 13 %% Last Modified On : Mon Feb 26 08:06:05202414 %% Update Count : 6 1513 %% Last Modified On : Thu Apr 18 09:15:38 2024 14 %% Update Count : 664 15 15 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 16 16 … … 109 109 \renewcommand\subparagraph{\@startsection{subparagraph}{4}{\z@}{-1.5ex \@plus -1ex \@minus -.2ex}{-1em}{\normalfont\normalsize\bfseries\itshape}} 110 110 111 % index macros112 111 \newcommand{\italic}[1]{\emph{\hyperpage{#1}}} 113 112 \newcommand{\Definition}[1]{\textbf{\hyperpage{#1}}} 114 \newcommand{\see}[1]{(see #1)} 113 \newcommand{\see}{\protect\@ifstar\@ssee\@see} 114 \newcommand{\@ssee}[1]{(See #1)} 115 \newcommand{\@see}[1]{(see #1)} 116 117 % index macros 115 118 116 119 % Define some commands that produce formatted index entries suitable for cross-references. … … 153 156 \newcommand{\newtermFontInline}{\emph} 154 157 \newcommand{\newterm}{\protect\@ifstar\@snewterm\@newterm} 158 \newcommand{\@snewterm}[2][\@empty]{{\newtermFontInline{#2}}\ifx#1\@empty\index{#2}\else\index{#1@{\protect#2}}\fi} 155 159 \newcommand{\@newterm}[2][\@empty]{\lowercase{\def\temp{#2}}{\newtermFontInline{#2}}\ifx#1\@empty\index{\temp}\else\index{#1@{\protect#2}}\fi} 156 \newcommand{\@snewterm}[2][\@empty]{{\newtermFontInline{#2}}\ifx#1\@empty\index{#2}\else\index{#1@{\protect#2}}\fi}157 160 158 161 % \snake{<identifier>} … … 201 204 \newcommand{\VS}{\abbrevFont{vs}} 202 205 \newcommand{\vs}{\VS\CheckPeriod} 203 \makeatother204 206 205 207 \newenvironment{cquote}{% 206 \list{}{\ lstset{resetmargins=true,aboveskip=0pt,belowskip=0pt}\topsep=4pt\parsep=0pt\leftmargin=\parindentlnth\rightmargin\leftmargin}%208 \list{}{\topsep=\lst@aboveskip\parskip=0pt\partopsep=0pt\itemsep=0pt\parsep=0pt\listparindent=0pt\leftmargin=\parindentlnth\rightmargin=0pt}% 207 209 \item\relax 210 \lstset{resetmargins=true} 208 211 }{% 209 212 \endlist 210 213 }% cquote 214 \makeatother 211 215 212 216 \newenvironment{rationale}{% … … 349 353 \fi% 350 354 355 \usepackage{tabularx} % if @ is used for lstMakeShortInline, allows @{} 356 351 357 % Local Variables: % 352 358 % tab-width: 4 % -
doc/LaTeXmacros/lstlang.sty
r0fe07be r15215f02 8 8 %% Created On : Sat May 13 16:34:42 2017 9 9 %% Last Modified By : Peter A. Buhr 10 %% Last Modified On : Tue Mar 12 17:29:58202411 %% Update Count : 4 210 %% Last Modified On : Mon Apr 15 11:28:44 2024 11 %% Update Count : 43 12 12 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 13 13 … … 116 116 alignas, _Alignas, alignof, _Alignof, __alignof, __alignof__, and, asm, __asm, __asm__, _Atomic, __attribute, __attribute__, 117 117 __auto_type, basetypeof, _Bool, catch, catchResume, choose, coerce, corun, cofor, _Complex, __complex, __complex__, 118 __const, __const__, continue, _Decimal32, _Decimal64, _Decimal128, disable, dtype, enable, exception, __extension__,118 __const, __const__, continue, coroutine, _Decimal32, _Decimal64, _Decimal128, disable, dtype, enable, exception, __extension__, 119 119 fallthrough, fallthru, finally, fixup, __float80, float80, __float128, float128, _Float16, _Float32, _Float32x, _Float64, 120 120 _Float64x, _Float128, _Float128x, forall, fortran, ftype, generator, _Generic, _Imaginary, __imag, __imag__, inline, -
doc/bibliography/pl.bib
r0fe07be r15215f02 519 519 year = 1963, 520 520 pages = {1-17}, 521 } 522 523 @misc{AlgolW, 524 keywords = {AlgolW}, 525 contributer = {pabuhr@plg}, 526 author = {Henry Bauer and Sheldon Becker and Susan L. Graham and Edwin Satterthwaite and Richard L. Sites}, 527 title = {{Algol W} Language Description}, 528 month = jun, 529 year = 1972, 530 howpublished= {\url{https://www.algol60.org/docsW/algolw.pdf}}, 521 531 } 522 532 -
doc/theses/jiada_liang_MMath/CFAenum.tex
r0fe07be r15215f02 137 137 \section{Pure Enumerators} 138 138 139 An empty enumerator type, @enum()@, implies the enumerators are pure symbols without values but set properties;139 An empty enumerator type, @enum()@, implies the enumerators are opaque symbols without values but set properties; 140 140 hence, there is no default conversion to @int@. 141 141 -
doc/theses/jiada_liang_MMath/Makefile
r0fe07be r15215f02 13 13 BibSRC = ${wildcard *.bib} 14 14 15 TeXLIB = .:${LaTMac}:${Build}: 16 BibLIB = .:${BibRep}: 15 TeXLIB = .:${LaTMac}:${Build}: # common latex macros 16 BibLIB = .:${BibRep}: # common citation repository 17 17 18 18 MAKEFLAGS = --no-print-directory # --silent -
doc/theses/jiada_liang_MMath/background.tex
r0fe07be r15215f02 48 48 49 49 \section{C Enumeration} 50 \label{s:CEnumeration} 50 51 51 The C enumeration has the following syntax and semantics. 52 The C enumeration has the following syntax~\cite[\S~6.7.2.2]{C11}. 53 \begin{clang}[identifierstyle=\linespread{0.9}\it] 54 $\it enum$-specifier: 55 enum identifier$\(_{opt}\)$ { enumerator-list } 56 enum identifier$\(_{opt}\)$ { enumerator-list , } 57 enum identifier 58 enumerator-list: 59 enumerator 60 enumerator-list , enumerator 61 enumerator: 62 enumeration-constant 63 enumeration-constant = constant-expression 64 \end{clang} 65 The terms \emph{enumeration} and \emph{enumerator} used in this work \see{\VRef{s:Terminology}} come from the grammar. 66 The C enumeration semantics is discussed using examples. 67 68 An unnamed enumeration is used to provide secondary renaming, like a @const@ declaration in other languages. 69 \begin{clang} 70 enum { Size = 20, Pi = 3.14159 }; // unnamed enumeration $\(\Rightarrow\)$ no ordering 71 \end{clang} 72 This declaration form is not an enumeration even though it is declared using an @enum@ because it has none of the following enumeration properties. 73 74 A \emph{named} enumeration type is an actual enumeration. 52 75 \begin{clang} 53 76 enum Weekday { Mon, Tue, Wed, Thu@ = 10@, Fri, Sat, Sun, }; -
doc/theses/jiada_liang_MMath/intro.tex
r0fe07be r15215f02 1 1 \chapter{Introduction} 2 2 3 All types in a programming language must have a set of constants, and these constants have \Newterm{primary names}, \eg integral types have constants @-1@, @17@, @12345@, \etc. 4 Constants can be overloaded among types, \eg @0@ is a null pointer for all pointer types, and the value zero for integral and floating-point types. 3 All types in a programming language must have a set of constants, and these constants have \Newterm{primary names}, \eg integral types have constants @-1@, @17@, @0xff@, floating-point types have constants @5.3@, @2.3E-5@, @0xff.ffp0@, character types have constants @'a'@, @"abc\n"@, \mbox{\lstinline{u8"}\texttt{\guillemotleft{na\"{i}ve}\guillemotright}\lstinline{"}}, \etc. 4 Con\-stants can be overloaded among types, \eg @0@ is a null pointer for all pointer types, and the value zero for integral and floating-point types. 5 (In \CFA, the primary constants @0@ and @1@ can be overloaded for any type.) 5 6 Hence, each primary constant has a symbolic name referring to its internal representation, and these names are dictated by language syntax related to types. 6 7 In theory, there are an infinite set of primary names per type. 7 8 8 \Newterm{Secondary naming} is a common practice in mathematics and engineering, \eg $\pi$, $\tau$ (2$\pi$), $\phi$ (golden ratio), MHz (1E6), and in general situations, \eg specific times (noon, New Years), cities (Big Apple), flowers (Lily), \etc.9 \Newterm{Secondary naming} is a common practice in mathematics, engineering and computer science, \eg $\pi$, $\tau$ (2$\pi$), $\phi$ (golden ratio), MB (mega byte, 1E6), and in general situations, \eg specific times (noon, New Years), cities (Big Apple), flowers (Lily), \etc. 9 10 Many programming languages capture this important software-engineering capability through a mechanism called \Newterm{constant} or \Newterm{literal} naming, where a secondary name is aliased to a primary name. 10 In some cases, secondary naming is \Newterm{pure}, where the matching internal representation can be chosen arbitrarily, and only equality operations are available, \eg @O_RDONLY@, @O_WRONLY@, @O_CREAT@, @O_TRUNC@, @O_APPEND@. 11 (The names the thing.) 11 Its common purpose is to eliminate duplication of the primary constant throughout a program. 12 For example, the secondary name replaces its primary name, thereafter changing the binding of the secondary to primary name automatically distributes the rebinding throughout the program. 13 In some cases, secondary naming is \Newterm{opaque}, where the matching internal representation can be chosen arbitrarily, and only equality operations are available, \eg @O_RDONLY@, @O_WRONLY@, @O_CREAT@, @O_TRUNC@, @O_APPEND@. 12 14 Because a secondary name is a constant, it cannot appear in a mutable context, \eg \mbox{$\pi$ \lstinline{= 42}} is meaningless, and a constant has no address, \ie it is an \Newterm{rvalue}\footnote{ 13 15 The term rvalue defines an expression that can only appear on the right-hand side of an assignment expression.}. … … 18 20 enumerate (verb, transitive). 19 21 To count, ascertain the number of; 20 \emph{more 21 usually, to mention (a number of things or persons) separately, as if for the 22 purpose of counting}; 23 to specify as in a list or catalogue.~\cite{OED} 22 more usually, to mention (a number of things or persons) separately, as if for the purpose of counting; 23 to specify as in a list or catalogue.~\cite{OEDenumerate} 24 24 \end{quote} 25 Within an enumeration set, the enumeration names must be unique, and instances of an enumerated type are restricted to hold only the secondary names.25 Within an enumeration set, the enumeration names must be unique, and instances of an enumerated type are \emph{often} restricted to hold only the secondary names. 26 26 It is possible to enumerate among set names without having an ordering among the set elements. 27 27 For example, the week, the weekdays, the weekend, and every second day of the week. … … 29 29 for ( cursor in Mon, Tue, Wed, Thu, Fri, Sat, Sun } ... $\C[3.75in]{// week}$ 30 30 for ( cursor in Mon, Tue, Wed, Thu, Fri } ... $\C{// weekday}$ 31 for ( cursor in Thu, Fri} ... $\C{// weekend}$31 for ( cursor in Sat, Sun } ... $\C{// weekend}$ 32 32 for ( cursor in Mon, Wed, Fri, Sun } ... $\C{// every second day of week}\CRT$ 33 33 \end{cfa} 34 This independence from internal representation allows multiple names to have the same representation (eight note, quaver), giving synonyms.34 This independence from internal representation allows multiple names to have the same representation (eighth note, quaver), giving synonyms. 35 35 A set can have a partial or total ordering, making it possible to compare set elements, \eg Monday is before Friday and Friday is after. 36 36 Ordering allows iterating among the enumeration set using relational operators and advancement, \eg … … 38 38 for ( cursor = Monday; cursor @<=@ Friday; cursor = @succ@( cursor ) ) ... 39 39 \end{cfa} 40 Here the internal representations for the secondary names are \emph{generated} rather than listing a subset of names. 40 Here the internal representations for the secondary names are logically \emph{generated} rather than listing a subset of names. 41 42 Hence, the fundamental aspects of an enumeration are: 43 \begin{enumerate} 44 \item 45 It defines a type from which instants can be generated. 46 \item 47 The type lists a finite set of secondary names, which become its primary constants. 48 This differentiates an enumeration from general types with an infinite number of primary constants. 49 \item 50 An enumeration's secondary names represent constants, which follows from their binding (aliasing) to primary names, which are constants. 51 \item 52 For safety, an enumeration instance is restricted to hold only its type's secondary names. 53 \item 54 There is a mechanism for \emph{enumerating} over the secondary names, where the ordering can be implicit from the type, explicitly listed, or generated arithmetically. 55 \end{enumerate} 41 56 42 57 43 58 \section{Terminology} 44 45 The term \Newterm{enumeration} defines the set of secondary names, and the term \Newterm{enumerator} represents an arbitrary secondary name. 59 \label{s:Terminology} 60 61 The term \Newterm{enumeration} defines a type with a set of secondary names, and the term \Newterm{enumerator} represents an arbitrary secondary name \see{\VRef{s:CEnumeration}}. 46 62 As well, an enumerated type has three fundamental properties, \Newterm{label}, \Newterm{order}, and \Newterm{value}. 47 63 \begin{cquote} … … 72 88 \section{Motivation} 73 89 74 Some programming languages only provide secondary renaming, which can be simulated by an enumeration without ordering. 75 \begin{cfa} 76 const Size = 20, Pi = 3.14159; 77 enum { Size = 20, Pi = 3.14159 }; // unnamed enumeration $\(\Rightarrow\)$ no ordering 78 \end{cfa} 79 In both cases, it is possible to compare the secondary names, \eg @Size < Pi@, if that is meaningful; 80 however, without an enumeration type-name, it is impossible to create an iterator cursor. 81 82 Secondary renaming can similate an enumeration, but with extra effort. 90 Some programming languages only provide direct secondary renaming. 91 \begin{cfa} 92 const Size = 20, Pi = 3.14159, Name = "Jane"; 93 \end{cfa} 94 Here, it is possible to compare the secondary names, \eg @Size < Pi@, if that is meaningful. 95 96 Secondary renaming can simulate an enumeration, but with extra effort. 83 97 \begin{cfa} 84 98 const Mon = 1, Tue = 2, Wed = 3, Thu = 4, Fri = 5, Sat = 6, Sun = 7; 85 99 \end{cfa} 86 Furthermore, reorderingthe enumerators requires manual renumbering.100 Any reordering of the enumerators requires manual renumbering. 87 101 \begin{cfa} 88 102 const Sun = 1, Mon = 2, Tue = 3, Wed = 4, Thu = 5, Fri = 6, Sat = 7; 89 103 \end{cfa} 90 Finally, there is no commontype to create a type-checked instance or iterator cursor.91 Hence, there is only a weak equivalence between secondary naming and enumerations, justifying the enumeration type in a programming language.92 93 A variant (algebraic) type is often promoted as a kind of enumeration, \ie a vari ent type can simulate an enumeration.94 A variant type is a tagged-union, where the possible types may beheterogeneous.95 \begin{cfa} 104 Finally, there is no type to create a type-checked instance or iterator cursor. 105 Hence, there is only a weak equivalence between secondary naming and enumerations, justifying a seperate enumeration type in a programming language. 106 107 A variant (algebraic) type is often promoted as a kind of enumeration, \ie a variant type can simulate an enumeration. 108 Fundamentally, a variant type is a tagged-union, where the tag is normally opaque and the types are usually heterogeneous. 109 \begin{cfa}[morekeywords={variant}] 96 110 @variant@ Variant { 97 111 @int tag;@ // optional/implicit: 0 => int, 1 => double, 2 => S … … 103 117 }; 104 118 \end{cfa} 105 Crucially, the union implies instance storage is shared by all of the variant types. 106 Hence, a variant is dynamically typed, as in a dynamic-typed programming-language, but the set of types is statically bound, similar to some aspects of dynamic gradual-typing~\cite{Gradual Typing}. 107 Knowing which type is in a variant instance is crucial for correctness. 108 Occasionally, it is possible to statically determine all regions where each variant type is used, so a tag and runtime checking is unnecessary; 109 otherwise, a tag is required to denote the particular type in the variant and the tag checked at runtime using some form of type pattern-matching. 110 111 The tag can be implicitly set by the compiler on assignment, or explicitly set by the program\-mer. 112 Type pattern-matching is then used to dynamically test the tag and branch to a section of code to safely manipulate the value, \eg: 119 Crucially, the union implies instance storage is shared by all the variant types, and therefore, before a variant type can be used in a statically-typed expression, it must be dynamically discriminated to its current contained type. 120 Hence, knowing which type is in a variant instance is crucial for correctness. 121 Occasionally, it is possible to statically determine all regions where each variant type is used, so a tag and runtime checking is unnecessary. 122 Otherwise, a tag is required to denote the particular type in the variant, and the tag is discriminated at runtime using some form of type pattern-matching, after which the value can be used in a statically-typed expression. 123 124 A less frequent variant case is multiple variants with the same type, which normally requires explicit naming of the tag to disambiguate among the common types. 125 \begin{cquote} 126 \begin{tabular}{@{}l@{\hspace{30pt}}l@{}} 127 \begin{cfa}[morekeywords={variant}] 128 variant VariantCT { 129 case @car@: int i; // explicitly typed 130 case @boat@: int i; 131 case @bridge@: int i; 132 }; 133 \end{cfa} 134 & 135 \begin{cfa}[morekeywords={variant}] 136 variant VariantCU { 137 case @car@: ; // empty or unit type 138 case @boat@: ; 139 case @bridge@: ; 140 }; 141 \end{cfa} 142 \end{tabular} 143 \end{cquote} 144 Here, the explicit tag name is used to give different meaning to the values in the common @int@ type, \eg the value 3 has different interpretations depending on the tag name. 145 It is even possible to remove the type or use the empty @unit@ type (@struct unit {}@). 146 It is this tag naming that is used to simulate an enumeration. 147 148 Normally, the variant tag is implicitly set by the compiler based on type, but with common types, a tag name is required to resolve type ambiguity. 149 \begin{cfa} 150 Variant v = 3; $\C{// implicitly set tag to 0 based on type of 3}$ 151 VariantCT ve = boats.3; $\C{// explicitly set tag to 1 using tag name}$ 152 \end{cfa} 153 Type pattern-matching is then used to dynamically test the tag and branch to a section of statically-typed code to safely manipulate the value, \eg: 154 \begin{cquote} 155 \begin{tabular}{@{}l@{\hspace{30pt}}l@{}} 113 156 \begin{cfa}[morekeywords={match}] 114 Variant v = 3; // implicitly set tag to 0 115 @match@( v ) { // know the type or test the tag 116 case int { /* only access i field in v */ } 117 case double { /* only access d field in v */ } 118 case S { /* only access s field in v */ } 157 @match@( v ) { // know type implicitly or test tag 158 case int { /* only access i field */ } 159 case double { /* only access d field */ } 160 case S { /* only access s field */ } 119 161 } 120 162 \end{cfa} 121 For safety, either all variant types must be listed or a @default@ case must exist with no field accesses. 122 123 To simulate an enumeration with a variant, the tag is \emph{re-purposed} for either ordering or value and the variant types are omitted. 124 \begin{cfa} 125 variant Weekday { 126 int tag; // implicit 0 => Mon, ..., 6 => Sun 127 @case Mon;@ // no type 163 & 164 \begin{cfa}[morekeywords={match}] 165 @match@( ve ) { 166 case car: int { /* car interpretation */ } 167 case boat: int { /* boat interpretation */ } 168 case bridge: int { /* bridge interpretation */ } 169 } 170 \end{cfa} 171 \end{tabular} 172 \end{cquote} 173 For safety, some languages require all variant types to be listed or a @default@ case with no field accesses. 174 175 To further strengthen the simulate for an enumeration with different values, each variant type can be a @const@ type or the tag becomes non-opaque, possibly taking advantage of the opaque auto-numbering. 176 \begin{cquote} 177 \begin{tabular}{@{}l@{\hspace{30pt}}l@{}} 178 \begin{cfa} 179 variant Week { 180 case Mon: const int = 0; 128 181 ... 129 @case Sun;@ 130 }; 131 \end{cfa} 132 The type system ensures tag setting and testing are correctly done. 133 However, the enumeration operations are limited to the available tag operations, \eg pattern matching. 134 \begin{cfa} 135 Week week = Mon; 136 if ( @dynamic_cast(Mon)@week ) ... // test tag == Mon 137 \end{cfa} 182 case Sat: const int = 5; 183 case Sun: const int = 10; 184 }; 185 \end{cfa} 186 & 187 \begin{cfa} 188 variant Week { 189 case Mon: ; // tag auto-numbering 190 ... 191 case Sat: ; 192 case @Sun = 10@: ; // directly set tag value 193 }; 194 \end{cfa} 195 \end{tabular} 196 \end{cquote} 197 Directly setting the tag implies restrictions, like unique values. 198 In both cases, instances of @Week@ are @const@ (immutable). 199 However, usage between these two types becomes complex. 200 \begin{cfa} 201 Week day = Week.Mon; // sets value or tag depending on type 202 if ( day == Week.Mon ) // dereference value or tag ? 203 \end{cfa} 204 Here, the dereference of @day@ should return the value of the type stored in the variant, never the tag. 205 If it does return the tag, some special meaning must be given to the empty/unit type, especially if a variant contains both regular and unit types. 206 207 208 In general, the enumeration simulation and the variant extensions to support it, are deviating from the normal use of a variant (union) type. 209 As well, the enumeration operations are limited to the available tag operations, \eg pattern matching. 138 210 While enumerating among tag names is possible: 139 211 \begin{cfa}[morekeywords={in}] 140 for ( cursor in Mon, Wed, Fri, Sun ) ... 141 \end{cfa} 142 ordering for iteration would require a \emph{magic} extension, such as a special @enum@ variant, because it has no meaning for a regular variant, \ie @int@ < @double@. 143 144 However, if a special @enum@ variant allows the tags to be heterogeneously typed, ordering must fall back on case positioning, as many types have incomparable values. 145 Iterating using tag ordering and heterogeneous types, also requires pattern matching. 146 \begin{cfa}[morekeywords={match}] 147 for ( cursor = Mon; cursor <= Fri; cursor = succ( cursor) ) { 148 match( cursor ) { 149 case Mon { /* access special type for Mon */ } 150 ... 151 case Fri { /* access special type for Fri */ } 152 default 153 } 154 } 155 \end{cfa} 156 If the variant type is changed by adding/removing types or the loop range changes, the pattern matching must be adjusted. 157 As well, if the start/stop values are dynamic, it may be impossible to statically determine if all variant types are listed. 158 159 Re-purposing the notion of enumerating into variant types is ill formed and confusing. 160 Hence, there is only a weak equivalence between an enumeration and variant type, justifying the enumeration type in a programming language. 212 for ( cursor in Week.Mon, Week.Wed, Week.Fri, Week.Sun ) ... 213 \end{cfa} 214 what is the type of @cursor@? 215 If it the tag type (@int@), how is this value used? 216 If it is the variant type, where is the instance variable, which only contains one value. 217 Hence, either enumerating with a variant enumeration is disallowed or some unusual typing rule must be invented to make it work but only in restricted contexts. 218 219 While functional programming systems regularly re-purposing variant types into enumeration types, this process seems contrived and confusing. 220 A variant tag is not an enumeration, it is a discriminant among a restricted set of types stored in a storage block. 221 Hence, there is only a weak equivalence between an enumeration and variant type, justifying a seperate enumeration type in a programming language. 161 222 162 223 -
doc/theses/jiada_liang_MMath/relatedwork.tex
r0fe07be r15215f02 53 53 \lstnewenvironment{ada}[1][]{\lstset{language=[2005]Ada,escapechar=\$,moredelim=**[is][\color{red}]{@}{@},literate={'}{\ttfamily'\!}1}\lstset{#1}}{} 54 54 55 An Ada enumeration type is an ordered list of constants, called \Newterm{literals} (enumerators). 55 An Ada enumeration type is a set of ordered unscoped identifiers (enumerators) bound to \emph{unique} \Newterm{literals}.\footnote{% 56 Ada is \emph{case-insensitive} so identifiers may appear in multiple forms and still be the same, \eg \lstinline{Mon}, \lstinline{moN}, and \lstinline{MON} (a questionable design decision).} 56 57 \begin{ada} 57 type RGB is ( Red, Green, Blue ); -- 3literals (enumerators)58 type Week is ( Mon, Tue, Wed, Thu, Fri, Sat, Sun ); -- literals (enumerators) 58 59 \end{ada} 59 60 Object initialization and assignment are restricted to the enumerators of this type. 60 Enumerators without an explicitly designated constant value are auto-initialized: from left to right, starting at zero or the next explicitly initialized constant, incrementing by 1. 61 To explicitly set enumerator values, \emph{all} enumerators must be set in \emph{ascending} order, \ie there is no auto-initialization. 61 While Ada enumerators are unscoped, like C, Ada enumerators are overloadable. 62 62 \begin{ada} 63 type RGB is ( Red, Green, Blue ); 64 @for RGB use ( Red => 10, Green => 20, Blue => 30 );@ -- ascending order 65 \end{ada} 66 Hence, the position, value, label tuples are: 67 \begin{ada} 68 (0, 10, RED) (1, 20, GREEN) (2, 30, BLUE) 69 \end{ada} 70 Note, Ada is case-\emph{insensitive} so names may appear in multiple forms and still be the same, \eg @Red@ and @RED@ (a questionable design decision). 71 72 Like C, Ada enumerators are unscoped, \ie enumerators declared inside of an enum are visible (projected) into the enclosing scope. 73 The enumeration operators are the ordering operators, @=@, @<@, @<=@, @=@, @/=@, @>=@, @>@, where the ordering relationship is given implicitly by the sequence of enumerators, which is always ascending. 74 75 Ada enumerators are overloadable. 76 \begin{ada} 63 type RGB is ( @Red@, @Green@, Blue ); 77 64 type Traffic_Light is ( @Red@, Yellow, @Green@ ); 78 65 \end{ada} 79 Like \CFA, Ada uses an advanced type-resolution algorithm, including the left-hand side of assignment, to disambiguate among overloaded names.66 Like \CFA, Ada uses an advanced type-resolution algorithm, including the left-hand side of assignment, to disambiguate among overloaded identifiers. 80 67 \VRef[Figure]{f:AdaEnumeration} shows how ambiguity is handled using a cast, \ie \lstinline[language=ada]{RGB'(Red)}. 81 68 … … 102 89 \end{figure} 103 90 104 Ada provides an alias mechanism, \lstinline[language=ada]{renames}, for aliasing types, which is useful to shorten package names. 91 Enumerators without initialization are auto-initialized from left to right, starting at zero, incrementing by 1. 92 Enumerators with initialization must set \emph{all} enumerators in \emph{ascending} order, \ie there is no auto-initialization. 93 \begin{ada} 94 type Week is ( Mon, Tue, Wed, Thu, Fri, Sat, Sun ); 95 for Week use ( Mon => 0, Tue => 1, Wed => 2, Thu => @10@, Fri => 11, Sat => 14, Sun => 15 ); 96 \end{ada} 97 The enumeration operators are the equality and relational operators, @=@, @/=@, @<@, @<=@, @=@, @/=@, @>=@, @>@, where the ordering relationship is given implicitly by the sequence of acsending enumerators. 98 99 Ada provides an alias mechanism, \lstinline[language=ada]{renames}, for aliasing types, which is useful to shorten package identifiers. 105 100 \begin{ada} 106 101 OtherRed : RGB renames Red; … … 113 108 There are three pairs of inverse enumeration pseudo-functions (attributes): @'Pos@ and @'Val@, @'Enum_Rep@ and @'Enum_Val@, and @'Image@ and @'Value@, 114 109 \begin{cquote} 115 \lstDeleteShortInline@116 110 \setlength{\tabcolsep}{15pt} 117 111 \begin{tabular}{@{}ll@{}} … … 128 122 \end{ada} 129 123 \end{tabular} 130 \lstMakeShortInline@131 124 \end{cquote} 132 125 These attributes are important for IO. … … 138 131 \end{ada} 139 132 which is syntactic sugar for the label and not character literals from the predefined type @Character@. 140 The purpose is strictly readability using character literals rather than names.133 The purpose is strictly readability using character literals rather than identifiers. 141 134 \begin{ada} 142 135 Op : Operator := '+'; … … 171 164 An enumeration type can be used in the Ada \lstinline[language=ada]{case} (all enumerators must appear or a default) or iterating constructs. 172 165 \begin{cquote} 173 \lstDeleteShortInline@174 166 \setlength{\tabcolsep}{15pt} 175 167 \begin{tabular}{@{}ll@{}} … … 211 203 \end{ada} 212 204 \end{tabular} 213 \lstMakeShortInline@214 205 \end{cquote} 215 206 … … 229 220 \CC has the equivalent of Pascal typed @const@ declarations \see{\VRef{s:Pascal}}, with static and dynamic initialization. 230 221 \begin{c++} 231 const auto one = 0 + 1; $\C{// static in tialization}$222 const auto one = 0 + 1; $\C{// static initialization}$ 232 223 const auto NULL = nullptr; 233 224 const auto PI = 3.14159; … … 237 228 Sat = Fri + 1, Sun = Sat + 1; 238 229 int sa[Sun]; 239 const auto r = random(); $\C{// dynamic in tialization}$230 const auto r = random(); $\C{// dynamic initialization}$ 240 231 int da[r]; $\C{// VLA}$ 241 232 \end{c++} … … 362 353 \begin{figure} 363 354 \centering 364 \lstDeleteShortInline@365 355 \begin{tabular}{@{}l|l@{}} 366 356 \multicolumn{1}{@{}c|}{non-object oriented} & \multicolumn{1}{c@{}}{object oriented} \\ … … 414 404 \end{csharp} 415 405 \end{tabular} 416 \lstMakeShortInline@417 406 \caption{\Csharp: Free Routine Versus Class Enumeration} 418 407 \label{CsharpFreeVersusClass} … … 429 418 const ( S = 0; T; USA = "USA"; U; V = 3.1; W ) $\C{// type change, implicit/explicit: 0 0 USA USA 3.1 3.1}$ 430 419 \end{Go} 431 Constant names are unscoped and must be unique (no overloading).420 Constant identifiers are unscoped and must be unique (no overloading). 432 421 The first enumerator \emph{must} be explicitly initialized; 433 422 subsequent enumerators can be implicitly or explicitly initialized. … … 459 448 Basic switch and looping are possible. 460 449 \begin{cquote} 461 \lstDeleteShortInline@462 450 \setlength{\tabcolsep}{15pt} 463 451 \begin{tabular}{@{}ll@{}} … … 482 470 \end{Go} 483 471 \end{tabular} 484 \lstMakeShortInline@485 472 \end{cquote} 486 473 However, the loop prints the values from 0 to 13 because there is no actual enumeration. … … 513 500 \begin{figure} 514 501 \centering 515 \lstDeleteShortInline@516 502 \begin{tabular}{@{}l|l@{}} 517 503 \multicolumn{1}{@{}c|}{non-object oriented} & \multicolumn{1}{c@{}}{object oriented} \\ … … 553 539 \end{Java} 554 540 \end{tabular} 555 \lstMakeShortInline@556 541 \caption{Java: Free Routine Versus Class Enumeration} 557 542 \label{f:JavaFreeVersusClass} … … 607 592 \section{Rust} 608 593 \lstnewenvironment{rust}[1][]{\lstset{language=Rust,escapechar=\$,moredelim=**[is][\color{red}]{@}{@},}\lstset{#1}}{} 594 % https://doc.rust-lang.org/reference/items/enumerations.html 609 595 610 596 Rust provides a scoped enumeration based on variant types. … … 1010 996 1011 997 1012 \section{Python }998 \section{Python 3.13} 1013 999 \lstnewenvironment{python}[1][]{\lstset{language=Python,escapechar=\$,moredelim=**[is][\color{red}]{@}{@},}\lstset{#1}}{} 1014 1015 A Python enumeration is a set of symbolic names bound to \emph{unique} values. 1016 They are similar to global variables, but offer a more useful @repr()@, grouping, type-safety, and additional features. 1017 Enumerations inherits from the @Enum@ class, \eg: 1018 \begin{python} 1019 class Weekday(@Enum@): Mon = 1; Tue = 2; Wed = 3; Thu = 4; Fri = 5; Sat = 6; Sun = 7 1020 class RGB(@Enum@): Red = 1; Green = 2; Blue = 3 1021 \end{python} 1022 1023 Depending on the nature of the enum a member's value may or may not be important, but either way that value can be used to get the corresponding member: 1024 \begin{python} 1025 print( repr( Weekday( 3 ) ) ) 1026 <Weekday.Wed: 3> 1027 \end{python} 1028 As you can see, the @repr()@ of a member shows the enum name, the member name, and the value. 1029 The @str()@ of a member shows only the enum name and member name: 1030 \begin{python} 1031 print( str( Weekday.Thu ), Weekday.Thu ) 1032 Weekday.Thu Weekday.Thu 1033 \end{python} 1034 The type of an enumeration member is the enum it belongs to: 1035 \begin{python} 1036 print( type( Weekday.Thu ) ) 1037 <enum 'Weekday'> 1038 print( isinstance(Weekday.Fri, Weekday) ) 1039 True 1040 \end{python} 1041 Enum members have an attribute that contains just their name: 1042 \begin{python} 1043 print(Weekday.TUESDAY.name) 1044 TUESDAY 1045 \end{python} 1046 Likewise, they have an attribute for their value: 1047 \begin{python} 1048 Weekday.WEDNESDAY.value 1049 3 1050 \end{python} 1051 1052 Unlike many languages that treat enumerations solely as name/value pairs, Python @Enum@s can have behavior added. 1053 For example, @datetime.date@ has two methods for returning the weekday: @weekday()@ and @isoweekday()@. 1054 The difference is that one of them counts from 0-6 and the other from 1-7. 1055 Rather than keep track of that ourselves we can add a method to the @Weekday@ enum to extract the day from the date instance and return the matching enum member: 1056 \begin{python} 1057 class Weekday(Enum): Mon = 1; Tue = 2; Wed = 3; Thu = 10; Fri = 15; Sat = 16; Sun = 17 1058 $@$classmethod 1059 def from_date(cls, date): 1060 return cls(date.isoweekday()) 1061 \end{python} 1062 Now we can find out what today is! Observe: 1063 \begin{python} 1064 >>> from datetime import date 1065 >>> Weekday.from_date(date.today()) 1066 <Weekday.TUESDAY: 2> 1067 \end{python} 1068 Of course, if you're reading this on some other day, you'll see that day instead. 1069 1070 This Weekday enum is great if our variable only needs one day, but what if we need several? Maybe we're writing a function to plot chores during a week, and don't want to use a @list@ -- we could use a different type of @Enum@: 1071 \begin{python} 1072 from enum import Flag 1073 class WeekdayF(@Flag@): Mon = @1@; Tue = @2@; Wed = @4@; Thu = @8@; Fri = @16@; Sat = @32@; Sun = @64@ 1074 \end{python} 1075 We've changed two things: we're inherited from @Flag@, and the values are all powers of 2. 1000 % https://docs.python.org/3/howto/enum.html 1001 1002 Python is a dynamically-typed reflexive programming language with multiple versions, and hence, it is possible to extend existing or build new language features within the language. 1003 As a result, discussing Python enumerations is a moving target, because if a features does not exist, if can often be created with varying levels of complexity. 1004 Nevertheless, an attempt has been made to discuss core enumeration features that come with Python 3.13. 1005 1006 A Python enumeration type is a set of ordered scoped identifiers (enumerators) bound to \emph{unique} values. 1007 An enumeration is not a basic type; 1008 it is a @class@ inheriting from the @Enum@ class, where the enumerators must be explicitly initialized, \eg: 1009 \begin{python} 1010 class Week(@Enum@): Mon = 1; Tue = 2; Wed = 3; Thu = 4; Fri = 5; Sat = 6; Sun = 7 1011 \end{python} 1012 and/or explicitly auto initialized, \eg: 1013 \begin{python} 1014 class Week(Enum): Mon = 1; Tue = 2; Wed = 3; Thu = 10; Fri = @auto()@; Sat = 4; Sun = @auto()@ 1015 \end{python} 1016 where @auto@ increments by 1 from the previous enumerator value. 1017 Object initialization and assignment are restricted to the enumerators of this type. 1018 An enumerator initialized with same value is an alias and invisible at the enumeration level, \ie the alias it substituted for its aliasee. 1019 \begin{python} 1020 class Week(Enum): Mon = 1; Tue = 2; Wed = 3; Thu = 10; Fri = @10@; Sat = @10@; Sun = @10@ 1021 \end{python} 1022 Here, the enumeration has only 4 enumerators and 3 aliases. 1023 An alias is only visible by dropping down to the @class@ level and asking for class members. 1024 @Enum@ only supports equality comparison between enumerator values; 1025 the extended class @OrderedEnum@ adds relational operators @<@, @<=@, @>@, and @>=@. 1026 1027 There are bidirectional enumeration pseudo-functions for label and value, but there is no concept of access using ordering (position). 1028 \begin{cquote} 1029 \setlength{\tabcolsep}{15pt} 1030 \begin{tabular}{@{}ll@{}} 1031 \begin{python} 1032 Week.Thu.value == 10; 1033 Week.Thu.name == 'Thu'; 1034 \end{python} 1035 & 1036 \begin{python} 1037 Week( 10 ) == Thu 1038 Week['Thu'].value = 10 1039 \end{python} 1040 \end{tabular} 1041 \end{cquote} 1042 1043 As an enumeration is a \lstinline[language=python]{class}, its own methods. 1044 \begin{python} 1045 class Week(Enum): 1046 Mon = 1; Tue = 2; Wed = 3; Thu = 4; Fri = 5; Sat = 6; Sun = 7 1047 $\\@$classmethod 1048 def today(cls, date): 1049 return cls(date.isoweekday()) 1050 print( "today:", Week.today(date.today())) 1051 today: Week.Mon 1052 \end{python} 1053 The method @today@ retrieves the day of the week and uses it as an index to print out the corresponding label of @Week@. 1076 1054 1077 1055 @Flag@ allows combining several members into a single variable: 1078 1056 \begin{python} 1079 print( repr(Week dayF.Sat | WeekdayF.Sun) )1080 <Week dayF.Sun|Sat: 96>1057 print( repr(WeekF.Sat | WeekF.Sun) ) 1058 <WeekF.Sun|Sat: 96> 1081 1059 \end{python} 1082 1060 You can even iterate over a @Flag@ variable: … … 1084 1062 for day in weekend: 1085 1063 print(day) 1086 Week day.SATURDAY1087 Week day.SUNDAY1064 WeekF.Sat 1065 WeekF.Sun 1088 1066 \end{python} 1089 1067 Okay, let's get some chores set up: 1090 1068 \begin{python} 1091 1069 >>> chores_for_ethan = { 1092 ... 'feed the cat': Week day.MONDAY | Weekday.WEDNESDAY | Weekday.FRIDAY,1093 ... 'do the dishes': Week day.TUESDAY | Weekday.THURSDAY,1094 ... 'answer SO questions': Week day.SATURDAY,1070 ... 'feed the cat': Week.MONDAY | Week.WEDNESDAY | Week.FRIDAY, 1071 ... 'do the dishes': Week.TUESDAY | Week.THURSDAY, 1072 ... 'answer SO questions': Week.SATURDAY, 1095 1073 ... } 1096 1074 \end{python} … … 1101 1079 ... if day in days: 1102 1080 ... print(chore) 1103 >>> show_chores(chores_for_ethan, Week day.SATURDAY)1081 >>> show_chores(chores_for_ethan, Week.SATURDAY) 1104 1082 answer SO questions 1105 1083 \end{python} 1106 In cases where the actual values of the members do not matter, you can save yourself some work and use @auto()@ for the values: 1107 \begin{python} 1108 >>> from enum import auto 1109 >>> class Weekday(Flag): 1110 ... MONDAY = auto() 1111 ... TUESDAY = auto() 1112 ... WEDNESDAY = auto() 1113 ... THURSDAY = auto() 1114 ... FRIDAY = auto() 1115 ... SATURDAY = auto() 1116 ... SUNDAY = auto() 1117 ... WEEKEND = SATURDAY | SUNDAY 1084 Auto incrmenet for @Flag@ is by powers of 2. 1085 \begin{python} 1086 class WeekF(Flag): Mon = auto(); Tue = auto(); Wed = auto(); Thu = auto(); Fri = auto(); \ 1087 Sat = auto(); Sun = auto(); Weekend = Sat | Sun 1088 for d in WeekF: 1089 print( f"{d.name}: {d.value}", end=" ") 1090 Mon: 1 Tue: 2 Wed: 4 Thu: 8 Fri: 16 Sat: 32 Sun: 64 WeekA.Weekend 1118 1091 \end{python} 1119 1092 … … 1123 1096 @Enum@ allows such access: 1124 1097 \begin{python} 1125 >>> Color(1) 1126 <Color.RED: 1> 1127 >>> Color(3) 1128 <Color.BLUE: 3> 1098 print(RGB(1), RGB(3), ) 1099 RGB.RED RGB.GREEN 1129 1100 \end{python} 1130 1101 If you want to access enum members by name, use item access: 1131 1102 \begin{python} 1132 Color['RED'] 1133 <Color.RED: 1> 1134 1135 Color['GREEN'] 1136 <Color.GREEN: 2> 1103 print( RGBa['RED'], RGBa['GREEN'] ) 1104 RGB.RED RGB.GREEN 1137 1105 \end{python} 1138 1106 If you have an enum member and need its name or value: 1139 1107 \begin{python} 1140 >>> member = Color.RED 1141 >>> member.name 1142 'RED' 1143 >>> member.value 1144 1 1145 \end{python} 1146 1147 \subsection{Duplicating enum members and values} 1148 1149 An enum member can have other names associated with it. 1150 Given two entries @A@ and @B@ with the same value (and @A@ defined first), @B@ is an alias for the member @A@. 1151 By-value lookup of the value of @A@ will return the member @A@. 1152 By-name lookup of @A@ will return the member @A@. 1153 By-name lookup of @B@ will also return the member @A@: 1154 \begin{python} 1155 class Shape(Enum): SQUARE = 2; DIAMOND = 1; CIRCLE = 3; ALIAS_FOR_SQUARE = 2 1156 >>> Shape.SQUARE 1157 <Shape.SQUARE: 2> 1158 >>> Shape.ALIAS_FOR_SQUARE 1159 <Shape.SQUARE: 2> 1160 >>> Shape(2) 1161 <Shape.SQUARE: 2> 1162 \end{python} 1163 1164 Note: Attempting to create a member with the same name as an already defined attribute (another member, a method, etc.) or attempting to create an attribute with the same name as a member is not allowed. 1108 member = RGBa.RED 1109 print( f"{member.name} {member.value}" ) 1110 RED 1 1111 \end{python} 1112 1165 1113 1166 1114 \subsection{Ensuring unique enumeration values} … … 1207 1155 >>> list(Shape) 1208 1156 [<Shape.SQUARE: 2>, <Shape.DIAMOND: 1>, <Shape.CIRCLE: 3>] 1209 >>> list(Week day)1210 [<Week day.MONDAY: 1>, <Weekday.TUESDAY: 2>, <Weekday.WEDNESDAY: 4>, <Weekday.THURSDAY: 8>,1211 <Week day.FRIDAY: 16>, <Weekday.SATURDAY: 32>, <Weekday.SUNDAY: 64>]1212 \end{python} 1213 Note that the aliases @Shape.ALIAS_FOR_SQUARE@ and @Week day.WEEKEND@ aren't shown.1157 >>> list(Week) 1158 [<Week.MONDAY: 1>, <Week.TUESDAY: 2>, <Week.WEDNESDAY: 4>, <Week.THURSDAY: 8>, 1159 <Week.FRIDAY: 16>, <Week.SATURDAY: 32>, <Week.SUNDAY: 64>] 1160 \end{python} 1161 Note that the aliases @Shape.ALIAS_FOR_SQUARE@ and @Week.WEEKEND@ aren't shown. 1214 1162 1215 1163 The special attribute @__members__@ is a read-only ordered mapping of names to members. … … 2218 2166 2219 2167 OCaml provides a variant (union) type, where multiple heterogeneously-typed objects share the same storage. 2220 The simplest form of the variant type is a list of nullary datatype constructors, which is like an unscoped, pure enumeration. 2221 2222 (I think the value of a ocaml variants are types not object, so I am not sure about this line) 2168 The simplest form of the variant type is a list of nullary datatype constructors, which is like an unscoped, opaque enumeration. 2169 2223 2170 OCaml provides a variant (union) type, which is an aggregation of heterogeneous types. 2224 A basic variant is a list of nullary datatype constructors, which is like an unscoped, pure enumeration.2171 A basic variant is a list of nullary datatype constructors, which is like an unscoped, opaque enumeration. 2225 2172 \begin{ocaml} 2226 2173 type weekday = Mon | Tue | Wed | Thu | Fri | Sat | Sun … … 2246 2193 type colour = Red | Green of @string@ | Blue of @int * float@ 2247 2194 \end{ocaml} 2248 A variant with parameter is stored in a memory block, prefixed by an int tag and has its parameters stores as words in the block. 2195 A variant with parameter is stored in a memory block, prefixed by an int tag and has its parameters stores as words in the block. 2249 2196 @colour@ is a summation of a nullary type, a unary product type of @string@, and a cross product of @int@ and @float@. 2250 2197 (Mathematically, a @Blue@ value is a Cartesian product of the types @int@ type and @float@.) … … 2259 2206 @Red, abc, 1 1.5@ 2260 2207 \end{ocaml} 2261 2262 2208 2263 2209 A variant type can have a recursive definition. … … 2280 2226 2281 2227 In summary, an OCaml variant is a singleton value rather than a set of possibly ordered values, and hence, has no notion of enumerabilty. 2282 Therefore it is not an enumeration, except for the simple pure (nullary) case.2228 Therefore it is not an enumeration, except for the simple opaque (nullary) case. 2283 2229 2284 2230 \begin{comment} … … 2466 2412 With valediction, 2467 2413 - Gregor Richards 2414 2415 2416 Date: Tue, 16 Apr 2024 11:04:51 -0400 2417 Subject: Re: C unnamed enumeration 2418 To: "Peter A. Buhr" <pabuhr@uwaterloo.ca> 2419 CC: <ajbeach@uwaterloo.ca>, <j82liang@uwaterloo.ca>, <mlbrooks@uwaterloo.ca>, 2420 <f37yu@uwaterloo.ca> 2421 From: Gregor Richards <gregor.richards@uwaterloo.ca> 2422 2423 On 4/16/24 09:55, Peter A. Buhr wrote: 2424 > So what is a variant? Is it a set of tag names, which might be a union or is it 2425 > a union, which might have tag names? 2426 2427 Your tagless variant bears no resemblance to variants in any functional 2428 programming language. A variant is a tag AND a union. You might not need to put 2429 anything in the union, in which case it's a pointless union, but the named tag 2430 is absolutely mandatory. That's the thing that varies. 2431 2432 I was unaware of std::variant. As far as functional languages are concerned, 2433 std::variant IS NOT A VARIANT. Perhaps it would be best to use the term ADT for 2434 the functional language concept, because that term has no other meanings. 2435 2436 An ADT cannot not have a named tag. That's meaningless. The tag is the data 2437 constructor, which is the thing you actually define when you define an ADT. It 2438 is strictly the union that's optional. 2439 2440 With valediction, 2441 - Gregor Richards 2468 2442 \end{comment} 2469 2443 … … 2487 2461 \hline 2488 2462 \hline 2489 pure & & & & & & & & & & & & & \CM \\2463 opaque & & & & & & & & & & & & & \CM \\ 2490 2464 \hline 2491 2465 typed & & & & & & & & & & & @int@ & integral & @T@ \\ -
