Changeset 1048b31 for src/GenPoly/Box.cc
- Timestamp:
- May 2, 2016, 3:28:16 PM (9 years ago)
- Branches:
- ADT, aaron-thesis, arm-eh, ast-experimental, cleanup-dtors, ctor, deferred_resn, demangler, enum, forall-pointer-decay, gc_noraii, jacob/cs343-translation, jenkins-sandbox, master, memory, new-ast, new-ast-unique-expr, new-env, no_list, persistent-indexer, pthread-emulation, qualifiedEnum, resolv-new, with_gc
- Children:
- 1b7ea43
- Parents:
- 1f6e009 (diff), e945826 (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the(diff)
links above to see all the changes relative to each parent. - File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
src/GenPoly/Box.cc
r1f6e009 r1048b31 30 30 #include "FindFunction.h" 31 31 #include "ScopedMap.h" 32 #include "ScopedSet.h" 32 33 #include "ScrubTyVars.h" 33 34 … … 62 63 FunctionType *makeAdapterType( FunctionType *adaptee, const TyVarMap &tyVars ); 63 64 64 /// Key for a unique concrete type; generic base type paired with type parameter list 65 struct ConcreteType { 66 ConcreteType() : base(NULL), params() {} 67 68 ConcreteType(AggregateDecl *_base, const std::list< Type* >& _params) : base(_base), params() { cloneAll(_params, params); } 69 70 ConcreteType(const ConcreteType& that) : base(that.base), params() { cloneAll(that.params, params); } 65 /// Abstracts type equality for a list of parameter types 66 struct TypeList { 67 TypeList() : params() {} 68 TypeList( const std::list< Type* > &_params ) : params() { cloneAll(_params, params); } 69 TypeList( std::list< Type* > &&_params ) : params( _params ) {} 70 71 TypeList( const TypeList &that ) : params() { cloneAll(that.params, params); } 72 TypeList( TypeList &&that ) : params( std::move( that.params ) ) {} 71 73 72 74 /// Extracts types from a list of TypeExpr* 73 ConcreteType(AggregateDecl *_base, const std::list< TypeExpr* >& _params) : base(_base),params() {75 TypeList( const std::list< TypeExpr* >& _params ) : params() { 74 76 for ( std::list< TypeExpr* >::const_iterator param = _params.begin(); param != _params.end(); ++param ) { 75 77 params.push_back( (*param)->get_type()->clone() ); … … 77 79 } 78 80 79 ConcreteType& operator= (const ConcreteType& that) {81 TypeList& operator= ( const TypeList &that ) { 80 82 deleteAll( params ); 83 81 84 params.clear(); 82 83 base = that.base;84 85 cloneAll( that.params, params ); 85 86 … … 87 88 } 88 89 89 ~ConcreteType() { deleteAll( params ); } 90 91 bool operator== (const ConcreteType& that) const { 92 if ( base != that.base ) return false; 90 TypeList& operator= ( TypeList &&that ) { 91 deleteAll( params ); 92 93 params = std::move( that.params ); 94 95 return *this; 96 } 97 98 ~TypeList() { deleteAll( params ); } 99 100 bool operator== ( const TypeList& that ) const { 101 if ( params.size() != that.params.size() ) return false; 93 102 94 103 SymTab::Indexer dummy; 95 if ( params.size() != that.params.size() ) return false;96 104 for ( std::list< Type* >::const_iterator it = params.begin(), jt = that.params.begin(); it != params.end(); ++it, ++jt ) { 97 105 if ( ! ResolvExpr::typesCompatible( *it, *jt, dummy ) ) return false; … … 100 108 } 101 109 102 AggregateDecl *base; ///< Base generic type103 110 std::list< Type* > params; ///< Instantiation parameters 104 111 }; 105 112 106 /// Maps a concrete typeto the some value, accounting for scope107 template< typename Value >113 /// Maps a key and a TypeList to the some value, accounting for scope 114 template< typename Key, typename Value > 108 115 class InstantiationMap { 109 /// Information about a specific instantiation of a generic type 110 struct Instantiation { 111 ConcreteType key; ///< Instantiation parameters for this type 112 Value *value; ///< Value for this instantiation 113 114 Instantiation() : key(), value(0) {} 115 Instantiation(const ConcreteType &_key, Value *_value) : key(_key), value(_value) {} 116 }; 117 /// Map of generic types to instantiations of them 118 typedef std::map< AggregateDecl*, std::vector< Instantiation > > Scope; 119 120 std::vector< Scope > scopes; ///< list of scopes, from outermost to innermost 116 /// Wraps value for a specific (Key, TypeList) combination 117 typedef