doc/theses/jiada_liang_MMath/uw-ethesis.bib
r0fe07be r15215f02 2 2 % For use with BibTeX 3 3 4 Oxford English Dictionary, s.v. ``enumerate (v.), sense 3,'' September 2023, https://doi.org/10.1093/OED/1113960777. 5 @misc{OEDenumerate, 6 keywords = {enumerate}, 7 key = {enumerate}, 8 title = {enumerate (v.), sense 3}, 9 author = {Oxford English Dictionary}, 10 howpublished= {\url{https://doi.org/10.1093/OED/1113960777}}, 11 month = sep, 12 year = 2023, 13 } -
doc/uC++toCFA/Makefile
r0fe07be r15215f02 56 56 dvips ${Build}/$< -o $@ 57 57 58 ${BASE}.dvi : Makefile ${GRAPHS} ${PROGRAMS} ${PICTURES} ${FIGURES} ${SOURCES} \59 ${Macros}/ common.sty ${Macros}/lstlang.sty ${Macros}/indexstyle ../bibliography/pl.bib build/version | ${Build}58 ${BASE}.dvi : Makefile ${GRAPHS} ${PROGRAMS} ${PICTURES} ${FIGURES} ${SOURCES} ${Macros}/common.tex ${Macros}/common.sty \ 59 ${Macros}/lstlang.sty ${Macros}/indexstyle ../bibliography/pl.bib build/version | ${Build} 60 60 # Conditionally create an empty *.ind (index) file for inclusion until makeindex is run. 61 61 if [ ! -r ${basename $@}.ind ] ; then touch ${Build}/${basename $@}.ind ; fi -
doc/uC++toCFA/uC++toCFA.tex
r0fe07be r15215f02 11 11 %% Created On : Wed Apr 6 14:53:29 2016 12 12 %% Last Modified By : Peter A. Buhr 13 %% Last Modified On : Thu Jan 11 14:46:14202414 %% Update Count : 59 4213 %% Last Modified On : Sat Apr 13 11:11:39 2024 14 %% Update Count : 5969 15 15 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 16 16 … … 141 141 \CFA uses parametric polymorphism and allows overloading of variables and routines: 142 142 \begin{cfa} 143 int i; char i; double i; // overload name i143 int i; char i; double i; $\C[2in]{// overload name i}$ 144 144 int i(); double i(); char i(); 145 i += 1; $\C[1.5in]{// int i}$146 i += 1.0; $\C{// double i}$147 i += 'a'; $\C{// char i}$148 int j = i(); $\C{// int i()}$149 double j = i(); $\C{// double i();}$150 char j = i(); $\C{// char i()}\CRT$145 i += 1; $\C{// int i}$ 146 i += 1.0; $\C{// double i}$ 147 i += 'a'; $\C{// char i}$ 148 int j = i(); $\C{// int i()}$ 149 double j = i(); $\C{// double i();}$ 150 char j = i(); $\C{// char i()}\CRT$ 151 151 \end{cfa} 152 152 \CFA has rebindable references. 153 154 \begin{cquote} 155 \begin{tabular}{l|l} 156 \multicolumn{2}{l}{\lstinline{ int x = 1, y = 2, * p1x = &x, * p1y = &y, ** p2i = &p1x,}} \\ 157 \multicolumn{2}{l}{\lstinline{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ && r1x = x, & r1y = y, && r2i = r1x;}} \\ 153 \begin{cquote} 154 \begin{tabular}{@{}l|l@{}} 155 \multicolumn{2}{@{}l}{\lstinline{ int x = 1, y = 2, * p1x = &x, * p1y = &y, ** p2i = &p1x,}} \\ 156 \multicolumn{2}{@{}l}{\lstinline{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ && r1x = x, & r1y = y, && r2i = r1x;}} \\ 158 157 \begin{uC++} 159 158 **p2i = 3; … … 201 200 202 201 \CFA output streams automatically separate values and insert a newline at the end of the print. 203 204 \begin{cquote} 205 \begin{tabular}{l|l} 202 \begin{cquote} 203 \begin{tabular}{@{}l|l@{}} 206 204 \begin{uC++} 207 205 #include <@iostream@> … … 226 224 227 225 \begin{cquote} 228 \begin{tabular}{ l|l}226 \begin{tabular}{@{}l|l@{}} 229 227 \begin{uC++} 230 228 for ( @;;@ ) { ... } / while ( @true@ ) { ... } … … 280 278 Currently, \CFA uses macros @ExceptionDecl@ and @ExceptionInst@ to declare and instantiate an exception. 281 279 \begin{cquote} 282 \begin{tabular}{ l|ll}280 \begin{tabular}{@{}l|ll@{}} 283 281 \begin{uC++} 284 282 … … 321 319 322 320 \begin{cquote} 323 \begin{tabular}{ l|ll}321 \begin{tabular}{@{}l|ll@{}} 324 322 \begin{uC++} 325 323 … … 360 358 361 359 \begin{cquote} 362 \begin{tabular}{ l|l}360 \begin{tabular}{@{}l|l@{}} 363 361 \begin{uC++} 364 362 struct S { … … 383 381 384 382 \begin{cquote} 385 \begin{tabular}{ l|l}386 \multicolumn{2}{ l}{\lstinline{string s1, s2;}} \\383 \begin{tabular}{@{}l|l@{}} 384 \multicolumn{2}{@{}l@{}}{\lstinline{string s1, s2;}} \\ 387 385 \begin{uC++} 388 386 s1 = "hi"; … … 425 423 426 424 \begin{cquote} 427 \begin{tabular}{ l|l}425 \begin{tabular}{@{}l|l@{}} 428 426 \begin{uC++} 429 427 struct S { … … 456 454 457 455 \begin{cquote} 458 \begin{tabular}{ l|l}456 \begin{tabular}{@{}l|l@{}} 459 457 \begin{uC++} 460 458 … … 493 491 494 492 \begin{cquote} 495 \begin{tabular}{ l|ll}493 \begin{tabular}{@{}l|ll@{}} 496 494 \begin{uC++} 497 495 … … 532 530 533 531 \begin{cquote} 534 \begin{tabular}{ l|ll}532 \begin{tabular}{@{}l|ll@{}} 535 533 \begin{uC++} 536 534 … … 567 565 568 566 \begin{cquote} 569 \begin{tabular}{ l|ll}567 \begin{tabular}{@{}l|ll@{}} 570 568 \begin{uC++} 571 569 … … 604 602 605 603 \begin{cquote} 606 \begin{tabular}{ l|ll}604 \begin{tabular}{@{}l|ll@{}} 607 605 \begin{uC++} 608 606 -
doc/user/Makefile
r0fe07be r15215f02 60 60 dvips ${Build}/$< -o $@ 61 61 62 ${BASE}.dvi : Makefile ${GRAPHS} ${PROGRAMS} ${PICTURES} ${FIGURES} ${SOURCES} \63 ${Macros}/ common.sty ${Macros}/lstlang.sty ${Macros}/indexstyle ../bibliography/pl.bib build/version | ${Build}62 ${BASE}.dvi : Makefile ${GRAPHS} ${PROGRAMS} ${PICTURES} ${FIGURES} ${SOURCES} ${Macros}/common.tex ${Macros}/common.sty \ 63 ${Macros}/lstlang.sty ${Macros}/indexstyle ../bibliography/pl.bib build/version | ${Build} 64 64 # Conditionally create an empty *.ind (index) file for inclusion until makeindex is run. 65 65 if [ ! -r ${basename $@}.ind ] ; then touch ${Build}/${basename $@}.ind ; fi … … 73 73 makeindex -s ${Macros}/indexstyle ${Build}/${basename $@}.idx 74 74 # Run again to finish citations 75 ${LaTeX} ${basename $@}.tex75 # ${LaTeX} ${basename $@}.tex 76 76 # Run again to get index title into table of contents 77 77 # ${LaTeX} ${basename $@}.tex -
doc/user/user.tex
r0fe07be r15215f02 11 11 %% Created On : Wed Apr 6 14:53:29 2016 12 12 %% Last Modified By : Peter A. Buhr 13 %% Last Modified On : Mon Feb 12 11:50:26202414 %% Update Count : 6 19913 %% Last Modified On : Thu Apr 18 21:53:45 2024 14 %% Update Count : 6502 15 15 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 16 16 … … 130 130 \vspace*{\fill} 131 131 \noindent 132 \copyright\,2016, 2018, 2021 \CFA Project \\ \\132 \copyright\,2016, 2018, 2021, 2024 \CFA Project \\ \\ 133 133 \noindent 134 134 This work is licensed under the Creative Commons Attribution 4.0 International License. … … 312 312 For example, it is possible to write a type-safe \CFA wrapper ©malloc© based on the C ©malloc©: 313 313 \begin{cfa} 314 forall( dtype T| sized(T) ) T * malloc( void ) { return (T *)malloc( sizeof(T) ); }314 forall( T & | sized(T) ) T * malloc( void ) { return (T *)malloc( sizeof(T) ); } 315 315 int * ip = malloc(); §\C{// select type and size from left-hand side}§ 316 316 double * dp = malloc(); … … 1023 1023 while () { sout | "empty"; break; } 1024 1024 do { sout | "empty"; break; } while (); 1025 for () { sout | "empty"; break; } §\C{sout | nl | nlOff;}§1026 1027 for ( 0 ) { sout | "A"; } sout | "zero"; §\C{sout | nl;}§1028 for ( 1 ) { sout | "A"; } §\C{sout | nl;}§1029 for ( 10 ) { sout | "A"; } §\C{sout | nl;}§1030 for ( ~= 10 ) { sout | "A"; } §\C{sout | nl;}§1031 for ( 1 ~= 10 ~ 2 ) { sout | "B"; } §\C{sout | nl;}§1032 for ( 1 -~= 10 ~ 2 ) { sout | "C"; } §\C{sout | nl;}§1033 for ( 0.5 ~ 5.5 ) { sout | "D"; } §\C{sout | nl;}§1034 for ( 0.5 -~ 5.5 ) { sout | "E"; } §\C{sout | nl;}§1035 for ( i; 10 ) { sout | i; } §\C{sout | nl;}§1036 for ( i; ~= 10 ) { sout | i; } §\C{sout | nl;}§1037 for ( i; 1 ~= 10 ~ 2 ) { sout | i; } §\C{sout | nl;}§1038 for ( i; 1 -~= 10 ~ 2 ) { sout | i; } §\C{sout | nl;}§1039 for ( i; 0.5 ~ 5.5 ) { sout | i; } §\C{sout | nl;}§1040 for ( i; 0.5 -~ 5.5 ) { sout | i; } §\C{sout | nl;}§1041 for ( ui; 2u ~= 10u ~ 2u ) { sout | ui; } §\C{sout | nl;}§1042 for ( ui; 2u -~= 10u ~ 2u ) { sout | ui; } §\C{sout | nl | nl | nl;}§1025 for () { sout | "empty"; break; } §\C[3in]{sout | nl | nlOff;}§ 1026 1027 for ( 0 ) { sout | "A"; } sout | "zero"; §\C{sout | nl;}§ 1028 for ( 1 ) { sout | "A"; } §\C{sout | nl;}§ 1029 for ( 10 ) { sout | "A"; } §\C{sout | nl;}§ 1030 for ( ~= 10 ) { sout | "A"; } §\C{sout | nl;}§ 1031 for ( 1 ~= 10 ~ 2 ) { sout | "B"; } §\C{sout | nl;}§ 1032 for ( 1 -~= 10 ~ 2 ) { sout | "C"; } §\C{sout | nl;}§ 1033 for ( 0.5 ~ 5.5 ) { sout | "D"; } §\C{sout | nl;}§ 1034 for ( 0.5 -~ 5.5 ) { sout | "E"; } §\C{sout | nl;}§ 1035 for ( i; 10 ) { sout | i; } §\C{sout | nl;}§ 1036 for ( i; ~= 10 ) { sout | i; } §\C{sout | nl;}§ 1037 for ( i; 1 ~= 10 ~ 2 ) { sout | i; } §\C{sout | nl;}§ 1038 for ( i; 1 -~= 10 ~ 2 ) { sout | i; } §\C{sout | nl;}§ 1039 for ( i; 0.5 ~ 5.5 ) { sout | i; } §\C{sout | nl;}§ 1040 for ( i; 0.5 -~ 5.5 ) { sout | i; } §\C{sout | nl;}§ 1041 for ( ui; 2u ~= 10u ~ 2u ) { sout | ui; } §\C{sout | nl;}§ 1042 for ( ui; 2u -~= 10u ~ 2u ) { sout | ui; } §\C{sout | nl | nl | nl;}§ 1043 1043 1044 1044 enum { N = 10 }; 1045 for ( N ) { sout | "N"; } §\C{sout | nl;}§1046 for ( i; N ) { sout | i; } §\C{sout | nl;}§1047 for ( i; -~ N ) { sout | i; } §\C{sout | nl | nl | nl;}§1045 for ( N ) { sout | "N"; } §\C{sout | nl;}§ 1046 for ( i; N ) { sout | i; } §\C{sout | nl;}§ 1047 for ( i; -~ N ) { sout | i; } §\C{sout | nl | nl | nl;}§ 1048 1048 1049 1049 const int low = 3, high = 10, inc = 2; 1050 for ( i; low ~ high ~ inc + 1 ) { sout | i; } §\C{sout | nl;}§1051 for ( i; 1 ~ @ ) { if ( i > 10 ) break; sout | i; } §\C{sout | nl;}§1052 for ( i; @ -~ 10 ) { if ( i < 0 ) break; sout | i; } §\C{sout | nl;}§1053 for ( i; 2 ~ @ ~ 2 ) { if ( i > 10 ) break; sout | i; } §\C{sout | nl;}§1050 for ( i; low ~ high ~ inc + 1 ) { sout | i; } §\C{sout | nl;}§ 1051 for ( i; 1 ~ @ ) { if ( i > 10 ) break; sout | i; } §\C{sout | nl;}§ 1052 for ( i; @ -~ 10 ) { if ( i < 0 ) break; sout | i; } §\C{sout | nl;}§ 1053 for ( i; 2 ~ @ ~ 2 ) { if ( i > 10 ) break; sout | i; } §\C{sout | nl;}§ 1054 1054 for ( i; 2.1 ~ @ ~ @ ) { if ( i > 10.5 ) break; sout | i; i += 1.7; } §\C{sout | nl;}§ 1055 1055 for ( i; @ -~ 10 ~ 2 ) { if ( i < 0 ) break; sout | i; } §\C{sout | nl;}§ 1056 1056 for ( i; 12.1 ~ @ ~ @ ) { if ( i < 2.5 ) break; sout | i; i -= 1.7; } §\C{sout | nl;}§ 1057 for ( i; 5 : j; -5 ~ @ ) { sout | i | j; } §\C{sout | nl;}§1058 for ( i; 5 : j; @ -~ -5 ) { sout | i | j; } §\C{sout | nl;}§1059 for ( i; 5 : j; -5 ~ @ ~ 2 ) { sout | i | j; } §\C{sout | nl;}§1060 for ( i; 5 : j; @ -~ -5 ~ 2 ) { sout | i | j; } §\C{sout | nl;}§1061 for ( i; 5 : j; -5 ~ @ ) { sout | i | j; } §\C{sout | nl;}§1062 for ( i; 5 : j; @ -~ -5 ) { sout | i | j; } §\C{sout | nl;}§1063 for ( i; 5 : j; -5 ~ @ ~ 2 ) { sout | i | j; } §\C{sout | nl;}§1064 for ( i; 5 : j; @ -~ -5 ~ 2 ) { sout | i | j; } §\C{sout | nl;}§1057 for ( i; 5 : j; -5 ~ @ ) { sout | i | j; } §\C{sout | nl;}§ 1058 for ( i; 5 : j; @ -~ -5 ) { sout | i | j; } §\C{sout | nl;}§ 1059 for ( i; 5 : j; -5 ~ @ ~ 2 ) { sout | i | j; } §\C{sout | nl;}§ 1060 for ( i; 5 : j; @ -~ -5 ~ 2 ) { sout | i | j; } §\C{sout | nl;}§ 1061 for ( i; 5 : j; -5 ~ @ ) { sout | i | j; } §\C{sout | nl;}§ 1062 for ( i; 5 : j; @ -~ -5 ) { sout | i | j; } §\C{sout | nl;}§ 1063 for ( i; 5 : j; -5 ~ @ ~ 2 ) { sout | i | j; } §\C{sout | nl;}§ 1064 for ( i; 5 : j; @ -~ -5 ~ 2 ) { sout | i | j; } §\C{sout | nl;}§ 1065 1065 for ( i; 5 : j; @ -~ -5 ~ 2 : k; 1.5 ~ @ ) { sout | i | j | k; } §\C{sout | nl;}§ 1066 1066 for ( i; 5 : j; @ -~ -5 ~ 2 : k; 1.5 ~ @ ) { sout | i | j | k; } §\C{sout | nl;}§ 1067 for ( i; 5 : k; 1.5 ~ @ : j; @ -~ -5 ~ 2 ) { sout | i | j | k; } §\C{sout | nl;} §1067 for ( i; 5 : k; 1.5 ~ @ : j; @ -~ -5 ~ 2 ) { sout | i | j | k; } §\C{sout | nl;}\CRT§ 1068 1068 \end{cfa} 1069 1069 & … … 2960 2960 The string ``©int (*f(x))[ 5 ]©'' declares a K\&R style routine of type returning a pointer to an array of 5 integers, while the string ``©[ 5 ] int x©'' declares a \CFA style parameter ©x© of type array of 5 integers. 2961 2961 Since the strings overlap starting with the open bracket, ©[©, there is an ambiguous interpretation for the string. 2962 2963 {\color{red} 2962 2964 As well, \CFA-style declarations cannot be used to declare parameters for C-style routine-definitions because of the following ambiguity: 2963 2965 \begin{cfa} … … 2967 2969 The string ``©int (* foo)©'' declares a C-style named-parameter of type pointer to an integer (the parenthesis are superfluous), while the same string declares a \CFA style unnamed parameter of type routine returning integer with unnamed parameter of type pointer to foo. 2968 2970 The redefinition of a type name in a parameter list is the only context in C where the character ©*© can appear to the left of a type name, and \CFA relies on all type qualifier characters appearing to the right of the type name. 2969 The inability to use \CFA declarations in these two contexts is probably a blessing because it precludes programmers from arbitrarily switching between declarations forms within a declaration contexts. 2971 The inability to use \CFA declarations in these two contexts is probably a blessing because it precludes programmers from arbitrarily switching between declarations forms within a declaration contexts.} 2970 2972 2971 2973 C-style declarations can be used to declare parameters for \CFA style routine definitions, \eg: … … 3055 3057 static [ int ] g ( int ); 3056 3058 \end{cfa} 3059 3060 3061 \subsection{Postfix Function} 3062 \label{s:PostfixFunction} 3063 3064 \CFA provides an alternative call syntax where the argument appears before the function name. 3065 The syntax uses the backquote ©`© to separate the parameters/arguments and function name: ©?`© denotes a postfix-function name, \eg ©int ?`h( int s )© and ©`© denotes a postfix-function call, \eg ©0`h© meaning ©h( 0 )©. 3066 \begin{cquote} 3067 \begin{tabular}{@{}l|l|l|l@{}} 3068 postfix function & constant argument call & variable argument call & postfix function pointer \\ 3069 \hline 3070 \begin{cfa} 3071 int ?`h( int s ); 3072 int ?`h( double s ); 3073 int ?`m( char c ); 3074 int ?`m( const char * s ); 3075 int ?`t( int a, int b, int c ); 3076 \end{cfa} 3077 & 3078 \begin{cfa} 3079 0`h; 3080 3.5`h; 3081 '1'`m; 3082 "123" "456"`m; 3083 [1,2,3]`t; 3084 \end{cfa} 3085 & 3086 \begin{cfa} 3087 int i = 7; 3088 i`h; 3089 (i + 3)`h; 3090 (i + 3.5)`h; 3091 \end{cfa} 3092 & 3093 \begin{cfa} 3094 int (* ?`p)( int i ); 3095 ?`p = ?`h; 3096 3`p; 3097 i`p; 3098 (i + 3)`p; 3099 \end{cfa} 3100 \end{tabular} 3101 \end{cquote} 3102 3103 \VRef[Figure]{f:UnitsComparison} shows a common usage for postfix functions: converting basic literals into user literals. 3104 \see*{\VRef{s:DynamicStorageManagement} for other uses for postfix functions.} 3105 The \CFA example (left) stores a mass in units of stones (1 stone = 14 lb or 6.35 kg) and provides an addition operator (imagine a full set of arithmetic operators). 3106 The three postfixing function names ©st©, ©lb©, and ©kg©, represent units stones, pounds, and kilograms, respectively. 3107 Each name has two forms that bidirectional convert: a value of a specified unit to stones, \eg ©w = 14`lb© $\Rightarrow$ ©w == 1© stone or a ©Weight© from stones back to specific units, \eg ©w`lb© (1 stone) to ©14©. 3108 All arithmetic operations manipulate stones and the postfix operations convert to the different units. 3109 A similar group of postfix functions provide user constants for converting time units into nanoseconds, which is the basic time unit, \eg ©ns©, ©us©, ©ms©, ©s©, ©m©, ©h©, ©d©, and ©w©, for nanosecond, microsecond, millisecond, second, minute, hour, day, and week, respectively. 3110 (Note, month is not a fixed period of time nor is year because of leap years.) 3111 3112 \begin{figure} 3113 \centering 3114 \begin{tabular}{@{}l|l@{}} 3115 \multicolumn{1}{@{}c|}{\textbf{\CFA Postfix Routine}} & \multicolumn{1}{c@{}}{\textbf{\CC User Literals}} \\ 3116 \hline 3117 \begin{cfa} 3118 struct Weight { 3119 double stones; 3120 }; 3121 3122 3123 Weight ?+?( Weight l, Weight r ) { 3124 return l.stones + r.stones; 3125 } 3126 Weight ?`st( double w ) { return w; } 3127 double ?`st( Weight w ) { return w.stones; } 3128 Weight ?`lb( double w ) { return w / 14.0; } 3129 double ?`lb( Weight w ) { return w.stones * 14.0; } 3130 Weight ?`kg( double w ) { return w / 6.35; } 3131 double ?`kg( Weight w ) { return w.stones * 6.35; } 3132 int main() { 3133 Weight w, heavy = { 20 }; // stones 3134 w = 155`lb; 3135 w = 0b_1111`st; 3136 w = 0_233`lb; 3137 w = 0x_9b`kg; 3138 w = 5.5`st + 8`kg + 25.01`lb + heavy; 3139 } 3140 \end{cfa} 3141 & 3142 \begin{C++} 3143 struct Weight { 3144 double stones; 3145 Weight() {} 3146 Weight( double w ) { stones = w; } 3147 }; 3148 Weight operator+( Weight l, Weight r ) { 3149 return l.stones + r.stones; 3150 } 3151 Weight operator""_st( long double w ) { return w; } 3152 Weight operator""_lb( long double w ) { return w / 14.0; } 3153 Weight operator""_kg( long double w ) { return w / 6.35; } 3154 Weight operator""_st( unsigned long long int w ) { return w; } 3155 Weight operator""_lb( unsigned long long int w ) { return w / 14.0; } 3156 Weight operator""_kg( unsigned long long int w ) { return w / 6.35; } 3157 int main() { 3158 Weight w, heavy = { 20 }; // stones 3159 w = 155_lb; 3160 w = 0b1111_st; 3161 w = 0'233_lb; // quote separator 3162 w = 0x9b_kg; 3163 w = 5.5_st + 8_kg + 25.01_lb + heavy; 3164 } 3165 \end{C++} 3166 \end{tabular} 3167 3168 \begin{comment} 3169 Time : comparison of time units. \\ 3170 \begin{tabular}{@{}ll@{}} 3171 \CFA & \CC \\ 3172 \begin{cfa} 3173 #include <fstream.hfa> 3174 #include <time.hfa> 3175 3176 3177 Duration s = 1`h + 2 * 10`m + 70`s / 10; 3178 sout | "1 hour + 2*10 min + 70/10 sec = " | s | "seconds"; 3179 sout | "Dividing that by 2 minutes gives" | s / 2`m; 3180 sout | "Dividing that by 2 gives" | s / 2 | "seconds\n"; 3181 sout | s | "seconds is" 3182 | s`h | "hours," 3183 | (s % 1`h)`m | "minutes," 3184 | (s % 1`m)`s | "seconds"; 3185 \end{cfa} 3186 & 3187 \begin{C++} 3188 #include <iostream> 3189 #include <chrono> 3190 using namespace std; 3191 using namespace std::chrono; 3192 seconds s = hours(1) + 2 * minutes(10) + seconds(70) / 10; 3193 cout << "1 hour + 2*10 min + 70/10 sec = " << s.count() << " seconds\n"; 3194 cout << "Dividing that by 2 minutes gives " << s / minutes(2) << '\n'; 3195 cout << "Dividing that by 2 gives " << (s / 2).count() << " seconds\n"; 3196 cout << s.count() << " seconds is " 3197 << duration_cast<hours>( s ).count() << " hours, " 3198 << duration_cast<minutes>( s % hours(1) ).count() << " minutes, " 3199 << duration_cast<seconds>( s % minutes(1) ).count() << " seconds\n"; 3200 \end{C++} 3201 \end{tabular} 3202 \end{comment} 3203 3204 \caption{Units: Stone, Pound, Kilogram Comparison} 3205 \label{f:UnitsComparison} 3206 \end{figure} 3207 3208 The \CC example (right) provides a \emph{restricted} capability via user literals. 3209 The \lstinline[language=C++]{operator ""} only takes a constant argument (\ie no variable argument), and the constant type must be the highest-level constant-type, \eg ©long double© for all floating-point constants. 3210 As well, there is no constant conversion, \ie ©int© to ©double© constants, so integral constants are handled by a separate set of routines, with maximal integral type ©unsigned long long int©. 3211 Finally, there is no mechanism to use this syntax for a bidirectional conversion because \lstinline[language=C++]{operator ""} does not accept variable arguments. 3057 3212 3058 3213 … … 3809 3964 \subsection{Polymorphism} 3810 3965 3811 Due to the implicit flattening and structuring conversions involved in argument passing, ©otype© and ©dtype©parameters are restricted to matching only with non-tuple types.3966 Due to the implicit flattening and structuring conversions involved in argument passing, object and opaque parameters are restricted to matching only with non-tuple types. 3812 3967 The integration of polymorphism, type assertions, and monomorphic specialization of tuple-assertions are a primary contribution of this thesis to the design of tuples. 3813 3968 \begin{cfa} 3814 forall(T, dtype U)3969 forall(T, U &) 3815 3970 void f(T x, U * y); 3816 3971 … … 4925 5080 sout | '1' | '2' | '3'; 4926 5081 sout | 1 | "" | 2 | "" | 3; 4927 sout | "x (" | 1 | "x [" | 2 | "x {" | 3 | "x =" | 4 | "x $" | 5 | "x £" | 6 | "x Â¥"4928 | 7 | "x ¡" | 8 | "x ¿" | 9 | "x «" | 10;5082 sout | "x (" | 1 | "x [" | 2 | "x {" | 3 | "x =" | 4 | "x $" | 5 | "x £" | 6 | "x ¥" 5083 | 7 | "x ¡" | 8 | "x ¿" | 9 | "x «" | 10; 4929 5084 sout | 1 | ", x" | 2 | ". x" | 3 | "; x" | 4 | "! x" | 5 | "? x" | 6 | "% x" 4930 | 7 | " ¢ x" | 8 | "» x" | 9 | ") x" | 10 | "] x" | 11 | "} x";5085 | 7 | "¢ x" | 8 | "» x" | 9 | ") x" | 10 | "] x" | 11 | "} x"; 4931 5086 sout | "x`" | 1 | "`x'" | 2 | "'x\"" | 3 | "\"x:" | 4 | ":x " | 5 | " x\t" | 6 | "\tx"; 4932 5087 sout | "x ( " | 1 | " ) x" | 2 | " , x" | 3 | " :x: " | 4; … … 7775 7930 \item[Rationale:] increase type safety 7776 7931 \item[Effect on original feature:] deletion of semantically well-defined feature. 7777 \item[Difficulty of converting:] requires adding a cast \see{\VRef{s: StorageManagement} for better alternatives}:7932 \item[Difficulty of converting:] requires adding a cast \see{\VRef{s:DynamicStorageManagement} for better alternatives}: 7778 7933 \begin{cfa} 7779 7934 int * b = (int *)malloc( sizeof(int) ); … … 7988 8143 \label{s:StandardLibrary} 7989 8144 7990 The \CFA standard-library wraps explicitly-polymorphic C routines into implicitly-polymorphic versions. 7991 7992 7993 \subsection{Storage Management} 7994 \label{s:StorageManagement} 7995 7996 The storage-management routines extend their C equivalents by overloading, alternate names, providing shallow type-safety, and removing the need to specify the allocation size for non-array types. 7997 7998 C storage management provides the following capabilities: 7999 \begin{description} 8000 \item[filled] 8001 after allocation with a specified character or value. 8145 The \CFA standard-library extends existing C library routines by adding new function, wrapping existing explicitly-polymorphic C routines into implicitly-polymorphic versions, and adding new \CFA extensions. 8146 8147 8148 \subsection{Dynamic Storage-Management} 8149 \label{s:DynamicStorageManagement} 8150 8151 Dynamic storage-management in C is based on explicit allocation and deallocation (©malloc©/©free©). 8152 Programmer's must manage all allocated storage via its address (pointer) and subsequently deallocate the storage via this address. 8153 Storage that is not deallocated becomes inaccessible, called a \newterm{memory leak}, which can only be detected at program termination. 8154 Storage freed twice is an error, called a \newterm{duplicate free}, which can sometimes be detected. 8155 Storage used after it is deallocated is an error, called using a \newterm{dangling pointer}, which can sometimes be detected. 8156 8157 8158 \subsubsection{C Interface} 8159 8160 C dynamic storage-management provides the following properties. 8161 \begin{description}[leftmargin=*] 8162 \item[fill] 8163 storage after an allocation with a specified character or value. 8164 \item[align] 8165 an allocation on a specified memory boundary, \eg, an address multiple of 64 or 128 for cache-line purposes. 8166 \item[scale] 8167 an allocation size to the specified number of array elements. 8168 An array may be filled, resized, or aligned. 8002 8169 \item[resize] 8003 8170 an existing allocation to decreased or increased its size. 8004 In either case, new storage may or may not be allocated and, if there is a new allocation, as much data from the existing allocation is copied into the new allocation. 8005 For an increase in storage size, new storage after the copied data may be filled. 8006 \item[align] 8007 an allocation on a specified memory boundary, \eg, an address multiple of 64 or 128 for cache-line purposes. 8008 \item[array] 8009 the allocation size is scaled to the specified number of array elements. 8010 An array may be filled, resized, or aligned. 8171 In either direction, new storage may or may not be allocated, but if there is a new allocation, as much data from the existing allocation is copied into the new allocation. 8172 When new storage is allocated, it may be aligned and storage after copied data may be filled. 8011 8173 \end{description} 8012 \VRef[Table]{t:AllocationVersusCapabilities} shows allocation routines supporting different combinations of storage-management capabilities. 8174 \VRef[Table]{t:AllocationVersusProperties} shows different combinations of storage-management properties provided by the C and \CFA allocation routines. 8175 8013 8176 \begin{table} 8177 \caption{Allocation Routines versus Storage-Management Properties} 8178 \label{t:AllocationVersusProperties} 8014 8179 \centering 8015 8180 \begin{minipage}{0.75\textwidth} 8016 8181 \begin{tabular}{@{}r|l|l|l|l|l@{}} 8017 \multicolumn{1}{c}{}& & \multicolumn{1}{c|}{fill} & resize & alignment & array\\8182 & \multicolumn{1}{c|}{routine} & \multicolumn{1}{c|}{\textbf{fill}} & \textbf{alignment} & \textbf{scale} & \textbf{resize} \\ 8018 8183 \hline 8019 8184 C & ©malloc© & no & no & no & no \\ 8020 & ©calloc© & yes (0 only) & no & no & yes \\ 8021 & ©realloc© & copy & yes & no & no \\ 8022 & ©memalign© & no & no & yes & no \\ 8023 & ©aligned_alloc©\footnote{Same as ©memalign© but size is an integral multiple of alignment, which is universally ignored.} 8024 & no & no & yes & no \\ 8025 & ©posix_memalign© & no & no & yes & no \\ 8026 & ©valloc© & no & no & yes (page size)& no \\ 8185 & ©calloc© & yes (0 only) & no & yes & no \\ 8186 & ©realloc© & copy & no & no & yes \\ 8187 & ©reallocarray© & copy & no & yes & yes \\ 8188 & ©memalign© & no & yes & no & no \\ 8189 & ©aligned_alloc©\footnote{Same as ©memalign© but size is an integral multiple of alignment.} 8190 & no & yes & no & no \\ 8191 & ©posix_memalign© & no & yes & no & no \\ 8192 & ©valloc© & no & yes (page size)& no & no \\ 8027 8193 & ©pvalloc©\footnote{Same as ©valloc© but rounds size to multiple of page size.} 8028 & no & no & yes (page size)& no \\ 8029 \hline 8030 \CFA & ©cmemalign© & yes (0 only) & no & yes & yes \\ 8031 & ©realloc© & copy & yes & yes & no \\ 8032 & ©alloc© & no & yes & no & yes \\ 8033 & ©alloc_set© & yes & yes & no & yes \\ 8034 & ©alloc_align© & no & yes & yes & yes \\ 8035 & ©alloc_align_set© & yes & yes & yes & yes \\ 8194 & no & yes (page size)& no & no \\ 8195 \hline 8196 \CFA & ©cmemalign© & yes (0 only) & yes & yes & no \\ 8197 & ©resize© & no copy & yes & no & yes \\ 8198 & ©realloc© & copy & yes & no & yes \\ 8199 & ©alloc©\footnote{Multiple overloads with different parameters.} 8200 & yes & yes & yes & yes 8036 8201 \end{tabular} 8037 8202 \end{minipage} 8038 \caption{Allocation Routines versus Storage-Management Capabilities} 8039 \label{t:AllocationVersusCapabilities} 8203 \vspace*{-10pt} 8040 8204 \end{table} 8041 8205 8042 \CFA memory management extends the type safety of all allocations by using the type of the left-hand-side type to determine the allocation size and return a matching type for the new storage. 8043 Type-safe allocation is provided for all C allocation routines and new \CFA allocation routines, \eg in 8044 \begin{cfa} 8045 int * ip = (int *)malloc( sizeof(int) ); §\C{// C}§ 8046 int * ip = malloc(); §\C{// \CFA type-safe version of C malloc}§ 8047 int * ip = alloc(); §\C{// \CFA type-safe uniform alloc}§ 8048 \end{cfa} 8049 the latter two allocations determine the allocation size from the type of ©p© (©int©) and cast the pointer to the allocated storage to ©int *©. 8050 8051 \CFA memory management extends allocation safety by implicitly honouring all alignment requirements, \eg in 8052 \begin{cfa} 8053 struct S { int i; } __attribute__(( aligned( 128 ) )); // cache-line alignment 8054 S * sp = malloc(); §\C{// honour type alignment}§ 8055 \end{cfa} 8056 the storage allocation is implicitly aligned to 128 rather than the default 16. 8057 The alignment check is performed at compile time so there is no runtime cost. 8058 8059 \CFA memory management extends the resize capability with the notion of \newterm{sticky properties}. 8060 Hence, initial allocation capabilities are remembered and maintained when resize requires copying. 8061 For example, an initial alignment and fill capability are preserved during a resize copy so the copy has the same alignment and extended storage is filled. 8062 Without sticky properties it is dangerous to use ©realloc©, resulting in an idiom of manually performing the reallocation to maintain correctness. 8063 \begin{cfa} 8064 8065 \end{cfa} 8066 8067 \CFA memory management extends allocation to support constructors for initialization of allocated storage, \eg in 8068 \begin{cfa} 8069 struct S { int i; }; §\C{// cache-line alignment}§ 8070 void ?{}( S & s, int i ) { s.i = i; } 8071 // assume ?|? operator for printing an S 8072 8073 S & sp = *®new®( 3 ); §\C{// call constructor after allocation}§ 8074 sout | sp.i; 8075 ®delete®( &sp ); 8076 8077 S * spa = ®anew®( 10, 5 ); §\C{// allocate array and initialize each array element}§ 8078 for ( i; 10 ) sout | spa[i] | nonl; 8079 sout | nl; 8080 ®adelete®( 10, spa ); 8206 8207 \subsubsection{\CFA Interface} 8208 8209 \CFA dynamic memory management: 8210 \begin{enumerate}[leftmargin=\parindent] 8211 \item 8212 Extend type safety of all allocation routines by using the left-hand assignment type to determine the allocation size and alignment, and return a matching type for the new storage, which removes many common allocation errors. 8213 \begin{cfa} 8214 int * ip = (int *)malloc( sizeof(int) ); §\C[2.3in]{// C}§ 8215 int * ip = malloc(); §\C{// \CFA type-safe call of C malloc}§ 8216 int * ip = alloc(); §\C{// \CFA type-safe call of \CFA alloc}§ 8217 struct __attribute__(( aligned(128) )) spinlock { ... }; 8218 spinlock * slp = malloc(); §\C{// correct size, alignment, and return type}\CRT§ 8219 \end{cfa} 8220 Here, the alignment of the ©ip© storage is 16 (default) and 128 for ©slp©. 8221 8222 \item 8223 Introduce the notion of \newterm{sticky properties} used in resizing. 8224 All initial allocation properties are remembered and maintained for use should resize require new storage. 8225 For example, the initial alignment and fill properties in the initial allocation 8226 \begin{cfa} 8227 struct __attribute__(( aligned(4096) )) S { ... }; 8228 S * sp = calloc( 10 ); §\C{// align 4K and zero fill}§ 8229 sp = reallocarray( sp, 100 ); §\C{// preserve 4K alignment and zero fill new storage}§ 8230 \end{cfa} 8231 are preserved in the resize so the new storage has the same alignment and extra storage after the data copy is zero filled. 8232 Without sticky properties it is dangerous to resize, resulting in the C idiom of manually performing the reallocation to maintain correctness, which is error prone. 8233 8234 \item 8235 Provide resizing without data copying, which is useful to repurpose an existing block of storage for another purpose, rather than freeing the old storage and performing a new allocation. 8236 The resize might be able to take advantage of unused storage after the data to preventing the free/reallocation step altogether. 8237 8238 \item 8239 Provide ©free©/©delete© functions that delete a variable number of pointers. 8240 \begin{cfa} 8241 int * ip = malloc(), * jp = malloc(), * kp = malloc(); 8242 double * xp = malloc(), * yp = malloc(), * zp = malloc(); 8243 free( ®ip, jp, kp, xp, yp, zp® ); 8244 \end{cfa} 8245 8246 \item 8247 Support constructors for initialization of allocated storage (like \CC) and destructors for deallocation. 8248 \begin{cfa} 8249 struct S { int v; }; §\C{// default constructors}§ 8250 void ^?{}( S & ) { ... } §\C{// destructor}§ 8251 S & sp = *®new®( 3 ); §\C{// allocate and call constructor}§ 8252 sout | sp.v; 8253 ®delete®( &sp ); §\C{// call destructor}§ 8254 S * spa1 = ®anew®( 10, 5 ), * spa2 = ®anew®( 10, 8 ); §\C{// allocate array and call constructor for each array element}§ 8255 for ( i; 10 ) sout | spa1[i].v | spa2[i].v | nonl; sout | nl; 8256 ®adelete®( spa1, spa2 ); §\C{// call destructors on all array objects}§ 8257 8258 3 8259 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 8081 8260 \end{cfa} 8082 8261 Allocation routines ©new©/©anew© allocate a variable/array and initialize storage using the allocated type's constructor. 8083 8262 Note, the matching deallocation routines ©delete©/©adelete©. 8084 8085 \leavevmode 8263 \end{enumerate} 8264 8265 In addition, \CFA provides a new allocator interface to further increase orthogonality and usability of dynamic-memory allocation. 8266 This interface helps programmers in three ways. 8267 \begin{enumerate} 8268 \item 8269 naming: \CFA regular and ©ttype© polymorphism (similar to \CC variadic templates) is used to encapsulate a wide range of allocation functionality into a single routine name, so programmers do not have to remember multiple routine names for different kinds of dynamic allocations. 8270 \item 8271 named arguments: individual allocation properties are specified using postfix function call \see{\VRef{s:PostfixFunction}}, so programmers do not have to remember parameter positions in allocation calls. 8272 \item 8273 safe usage: like the \CFA's C-interface, programmers do not have to specify object size or cast allocation results. 8274 \end{enumerate} 8275 8276 The polymorphic functions ©T * alloc( ... )© and ©T * alloc( size_t dim, ... )© are overloaded with a variable number of specific allocation properties, or an integer dimension parameter followed by a variable number of specific allocation properties. 8277 These allocation properties can be passed as named arguments when calling the \lstinline{alloc} routine. 8278 A call without parameters returns an uninitialized dynamically allocated object of type ©T© (©malloc©). 8279 A call with only the dimension (dim) parameter returns an uninitialized dynamically allocated array of objects with type ©T© (©aalloc©). 8280 The variable number of arguments consist of allocation properties, which can be combined to produce different kinds of allocations. 8281 The properties ©resize© and ©realloc© are associated with the allocation variable indicating how the existing allocation is modified, without or with data copying. 8282 Function ©alloc© is used extensively in the \CFA runtime. 8283 8284 The following allocation property functions may be combined and appear in any order as arguments to ©alloc©, 8285 \begin{itemize} 8286 \item 8287 ©T_align ?`align( size_t alignment )© to align an allocation. 8288 The alignment parameter must be $\ge$ the default alignment (©libAlign()© in \CFA) and a power of two, \eg: 8289 \begin{cfa} 8290 int * i0 = alloc( ®4096`align® ); sout | i0 | nl; 8291 int * i1 = alloc( 3, ®4096`align® ); sout | i1; for (i; 3 ) sout | &i1[i] | nonl; sout | nl; 8292 8293 0x555555572000 8294 0x555555574000 0x555555574000 0x555555574004 0x555555574008 8295 \end{cfa} 8296 returns a dynamic object and object array aligned on a 4096-byte boundary. 8297 8298 \item 8299 ©S_fill(T) ?`fill ( /* various types */ )© to initialize storage. 8300 There are three ways to fill storage: 8301 \begin{enumerate} 8302 \item 8303 A ©char© fills every byte of each object. 8304 \item 8305 An object of the returned type fills each object. 8306 \item 8307 An object array pointer fills some or all of the corresponding object array. 8308 \end{enumerate} 8309 For example: 8310 \begin{cfa}[numbers=left] 8311 int * i0 = alloc( ®0n`fill® ); sout | *i0 | nl; // 0n disambiguates 0 8312 int * i1 = alloc( ®5`fill® ); sout | *i1 | nl; 8313 int * i2 = alloc( ®'\xfe'`fill® ); sout | hex( *i2 ) | nl; 8314 int * i3 = alloc( 5, ®5`fill® ); for ( i; 5 ) sout | i3[i] | nonl; sout | nl; 8315 int * i4 = alloc( 5, ®0xdeadbeefN`fill® ); for ( i; 5 ) sout | hex( i4[i] ) | nonl; sout | nl; 8316 int * i5 = alloc( 5, ®i3`fill® ); for ( i; 5 ) sout | i5[i] | nonl; sout | nl; // completely fill from i3 8317 int * i6 = alloc( 5, ®[i3, 3]`fill® ); for ( i; 5 ) sout | i6[i] | nonl; sout | nl; // partial fill from i3 8318 \end{cfa} 8319 \begin{lstlisting}[numbers=left] 8320 0 8321 5 8322 0xfefefefe 8323 5 5 5 5 5 8324 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 8325 5 5 5 5 5 8326 5 5 5 -555819298 -555819298 // two undefined values 8327 \end{lstlisting} 8328 Examples 1 to 3 fill an object with a value or characters. 8329 Examples 4 to 7 fill an array of objects with values, another array, or part of an array. 8330 8331 \item 8332 ©S_resize(T) ?`resize( void * oaddr )© used to resize, realign, and fill, where the old object data is not copied to the new object. 8333 The old object type may be different from the new object type, since the values are not used. 8334 For example: 8335 \begin{cfa}[numbers=left] 8336 int * i = alloc( ®5`fill® ); sout | i | *i; 8337 i = alloc( ®i`resize®, ®256`align®, ®7`fill® ); sout | i | *i; 8338 double * d = alloc( ®i`resize®, ®4096`align®, ®13.5`fill® ); sout | d | *d; 8339 \end{cfa} 8340 \begin{lstlisting}[numbers=left] 8341 0x55555556d5c0 5 8342 0x555555570000 7 8343 0x555555571000 13.5 8344 \end{lstlisting} 8345 Examples 2 to 3 change the alignment, fill, and size for the initial storage of ©i©. 8346 8347 \begin{cfa}[numbers=left] 8348 int * ia = alloc( 5, ®5`fill® ); for ( i; 5 ) sout | ia[i] | nonl; sout | nl; 8349 ia = alloc( 10, ®ia`resize®, ®7`fill® ); for ( i; 10 ) sout | ia[i] | nonl; sout | nl; 8350 sout | ia; ia = alloc( 5, ®ia`resize®, ®512`align®, ®13`fill® ); sout | ia; for ( i; 5 ) sout | ia[i] | nonl; sout | nl;; 8351 ia = alloc( 3, ®ia`resize®, ®4096`align®, ®2`fill® ); sout | ia; for ( i; 3 ) sout | &ia[i] | ia[i] | nonl; sout | nl; 8352 \end{cfa} 8353 \begin{lstlisting}[numbers=left] 8354 5 5 5 5 5 8355 7 7 7 7 7 7 7 7 7 7 8356 0x55555556d560 0x555555571a00 13 13 13 13 13 8357 0x555555572000 0x555555572000 2 0x555555572004 2 0x555555572008 2 8358 \end{lstlisting} 8359 Examples 2 to 4 change the array size, alignment and fill for the initial storage of ©ia©. 8360 8361 \item 8362 ©S_realloc(T) ?`realloc( T * a ))© 8363 used to resize, realign, and fill, where the old object data is copied to the new object. 8364 The old object type must be the same as the new object type, since the value is used. 8365 Note, for ©fill©, only the extra space after copying the data from the old object is filled with the given parameter. 8366 For example: 8367 \begin{cfa}[numbers=left] 8368 int * i = alloc( ®5`fill® ); sout | i | *i; 8369 i = alloc( ®i`realloc®, ®256`align® ); sout | i | *i; 8370 i = alloc( ®i`realloc®, ®4096`align®, ®13`fill® ); sout | i | *i; 8371 \end{cfa} 8372 \begin{lstlisting}[numbers=left] 8373 0x55555556d5c0 5 8374 0x555555570000 5 8375 0x555555571000 5 8376 \end{lstlisting} 8377 Examples 2 to 3 change the alignment for the initial storage of ©i©. 8378 The ©13`fill© in example 3 does nothing because no extra space is added. 8379 8380 \begin{cfa}[numbers=left] 8381 int * ia = alloc( 5, ®5`fill® ); for ( i; 5 ) sout | ia[i]; sout | nl; 8382 ia = alloc( 10, ®ia`realloc®, ®7`fill® ); for ( i; 10 ) sout | ia[i]; sout | nl; 8383 sout | ia; ia = alloc( 1, ®ia`realloc®, ®512`align®, ®13`fill® ); sout | ia; for ( i; 1 ) sout | ia[i]; sout | nl;; 8384 ia = alloc( 3, ®ia`realloc®, ®4096`align®, ®2`fill® ); sout | ia; for ( i; 3 ) sout | &ia[i] | ia[i]; sout | nl; 8385 \end{cfa} 8386 \begin{lstlisting}[numbers=left] 8387 5 5 5 5 5 8388 5 5 5 5 5 7 7 7 7 7 8389 0x55555556c560 0x555555570a00 5 8390 0x555555571000 0x555555571000 5 0x555555571004 2 0x555555571008 2 8391 \end{lstlisting} 8392 Examples 2 to 4 change the array size, alignment and fill for the initial storage of ©ia©. 8393 The ©13`fill© in example 3 does nothing because no extra space is added. 8394 \end{itemize} 8395 8396 \medskip 8086 8397 \begin{cfa}[aboveskip=0pt,belowskip=0pt] 8087 8398 extern "C" { 8088 // C unsafe allocation 8089 void * malloc( size_t size );§\indexc{malloc}§ 8090 void * calloc( size_t dim, size_t size );§\indexc{calloc}§ 8091 void * realloc( void * ptr, size_t size );§\indexc{realloc}§ 8092 void * memalign( size_t align, size_t size );§\indexc{memalign}§ 8093 void * aligned_alloc( size_t align, size_t size );§\indexc{aligned_alloc}§ 8094 int posix_memalign( void ** ptr, size_t align, size_t size );§\indexc{posix_memalign}§ 8095 void * cmemalign( size_t alignment, size_t noOfElems, size_t elemSize );§\indexc{cmemalign}§ // CFA 8096 8097 // C unsafe initialization/copy 8098 void * memset( void * dest, int c, size_t size );§\indexc{memset}§ 8099 void * memcpy( void * dest, const void * src, size_t size );§\indexc{memcpy}§ 8100 } 8101 8102 void * realloc( void * oaddr, size_t nalign, size_t size ); // CFA heap 8103 8104 forall( dtype T | sized(T) ) { 8105 // §\CFA§ safe equivalents, i.e., implicit size specification 8106 T * malloc( void ); 8107 T * calloc( size_t dim ); 8108 T * realloc( T * ptr, size_t size ); 8109 T * memalign( size_t align ); 8110 T * cmemalign( size_t align, size_t dim ); 8111 T * aligned_alloc( size_t align ); 8112 int posix_memalign( T ** ptr, size_t align ); 8399 // New allocation operations. 8400 void * aalloc( size_t dim, size_t elemSize );§\indexc{aalloc}§ 8401 void * resize( void * oaddr, size_t size );§\indexc{resize}§ 8402 void * amemalign( size_t align, size_t dim, size_t elemSize );§\indexc{amemalign}§ 8403 void * cmemalign( size_t align, size_t dim, size_t elemSize );§\indexc{cmemalign}§ 8404 size_t malloc_alignment( void * addr );§\indexc{malloc_alignment}§ 8405 bool malloc_zero_fill( void * addr );§\indexc{malloc_zero_fill}§ 8406 size_t malloc_size( void * addr );§\indexc{malloc_size}§ 8407 int malloc_stats_fd( int fd );§\indexc{malloc_stats_fd}§ 8408 size_t malloc_expansion();§\indexc{malloc_expansion}§ $\C{// heap expansion size (bytes)}$ 8409 size_t malloc_mmap_start();§\indexc{malloc_mmap_start}§ $\C{// crossover allocation size from sbrk to mmap}$ 8410 size_t malloc_unfreed();§\indexc{malloc_unfreed()}§ $\C{// heap unfreed size (bytes)}$ 8411 void malloc_stats_clear();§\indexc{malloc_stats_clear}§ $\C{// clear heap statistics}$ 8412 } 8413 8414 // New allocation operations. 8415 void * resize( void * oaddr, size_t alignment, size_t size ); 8416 void * realloc( void * oaddr, size_t alignment, size_t size ); 8417 void * reallocarray( void * oaddr, size_t nalign, size_t dim, size_t elemSize ); 8418 8419 forall( T & | sized(T) ) { 8420 // §\CFA§ safe equivalents, i.e., implicit size specification, eliminate return-type cast 8421 T * malloc( void );§\indexc{malloc}§ 8422 T * aalloc( size_t dim );§\indexc{aalloc}§ 8423 T * calloc( size_t dim );§\indexc{calloc}§ 8424 T * resize( T * ptr, size_t size );§\indexc{resize}§ 8425 T * realloc( T * ptr, size_t size );§\indexc{realloc}§ 8426 T * reallocarray( T * ptr, size_t dim );§\indexc{reallocarray}§ 8427 T * memalign( size_t align );§\indexc{memalign}§ 8428 T * amemalign( size_t align, size_t dim );§\indexc{amemalign}§ 8429 T * cmemalign( size_t align, size_t dim );§\indexc{aalloc}§ 8430 T * aligned_alloc( size_t align );§\indexc{aligned_alloc}§ 8431 int posix_memalign( T ** ptr, size_t align );§\indexc{posix_memalign}§ 8432 T * valloc( void );§\indexc{valloc}§ 8433 T * pvalloc( void );§\indexc{pvalloc}§ 8113 8434 8114 8435 // §\CFA§ safe general allocation, fill, resize, alignment, array 8115 T * alloc( void );§\indexc{alloc}§ §\C[3.5in]{// variable, T size}§ 8116 T * alloc( size_t dim ); §\C{// array[dim], T size elements}§ 8117 T * alloc( T ptr[], size_t dim ); §\C{// realloc array[dim], T size elements}§ 8118 8119 T * alloc_set( char fill );§\indexc{alloc_set}§ §\C{// variable, T size, fill bytes with value}§ 8120 T * alloc_set( T fill ); §\C{// variable, T size, fill with value}§ 8121 T * alloc_set( size_t dim, char fill ); §\C{// array[dim], T size elements, fill bytes with value}§ 8122 T * alloc_set( size_t dim, T fill ); §\C{// array[dim], T size elements, fill elements with value}§ 8123 T * alloc_set( size_t dim, const T fill[] ); §\C{// array[dim], T size elements, fill elements with array}§ 8124 T * alloc_set( T ptr[], size_t dim, char fill ); §\C{// realloc array[dim], T size elements, fill bytes with value}§ 8125 8126 T * alloc_align( size_t align ); §\C{// aligned variable, T size}§ 8127 T * alloc_align( size_t align, size_t dim ); §\C{// aligned array[dim], T size elements}§ 8128 T * alloc_align( T ptr[], size_t align ); §\C{// realloc new aligned array}§ 8129 T * alloc_align( T ptr[], size_t align, size_t dim ); §\C{// realloc new aligned array[dim]}§ 8130 8131 T * alloc_align_set( size_t align, char fill ); §\C{// aligned variable, T size, fill bytes with value}§ 8132 T * alloc_align_set( size_t align, T fill ); §\C{// aligned variable, T size, fill with value}§ 8133 T * alloc_align_set( size_t align, size_t dim, char fill ); §\C{// aligned array[dim], T size elements, fill bytes with value}§ 8134 T * alloc_align_set( size_t align, size_t dim, T fill ); §\C{// aligned array[dim], T size elements, fill elements with value}§ 8135 T * alloc_align_set( size_t align, size_t dim, const T fill[] ); §\C{// aligned array[dim], T size elements, fill elements with array}§ 8136 T * alloc_align_set( T ptr[], size_t align, size_t dim, char fill ); §\C{// realloc new aligned array[dim], fill new bytes with value}§ 8436 T * alloc( ... );§\indexc{alloc}§ §\C{// variable, T size}§ 8437 T * alloc( size_t dim, ... ); 8438 T_align ?`align( size_t alignment );§\indexc{align}§ 8439 S_fill(T) ?`fill( /* various types */ );§\indexc{fill}§ 8440 S_resize(T) ?`resize( void * oaddr );§\indexc{resize}§ 8441 S_realloc(T) ?`realloc( T * a ));§\indexc{realloc}§ 8137 8442 8138 8443 // §\CFA§ safe initialization/copy, i.e., implicit size specification … … 8146 8451 8147 8452 // §\CFA§ allocation/deallocation and constructor/destructor, non-array types 8148 forall( dtype T | sized(T), ttype Params | { void ?{}( T &, Params ); } ) T * new( Params p );§\indexc{new}§ 8149 forall( dtype T | sized(T) | { void ^?{}( T & ); } ) void delete( T * ptr );§\indexc{delete}§ 8150 forall( dtype T, ttype Params | sized(T) | { void ^?{}( T & ); void delete( Params ); } ) 8151 void delete( T * ptr, Params rest ); 8453 forall( T &, TT ... ) void free( T * ptr, ... ); 8454 8455 forall( T & | sized(T), Params ... | { void ?{}( T &, Params ); } ) 8456 T * new( Params p );§\indexc{new}§ 8457 forall( T & | { void ^?{}( T & ); } ) 8458 void delete( T * ptr );§\indexc{delete}§ 8459 forall( T &, Params ... | { void ^?{}( T & ); void delete( Params ); } ) 8460 void delete( T * ptr, Params rest ); 8152 8461 8153 8462 // §\CFA§ allocation/deallocation and constructor/destructor, array types 8154 forall( dtype T | sized(T), ttype Params | { void ?{}( T &, Params ); } ) T * anew( size_t dim, Params p );§\indexc{anew}§ 8155 forall( dtype T | sized(T) | { void ^?{}( T & ); } ) void adelete( size_t dim, T arr[] );§\indexc{adelete}§ 8156 forall( dtype T | sized(T) | { void ^?{}( T & ); }, ttype Params | { void adelete( Params ); } ) 8157 void adelete( size_t dim, T arr[], Params rest ); 8463 forall( T & | sized(T), Params ... | { void ?{}( T &, Params ); } ) 8464 T * anew( size_t dim, Params p );§\indexc{anew}§ 8465 forall( T & | sized(T) | { void ^?{}( T & ); } ) 8466 void adelete( T arr[] );§\indexc{adelete}§ 8467 forall( T & | sized(T) | { void ^?{}( T & ); }, Params ... | { void adelete( Params ); } ) 8468 void adelete( T arr[], Params rest ); 8158 8469 \end{cfa} 8159 8470 … … 9290 9601 Int sqrt( Int oper ); 9291 9602 9292 forall( dtype istype| istream( istype ) ) istype * ?|?( istype * is, Int * mp ); §\C{// I/O}§9293 forall( dtype ostype| ostream( ostype ) ) ostype * ?|?( ostype * os, Int mp );9603 forall( istype & | istream( istype ) ) istype * ?|?( istype * is, Int * mp ); §\C{// I/O}§ 9604 forall( ostype & | ostream( ostype ) ) ostype * ?|?( ostype * os, Int mp ); 9294 9605 \end{cfa} 9295 9606 \VRef[Figure]{f:MultiPrecisionFactorials} shows \CFA and C factorial programs using the GMP interfaces. … … 9299 9610 \begin{cquote} 9300 9611 \begin{tabular}{@{}l@{\hspace{\parindentlnth}}|@{\hspace{\parindentlnth}}l@{}} 9301 \multicolumn{1}{@{}c|@{\hspace{\parindentlnth}}}{\textbf{ C}} & \multicolumn{1}{@{\hspace{\parindentlnth}}c@{}}{\textbf{\CFA}} \\9612 \multicolumn{1}{@{}c|@{\hspace{\parindentlnth}}}{\textbf{\CFA}} & \multicolumn{1}{@{\hspace{\parindentlnth}}c@{}}{\textbf{C}} \\ 9302 9613 \hline 9614 \begin{cfa} 9615 #include <gmp.hfa>§\indexc{gmp}§ 9616 int main( void ) { 9617 sout | "Factorial Numbers"; 9618 ®Int® fact = 1; 9619 9620 sout | 0 | fact; 9621 for ( i; 40 ) { 9622 fact *= i; 9623 sout | i | fact; 9624 } 9625 } 9626 \end{cfa} 9627 & 9303 9628 \begin{cfa} 9304 9629 #include <gmp.h>§\indexc{gmp.h}§ … … 9311 9636 ®mpz_mul_ui®( fact, fact, i ); 9312 9637 ®gmp_printf®( "%d %Zd\n", i, fact ); 9313 }9314 }9315 \end{cfa}9316 &9317 \begin{cfa}9318 #include <gmp.hfa>§\indexc{gmp}§9319 int main( void ) {9320 sout | "Factorial Numbers";9321 Int fact = 1;9322 9323 sout | 0 | fact;9324 for ( i; 40 ) {9325 fact *= i;9326 sout | i | fact;9327 9638 } 9328 9639 } … … 9419 9730 Rational narrow( double f, long int md ); 9420 9731 9421 forall( dtype istype| istream( istype ) ) istype * ?|?( istype *, Rational * ); // I/O9422 forall( dtype ostype| ostream( ostype ) ) ostype * ?|?( ostype *, Rational );9732 forall( istype & | istream( istype ) ) istype * ?|?( istype *, Rational * ); // I/O 9733 forall( ostype & | ostream( ostype ) ) ostype * ?|?( ostype *, Rational ); 9423 9734 \end{cfa} 9424 9735 … … 9440 9751 \end{document} 9441 9752 9753 From: Michael Leslie Brooks <mlbrooks@uwaterloo.ca> 9754 To: Peter Buhr <pabuhr@uwaterloo.ca>, 9755 Andrew James Beach 9756 <ajbeach@uwaterloo.ca>, 9757 Fangren Yu <f37yu@uwaterloo.ca>, Jiada Liang 9758 <j82liang@uwaterloo.ca> 9759 Subject: The White House on Memory-Safe programming 9760 Date: Mon, 4 Mar 2024 16:49:53 +0000 9761 9762 I heard tell of this announcement last night. Haven't read the actual report yet. 9763 9764 Most mainstream article I can find: https://me.pcmag.com/en/security/22413/white-house-to-developers-using-c-or-c-invites-cybersecurity-risks 9765 Less fluffy summary: https://www.developer-tech.com/news/2024/feb/27/white-house-urges-adoption-memory-safe-programming-languages/ 9766 Horse's Mouth: https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf 9767 "This report focuses on the programming language as a primary building block, and explores hardware architecture and formal methods as complementary approaches" 9768 9769 A contrary analysis: https://hackaday.com/2024/02/29/the-white-house-memory-safety-appeal-is-a-security-red-herring/ 9770 9442 9771 % Local Variables: % 9443 9772 % tab-width: 4 % -
libcfa/src/concurrency/actor.hfa
r0fe07be r15215f02 299 299 300 300 if ( seperate_clus ) { 301 cluster = alloc();301 this.cluster = alloc(); 302 302 (*cluster){}; 303 303 } else cluster = active_cluster(); … … 360 360 adelete( worker_req_queues ); 361 361 adelete( processors ); 362 if ( seperate_clus ) delete( cluster );362 if ( seperate_clus ) delete( this.cluster ); 363 363 364 364 #ifdef ACTOR_STATS // print formatted stats -
src/AST/Pass.hpp
r0fe07be r15215f02 113 113 static auto read( node_type const * node, Args&&... args ) { 114 114 Pass<core_t> visitor( std::forward<Args>( args )... ); 115 auto const * temp = node->accept( visitor );116 assert( temp == node );117 return visitor.get_result();118 }119 120 // Versions of the above for older compilers.121 template< typename... Args >122 static void run( TranslationUnit & decls ) {123 Pass<core_t> visitor;124 accept_all( decls, visitor );125 }126 127 template< typename node_type, typename... Args >128 static auto read( node_type const * node ) {129 Pass<core_t> visitor;130 115 auto const * temp = node->accept( visitor ); 131 116 assert( temp == node ); -
src/AST/Print.cpp
r0fe07be r15215f02 1579 1579 preprint( node ); 1580 1580 os << "enum attr "; 1581 if ( node->attr == ast::EnumAttribute::Label ) {1582 os << "Label ";1583 } else if ( node->attr == ast::EnumAttribute::Value ) {1584 os << "Value ";1585 } else {1586 os << "Posn ";1587 }1581 if ( node->attr == ast::EnumAttribute::Label ) { 1582 os << "Label "; 1583 } else if ( node->attr == ast::EnumAttribute::Value ) { 1584 os << "Value "; 1585 } else { 1586 os << "Posn "; 1587 } 1588 1588 (*(node->instance)).accept( *this ); 1589 1589 return node; -
src/AST/Type.hpp
r0fe07be r15215f02 31 31 // Must be included in *all* AST classes; should be #undef'd at the end of the file 32 32 #define MUTATE_FRIEND \ 33 template<typename node_t> friend node_t * mutate(const node_t * node); \33 template<typename node_t> friend node_t * mutate(const node_t * node); \ 34 34 template<typename node_t> friend node_t * shallowCopy(const node_t * node); 35 35 … … 322 322 public: 323 323 readonly<EnumInstType> instance; 324 EnumAttribute attr;324 EnumAttribute attr; 325 325 const Type * accept( Visitor & v ) const override { return v.visit( this ); } 326 326 EnumAttrType( const EnumInstType * instance, EnumAttribute attr = EnumAttribute::Posn ) 327 327 : instance(instance), attr(attr) {} 328 329 bool match( const ast::EnumAttrType * other) const {330 return instance->base->name == other->instance->base->name && attr == other->attr;331 }328 329 bool match( const ast::EnumAttrType * other) const { 330 return instance->base->name == other->instance->base->name && attr == other->attr; 331 } 332 332 private: 333 333 EnumAttrType * clone() const override { return new EnumAttrType{ *this }; } -
src/BasicTypes-gen.cc
r0fe07be r15215f02 415 415 code << "\t" << BYMK << endl; 416 416 code << "\t#define BT ast::BasicKind::" << endl; 417 code << "\tstatic const BTKind commonTypes[BT NUMBER_OF_BASIC_TYPES][BT NUMBER_OF_BASIC_TYPES] = { // nearest common ancestor" << endl417 code << "\tstatic const ast::BasicKind commonTypes[BT NUMBER_OF_BASIC_TYPES][BT NUMBER_OF_BASIC_TYPES] = { // nearest common ancestor" << endl 418 418 << "\t\t/*\t\t "; 419 419 for ( int r = 0; r < NUMBER_OF_BASIC_TYPES; r += 1 ) { // titles -
src/Common/PersistentMap.h
r0fe07be r15215f02 23 23 #include <utility> // for forward, move 24 24 25 /// Wraps a hash table in a persistent data structure, using a technique based 26 /// on the persistent array in Conchon & Filliatre "A Persistent Union-Find 25 /// Wraps a hash table in a persistent data structure, using a technique based 26 /// on the persistent array in Conchon & Filliatre "A Persistent Union-Find 27 27 /// Data Structure" 28 28 29 29 template<typename Key, typename Val, 30 typename Hash = std::hash<Key>, typename Eq = std::equal_to<Key>>31 class PersistentMap 30 typename Hash = std::hash<Key>, typename Eq = std::equal_to<Key>> 31 class PersistentMap 32 32 : public std::enable_shared_from_this<PersistentMap<Key, Val, Hash, Eq>> { 33 33 public: … … 38 38 39 39 /// Types of version nodes 40 enum Mode { 40 enum Mode { 41 41 BASE, ///< Root node of version tree 42 42 REM, ///< Key removal node … … 63 63 Ptr base; ///< Modified map 64 64 Key key; ///< Key removed 65 65 66 66 template<typename P, typename K> 67 67 Rem(P&& p, K&& k) : base(std::forward<P>(p)), key(std::forward<K>(k)) {} … … 155 155 auto it = base_map.find( self.key ); 156 156 157 base->template init<Ins>( 157 base->template init<Ins>( 158 158 mut_this->shared_from_this(), std::move(self.key), std::move(it->second) ); 159 159 base->mode = INS; … … 175 175 auto it = base_map.find( self.key ); 176 176 177 base->template init<Ins>( 177 base->template init<Ins>( 178 178 mut_this->shared_from_this(), std::move(self.key), std::move(it->second) ); 179 179 base->mode = UPD; … … 267 267 Ptr erase(const Key& k) { 268 268 reroot(); 269 269 270 270 // exit early if key does not exist in map 271 271 if ( ! as<Base>().count( k ) ) return this->shared_from_this(); -
src/Common/VectorMap.h
r0fe07be r15215f02 36 36 typedef const value_type* pointer; 37 37 typedef const const_value_type* const_pointer; 38 39 class iterator : public std::iterator< std::random_access_iterator_tag, 40 value_type, 41 difference_type, 42 pointer, 43 reference > { 44 friend class VectorMap; 45 friend class const_iterator; 46 38 39 class iterator : public std::iterator< 40 std::random_access_iterator_tag, 41 value_type, difference_type, pointer, reference > { 42 friend class VectorMap; 43 friend class const_iterator; 44 47 45 value_type data; 48 46 … … 99 97 return data.first == o.data.first && &data.second == &o.data.second; 100 98 } 101 99 102 100 bool operator!= (const iterator& that) const { return !(*this == that); } 103 101 … … 111 109 }; 112 110 113 class const_iterator : public std::iterator< std::bidirectional_iterator_tag, 114 const_value_type, 115 difference_type, 116 const_pointer, 117 const_reference > { 118 friend class VectorMap; 111 class const_iterator : public std::iterator< 112 std::bidirectional_iterator_tag, 113 const_value_type, difference_type, const_pointer, const_reference > { 114 friend class VectorMap; 119 115 const_value_type data; 120 116 … … 181 177 return data.first == o.data.first && &data.second == &o.data.second; 182 178 } 183 179 184 180 bool operator!= (const const_iterator& that) const { return !(*this == that); } 185 181 … … 233 229 234 230 template<typename T> 235 typename VectorMap<T>::iterator operator+ (typename VectorMap<T>::difference_type i, 236 const typename VectorMap<T>::iterator& it) { 231 typename VectorMap<T>::iterator operator+( 232 typename VectorMap<T>::difference_type i, 233 const typename VectorMap<T>::iterator& it) { 237 234 return it + i; 238 235 } 239 236 240 237 template<typename T> 241 typename VectorMap<T>::const_iterator operator+ (typename VectorMap<T>::difference_type i, 242 const typename VectorMap<T>::const_iterator& it) { 238 typename VectorMap<T>::const_iterator operator+( 239 typename VectorMap<T>::difference_type i, 240 const typename VectorMap<T>::const_iterator& it) { 243 241 return it + i; 244 242 } -
src/Concurrency/Actors.cpp
r0fe07be r15215f02 28 28 29 29 struct CollectactorStructDecls : public ast::WithGuards { 30 unordered_set<const StructDecl *> & actorStructDecls;31 unordered_set<const StructDecl *> & messageStructDecls;32 const StructDecl ** requestDecl;33 const EnumDecl ** allocationDecl;34 const StructDecl ** actorDecl;35 const StructDecl ** msgDecl;36 StructDecl * parentDecl;37 bool insideStruct = false;38 bool namedDecl = false;39 40 // finds and sets a ptr to the allocation enum, which is needed in the next pass41 void previsit( const EnumDecl * decl ) {42 if( decl->name == "allocation" ) *allocationDecl = decl;43 }44 45 // finds and sets a ptr to the actor, message, and request structs, which are needed in the next pass46 void previsit( const StructDecl * decl ) {47 if ( !decl->body ) return;48 if ( decl->name == "actor" ) {49 actorStructDecls.insert( decl ); // skip inserting fwd decl50 *actorDecl = decl;51 } else if( decl->name == "message" ) {52 messageStructDecls.insert( decl ); // skip inserting fwd decl53 *msgDecl = decl;54 } else if( decl->name == "request" ) *requestDecl = decl;55 else {56 GuardValue(insideStruct);57 insideStruct = true;58 parentDecl = mutate( decl );59 }60 } 61 62 // this catches structs of the form:63 // struct dummy_actor { actor a; };64 // since they should be:65 // struct dummy_actor { inline actor; };66 void previsit ( const ObjectDecl * decl ) {67 if ( insideStruct && ! decl->name.empty() ) {68 GuardValue(namedDecl);69 namedDecl = true;70 }71 }72 73 // this collects the derived actor and message struct decl ptrs74 void postvisit( const StructInstType * node ) {75 if ( ! *actorDecl || ! *msgDecl ) return;76 if ( insideStruct && !namedDecl ) {77 auto actorIter = actorStructDecls.find( node->aggr() ); 78 if ( actorIter != actorStructDecls.end() ) {79 actorStructDecls.insert( parentDecl );80 return;81 }82 auto messageIter = messageStructDecls.find( node->aggr() );83 if ( messageIter != messageStructDecls.end() ) {84 messageStructDecls.insert( parentDecl );85 }86 }30 unordered_set<const StructDecl *> & actorStructDecls; 31 unordered_set<const StructDecl *> & messageStructDecls; 32 const StructDecl ** requestDecl; 33 const EnumDecl ** allocationDecl; 34 const StructDecl ** actorDecl; 35 const StructDecl ** msgDecl; 36 StructDecl * parentDecl; 37 bool insideStruct = false; 38 bool namedDecl = false; 39 40 // finds and sets a ptr to the allocation enum, which is needed in the next pass 41 void previsit( const EnumDecl * decl ) { 42 if( decl->name == "allocation" ) *allocationDecl = decl; 43 } 44 45 // finds and sets a ptr to the actor, message, and request structs, which are needed in the next pass 46 void previsit( const StructDecl * decl ) { 47 if ( !decl->body ) return; 48 if ( decl->name == "actor" ) { 49 actorStructDecls.insert( decl ); // skip inserting fwd decl 50 *actorDecl = decl; 51 } else if( decl->name == "message" ) { 52 messageStructDecls.insert( decl ); // skip inserting fwd decl 53 *msgDecl = decl; 54 } else if( decl->name == "request" ) *requestDecl = decl; 55 else { 56 GuardValue(insideStruct); 57 insideStruct = true; 58 parentDecl = mutate( decl ); 59 } 60 } 61 62 // this catches structs of the form: 63 // struct dummy_actor { actor a; }; 64 // since they should be: 65 // struct dummy_actor { inline actor; }; 66 void previsit ( const ObjectDecl * decl ) { 67 if ( insideStruct && ! decl->name.empty() ) { 68 GuardValue(namedDecl); 69 namedDecl = true; 70 } 71 } 72 73 // this collects the derived actor and message struct decl ptrs 74 void postvisit( const StructInstType * node ) { 75 if ( ! *actorDecl || ! *msgDecl ) return; 76 if ( insideStruct && !namedDecl ) { 77 auto actorIter = actorStructDecls.find( node->aggr() ); 78 if ( actorIter != actorStructDecls.end() ) { 79 actorStructDecls.insert( parentDecl ); 80 return; 81 } 82 auto messageIter = messageStructDecls.find( node->aggr() ); 83 if ( messageIter != messageStructDecls.end() ) { 84 messageStructDecls.insert( parentDecl ); 85 } 86 } 87 87 } 88 88 89 89 public: 90 CollectactorStructDecls( unordered_set<const StructDecl *> & actorStructDecls, unordered_set<const StructDecl *> & messageStructDecls,91 const StructDecl ** requestDecl, const EnumDecl ** allocationDecl, const StructDecl ** actorDecl, const StructDecl ** msgDecl ) 92 : actorStructDecls( actorStructDecls ), messageStructDecls( messageStructDecls ), requestDecl( requestDecl ), 93 allocationDecl( allocationDecl ), actorDecl(actorDecl), msgDecl(msgDecl) {}90 CollectactorStructDecls( unordered_set<const StructDecl *> & actorStructDecls, unordered_set<const StructDecl *> & messageStructDecls, 91 const StructDecl ** requestDecl, const EnumDecl ** allocationDecl, const StructDecl ** actorDecl, const StructDecl ** msgDecl ) 92 : actorStructDecls( actorStructDecls ), messageStructDecls( messageStructDecls ), requestDecl( requestDecl ), 93 allocationDecl( allocationDecl ), actorDecl(actorDecl), msgDecl(msgDecl) {} 94 94 }; 95 95 … … 97 97 class FwdDeclTable { 98 98 99 // tracks which decls we have seen so that we can hoist the FunctionDecl to the highest point possible100 struct FwdDeclData { 101 const StructDecl * actorDecl;102 const StructDecl * msgDecl;103 FunctionDecl * fwdDecl;104 bool actorFound;105 bool msgFound;106 107 bool readyToInsert() { return actorFound && msgFound; }108 bool foundActor() { actorFound = true; return readyToInsert(); }109 bool foundMsg() { msgFound = true; return readyToInsert(); }110 111 FwdDeclData( const StructDecl * actorDecl, const StructDecl * msgDecl, FunctionDecl * fwdDecl ) :112 actorDecl(actorDecl), msgDecl(msgDecl), fwdDecl(fwdDecl), actorFound(false), msgFound(false) {}113 };114 115 // map indexed by actor struct ptr116 // value is map of all FwdDeclData that contains said actor struct ptr117 // inner map is indexed by the message struct ptr of FwdDeclData118 unordered_map<const StructDecl *, unordered_map<const StructDecl *, FwdDeclData *>> actorMap;119 120 // this map is the same except the outer map is indexed by message ptr and the inner is indexed by actor ptr121 unordered_map<const StructDecl *, unordered_map<const StructDecl *, FwdDeclData *>> msgMap;122 123 void insert( const StructDecl * decl, const StructDecl * otherDecl, unordered_map<const StructDecl *, unordered_map<const StructDecl *, FwdDeclData *>> & map, FwdDeclData * data ) {124 auto iter = map.find( decl );125 if ( iter != map.end() ) { // if decl exists in map append data to existing inner map126 iter->second.emplace( make_pair( otherDecl, data ) );127 } else { // else create inner map for key128 map.emplace( make_pair( decl, unordered_map<const StructDecl *, FwdDeclData *>( { make_pair( otherDecl, data ) } ) ) );129 }130 }99 // tracks which decls we have seen so that we can hoist the FunctionDecl to the highest point possible 100 struct FwdDeclData { 101 const StructDecl * actorDecl; 102 const StructDecl * msgDecl; 103 FunctionDecl * fwdDecl; 104 bool actorFound; 105 bool msgFound; 106 107 bool readyToInsert() { return actorFound && msgFound; } 108 bool foundActor() { actorFound = true; return readyToInsert(); } 109 bool foundMsg() { msgFound = true; return readyToInsert(); } 110 111 FwdDeclData( const StructDecl * actorDecl, const StructDecl * msgDecl, FunctionDecl * fwdDecl ) : 112 actorDecl(actorDecl), msgDecl(msgDecl), fwdDecl(fwdDecl), actorFound(false), msgFound(false) {} 113 }; 114 115 // map indexed by actor struct ptr 116 // value is map of all FwdDeclData that contains said actor struct ptr 117 // inner map is indexed by the message struct ptr of FwdDeclData 118 unordered_map<const StructDecl *, unordered_map<const StructDecl *, FwdDeclData *>> actorMap; 119 120 // this map is the same except the outer map is indexed by message ptr and the inner is indexed by actor ptr 121 unordered_map<const StructDecl *, unordered_map<const StructDecl *, FwdDeclData *>> msgMap; 122 123 void insert( const StructDecl * decl, const StructDecl * otherDecl, unordered_map<const StructDecl *, unordered_map<const StructDecl *, FwdDeclData *>> & map, FwdDeclData * data ) { 124 auto iter = map.find( decl ); 125 if ( iter != map.end() ) { // if decl exists in map append data to existing inner map 126 iter->second.emplace( make_pair( otherDecl, data ) ); 127 } else { // else create inner map for key 128 map.emplace( make_pair( decl, unordered_map<const StructDecl *, FwdDeclData *>( { make_pair( otherDecl, data ) } ) ) ); 129 } 130 } 131 131 132 132 public: 133 // insert decl into table so that we can fwd declare it later (average cost: O(1))134 void insertDecl( const StructDecl * actorDecl, const StructDecl * msgDecl, FunctionDecl * fwdDecl ) {135 FwdDeclData * declToInsert = new FwdDeclData( actorDecl, msgDecl, fwdDecl );136 insert( actorDecl, msgDecl, actorMap, declToInsert );137 insert( msgDecl, actorDecl, msgMap, declToInsert );138 }139 140 // returns list of decls to insert after current struct decl141 // Over the entire pass the runtime of this routine is O(r) where r is the # of receive routines142 list<FunctionDecl *> updateDecl( const StructDecl * decl, bool isMsg ) {143 unordered_map<const StructDecl *, unordered_map<const StructDecl *, FwdDeclData *>> & map = isMsg ? msgMap : actorMap;144 unordered_map<const StructDecl *, unordered_map<const StructDecl *, FwdDeclData *>> & otherMap = isMsg ? actorMap : msgMap;145 auto iter = map.find( decl );146 list<FunctionDecl *> toInsertAfter; // this is populated with decls that are ready to insert147 if ( iter == map.end() ) return toInsertAfter;148 149 // iterate over inner map150 unordered_map<const StructDecl *, FwdDeclData *> & currInnerMap = iter->second;151 for ( auto innerIter = currInnerMap.begin(); innerIter != currInnerMap.end(); ) {152 FwdDeclData * currentDatum = innerIter->second;153 bool readyToInsert = isMsg ? currentDatum->foundMsg() : currentDatum->foundActor();154 if ( ! readyToInsert ) { ++innerIter; continue; }155 156 // readyToInsert is true so we are good to insert the forward decl of the message fn157 toInsertAfter.push_back( currentDatum->fwdDecl );158 159 // need to remove from other map before deleting160 // find inner map in other map ( other map is actor map if original is msg map and vice versa )161 const StructDecl * otherDecl = isMsg ? currentDatum->actorDecl : currentDatum->msgDecl;162 auto otherMapIter = otherMap.find( otherDecl );163 164 unordered_map<const StructDecl *, FwdDeclData *> & otherInnerMap = otherMapIter->second;165 166 // find the FwdDeclData we need to remove in the other inner map167 auto otherInnerIter = otherInnerMap.find( decl );168 169 // remove references to deleted FwdDeclData from current inner map170 innerIter = currInnerMap.erase( innerIter ); // this does the increment so no explicit inc needed171 172 // remove references to deleted FwdDeclData from other inner map173 otherInnerMap.erase( otherInnerIter );174 175 // if other inner map is now empty, remove key from other outer map176 if ( otherInnerMap.empty() )177 otherMap.erase( otherDecl );178 179 // now we are safe to delete the FwdDeclData since we are done with it180 // and we have removed all references to it from our data structures181 delete currentDatum;182 }183 184 // if current inner map is now empty, remove key from outer map.185 // Have to do this after iterating for safety186 if ( currInnerMap.empty() )187 map.erase( decl );188 189 return toInsertAfter;190 }133 // insert decl into table so that we can fwd declare it later (average cost: O(1)) 134 void insertDecl( const StructDecl * actorDecl, const StructDecl * msgDecl, FunctionDecl * fwdDecl ) { 135 FwdDeclData * declToInsert = new FwdDeclData( actorDecl, msgDecl, fwdDecl ); 136 insert( actorDecl, msgDecl, actorMap, declToInsert ); 137 insert( msgDecl, actorDecl, msgMap, declToInsert ); 138 } 139 140 // returns list of decls to insert after current struct decl 141 // Over the entire pass the runtime of this routine is O(r) where r is the # of receive routines 142 list<FunctionDecl *> updateDecl( const StructDecl * decl, bool isMsg ) { 143 unordered_map<const StructDecl *, unordered_map<const StructDecl *, FwdDeclData *>> & map = isMsg ? msgMap : actorMap; 144 unordered_map<const StructDecl *, unordered_map<const StructDecl *, FwdDeclData *>> & otherMap = isMsg ? actorMap : msgMap; 145 auto iter = map.find( decl ); 146 list<FunctionDecl *> toInsertAfter; // this is populated with decls that are ready to insert 147 if ( iter == map.end() ) return toInsertAfter; 148 149 // iterate over inner map 150 unordered_map<const StructDecl *, FwdDeclData *> & currInnerMap = iter->second; 151 for ( auto innerIter = currInnerMap.begin(); innerIter != currInnerMap.end(); ) { 152 FwdDeclData * currentDatum = innerIter->second; 153 bool readyToInsert = isMsg ? currentDatum->foundMsg() : currentDatum->foundActor(); 154 if ( ! readyToInsert ) { ++innerIter; continue; } 155 156 // readyToInsert is true so we are good to insert the forward decl of the message fn 157 toInsertAfter.push_back( currentDatum->fwdDecl ); 158 159 // need to remove from other map before deleting 160 // find inner map in other map ( other map is actor map if original is msg map and vice versa ) 161 const StructDecl * otherDecl = isMsg ? currentDatum->actorDecl : currentDatum->msgDecl; 162 auto otherMapIter = otherMap.find( otherDecl ); 163 164 unordered_map<const StructDecl *, FwdDeclData *> & otherInnerMap = otherMapIter->second; 165 166 // find the FwdDeclData we need to remove in the other inner map 167 auto otherInnerIter = otherInnerMap.find( decl ); 168 169 // remove references to deleted FwdDeclData from current inner map 170 innerIter = currInnerMap.erase( innerIter ); // this does the increment so no explicit inc needed 171 172 // remove references to deleted FwdDeclData from other inner map 173 otherInnerMap.erase( otherInnerIter ); 174 175 // if other inner map is now empty, remove key from other outer map 176 if ( otherInnerMap.empty() ) 177 otherMap.erase( otherDecl ); 178 179 // now we are safe to delete the FwdDeclData since we are done with it 180 // and we have removed all references to it from our data structures 181 delete currentDatum; 182 } 183 184 // if current inner map is now empty, remove key from outer map. 185 // Have to do this after iterating for safety 186 if ( currInnerMap.empty() ) 187 map.erase( decl ); 188 189 return toInsertAfter; 190 } 191 191 }; 192 192 193 193 // generates the definitions of send operators for actors 194 // collects data needed for next pass that does the circular defn resolution 194 // collects data needed for next pass that does the circular defn resolution 195 195 // for message send operators (via table above) 196 196 struct GenFuncsCreateTables : public ast::WithDeclsToAdd<> { 197 unordered_set<const StructDecl *> & actorStructDecls;198 unordered_set<const StructDecl *> & messageStructDecls;199 const StructDecl ** requestDecl;200 const EnumDecl ** allocationDecl;201 const StructDecl ** actorDecl;202 const StructDecl ** msgDecl;203 FwdDeclTable & forwardDecls;204 205 // generates the operator for actor message sends197 unordered_set<const StructDecl *> & actorStructDecls; 198 unordered_set<const StructDecl *> & messageStructDecls; 199 const StructDecl ** requestDecl; 200 const EnumDecl ** allocationDecl; 201 const StructDecl ** actorDecl; 202 const StructDecl ** msgDecl; 203 FwdDeclTable & forwardDecls; 204 205 // generates the operator for actor message sends 206 206 void postvisit( const FunctionDecl * decl ) { 207 // return if not of the form receive( param1, param2 ) or if it is a forward decl208 if ( decl->name != "receive" || decl->params.size() != 2 || !decl->stmts ) return;209 210 // the params should be references211 const ReferenceType * derivedActorRef = dynamic_cast<const ReferenceType *>(decl->params.at(0)->get_type());212 const ReferenceType * derivedMsgRef = dynamic_cast<const ReferenceType *>(decl->params.at(1)->get_type());213 if ( !derivedActorRef || !derivedMsgRef ) return;214 215 // the references should be to struct instances216 const StructInstType * arg1InstType = dynamic_cast<const StructInstType *>(derivedActorRef->base.get());217 const StructInstType * arg2InstType = dynamic_cast<const StructInstType *>(derivedMsgRef->base.get());218 if ( !arg1InstType || !arg2InstType ) return;219 220 // If the struct instances are derived actor and message types then generate the message send routine221 auto actorIter = actorStructDecls.find( arg1InstType->aggr() );222 auto messageIter = messageStructDecls.find( arg2InstType->aggr() );223 if ( actorIter != actorStructDecls.end() && messageIter != messageStructDecls.end() ) {224 //////////////////////////////////////////////////////////////////////225 // The following generates this wrapper for all receive(derived_actor &, derived_msg &) functions226 /* base_actor and base_msg are output params227 static inline allocation __CFA_receive_wrap( derived_actor & receiver, derived_msg & msg, actor ** base_actor, message ** base_msg ) {228 base_actor = &receiver;229 base_msg = &msg;230 return receive( receiver, msg );231 }232 */233 CompoundStmt * wrapBody = new CompoundStmt( decl->location );234 235 // generates: base_actor = &receiver;236 wrapBody->push_back( new ExprStmt( decl->location,237 UntypedExpr::createAssign( decl->location, 238 UntypedExpr::createDeref( decl->location, new NameExpr( decl->location, "base_actor" ) ),239 new AddressExpr( decl->location, new NameExpr( decl->location, "receiver" ) )240 )241 ));242 243 // generates: base_msg = &msg;244 wrapBody->push_back( new ExprStmt( decl->location,245 UntypedExpr::createAssign( decl->location, 246 UntypedExpr::createDeref( decl->location, new NameExpr( decl->location, "base_msg" ) ),247 new AddressExpr( decl->location, new NameExpr( decl->location, "msg" ) )248 )249 ));250 251 // generates: return receive( receiver, msg );252 wrapBody->push_back( new ReturnStmt( decl->location,253 new UntypedExpr ( decl->location,254 new NameExpr( decl->location, "receive" ),255 {256 new NameExpr( decl->location, "receiver" ),257 new NameExpr( decl->location, "msg" )258 }259 )260 ));261 262 // create receive wrapper to extract base message and actor pointer263 // put it all together into the complete function decl from above264 FunctionDecl * receiveWrapper = new FunctionDecl(265 decl->location,266 "__CFA_receive_wrap",267 {268 new ObjectDecl(269 decl->location,270 "receiver",271 ast::deepCopy( derivedActorRef )272 ),273 new ObjectDecl(274 decl->location,275 "msg",276 ast::deepCopy( derivedMsgRef )277 ),278 new ObjectDecl(279 decl->location,280 "base_actor",281 new PointerType( new PointerType( new StructInstType( *actorDecl ) ) )282 ),283 new ObjectDecl(284 decl->location,285 "base_msg",286 new PointerType( new PointerType( new StructInstType( *msgDecl ) ) )287 )288 }, // params289 {290 new ObjectDecl(291 decl->location,292 "__CFA_receive_wrap_ret",293 new EnumInstType( *allocationDecl )294 )295 },296 wrapBody, // body297 { Storage::Static }, // storage298 Linkage::Cforall, // linkage299 {}, // attributes300 { Function::Inline }301 );302 303 declsToAddAfter.push_back( receiveWrapper );304 305 //////////////////////////////////////////////////////////////////////306 // The following generates this send message operator routine for all receive(derived_actor &, derived_msg &) functions307 /*308 static inline derived_actor & ?