std::pair< TypeList, Value* > Instantiation; 118 /// List of TypeLists paired with their appropriate values 119 typedef std::vector< Instantiation > ValueList; 120 /// Underlying map type; maps keys to a linear list of corresponding TypeLists and values 121 typedef ScopedMap< Key*, ValueList > InnerMap; 122 123 InnerMap instantiations; ///< instantiations 121 124 122 125 public: 123 126 /// Starts a new scope 124 void beginScope() { 125 Scope scope; 126 scopes.push_back(scope); 127 } 127 void beginScope() { instantiations.beginScope(); } 128 128 129 129 /// Ends a scope 130 void endScope() { 131 scopes.pop_back(); 132 } 133 134 /// Default constructor initializes with one scope 135 InstantiationMap() { beginScope(); } 136 137 // private: 138 /// Gets the value for the concrete instantiation of this type, assuming it has already been instantiated in the current scope. 139 /// Returns NULL on none such. 140 Value *lookup( AggregateDecl *generic, const std::list< TypeExpr* >& params ) { 141 ConcreteType key(generic, params); 142 // scan scopes from innermost out 143 for ( typename std::vector< Scope >::const_reverse_iterator scope = scopes.rbegin(); scope != scopes.rend(); ++scope ) { 144 // skip scope if no instantiations of this generic type 145 typename Scope::const_iterator insts = scope->find( generic ); 146 if ( insts == scope->end() ) continue; 147 // look through instantiations for matches to concrete type 148 for ( typename std::vector< Instantiation >::const_iterator inst = insts->second.begin(); inst != insts->second.end(); ++inst ) { 149 if ( inst->key == key ) return inst->value; 130 void endScope() { instantiations.endScope(); } 131 132 /// Gets the value for the (key, typeList) pair, returns NULL on none such. 133 Value *lookup( Key *key, const std::list< TypeExpr* >& params ) const { 134 TypeList typeList( params ); 135 136 // scan scopes for matches to the key 137 for ( typename InnerMap::const_iterator insts = instantiations.find( key ); insts != instantiations.end(); insts = instantiations.findNext( insts, key ) ) { 138 for ( typename ValueList::const_reverse_iterator inst = insts->second.rbegin(); inst != insts->second.rend(); ++inst ) { 139 if ( inst->first == typeList ) return inst->second; 150 140 } 151 141 } 152 // no matching instantiation found142 // no matching instantiations found 153 143 return 0; 154 144 } 155 public: 156 // StructDecl* lookup( StructInstType *inst, const std::list< TypeExpr* > &typeSubs ) { return (StructDecl*)lookup( inst->get_baseStruct(), typeSubs ); } 157 // UnionDecl* lookup( UnionInstType *inst, const std::list< TypeExpr* > &typeSubs ) { return (UnionDecl*)lookup( inst->get_baseUnion(), typeSubs ); } 158 159 // private: 160 /// Adds a value for a concrete type to the current scope 161 void insert( AggregateDecl *generic, const std::list< TypeExpr* > ¶ms, Value *value ) { 162 ConcreteType key(generic, params); 163 scopes.back()[generic].push_back( Instantiation( key, value ) ); 164 } 165 // public: 166 // void insert( StructInstType *inst, const std::list< TypeExpr* > &typeSubs, StructDecl *decl ) { insert( inst->get_baseStruct(), typeSubs, decl ); } 167 // void insert( UnionInstType *inst, const std::list< TypeExpr* > &typeSubs, UnionDecl *decl ) { insert( inst->get_baseUnion(), typeSubs, decl ); } 145 146 /// Adds a value for a (key, typeList) pair to the current scope 147 void insert( Key *key, const std::list< TypeExpr* > ¶ms, Value *value ) { 148 instantiations[ key ].push_back( Instantiation( TypeList( params ), value ) ); 149 } 168 150 }; 169 151 … … 197 179 virtual void doEndScope(); 198 180 private: 199 /// Makes a new temporary array holding the offsets of the fields of `type`, and returns a new variable expression referencing it200 Expression *makeOffsetArray( StructInstType *type );201 181 /// Pass the extra type parameters from polymorphic generic arguments or return types into a function application 202 182 void passArgTypeVars( ApplicationExpr *appExpr, Type *parmType, Type *argBaseType, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars, std::set< std::string > &seenTypes ); … … 225 205 ObjectDecl *makeTemporary( Type *type ); 226 206 227 