|?( derived_actor & receiver, derived_msg & msg ) {309 request new_req;310 allocation (*my_work_fn)( derived_actor &, derived_msg & ) = receive;311 __receive_fn fn = (__receive_fn)my_work_fn;312 new_req{ &receiver, &msg, fn };313 send( receiver, new_req );314 return receiver;315 }316 */ 317 CompoundStmt * sendBody = new CompoundStmt( decl->location );318 319 // Generates: request new_req;320 sendBody->push_back( new DeclStmt(321 decl->location,322 new ObjectDecl(323 decl->location,324 "new_req",325 new StructInstType( *requestDecl )326 )327 ));328 329 // Function type is: allocation (*)( derived_actor &, derived_msg &, actor **, message ** )330 FunctionType * derivedReceive = new FunctionType();331 derivedReceive->params.push_back( ast::deepCopy( derivedActorRef ) );332 derivedReceive->params.push_back( ast::deepCopy( derivedMsgRef ) );333 derivedReceive->params.push_back( new PointerType( new PointerType( new StructInstType( *actorDecl ) ) ) );334 derivedReceive->params.push_back( new PointerType( new PointerType( new StructInstType( *msgDecl ) ) ) );335 derivedReceive->returns.push_back( new EnumInstType( *allocationDecl ) );336 337 // Generates: allocation (*my_work_fn)( derived_actor &, derived_msg &, actor **, message ** ) = receive;338 sendBody->push_back( new DeclStmt(339 decl->location,340 new ObjectDecl(341 decl->location,342 "my_work_fn",343 new PointerType( derivedReceive ),344 new SingleInit( decl->location, new NameExpr( decl->location, "__CFA_receive_wrap" ) )345 )346 ));347 348 // Function type is: allocation (*)( actor &, message & )349 FunctionType * genericReceive = new FunctionType();350 genericReceive->params.push_back( new ReferenceType( new StructInstType( *actorDecl ) ) );351 genericReceive->params.push_back( new ReferenceType( new StructInstType( *msgDecl ) ) );352 genericReceive->params.push_back( new PointerType( new PointerType( new StructInstType( *actorDecl ) ) ) );353 genericReceive->params.push_back( new PointerType( new PointerType( new StructInstType( *msgDecl ) ) ) );354 genericReceive->returns.push_back( new EnumInstType( *allocationDecl ) );355 356 // Generates: allocation (*fn)( actor &, message & ) = (allocation (*)( actor &, message & ))my_work_fn;357 // More readable synonymous code: 358 // typedef allocation (*__receive_fn)(actor &, message &);359 // __receive_fn fn = (__receive_fn)my_work_fn;360 sendBody->push_back( new DeclStmt(361 decl->location,362 new ObjectDecl(363 decl->location,364 "fn",365 new PointerType( genericReceive ),366 new SingleInit( decl->location, 367 new CastExpr( decl->location, new NameExpr( decl->location, "my_work_fn" ), new PointerType( genericReceive ), ExplicitCast )368 )369 )370 ));371 372 // Generates: new_req{ (actor *)&receiver, (message *)&msg, fn };373 sendBody->push_back( new ExprStmt(374 decl->location,207 // return if not of the form receive( param1, param2 ) or if it is a forward decl 208 if ( decl->name != "receive" || decl->params.size() != 2 || !decl->stmts ) return; 209 210 // the params should be references 211 const ReferenceType * derivedActorRef = dynamic_cast<const ReferenceType *>(decl->params.at(0)->get_type()); 212 const ReferenceType * derivedMsgRef = dynamic_cast<const ReferenceType *>(decl->params.at(1)->get_type()); 213 if ( !derivedActorRef || !derivedMsgRef ) return; 214 215 // the references should be to struct instances 216 const StructInstType * arg1InstType = dynamic_cast<const StructInstType *>(derivedActorRef->base.get()); 217 const StructInstType * arg2InstType = dynamic_cast<const StructInstType *>(derivedMsgRef->base.get()); 218 if ( !arg1InstType || !arg2InstType ) return; 219 220 // If the struct instances are derived actor and message types then generate the message send routine 221 auto actorIter = actorStructDecls.find( arg1InstType->aggr() ); 222 auto messageIter = messageStructDecls.find( arg2InstType->aggr() ); 223 if ( actorIter != actorStructDecls.end() && messageIter != messageStructDecls.end() ) { 224 ////////////////////////////////////////////////////////////////////// 225 // The following generates this wrapper for all receive(derived_actor &, derived_msg &) functions 226 /* base_actor and base_msg are output params 227 static inline allocation __CFA_receive_wrap( derived_actor & receiver, derived_msg & msg, actor ** base_actor, message ** base_msg ) { 228 base_actor = &receiver; 229 base_msg = &msg; 230 return receive( receiver, msg ); 231 } 232 */ 233 CompoundStmt * wrapBody = new CompoundStmt( decl->location ); 234 235 // generates: base_actor = &receiver; 236 wrapBody->push_back( new ExprStmt( decl->location, 237 UntypedExpr::createAssign( decl->location, 238 UntypedExpr::createDeref( decl->location, new NameExpr( decl->location, "base_actor" ) ), 239 new AddressExpr( decl->location, new NameExpr( decl->location, "receiver" ) ) 240 ) 241 )); 242 243 // generates: base_msg = &msg; 244 wrapBody->push_back( new ExprStmt( decl->location, 245 UntypedExpr::createAssign( decl->location, 246 UntypedExpr::createDeref( decl->location, new NameExpr( decl->location, "base_msg" ) ), 247 new AddressExpr( decl->location, new NameExpr( decl->location, "msg" ) ) 248 ) 249 )); 250 251 // generates: return receive( receiver, msg ); 252 wrapBody->push_back( new ReturnStmt( decl->location, 253 new UntypedExpr ( decl->location, 254 new NameExpr( decl->location, "receive" ), 255 { 256 new NameExpr( decl->location, "receiver" ), 257 new NameExpr( decl->location, "msg" ) 258 } 259 ) 260 )); 261 262 // create receive wrapper to extract base message and actor pointer 263 // put it all together into the complete function decl from above 264 FunctionDecl * receiveWrapper = new FunctionDecl( 265 decl->location, 266 "__CFA_receive_wrap", 267 { 268 new ObjectDecl( 269 decl->location, 270 "receiver", 271 ast::deepCopy( derivedActorRef ) 272 ), 273 new ObjectDecl( 274 decl->location, 275 "msg", 276 ast::deepCopy( derivedMsgRef ) 277 ), 278 new ObjectDecl( 279 decl->location, 280 "base_actor", 281 new PointerType( new PointerType( new StructInstType( *actorDecl ) ) ) 282 ), 283 new ObjectDecl( 284 decl->location, 285 "base_msg", 286 new PointerType( new PointerType( new StructInstType( *msgDecl ) ) ) 287 ) 288 }, // params 289 { 290 new ObjectDecl( 291 decl->location, 292 "__CFA_receive_wrap_ret", 293 new EnumInstType( *allocationDecl ) 294 ) 295 }, 296 wrapBody, // body 297 { Storage::Static }, // storage 298 Linkage::Cforall, // linkage 299 {}, // attributes 300 { Function::Inline } 301 ); 302 303 declsToAddAfter.push_back( receiveWrapper ); 304 305 ////////////////////////////////////////////////////////////////////// 306 // The following generates this send message operator routine for all receive(derived_actor &, derived_msg &) functions 307 /* 308 static inline derived_actor & ?|?( derived_actor & receiver, derived_msg & msg ) { 309 request new_req; 310 allocation (*my_work_fn)( derived_actor &, derived_msg & ) = receive; 311 __receive_fn fn = (__receive_fn)my_work_fn; 312 new_req{ &receiver, &msg, fn }; 313 send( receiver, new_req ); 314 return receiver; 315 } 316 */ 317 CompoundStmt * sendBody = new CompoundStmt( decl->location ); 318 319 // Generates: request new_req; 320 sendBody->push_back( new DeclStmt( 321 decl->location, 322 new ObjectDecl( 323 decl->location, 324 "new_req", 325 new StructInstType( *requestDecl ) 326 ) 327 )); 328 329 // Function type is: allocation (*)( derived_actor &, derived_msg &, actor **, message ** ) 330 FunctionType * derivedReceive = new FunctionType(); 331 derivedReceive->params.push_back( ast::deepCopy( derivedActorRef ) ); 332 derivedReceive->params.push_back( ast::deepCopy( derivedMsgRef ) ); 333 derivedReceive->params.push_back( new PointerType( new PointerType( new StructInstType( *actorDecl ) ) ) ); 334 derivedReceive->params.push_back( new PointerType( new PointerType( new StructInstType( *msgDecl ) ) ) ); 335 derivedReceive->returns.push_back( new EnumInstType( *allocationDecl ) ); 336 337 // Generates: allocation (*my_work_fn)( derived_actor &, derived_msg &, actor **, message ** ) = receive; 338 sendBody->push_back( new DeclStmt( 339 decl->location, 340 new ObjectDecl( 341 decl->location, 342 "my_work_fn", 343 new PointerType( derivedReceive ), 344 new SingleInit( decl->location, new NameExpr( decl->location, "__CFA_receive_wrap" ) ) 345 ) 346 )); 347 348 // Function type is: allocation (*)( actor &, message & ) 349 FunctionType * genericReceive = new FunctionType(); 350 genericReceive->params.push_back( new ReferenceType( new StructInstType( *actorDecl ) ) ); 351 genericReceive->params.push_back( new ReferenceType( new StructInstType( *msgDecl ) ) ); 352 genericReceive->params.push_back( new PointerType( new PointerType( new StructInstType( *actorDecl ) ) ) ); 353 genericReceive->params.push_back( new PointerType( new PointerType( new StructInstType( *msgDecl ) ) ) ); 354 genericReceive->returns.push_back( new EnumInstType( *allocationDecl ) ); 355 356 // Generates: allocation (*fn)( actor &, message & ) = (allocation (*)( actor &, message & ))my_work_fn; 357 // More readable synonymous code: 358 // typedef allocation (*__receive_fn)(actor &, message &); 359 // __receive_fn fn = (__receive_fn)my_work_fn; 360 sendBody->push_back( new DeclStmt( 361 decl->location, 362 new ObjectDecl( 363 decl->location, 364 "fn", 365 new PointerType( genericReceive ), 366 new SingleInit( decl->location, 367 new CastExpr( decl->location, new NameExpr( decl->location, "my_work_fn" ), new PointerType( genericReceive ), ExplicitCast ) 368 ) 369 ) 370 )); 371 372 // Generates: new_req{ (actor *)&receiver, (message *)&msg, fn }; 373 sendBody->push_back( new ExprStmt( 374 decl->location, 375 375 new UntypedExpr ( 376 decl->location, 376 decl->location, 377 377 new NameExpr( decl->location, "?{}" ), 378 378 { 379 379 new NameExpr( decl->location, "new_req" ), 380 new CastExpr( decl->location, new AddressExpr( new NameExpr( decl->location, "receiver" ) ), new PointerType( new StructInstType( *actorDecl ) ), ExplicitCast ),381 new CastExpr( decl->location, new AddressExpr( new NameExpr( decl->location, "msg" ) ), new PointerType( new StructInstType( *msgDecl ) ), ExplicitCast ),382 new NameExpr( decl->location, "fn" )380 new CastExpr( decl->location, new AddressExpr( new NameExpr( decl->location, "receiver" ) ), new PointerType( new StructInstType( *actorDecl ) ), ExplicitCast ), 381 new CastExpr( decl->location, new AddressExpr( new NameExpr( decl->location, "msg" ) ), new PointerType( new StructInstType( *msgDecl ) ), ExplicitCast ), 382 new NameExpr( decl->location, "fn" ) 383 383 } 384 384 ) 385 385 )); 386 386 387 // Generates: send( receiver, new_req );388 sendBody->push_back( new ExprStmt(389 decl->location,387 // Generates: send( receiver, new_req ); 388 sendBody->push_back( new ExprStmt( 389 decl->location, 390 390 new UntypedExpr ( 391 decl->location,391 decl->location, 392 392 new NameExpr( decl->location, "send" ), 393 393 { 394 394 { 395 new NameExpr( decl->location, "receiver" ),396 new NameExpr( decl->location, "new_req" )397 }395 new NameExpr( decl->location, "receiver" ), 396 new NameExpr( decl->location, "new_req" ) 397 } 398 398 } 399 399 ) 400 400 )); 401 401 402 // Generates: return receiver;403 sendBody->push_back( new ReturnStmt( decl->location, new NameExpr( decl->location, "receiver" ) ) );404 405 // put it all together into the complete function decl from above406 FunctionDecl * sendOperatorFunction = new FunctionDecl(407 decl->location,408 "?|?",409 {410 new ObjectDecl(411 decl->location,412 "receiver",413 ast::deepCopy( derivedActorRef )414 ),415 new ObjectDecl(416 decl->location,417 "msg",418 ast::deepCopy( derivedMsgRef )419 )420 }, // params421 {422 new ObjectDecl(423 decl->location,424 "receiver_ret",425 ast::deepCopy( derivedActorRef )426 )427 },428 nullptr, // body429 { Storage::Static }, // storage430 Linkage::Cforall, // linkage431 {}, // attributes432 { Function::Inline }433 );434 435 // forward decls to resolve use before decl problem for '|' routines436 forwardDecls.insertDecl( *actorIter, *messageIter , ast::deepCopy( sendOperatorFunction ) );437 438 sendOperatorFunction->stmts = sendBody;439 declsToAddAfter.push_back( sendOperatorFunction );440 }402 // Generates: return receiver; 403 sendBody->push_back( new ReturnStmt( decl->location, new NameExpr( decl->location, "receiver" ) ) ); 404 405 // put it all together into the complete function decl from above 406 FunctionDecl * sendOperatorFunction = new FunctionDecl( 407 decl->location, 408 "?|?", 409 { 410 new ObjectDecl( 411 decl->location, 412 "receiver", 413 ast::deepCopy( derivedActorRef ) 414 ), 415 new ObjectDecl( 416 decl->location, 417 "msg", 418 ast::deepCopy( derivedMsgRef ) 419 ) 420 }, // params 421 { 422 new ObjectDecl( 423 decl->location, 424 "receiver_ret", 425 ast::deepCopy( derivedActorRef ) 426 ) 427 }, 428 nullptr, // body 429 { Storage::Static }, // storage 430 Linkage::Cforall, // linkage 431 {}, // attributes 432 { Function::Inline } 433 ); 434 435 // forward decls to resolve use before decl problem for '|' routines 436 forwardDecls.insertDecl( *actorIter, *messageIter , ast::deepCopy( sendOperatorFunction ) ); 437 438 sendOperatorFunction->stmts = sendBody; 439 declsToAddAfter.push_back( sendOperatorFunction ); 440 } 441 441 } 442 442 443 443 public: 444 GenFuncsCreateTables( unordered_set<const StructDecl *> & actorStructDecls, unordered_set<const StructDecl *> & messageStructDecls,445 const StructDecl ** requestDecl, const EnumDecl ** allocationDecl, const StructDecl ** actorDecl, const StructDecl ** msgDecl, 446 FwdDeclTable & forwardDecls ) : actorStructDecls(actorStructDecls), messageStructDecls(messageStructDecls), 447 requestDecl(requestDecl), allocationDecl(allocationDecl), actorDecl(actorDecl), msgDecl(msgDecl), forwardDecls(forwardDecls) {}444 GenFuncsCreateTables( unordered_set<const StructDecl *> & actorStructDecls, unordered_set<const StructDecl *> & messageStructDecls, 445 const StructDecl ** requestDecl, const EnumDecl ** allocationDecl, const StructDecl ** actorDecl, const StructDecl ** msgDecl, 446 FwdDeclTable & forwardDecls ) : actorStructDecls(actorStructDecls), messageStructDecls(messageStructDecls), 447 requestDecl(requestDecl), allocationDecl(allocationDecl), actorDecl(actorDecl), msgDecl(msgDecl), forwardDecls(forwardDecls) {} 448 448 }; 449 449 … … 452 452 // generates the forward declarations of the send operator for actor routines 453 453 struct FwdDeclOperator : public ast::WithDeclsToAdd<> { 454 unordered_set<const StructDecl *> & actorStructDecls;455 unordered_set<const StructDecl *> & messageStructDecls;456 FwdDeclTable & forwardDecls;457 458 // handles forward declaring the message operator459 void postvisit( const StructDecl * decl ) {460 list<FunctionDecl *> toAddAfter;461 auto actorIter = actorStructDecls.find( decl );462 if ( actorIter != actorStructDecls.end() ) { // this is a derived actor decl463 // get list of fwd decls that we can now insert464 toAddAfter = forwardDecls.updateDecl( decl, false );465 466 // get rid of decl from actorStructDecls since we no longer need it467 actorStructDecls.erase( actorIter );468 } else {469 auto messageIter = messageStructDecls.find( decl );470 if ( messageIter == messageStructDecls.end() ) return;471 472 toAddAfter = forwardDecls.updateDecl( decl, true );473 474 // get rid of decl from messageStructDecls since we no longer need it475 messageStructDecls.erase( messageIter );476 }477 478 // add the fwd decls to declsToAddAfter479 for ( FunctionDecl * func : toAddAfter ) {480 declsToAddAfter.push_back( func );481 }482 }454 unordered_set<const StructDecl *> & actorStructDecls; 455 unordered_set<const StructDecl *> & messageStructDecls; 456 FwdDeclTable & forwardDecls; 457 458 // handles forward declaring the message operator 459 void postvisit( const StructDecl * decl ) { 460 list<FunctionDecl *> toAddAfter; 461 auto actorIter = actorStructDecls.find( decl ); 462 if ( actorIter != actorStructDecls.end() ) { // this is a derived actor decl 463 // get list of fwd decls that we can now insert 464 toAddAfter = forwardDecls.updateDecl( decl, false ); 465 466 // get rid of decl from actorStructDecls since we no longer need it 467 actorStructDecls.erase( actorIter ); 468 } else { 469 auto messageIter = messageStructDecls.find( decl ); 470 if ( messageIter == messageStructDecls.end() ) return; 471 472 toAddAfter = forwardDecls.updateDecl( decl, true ); 473 474 // get rid of decl from messageStructDecls since we no longer need it 475 messageStructDecls.erase( messageIter ); 476 } 477 478 // add the fwd decls to declsToAddAfter 479 for ( FunctionDecl * func : toAddAfter ) { 480 declsToAddAfter.push_back( func ); 481 } 482 } 483 483 484 484 public: 485 FwdDeclOperator( unordered_set<const StructDecl *> & actorStructDecls, unordered_set<const StructDecl *> & messageStructDecls, 486 FwdDeclTable & forwardDecls ) : actorStructDecls(actorStructDecls), messageStructDecls(messageStructDecls), forwardDecls(forwardDecls) {}485 FwdDeclOperator( unordered_set<const StructDecl *> & actorStructDecls, unordered_set<const StructDecl *> & messageStructDecls, 486 FwdDeclTable & forwardDecls ) : actorStructDecls(actorStructDecls), messageStructDecls(messageStructDecls), forwardDecls(forwardDecls) {} 487 487 }; 488 488 489 489 void implementActors( TranslationUnit & translationUnit ) { 490 // unordered_maps to collect all derived actor and message types491 unordered_set<const StructDecl *> actorStructDecls;492 unordered_set<const StructDecl *> messageStructDecls;493 FwdDeclTable forwardDecls;494 495 // for storing through the passes496 // these are populated with various important struct decls497 const StructDecl * requestDeclPtr = nullptr;498 const EnumDecl * allocationDeclPtr = nullptr;499 const StructDecl * actorDeclPtr = nullptr;500 const StructDecl * msgDeclPtr = nullptr;501 502 // double pointer to modify local ptrs above503 const StructDecl ** requestDecl = &requestDeclPtr;504 const EnumDecl ** allocationDecl = &allocationDeclPtr;505 const StructDecl ** actorDecl = &actorDeclPtr;506 const StructDecl ** msgDecl = &msgDeclPtr;507 508 // first pass collects ptrs to allocation enum, request type, and generic receive fn typedef509 // also populates maps of all derived actors and messages510 Pass<CollectactorStructDecls>::run( translationUnit, actorStructDecls, messageStructDecls, requestDecl, 511 allocationDecl, actorDecl, msgDecl );512 513 // check that we have found all the decls we need from <actor.hfa>, if not no need to run the rest of this pass514 if ( !allocationDeclPtr || !requestDeclPtr || !actorDeclPtr || !msgDeclPtr ) 515 return;516 517 // second pass locates all receive() routines that overload the generic receive fn518 // it then generates the appropriate operator '|' send routines for the receive routines519 Pass<GenFuncsCreateTables>::run( translationUnit, actorStructDecls, messageStructDecls, requestDecl, 520 allocationDecl, actorDecl, msgDecl, forwardDecls );521 522 // The third pass forward declares operator '|' send routines523 Pass<FwdDeclOperator>::run( translationUnit, actorStructDecls, messageStructDecls, forwardDecls );490 // unordered_maps to collect all derived actor and message types 491 unordered_set<const StructDecl *> actorStructDecls; 492 unordered_set<const StructDecl *> messageStructDecls; 493 FwdDeclTable forwardDecls; 494 495 // for storing through the passes 496 // these are populated with various important struct decls 497 const StructDecl * requestDeclPtr = nullptr; 498 const EnumDecl * allocationDeclPtr = nullptr; 499 const StructDecl * actorDeclPtr = nullptr; 500 const StructDecl * msgDeclPtr = nullptr; 501 502 // double pointer to modify local ptrs above 503 const StructDecl ** requestDecl = &requestDeclPtr; 504 const EnumDecl ** allocationDecl = &allocationDeclPtr; 505 const StructDecl ** actorDecl = &actorDeclPtr; 506 const StructDecl ** msgDecl = &msgDeclPtr; 507 508 // first pass collects ptrs to allocation enum, request type, and generic receive fn typedef 509 // also populates maps of all derived actors and messages 510 Pass<CollectactorStructDecls>::run( translationUnit, actorStructDecls, messageStructDecls, requestDecl, 511 allocationDecl, actorDecl, msgDecl ); 512 513 // check that we have found all the decls we need from <actor.hfa>, if not no need to run the rest of this pass 514 if ( !allocationDeclPtr || !requestDeclPtr || !actorDeclPtr || !msgDeclPtr ) 515 return; 516 517 // second pass locates all receive() routines that overload the generic receive fn 518 // it then generates the appropriate operator '|' send routines for the receive routines 519 Pass<GenFuncsCreateTables>::run( translationUnit, actorStructDecls, messageStructDecls, requestDecl, 520 allocationDecl, actorDecl, msgDecl, forwardDecls ); 521 522 // The third pass forward declares operator '|' send routines 523 Pass<FwdDeclOperator>::run( translationUnit, actorStructDecls, messageStructDecls, forwardDecls ); 524 524 } 525 526 525 527 526 } // namespace Concurrency -
src/Concurrency/Corun.cpp
r0fe07be r15215f02 26 26 27 27 struct CorunKeyword : public WithDeclsToAdd<>, public WithStmtsToAdd<> { 28 UniqueName CorunFnNamer = "__CFA_corun_lambda_"s;29 UniqueName CoforFnNamer = "__CFA_cofor_lambda_"s;30 // UniqueName CoforFnVarNamer = "__CFA_cofor_lambda_var"s;31 UniqueName RunnerBlockNamer = "__CFA_corun_block_"s;32 33 string coforArgName = "__CFA_cofor_lambda_arg";34 string numProcsName = "__CFA_cofor_num_procs";35 string currProcsName = "__CFA_cofor_curr_procs";36 string thdArrName = "__CFA_cofor_thread_array";37 string loopTempName = "__CFA_cofor_loop_temp";38 39 40 const StructDecl * runnerBlockDecl = nullptr;41 const StructDecl * coforRunnerDecl = nullptr;42 43 // Finds runner_block (corun task) and cofor_runner (cofor task) decls44 void previsit( const StructDecl * decl ) {45 if ( !decl->body ) {46 return;47 } else if ( "runner_block" == decl->name ) {48 assert( !runnerBlockDecl );49 runnerBlockDecl = decl;50 } else if ( "cofor_runner" == decl->name ) {51 assert( !coforRunnerDecl );52 coforRunnerDecl = decl;53 }54 }55 56 // codegen for cofor statements57 Stmt * postvisit( const CoforStmt * stmt ) {58 if ( !runnerBlockDecl || !coforRunnerDecl )59 SemanticError( stmt->location, "To use cofor statements add #include <cofor.hfa>" );60 61 if ( stmt->inits.size() != 1 )62 SemanticError( stmt->location, "Cofor statements must have a single initializer in the loop control" );63 64 if ( !stmt->body )65 return nullptr;66 67 const CodeLocation & loc = stmt->location;68 const string fnName = CoforFnNamer.newName();69 70 CompoundStmt * body = new CompoundStmt( loc );71 72 // push back cofor initializer to generated body73 body->push_back( deepCopy( stmt->inits.at(0) ) );74 75 CompoundStmt * fnBody = new CompoundStmt( loc );76 77 const DeclStmt * declStmtPtr = dynamic_cast<const DeclStmt *>(stmt->inits.at(0).get());78 if ( ! declStmtPtr )79 SemanticError( stmt->location, "Cofor statement initializer is somehow not a decl statement?" );80 81 const Decl * declPtr = dynamic_cast<const Decl *>(declStmtPtr->decl.get());82 if ( ! declPtr )83 SemanticError( stmt->location, "Cofor statement initializer is somehow not a decl?" );84 85 Type * initType = new TypeofType( new NameExpr( loc, declPtr->name ) );86 87 // Generates:88 // typeof(init) __CFA_cofor_lambda_var = *((typeof(init) *)val);89 fnBody->push_back( new DeclStmt( loc, 90 new ObjectDecl( loc,91 declPtr->name,92 initType,93 new SingleInit( loc,94 UntypedExpr::createDeref( loc,95 new CastExpr( loc, 96 new NameExpr( loc, coforArgName ), 97 new PointerType( initType ), ExplicitCast98 )99 )100 )101 )102 ));103 104 // push rest of cofor body into loop lambda105 fnBody->push_back( deepCopy( stmt->body ) );106 107 // Generates:108 // void __CFA_cofor_lambda_() {109 // typeof(init) __CFA_cofor_lambda_var = *((typeof(init) *)val);110 // stmt->body;111 // }112 Stmt * coforLambda = new DeclStmt( loc,113 new FunctionDecl( loc,114 fnName, // name115 {116 new ObjectDecl( loc,117 coforArgName,118 new ast::PointerType( new ast::VoidType() )119 )120 }, // params121 {}, // return122 fnBody // body123 )124 );125 body->push_back( coforLambda );126 127 // Generates:128 // unsigned __CFA_cofor_num_procs = get_proc_count();129 body->push_back( new DeclStmt( loc,130 new ObjectDecl( loc,131 numProcsName,132 new BasicType( BasicKind::UnsignedInt ),133 new SingleInit( loc, 134 new UntypedExpr( loc,135 new NameExpr( loc, "get_proc_count" ),136 {}137 )138 )139 )140 )141 );142 143 // Generates:144 // unsigned __CFA_cofor_curr_procs = 0;145 body->push_back( new DeclStmt( loc,146 new ObjectDecl( loc,147 currProcsName,148 new BasicType( BasicKind::UnsignedInt ),149 new SingleInit( loc, ConstantExpr::from_int( loc, 0 ) )150 )151 )152 );153 154 // Generates:155 // unsigned cofor_runner __CFA_cofor_thread_array[nprocs];156 body->push_back( new DeclStmt( loc,157 new ObjectDecl( loc,158 thdArrName,159 new ast::ArrayType(160 new StructInstType( coforRunnerDecl ),161 new NameExpr( loc, numProcsName ),162 ast::FixedLen,163 ast::DynamicDim164 )165 )166 )167 );168 169 // Generates:170 // start_runners( __CFA_cofor_thread_array, __CFA_cofor_num_procs, __CFA_cofor_lambda_ );171 body->push_back( new ExprStmt( loc,172 new UntypedExpr( loc,173 new NameExpr( loc, "start_runners" ),174 {175 new NameExpr( loc, thdArrName ),176 new NameExpr( loc, numProcsName ),177 new NameExpr( loc, fnName )178 }179 )180 ));181 182 // Generates:183 // typeof(initializer) * __CFA_cofor_loop_temp = malloc();184 CompoundStmt * forLoopBody = new CompoundStmt( loc );185 forLoopBody->push_back( new DeclStmt( loc,186 new ObjectDecl( loc,187 loopTempName,188 new PointerType( initType ),189 new SingleInit( loc, 190 new UntypedExpr( loc,191 new NameExpr( loc, "malloc" ),192 {}193 )194 )195 )196 )197 );198 199 // Generates:200 // *__CFA_cofor_loop_temp = initializer;201 forLoopBody->push_back( new ExprStmt( loc,202 UntypedExpr::createAssign( loc,203 UntypedExpr::createDeref( loc, new NameExpr( loc, loopTempName ) ),204 new NameExpr( loc, declPtr->name )205 )206 ));207 208 // Generates:209 // send_work( __CFA_cofor_thread_array, __CFA_cofor_num_procs,210 // __CFA_cofor_curr_procs, __CFA_cofor_loop_temp );211 forLoopBody->push_back( new ExprStmt( loc,212 new UntypedExpr( loc,213 new NameExpr( loc, "send_work" ),214 {215 new NameExpr( loc, thdArrName ),216 new NameExpr( loc, numProcsName ),217 new NameExpr( loc, currProcsName ),218 new NameExpr( loc, loopTempName )219 }220 )221 ));222 223 body->push_back( new ForStmt( loc,224 {},225 deepCopy( stmt->cond ),226 deepCopy( stmt->inc ),227 forLoopBody228 ));229 230 // Generates:231 // end_runners( __CFA_cofor_thread_array, __CFA_cofor_num_procs );232 body->push_back( new ExprStmt( loc,233 new UntypedExpr( loc,234 new NameExpr( loc, "end_runners" ),235 {236 new NameExpr( loc, thdArrName ),237 new NameExpr( loc, numProcsName )238 }239 )240 ));241 242 return body;243 }244 245 // codegen for corun statements246 Stmt * postvisit( const CorunStmt * stmt ) {247 if ( !runnerBlockDecl || !coforRunnerDecl )248 SemanticError( stmt->location, "To use corun statements add #include <cofor.hfa>" );249 250 if ( !stmt->stmt )251 return nullptr;252 253 const CodeLocation & loc = stmt->location;254 const string fnName = CorunFnNamer.newName();255 const string objName = RunnerBlockNamer.newName();256 257 // Generates:258 // void __CFA_corun_lambda_() { ... stmt->stmt ... }259 Stmt * runnerLambda = new DeclStmt( loc,260 new FunctionDecl( loc,261 fnName, // name262 {}, // params263 {}, // return264 new CompoundStmt( loc, { deepCopy(stmt->stmt) } ) // body265 )266 );267 268 // Generates:269 // runner_block __CFA_corun_block_;270 Stmt * objDecl = new DeclStmt( loc,271 new ObjectDecl( loc,272 objName,273 new StructInstType( runnerBlockDecl )274 )275 );276 277 // Generates:278 // __CFA_corun_block_{ __CFA_corun_lambda_ };279 Stmt * threadStart = new ExprStmt( loc,280 new UntypedExpr ( loc,281 new NameExpr( loc, "?{}" ),282 {283 new NameExpr( loc, objName ),284 new NameExpr( loc, fnName )285 }286 )287 );288 289 stmtsToAddBefore.push_back( runnerLambda );290 stmtsToAddBefore.push_back( objDecl );291 292 return threadStart;293 }28 UniqueName CorunFnNamer = "__CFA_corun_lambda_"s; 29 UniqueName CoforFnNamer = "__CFA_cofor_lambda_"s; 30 // UniqueName CoforFnVarNamer = "__CFA_cofor_lambda_var"s; 31 UniqueName RunnerBlockNamer = "__CFA_corun_block_"s; 32 33 string coforArgName = "__CFA_cofor_lambda_arg"; 34 string numProcsName = "__CFA_cofor_num_procs"; 35 string currProcsName = "__CFA_cofor_curr_procs"; 36 string thdArrName = "__CFA_cofor_thread_array"; 37 string loopTempName = "__CFA_cofor_loop_temp"; 38 39 40 const StructDecl * runnerBlockDecl = nullptr; 41 const StructDecl * coforRunnerDecl = nullptr; 42 43 // Finds runner_block (corun task) and cofor_runner (cofor task) decls 44 void previsit( const StructDecl * decl ) { 45 if ( !decl->body ) { 46 return; 47 } else if ( "runner_block" == decl->name ) { 48 assert( !runnerBlockDecl ); 49 runnerBlockDecl = decl; 50 } else if ( "cofor_runner" == decl->name ) { 51 assert( !coforRunnerDecl ); 52 coforRunnerDecl = decl; 53 } 54 } 55 56 // codegen for cofor statements 57 Stmt * postvisit( const CoforStmt * stmt ) { 58 if ( !runnerBlockDecl || !coforRunnerDecl ) 59 SemanticError( stmt->location, "To use cofor statements add #include <cofor.hfa>" ); 60 61 if ( stmt->inits.size() != 1 ) 62 SemanticError( stmt->location, "Cofor statements must have a single initializer in the loop control" ); 63 64 if ( !stmt->body ) 65 return nullptr; 66 67 const CodeLocation & loc = stmt->location; 68 const string fnName = CoforFnNamer.newName(); 69 70 CompoundStmt * body = new CompoundStmt( loc ); 71 72 // push back cofor initializer to generated body 73 body->push_back( deepCopy( stmt->inits.at(0) ) ); 74 75 CompoundStmt * fnBody = new CompoundStmt( loc ); 76 77 const DeclStmt * declStmtPtr = dynamic_cast<const DeclStmt *>(stmt->inits.at(0).get()); 78 if ( ! declStmtPtr ) 79 SemanticError( stmt->location, "Cofor statement initializer is somehow not a decl statement?" ); 80 81 const Decl * declPtr = dynamic_cast<const Decl *>(declStmtPtr->decl.get()); 82 if ( ! declPtr ) 83 SemanticError( stmt->location, "Cofor statement initializer is somehow not a decl?" ); 84 85 Type * initType = new TypeofType( new NameExpr( loc, declPtr->name ) ); 86 87 // Generates: 88 // typeof(init) __CFA_cofor_lambda_var = *((typeof(init) *)val); 89 fnBody->push_back( new DeclStmt( loc, 90 new ObjectDecl( loc, 91 declPtr->name, 92 initType, 93 new SingleInit( loc, 94 UntypedExpr::createDeref( loc, 95 new CastExpr( loc, 96 new NameExpr( loc, coforArgName ), 97 new PointerType( initType ), ExplicitCast 98 ) 99 ) 100 ) 101 ) 102 )); 103 104 // push rest of cofor body into loop lambda 105 fnBody->push_back( deepCopy( stmt->body ) ); 106 107 // Generates: 108 // void __CFA_cofor_lambda_() { 109 // typeof(init) __CFA_cofor_lambda_var = *((typeof(init) *)val); 110 // stmt->body; 111 // } 112 Stmt * coforLambda = new DeclStmt( loc, 113 new FunctionDecl( loc, 114 fnName, // name 115 { 116 new ObjectDecl( loc, 117 coforArgName, 118 new ast::PointerType( new ast::VoidType() ) 119 ) 120 }, // params 121 {}, // return 122 fnBody // body 123 ) 124 ); 125 body->push_back( coforLambda ); 126 127 // Generates: 128 // unsigned __CFA_cofor_num_procs = get_proc_count(); 129 body->push_back( new DeclStmt( loc, 130 new ObjectDecl( loc, 131 numProcsName, 132 new BasicType( BasicKind::UnsignedInt ), 133 new SingleInit( loc, 134 new UntypedExpr( loc, 135 new NameExpr( loc, "get_proc_count" ), 136 {} 137 ) 138 ) 139 ) 140 ) 141 ); 142 143 // Generates: 144 // unsigned __CFA_cofor_curr_procs = 0; 145 body->push_back( new DeclStmt( loc, 146 new ObjectDecl( loc, 147 currProcsName, 148 new BasicType( BasicKind::UnsignedInt ), 149 new SingleInit( loc, ConstantExpr::from_int( loc, 0 ) ) 150 ) 151 ) 152 ); 153 154 // Generates: 155 // unsigned cofor_runner __CFA_cofor_thread_array[nprocs]; 156 body->push_back( new DeclStmt( loc, 157 new ObjectDecl( loc, 158 thdArrName, 159 new ast::ArrayType( 160 new StructInstType( coforRunnerDecl ), 161 new NameExpr( loc, numProcsName ), 162 ast::FixedLen, 163 ast::DynamicDim 164 ) 165 ) 166 ) 167 ); 168 169 // Generates: 170 // start_runners( __CFA_cofor_thread_array, __CFA_cofor_num_procs, __CFA_cofor_lambda_ ); 171 body->push_back( new ExprStmt( loc, 172 new UntypedExpr( loc, 173 new NameExpr( loc, "start_runners" ), 174 { 175 new NameExpr( loc, thdArrName ), 176 new NameExpr( loc, numProcsName ), 177 new NameExpr( loc, fnName ) 178 } 179 ) 180 )); 181 182 // Generates: 183 // typeof(initializer) * __CFA_cofor_loop_temp = malloc(); 184 CompoundStmt * forLoopBody = new CompoundStmt( loc ); 185 forLoopBody->push_back( new DeclStmt( loc, 186 new ObjectDecl( loc, 187 loopTempName, 188 new PointerType( initType ), 189 new SingleInit( loc, 190 new UntypedExpr( loc, 191 new NameExpr( loc, "malloc" ), 192 {} 193 ) 194 ) 195 ) 196 ) 197 ); 198 199 // Generates: 200 // *__CFA_cofor_loop_temp = initializer; 201 forLoopBody->push_back( new ExprStmt( loc, 202 UntypedExpr::createAssign( loc, 203 UntypedExpr::createDeref( loc, new NameExpr( loc, loopTempName ) ), 204 new NameExpr( loc, declPtr->name ) 205 ) 206 )); 207 208 // Generates: 209 // send_work( __CFA_cofor_thread_array, __CFA_cofor_num_procs, 210 // __CFA_cofor_curr_procs, __CFA_cofor_loop_temp ); 211 forLoopBody->push_back( new ExprStmt( loc, 212 new UntypedExpr( loc, 213 new NameExpr( loc, "send_work" ), 214 { 215 new NameExpr( loc, thdArrName ), 216 new NameExpr( loc, numProcsName ), 217 new NameExpr( loc, currProcsName ), 218 new NameExpr( loc, loopTempName ) 219 } 220 ) 221 )); 222 223 body->push_back( new ForStmt( loc, 224 {}, 225 deepCopy( stmt->cond ), 226 deepCopy( stmt->inc ), 227 forLoopBody 228 )); 229 230 // Generates: 231 // end_runners( __CFA_cofor_thread_array, __CFA_cofor_num_procs ); 232 body->push_back( new ExprStmt( loc, 233 new UntypedExpr( loc, 234 new NameExpr( loc, "end_runners" ), 235 { 236 new NameExpr( loc, thdArrName ), 237 new NameExpr( loc, numProcsName ) 238 } 239 ) 240 )); 241 242 return body; 243 } 244 245 // codegen for corun statements 246 Stmt * postvisit( const CorunStmt * stmt ) { 247 if ( !runnerBlockDecl || !coforRunnerDecl ) 248 SemanticError( stmt->location, "To use corun statements add #include <cofor.hfa>" ); 249 250 if ( !stmt->stmt ) 251 return nullptr; 252 253 const CodeLocation & loc = stmt->location; 254 const string fnName = CorunFnNamer.newName(); 255 const string objName = RunnerBlockNamer.newName(); 256 257 // Generates: 258 // void __CFA_corun_lambda_() { ... stmt->stmt ... } 259 Stmt * runnerLambda = new DeclStmt( loc, 260 new FunctionDecl( loc, 261 fnName, // name 262 {}, // params 263 {}, // return 264 new CompoundStmt( loc, { deepCopy(stmt->stmt) } ) // body 265 ) 266 ); 267 268 // Generates: 269 // runner_block __CFA_corun_block_; 270 Stmt * objDecl = new DeclStmt( loc, 271 new ObjectDecl( loc, 272 objName, 273 new StructInstType( runnerBlockDecl ) 274 ) 275 ); 276 277 // Generates: 278 // __CFA_corun_block_{ __CFA_corun_lambda_ }; 279 Stmt * threadStart = new ExprStmt( loc, 280 new UntypedExpr ( loc, 281 new NameExpr( loc, "?{}" ), 282 { 283 new NameExpr( loc, objName ), 284 new NameExpr( loc, fnName ) 285 } 286 ) 287 ); 288 289 stmtsToAddBefore.push_back( runnerLambda ); 290 stmtsToAddBefore.push_back( objDecl ); 291 292 return threadStart; 293 } 294 294 }; 295 295 296 296 void implementCorun( TranslationUnit & translationUnit ) { 297 Pass<CorunKeyword>::run( translationUnit );297 Pass<CorunKeyword>::run( translationUnit ); 298 298 } 299 299 -
src/Concurrency/Keywords.cpp
r0fe07be r15215f02 991 991 ast::CompoundStmt * body = 992 992 new ast::CompoundStmt( stmt->location, { stmt->stmt } ); 993 993 994 994 return addStatements( body, stmt->mutexObjs );; 995 995 } … … 1180 1180 1181 1181 // generates a cast to the void ptr to the appropriate lock type and dereferences it before calling lock or unlock on it 1182 // used to undo the type erasure done by storing all the lock pointers as void 1182 // used to undo the type erasure done by storing all the lock pointers as void 1183 1183 ast::ExprStmt * MutexKeyword::genVirtLockUnlockExpr( const std::string & fnName, ast::ptr<ast::Expr> expr, const CodeLocation & location, ast::Expr * param ) { 1184 1184 return new ast::ExprStmt( location, … … 1187 1187 ast::UntypedExpr::createDeref( 1188 1188 location, 1189 new ast::CastExpr( location, 1189 new ast::CastExpr( location, 1190 1190 param, 1191 1191 new ast::PointerType( new ast::TypeofType( new ast::UntypedExpr( … … 1208 1208 //adds an if/elif clause for each lock to assign type from void ptr based on ptr address 1209 1209 for ( long unsigned int i = 0; i < args.size(); i++ ) { 1210 1210 1211 1211 ast::UntypedExpr * ifCond = new ast::UntypedExpr( location, 1212 1212 new ast::NameExpr( location, "?==?" ), { … … 1216 1216 ); 1217 1217 1218 ast::IfStmt * currLockIf = new ast::IfStmt( 1218 ast::IfStmt * currLockIf = new ast::IfStmt( 1219 1219 location, 1220 1220 ifCond, 1221 1221 genVirtLockUnlockExpr( fnName, args.at(i), location, ast::deepCopy( thisParam ) ) 1222 1222 ); 1223 1223 1224 1224 if ( i == 0 ) { 1225 1225 outerLockIf = currLockIf; … … 1235 1235 1236 1236 void flattenTuple( const ast::UntypedTupleExpr * tuple, std::vector<ast::ptr<ast::Expr>> & output ) { 1237 for ( auto & expr : tuple->exprs ) {1238 const ast::UntypedTupleExpr * innerTuple = dynamic_cast<const ast::UntypedTupleExpr *>(expr.get());1239 if ( innerTuple ) flattenTuple( innerTuple, output );1240 else output.emplace_back( ast::deepCopy( expr ));1241 }1237 for ( auto & expr : tuple->exprs ) { 1238 const ast::UntypedTupleExpr * innerTuple = dynamic_cast<const ast::UntypedTupleExpr *>(expr.get()); 1239 if ( innerTuple ) flattenTuple( innerTuple, output ); 1240 else output.emplace_back( ast::deepCopy( expr )); 1241 } 1242 1242 } 1243 1243 … … 1255 1255 // std::string unlockFnName = mutex_func_namer.newName(); 1256 1256 1257 // If any arguments to the mutex stmt are tuples, flatten them1258 std::vector<ast::ptr<ast::Expr>> flattenedArgs;1259 for ( auto & arg : args ) {1260 const ast::UntypedTupleExpr * tuple = dynamic_cast<const ast::UntypedTupleExpr *>(args.at(0).get());1261 if ( tuple ) flattenTuple( tuple, flattenedArgs );1262 else flattenedArgs.emplace_back( ast::deepCopy( arg ));1263 }1257 // If any arguments to the mutex stmt are tuples, flatten them 1258 std::vector<ast::ptr<ast::Expr>> flattenedArgs; 1259 for ( auto & arg : args ) { 1260 const ast::UntypedTupleExpr * tuple = dynamic_cast<const ast::UntypedTupleExpr *>(args.at(0).get()); 1261 if ( tuple ) flattenTuple( tuple, flattenedArgs ); 1262 else flattenedArgs.emplace_back( ast::deepCopy( arg )); 1263 } 1264 1264 1265 1265 // Make pointer to the monitors. … … 1302 1302 // adds a nested try stmt for each lock we are locking 1303 1303 for ( long unsigned int i = 0; i < flattenedArgs.size(); i++ ) { 1304 ast::UntypedExpr * innerAccess = new ast::UntypedExpr( 1304 ast::UntypedExpr * innerAccess = new ast::UntypedExpr( 1305 1305 location, 1306 1306 new ast::NameExpr( location,"?[?]" ), { … … 1426 1426 // ); 1427 1427 1428 // ast::IfStmt * currLockIf = new ast::IfStmt( 1428 // ast::IfStmt * currLockIf = new ast::IfStmt( 1429 1429 // location, 1430 1430 // ast::deepCopy( ifCond ), … … 1432 1432 // ); 1433 1433 1434 // ast::IfStmt * currUnlockIf = new ast::IfStmt( 1434 // ast::IfStmt * currUnlockIf = new ast::IfStmt( 1435 1435 // location, 1436 1436 // ifCond, 1437 1437 // genVirtLockUnlockExpr( "unlock", args.at(i), location, ast::deepCopy( thisParam ) ) 1438 1438 // ); 1439 1439 1440 1440 // if ( i == 0 ) { 1441 1441 // outerLockIf = currLockIf; … … 1450 1450 // lastUnlockIf = currUnlockIf; 1451 1451 // } 1452 1452 1453 1453 // // add pointer typing if/elifs to body of routines 1454 1454 // lock_decl->stmts = new ast::CompoundStmt( location, { outerLockIf } ); -
src/Concurrency/Waituntil.cpp
r0fe07be r15215f02 31 31 /* So this is what this pass dones: 32 32 { 33 when ( condA ) waituntil( A ){ doA(); } 34 or when ( condB ) waituntil( B ){ doB(); } 35 and when ( condC ) waituntil( C ) { doC(); }33 when ( condA ) waituntil( A ){ doA(); } 34 or when ( condB ) waituntil( B ){ doB(); } 35 and when ( condC ) waituntil( C ) { doC(); } 36 36 } 37 37 || … … 42 42 Generates these two routines: 43 43 static inline bool is_full_sat_1( int * clause_statuses ) { 44 return clause_statuses[0] 45 || clause_statuses[1]46 && clause_statuses[2];44 return clause_statuses[0] 45 || clause_statuses[1] 46 && clause_statuses[2]; 47 47 } 48 48 49 49 static inline bool is_done_sat_1( int * clause_statuses ) { 50 return has_run(clause_statuses[0])51 || has_run(clause_statuses[1])52 && has_run(clause_statuses[2]);50 return has_run(clause_statuses[0]) 51 || has_run(clause_statuses[1]) 52 && has_run(clause_statuses[2]); 53 53 } 54 54 55 55 Replaces the waituntil statement above with the following code: 56 56 { 57 // used with atomic_dec/inc to get binary semaphore behaviour58 int park_counter = 0;59 60 // status (one for each clause)61 int clause_statuses[3] = { 0 };62 63 bool whenA = condA;64 bool whenB = condB;65 bool whenC = condC;66 67 if ( !whenB ) clause_statuses[1] = __SELECT_RUN;68 if ( !whenC ) clause_statuses[2] = __SELECT_RUN;69 70 // some other conditional settors for clause_statuses are set here, see genSubtreeAssign and related routines71 72 // three blocks73 // for each block, create, setup, then register select_node74 select_node clause1;75 select_node clause2;76 select_node clause3;77 78 try {79 if ( whenA ) { register_select(A, clause1); setup_clause( clause1, &clause_statuses[0], &park_counter ); }80 ... repeat ^ for B and C ... 81 82 // if else clause is defined a separate branch can occur here to set initial values, see genWhenStateConditions83 84 // loop & park until done85 while( !is_full_sat_1( clause_statuses ) ) {86 87 // binary sem P();88 if ( __atomic_sub_fetch( &park_counter, 1, __ATOMIC_SEQ_CST) < 0 )89 park();90 91 // execute any blocks available with status set to 092 for ( int i = 0; i < 3; i++ ) {93 if (clause_statuses[i] == __SELECT_SAT) {94 switch (i) {95 case 0:96 try {97 on_selected( A, clause1 );98 doA();99 }100 finally { clause_statuses[i] = __SELECT_RUN; unregister_select(A, clause1); }101 break;102 case 1:103 ... same gen as A but for B and clause2 ...104 break;105 case 2:106 ... same gen as A but for C and clause3 ...107 break;108 }109 }110 }111 }112 113 // ensure that the blocks that triggered is_full_sat_1 are run114 // by running every un-run block that is SAT from the start until115 // the predicate is SAT when considering RUN status = true116 for ( int i = 0; i < 3; i++ ) {117 if (is_done_sat_1( clause_statuses )) break;118 if (clause_statuses[i] == __SELECT_SAT)119 ... Same if body here as in loop above ...120 }121 } finally {122 // the unregister and on_selected calls are needed to support primitives where the acquire has side effects123 // so the corresponding block MUST be run for those primitives to not lose state (example is channels)124 if ( !has_run(clause_statuses[0]) && whenA && unregister_select(A, clause1) )125 on_selected( A, clause1 )126 doA(); 127 ... repeat if above for B and C ...128 }57 // used with atomic_dec/inc to get binary semaphore behaviour 58 int park_counter = 0; 59 60 // status (one for each clause) 61 int clause_statuses[3] = { 0 }; 62 63 bool whenA = condA; 64 bool whenB = condB; 65 bool whenC = condC; 66 67 if ( !whenB ) clause_statuses[1] = __SELECT_RUN; 68 if ( !whenC ) clause_statuses[2] = __SELECT_RUN; 69 70 // some other conditional settors for clause_statuses are set here, see genSubtreeAssign and related routines 71 72 // three blocks 73 // for each block, create, setup, then register select_node 74 select_node clause1; 75 select_node clause2; 76 select_node clause3; 77 78 try { 79 if ( whenA ) { register_select(A, clause1); setup_clause( clause1, &clause_statuses[0], &park_counter ); } 80 ... repeat ^ for B and C ... 81 82 // if else clause is defined a separate branch can occur here to set initial values, see genWhenStateConditions 83 84 // loop & park until done 85 while( !is_full_sat_1( clause_statuses ) ) { 86 87 // binary sem P(); 88 if ( __atomic_sub_fetch( &park_counter, 1, __ATOMIC_SEQ_CST) < 0 ) 89 park(); 90 91 // execute any blocks available with status set to 0 92 for ( int i = 0; i < 3; i++ ) { 93 if (clause_statuses[i] == __SELECT_SAT) { 94 switch (i) { 95 case 0: 96 try { 97 on_selected( A, clause1 ); 98 doA(); 99 } 100 finally { clause_statuses[i] = __SELECT_RUN; unregister_select(A, clause1); } 101 break; 102 case 1: 103 ... same gen as A but for B and clause2 ... 104 break; 105 case 2: 106 ... same gen as A but for C and clause3 ... 107 break; 108 } 109 } 110 } 111 } 112 113 // ensure that the blocks that triggered is_full_sat_1 are run 114 // by running every un-run block that is SAT from the start until 115 // the predicate is SAT when considering RUN status = true 116 for ( int i = 0; i < 3; i++ ) { 117 if (is_done_sat_1( clause_statuses )) break; 118 if (clause_statuses[i] == __SELECT_SAT) 119 ... Same if body here as in loop above ... 120 } 121 } finally { 122 // the unregister and on_selected calls are needed to support primitives where the acquire has side effects 123 // so the corresponding block MUST be run for those primitives to not lose state (example is channels) 124 if ( !has_run(clause_statuses[0]) && whenA && unregister_select(A, clause1) ) 125 on_selected( A, clause1 ) 126 doA(); 127 ... repeat if above for B and C ... 128 } 129 129 } 130 130 … … 134 134 135 135 class GenerateWaitUntilCore final { 136 vector<FunctionDecl *> & satFns;136 vector<FunctionDecl *> & satFns; 137 137 UniqueName namer_sat = "__is_full_sat_"s; 138 UniqueName namer_run = "__is_run_sat_"s;138 UniqueName namer_run = "__is_run_sat_"s; 139 139 UniqueName namer_park = "__park_counter_"s; 140 140 UniqueName namer_status = "__clause_statuses_"s; 141 141 UniqueName namer_node = "__clause_"s; 142 UniqueName namer_target = "__clause_target_"s;143 UniqueName namer_when = "__when_cond_"s;144 UniqueName namer_label = "__waituntil_label_"s;145 146 string idxName = "__CFA_clause_idx_";147 148 struct ClauseData {149 string nodeName;150 string targetName;151 string whenName;152 int index;153 string & statusName;154 ClauseData( int index, string & statusName ) : index(index), statusName(statusName) {}155 };156 157 const StructDecl * selectNodeDecl = nullptr;158 159 // This first set of routines are all used to do the complicated job of 160 // dealing with how to set predicate statuses with certain when_conds T/F161 // so that the when_cond == F effectively makes that clause "disappear"162 void updateAmbiguousWhen( WaitUntilStmt::ClauseNode * currNode, bool andAbove, bool orAbove, bool andBelow, bool orBelow );163 void paintWhenTree( WaitUntilStmt::ClauseNode * currNode, bool andAbove, bool orAbove, bool & andBelow, bool & orBelow );164 bool paintWhenTree( WaitUntilStmt::ClauseNode * currNode );165 void collectWhens( WaitUntilStmt::ClauseNode * currNode, vector<pair<int, WaitUntilStmt::ClauseNode *>> & ambigIdxs, vector<int> & andIdxs, int & index, bool parentAmbig, bool parentAnd );166 void collectWhens( WaitUntilStmt::ClauseNode * currNode, vector<pair<int, WaitUntilStmt::ClauseNode *>> & ambigIdxs, vector<int> & andIdxs );167 void updateWhenState( WaitUntilStmt::ClauseNode * currNode );168 void genSubtreeAssign( const WaitUntilStmt * stmt, WaitUntilStmt::ClauseNode * currNode, bool status, int & idx, CompoundStmt * retStmt, vector<ClauseData *> & clauseData );169 void genStatusAssign( const WaitUntilStmt * stmt, WaitUntilStmt::ClauseNode * currNode, int & idx, CompoundStmt * retStmt, vector<ClauseData *> & clauseData );170 CompoundStmt * getStatusAssignment( const WaitUntilStmt * stmt, vector<ClauseData *> & clauseData );171 Stmt * genWhenStateConditions( const WaitUntilStmt * stmt, vector<ClauseData *> & clauseData, vector<pair<int, WaitUntilStmt::ClauseNode *>> & ambigClauses, vector<pair<int, WaitUntilStmt::ClauseNode *>>::size_type ambigIdx );172 173 // These routines are just code-gen helpers174 void addPredicates( const WaitUntilStmt * stmt, string & satName, string & runName );175 void setUpClause( const WhenClause * clause, ClauseData * data, string & pCountName, CompoundStmt * body );176 CompoundStmt * genStatusCheckFor( const WaitUntilStmt * stmt, vector<ClauseData *> & clauseData, string & predName );177 Expr * genSelectTraitCall( const WhenClause * clause, const ClauseData * data, string fnName );178 CompoundStmt * genStmtBlock( const WhenClause * clause, const ClauseData * data );179 Stmt * genElseClauseBranch( const WaitUntilStmt * stmt, string & runName, string & arrName, vector<ClauseData *> & clauseData );180 Stmt * genNoElseClauseBranch( const WaitUntilStmt * stmt, string & runName, string & arrName, string & pCountName, vector<ClauseData *> & clauseData );181 void genClauseInits( const WaitUntilStmt * stmt, vector<ClauseData *> & clauseData, CompoundStmt * body, string & statusName, string & elseWhenName );182 Stmt * recursiveOrIfGen( const WaitUntilStmt * stmt, vector<ClauseData *> & data, vector<ClauseData*>::size_type idx, string & elseWhenName );183 Stmt * buildOrCaseSwitch( const WaitUntilStmt * stmt, string & statusName, vector<ClauseData *> & data );184 Stmt * genAllOr( const WaitUntilStmt * stmt );142 UniqueName namer_target = "__clause_target_"s; 143 UniqueName namer_when = "__when_cond_"s; 144 UniqueName namer_label = "__waituntil_label_"s; 145 146 string idxName = "__CFA_clause_idx_"; 147 148 struct ClauseData { 149 string nodeName; 150 string targetName; 151 string whenName; 152 int index; 153 string & statusName; 154 ClauseData( int index, string & statusName ) : index(index), statusName(statusName) {} 155 }; 156 157 const StructDecl * selectNodeDecl = nullptr; 158 159 // This first set of routines are all used to do the complicated job of 160 // dealing with how to set predicate statuses with certain when_conds T/F 161 // so that the when_cond == F effectively makes that clause "disappear" 162 void updateAmbiguousWhen( WaitUntilStmt::ClauseNode * currNode, bool andAbove, bool orAbove, bool andBelow, bool orBelow ); 163 void paintWhenTree( WaitUntilStmt::ClauseNode * currNode, bool andAbove, bool orAbove, bool & andBelow, bool & orBelow ); 164 bool paintWhenTree( WaitUntilStmt::ClauseNode * currNode ); 165 void collectWhens( WaitUntilStmt::ClauseNode * currNode, vector<pair<int, WaitUntilStmt::ClauseNode *>> & ambigIdxs, vector<int> & andIdxs, int & index, bool parentAmbig, bool parentAnd ); 166 void collectWhens( WaitUntilStmt::ClauseNode * currNode, vector<pair<int, WaitUntilStmt::ClauseNode *>> & ambigIdxs, vector<int> & andIdxs ); 167 void updateWhenState( WaitUntilStmt::ClauseNode * currNode ); 168 void genSubtreeAssign( const WaitUntilStmt * stmt, WaitUntilStmt::ClauseNode * currNode, bool status, int & idx, CompoundStmt * retStmt, vector<ClauseData *> & clauseData ); 169 void genStatusAssign( const WaitUntilStmt * stmt, WaitUntilStmt::ClauseNode * currNode, int & idx, CompoundStmt * retStmt, vector<ClauseData *> & clauseData ); 170 CompoundStmt * getStatusAssignment( const WaitUntilStmt * stmt, vector<ClauseData *> & clauseData ); 171 Stmt * genWhenStateConditions( const WaitUntilStmt * stmt, vector<ClauseData *> & clauseData, vector<pair<int, WaitUntilStmt::ClauseNode *>> & ambigClauses, vector<pair<int, WaitUntilStmt::ClauseNode *>>::size_type ambigIdx ); 172 173 // These routines are just code-gen helpers 174 void addPredicates( const WaitUntilStmt * stmt, string & satName, string & runName ); 175 void setUpClause( const WhenClause * clause, ClauseData * data, string & pCountName, CompoundStmt * body ); 176 CompoundStmt * genStatusCheckFor( const WaitUntilStmt * stmt, vector<ClauseData *> & clauseData, string & predName ); 177 Expr * genSelectTraitCall( const WhenClause * clause, const ClauseData * data, string fnName ); 178 CompoundStmt * genStmtBlock( const WhenClause * clause, const ClauseData * data ); 179 Stmt * genElseClauseBranch( const WaitUntilStmt * stmt, string & runName, string & arrName, vector<ClauseData *> & clauseData ); 180 Stmt * genNoElseClauseBranch( const WaitUntilStmt * stmt, string & runName, string & arrName, string & pCountName, vector<ClauseData *> & clauseData ); 181 void genClauseInits( const WaitUntilStmt * stmt, vector<ClauseData *> & clauseData, CompoundStmt * body, string & statusName, string & elseWhenName ); 182 Stmt * recursiveOrIfGen( const WaitUntilStmt * stmt, vector<ClauseData *> & data, vector<ClauseData*>::size_type idx, string & elseWhenName ); 183 Stmt * buildOrCaseSwitch( const WaitUntilStmt * stmt, string & statusName, vector<ClauseData *> & data ); 184 Stmt * genAllOr( const WaitUntilStmt * stmt ); 185 185 186 186 public: 187 void previsit( const StructDecl * decl );187 void previsit( const StructDecl * decl ); 188 188 Stmt * postvisit( const WaitUntilStmt * stmt ); 189 GenerateWaitUntilCore( vector<FunctionDecl *> & satFns ): satFns(satFns) {}189 GenerateWaitUntilCore( vector<FunctionDecl *> & satFns ): satFns(satFns) {} 190 190 }; 191 191 192 192 // Finds select_node decl 193 193 void GenerateWaitUntilCore::previsit( const StructDecl * decl ) { 194 if ( !decl->body ) {194 if ( !decl->body ) { 195 195 return; 196 196 } else if ( "select_node" == decl->name ) { … … 201 201 202 202 void GenerateWaitUntilCore::updateAmbiguousWhen( WaitUntilStmt::ClauseNode * currNode, bool andAbove, bool orAbove, bool andBelow, bool orBelow ) { 203 // all children when-ambiguous204 if ( currNode->left->ambiguousWhen && currNode->right->ambiguousWhen )205 // true iff an ancestor/descendant has a different operation206 currNode->ambiguousWhen = (orAbove || orBelow) && (andBelow || andAbove);207 // ambiguousWhen is initially false so theres no need to set it here203 // all children when-ambiguous 204 if ( currNode->left->ambiguousWhen && currNode->right->ambiguousWhen ) 205 // true iff an ancestor/descendant has a different operation 206 currNode->ambiguousWhen = (orAbove || orBelow) && (andBelow || andAbove); 207 // ambiguousWhen is initially false so theres no need to set it here 208 208 } 209 209 … … 215 215 // - All of its descendent clauses are optional, i.e. they have a when_cond defined on the WhenClause 216 216 void GenerateWaitUntilCore::paintWhenTree( WaitUntilStmt::ClauseNode * currNode, bool andAbove, bool orAbove, bool & andBelow, bool & orBelow ) { 217 bool aBelow = false; // updated by child nodes218 bool oBelow = false; // updated by child nodes219 switch (currNode->op) {220 case WaitUntilStmt::ClauseNode::AND:221 paintWhenTree( currNode->left, true, orAbove, aBelow, oBelow );222 paintWhenTree( currNode->right, true, orAbove, aBelow, oBelow );223 224 // update currNode's when flag based on conditions listed in fn signature comment above225 updateAmbiguousWhen(currNode, true, orAbove, aBelow, oBelow );226 227 // set return flags to tell parents which decendant ops have been seen228 andBelow = true;229 orBelow = oBelow;230 return;231 case WaitUntilStmt::ClauseNode::OR:232 paintWhenTree( currNode->left, andAbove, true, aBelow, oBelow );233 paintWhenTree( currNode->right, andAbove, true, aBelow, oBelow );234 235 // update currNode's when flag based on conditions listed in fn signature comment above236 updateAmbiguousWhen(currNode, andAbove, true, aBelow, oBelow );237 238 // set return flags to tell parents which decendant ops have been seen239 andBelow = aBelow;240 orBelow = true;241 return;242 case WaitUntilStmt::ClauseNode::LEAF:243 if ( currNode->leaf->when_cond )244 currNode->ambiguousWhen = true;245 return;246 default:247 assertf(false, "Unreachable waituntil clause node type. How did you get here???");248 }217 bool aBelow = false; // updated by child nodes 218 bool oBelow = false; // updated by child nodes 219 switch (currNode->op) { 220 case WaitUntilStmt::ClauseNode::AND: 221 paintWhenTree( currNode->left, true, orAbove, aBelow, oBelow ); 222 paintWhenTree( currNode->right, true, orAbove, aBelow, oBelow ); 223 224 // update currNode's when flag based on conditions listed in fn signature comment above 225 updateAmbiguousWhen(currNode, true, orAbove, aBelow, oBelow ); 226 227 // set return flags to tell parents which decendant ops have been seen 228 andBelow = true; 229 orBelow = oBelow; 230 return; 231 case WaitUntilStmt::ClauseNode::OR: 232 paintWhenTree( currNode->left, andAbove, true, aBelow, oBelow ); 233 paintWhenTree( currNode->right, andAbove, true, aBelow, oBelow ); 234 235 // update currNode's when flag based on conditions listed in fn signature comment above 236 updateAmbiguousWhen(currNode, andAbove, true, aBelow, oBelow ); 237 238 // set return flags to tell parents which decendant ops have been seen 239 andBelow = aBelow; 240 orBelow = true; 241 return; 242 case WaitUntilStmt::ClauseNode::LEAF: 243 if ( currNode->leaf->when_cond ) 244 currNode->ambiguousWhen = true; 245 return; 246 default: 247 assertf(false, "Unreachable waituntil clause node type. How did you get here???"); 248 } 249 249 } 250 250 … … 252 252 // returns true if entire tree is OR's (special case) 253 253 bool GenerateWaitUntilCore::paintWhenTree( WaitUntilStmt::ClauseNode * currNode ) { 254 bool aBelow = false, oBelow = false; // unused by initial call255 paintWhenTree( currNode, false, false, aBelow, oBelow );256 return !aBelow;254 bool aBelow = false, oBelow = false; // unused by initial call 255 paintWhenTree( currNode, false, false, aBelow, oBelow ); 256 return !aBelow; 257 257 } 258 258 259 259 // Helper: returns Expr that represents arrName[index] 260 260 Expr * genArrAccessExpr( const CodeLocation & loc, int index, string arrName ) { 261 return new UntypedExpr ( loc, 262 new NameExpr( loc, "?[?]" ),263 {264 new NameExpr( loc, arrName ),265 ConstantExpr::from_int( loc, index )266 }267 );261 return new UntypedExpr ( loc, 262 new NameExpr( loc, "?[?]" ), 263 { 264 new NameExpr( loc, arrName ), 265 ConstantExpr::from_int( loc, index ) 266 } 267 ); 268 268 } 269 269 … … 273 273 // - updates LEAF nodes to be when-ambiguous if their direct parent is when-ambiguous. 274 274 void GenerateWaitUntilCore::collectWhens( WaitUntilStmt::ClauseNode * currNode, vector<pair<int, WaitUntilStmt::ClauseNode *>> & ambigIdxs, vector<int> & andIdxs, int & index, bool parentAmbig, bool parentAnd ) { 275 switch (currNode->op) {276 case WaitUntilStmt::ClauseNode::AND:277 collectWhens( currNode->left, ambigIdxs, andIdxs, index, currNode->ambiguousWhen, true );278 collectWhens( currNode->right, ambigIdxs, andIdxs, index, currNode->ambiguousWhen, true );279 return;280 case WaitUntilStmt::ClauseNode::OR:281 collectWhens( currNode->left, ambigIdxs, andIdxs, index, currNode->ambiguousWhen, false );282 collectWhens( currNode->right, ambigIdxs, andIdxs, index, currNode->ambiguousWhen, false );283 return;284 case WaitUntilStmt::ClauseNode::LEAF:285 if ( parentAmbig ) {286 ambigIdxs.push_back(make_pair(index, currNode));287 }288 if ( parentAnd && currNode->leaf->when_cond ) {289 currNode->childOfAnd = true;290 andIdxs.push_back(index);291 }292 index++;293 return;294 default:295 assertf(false, "Unreachable waituntil clause node type. How did you get here???");296 }275 switch (currNode->op) { 276 case WaitUntilStmt::ClauseNode::AND: 277 collectWhens( currNode->left, ambigIdxs, andIdxs, index, currNode->ambiguousWhen, true ); 278 collectWhens( currNode->right, ambigIdxs, andIdxs, index, currNode->ambiguousWhen, true ); 279 return; 280 case WaitUntilStmt::ClauseNode::OR: 281 collectWhens( currNode->left, ambigIdxs, andIdxs, index, currNode->ambiguousWhen, false ); 282 collectWhens( currNode->right, ambigIdxs, andIdxs, index, currNode->ambiguousWhen, false ); 283 return; 284 case WaitUntilStmt::ClauseNode::LEAF: 285 if ( parentAmbig ) { 286 ambigIdxs.push_back(make_pair(index, currNode)); 287 } 288 if ( parentAnd && currNode->leaf->when_cond ) { 289 currNode->childOfAnd = true; 290 andIdxs.push_back(index); 291 } 292 index++; 293 return; 294 default: 295 assertf(false, "Unreachable waituntil clause node type. How did you get here???"); 296 } 297 297 } 298 298 299 299 // overloaded wrapper for collectWhens that sets initial values 300 300 void GenerateWaitUntilCore::collectWhens( WaitUntilStmt::ClauseNode * currNode, vector<pair<int, WaitUntilStmt::ClauseNode *>> & ambigIdxs, vector<int> & andIdxs ) { 301 int idx = 0;302 collectWhens( currNode, ambigIdxs, andIdxs, idx, false, false );303 } 304 305 // recursively updates ClauseNode whenState on internal nodes so that next pass can see which 301 int idx = 0; 302 collectWhens( currNode, ambigIdxs, andIdxs, idx, false, false ); 303 } 304 305 // recursively updates ClauseNode whenState on internal nodes so that next pass can see which 306 306 // subtrees are "turned off" 307 307 // sets whenState = false iff both children have whenState == false. … … 309 309 // since the ambiguous clauses were filtered in paintWhenTree we don't need to worry about that here 310 310 void GenerateWaitUntilCore::updateWhenState( WaitUntilStmt::ClauseNode * currNode ) { 311 if ( currNode->op == WaitUntilStmt::ClauseNode::LEAF ) return;312 updateWhenState( currNode->left );313 updateWhenState( currNode->right );314 if ( !currNode->left->whenState && !currNode->right->whenState )315 currNode->whenState = false;316 else 317 currNode->whenState = true;311 if ( currNode->op == WaitUntilStmt::ClauseNode::LEAF ) return; 312 updateWhenState( currNode->left ); 313 updateWhenState( currNode->right ); 314 if ( !currNode->left->whenState && !currNode->right->whenState ) 315 currNode->whenState = false; 316 else 317 currNode->whenState = true; 318 318 } 319 319 … … 321 321 // assumes that this will only be called on subtrees that are entirely whenState == false 322 322 void GenerateWaitUntilCore::genSubtreeAssign( const WaitUntilStmt * stmt, WaitUntilStmt::ClauseNode * currNode, bool status, int & idx, CompoundStmt * retStmt, vector<ClauseData *> & clauseData ) { 323 if ( ( currNode->op == WaitUntilStmt::ClauseNode::AND && status )324 || ( currNode->op == WaitUntilStmt::ClauseNode::OR && !status ) ) {325 // need to recurse on both subtrees if && subtree needs to be true or || subtree needs to be false326 genSubtreeAssign( stmt, currNode->left, status, idx, retStmt, clauseData );327 genSubtreeAssign( stmt, currNode->right, status, idx, retStmt, clauseData );328 } else if ( ( currNode->op == WaitUntilStmt::ClauseNode::OR && status )329 || ( currNode->op == WaitUntilStmt::ClauseNode::AND && !status ) ) {330 // only one subtree needs to evaluate to status if && subtree needs to be true or || subtree needs to be false331 CompoundStmt * leftStmt = new CompoundStmt( stmt->location );332 CompoundStmt * rightStmt = new CompoundStmt( stmt->location );333 334 // only one side needs to evaluate to status so we recurse on both subtrees335 // but only keep the statements from the subtree with minimal statements336 genSubtreeAssign( stmt, currNode->left, status, idx, leftStmt, clauseData );337 genSubtreeAssign( stmt, currNode->right, status, idx, rightStmt, clauseData );338 339 // append minimal statements to retStmt340 if ( leftStmt->kids.size() < rightStmt->kids.size() ) {341 retStmt->kids.splice( retStmt->kids.end(), leftStmt->kids );342 } else {343 retStmt->kids.splice( retStmt->kids.end(), rightStmt->kids );344 }345 346 delete leftStmt;347 delete rightStmt;348 } else if ( currNode->op == WaitUntilStmt::ClauseNode::LEAF ) {349 const CodeLocation & loc = stmt->location;350 if ( status && !currNode->childOfAnd ) {351 retStmt->push_back(352 new ExprStmt( loc, 353 UntypedExpr::createAssign( loc,354 genArrAccessExpr( loc, idx, clauseData.at(idx)->statusName ),355 new NameExpr( loc, "__SELECT_RUN" )356 )357 )358 );359 } else if ( !status && currNode->childOfAnd ) {360 retStmt->push_back(361 new ExprStmt( loc, 362 UntypedExpr::createAssign( loc,363 genArrAccessExpr( loc, idx, clauseData.at(idx)->statusName ),364 new NameExpr( loc, "__SELECT_UNSAT" )365 )366 )367 );368 }369 370 // No need to generate statements for the following cases since childOfAnd are always set to true371 // and !childOfAnd are always false372 // - status && currNode->childOfAnd373 // - !status && !currNode->childOfAnd374 idx++;375 }323 if ( ( currNode->op == WaitUntilStmt::ClauseNode::AND && status ) 324 || ( currNode->op == WaitUntilStmt::ClauseNode::OR && !status ) ) { 325 // need to recurse on both subtrees if && subtree needs to be true or || subtree needs to be false 326 genSubtreeAssign( stmt, currNode->left, status, idx, retStmt, clauseData ); 327 genSubtreeAssign( stmt, currNode->right, status, idx, retStmt, clauseData ); 328 } else if ( ( currNode->op == WaitUntilStmt::ClauseNode::OR && status ) 329 || ( currNode->op == WaitUntilStmt::ClauseNode::AND && !status ) ) { 330 // only one subtree needs to evaluate to status if && subtree needs to be true or || subtree needs to be false 331 CompoundStmt * leftStmt = new CompoundStmt( stmt->location ); 332 CompoundStmt * rightStmt = new CompoundStmt( stmt->location ); 333 334 // only one side needs to evaluate to status so we recurse on both subtrees 335 // but only keep the statements from the subtree with minimal statements 336 genSubtreeAssign( stmt, currNode->left, status, idx, leftStmt, clauseData ); 337 genSubtreeAssign( stmt, currNode->right, status, idx, rightStmt, clauseData ); 338 339 // append minimal statements to retStmt 340 if ( leftStmt->kids.size() < rightStmt->kids.size() ) { 341 retStmt->kids.splice( retStmt->kids.end(), leftStmt->kids ); 342 } else { 343 retStmt->kids.splice( retStmt->kids.end(), rightStmt->kids ); 344 } 345 346 delete leftStmt; 347 delete rightStmt; 348 } else if ( currNode->op == WaitUntilStmt::ClauseNode::LEAF ) { 349 const CodeLocation & loc = stmt->location; 350 if ( status && !currNode->childOfAnd ) { 351 retStmt->push_back( 352 new ExprStmt( loc, 353 UntypedExpr::createAssign( loc, 354 genArrAccessExpr( loc, idx, clauseData.at(idx)->statusName ), 355 new NameExpr( loc, "__SELECT_RUN" ) 356 ) 357 ) 358 ); 359 } else if ( !status && currNode->childOfAnd ) { 360 retStmt->push_back( 361 new ExprStmt( loc, 362 UntypedExpr::createAssign( loc, 363 genArrAccessExpr( loc, idx, clauseData.at(idx)->statusName ), 364 new NameExpr( loc, "__SELECT_UNSAT" ) 365 ) 366 ) 367 ); 368 } 369 370 // No need to generate statements for the following cases since childOfAnd are always set to true 371 // and !childOfAnd are always false 372 // - status && currNode->childOfAnd 373 // - !status && !currNode->childOfAnd 374 idx++; 375 } 376 376 } 377 377 378 378 void GenerateWaitUntilCore::genStatusAssign( const WaitUntilStmt * stmt, WaitUntilStmt::ClauseNode * currNode, int & idx, CompoundStmt * retStmt, vector<ClauseData *> & clauseData ) { 379 switch (currNode->op) {380 case WaitUntilStmt::ClauseNode::AND:381 // check which subtrees have all whenState == false (disabled)382 if (!currNode->left->whenState && !currNode->right->whenState) {383 // this case can only occur when whole tree is disabled since otherwise 384 // genStatusAssign( ... ) isn't called on nodes with whenState == false385 assert( !currNode->whenState ); // paranoidWWW386 // whole tree disabled so pass true so that select is SAT vacuously387 genSubtreeAssign( stmt, currNode, true, idx, retStmt, clauseData );388 } else if ( !currNode->left->whenState ) {389 // pass true since x && true === x390 genSubtreeAssign( stmt, currNode->left, true, idx, retStmt, clauseData );391 genStatusAssign( stmt, currNode->right, idx, retStmt, clauseData );392 } else if ( !currNode->right->whenState ) {393 genStatusAssign( stmt, currNode->left, idx, retStmt, clauseData );394 genSubtreeAssign( stmt, currNode->right, true, idx, retStmt, clauseData );395 } else { 396 // if no children with whenState == false recurse normally via break397 break;398 }399 return;400 case WaitUntilStmt::ClauseNode::OR:401 if (!currNode->left->whenState && !currNode->right->whenState) {402 assert( !currNode->whenState ); // paranoid403 genSubtreeAssign( stmt, currNode, true, idx, retStmt, clauseData );404 } else if ( !currNode->left->whenState ) {405 // pass false since x || false === x406 genSubtreeAssign( stmt, currNode->left, false, idx, retStmt, clauseData );407 genStatusAssign( stmt, currNode->right, idx, retStmt, clauseData );408 } else if ( !currNode->right->whenState ) {409 genStatusAssign( stmt, currNode->left, idx, retStmt, clauseData );410 genSubtreeAssign( stmt, currNode->right, false, idx, retStmt, clauseData );411 } else { 412 break;413 }414 return;415 case WaitUntilStmt::ClauseNode::LEAF:416 idx++;417 return;418 default:419 assertf(false, "Unreachable waituntil clause node type. How did you get here???");420 }421 genStatusAssign( stmt, currNode->left, idx, retStmt, clauseData );422 genStatusAssign( stmt, currNode->right, idx, retStmt, clauseData );379 switch (currNode->op) { 380 case WaitUntilStmt::ClauseNode::AND: 381 // check which subtrees have all whenState == false (disabled) 382 if (!currNode->left->whenState && !currNode->right->whenState) { 383 // this case can only occur when whole tree is disabled since otherwise 384 // genStatusAssign( ... ) isn't called on nodes with whenState == false 385 assert( !currNode->whenState ); // paranoidWWW 386 // whole tree disabled so pass true so that select is SAT vacuously 387 genSubtreeAssign( stmt, currNode, true, idx, retStmt, clauseData ); 388 } else if ( !currNode->left->whenState ) { 389 // pass true since x && true === x 390 genSubtreeAssign( stmt, currNode->left, true, idx, retStmt, clauseData ); 391 genStatusAssign( stmt, currNode->right, idx, retStmt, clauseData ); 392 } else if ( !currNode->right->whenState ) { 393 genStatusAssign( stmt, currNode->left, idx, retStmt, clauseData ); 394 genSubtreeAssign( stmt, currNode->right, true, idx, retStmt, clauseData ); 395 } else { 396 // if no children with whenState == false recurse normally via break 397 break; 398 } 399 return; 400 case WaitUntilStmt::ClauseNode::OR: 401 if (!currNode->left->whenState && !currNode->right->whenState) { 402 assert( !currNode->whenState ); // paranoid 403 genSubtreeAssign( stmt, currNode, true, idx, retStmt, clauseData ); 404 } else if ( !currNode->left->whenState ) { 405 // pass false since x || false === x 406 genSubtreeAssign( stmt, currNode->left, false, idx, retStmt, clauseData ); 407 genStatusAssign( stmt, currNode->right, idx, retStmt, clauseData ); 408 } else if ( !currNode->right->whenState ) { 409 genStatusAssign( stmt, currNode->left, idx, retStmt, clauseData ); 410 genSubtreeAssign( stmt, currNode->right, false, idx, retStmt, clauseData ); 411 } else { 412 break; 413 } 414 return; 415 case WaitUntilStmt::ClauseNode::LEAF: 416 idx++; 417 return; 418 default: 419 assertf(false, "Unreachable waituntil clause node type. How did you get here???"); 420 } 421 genStatusAssign( stmt, currNode->left, idx, retStmt, clauseData ); 422 genStatusAssign( stmt, currNode->right, idx, retStmt, clauseData ); 423 423 } 424 424 425 425 // generates a minimal set of assignments for status arr based on which whens are toggled on/off 426 426 CompoundStmt * GenerateWaitUntilCore::getStatusAssignment( const WaitUntilStmt * stmt, vector<ClauseData *> & clauseData ) { 427 updateWhenState( stmt->predicateTree );428 CompoundStmt * retval = new CompoundStmt( stmt->location );429 int idx = 0;430 genStatusAssign( stmt, stmt->predicateTree, idx, retval, clauseData );431 return retval;427 updateWhenState( stmt->predicateTree ); 428 CompoundStmt * retval = new CompoundStmt( stmt->location ); 429 int idx = 0; 430 genStatusAssign( stmt, stmt->predicateTree, idx, retval, clauseData ); 431 return retval; 432 432 } 433 433 434 434 // generates nested if/elses for all possible assignments of ambiguous when_conds 435 435 // exponential size of code gen but linear runtime O(n), where n is number of ambiguous whens() 436 Stmt * GenerateWaitUntilCore::genWhenStateConditions( const WaitUntilStmt * stmt, vector<ClauseData *> & clauseData, 437 vector<pair<int, WaitUntilStmt::ClauseNode *>> & ambigClauses, vector<pair<int, WaitUntilStmt::ClauseNode *>>::size_type ambigIdx ) {438 // I hate C++ sometimes, using vector<pair<int, WaitUntilStmt::ClauseNode *>>::size_type for size() comparison seems silly.439 // Why is size_type parameterized on the type stored in the vector?????440 441 const CodeLocation & loc = stmt->location;442 int clauseIdx = ambigClauses.at(ambigIdx).first;443 WaitUntilStmt::ClauseNode * currNode = ambigClauses.at(ambigIdx).second;444 Stmt * thenStmt;445 Stmt * elseStmt;446 447 if ( ambigIdx == ambigClauses.size() - 1 ) { // base case448 currNode->whenState = true;449 thenStmt = getStatusAssignment( stmt, clauseData );450 currNode->whenState = false;451 elseStmt = getStatusAssignment( stmt, clauseData );452 } else {453 // recurse both with when enabled and disabled to generate all possible cases454 currNode->whenState = true;455 thenStmt = genWhenStateConditions( stmt, clauseData, ambigClauses, ambigIdx + 1 );456 currNode->whenState = false;457 elseStmt = genWhenStateConditions( stmt, clauseData, ambigClauses, ambigIdx + 1 );458 }459 460 // insert first recursion result in if ( __when_cond_ ) { ... }461 // insert second recursion result in else { ... }462 return new CompoundStmt ( loc,463 {464 new IfStmt( loc,465 new NameExpr( loc, clauseData.at(clauseIdx)->whenName ),466 thenStmt,467 elseStmt468 )469 }470 );436 Stmt * GenerateWaitUntilCore::genWhenStateConditions( const WaitUntilStmt * stmt, vector<ClauseData *> & clauseData, 437 vector<pair<int, WaitUntilStmt::ClauseNode *>> & ambigClauses, vector<pair<int, WaitUntilStmt::ClauseNode *>>::size_type ambigIdx ) { 438 // I hate C++ sometimes, using vector<pair<int, WaitUntilStmt::ClauseNode *>>::size_type for size() comparison seems silly. 439 // Why is size_type parameterized on the type stored in the vector????? 440 441 const CodeLocation & loc = stmt->location; 442 int clauseIdx = ambigClauses.at(ambigIdx).first; 443 WaitUntilStmt::ClauseNode * currNode = ambigClauses.at(ambigIdx).second; 444 Stmt * thenStmt; 445 Stmt * elseStmt; 446 447 if ( ambigIdx == ambigClauses.size() - 1 ) { // base case 448 currNode->whenState = true; 449 thenStmt = getStatusAssignment( stmt, clauseData ); 450 currNode->whenState = false; 451 elseStmt = getStatusAssignment( stmt, clauseData ); 452 } else { 453 // recurse both with when enabled and disabled to generate all possible cases 454 currNode->whenState = true; 455 thenStmt = genWhenStateConditions( stmt, clauseData, ambigClauses, ambigIdx + 1 ); 456 currNode->whenState = false; 457 elseStmt = genWhenStateConditions( stmt, clauseData, ambigClauses, ambigIdx + 1 ); 458 } 459 460 // insert first recursion result in if ( __when_cond_ ) { ... } 461 // insert second recursion result in else { ... } 462 return new CompoundStmt ( loc, 463 { 464 new IfStmt( loc, 465 new NameExpr( loc, clauseData.at(clauseIdx)->whenName ), 466 thenStmt, 467 elseStmt 468 ) 469 } 470 ); 471 471 } 472 472 … … 478 478 // mutates index to be index + 1 479 479 Expr * genSatExpr( const CodeLocation & loc, int & index ) { 480 return genArrAccessExpr( loc, index++, "clause_statuses" );480 return genArrAccessExpr( loc, index++, "clause_statuses" ); 481 481 } 482 482 483 483 // return Expr that represents has_run(clause_statuses[index]) 484 484 Expr * genRunExpr( const CodeLocation & loc, int & index ) { 485 return new UntypedExpr ( loc, 486 new NameExpr( loc, "__CFA_has_clause_run" ),487 { genSatExpr( loc, index ) }488 );485 return new UntypedExpr ( loc, 486 new NameExpr( loc, "__CFA_has_clause_run" ), 487 { genSatExpr( loc, index ) } 488 ); 489 489 } 490 490 … … 492 492 // the predicate expr used inside the predicate functions 493 493 Expr * genPredExpr( const CodeLocation & loc, WaitUntilStmt::ClauseNode * currNode, int & idx, GenLeafExpr genLeaf ) { 494 Expr * leftExpr, * rightExpr;495 switch (currNode->op) {496 case WaitUntilStmt::ClauseNode::AND:497 leftExpr = genPredExpr( loc, currNode->left, idx, genLeaf );498 rightExpr = genPredExpr( loc, currNode->right, idx, genLeaf );499 return new LogicalExpr( loc, 500 new CastExpr( loc, leftExpr, new BasicType( BasicKind::Bool ), GeneratedFlag::ExplicitCast ),501 new CastExpr( loc, rightExpr, new BasicType( BasicKind::Bool ), GeneratedFlag::ExplicitCast ), 502 LogicalFlag::AndExpr 503 );504 break;505 case WaitUntilStmt::ClauseNode::OR:506 leftExpr = genPredExpr( loc, currNode->left, idx, genLeaf );507 rightExpr = genPredExpr( loc, currNode->right, idx, genLeaf );508 return new LogicalExpr( loc,509 new CastExpr( loc, leftExpr, new BasicType( BasicKind::Bool ), GeneratedFlag::ExplicitCast ),510 new CastExpr( loc, rightExpr, new BasicType( BasicKind::Bool ), GeneratedFlag::ExplicitCast ), 511 LogicalFlag::OrExpr );512 break;513 case WaitUntilStmt::ClauseNode::LEAF:514 return genLeaf( loc, idx );515 break;516 default:517 assertf(false, "Unreachable waituntil clause node type. How did you get here???");\518 return nullptr;519 break;520 }521 return nullptr;494 Expr * leftExpr, * rightExpr; 495 switch (currNode->op) { 496 case WaitUntilStmt::ClauseNode::AND: 497 leftExpr = genPredExpr( loc, currNode->left, idx, genLeaf ); 498 rightExpr = genPredExpr( loc, currNode->right, idx, genLeaf ); 499 return new LogicalExpr( loc, 500 new CastExpr( loc, leftExpr, new BasicType( BasicKind::Bool ), GeneratedFlag::ExplicitCast ), 501 new CastExpr( loc, rightExpr, new BasicType( BasicKind::Bool ), GeneratedFlag::ExplicitCast ), 502 LogicalFlag::AndExpr 503 ); 504 break; 505 case WaitUntilStmt::ClauseNode::OR: 506 leftExpr = genPredExpr( loc, currNode->left, idx, genLeaf ); 507 rightExpr = genPredExpr( loc, currNode->right, idx, genLeaf ); 508 return new LogicalExpr( loc, 509 new CastExpr( loc, leftExpr, new BasicType( BasicKind::Bool ), GeneratedFlag::ExplicitCast ), 510 new CastExpr( loc, rightExpr, new BasicType( BasicKind::Bool ), GeneratedFlag::ExplicitCast ), 511 LogicalFlag::OrExpr ); 512 break; 513 case WaitUntilStmt::ClauseNode::LEAF: 514 return genLeaf( loc, idx ); 515 break; 516 default: 517 assertf(false, "Unreachable waituntil clause node type. How did you get here???");\ 518 return nullptr; 519 break; 520 } 521 return nullptr; 522 522 } 523 523 … … 526 526 /* Ex: 527 527 { 528 waituntil( A ){ doA(); } 529 or waituntil( B ){ doB(); } 530 and waituntil( C ) { doC(); }528 waituntil( A ){ doA(); } 529 or waituntil( B ){ doB(); } 530 and waituntil( C ) { doC(); } 531 531 } 532 532 generates => 533 533 static inline bool is_full_sat_1( int * clause_statuses ) { 534 return clause_statuses[0] 535 || clause_statuses[1]536 && clause_statuses[2];534 return clause_statuses[0] 535 || clause_statuses[1] 536 && clause_statuses[2]; 537 537 } 538 538 539 539 static inline bool is_done_sat_1( int * clause_statuses ) { 540 return has_run(clause_statuses[0])541 || has_run(clause_statuses[1])542 && has_run(clause_statuses[2]);540 return has_run(clause_statuses[0]) 541 || has_run(clause_statuses[1]) 542 && has_run(clause_statuses[2]); 543 543 } 544 544 */ … … 546 546 // predName and genLeaf determine if this generates an is_done or an is_full predicate 547 547 FunctionDecl * buildPredicate( const WaitUntilStmt * stmt, GenLeafExpr genLeaf, string & predName ) { 548 int arrIdx = 0;549 const CodeLocation & loc = stmt->location;550 CompoundStmt * body = new CompoundStmt( loc );551 body->push_back( new ReturnStmt( loc, genPredExpr( loc, stmt->predicateTree, arrIdx, genLeaf ) ) );552 553 return new FunctionDecl( loc,554 predName,555 {556 new ObjectDecl( loc,557 "clause_statuses",558 new PointerType( new BasicType( BasicKind::LongUnsignedInt ) )559 )560 },561 {562 new ObjectDecl( loc,563 "sat_ret",564 new BasicType( BasicKind::Bool )565 )566 },567 body, // body568 { Storage::Static }, // storage569 Linkage::Cforall, // linkage570 {}, // attributes571 { Function::Inline }572 );548 int arrIdx = 0; 549 const CodeLocation & loc = stmt->location; 550 CompoundStmt * body = new CompoundStmt( loc ); 551 body->push_back( new ReturnStmt( loc, genPredExpr( loc, stmt->predicateTree, arrIdx, genLeaf ) ) ); 552 553 return new FunctionDecl( loc, 554 predName, 555 { 556 new ObjectDecl( loc, 557 "clause_statuses", 558 new PointerType( new BasicType( BasicKind::LongUnsignedInt ) ) 559 ) 560 }, 561 { 562 new ObjectDecl( loc, 563 "sat_ret", 564 new BasicType( BasicKind::Bool ) 565 ) 566 }, 567 body, // body 568 { Storage::Static }, // storage 569 Linkage::Cforall, // linkage 570 {}, // attributes 571 { Function::Inline } 572 ); 573 573 } 574 574 575 575 // Creates is_done and is_full predicates 576 576 void GenerateWaitUntilCore::addPredicates( const WaitUntilStmt * stmt, string & satName, string & runName ) { 577 if ( !stmt->else_stmt || stmt->else_cond ) // don't need SAT predicate when else variation with no else_cond578 satFns.push_back( Concurrency::buildPredicate( stmt, genSatExpr, satName ) ); 579 satFns.push_back( Concurrency::buildPredicate( stmt, genRunExpr, runName ) );577 if ( !stmt->else_stmt || stmt->else_cond ) // don't need SAT predicate when else variation with no else_cond 578 satFns.push_back( Concurrency::buildPredicate( stmt, genSatExpr, satName ) ); 579 satFns.push_back( Concurrency::buildPredicate( stmt, genRunExpr, runName ) ); 580 580 } 581 581 … … 585 585 // register_select(A, clause1); 586 586 // } 587 void GenerateWaitUntilCore::setUpClause( const WhenClause * clause, ClauseData * data, string & pCountName, CompoundStmt * body ) { 588 CompoundStmt * currBody = body;589 const CodeLocation & loc = clause->location;590 591 // If we have a when_cond make the initialization conditional592 if ( clause->when_cond )593 currBody = new CompoundStmt( loc );594 595 // Generates: setup_clause( clause1, &clause_statuses[0], &park_counter );596 currBody->push_back( new ExprStmt( loc,597 new UntypedExpr ( loc,598 new NameExpr( loc, "setup_clause" ),599 {600 new NameExpr( loc, data->nodeName ),601 new AddressExpr( loc, genArrAccessExpr( loc, data->index, data->statusName ) ),602 new AddressExpr( loc, new NameExpr( loc, pCountName ) )603 }604 )605 ));606 607 // Generates: register_select(A, clause1);608 currBody->push_back( new ExprStmt( loc, genSelectTraitCall( clause, data, "register_select" ) ) );609 610 // generates: if ( when_cond ) { ... currBody ... }611 if ( clause->when_cond )612 body->push_back( 613 new IfStmt( loc,614 new NameExpr( loc, data->whenName ),615 currBody616 )617 );587 void GenerateWaitUntilCore::setUpClause( const WhenClause * clause, ClauseData * data, string & pCountName, CompoundStmt * body ) { 588 CompoundStmt * currBody = body; 589 const CodeLocation & loc = clause->location; 590 591 // If we have a when_cond make the initialization conditional 592 if ( clause->when_cond ) 593 currBody = new CompoundStmt( loc ); 594 595 // Generates: setup_clause( clause1, &clause_statuses[0], &park_counter ); 596 currBody->push_back( new ExprStmt( loc, 597 new UntypedExpr ( loc, 598 new NameExpr( loc, "setup_clause" ), 599 { 600 new NameExpr( loc, data->nodeName ), 601 new AddressExpr( loc, genArrAccessExpr( loc, data->index, data->statusName ) ), 602 new AddressExpr( loc, new NameExpr( loc, pCountName ) ) 603 } 604 ) 605 )); 606 607 // Generates: register_select(A, clause1); 608 currBody->push_back( new ExprStmt( loc, genSelectTraitCall( clause, data, "register_select" ) ) ); 609 610 // generates: if ( when_cond ) { ... currBody ... } 611 if ( clause->when_cond ) 612 body->push_back( 613 new IfStmt( loc, 614 new NameExpr( loc, data->whenName ), 615 currBody 616 ) 617 ); 618 618 } 619 619 620 620 // Used to generate a call to one of the select trait routines 621 621 Expr * GenerateWaitUntilCore::genSelectTraitCall( const WhenClause * clause, const ClauseData * data, string fnName ) { 622 const CodeLocation & loc = clause->location;623 return new UntypedExpr ( loc,624 new NameExpr( loc, fnName ),625 {626 new NameExpr( loc, data->targetName ),627 new NameExpr( loc, data->nodeName )628 }629 );622 const CodeLocation & loc = clause->location; 623 return new UntypedExpr ( loc, 624 new NameExpr( loc, fnName ), 625 { 626 new NameExpr( loc, data->targetName ), 627 new NameExpr( loc, data->nodeName ) 628 } 629 ); 630 630 } 631 631 632 632 // Generates: 633 /* on_selected( target_1, node_1 ); ... corresponding body of target_1 ... 633 /* on_selected( target_1, node_1 ); ... corresponding body of target_1 ... 634 634 */ 635 635 CompoundStmt * GenerateWaitUntilCore::genStmtBlock( const WhenClause * clause, const ClauseData * data ) { 636 const CodeLocation & cLoc = clause->location;637 return new CompoundStmt( cLoc,638 {639 new IfStmt( cLoc,640 genSelectTraitCall( clause, data, "on_selected" ),641 ast::deepCopy( clause->stmt )642 )643 }644 );636 const CodeLocation & cLoc = clause->location; 637 return new CompoundStmt( cLoc, 638 { 639 new IfStmt( cLoc, 640 genSelectTraitCall( clause, data, "on_selected" ), 641 ast::deepCopy( clause->stmt ) 642 ) 643 } 644 ); 645 645 } 646 646 647 647 // this routine generates and returns the following 648 648 /*for ( int i = 0; i < numClauses; i++ ) { 649 if ( predName(clause_statuses) ) break;650 if (clause_statuses[i] == __SELECT_SAT) {651 switch (i) {652 case 0:653 try {654 on_selected( target1, clause1 );655 dotarget1stmt();656 }657 finally { clause_statuses[i] = __SELECT_RUN; unregister_select(target1, clause1); }658 break;659 ...660 case N:661 ...662 break;663 }664 }649 if ( predName(clause_statuses) ) break; 650 if (clause_statuses[i] == __SELECT_SAT) { 651 switch (i) { 652 case 0: 653 try { 654 on_selected( target1, clause1 ); 655 dotarget1stmt(); 656 } 657 finally { clause_statuses[i] = __SELECT_RUN; unregister_select(target1, clause1); } 658 break; 659 ... 660 case N: 661 ... 662 break; 663 } 664 } 665 665 }*/ 666 666 CompoundStmt * GenerateWaitUntilCore::genStatusCheckFor( const WaitUntilStmt * stmt, vector<ClauseData *> & clauseData, string & predName ) { 667 CompoundStmt * ifBody = new CompoundStmt( stmt->location );668 const CodeLocation & loc = stmt->location;669 670 string switchLabel = namer_label.newName();671 672 /* generates:673 switch (i) {674 case 0:675 try {676 on_selected( target1, clause1 );677 dotarget1stmt();678 }679 finally { clause_statuses[i] = __SELECT_RUN; unregister_select(target1, clause1); }680 break;681 ...682 case N:683 ...684 break;685 }*/686 std::vector<ptr<CaseClause>> switchCases;687 int idx = 0;688 for ( const auto & clause: stmt->clauses ) {689 const CodeLocation & cLoc = clause->location;690 switchCases.push_back(691 new CaseClause( cLoc,692 ConstantExpr::from_int( cLoc, idx ),693 {694 new CompoundStmt( cLoc,695 {696 new ast::TryStmt( cLoc,697 genStmtBlock( clause, clauseData.at(idx) ),698 {},699 new ast::FinallyClause( cLoc, 700 new CompoundStmt( cLoc,701 {702 new ExprStmt( loc,703 new UntypedExpr ( loc,704 new NameExpr( loc, "?=?" ),705 {706 new UntypedExpr ( loc, 707 new NameExpr( loc, "?[?]" ),708 {709 new NameExpr( loc, clauseData.at(0)->statusName ),710 new NameExpr( loc, idxName )711 }712 ),713 new NameExpr( loc, "__SELECT_RUN" )714 }715 )716 ),717 new ExprStmt( loc, genSelectTraitCall( clause, clauseData.at(idx), "unregister_select" ) )718 }719 )720 )721 ),722 new BranchStmt( cLoc, BranchStmt::Kind::Break, Label( cLoc, switchLabel ) )723 }724 )725 }726 )727 );728 idx++;729 }730 731 ifBody->push_back(732 new SwitchStmt( loc,733 new NameExpr( loc, idxName ),734 std::move( switchCases ),735 { Label( loc, switchLabel ) }736 )737 );738 739 // gens:740 // if (clause_statuses[i] == __SELECT_SAT) {741 // ... ifBody ...742 // }743 IfStmt * ifSwitch = new IfStmt( loc,744 new UntypedExpr ( loc,745 new NameExpr( loc, "?==?" ),746 {747 new UntypedExpr ( loc, 748 new NameExpr( loc, "?[?]" ),749 {750 new NameExpr( loc, clauseData.at(0)->statusName ),751 new NameExpr( loc, idxName )752 }753 ),754 new NameExpr( loc, "__SELECT_SAT" )755 }756 ), // condition757 ifBody // body758 );759 760 string forLabel = namer_label.newName();761 762 // we hoist init here so that this pass can happen after hoistdecls pass763 return new CompoundStmt( loc,764 {765 new DeclStmt( loc,766 new ObjectDecl( loc,767 idxName,768 new BasicType( BasicKind::SignedInt ),769 new SingleInit( loc, ConstantExpr::from_int( loc, 0 ) )770 )771 ),772 new ForStmt( loc,773 {}, // inits774 new UntypedExpr ( loc,775 new NameExpr( loc, "?<?" ),776 {777 new NameExpr( loc, idxName ),778 ConstantExpr::from_int( loc, stmt->clauses.size() )779 }780 ), // cond781 new UntypedExpr ( loc,782 new NameExpr( loc, "?++" ),783 { new NameExpr( loc, idxName ) }784 ), // inc785 new CompoundStmt( loc,786 {787 new IfStmt( loc,788 new UntypedExpr ( loc,789 new NameExpr( loc, predName ),790 { new NameExpr( loc, clauseData.at(0)->statusName ) }791 ),792 new BranchStmt( loc, BranchStmt::Kind::Break, Label( loc, forLabel ) )793 ),794 ifSwitch795 }796 ), // body797 { Label( loc, forLabel ) }798 )799 }800 );667 CompoundStmt * ifBody = new CompoundStmt( stmt->location ); 668 const CodeLocation & loc = stmt->location; 669 670 string switchLabel = namer_label.newName(); 671 672 /* generates: 673 switch (i) { 674 case 0: 675 try { 676 on_selected( target1, clause1 ); 677 dotarget1stmt(); 678 } 679 finally { clause_statuses[i] = __SELECT_RUN; unregister_select(target1, clause1); } 680 break; 681 ... 682 case N: 683 ... 684 break; 685 }*/ 686 std::vector<ptr<CaseClause>> switchCases; 687 int idx = 0; 688 for ( const auto & clause: stmt->clauses ) { 689 const CodeLocation & cLoc = clause->location; 690 switchCases.push_back( 691 new CaseClause( cLoc, 692 ConstantExpr::from_int( cLoc, idx ), 693 { 694 new CompoundStmt( cLoc, 695 { 696 new ast::TryStmt( cLoc, 697 genStmtBlock( clause, clauseData.at(idx) ), 698 {}, 699 new ast::FinallyClause( cLoc, 700 new CompoundStmt( cLoc, 701 { 702 new ExprStmt( loc, 703 new UntypedExpr ( loc, 704 new NameExpr( loc, "?=?" ), 705 { 706 new UntypedExpr ( loc, 707 new NameExpr( loc, "?[?]" ), 708 { 709 new NameExpr( loc, clauseData.at(0)->statusName ), 710 new NameExpr( loc, idxName ) 711 } 712 ), 713 new NameExpr( loc, "__SELECT_RUN" ) 714 } 715 ) 716 ), 717 new ExprStmt( loc, genSelectTraitCall( clause, clauseData.at(idx), "unregister_select" ) ) 718 } 719 ) 720 ) 721 ), 722 new BranchStmt( cLoc, BranchStmt::Kind::Break, Label( cLoc, switchLabel ) ) 723 } 724 ) 725 } 726 ) 727 ); 728 idx++; 729 } 730 731 ifBody->push_back( 732 new SwitchStmt( loc, 733 new NameExpr( loc, idxName ), 734 std::move( switchCases ), 735 { Label( loc, switchLabel ) } 736 ) 737 ); 738 739 // gens: 740 // if (clause_statuses[i] == __SELECT_SAT) { 741 // ... ifBody ... 742 // } 743 IfStmt * ifSwitch = new IfStmt( loc, 744 new UntypedExpr ( loc, 745 new NameExpr( loc, "?==?" ), 746 { 747 new UntypedExpr ( loc, 748 new NameExpr( loc, "?[?]" ), 749 { 750 new NameExpr( loc, clauseData.at(0)->statusName ), 751 new NameExpr( loc, idxName ) 752 } 753 ), 754 new NameExpr( loc, "__SELECT_SAT" ) 755 } 756 ), // condition 757 ifBody // body 758 ); 759 760 string forLabel = namer_label.newName(); 761 762 // we hoist init here so that this pass can happen after hoistdecls pass 763 return new CompoundStmt( loc, 764 { 765 new DeclStmt( loc, 766 new ObjectDecl( loc, 767 idxName, 768 new BasicType( BasicKind::SignedInt ), 769 new SingleInit( loc, ConstantExpr::from_int( loc, 0 ) ) 770 ) 771 ), 772 new ForStmt( loc, 773 {}, // inits 774 new UntypedExpr ( loc, 775 new NameExpr( loc, "?<?" ), 776 { 777 new NameExpr( loc, idxName ), 778 ConstantExpr::from_int( loc, stmt->clauses.size() ) 779 } 780 ), // cond 781 new UntypedExpr ( loc, 782 new NameExpr( loc, "?++" ), 783 { new NameExpr( loc, idxName ) } 784 ), // inc 785 new CompoundStmt( loc, 786 { 787 new IfStmt( loc, 788 new UntypedExpr ( loc, 789 new NameExpr( loc, predName ), 790 { new NameExpr( loc, clauseData.at(0)->statusName ) } 791 ), 792 new BranchStmt( loc, BranchStmt::Kind::Break, Label( loc, forLabel ) ) 793 ), 794 ifSwitch 795 } 796 ), // body 797 { Label( loc, forLabel ) } 798 ) 799 } 800 ); 801 801 } 802 802 803 803 // Generates: !is_full_sat_n() / !is_run_sat_n() 804 804 Expr * genNotSatExpr( const WaitUntilStmt * stmt, string & satName, string & arrName ) { 805 const CodeLocation & loc = stmt->location;806 return new UntypedExpr ( loc,807 new NameExpr( loc, "!?" ),808 {809 new UntypedExpr ( loc,810 new NameExpr( loc, satName ),811 { new NameExpr( loc, arrName ) }812 )813 }814 );805 const CodeLocation & loc = stmt->location; 806 return new UntypedExpr ( loc, 807 new NameExpr( loc, "!?" ), 808 { 809 new UntypedExpr ( loc, 810 new NameExpr( loc, satName ), 811 { new NameExpr( loc, arrName ) } 812 ) 813 } 814 ); 815 815 } 816 816 … … 819 819 // If not enough have run to satisfy predicate after one pass then the else is run 820 820 Stmt * GenerateWaitUntilCore::genElseClauseBranch( const WaitUntilStmt * stmt, string & runName, string & arrName, vector<ClauseData *> & clauseData ) { 821 return new CompoundStmt( stmt->else_stmt->location,822 {823 genStatusCheckFor( stmt, clauseData, runName ),824 new IfStmt( stmt->else_stmt->location,825 genNotSatExpr( stmt, runName, arrName ),826 ast::deepCopy( stmt->else_stmt )827 )828 }829 );821 return new CompoundStmt( stmt->else_stmt->location, 822 { 823 genStatusCheckFor( stmt, clauseData, runName ), 824 new IfStmt( stmt->else_stmt->location, 825 genNotSatExpr( stmt, runName, arrName ), 826 ast::deepCopy( stmt->else_stmt ) 827 ) 828 } 829 ); 830 830 } 831 831 832 832 Stmt * GenerateWaitUntilCore::genNoElseClauseBranch( const WaitUntilStmt * stmt, string & runName, string & arrName, string & pCountName, vector<ClauseData *> & clauseData ) { 833 CompoundStmt * whileBody = new CompoundStmt( stmt->location );834 const CodeLocation & loc = stmt->location;835 836 // generates: __CFA_maybe_park( &park_counter );837 whileBody->push_back(838 new ExprStmt( loc,839 new UntypedExpr ( loc,840 new NameExpr( loc, "__CFA_maybe_park" ),841 { new AddressExpr( loc, new NameExpr( loc, pCountName ) ) }842 )843 )844 );845 846 whileBody->push_back( genStatusCheckFor( stmt, clauseData, runName ) );847 848 return new CompoundStmt( loc,849 {850 new WhileDoStmt( loc,851 genNotSatExpr( stmt, runName, arrName ),852 whileBody, // body853 {} // no inits854 )855 }856 );833 CompoundStmt * whileBody = new CompoundStmt( stmt->location ); 834 const CodeLocation & loc = stmt->location; 835 836 // generates: __CFA_maybe_park( &park_counter ); 837 whileBody->push_back( 838 new ExprStmt( loc, 839 new UntypedExpr ( loc, 840 new NameExpr( loc, "__CFA_maybe_park" ), 841 { new AddressExpr( loc, new NameExpr( loc, pCountName ) ) } 842 ) 843 ) 844 ); 845 846 whileBody->push_back( genStatusCheckFor( stmt, clauseData, runName ) ); 847 848 return new CompoundStmt( loc, 849 { 850 new WhileDoStmt( loc, 851 genNotSatExpr( stmt, runName, arrName ), 852 whileBody, // body 853 {} // no inits 854 ) 855 } 856 ); 857 857 } 858 858 … … 862 862 // select_node clause1; 863 863 void GenerateWaitUntilCore::genClauseInits( const WaitUntilStmt * stmt, vector<ClauseData *> & clauseData, CompoundStmt * body, string & statusName, string & elseWhenName ) { 864 ClauseData * currClause;865 for ( vector<ClauseData*>::size_type i = 0; i < stmt->clauses.size(); i++ ) {866 currClause = new ClauseData( i, statusName );867 currClause->nodeName = namer_node.newName();868 currClause->targetName = namer_target.newName();869 currClause->whenName = namer_when.newName();870 clauseData.push_back(currClause);871 const CodeLocation & cLoc = stmt->clauses.at(i)->location;872 873 // typeof(target) & __clause_target_0 = target;874 body->push_back(875 new DeclStmt( cLoc,876 new ObjectDecl( cLoc,877 currClause->targetName,878 new ReferenceType( 879 new TypeofType( new UntypedExpr( cLoc,880 new NameExpr( cLoc, "__CFA_select_get_type" ),881 { ast::deepCopy( stmt->clauses.at(i)->target ) }882 ))883 ),884 new SingleInit( cLoc, ast::deepCopy( stmt->clauses.at(i)->target ) )885 )886 )887 );888 889 // bool __when_cond_0 = when_cond; // only generated if when_cond defined890 if ( stmt->clauses.at(i)->when_cond )891 body->push_back(892 new DeclStmt( cLoc,893 new ObjectDecl( cLoc,894 currClause->whenName,895 new BasicType( BasicKind::Bool ),896 new SingleInit( cLoc, ast::deepCopy( stmt->clauses.at(i)->when_cond ) )897 )898 )899 );900 901 // select_node clause1;902 body->push_back(903 new DeclStmt( cLoc,904 new ObjectDecl( cLoc,905 currClause->nodeName,906 new StructInstType( selectNodeDecl )907 )908 )909 );910 }911 912 if ( stmt->else_stmt && stmt->else_cond ) {913 body->push_back(914 new DeclStmt( stmt->else_cond->location,915 new ObjectDecl( stmt->else_cond->location,916 elseWhenName,917 new BasicType( BasicKind::Bool ),918 new SingleInit( stmt->else_cond->location, ast::deepCopy( stmt->else_cond ) )919 )920 )921 );922 }864 ClauseData * currClause; 865 for ( vector<ClauseData*>::size_type i = 0; i < stmt->clauses.size(); i++ ) { 866 currClause = new ClauseData( i, statusName ); 867 currClause->nodeName = namer_node.newName(); 868 currClause->targetName = namer_target.newName(); 869 currClause->whenName = namer_when.newName(); 870 clauseData.push_back(currClause); 871 const CodeLocation & cLoc = stmt->clauses.at(i)->location; 872 873 // typeof(target) & __clause_target_0 = target; 874 body->push_back( 875 new DeclStmt( cLoc, 876 new ObjectDecl( cLoc, 877 currClause->targetName, 878 new ReferenceType( 879 new TypeofType( new UntypedExpr( cLoc, 880 new NameExpr( cLoc, "__CFA_select_get_type" ), 881 { ast::deepCopy( stmt->clauses.at(i)->target ) } 882 )) 883 ), 884 new SingleInit( cLoc, ast::deepCopy( stmt->clauses.at(i)->target ) ) 885 ) 886 ) 887 ); 888 889 // bool __when_cond_0 = when_cond; // only generated if when_cond defined 890 if ( stmt->clauses.at(i)->when_cond ) 891 body->push_back( 892 new DeclStmt( cLoc, 893 new ObjectDecl( cLoc, 894 currClause->whenName, 895 new BasicType( BasicKind::Bool ), 896 new SingleInit( cLoc, ast::deepCopy( stmt->clauses.at(i)->when_cond ) ) 897 ) 898 ) 899 ); 900 901 // select_node clause1; 902 body->push_back( 903 new DeclStmt( cLoc, 904 new ObjectDecl( cLoc, 905 currClause->nodeName, 906 new StructInstType( selectNodeDecl ) 907 ) 908 ) 909 ); 910 } 911 912 if ( stmt->else_stmt && stmt->else_cond ) { 913 body->push_back( 914 new DeclStmt( stmt->else_cond->location, 915 new ObjectDecl( stmt->else_cond->location, 916 elseWhenName, 917 new BasicType( BasicKind::Bool ), 918 new SingleInit( stmt->else_cond->location, ast::deepCopy( stmt->else_cond ) ) 919 ) 920 ) 921 ); 922 } 923 923 } 924 924 … … 929 929 */ 930 930 Stmt * GenerateWaitUntilCore::buildOrCaseSwitch( const WaitUntilStmt * stmt, string & statusName, vector<ClauseData *> & data ) { 931 const CodeLocation & loc = stmt->location;932 933 IfStmt * outerIf = nullptr;931 const CodeLocation & loc = stmt->location; 932 933 IfStmt * outerIf = nullptr; 934 934 IfStmt * lastIf = nullptr; 935 935 936 936 //adds an if/elif clause for each select clause address to run the corresponding clause stmt 937 937 for ( long unsigned int i = 0; i < data.size(); i++ ) { 938 const CodeLocation & cLoc = stmt->clauses.at(i)->location;938 const CodeLocation & cLoc = stmt->clauses.at(i)->location; 939 939 940 940 IfStmt * currIf = new IfStmt( cLoc, 941 new UntypedExpr( cLoc, 942 new NameExpr( cLoc, "?==?" ), 943 {944 new NameExpr( cLoc, statusName ),945 new CastExpr( cLoc, 946 new AddressExpr( cLoc, new NameExpr( cLoc, data.at(i)->nodeName ) ),947 new BasicType( BasicKind::LongUnsignedInt ), GeneratedFlag::ExplicitCast 948 )949 }950 ),951 genStmtBlock( stmt->clauses.at(i), data.at(i) )952 ); 953 941 new UntypedExpr( cLoc, 942 new NameExpr( cLoc, "?==?" ), 943 { 944 new NameExpr( cLoc, statusName ), 945 new CastExpr( cLoc, 946 new AddressExpr( cLoc, new NameExpr( cLoc, data.at(i)->nodeName ) ), 947 new BasicType( BasicKind::LongUnsignedInt ), GeneratedFlag::ExplicitCast 948 ) 949 } 950 ), 951 genStmtBlock( stmt->clauses.at(i), data.at(i) ) 952 ); 953 954 954 if ( i == 0 ) { 955 955 outerIf = currIf; … … 962 962 } 963 963 964 return new CompoundStmt( loc,965 {966 new ExprStmt( loc, new UntypedExpr( loc, new NameExpr( loc, "park" ) ) ),967 outerIf968 }969 );964 return new CompoundStmt( loc, 965 { 966 new ExprStmt( loc, new UntypedExpr( loc, new NameExpr( loc, "park" ) ) ), 967 outerIf 968 } 969 ); 970 970 } 971 971 972 972 Stmt * GenerateWaitUntilCore::recursiveOrIfGen( const WaitUntilStmt * stmt, vector<ClauseData *> & data, vector<ClauseData*>::size_type idx, string & elseWhenName ) { 973 if ( idx == data.size() ) { // base case, gen last else974 const CodeLocation & cLoc = stmt->else_stmt->location;975 if ( !stmt->else_stmt ) // normal non-else gen976 return buildOrCaseSwitch( stmt, data.at(0)->statusName, data );977 978 Expr * raceFnCall = new UntypedExpr( stmt->location,979 new NameExpr( stmt->location, "__select_node_else_race" ),980 { new NameExpr( stmt->location, data.at(0)->nodeName ) }981 );982 983 if ( stmt->else_stmt && stmt->else_cond ) { // return else conditional on both when and race984 return new IfStmt( cLoc,985 new LogicalExpr( cLoc,986 new CastExpr( cLoc,987 new NameExpr( cLoc, elseWhenName ),988 new BasicType( BasicKind::Bool ), GeneratedFlag::ExplicitCast 989 ),990 new CastExpr( cLoc,991 raceFnCall,992 new BasicType( BasicKind::Bool ), GeneratedFlag::ExplicitCast 993 ),994 LogicalFlag::AndExpr995 ),996 ast::deepCopy( stmt->else_stmt ),997 buildOrCaseSwitch( stmt, data.at(0)->statusName, data )998 );999 }1000 1001 // return else conditional on race1002 return new IfStmt( stmt->else_stmt->location,1003 raceFnCall,1004 ast::deepCopy( stmt->else_stmt ),1005 buildOrCaseSwitch( stmt, data.at(0)->statusName, data )1006 );1007 }1008 const CodeLocation & cLoc = stmt->clauses.at(idx)->location;1009 1010 Expr * baseCond = genSelectTraitCall( stmt->clauses.at(idx), data.at(idx), "register_select" );1011 Expr * ifCond;1012 1013 // If we have a when_cond make the register call conditional on it1014 if ( stmt->clauses.at(idx)->when_cond ) {1015 ifCond = new LogicalExpr( cLoc,1016 new CastExpr( cLoc,1017 new NameExpr( cLoc, data.at(idx)->whenName ), 1018 new BasicType( BasicKind::Bool ), GeneratedFlag::ExplicitCast 1019 ),1020 new CastExpr( cLoc,1021 baseCond,1022 new BasicType( BasicKind::Bool ), GeneratedFlag::ExplicitCast 1023 ),1024 LogicalFlag::AndExpr1025 );1026 } else ifCond = baseCond;1027 1028 return new CompoundStmt( cLoc,1029 { // gens: setup_clause( clause1, &status, 0p );1030 new ExprStmt( cLoc,1031 new UntypedExpr ( cLoc,1032 new NameExpr( cLoc, "setup_clause" ),1033 {1034 new NameExpr( cLoc, data.at(idx)->nodeName ),1035 new AddressExpr( cLoc, new NameExpr( cLoc, data.at(idx)->statusName ) ),1036 ConstantExpr::null( cLoc, new PointerType( new BasicType( BasicKind::SignedInt ) ) )1037 }1038 )1039 ),1040 // gens: if (__when_cond && register_select()) { clause body } else { ... recursiveOrIfGen ... }1041 new IfStmt( cLoc,1042 ifCond,1043 genStmtBlock( stmt->clauses.at(idx), data.at(idx) ),1044 recursiveOrIfGen( stmt, data, idx + 1, elseWhenName )1045 )1046 }1047 );973 if ( idx == data.size() ) { // base case, gen last else 974 const CodeLocation & cLoc = stmt->else_stmt->location; 975 if ( !stmt->else_stmt ) // normal non-else gen 976 return buildOrCaseSwitch( stmt, data.at(0)->statusName, data ); 977 978 Expr * raceFnCall = new UntypedExpr( stmt->location, 979 new NameExpr( stmt->location, "__select_node_else_race" ), 980 { new NameExpr( stmt->location, data.at(0)->nodeName ) } 981 ); 982 983 if ( stmt->else_stmt && stmt->else_cond ) { // return else conditional on both when and race 984 return new IfStmt( cLoc, 985 new LogicalExpr( cLoc, 986 new CastExpr( cLoc, 987 new NameExpr( cLoc, elseWhenName ), 988 new BasicType( BasicKind::Bool ), GeneratedFlag::ExplicitCast 989 ), 990 new CastExpr( cLoc, 991 raceFnCall, 992 new BasicType( BasicKind::Bool ), GeneratedFlag::ExplicitCast 993 ), 994 LogicalFlag::AndExpr 995 ), 996 ast::deepCopy( stmt->else_stmt ), 997 buildOrCaseSwitch( stmt, data.at(0)->statusName, data ) 998 ); 999 } 1000 1001 // return else conditional on race 1002 return new IfStmt( stmt->else_stmt->location, 1003 raceFnCall, 1004 ast::deepCopy( stmt->else_stmt ), 1005 buildOrCaseSwitch( stmt, data.at(0)->statusName, data ) 1006 ); 1007 } 1008 const CodeLocation & cLoc = stmt->clauses.at(idx)->location; 1009 1010 Expr * baseCond = genSelectTraitCall( stmt->clauses.at(idx), data.at(idx), "register_select" ); 1011 Expr * ifCond; 1012 1013 // If we have a when_cond make the register call conditional on it 1014 if ( stmt->clauses.at(idx)->when_cond ) { 1015 ifCond = new LogicalExpr( cLoc, 1016 new CastExpr( cLoc, 1017 new NameExpr( cLoc, data.at(idx)->whenName ), 1018 new BasicType( BasicKind::Bool ), GeneratedFlag::ExplicitCast 1019 ), 1020 new CastExpr( cLoc, 1021 baseCond, 1022 new BasicType( BasicKind::Bool ), GeneratedFlag::ExplicitCast 1023 ), 1024 LogicalFlag::AndExpr 1025 ); 1026 } else ifCond = baseCond; 1027 1028 return new CompoundStmt( cLoc, 1029 { // gens: setup_clause( clause1, &status, 0p ); 1030 new ExprStmt( cLoc, 1031 new UntypedExpr ( cLoc, 1032 new NameExpr( cLoc, "setup_clause" ), 1033 { 1034 new NameExpr( cLoc, data.at(idx)->nodeName ), 1035 new AddressExpr( cLoc, new NameExpr( cLoc, data.at(idx)->statusName ) ), 1036 ConstantExpr::null( cLoc, new PointerType( new BasicType( BasicKind::SignedInt ) ) ) 1037 } 1038 ) 1039 ), 1040 // gens: if (__when_cond && register_select()) { clause body } else { ... recursiveOrIfGen ... } 1041 new IfStmt( cLoc, 1042 ifCond, 1043 genStmtBlock( stmt->clauses.at(idx), data.at(idx) ), 1044 recursiveOrIfGen( stmt, data, idx + 1, elseWhenName ) 1045 ) 1046 } 1047 ); 1048 1048 } 1049 1049 1050 1050 // This gens the special case of an all OR waituntil: 1051 /* 1051 /* 1052 1052 int status = 0; 1053 1053 … … 1058 1058 1059 1059 try { 1060 setup_clause( clause1, &status, 0p );1061 if ( __when_cond_0 && register_select( 1 ) ) {1062 ... clause 1 body ...1063 } else {1064 ... recursively gen for each of n clauses ...1065 setup_clause( clausen, &status, 0p );1066 if ( __when_cond_n-1 && register_select( n ) ) {1067 ... clause n body ...1068 } else {1069 if ( else_when ) ... else clause body ...1070 else {1071 park();1072 1073 // after winning the race and before unpark() clause_status is set to be the winning clause index + 1 1074 if ( clause_status == &clause1) ... clause 1 body ...1075 ...1076 elif ( clause_status == &clausen ) ... clause n body ...1077 }1078 }1079 }1080 } 1081 finally { 1082 if ( __when_cond_1 && clause1.status != 0p) unregister_select( 1 ); // if registered unregister1083 ...1084 if ( __when_cond_n && clausen.status != 0p) unregister_select( n );1060 setup_clause( clause1, &status, 0p ); 1061 if ( __when_cond_0 && register_select( 1 ) ) { 1062 ... clause 1 body ... 1063 } else { 1064 ... recursively gen for each of n clauses ... 1065 setup_clause( clausen, &status, 0p ); 1066 if ( __when_cond_n-1 && register_select( n ) ) { 1067 ... clause n body ... 1068 } else { 1069 if ( else_when ) ... else clause body ... 1070 else { 1071 park(); 1072 1073 // after winning the race and before unpark() clause_status is set to be the winning clause index + 1 1074 if ( clause_status == &clause1) ... clause 1 body ... 1075 ... 1076 elif ( clause_status == &clausen ) ... clause n body ... 1077 } 1078 } 1079 } 1080 } 1081 finally { 1082 if ( __when_cond_1 && clause1.status != 0p) unregister_select( 1 ); // if registered unregister 1083 ... 1084 if ( __when_cond_n && clausen.status != 0p) unregister_select( n ); 1085 1085 } 1086 1086 */ 1087 1087 Stmt * GenerateWaitUntilCore::genAllOr( const WaitUntilStmt * stmt ) { 1088 const CodeLocation & loc = stmt->location;1089 string statusName = namer_status.newName();1090 string elseWhenName = namer_when.newName();1091 int numClauses = stmt->clauses.size();1092 CompoundStmt * body = new CompoundStmt( stmt->location );1093 1094 // Generates: unsigned long int status = 0;1095 body->push_back( new DeclStmt( loc,1096 new ObjectDecl( loc,1097 statusName,1098 new BasicType( BasicKind::LongUnsignedInt ),1099 new SingleInit( loc, ConstantExpr::from_int( loc, 0 ) )1100 )1101 ));1102 1103 vector<ClauseData *> clauseData;1104 genClauseInits( stmt, clauseData, body, statusName, elseWhenName );1105 1106 vector<int> whenIndices; // track which clauses have whens1107 1108 CompoundStmt * unregisters = new CompoundStmt( loc );1109 Expr * ifCond;1110 for ( int i = 0; i < numClauses; i++ ) {1111 const CodeLocation & cLoc = stmt->clauses.at(i)->location;1112 // Gens: node.status != 0p1113 UntypedExpr * statusPtrCheck = new UntypedExpr( cLoc, 1114 new NameExpr( cLoc, "?!=?" ), 1115 {1116 ConstantExpr::null( cLoc, new PointerType( new BasicType( BasicKind::LongUnsignedInt ) ) ),1117 new UntypedExpr( cLoc, 1118 new NameExpr( cLoc, "__get_clause_status" ), 1119 { new NameExpr( cLoc, clauseData.at(i)->nodeName ) } 1120 ) 1121 }1122 );1123 1124 // If we have a when_cond make the unregister call conditional on it1125 if ( stmt->clauses.at(i)->when_cond ) {1126 whenIndices.push_back(i);1127 ifCond = new LogicalExpr( cLoc,1128 new CastExpr( cLoc,1129 new NameExpr( cLoc, clauseData.at(i)->whenName ), 1130 new BasicType( BasicKind::Bool ), GeneratedFlag::ExplicitCast 1131 ),1132 new CastExpr( cLoc,1133 statusPtrCheck,1134 new BasicType( BasicKind::Bool ), GeneratedFlag::ExplicitCast 1135 ),1136 LogicalFlag::AndExpr1137 );1138 } else ifCond = statusPtrCheck;1139 1140 unregisters->push_back(1141 new IfStmt( cLoc,1142 ifCond,1143 new ExprStmt( cLoc, genSelectTraitCall( stmt->clauses.at(i), clauseData.at(i), "unregister_select" ) ) 1144 )1145 );1146 }1147 1148 if ( whenIndices.empty() || whenIndices.size() != stmt->clauses.size() ) {1149 body->push_back(1150 new ast::TryStmt( loc,1151 new CompoundStmt( loc, { recursiveOrIfGen( stmt, clauseData, 0, elseWhenName ) } ),1152 {},1153 new ast::FinallyClause( loc, unregisters )1154 )1155 );1156 } else { // If all clauses have whens, we need to skip the waituntil if they are all false1157 Expr * outerIfCond = new NameExpr( loc, clauseData.at( whenIndices.at(0) )->whenName );1158 Expr * lastExpr = outerIfCond;1159 1160 for ( vector<int>::size_type i = 1; i < whenIndices.size(); i++ ) {1161 outerIfCond = new LogicalExpr( loc,1162 new CastExpr( loc,1163 new NameExpr( loc, clauseData.at( whenIndices.at(i) )->whenName ), 1164 new BasicType( BasicKind::Bool ), GeneratedFlag::ExplicitCast 1165 ),1166 new CastExpr( loc,1167 lastExpr,1168 new BasicType( BasicKind::Bool ), GeneratedFlag::ExplicitCast 1169 ),1170 LogicalFlag::OrExpr1171 );1172 lastExpr = outerIfCond;1173 }1174 1175 body->push_back(1176 new ast::TryStmt( loc,1177 new CompoundStmt( loc, 1178 {1179 new IfStmt( loc,1180 outerIfCond,1181 recursiveOrIfGen( stmt, clauseData, 0, elseWhenName )1182 )1183 }1184 ),1185 {},1186 new ast::FinallyClause( loc, unregisters )1187 )1188 );1189 }1190 1191 for ( ClauseData * datum : clauseData )1192 delete datum;1193 1194 return body;1088 const CodeLocation & loc = stmt->location; 1089 string statusName = namer_status.newName(); 1090 string elseWhenName = namer_when.newName(); 1091 int numClauses = stmt->clauses.size(); 1092 CompoundStmt * body = new CompoundStmt( stmt->location ); 1093 1094 // Generates: unsigned long int status = 0; 1095 body->push_back( new DeclStmt( loc, 1096 new ObjectDecl( loc, 1097 statusName, 1098 new BasicType( BasicKind::LongUnsignedInt ), 1099 new SingleInit( loc, ConstantExpr::from_int( loc, 0 ) ) 1100 ) 1101 )); 1102 1103 vector<ClauseData *> clauseData; 1104 genClauseInits( stmt, clauseData, body, statusName, elseWhenName ); 1105 1106 vector<int> whenIndices; // track which clauses have whens 1107 1108 CompoundStmt * unregisters = new CompoundStmt( loc ); 1109 Expr * ifCond; 1110 for ( int i = 0; i < numClauses; i++ ) { 1111 const CodeLocation & cLoc = stmt->clauses.at(i)->location; 1112 // Gens: node.status != 0p 1113 UntypedExpr * statusPtrCheck = new UntypedExpr( cLoc, 1114 new NameExpr( cLoc, "?!=?" ), 1115 { 1116 ConstantExpr::null( cLoc, new PointerType( new BasicType( BasicKind::LongUnsignedInt ) ) ), 1117 new UntypedExpr( cLoc, 1118 new NameExpr( cLoc, "__get_clause_status" ), 1119 { new NameExpr( cLoc, clauseData.at(i)->nodeName ) } 1120 ) 1121 } 1122 ); 1123 1124 // If we have a when_cond make the unregister call conditional on it 1125 if ( stmt->clauses.at(i)->when_cond ) { 1126 whenIndices.push_back(i); 1127 ifCond = new LogicalExpr( cLoc, 1128 new CastExpr( cLoc, 1129 new NameExpr( cLoc, clauseData.at(i)->whenName ), 1130 new BasicType( BasicKind::Bool ), GeneratedFlag::ExplicitCast 1131 ), 1132 new CastExpr( cLoc, 1133 statusPtrCheck, 1134 new BasicType( BasicKind::Bool ), GeneratedFlag::ExplicitCast 1135 ), 1136 LogicalFlag::AndExpr 1137 ); 1138 } else ifCond = statusPtrCheck; 1139 1140 unregisters->push_back( 1141 new IfStmt( cLoc, 1142 ifCond, 1143 new ExprStmt( cLoc, genSelectTraitCall( stmt->clauses.at(i), clauseData.at(i), "unregister_select" ) ) 1144 ) 1145 ); 1146 } 1147 1148 if ( whenIndices.empty() || whenIndices.size() != stmt->clauses.size() ) { 1149 body->push_back( 1150 new ast::TryStmt( loc, 1151 new CompoundStmt( loc, { recursiveOrIfGen( stmt, clauseData, 0, elseWhenName ) } ), 1152 {}, 1153 new ast::FinallyClause( loc, unregisters ) 1154 ) 1155 ); 1156 } else { // If all clauses have whens, we need to skip the waituntil if they are all false 1157 Expr * outerIfCond = new NameExpr( loc, clauseData.at( whenIndices.at(0) )->whenName ); 1158 Expr * lastExpr = outerIfCond; 1159 1160 for ( vector<int>::size_type i = 1; i < whenIndices.size(); i++ ) { 1161 outerIfCond = new LogicalExpr( loc, 1162 new CastExpr( loc, 1163 new NameExpr( loc, clauseData.at( whenIndices.at(i) )->whenName ), 1164 new BasicType( BasicKind::Bool ), GeneratedFlag::ExplicitCast 1165 ), 1166 new CastExpr( loc, 1167 lastExpr, 1168 new BasicType( BasicKind::Bool ), GeneratedFlag::ExplicitCast 1169 ), 1170 LogicalFlag::OrExpr 1171 ); 1172 lastExpr = outerIfCond; 1173 } 1174 1175 body->push_back( 1176 new ast::TryStmt( loc, 1177 new CompoundStmt( loc, 1178 { 1179 new IfStmt( loc, 1180 outerIfCond, 1181 recursiveOrIfGen( stmt, clauseData, 0, elseWhenName ) 1182 ) 1183 } 1184 ), 1185 {}, 1186 new ast::FinallyClause( loc, unregisters ) 1187 ) 1188 ); 1189 } 1190 1191 for ( ClauseData * datum : clauseData ) 1192 delete datum; 1193 1194 return body; 1195 1195 } 1196 1196 1197 1197 Stmt * GenerateWaitUntilCore::postvisit( const WaitUntilStmt * stmt ) { 1198 if ( !selectNodeDecl )1199 SemanticError( stmt, "waituntil statement requires #include <waituntil.hfa>" );1200 1201 // Prep clause tree to figure out how to set initial statuses1202 // setTreeSizes( stmt->predicateTree );1203 if ( paintWhenTree( stmt->predicateTree ) ) // if this returns true we can special case since tree is all OR's1204 return genAllOr( stmt );1205 1206 CompoundStmt * tryBody = new CompoundStmt( stmt->location );1207 CompoundStmt * body = new CompoundStmt( stmt->location );1208 string statusArrName = namer_status.newName();1209 string pCountName = namer_park.newName();1210 string satName = namer_sat.newName();1211 string runName = namer_run.newName();1212 string elseWhenName = namer_when.newName();1213 int numClauses = stmt->clauses.size();1214 addPredicates( stmt, satName, runName );1215 1216 const CodeLocation & loc = stmt->location;1217 1218 // Generates: int park_counter = 0;1219 body->push_back( new DeclStmt( loc,1220 new ObjectDecl( loc,1221 pCountName,1222 new BasicType( BasicKind::SignedInt ),1223 new SingleInit( loc, ConstantExpr::from_int( loc, 0 ) )1224 )1225 ));1226 1227 // Generates: int clause_statuses[3] = { 0 };1228 body->push_back( new DeclStmt( loc,1229 new ObjectDecl( loc,1230 statusArrName,1231 new ArrayType( new BasicType( BasicKind::LongUnsignedInt ), ConstantExpr::from_int( loc, numClauses ), LengthFlag::FixedLen, DimensionFlag::DynamicDim ),1232 new ListInit( loc,1233 {1234 new SingleInit( loc, ConstantExpr::from_int( loc, 0 ) )1235 }1236 )1237 )1238 ));1239 1240 vector<ClauseData *> clauseData;1241 genClauseInits( stmt, clauseData, body, statusArrName, elseWhenName );1242 1243 vector<pair<int, WaitUntilStmt::ClauseNode *>> ambiguousClauses; // list of ambiguous clauses1244 vector<int> andWhenClauses; // list of clauses that have an AND op as a direct parent and when_cond defined1245 1246 collectWhens( stmt->predicateTree, ambiguousClauses, andWhenClauses );1247 1248 // This is only needed for clauses that have AND as a parent and a when_cond defined1249 // generates: if ( ! when_cond_0 ) clause_statuses_0 = __SELECT_RUN;1250 for ( int idx : andWhenClauses ) {1251 const CodeLocation & cLoc = stmt->clauses.at(idx)->location;1252 body->push_back( 1253 new IfStmt( cLoc,1254 new UntypedExpr ( cLoc,1255 new NameExpr( cLoc, "!?" ),1256 { new NameExpr( cLoc, clauseData.at(idx)->whenName ) }1257 ), // IfStmt cond1258 new ExprStmt( cLoc,1259 new UntypedExpr ( cLoc,1260 new NameExpr( cLoc, "?=?" ),1261 {1262 new UntypedExpr ( cLoc, 1263 new NameExpr( cLoc, "?[?]" ),1264 {1265 new NameExpr( cLoc, statusArrName ),1266 ConstantExpr::from_int( cLoc, idx )1267 }1268 ),1269 new NameExpr( cLoc, "__SELECT_RUN" )1270 }1271 )1272 ) // IfStmt then1273 )1274 );1275 }1276 1277 // Only need to generate conditional initial state setting for ambiguous when clauses1278 if ( !ambiguousClauses.empty() ) {1279 body->push_back( genWhenStateConditions( stmt, clauseData, ambiguousClauses, 0 ) );1280 }1281 1282 // generates the following for each clause:1283 // setup_clause( clause1, &clause_statuses[0], &park_counter );1284 // register_select(A, clause1);1285 for ( int i = 0; i < numClauses; i++ ) {1286 setUpClause( stmt->clauses.at(i), clauseData.at(i), pCountName, tryBody );1287 }1288 1289 // generate satisfy logic based on if there is an else clause and if it is conditional1290 if ( stmt->else_stmt && stmt->else_cond ) { // gen both else/non else branches1291 tryBody->push_back(1292 new IfStmt( stmt->else_cond->location,1293 new NameExpr( stmt->else_cond->location, elseWhenName ),1294 genElseClauseBranch( stmt, runName, statusArrName, clauseData ),1295 genNoElseClauseBranch( stmt, runName, statusArrName, pCountName, clauseData )1296 )1297 );1298 } else if ( !stmt->else_stmt ) { // normal gen1299 tryBody->push_back( genNoElseClauseBranch( stmt, runName, statusArrName, pCountName, clauseData ) );1300 } else { // generate just else1301 tryBody->push_back( genElseClauseBranch( stmt, runName, statusArrName, clauseData ) );1302 }1303 1304 // Collection of unregister calls on resources to be put in finally clause1305 // for each clause: 1306 // if ( !__CFA_has_clause_run( clause_statuses[i] )) && unregister_select( ... , clausei ) ) { ... clausei stmt ... }1307 // OR if when( ... ) defined on resource1308 // if ( when_cond_i && (!__CFA_has_clause_run( clause_statuses[i] )) && unregister_select( ... , clausei ) ) { ... clausei stmt ... }1309 CompoundStmt * unregisters = new CompoundStmt( loc );1310 1311 Expr * statusExpr; // !__CFA_has_clause_run( clause_statuses[i] )1312 for ( int i = 0; i < numClauses; i++ ) {1313 const CodeLocation & cLoc = stmt->clauses.at(i)->location;1314 1315 // Generates: !__CFA_has_clause_run( clause_statuses[i] )1316 statusExpr = new UntypedExpr ( cLoc,1317 new NameExpr( cLoc, "!?" ),1318 {1319 new UntypedExpr ( cLoc, 1320 new NameExpr( cLoc, "__CFA_has_clause_run" ),1321 {1322 genArrAccessExpr( cLoc, i, statusArrName )1323 }1324 )1325 }1326 );1327 1328 // Generates:1329 // (!__CFA_has_clause_run( clause_statuses[i] )) && unregister_select( ... , clausei );1330 statusExpr = new LogicalExpr( cLoc,1331 new CastExpr( cLoc,1332 statusExpr, 1333 new BasicType( BasicKind::Bool ), GeneratedFlag::ExplicitCast 1334 ),1335 new CastExpr( cLoc,1336 genSelectTraitCall( stmt->clauses.at(i), clauseData.at(i), "unregister_select" ),1337 new BasicType( BasicKind::Bool ), GeneratedFlag::ExplicitCast 1338 ),1339 LogicalFlag::AndExpr1340 );1341 1342 // if when cond defined generates:1343 // when_cond_i && (!__CFA_has_clause_run( clause_statuses[i] )) && unregister_select( ... , clausei );1344 if ( stmt->clauses.at(i)->when_cond )1345 statusExpr = new LogicalExpr( cLoc,1346 new CastExpr( cLoc,1347 new NameExpr( cLoc, clauseData.at(i)->whenName ), 1348 new BasicType( BasicKind::Bool ), GeneratedFlag::ExplicitCast 1349 ),1350 new CastExpr( cLoc,1351 statusExpr,1352 new BasicType( BasicKind::Bool ), GeneratedFlag::ExplicitCast 1353 ),1354 LogicalFlag::AndExpr1355 );1356 1357 // generates:1358 // if ( statusExpr ) { ... clausei stmt ... }1359 unregisters->push_back( 1360 new IfStmt( cLoc,1361 statusExpr,1362 new CompoundStmt( cLoc,1363 {1364 new IfStmt( cLoc,1365 genSelectTraitCall( stmt->clauses.at(i), clauseData.at(i), "on_selected" ),1366 ast::deepCopy( stmt->clauses.at(i)->stmt )1367 )1368 }1369 )1370 )1371 );1372 1373 // // generates:1374 // // if ( statusExpr ) { ... clausei stmt ... }1375 // unregisters->push_back( 1376 // new IfStmt( cLoc,1377 // statusExpr,1378 // genStmtBlock( stmt->clauses.at(i), clauseData.at(i) )1379 // )1380 // );1381 }1382 1383 body->push_back( 1384 new ast::TryStmt(1385 loc,1386 tryBody,1387 {},1388 new ast::FinallyClause( loc, unregisters )1389 )1390 );1391 1392 for ( ClauseData * datum : clauseData )1393 delete datum;1394 1395 return body;1198 if ( !selectNodeDecl ) 1199 SemanticError( stmt, "waituntil statement requires #include <waituntil.hfa>" ); 1200 1201 // Prep clause tree to figure out how to set initial statuses 1202 // setTreeSizes( stmt->predicateTree ); 1203 if ( paintWhenTree( stmt->predicateTree ) ) // if this returns true we can special case since tree is all OR's 1204 return genAllOr( stmt ); 1205 1206 CompoundStmt * tryBody = new CompoundStmt( stmt->location ); 1207 CompoundStmt * body = new CompoundStmt( stmt->location ); 1208 string statusArrName = namer_status.newName(); 1209 string pCountName = namer_park.newName(); 1210 string satName = namer_sat.newName(); 1211 string runName = namer_run.newName(); 1212 string elseWhenName = namer_when.newName(); 1213 int numClauses = stmt->clauses.size(); 1214 addPredicates( stmt, satName, runName ); 1215 1216 const CodeLocation & loc = stmt->location; 1217 1218 // Generates: int park_counter = 0; 1219 body->push_back( new DeclStmt( loc, 1220 new ObjectDecl( loc, 1221 pCountName, 1222 new BasicType( BasicKind::SignedInt ), 1223 new SingleInit( loc, ConstantExpr::from_int( loc, 0 ) ) 1224 ) 1225 )); 1226 1227 // Generates: int clause_statuses[3] = { 0 }; 1228 body->push_back( new DeclStmt( loc, 1229 new ObjectDecl( loc, 1230 statusArrName, 1231 new ArrayType( new BasicType( BasicKind::LongUnsignedInt ), ConstantExpr::from_int( loc, numClauses ), LengthFlag::FixedLen, DimensionFlag::DynamicDim ), 1232 new ListInit( loc, 1233 { 1234 new SingleInit( loc, ConstantExpr::from_int( loc, 0 ) ) 1235 } 1236 ) 1237 ) 1238 )); 1239 1240 vector<ClauseData *> clauseData; 1241 genClauseInits( stmt, clauseData, body, statusArrName, elseWhenName ); 1242 1243 vector<pair<int, WaitUntilStmt::ClauseNode *>> ambiguousClauses; // list of ambiguous clauses 1244 vector<int> andWhenClauses; // list of clauses that have an AND op as a direct parent and when_cond defined 1245 1246 collectWhens( stmt->predicateTree, ambiguousClauses, andWhenClauses ); 1247 1248 // This is only needed for clauses that have AND as a parent and a when_cond defined 1249 // generates: if ( ! when_cond_0 ) clause_statuses_0 = __SELECT_RUN; 1250 for ( int idx : andWhenClauses ) { 1251 const CodeLocation & cLoc = stmt->clauses.at(idx)->location; 1252 body->push_back( 1253 new IfStmt( cLoc, 1254 new UntypedExpr ( cLoc, 1255 new NameExpr( cLoc, "!?" ), 1256 { new NameExpr( cLoc, clauseData.at(idx)->whenName ) } 1257 ), // IfStmt cond 1258 new ExprStmt( cLoc, 1259 new UntypedExpr ( cLoc, 1260 new NameExpr( cLoc, "?=?" ), 1261 { 1262 new UntypedExpr ( cLoc, 1263 new NameExpr( cLoc, "?[?]" ), 1264 { 1265 new NameExpr( cLoc, statusArrName ), 1266 ConstantExpr::from_int( cLoc, idx ) 1267 } 1268 ), 1269 new NameExpr( cLoc, "__SELECT_RUN" ) 1270 } 1271 ) 1272 ) // IfStmt then 1273 ) 1274 ); 1275 } 1276 1277 // Only need to generate conditional initial state setting for ambiguous when clauses 1278 if ( !ambiguousClauses.empty() ) { 1279 body->push_back( genWhenStateConditions( stmt, clauseData, ambiguousClauses, 0 ) ); 1280 } 1281 1282 // generates the following for each clause: 1283 // setup_clause( clause1, &clause_statuses[0], &park_counter ); 1284 // register_select(A, clause1); 1285 for ( int i = 0; i < numClauses; i++ ) { 1286 setUpClause( stmt->clauses.at(i), clauseData.at(i), pCountName, tryBody ); 1287 } 1288 1289 // generate satisfy logic based on if there is an else clause and if it is conditional 1290 if ( stmt->else_stmt && stmt->else_cond ) { // gen both else/non else branches 1291 tryBody->push_back( 1292 new IfStmt( stmt->else_cond->location, 1293 new NameExpr( stmt->else_cond->location, elseWhenName ), 1294 genElseClauseBranch( stmt, runName, statusArrName, clauseData ), 1295 genNoElseClauseBranch( stmt, runName, statusArrName, pCountName, clauseData ) 1296 ) 1297 ); 1298 } else if ( !stmt->else_stmt ) { // normal gen 1299 tryBody->push_back( genNoElseClauseBranch( stmt, runName, statusArrName, pCountName, clauseData ) ); 1300 } else { // generate just else 1301 tryBody->push_back( genElseClauseBranch( stmt, runName, statusArrName, clauseData ) ); 1302 } 1303 1304 // Collection of unregister calls on resources to be put in finally clause 1305 // for each clause: 1306 // if ( !__CFA_has_clause_run( clause_statuses[i] )) && unregister_select( ... , clausei ) ) { ... clausei stmt ... } 1307 // OR if when( ... ) defined on resource 1308 // if ( when_cond_i && (!__CFA_has_clause_run( clause_statuses[i] )) && unregister_select( ... , clausei ) ) { ... clausei stmt ... } 1309 CompoundStmt * unregisters = new CompoundStmt( loc ); 1310 1311 Expr * statusExpr; // !__CFA_has_clause_run( clause_statuses[i] ) 1312 for ( int i = 0; i < numClauses; i++ ) { 1313 const CodeLocation & cLoc = stmt->clauses.at(i)->location; 1314 1315 // Generates: !__CFA_has_clause_run( clause_statuses[i] ) 1316 statusExpr = new UntypedExpr ( cLoc, 1317 new NameExpr( cLoc, "!?" ), 1318 { 1319 new UntypedExpr ( cLoc, 1320 new NameExpr( cLoc, "__CFA_has_clause_run" ), 1321 { 1322 genArrAccessExpr( cLoc, i, statusArrName ) 1323 } 1324 ) 1325 } 1326 ); 1327 1328 // Generates: 1329 // (!__CFA_has_clause_run( clause_statuses[i] )) && unregister_select( ... , clausei ); 1330 statusExpr = new LogicalExpr( cLoc, 1331 new CastExpr( cLoc, 1332 statusExpr, 1333 new BasicType( BasicKind::Bool ), GeneratedFlag::ExplicitCast 1334 ), 1335 new CastExpr( cLoc, 1336 genSelectTraitCall( stmt->clauses.at(i), clauseData.at(i), "unregister_select" ), 1337 new BasicType( BasicKind::Bool ), GeneratedFlag::ExplicitCast 1338 ), 1339 LogicalFlag::AndExpr 1340 ); 1341 1342 // if when cond defined generates: 1343 // when_cond_i && (!__CFA_has_clause_run( clause_statuses[i] )) && unregister_select( ... , clausei ); 1344 if ( stmt->clauses.at(i)->when_cond ) 1345 statusExpr = new LogicalExpr( cLoc, 1346 new CastExpr( cLoc, 1347 new NameExpr( cLoc, clauseData.at(i)->whenName ), 1348 new BasicType( BasicKind::Bool ), GeneratedFlag::ExplicitCast 1349 ), 1350 new CastExpr( cLoc, 1351 statusExpr, 1352 new BasicType( BasicKind::Bool ), GeneratedFlag::ExplicitCast 1353 ), 1354 LogicalFlag::AndExpr 1355 ); 1356 1357 // generates: 1358 // if ( statusExpr ) { ... clausei stmt ... } 1359 unregisters->push_back( 1360 new IfStmt( cLoc, 1361 statusExpr, 1362 new CompoundStmt( cLoc, 1363 { 1364 new IfStmt( cLoc, 1365 genSelectTraitCall( stmt->clauses.at(i), clauseData.at(i), "on_selected" ), 1366 ast::deepCopy( stmt->clauses.at(i)->stmt ) 1367 ) 1368 } 1369 ) 1370 ) 1371 ); 1372 1373 // // generates: 1374 // // if ( statusExpr ) { ... clausei stmt ... } 1375 // unregisters->push_back( 1376 // new IfStmt( cLoc, 1377 // statusExpr, 1378 // genStmtBlock( stmt->clauses.at(i), clauseData.at(i) ) 1379 // ) 1380 // ); 1381 } 1382 1383 body->push_back( 1384 new ast::TryStmt( 1385 loc, 1386 tryBody, 1387 {}, 1388 new ast::FinallyClause( loc, unregisters ) 1389 ) 1390 ); 1391 1392 for ( ClauseData * datum : clauseData ) 1393 delete datum; 1394 1395 return body; 1396 1396 } 1397 1397 … … 1399 1399 // Predicates are added after "struct select_node { ... };" 1400 1400 class AddPredicateDecls final : public WithDeclsToAdd<> { 1401 vector<FunctionDecl *> & satFns;1402 const StructDecl * selectNodeDecl = nullptr;1401 vector<FunctionDecl *> & satFns; 1402 const StructDecl * selectNodeDecl = nullptr; 1403 1403 1404 1404 public: 1405 void previsit( const StructDecl * decl ) {1406 if ( !decl->body ) {1407 return;1408 } else if ( "select_node" == decl->name ) {1409 assert( !selectNodeDecl );1410 selectNodeDecl = decl;1411 for ( FunctionDecl * fn : satFns )1412 declsToAddAfter.push_back(fn); 1413 }1414 }1415 AddPredicateDecls( vector<FunctionDecl *> & satFns ): satFns(satFns) {}1405 void previsit( const StructDecl * decl ) { 1406 if ( !decl->body ) { 1407 return; 1408 } else if ( "select_node" == decl->name ) { 1409 assert( !selectNodeDecl ); 1410 selectNodeDecl = decl; 1411 for ( FunctionDecl * fn : satFns ) 1412 declsToAddAfter.push_back(fn); 1413 } 1414 } 1415 AddPredicateDecls( vector<FunctionDecl *> & satFns ): satFns(satFns) {} 1416 1416 }; 1417 1417 1418 1418 void generateWaitUntil( TranslationUnit & translationUnit ) { 1419 vector<FunctionDecl *> satFns;1419 vector<FunctionDecl *> satFns; 1420 1420 Pass<GenerateWaitUntilCore>::run( translationUnit, satFns ); 1421 Pass<AddPredicateDecls>::run( translationUnit, satFns );1421 Pass<AddPredicateDecls>::run( translationUnit, satFns ); 1422 1422 } 1423 1423 -
src/ResolvExpr/CandidateFinder.cpp
r0fe07be r15215f02 1412 1412 } 1413 1413 1414 void Finder::postvisit(const ast::VariableExpr *variableExpr) {1415 // not sufficient to just pass `variableExpr` here, type might have changed1416 1417 auto cand = new Candidate(variableExpr, tenv);1418 candidates.emplace_back(cand);1419 }1414 void Finder::postvisit(const ast::VariableExpr *variableExpr) { 1415 // not sufficient to just pass `variableExpr` here, type might have changed 1416 1417 auto cand = new Candidate(variableExpr, tenv); 1418 candidates.emplace_back(cand); 1419 } 1420 1420 1421 1421 void Finder::postvisit( const ast::ConstantExpr * constantExpr ) { … … 2133 2133 2134 2134 // get the valueE(...) ApplicationExpr that returns the enum value 2135 const ast::Expr * getValueEnumCall( 2136 const ast::Expr * expr, 2135 const ast::Expr * getValueEnumCall( 2136 const ast::Expr * expr, 2137 2137 const ResolvExpr::ResolveContext & context, const ast::TypeEnvironment & env ) { 2138 2138 auto callExpr = new ast::UntypedExpr( -
src/ResolvExpr/CommonType.cc
r0fe07be r15215f02 397 397 } 398 398 } else if ( auto type2AsAttr = dynamic_cast< const ast::EnumAttrType * >( type2 ) ) { 399 if ( type2AsAttr->attr == ast::EnumAttribute::Posn ) {400 ast::BasicKind kind = commonTypes[ basic->kind ][ ast::BasicKind::SignedInt ];401 if (402 ( ( kind == basic->kind && basic->qualifiers >= type2->qualifiers )403 || widen.first )404 && ( ( kind != basic->kind && basic->qualifiers <= type2->qualifiers )405 || widen.second )406 ) {407 result = new ast::BasicType{ kind, basic->qualifiers | type2->qualifiers };408 }409 }399 if ( type2AsAttr->attr == ast::EnumAttribute::Posn ) { 400 ast::BasicKind kind = commonTypes[ basic->kind ][ ast::BasicKind::SignedInt ]; 401 if ( 402 ( ( kind == basic->kind && basic->qualifiers >= type2->qualifiers ) 403 || widen.first ) 404 && ( ( kind != basic->kind && basic->qualifiers <= type2->qualifiers ) 405 || widen.second ) 406 ) { 407 result = new ast::BasicType{ kind, basic->qualifiers | type2->qualifiers }; 408 } 409 } 410 410 } 411 411 } … … 519 519 // xxx - assume LHS is always the target type 520 520 521 if ( ! ((widen.second && ref2->qualifiers.is_mutex) 521 if ( ! ((widen.second && ref2->qualifiers.is_mutex) 522 522 || (ref1->qualifiers.is_mutex == ref2->qualifiers.is_mutex ))) return; 523 523 -
src/ResolvExpr/ConversionCost.cc
r0fe07be r15215f02 379 379 380 380 void ConversionCost::postvisit( const ast::EnumAttrType * src ) { 381 auto dstAsEnumAttrType = dynamic_cast<const ast::EnumAttrType *>(dst);381 auto dstAsEnumAttrType = dynamic_cast<const ast::EnumAttrType *>(dst); 382 382 assert( src->attr != ast::EnumAttribute::Label ); 383 if ( src->attr == ast::EnumAttribute::Value ) {384 if ( dstAsEnumAttrType && dstAsEnumAttrType->attr == ast::EnumAttribute::Value) {385 cost = costCalc( src->instance, dstAsEnumAttrType->instance, srcIsLvalue, symtab, env );386 } else {387 auto baseType = src->instance->base->base;388 cost = costCalc( baseType, dst, srcIsLvalue, symtab, env );383 if ( src->attr == ast::EnumAttribute::Value ) { 384 if ( dstAsEnumAttrType && dstAsEnumAttrType->attr == ast::EnumAttribute::Value) { 385 cost = costCalc( src->instance, dstAsEnumAttrType->instance, srcIsLvalue, symtab, env ); 386 } else { 387 auto baseType = src->instance->base->base; 388 cost = costCalc( baseType, dst, srcIsLvalue, symtab, env ); 389 389 if ( cost < Cost::infinity ) { 390 390 cost.incUnsafe(); 391 391 } 392 }393 } else { // ast::EnumAttribute::Posn394 if ( auto dstBase = dynamic_cast<const ast::EnumInstType *>( dst ) ) {395 cost = costCalc( src->instance, dstBase, srcIsLvalue, symtab, env );396 if ( cost < Cost::unsafe ) cost.incSafe();397 } else {398 static ast::ptr<ast::BasicType> integer = { new ast::BasicType( ast::BasicKind::SignedInt ) };399 cost = costCalc( integer, dst, srcIsLvalue, symtab, env );400 if ( cost < Cost::unsafe ) {401 cost.incSafe();402 }403 }404 }392 } 393 } else { // ast::EnumAttribute::Posn 394 if ( auto dstBase = dynamic_cast<const ast::EnumInstType *>( dst ) ) { 395 cost = costCalc( src->instance, dstBase, srcIsLvalue, symtab, env ); 396 if ( cost < Cost::unsafe ) cost.incSafe(); 397 } else { 398 static ast::ptr<ast::BasicType> integer = { new ast::BasicType( ast::BasicKind::SignedInt ) }; 399 cost = costCalc( integer, dst, srcIsLvalue, symtab, env ); 400 if ( cost < Cost::unsafe ) { 401 cost.incSafe(); 402 } 403 } 404 } 405 405 } 406 406 -
src/ResolvExpr/PolyCost.cc
r0fe07be r15215f02 29 29 const ast::TypeEnvironment &env_; 30 30 31 PolyCost( const ast::SymbolTable & symtab, const ast::TypeEnvironment & env ) 31 PolyCost( const ast::SymbolTable & symtab, const ast::TypeEnvironment & env ) 32 32 : symtab( symtab ), result( 0 ), env_( env ) {} 33 33 34 34 void previsit( const ast::TypeInstType * type ) { 35 if ( const ast::EqvClass * eqv = env_.lookup( *type ) ) /* && */ if (eqv->bound ) {35 if ( const ast::EqvClass * eqv = env_.lookup( *type ) ; eqv && eqv->bound ) { 36 36 if ( const ast::TypeInstType * otherType = eqv->bound.as< ast::TypeInstType >() ) { 37 37 if ( symtab.lookupType( otherType->name ) ) { 38 38 // Bound to opaque type. 39 result += 1;39 result = 1; 40 40 } 41 41 } else { 42 42 // Bound to concrete type. 43 result += 1;43 result = 1; 44 44 } 45 45 } … … 52 52 const ast::Type * type, const ast::SymbolTable & symtab, const ast::TypeEnvironment & env 53 53 ) { 54 ast::Pass<PolyCost> costing( symtab, env ); 55 type->accept( costing ); 56 return (costing.core.result > 0) ? 1 : 0; 54 return ast::Pass<PolyCost>::read( type, symtab, env ); 57 55 } 58 56 -
src/ResolvExpr/Unify.cc
r0fe07be r15215f02 307 307 // type unification calls expression unification (mutual recursion) 308 308 if ( ! unify(array->dimension, array2->dimension, 309 tenv, need, have, open, widen) ) return;309 tenv, need, have, open, widen) ) return; 310 310 } 311 311 … … 455 455 // check that the other type is compatible and named the same 456 456 auto otherInst = dynamic_cast< const XInstType * >( other ); 457 if (otherInst && inst->name == otherInst->name) 457 if (otherInst && inst->name == otherInst->name) 458 458 this->result = otherInst; 459 459 return otherInst; … … 542 542 // Lazy approach for now 543 543 if ( auto otherPos = dynamic_cast< const ast::EnumAttrType *>(type2) ) { 544 if ( enumAttr->match(otherPos) ) {545 result = otherPos;546 }547 } 544 if ( enumAttr->match(otherPos) ) { 545 result = otherPos; 546 } 547 } 548 548 } 549 549 -
src/SymTab/Mangler.cc
r0fe07be r15215f02 283 283 postvisit( enumAttr->instance ); 284 284 // mangleName += "_pos"; 285 switch ( enumAttr->attr )286 {287 case ast::EnumAttribute::Label:288 mangleName += "_label_";289 break;290 case ast::EnumAttribute::Posn:285 switch ( enumAttr->attr ) 286 { 287 case ast::EnumAttribute::Label: 288 mangleName += "_label_"; 289 break; 290 case ast::EnumAttribute::Posn: 291 291 mangleName += "_posn_"; 292 break;293 case ast::EnumAttribute::Value:294 mangleName += "_value_";295 break;296 }292 break; 293 case ast::EnumAttribute::Value: 294 mangleName += "_value_"; 295 break; 296 } 297 297 298 298 } -
src/Validate/ForallPointerDecay.hpp
r0fe07be r15215f02 39 39 /// Expand all traits in an assertion list. 40 40 std::vector<ast::ptr<ast::DeclWithType>> expandAssertions( 41 std::vector<ast::ptr<ast::DeclWithType>> const & );41 std::vector<ast::ptr<ast::DeclWithType>> const & ); 42 42 43 43 } -
src/Validate/HoistStruct.cpp
r0fe07be r15215f02 149 149 template<typename InstType> 150 150 InstType const * HoistStructCore::preCollectionInstType( InstType const * type ) { 151 if ( !type->base->parent ) return type;152 if ( type->base->params.empty() ) return type;153 154 InstType * mut = ast::mutate( type );155 ast::AggregateDecl const * parent =156 commonParent( this->parent, mut->base->parent );157 assert( parent );158 159 std::vector<ast::ptr<ast::Expr>> args;160 for ( const ast::ptr<ast::TypeDecl> & param : parent->params ) {161 args.emplace_back( new ast::TypeExpr( param->location,162 new ast::TypeInstType( param )163 ) );164 }165 spliceBegin( mut->params, args );166 return mut;151 if ( !type->base->parent ) return type; 152 if ( type->base->params.empty() ) return type; 153 154 InstType * mut = ast::mutate( type ); 155 ast::AggregateDecl const * parent = 156 commonParent( this->parent, mut->base->parent ); 157 assert( parent ); 158 159 std::vector<ast::ptr<ast::Expr>> args; 160 for ( const ast::ptr<ast::TypeDecl> & param : parent->params ) { 161 args.emplace_back( new ast::TypeExpr( param->location, 162 new ast::TypeInstType( param ) 163 ) ); 164 } 165 spliceBegin( mut->params, args ); 166 return mut; 167 167 } 168 168 -
src/Validate/ImplementEnumFunc.cpp
r0fe07be r15215f02 8 8 namespace { 9 9 class EnumAttrFuncGenerator { 10 const ast::EnumDecl* decl; 11 const ast::EnumInstType* instType; 12 // const ast::EnumAttrType* attrType; 13 unsigned int functionNesting; 14 ast::Linkage::Spec proto_linkage; 15 16 public: 17 std::list<ast::ptr<ast::Decl>> forwards; 18 std::list<ast::ptr<ast::Decl>> definitions; 19 20 void generateAndAppendFunctions(std::list<ast::ptr<ast::Decl>>&); 21 22 EnumAttrFuncGenerator(const ast::EnumDecl* decl, 23 const ast::EnumInstType* instType, 24 // const ast::EnumAttrType* enumAttrType, 25 unsigned int functionNesting) 26 : decl(decl), 27 instType{instType}, 28 // attrType{enumAttrType}, 29 functionNesting{functionNesting}, 30 proto_linkage{ast::Linkage::Cforall} {} 31 32 void genAttrFunctions(); 33 void genSuccPredPosn(); 34 void genSuccPredDecl(); 35 36 void appendReturnThis(ast::FunctionDecl* decl) { 37 assert(1 <= decl->params.size()); 38 assert(1 == decl->returns.size()); 39 assert(decl->stmts); 40 41 const CodeLocation& location = (decl->stmts->kids.empty()) 42 ? decl->stmts->location 43 : decl->stmts->kids.back()->location; 44 const ast::DeclWithType* thisParam = decl->params.front(); 45 decl->stmts.get_and_mutate()->push_back(new ast::ReturnStmt( 46 location, new ast::VariableExpr(location, thisParam))); 47 } 48 void genAttrStandardFuncs() { 49 ast::FunctionDecl* (EnumAttrFuncGenerator::*standardProtos[4])() 50 const = {&EnumAttrFuncGenerator::genCtorProto, 51 &EnumAttrFuncGenerator::genCopyProto, 52 &EnumAttrFuncGenerator::genDtorProto, 53 &EnumAttrFuncGenerator::genAssignProto}; 54 for (auto& generator : standardProtos) { 55 ast::FunctionDecl* decl = (this->*generator)(); 56 produceForwardDecl(decl); 57 genFuncBody(decl); 58 if (CodeGen::isAssignment(decl->name)) { 59 appendReturnThis(decl); 60 } 61 produceDecl(decl); 62 } 63 } 64 65 private: 66 const CodeLocation& getLocation() const { return decl->location; } 67 68 ast::FunctionDecl* genProto( 69 std::string&& name, std::vector<ast::ptr<ast::DeclWithType>>&& params, 70 std::vector<ast::ptr<ast::DeclWithType>>&& returns) const; 71 72 void produceDecl(const ast::FunctionDecl* decl); 73 void produceForwardDecl(const ast::FunctionDecl* decl); 74 75 const ast::Decl* getDecl() const { return decl; } 76 77 ast::FunctionDecl* genPosnProto() const; 78 ast::FunctionDecl* genLabelProto() const; 79 ast::FunctionDecl* genValueProto() const; 80 ast::FunctionDecl* genSuccProto() const; 81 ast::FunctionDecl* genPredProto() const; 82 83 ast::FunctionDecl* genSuccPosProto() const; 84 ast::FunctionDecl* genPredPosProto() const; 85 86 // --------------------------------------------------- 87 // ast::FunctionDecl* genAttrCtorProto() const; 88 /// Changes the node inside a pointer so that it has the unused attribute. 89 void addUnusedAttribute(ast::ptr<ast::DeclWithType>& declPtr) { 90 ast::DeclWithType* decl = declPtr.get_and_mutate(); 91 decl->attributes.push_back(new ast::Attribute("unused")); 92 } 93 94 ast::ObjectDecl* dstParam() const { 95 return new ast::ObjectDecl(getLocation(), "_dst", 96 new ast::ReferenceType(new ast::EnumAttrType( 97 ast::deepCopy(instType)))); 98 } 99 100 ast::ObjectDecl* srcParam() const { 101 return new ast::ObjectDecl( 102 getLocation(), "_src", 103 new ast::EnumAttrType(ast::deepCopy(instType))); 104 } 105 106 /// E = EnumAttrType<T>` 107 /// `void ?{}(E & _dst)`. 108 ast::FunctionDecl* genCtorProto() const { 109 return genProto("?{}", {dstParam()}, {}); 110 } 111 112 /// void ?{}(E & _dst, E _src)`. 113 ast::FunctionDecl* genCopyProto() const { 114 return genProto("?{}", {dstParam(), srcParam()}, {}); 115 } 116 117 ///`void ^?{}(E & _dst)`. 118 ast::FunctionDecl* genDtorProto() const { 119 // The destructor must be mutex on a concurrent type. 120 return genProto("^?{}", {dstParam()}, {}); 121 } 122 123 /// `E ?{}(E & _dst, E _src)`. 124 ast::FunctionDecl* genAssignProto() const { 125 // Only the name is different, so just reuse the generation function. 126 auto retval = srcParam(); 127 retval->name = "_ret"; 128 return genProto("?=?", {dstParam(), srcParam()}, {retval}); 129 } 130 131 void genFuncBody(ast::FunctionDecl* func) { 132 const CodeLocation& location = func->location; 133 auto& params = func->params; 134 if (InitTweak::isCopyConstructor(func) || 135 InitTweak::isAssignment(func)) { 136 assert(2 == params.size()); 137 auto dstParam = params.front().strict_as<ast::ObjectDecl>(); 138 auto srcParam = params.back().strict_as<ast::ObjectDecl>(); 139 func->stmts = genCopyBody(location, dstParam, srcParam); 140 } else { 141 assert(1 == params.size()); 142 // Default constructor and destructor is empty. 143 func->stmts = new ast::CompoundStmt(location); 144 // Add unused attribute to parameter to silence warnings. 145 addUnusedAttribute(params.front()); 146 147 // Just an extra step to make the forward and declaration match. 148 if (forwards.empty()) return; 149 ast::FunctionDecl* fwd = strict_dynamic_cast<ast::FunctionDecl*>( 150 forwards.back().get_and_mutate()); 151 addUnusedAttribute(fwd->params.front()); 152 } 153 } 154 155 const ast::CompoundStmt* genCopyBody(const CodeLocation& location, 156 const ast::ObjectDecl* dstParam, 157 const ast::ObjectDecl* srcParam) { 158 return new ast::CompoundStmt( 159 location, 160 {new ast::ExprStmt( 161 location, 162 new ast::UntypedExpr( 163 location, new ast::NameExpr(location, "__builtin_memcpy"), 164 { 165 new ast::AddressExpr(location, new ast::VariableExpr( 166 location, dstParam)), 167 new ast::AddressExpr(location, new ast::VariableExpr( 168 location, srcParam)), 169 new ast::SizeofExpr(location, srcParam->type), 170 }))}); 171 } 172 173 void genDtorBody(ast::FunctionDecl* func) { 174 const CodeLocation& location = func->location; 175 auto& params = func->params; 176 assert(1 == params.size()); 177 func->stmts = new ast::CompoundStmt(location); 178 addUnusedAttribute(params.front()); 179 180 // Just an extra step to make the forward and declaration match. 181 if (forwards.empty()) return; 182 ast::FunctionDecl* fwd = strict_dynamic_cast<ast::FunctionDecl*>( 183 forwards.back().get_and_mutate()); 184 addUnusedAttribute(fwd->params.front()); 185 } 186 187 // ast::FunctionDecl* 188 // ---------------------------------------------------- 189 190 ast::FunctionDecl* genSuccPredFunc(bool succ); 191 192 const ast::Init* getAutoInit(const ast::Init* prev) const; 193 194 std::vector<ast::ptr<ast::Init>> genLabelInit() const; 195 196 std::vector<ast::ptr<ast::Init>> genValueInit() const; 197 ast::ObjectDecl* genAttrArrayProto( 198 const ast::EnumAttribute attr, const CodeLocation& location, 199 std::vector<ast::ptr<ast::Init>>& inits) const; 200 void genValueOrLabelBody(ast::FunctionDecl* func, 201 ast::ObjectDecl* arrDecl) const; 202 void genPosnBody(ast::FunctionDecl* func) const; 203 void genAttributesDecls(const ast::EnumAttribute attr); 10 const ast::EnumDecl* decl; 11 const ast::EnumInstType* instType; 12 unsigned int functionNesting; 13 ast::Linkage::Spec proto_linkage; 14 15 public: 16 std::list<ast::ptr<ast::Decl>> forwards; 17 std::list<ast::ptr<ast::Decl>> definitions; 18 19 void generateAndAppendFunctions(std::list<ast::ptr<ast::Decl>>&); 20 21 EnumAttrFuncGenerator( 22 const ast::EnumDecl* decl, 23 const ast::EnumInstType* instType, 24 unsigned int functionNesting ) 25 : decl(decl), 26 instType{instType}, 27 functionNesting{functionNesting}, 28 proto_linkage{ast::Linkage::Cforall} {} 29 30 void genAttrFunctions(); 31 void genSuccPredPosn(); 32 void genSuccPredDecl(); 33 34 void appendReturnThis(ast::FunctionDecl* decl) { 35 assert(1 <= decl->params.size()); 36 assert(1 == decl->returns.size()); 37 assert(decl->stmts); 38 39 const CodeLocation& location = (decl->stmts->kids.empty()) 40 ? decl->stmts->location 41 : decl->stmts->kids.back()->location; 42 const ast::DeclWithType* thisParam = decl->params.front(); 43 decl->stmts.get_and_mutate()->push_back(new ast::ReturnStmt( 44 location, new ast::VariableExpr(location, thisParam))); 45 } 46 void genAttrStandardFuncs() { 47 ast::FunctionDecl* (EnumAttrFuncGenerator::*standardProtos[4])() 48 const = {&EnumAttrFuncGenerator::genCtorProto, 49 &EnumAttrFuncGenerator::genCopyProto, 50 &EnumAttrFuncGenerator::genDtorProto, 51 &EnumAttrFuncGenerator::genAssignProto}; 52 for (auto& generator : standardProtos) { 53 ast::FunctionDecl* decl = (this->*generator)(); 54 produceForwardDecl(decl); 55 genFuncBody(decl); 56 if (CodeGen::isAssignment(decl->name)) { 57 appendReturnThis(decl); 58 } 59 produceDecl(decl); 60 } 61 } 62 63 private: 64 const CodeLocation& getLocation() const { return decl->location; } 65 66 ast::FunctionDecl* genProto( 67 std::string&& name, std::vector<ast::ptr<ast::DeclWithType>>&& params, 68 std::vector<ast::ptr<ast::DeclWithType>>&& returns) const; 69 70 void produceDecl(const ast::FunctionDecl* decl); 71 void produceForwardDecl(const ast::FunctionDecl* decl); 72 73 const ast::Decl* getDecl() const { return decl; } 74 75 ast::FunctionDecl* genPosnProto() const; 76 ast::FunctionDecl* genLabelProto() const; 77 ast::FunctionDecl* genValueProto() const; 78 ast::FunctionDecl* genSuccProto() const; 79 ast::FunctionDecl* genPredProto() const; 80 81 ast::FunctionDecl* genSuccPosProto() const; 82 ast::FunctionDecl* genPredPosProto() const; 83 84 // --------------------------------------------------- 85 // ast::FunctionDecl* genAttrCtorProto() const; 86 /// Changes the node inside a pointer so that it has the unused attribute. 87 void addUnusedAttribute(ast::ptr<ast::DeclWithType>& declPtr) { 88 ast::DeclWithType* decl = declPtr.get_and_mutate(); 89 decl->attributes.push_back(new ast::Attribute("unused")); 90 } 91 92 ast::ObjectDecl* dstParam() const { 93 return new ast::ObjectDecl(getLocation(), "_dst", 94 new ast::ReferenceType(new ast::EnumAttrType( 95 ast::deepCopy(instType)))); 96 } 97 98 ast::ObjectDecl* srcParam() const { 99 return new ast::ObjectDecl( 100 getLocation(), "_src", 101 new ast::EnumAttrType(ast::deepCopy(instType))); 102 } 103 104 /// E = EnumAttrType<T>` 105 /// `void ?{}(E & _dst)`. 106 ast::FunctionDecl* genCtorProto() const { 107 return genProto("?{}", {dstParam()}, {}); 108 } 109 110 /// void ?{}(E & _dst, E _src)`. 111 ast::FunctionDecl* genCopyProto() const { 112 return genProto("?{}", {dstParam(), srcParam()}, {}); 113 } 114 115 ///`void ^?{}(E & _dst)`. 116 ast::FunctionDecl* genDtorProto() const { 117 // The destructor must be mutex on a concurrent type. 118 return genProto("^?{}", {dstParam()}, {}); 119 } 120 121 /// `E ?{}(E & _dst, E _src)`. 122 ast::FunctionDecl* genAssignProto() const { 123 // Only the name is different, so just reuse the generation function. 124 auto retval = srcParam(); 125 retval->name = "_ret"; 126 return genProto("?=?", {dstParam(), srcParam()}, {retval}); 127 } 128 129 void genFuncBody(ast::FunctionDecl* func) { 130 const CodeLocation& location = func->location; 131 auto& params = func->params; 132 if (InitTweak::isCopyConstructor(func) || 133 InitTweak::isAssignment(func)) { 134 assert(2 == params.size()); 135 auto dstParam = params.front().strict_as<ast::ObjectDecl>(); 136 auto srcParam = params.back().strict_as<ast::ObjectDecl>(); 137 func->stmts = genCopyBody(location, dstParam, srcParam); 138 } else { 139 assert(1 == params.size()); 140 // Default constructor and destructor is empty. 141 func->stmts = new ast::CompoundStmt(location); 142 // Add unused attribute to parameter to silence warnings. 143 addUnusedAttribute(params.front()); 144 145 // Just an extra step to make the forward and declaration match. 146 if (forwards.empty()) return; 147 ast::FunctionDecl* fwd = strict_dynamic_cast<ast::FunctionDecl*>( 148 forwards.back().get_and_mutate()); 149 addUnusedAttribute(fwd->params.front()); 150 } 151 } 152 153 const ast::CompoundStmt* genCopyBody( const CodeLocation& location, 154 const ast::ObjectDecl* dstParam, const ast::ObjectDecl* srcParam) { 155 return new ast::CompoundStmt( 156 location, 157 {new ast::ExprStmt( 158 location, 159 new ast::UntypedExpr( 160 location, new ast::NameExpr(location, "__builtin_memcpy"), 161 { 162 new ast::AddressExpr( location, 163 new ast::VariableExpr( location, dstParam ) ), 164 new ast::AddressExpr( location, 165 new ast::VariableExpr( location, srcParam ) ), 166 new ast::SizeofExpr( location, srcParam->type ), 167 }))}); 168 } 169 170 void genDtorBody(ast::FunctionDecl* func) { 171 const CodeLocation& location = func->location; 172 auto& params = func->params; 173 assert(1 == params.size()); 174 func->stmts = new ast::CompoundStmt(location); 175 addUnusedAttribute(params.front()); 176 177 // Just an extra step to make the forward and declaration match. 178 if (forwards.empty()) return; 179 ast::FunctionDecl* fwd = strict_dynamic_cast<ast::FunctionDecl*>( 180 forwards.back().get_and_mutate()); 181 addUnusedAttribute(fwd->params.front()); 182 } 183 184 // ast::FunctionDecl* 185 // ---------------------------------------------------- 186 187 ast::FunctionDecl* genSuccPredFunc(bool succ); 188 189 const ast::Init* getAutoInit(const ast::Init* prev) const; 190 191 std::vector<ast::ptr<ast::Init>> genLabelInit() const; 192 193 std::vector<ast::ptr<ast::Init>> genValueInit() const; 194 ast::ObjectDecl* genAttrArrayProto( 195 const ast::EnumAttribute attr, const CodeLocation& location, 196 std::vector<ast::ptr<ast::Init>>& inits) const; 197 void genValueOrLabelBody( 198 ast::FunctionDecl* func, ast::ObjectDecl* arrDecl) const; 199 void genPosnBody(ast::FunctionDecl* func) const; 200 void genAttributesDecls(const ast::EnumAttribute attr); 204 201 }; 205 202 206 203 std::vector<ast::ptr<ast::Init>> EnumAttrFuncGenerator::genLabelInit() const { 207 std::vector<ast::ptr<ast::Init>> inits;208 for (size_t i = 0; i < decl->members.size(); i++) {209 ast::ptr<ast::Decl> mem = decl->members.at(i);210 auto memAsObjectDecl = mem.as<ast::ObjectDecl>();211 assert(memAsObjectDecl);212 inits.emplace_back(new ast::SingleInit(213 mem->location,214 ast::ConstantExpr::from_string(mem->location, mem->name)));215 }216 return inits;204 std::vector<ast::ptr<ast::Init>> inits; 205 for (size_t i = 0; i < decl->members.size(); i++) { 206 ast::ptr<ast::Decl> mem = decl->members.at(i); 207 auto memAsObjectDecl = mem.as<ast::ObjectDecl>(); 208 assert(memAsObjectDecl); 209 inits.emplace_back(new ast::SingleInit( 210 mem->location, 211 ast::ConstantExpr::from_string(mem->location, mem->name))); 212 } 213 return inits; 217 214 } 218 215 219 216 std::vector<ast::ptr<ast::Init>> EnumAttrFuncGenerator::genValueInit() const { 220 std::vector<ast::ptr<ast::Init>> inits;221 for (size_t i = 0; i < decl->members.size(); i++) {222 ast::ptr<ast::Decl> mem = decl->members.at(i);223 auto memAsObjectDecl = mem.as<ast::ObjectDecl>();224 assert(memAsObjectDecl);225 if (memAsObjectDecl->init) {226 inits.emplace_back(memAsObjectDecl->init);227 } else {228 const CodeLocation& location = mem->location;229 if (i == 0) {230 inits.emplace_back(new ast::SingleInit(231 location, ast::ConstantExpr::from_int(mem->location, 0)));232 } else {233 inits.emplace_back(getAutoInit(inits.at(i - 1)));234 }235 }236 }237 return inits;217 std::vector<ast::ptr<ast::Init>> inits; 218 for (size_t i = 0; i < decl->members.size(); i++) { 219 ast::ptr<ast::Decl> mem = decl->members.at(i); 220 auto memAsObjectDecl = mem.as<ast::ObjectDecl>(); 221 assert(memAsObjectDecl); 222 if (memAsObjectDecl->init) { 223 inits.emplace_back(memAsObjectDecl->init); 224 } else { 225 const CodeLocation& location = mem->location; 226 if (i == 0) { 227 inits.emplace_back(new ast::SingleInit( 228 location, ast::ConstantExpr::from_int(mem->location, 0))); 229 } else { 230 inits.emplace_back(getAutoInit(inits.at(i - 1))); 231 } 232 } 233 } 234 return inits; 238 235 } 239 236 const ast::Init* EnumAttrFuncGenerator::getAutoInit( 240 const ast::Init* prev) const {241 if (prev == nullptr) {242 return new ast::SingleInit(243 getLocation(), ast::ConstantExpr::from_int(getLocation(), 0));244 }245 auto prevInit = dynamic_cast<const ast::SingleInit*>(prev);246 assert(prevInit);247 auto prevInitExpr = prevInit->value;248 if (auto constInit = prevInitExpr.as<ast::ConstantExpr>()) {249 // Assume no string literal for now250 return new ast::SingleInit(251 getLocation(), ast::ConstantExpr::from_int(252 getLocation(), constInit->intValue() + 1));253 } else {254 auto untypedThisInit = new ast::UntypedExpr(255 getLocation(), new ast::NameExpr(getLocation(), "?++"),256 {prevInitExpr});257 return new ast::SingleInit(getLocation(), untypedThisInit);258 }237 const ast::Init* prev) const { 238 if (prev == nullptr) { 239 return new ast::SingleInit( 240 getLocation(), ast::ConstantExpr::from_int(getLocation(), 0)); 241 } 242 auto prevInit = dynamic_cast<const ast::SingleInit*>(prev); 243 assert(prevInit); 244 auto prevInitExpr = prevInit->value; 245 if (auto constInit = prevInitExpr.as<ast::ConstantExpr>()) { 246 // Assume no string literal for now 247 return new ast::SingleInit( 248 getLocation(), ast::ConstantExpr::from_int( 249 getLocation(), constInit->intValue() + 1)); 250 } else { 251 auto untypedThisInit = new ast::UntypedExpr( 252 getLocation(), new ast::NameExpr(getLocation(), "?++"), 253 {prevInitExpr}); 254 return new ast::SingleInit(getLocation(), untypedThisInit); 255 } 259 256 } 260 257 261 258 ast::FunctionDecl* EnumAttrFuncGenerator::genProto( 262 std::string&& name, std::vector<ast::ptr<ast::DeclWithType>>&& params,263 std::vector<ast::ptr<ast::DeclWithType>>&& returns) const {264 ast::FunctionDecl* decl = new ast::FunctionDecl(265 // Auto-generated routines use the type declaration's location.266 getLocation(), std::move(name), {}, {}, std::move(params),267 std::move(returns),268 // Only a prototype, no body.269 nullptr,270 // Use static storage if we are at the top level.271 (0 < functionNesting) ? ast::Storage::Classes() : ast::Storage::Static,272 proto_linkage, std::vector<ast::ptr<ast::Attribute>>(),273 // Auto-generated routines are inline to avoid conflicts.274 ast::Function::Specs(ast::Function::Inline));275 decl->fixUniqueId();276 return decl;259 std::string&& name, std::vector<ast::ptr<ast::DeclWithType>>&& params, 260 std::vector<ast::ptr<ast::DeclWithType>>&& returns) const { 261 ast::FunctionDecl* decl = new ast::FunctionDecl( 262 // Auto-generated routines use the type declaration's location. 263 getLocation(), std::move(name), {}, {}, std::move(params), 264 std::move(returns), 265 // Only a prototype, no body. 266 nullptr, 267 // Use static storage if we are at the top level. 268 (0 < functionNesting) ? ast::Storage::Classes() : ast::Storage::Static, 269 proto_linkage, std::vector<ast::ptr<ast::Attribute>>(), 270 // Auto-generated routines are inline to avoid conflicts. 271 ast::Function::Specs(ast::Function::Inline)); 272 decl->fixUniqueId(); 273 return decl; 277 274 } 278 275 279 276 void EnumAttrFuncGenerator::produceDecl(const ast::FunctionDecl* decl) { 280 assert(nullptr != decl->stmts);281 282 definitions.push_back(decl);277 assert(nullptr != decl->stmts); 278 279 definitions.push_back(decl); 283 280 } 284 281 285 282 void EnumAttrFuncGenerator::produceForwardDecl(const ast::FunctionDecl* decl) { 286 if (0 != functionNesting) return;287 ast::FunctionDecl* fwd =288 (decl->stmts) ? ast::asForward(decl) : ast::deepCopy(decl);289 fwd->fixUniqueId();290 forwards.push_back(fwd);283 if (0 != functionNesting) return; 284 ast::FunctionDecl* fwd = 285 (decl->stmts) ? ast::asForward(decl) : ast::deepCopy(decl); 286 fwd->fixUniqueId(); 287 forwards.push_back(fwd); 291 288 } 292 289 293 290 ast::FunctionDecl* EnumAttrFuncGenerator::genPosnProto() const { 294 return genProto(295 "posE",296 {new ast::ObjectDecl(getLocation(), "_i", new ast::EnumInstType(decl))},297 {new ast::ObjectDecl(getLocation(), "_ret",298 new ast::BasicType(ast::BasicKind::UnsignedInt))});291 return genProto( 292 "posE", 293 {new ast::ObjectDecl(getLocation(), "_i", new ast::EnumInstType(decl))}, 294 {new ast::ObjectDecl(getLocation(), "_ret", 295 new ast::BasicType(ast::BasicKind::UnsignedInt))}); 299 296 } 300 297 301 298 ast::FunctionDecl* EnumAttrFuncGenerator::genLabelProto() const { 302 return genProto(303 "labelE",304 {new ast::ObjectDecl(getLocation(), "_i", new ast::EnumInstType(decl))},305 {new ast::ObjectDecl(306 getLocation(), "_ret",307 new ast::PointerType(new ast::BasicType{ast::BasicKind::Char}))});299 return genProto( 300 "labelE", 301 {new ast::ObjectDecl(getLocation(), "_i", new ast::EnumInstType(decl))}, 302 {new ast::ObjectDecl( 303 getLocation(), "_ret", 304 new ast::PointerType(new ast::BasicType{ast::BasicKind::Char}))}); 308 305 } 309 306 310 307 ast::FunctionDecl* EnumAttrFuncGenerator::genValueProto() const { 311 return genProto(312 "valueE",313 {new ast::ObjectDecl(getLocation(), "_i", new ast::EnumInstType(decl))},314 {new ast::ObjectDecl(getLocation(), "_ret",315 ast::deepCopy(decl->base))});308 return genProto( 309 "valueE", 310 {new ast::ObjectDecl(getLocation(), "_i", new ast::EnumInstType(decl))}, 311 {new ast::ObjectDecl(getLocation(), "_ret", 312 ast::deepCopy(decl->base))}); 316 313 } 317 314 318 315 ast::FunctionDecl* EnumAttrFuncGenerator::genSuccProto() const { 319 return genProto(320 "succ",321 {new ast::ObjectDecl(getLocation(), "_i", new ast::EnumInstType(decl))},322 {new ast::ObjectDecl(getLocation(), "_ret",323 new ast::EnumInstType(decl))});316 return genProto( 317 "succ", 318 {new ast::ObjectDecl(getLocation(), "_i", new ast::EnumInstType(decl))}, 319 {new ast::ObjectDecl(getLocation(), "_ret", 320 new ast::EnumInstType(decl))}); 324 321 } 325 322 326 323 ast::FunctionDecl* EnumAttrFuncGenerator::genPredProto() const { 327 return genProto(328 "pred",329 {new ast::ObjectDecl(getLocation(), "_i", new ast::EnumInstType(decl))},330 {new ast::ObjectDecl(getLocation(), "_ret",331 new ast::EnumInstType(decl))});324 return genProto( 325 "pred", 326 {new ast::ObjectDecl(getLocation(), "_i", new ast::EnumInstType(decl))}, 327 {new ast::ObjectDecl(getLocation(), "_ret", 328 new ast::EnumInstType(decl))}); 332 329 } 333 330 334 331 inline ast::EnumAttrType * getPosnType( const ast::EnumDecl * decl ) { 335 return new ast::EnumAttrType(new ast::EnumInstType(decl), ast::EnumAttribute::Posn);332 return new ast::EnumAttrType(new ast::EnumInstType(decl), ast::EnumAttribute::Posn); 336 333 } 337 334 338 335 ast::FunctionDecl* EnumAttrFuncGenerator::genSuccPosProto() const { 339 return genProto(340 "_successor_",341 {new ast::ObjectDecl(getLocation(), "_i", getPosnType(decl))},342 {new ast::ObjectDecl(getLocation(), "_ret", getPosnType(decl))}343 );336 return genProto( 337 "_successor_", 338 {new ast::ObjectDecl(getLocation(), "_i", getPosnType(decl))}, 339 {new ast::ObjectDecl(getLocation(), "_ret", getPosnType(decl))} 340 ); 344 341 } 345 342 346 343 ast::FunctionDecl* EnumAttrFuncGenerator::genPredPosProto() const { 347 return genProto(348 "_predessor_",349 {new ast::ObjectDecl(getLocation(), "_i", getPosnType(decl))},350 {new ast::ObjectDecl(getLocation(), "_ret", getPosnType(decl))}351 );344 return genProto( 345 "_predessor_", 346 {new ast::ObjectDecl(getLocation(), "_i", getPosnType(decl))}, 347 {new ast::ObjectDecl(getLocation(), "_ret", getPosnType(decl))} 348 ); 352 349 } 353 350 354 351 ast::ObjectDecl* EnumAttrFuncGenerator::genAttrArrayProto( 355 const ast::EnumAttribute attr, const CodeLocation& location, 356 std::vector<ast::ptr<ast::Init>>& inits) const { 357 ast::ArrayType* arrT = new ast::ArrayType( 358 attr == ast::EnumAttribute::Value 359 ? decl->base 360 : new ast::PointerType(new ast::BasicType{ast::BasicKind::Char}), 361 ast::ConstantExpr::from_int(decl->location, decl->members.size()), 362 ast::LengthFlag::FixedLen, ast::DimensionFlag::DynamicDim); 363 364 ast::ObjectDecl* objDecl = 365 new ast::ObjectDecl(decl->location, decl->getUnmangeldArrayName(attr), 366 arrT, new ast::ListInit(location, std::move(inits)), 367 ast::Storage::Static, ast::Linkage::AutoGen); 368 369 return objDecl; 352 const ast::EnumAttribute attr, const CodeLocation& location, 353 std::vector<ast::ptr<ast::Init>>& inits) const { 354 ast::ArrayType* arrT = new ast::ArrayType( 355 attr == ast::EnumAttribute::Value 356 ? decl->base 357 : new ast::PointerType(new ast::BasicType{ast::BasicKind::Char}), 358 ast::ConstantExpr::from_int(decl->location, decl->members.size()), 359 ast::LengthFlag::FixedLen, ast::DimensionFlag::DynamicDim); 360 361 ast::ObjectDecl* objDecl = 362 new ast::ObjectDecl( 363 decl->location, decl->getUnmangeldArrayName( attr ), 364 arrT, new ast::ListInit( location, std::move( inits ) ), 365 ast::Storage::Static, ast::Linkage::AutoGen ); 366 367 return objDecl; 370 368 } 371 369 372 370 void EnumAttrFuncGenerator::genValueOrLabelBody( 373 ast::FunctionDecl* func, ast::ObjectDecl* arrDecl) const {374 ast::UntypedExpr* untyped = ast::UntypedExpr::createCall(375 func->location, "?[?]",376 {new ast::NameExpr(func->location, arrDecl->name),377 new ast::CastExpr(378 func->location,379 new ast::VariableExpr(func->location, func->params.front()),380 new ast::EnumAttrType(new ast::EnumInstType(decl),381 ast::EnumAttribute::Posn))});382 func->stmts = new ast::CompoundStmt(383 func->location, {new ast::ReturnStmt(func->location, untyped)});371 ast::FunctionDecl* func, ast::ObjectDecl* arrDecl) const { 372 ast::UntypedExpr* untyped = ast::UntypedExpr::createCall( 373 func->location, "?[?]", 374 {new ast::NameExpr(func->location, arrDecl->name), 375 new ast::CastExpr( 376 func->location, 377 new ast::VariableExpr( func->location, func->params.front() ), 378 new ast::EnumAttrType( new ast::EnumInstType(decl), 379 ast::EnumAttribute::Posn))}); 380 func->stmts = new ast::CompoundStmt( 381 func->location, {new ast::ReturnStmt(func->location, untyped)}); 384 382 } 385 383 386 384 void EnumAttrFuncGenerator::genPosnBody(ast::FunctionDecl* func) const { 387 auto castExpr = new ast::CastExpr(388 func->location,389 new ast::VariableExpr(func->location, func->params.front()),390 new ast::EnumAttrType(new ast::EnumInstType(decl),391 ast::EnumAttribute::Posn));392 func->stmts = new ast::CompoundStmt(393 func->location, {new ast::ReturnStmt(func->location, castExpr)});385 auto castExpr = new ast::CastExpr( 386 func->location, 387 new ast::VariableExpr(func->location, func->params.front()), 388 new ast::EnumAttrType(new ast::EnumInstType(decl), 389 ast::EnumAttribute::Posn)); 390 func->stmts = new ast::CompoundStmt( 391 func->location, {new ast::ReturnStmt(func->location, castExpr)}); 394 392 } 395 393 396 394 void EnumAttrFuncGenerator::genAttributesDecls(const ast::EnumAttribute attr) { 397 if (attr == ast::EnumAttribute::Value ||398 attr == ast::EnumAttribute::Label) {399 std::vector<ast::ptr<ast::Init>> inits =400 attr == ast::EnumAttribute::Value ? genValueInit() : genLabelInit();401 ast::ObjectDecl* arrayProto =402 genAttrArrayProto(attr, getLocation(), inits);403 forwards.push_back(arrayProto);404 405 ast::FunctionDecl* funcProto = attr == ast::EnumAttribute::Value 406 ? genValueProto()407 : genLabelProto();408 produceForwardDecl(funcProto);409 genValueOrLabelBody(funcProto, arrayProto);410 produceDecl(funcProto);411 } else {412 ast::FunctionDecl* funcProto = genPosnProto();413 produceForwardDecl(funcProto);414 genPosnBody(funcProto);415 produceDecl(funcProto);416 }395 if (attr == ast::EnumAttribute::Value || 396 attr == ast::EnumAttribute::Label) { 397 std::vector<ast::ptr<ast::Init>> inits = 398 attr == ast::EnumAttribute::Value ? genValueInit() : genLabelInit(); 399 ast::ObjectDecl* arrayProto = 400 genAttrArrayProto(attr, getLocation(), inits); 401 forwards.push_back(arrayProto); 402 403 ast::FunctionDecl* funcProto = ( attr == ast::EnumAttribute::Value ) 404 ? genValueProto() 405 : genLabelProto(); 406 produceForwardDecl(funcProto); 407 genValueOrLabelBody(funcProto, arrayProto); 408 produceDecl(funcProto); 409 } else { 410 ast::FunctionDecl* funcProto = genPosnProto(); 411 produceForwardDecl(funcProto); 412 genPosnBody(funcProto); 413 produceDecl(funcProto); 414 } 417 415 } 418 416 419 417 ast::FunctionDecl* EnumAttrFuncGenerator::genSuccPredFunc(bool succ) { 420 ast::FunctionDecl* funcDecl = succ ? genSuccPosProto() : genPredPosProto();421 produceForwardDecl(funcDecl);422 423 const CodeLocation& location = getLocation();424 425 auto& params = funcDecl->params;426 assert(params.size() == 1);427 auto param = params.front().strict_as<ast::ObjectDecl>();428 429 430 auto rets = funcDecl->returns;431 assert(params.size() == 1);432 auto ret = rets.front().strict_as<ast::ObjectDecl>();433 auto retType = ret->type.strict_as<ast::EnumAttrType>();434 435 auto addOneExpr = ast::UntypedExpr::createCall( location,436 succ? "?+?": "?-?",437 {new ast::VariableExpr(location, param),438 ast::ConstantExpr::from_int(location, 1)}439 );440 441 funcDecl->stmts = new ast::CompoundStmt(442 location, {443 new ast::ReturnStmt(444 location, 445 new ast::CastExpr(location, addOneExpr, retType) 446 )447 }448 );449 450 return funcDecl;418 ast::FunctionDecl* funcDecl = succ ? genSuccPosProto() : genPredPosProto(); 419 produceForwardDecl(funcDecl); 420 421 const CodeLocation& location = getLocation(); 422 423 auto& params = funcDecl->params; 424 assert(params.size() == 1); 425 auto param = params.front().strict_as<ast::ObjectDecl>(); 426 427 428 auto rets = funcDecl->returns; 429 assert(params.size() == 1); 430 auto ret = rets.front().strict_as<ast::ObjectDecl>(); 431 auto retType = ret->type.strict_as<ast::EnumAttrType>(); 432 433 auto addOneExpr = ast::UntypedExpr::createCall( location, 434 succ? "?+?": "?-?", 435 {new ast::VariableExpr(location, param), 436 ast::ConstantExpr::from_int(location, 1)} 437 ); 438 439 funcDecl->stmts = new ast::CompoundStmt( 440 location, { 441 new ast::ReturnStmt( 442 location, 443 new ast::CastExpr(location, addOneExpr, retType) 444 ) 445 } 446 ); 447 448 return funcDecl; 451 449 } 452 450 453 451 void EnumAttrFuncGenerator::genAttrFunctions() { 454 if (decl->base) {455 genAttributesDecls(ast::EnumAttribute::Value);456 genAttributesDecls(ast::EnumAttribute::Label);457 genAttributesDecls(ast::EnumAttribute::Posn);458 }452 if (decl->base) { 453 genAttributesDecls(ast::EnumAttribute::Value); 454 genAttributesDecls(ast::EnumAttribute::Label); 455 genAttributesDecls(ast::EnumAttribute::Posn); 456 } 459 457 } 460 458 461 459 void EnumAttrFuncGenerator::genSuccPredDecl() { 462 if (decl->base) {463 auto succProto = genSuccProto();464 auto predProto = genPredProto();465 466 produceForwardDecl(succProto);467 produceForwardDecl(predProto);468 }460 if (decl->base) { 461 auto succProto = genSuccProto(); 462 auto predProto = genPredProto(); 463 464 produceForwardDecl(succProto); 465 produceForwardDecl(predProto); 466 } 469 467 } 470 468 471 469 void EnumAttrFuncGenerator::genSuccPredPosn() { 472 if (decl->base) {473 ast::FunctionDecl* succ = genSuccPredFunc(true);474 ast::FunctionDecl* pred = genSuccPredFunc(false);475 476 produceDecl(succ);477 produceDecl(pred);478 }470 if (decl->base) { 471 ast::FunctionDecl* succ = genSuccPredFunc(true); 472 ast::FunctionDecl* pred = genSuccPredFunc(false); 473 474 produceDecl(succ); 475 produceDecl(pred); 476 } 479 477 } 480 478 481 479 void EnumAttrFuncGenerator::generateAndAppendFunctions( 482 std::list<ast::ptr<ast::Decl>>& decls) {483 // Generate the functions (they go into forwards and definitions).484 genAttrStandardFuncs();485 genAttrFunctions();486 genSuccPredDecl();487 genSuccPredPosn(); // Posn488 // Now export the lists contents.489 decls.splice(decls.end(), forwards);490 decls.splice(decls.end(), definitions);480 std::list<ast::ptr<ast::Decl>>& decls) { 481 // Generate the functions (they go into forwards and definitions). 482 genAttrStandardFuncs(); 483 genAttrFunctions(); 484 genSuccPredDecl(); 485 genSuccPredPosn(); // Posn 486 // Now export the lists contents. 487 decls.splice(decls.end(), forwards); 488 decls.splice(decls.end(), definitions); 491 489 } 492 490 493 491 // --------------------------------------------------------- 494 492 495 struct ImplementEnumFunc final : public ast::WithDeclsToAdd<>,496 public ast::WithShortCircuiting {497 void previsit(const ast::EnumDecl* enumDecl);498 void previsit(const ast::FunctionDecl* functionDecl);499 void postvisit(const ast::FunctionDecl* functionDecl);500 501 private:502 // Current level of nested functions.503 unsigned int functionNesting = 0;493 struct ImplementEnumFunc final : 494 public ast::WithDeclsToAdd<>, public ast::WithShortCircuiting { 495 void previsit(const ast::EnumDecl* enumDecl); 496 void previsit(const ast::FunctionDecl* functionDecl); 497 void postvisit(const ast::FunctionDecl* functionDecl); 498 499 private: 500 // Current level of nested functions. 501 unsigned int functionNesting = 0; 504 502 }; 505 503 506 504 void ImplementEnumFunc::previsit(const ast::EnumDecl* enumDecl) { 507 if (!enumDecl->body) return;508 if (!enumDecl->base) return;509 510 ast::EnumInstType enumInst(enumDecl->name);511 enumInst.base = enumDecl;512 513 EnumAttrFuncGenerator gen(enumDecl, &enumInst, functionNesting);514 gen.generateAndAppendFunctions(declsToAddAfter);505 if (!enumDecl->body) return; 506 if (!enumDecl->base) return; 507 508 ast::EnumInstType enumInst(enumDecl->name); 509 enumInst.base = enumDecl; 510 511 EnumAttrFuncGenerator gen(enumDecl, &enumInst, functionNesting); 512 gen.generateAndAppendFunctions(declsToAddAfter); 515 513 } 516 514 517 515 void ImplementEnumFunc::previsit(const ast::FunctionDecl*) { 518 functionNesting += 1;516 functionNesting += 1; 519 517 } 520 518 521 519 void ImplementEnumFunc::postvisit(const ast::FunctionDecl*) { 522 functionNesting -= 1;523 } 524 525 } // namespace520 functionNesting -= 1; 521 } 522 523 } // namespace 526 524 527 525 void implementEnumFunc(ast::TranslationUnit& translationUnit) { 528 ast::Pass<ImplementEnumFunc>::run(translationUnit); 529 } 530 } // namespace Validate 526 ast::Pass<ImplementEnumFunc>::run(translationUnit); 527 } 528 529 } // namespace Validate -
src/Virtual/VirtualDtor.cpp
r0fe07be r15215f02 28 28 29 29 struct CtorDtor { 30 FunctionDecl * dtorSetup; // dtor init routine to add after last dtor for a struct31 FunctionDecl * deleteFn;32 FunctionDecl * lastDtor; // pointer to last occurence of dtor to know where to insert after33 34 CtorDtor() : dtorSetup(nullptr), deleteFn(nullptr), lastDtor(nullptr) {}30 FunctionDecl * dtorSetup; // dtor init routine to add after last dtor for a struct 31 FunctionDecl * deleteFn; 32 FunctionDecl * lastDtor; // pointer to last occurence of dtor to know where to insert after 33 34 CtorDtor() : dtorSetup(nullptr), deleteFn(nullptr), lastDtor(nullptr) {} 35 35 }; 36 36 37 37 class CtorDtorTable { 38 unordered_map<const StructDecl *, CtorDtor> & structMap; 38 unordered_map<const StructDecl *, CtorDtor> & structMap; 39 40 public: 41 // if dtor is last dtor for this decl return the routine to add afterwards 42 // otherwise return nullptr 43 FunctionDecl * getToAddLater( const StructDecl * decl, FunctionDecl * dtor, FunctionDecl ** retDeleteFn ) { 44 auto iter = structMap.find( decl ); 45 if ( iter == structMap.end() || iter->second.lastDtor != dtor ) return nullptr; // check if this is needed 46 *retDeleteFn = iter->second.deleteFn; 47 return iter->second.dtorSetup; 48 } 49 50 // return if the dtorSetup field has been defined for this decl 51 bool inTable( const StructDecl * decl ) { 52 auto iter = structMap.find( decl ); 53 return iter->second.dtorSetup != nullptr; 54 } 55 56 void addLater( const StructDecl * decl, FunctionDecl * dtorSetup, FunctionDecl * deleteFn ) { 57 auto iter = structMap.find( decl ); 58 iter->second.dtorSetup = dtorSetup; 59 iter->second.deleteFn = deleteFn; 60 } 61 62 void addDtor( const StructDecl * decl, FunctionDecl * dtor ) { 63 auto iter = structMap.find( decl ); 64 iter->second.lastDtor = dtor; 65 } 66 67 CtorDtorTable( unordered_map<const StructDecl *, CtorDtor> & structMap ) : structMap(structMap) {} 68 }; 69 70 struct CollectStructDecls : public ast::WithGuards { 71 unordered_map<const StructDecl *, CtorDtor> & structDecls; 72 StructDecl * parentDecl; 73 bool insideStruct = false; 74 bool namedDecl = false; 75 76 const StructDecl ** virtualDtor; 77 78 // finds and sets a ptr to the actor, message, and request structs, which are needed in the next pass 79 void previsit( const StructDecl * decl ) { 80 if ( !decl->body ) return; 81 if( decl->name == "virtual_dtor" ) { 82 structDecls.emplace( make_pair( decl, CtorDtor() ) ); 83 *virtualDtor = decl; 84 } else { 85 GuardValue(insideStruct); 86 insideStruct = true; 87 parentDecl = mutate( decl ); 88 } 89 } 90 91 // this catches structs of the form: 92 // struct derived_type { virtual_dtor a; }; 93 // since they should be: 94 // struct derived_type { inline virtual_dtor; }; 95 void previsit ( const ObjectDecl * decl ) { 96 if ( insideStruct && ! decl->name.empty() ) { 97 GuardValue(namedDecl); 98 namedDecl = true; 99 } 100 } 101 102 // this collects the derived actor and message struct decl ptrs 103 void postvisit( const StructInstType * node ) { 104 if ( ! *virtualDtor ) return; 105 if ( insideStruct && !namedDecl ) { 106 auto structIter = structDecls.find( node->aggr() ); 107 if ( structIter != structDecls.end() ) 108 structDecls.emplace( make_pair( parentDecl, CtorDtor() ) ); 109 } 110 } 39 111 40 112 public: 41 // if dtor is last dtor for this decl return the routine to add afterwards 42 // otherwise return nullptr 43 FunctionDecl * getToAddLater( const StructDecl * decl, FunctionDecl * dtor, FunctionDecl ** retDeleteFn ) { 44 auto iter = structMap.find( decl ); 45 if ( iter == structMap.end() || iter->second.lastDtor != dtor ) return nullptr; // check if this is needed 46 *retDeleteFn = iter->second.deleteFn; 47 return iter->second.dtorSetup; 48 } 49 50 // return if the dtorSetup field has been defined for this decl 51 bool inTable( const StructDecl * decl ) { 52 auto iter = structMap.find( decl ); 53 return iter->second.dtorSetup != nullptr; 54 } 55 56 void addLater( const StructDecl * decl, FunctionDecl * dtorSetup, FunctionDecl * deleteFn ) { 57 auto iter = structMap.find( decl ); 58 iter->second.dtorSetup = dtorSetup; 59 iter->second.deleteFn = deleteFn; 60 } 61 62 void addDtor( const StructDecl * decl, FunctionDecl * dtor ) { 63 auto iter = structMap.find( decl ); 64 iter->second.lastDtor = dtor; 65 } 66 67 CtorDtorTable( unordered_map<const StructDecl *, CtorDtor> & structMap ) : structMap(structMap) {} 68 }; 69 70 struct CollectStructDecls : public ast::WithGuards { 71 unordered_map<const StructDecl *, CtorDtor> & structDecls; 72 StructDecl * parentDecl; 73 bool insideStruct = false; 74 bool namedDecl = false; 75 76 const StructDecl ** virtualDtor; 77 78 // finds and sets a ptr to the actor, message, and request structs, which are needed in the next pass 79 void previsit( const StructDecl * decl ) { 80 if ( !decl->body ) return; 81 if( decl->name == "virtual_dtor" ) { 82 structDecls.emplace( make_pair( decl, CtorDtor() ) ); 83 *virtualDtor = decl; 84 } else { 85 GuardValue(insideStruct); 86 insideStruct = true; 87 parentDecl = mutate( decl ); 88 } 89 } 90 91 // this catches structs of the form: 92 // struct derived_type { virtual_dtor a; }; 93 // since they should be: 94 // struct derived_type { inline virtual_dtor; }; 95 void previsit ( const ObjectDecl * decl ) { 96 if ( insideStruct && ! decl->name.empty() ) { 97 GuardValue(namedDecl); 98 namedDecl = true; 99 } 100 } 101 102 // this collects the derived actor and message struct decl ptrs 103 void postvisit( const StructInstType * node ) { 104 if ( ! *virtualDtor ) return; 105 if ( insideStruct && !namedDecl ) { 106 auto structIter = structDecls.find( node->aggr() ); 107 if ( structIter != structDecls.end() ) 108 structDecls.emplace( make_pair( parentDecl, CtorDtor() ) ); 109 } 110 } 111 112 public: 113 CollectStructDecls( unordered_map<const StructDecl *, CtorDtor> & structDecls, const StructDecl ** virtualDtor ): 114 structDecls( structDecls ), virtualDtor(virtualDtor) {} 113 CollectStructDecls( unordered_map<const StructDecl *, CtorDtor> & structDecls, const StructDecl ** virtualDtor ): 114 structDecls( structDecls ), virtualDtor(virtualDtor) {} 115 115 }; 116 116 117 117 // generates the forward decl of virtual dtor setting routine and delete routine 118 118 // generates the call to the virtual dtor routine in each appropriate ctor 119 // collects data needed for next pass that does the circular defn resolution 119 // collects data needed for next pass that does the circular defn resolution 120 120 // for dtor setters and delete fns (via table above) 121 121 struct GenFuncsCreateTables : public ast::WithDeclsToAdd<> { 122 unordered_map<const StructDecl *, CtorDtor> & structDecls;123 CtorDtorTable & torDecls;124 const StructDecl ** virtualDtor;125 126 // collects the dtor info for actors/messages127 // gens the dtor fwd decl and dtor call in ctor128 void previsit( const FunctionDecl * decl ) {129 if ( (decl->name != "?{}" && decl->name != "^?{}") || decl->params.size() == 0 130 || !decl->stmts || (decl->name == "^?{}" && decl->params.size() != 1)) return;131 132 // the first param should be a reference133 const ReferenceType * ref = dynamic_cast<const ReferenceType *>(decl->params.at(0)->get_type());134 if ( !ref ) return;135 136 // the reference should be to a struct instance137 const StructInstType * instType = dynamic_cast<const StructInstType *>(ref->base.get());138 if ( !instType ) return;139 140 // return if not ctor/dtor for an actor or message141 auto structIter = structDecls.find( instType->aggr() );142 if ( structIter == structDecls.end() ) return;143 144 // If first param not named we need to name it to use it145 if ( decl->params.at(0)->name == "" )146 mutate( decl->params.at(0).get() )->name = "__CFA_Virt_Dtor_param";147 148 if ( decl->name == "^?{}") {149 torDecls.addDtor( structIter->first, mutate( decl ) );150 151 CompoundStmt * dtorBody = mutate( decl->stmts.get() );152 // Adds the following to the start of any actor/message dtor:153 // __CFA_dtor_shutdown( this );154 dtorBody->push_front( 155 new IfStmt( decl->location,156 new UntypedExpr (157 decl->location,158 new NameExpr( decl->location, "__CFA_dtor_shutdown" ),159 {160 new NameExpr( decl->location, decl->params.at(0)->name )161 }162 ),163 new ReturnStmt( decl->location, nullptr )164 )165 );166 return;167 }168 169 // not dtor by this point so must be ctor170 CompoundStmt * ctorBody = mutate( decl->stmts.get() );171 // Adds the following to the end of any actor/message ctor:172 // __CFA_set_dtor( this );173 ctorBody->push_back( new ExprStmt(174 decl->location,175 new UntypedExpr (176 decl->location,177 new NameExpr( decl->location, "__CFA_set_dtor" ),178 {179 new NameExpr( decl->location, decl->params.at(0)->name )180 }181 )182 ));183 184 if ( torDecls.inTable( structIter->first ) ) return;185 186 // Generates the following:187 // void __CFA_set_dtor( Derived_type & this ){188 // void (*__my_dtor)( Derived_type & ) = ^?{};189 // this.__virtual_dtor = (void (*)( Base_type & ))__my_dtor;190 // this.__virtual_obj_start = (void *)(&this);191 // }192 CompoundStmt * setDtorBody = new CompoundStmt( decl->location );193 194 // Function type is: (void (*)(Derived_type &))195 FunctionType * derivedDtor = new FunctionType();196 derivedDtor->params.push_back( ast::deepCopy( ref ) );197 198 // Generates:199 // void (*__my_dtor)( Derived_type & ) = ^?{};200 setDtorBody->push_back( new DeclStmt(201 decl->location,202 new ObjectDecl(203 decl->location,204 "__my_dtor",205 new PointerType( derivedDtor ),206 new SingleInit( decl->location, new NameExpr( decl->location, "^?{}" ) )207 )208 ));209 210 // Function type is: (void (*)( Base_type & ))211 FunctionType * baseDtor = new FunctionType();212 baseDtor->params.push_back( new ReferenceType( new StructInstType( *virtualDtor ) ) );213 214 // Generates:215 // __CFA_set_virt_dtor( this, (void (*)( Base_type & ))__my_dtor )216 setDtorBody->push_back( new ExprStmt(217 decl->location,218 new UntypedExpr (219 decl->location,220 new NameExpr( decl->location, "__CFA_set_virt_dtor" ),221 {222 new NameExpr( decl->location, "this" ),223 new CastExpr( decl->location, new NameExpr( decl->location, "__my_dtor" ), new PointerType( baseDtor ), ExplicitCast )224 }225 )226 ));227 228 // Generates:229 // __CFA_set_virt_start( (void *)(&this) );230 setDtorBody->push_back( new ExprStmt(231 decl->location,232 new UntypedExpr (233 decl->location, 234 new NameExpr( decl->location, "__CFA_set_virt_start" ),235 {236 new NameExpr( decl->location, "this" ),237 new CastExpr(238 decl->location, 239 new AddressExpr( decl->location, new NameExpr( decl->location, "this" )), 240 new PointerType( new ast::VoidType() ), ExplicitCast241 )242 }243 )244 ));245 246 // put it all together into the complete function decl from above247 FunctionDecl * setDtorFunction = new FunctionDecl(248 decl->location,249 "__CFA_set_dtor",250 {251 new ObjectDecl(252 decl->location,253 "this",254 ast::deepCopy( ref )255 ),256 }, // params257 {},258 nullptr, // body259 { Storage::Static }, // storage260 Linkage::Cforall, // linkage261 {}, // attributes262 { Function::Inline }263 );264 265 declsToAddBefore.push_back( ast::deepCopy( setDtorFunction ) );266 267 setDtorFunction->stmts = setDtorBody;268 269 // The following generates the following specialized delete routine:270 // static inline void delete( derived_type * ptr ) {271 // if ( ptr )272 // ^(*ptr){};273 // __CFA_virt_free( *ptr );274 // }275 CompoundStmt * deleteFnBody = new CompoundStmt( decl->location );276 277 // Generates:278 // if ( ptr )279 // ^(*ptr){};280 deleteFnBody->push_back(281 new IfStmt(282 decl->location,283 UntypedExpr::createCall(284 decl->location,285 "?!=?",286 {287 new NameExpr( decl->location, "ptr" ),288 ConstantExpr::null( decl->location, new PointerType( ast::deepCopy( instType ) ) )289 }290 ),291 new ExprStmt(292 decl->location,293 UntypedExpr::createCall( 294 decl->location, 295 "^?{}",296 {297 UntypedExpr::createDeref( decl->location, new NameExpr( decl->location, "ptr" ))298 }299 )300 )301 )302 );303 304 // Generates:305 // __CFA_virt_free( *ptr );306 deleteFnBody->push_back( new ExprStmt(307 decl->location,308 UntypedExpr::createCall( 309 decl->location, 310 "__CFA_virt_free",311 {312 UntypedExpr::createDeref( decl->location, new NameExpr( decl->location, "ptr" ))313 }314 )315 )316 );317 318 FunctionDecl * deleteFn = new FunctionDecl(319 decl->location,320 "delete",321 {322 new ObjectDecl(323 decl->location,324 "ptr",325 new PointerType( ast::deepCopy( instType ) )326 ),327 }, // params328 {},329 nullptr, // body330 { Storage::Static }, // storage331 Linkage::Cforall, // linkage332 {}, // attributes333 { Function::Inline }334 );335 336 declsToAddBefore.push_back( ast::deepCopy( deleteFn ) );337 338 deleteFn->stmts = deleteFnBody;339 340 torDecls.addLater( structIter->first, setDtorFunction, deleteFn );341 }122 unordered_map<const StructDecl *, CtorDtor> & structDecls; 123 CtorDtorTable & torDecls; 124 const StructDecl ** virtualDtor; 125 126 // collects the dtor info for actors/messages 127 // gens the dtor fwd decl and dtor call in ctor 128 void previsit( const FunctionDecl * decl ) { 129 if ( (decl->name != "?{}" && decl->name != "^?{}") || decl->params.size() == 0 130 || !decl->stmts || (decl->name == "^?{}" && decl->params.size() != 1)) return; 131 132 // the first param should be a reference 133 const ReferenceType * ref = dynamic_cast<const ReferenceType *>(decl->params.at(0)->get_type()); 134 if ( !ref ) return; 135 136 // the reference should be to a struct instance 137 const StructInstType * instType = dynamic_cast<const StructInstType *>(ref->base.get()); 138 if ( !instType ) return; 139 140 // return if not ctor/dtor for an actor or message 141 auto structIter = structDecls.find( instType->aggr() ); 142 if ( structIter == structDecls.end() ) return; 143 144 // If first param not named we need to name it to use it 145 if ( decl->params.at(0)->name == "" ) 146 mutate( decl->params.at(0).get() )->name = "__CFA_Virt_Dtor_param"; 147 148 if ( decl->name == "^?{}") { 149 torDecls.addDtor( structIter->first, mutate( decl ) ); 150 151 CompoundStmt * dtorBody = mutate( decl->stmts.get() ); 152 // Adds the following to the start of any actor/message dtor: 153 // __CFA_dtor_shutdown( this ); 154 dtorBody->push_front( 155 new IfStmt( decl->location, 156 new UntypedExpr ( 157 decl->location, 158 new NameExpr( decl->location, "__CFA_dtor_shutdown" ), 159 { 160 new NameExpr( decl->location, decl->params.at(0)->name ) 161 } 162 ), 163 new ReturnStmt( decl->location, nullptr ) 164 ) 165 ); 166 return; 167 } 168 169 // not dtor by this point so must be ctor 170 CompoundStmt * ctorBody = mutate( decl->stmts.get() ); 171 // Adds the following to the end of any actor/message ctor: 172 // __CFA_set_dtor( this ); 173 ctorBody->push_back( new ExprStmt( 174 decl->location, 175 new UntypedExpr ( 176 decl->location, 177 new NameExpr( decl->location, "__CFA_set_dtor" ), 178 { 179 new NameExpr( decl->location, decl->params.at(0)->name ) 180 } 181 ) 182 )); 183 184 if ( torDecls.inTable( structIter->first ) ) return; 185 186 // Generates the following: 187 // void __CFA_set_dtor( Derived_type & this ){ 188 // void (*__my_dtor)( Derived_type & ) = ^?{}; 189 // this.__virtual_dtor = (void (*)( Base_type & ))__my_dtor; 190 // this.__virtual_obj_start = (void *)(&this); 191 // } 192 CompoundStmt * setDtorBody = new CompoundStmt( decl->location ); 193 194 // Function type is: (void (*)(Derived_type &)) 195 FunctionType * derivedDtor = new FunctionType(); 196 derivedDtor->params.push_back( ast::deepCopy( ref ) ); 197 198 // Generates: 199 // void (*__my_dtor)( Derived_type & ) = ^?{}; 200 setDtorBody->push_back( new DeclStmt( 201 decl->location, 202 new ObjectDecl( 203 decl->location, 204 "__my_dtor", 205 new PointerType( derivedDtor ), 206 new SingleInit( decl->location, new NameExpr( decl->location, "^?{}" ) ) 207 ) 208 )); 209 210 // Function type is: (void (*)( Base_type & )) 211 FunctionType * baseDtor = new FunctionType(); 212 baseDtor->params.push_back( new ReferenceType( new StructInstType( *virtualDtor ) ) ); 213 214 // Generates: 215 // __CFA_set_virt_dtor( this, (void (*)( Base_type & ))__my_dtor ) 216 setDtorBody->push_back( new ExprStmt( 217 decl->location, 218 new UntypedExpr ( 219 decl->location, 220 new NameExpr( decl->location, "__CFA_set_virt_dtor" ), 221 { 222 new NameExpr( decl->location, "this" ), 223 new CastExpr( decl->location, new NameExpr( decl->location, "__my_dtor" ), new PointerType( baseDtor ), ExplicitCast ) 224 } 225 ) 226 )); 227 228 // Generates: 229 // __CFA_set_virt_start( (void *)(&this) ); 230 setDtorBody->push_back( new ExprStmt( 231 decl->location, 232 new UntypedExpr ( 233 decl->location, 234 new NameExpr( decl->location, "__CFA_set_virt_start" ), 235 { 236 new NameExpr( decl->location, "this" ), 237 new CastExpr( 238 decl->location, 239 new AddressExpr( decl->location, new NameExpr( decl->location, "this" )), 240 new PointerType( new ast::VoidType() ), ExplicitCast 241 ) 242 } 243 ) 244 )); 245 246 // put it all together into the complete function decl from above 247 FunctionDecl * setDtorFunction = new FunctionDecl( 248 decl->location, 249 "__CFA_set_dtor", 250 { 251 new ObjectDecl( 252 decl->location, 253 "this", 254 ast::deepCopy( ref ) 255 ), 256 }, // params 257 {}, 258 nullptr, // body 259 { Storage::Static }, // storage 260 Linkage::Cforall, // linkage 261 {}, // attributes 262 { Function::Inline } 263 ); 264 265 declsToAddBefore.push_back( ast::deepCopy( setDtorFunction ) ); 266 267 setDtorFunction->stmts = setDtorBody; 268 269 // The following generates the following specialized delete routine: 270 // static inline void delete( derived_type * ptr ) { 271 // if ( ptr ) 272 // ^(*ptr){}; 273 // __CFA_virt_free( *ptr ); 274 // } 275 CompoundStmt * deleteFnBody = new CompoundStmt( decl->location ); 276 277 // Generates: 278 // if ( ptr ) 279 // ^(*ptr){}; 280 deleteFnBody->push_back( 281 new IfStmt( 282 decl->location, 283 UntypedExpr::createCall( 284 decl->location, 285 "?!=?", 286 { 287 new NameExpr( decl->location, "ptr" ), 288 ConstantExpr::null( decl->location, new PointerType( ast::deepCopy( instType ) ) ) 289 } 290 ), 291 new ExprStmt( 292 decl->location, 293 UntypedExpr::createCall( 294 decl->location, 295 "^?{}", 296 { 297 UntypedExpr::createDeref( decl->location, new NameExpr( decl->location, "ptr" )) 298 } 299 ) 300 ) 301 ) 302 ); 303 304 // Generates: 305 // __CFA_virt_free( *ptr ); 306 deleteFnBody->push_back( new ExprStmt( 307 decl->location, 308 UntypedExpr::createCall( 309 decl->location, 310 "__CFA_virt_free", 311 { 312 UntypedExpr::createDeref( decl->location, new NameExpr( decl->location, "ptr" )) 313 } 314 ) 315 ) 316 ); 317 318 FunctionDecl * deleteFn = new FunctionDecl( 319 decl->location, 320 "delete", 321 { 322 new ObjectDecl( 323 decl->location, 324 "ptr", 325 new PointerType( ast::deepCopy( instType ) ) 326 ), 327 }, // params 328 {}, 329 nullptr, // body 330 { Storage::Static }, // storage 331 Linkage::Cforall, // linkage 332 {}, // attributes 333 { Function::Inline } 334 ); 335 336 declsToAddBefore.push_back( ast::deepCopy( deleteFn ) ); 337 338 deleteFn->stmts = deleteFnBody; 339 340 torDecls.addLater( structIter->first, setDtorFunction, deleteFn ); 341 } 342 342 343 343 public: 344 GenFuncsCreateTables( unordered_map<const StructDecl *, CtorDtor> & structDecls, CtorDtorTable & torDecls, const StructDecl ** virtualDtor ):345 structDecls(structDecls), torDecls(torDecls), virtualDtor(virtualDtor) {}344 GenFuncsCreateTables( unordered_map<const StructDecl *, CtorDtor> & structDecls, CtorDtorTable & torDecls, const StructDecl ** virtualDtor ): 345 structDecls(structDecls), torDecls(torDecls), virtualDtor(virtualDtor) {} 346 346 }; 347 347 … … 349 349 // generates the trailing definitions of dtor setting routines for virtual dtors on messages and actors 350 350 // generates the function defns of __CFA_set_dtor 351 // separate pass is needed since __CFA_set_dtor needs to be defined after 351 // separate pass is needed since __CFA_set_dtor needs to be defined after 352 352 // the last dtor defn which is found in prior pass 353 353 struct GenSetDtor : public ast::WithDeclsToAdd<> { 354 unordered_map<const StructDecl *, CtorDtor> & structDecls; // set of decls that inherit from virt dtor355 CtorDtorTable & torDecls;356 357 // handles adding the declaration of the dtor init routine after the last dtor detected358 void postvisit( const FunctionDecl * decl ) {359 if ( decl->name != "^?{}" || !decl->stmts || decl->params.size() != 1 ) return;360 361 // the one param should be a reference362 const ReferenceType * ref = dynamic_cast<const ReferenceType *>(decl->params.at(0)->get_type());363 if ( !ref ) return;364 365 // the reference should be to a struct instance366 const StructInstType * instType = dynamic_cast<const StructInstType *>(ref->base.get());367 if ( !instType ) return;368 369 FunctionDecl * deleteRtn;370 371 // returns nullptr if not in table372 FunctionDecl * maybeAdd = torDecls.getToAddLater( instType->aggr(), mutate( decl ), &deleteRtn );373 if ( maybeAdd ) {374 declsToAddAfter.push_back( maybeAdd );375 declsToAddAfter.push_back( deleteRtn );376 }377 }378 379 public:380 GenSetDtor( unordered_map<const StructDecl *, CtorDtor> & structDecls, CtorDtorTable & torDecls ):381 structDecls(structDecls), torDecls(torDecls) {}354 unordered_map<const StructDecl *, CtorDtor> & structDecls; // set of decls that inherit from virt dtor 355 CtorDtorTable & torDecls; 356 357 // handles adding the declaration of the dtor init routine after the last dtor detected 358 void postvisit( const FunctionDecl * decl ) { 359 if ( decl->name != "^?{}" || !decl->stmts || decl->params.size() != 1 ) return; 360 361 // the one param should be a reference 362 const ReferenceType * ref = dynamic_cast<const ReferenceType *>(decl->params.at(0)->get_type()); 363 if ( !ref ) return; 364 365 // the reference should be to a struct instance 366 const StructInstType * instType = dynamic_cast<const StructInstType *>(ref->base.get()); 367 if ( !instType ) return; 368 369 FunctionDecl * deleteRtn; 370 371 // returns nullptr if not in table 372 FunctionDecl * maybeAdd = torDecls.getToAddLater( instType->aggr(), mutate( decl ), &deleteRtn ); 373 if ( maybeAdd ) { 374 declsToAddAfter.push_back( maybeAdd ); 375 declsToAddAfter.push_back( deleteRtn ); 376 } 377 } 378 379 public: 380 GenSetDtor( unordered_map<const StructDecl *, CtorDtor> & structDecls, CtorDtorTable & torDecls ): 381 structDecls(structDecls), torDecls(torDecls) {} 382 382 }; 383 383 384 384 void implementVirtDtors( TranslationUnit & translationUnit ) { 385 // unordered_map to collect all derived types and associated data386 unordered_map<const StructDecl *, CtorDtor> structDecls;387 CtorDtorTable torDecls( structDecls );388 389 const StructDecl * virtualDtorPtr = nullptr;390 const StructDecl ** virtualDtor = &virtualDtorPtr;391 392 // first pass collects all structs that inherit from virtual_dtor393 Pass<CollectStructDecls>::run( translationUnit, structDecls, virtualDtor );394 395 // second pass locates all dtor/ctor routines that need modifying or need fns inserted before/after396 Pass<GenFuncsCreateTables>::run( translationUnit, structDecls, torDecls, virtualDtor );397 398 // The third pass adds the forward decls needed to resolve circular defn problems399 Pass<GenSetDtor>::run( translationUnit, structDecls, torDecls );385 // unordered_map to collect all derived types and associated data 386 unordered_map<const StructDecl *, CtorDtor> structDecls; 387 CtorDtorTable torDecls( structDecls ); 388 389 const StructDecl * virtualDtorPtr = nullptr; 390 const StructDecl ** virtualDtor = &virtualDtorPtr; 391 392 // first pass collects all structs that inherit from virtual_dtor 393 Pass<CollectStructDecls>::run( translationUnit, structDecls, virtualDtor ); 394 395 // second pass locates all dtor/ctor routines that need modifying or need fns inserted before/after 396 Pass<GenFuncsCreateTables>::run( translationUnit, structDecls, torDecls, virtualDtor ); 397 398 // The third pass adds the forward decls needed to resolve circular defn problems 399 Pass<GenSetDtor>::run( translationUnit, structDecls, torDecls ); 400 400 } 401 402 401 403 402 } // namespace Virtual
Note:
See TracChangeset
for help on using the changeset viewer.