std::map< std::string, DeclarationWithType *> assignOps; 228 ResolvExpr::TypeMap< DeclarationWithType > scopedAssignOps; 229 ScopedMap< std::string, DeclarationWithType* > adapters; 207 ScopedMap< std::string, DeclarationWithType *> assignOps; ///< Currently known type variable assignment operators 208 ResolvExpr::TypeMap< DeclarationWithType > scopedAssignOps; ///< Currently known assignment operators 209 ScopedMap< std::string, DeclarationWithType* > adapters; ///< Set of adapter functions in the current scope 210 230 211 DeclarationWithType *retval; 231 212 bool useRetval; … … 233 214 }; 234 215 235 /// Moves polymorphic returns in function types to pointer-type parameters, adds type size and assertion parameters to parameter lists as well 216 /// * Moves polymorphic returns in function types to pointer-type parameters 217 /// * adds type size and assertion parameters to parameter lists 236 218 class Pass2 : public PolyMutator { 237 219 public: … … 244 226 virtual Type *mutate( PointerType *pointerType ); 245 227 virtual Type *mutate( FunctionType *funcType ); 228 246 229 private: 247 230 void addAdapters( FunctionType *functionType ); … … 253 236 class GenericInstantiator : public DeclMutator { 254 237 /// Map of (generic type, parameter list) pairs to concrete type instantiations 255 InstantiationMap< AggregateDecl > instantiations;238 InstantiationMap< AggregateDecl, AggregateDecl > instantiations; 256 239 /// Namer for concrete types 257 240 UniqueName typeNamer; … … 278 261 }; 279 262 280 /// Replaces member expressions for polymorphic types with calculated add-field-offset-and-dereference; 281 /// also fixes offsetof expressions. 282 class MemberExprFixer : public PolyMutator { 283 public: 263 /// Replaces member and size/align/offsetof expressions on polymorphic generic types with calculated expressions. 264 /// * Replaces member expressions for polymorphic types with calculated add-field-offset-and-dereference 265 /// * Calculates polymorphic offsetof expressions from offset array 266 /// * Inserts dynamic calculation of polymorphic type layouts where needed 267 class PolyGenericCalculator : public PolyMutator { 268 public: 284 269 template< typename DeclClass > 285 270 DeclClass *handleDecl( DeclClass *decl, Type *type ); … … 292 277 virtual Type *mutate( FunctionType *funcType ); 293 278 virtual Expression *mutate( MemberExpr *memberExpr ); 279 virtual Expression *mutate( SizeofExpr *sizeofExpr ); 280 virtual Expression *mutate( AlignofExpr *alignofExpr ); 294 281 virtual Expression *mutate( OffsetofExpr *offsetofExpr ); 282 virtual Expression *mutate( OffsetPackExpr *offsetPackExpr ); 283 284 virtual void doBeginScope(); 285 virtual void doEndScope(); 286 287 private: 288 /// Makes a new variable in the current scope with the given name, type & optional initializer 289 ObjectDecl *makeVar( const std::string &name, Type *type, Initializer *init = 0 ); 290 /// returns true if the type has a dynamic layout; such a layout will be stored in appropriately-named local variables when the function returns 291 bool findGeneric( Type *ty ); 292 /// adds type parameters to the layout call; will generate the appropriate parameters if needed 293 void addOtypeParamsToLayoutCall( UntypedExpr *layoutCall, const std::list< Type* > &otypeParams ); 294 295 /// Enters a new scope for type-variables, adding the type variables from ty 296 void beginTypeScope( Type *ty ); 297 /// Exits the type-variable scope 298 void endTypeScope(); 299 300 ScopedSet< std::string > knownLayouts; ///< Set of generic type layouts known in the current scope, indexed by sizeofName 301 ScopedSet< std::string > knownOffsets; ///< Set of non-generic types for which the offset array exists in the current scope, indexed by offsetofName 295 302 }; 296 303 … … 342 349 Pass2 pass2; 343 350 GenericInstantiator instantiator; 344 MemberExprFixer memberFixer;351 PolyGenericCalculator polyCalculator; 345 352 Pass3 pass3; 346 353 … … 348 355 mutateTranslationUnit/*All*/( translationUnit, pass1 ); 349 356 mutateTranslationUnit/*All*/( translationUnit, pass2 ); 350 // instantiateGeneric( translationUnit );351 357 instantiator.mutateDeclarationList( translationUnit ); 352 mutateTranslationUnit/*All*/( translationUnit, memberFixer );358 mutateTranslationUnit/*All*/( translationUnit, polyCalculator ); 353 359 mutateTranslationUnit/*All*/( translationUnit, pass3 ); 354 360 } … … 384 390 for ( std::list< TypeDecl* >::const_iterator param = otypeParams.begin(); param != otypeParams.end(); ++param ) { 385 391 TypeInstType paramType( Type::Qualifiers(), (*param)->get_name(), *param ); 386 layoutFnType->get_parameters().push_back( new ObjectDecl( sizeofName( ¶mType ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignType.clone(), 0 ) ); 387 layoutFnType->get_parameters().push_back( new ObjectDecl( alignofName( ¶mType ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignType.clone(), 0 ) ); 392 std::string paramName = mangleType( ¶mType ); 393 layoutFnType->get_parameters().push_back( new ObjectDecl( sizeofName( paramName ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignType.clone(), 0 ) ); 394 layoutFnType->get_parameters().push_back( new ObjectDecl( alignofName( paramName ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignType.clone(), 0 ) ); 388 395 } 389 396 } 390 397 391 398 /// Builds a layout function declaration 392 FunctionDecl *buildLayoutFunctionDecl( const std::string &typeName, unsigned int functionNesting, FunctionType *layoutFnType ) {399 FunctionDecl *buildLayoutFunctionDecl( AggregateDecl *typeDecl, unsigned int functionNesting, FunctionType *layoutFnType ) { 393 400 // Routines at global scope marked "static" to prevent multiple definitions is separate translation units 394 401 // because each unit generates copies of the default routines for each aggregate. 395 402 FunctionDecl *layoutDecl = new FunctionDecl( 396 "__layoutof_" + typeName, functionNesting > 0 ? DeclarationNode::NoStorageClass : DeclarationNode::Static, LinkageSpec::AutoGen, layoutFnType, new CompoundStmt( noLabels ), true, false );403 layoutofName( typeDecl ), functionNesting > 0 ? DeclarationNode::NoStorageClass : DeclarationNode::Static, LinkageSpec::AutoGen, layoutFnType, new CompoundStmt( noLabels ), true, false ); 397 404 layoutDecl->fixUniqueId(); 398 405 return layoutDecl; … … 461 468 PointerType *sizeAlignOutType = new PointerType( Type::Qualifiers(), sizeAlignType ); 462 469 463 ObjectDecl *sizeParam = new ObjectDecl( "__sizeof_" + structDecl->get_name(), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignOutType, 0 );470 ObjectDecl *sizeParam = new ObjectDecl( sizeofName( structDecl->get_name() ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignOutType, 0 ); 464 471 layoutFnType->get_parameters().push_back( sizeParam ); 465 ObjectDecl *alignParam = new ObjectDecl( "__alignof_" + structDecl->get_name(), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignOutType->clone(), 0 );472 ObjectDecl *alignParam = new ObjectDecl( alignofName( structDecl->get_name() ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignOutType->clone(), 0 ); 466 473 layoutFnType->get_parameters().push_back( alignParam ); 467 ObjectDecl *offsetParam = new ObjectDecl( "__offsetof_" + structDecl->get_name(), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignOutType->clone(), 0 );474 ObjectDecl *offsetParam = new ObjectDecl( offsetofName( structDecl->get_name() ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignOutType->clone(), 0 ); 468 475 layoutFnType->get_parameters().push_back( offsetParam ); 469 476 addOtypeParams( layoutFnType, otypeParams ); 470 477 471 478 // build function decl 472 FunctionDecl *layoutDecl = buildLayoutFunctionDecl( structDecl ->get_name(), functionNesting, layoutFnType );479 FunctionDecl *layoutDecl = buildLayoutFunctionDecl( structDecl, functionNesting, layoutFnType ); 473 480 474 481 // calculate struct layout in function body … … 522 529 PointerType *sizeAlignOutType = new PointerType( Type::Qualifiers(), sizeAlignType ); 523 530 524 ObjectDecl *sizeParam = new ObjectDecl( "__sizeof_" + unionDecl->get_name(), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignOutType, 0 );531 ObjectDecl *sizeParam = new ObjectDecl( sizeofName( unionDecl->get_name() ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignOutType, 0 ); 525 532 layoutFnType->get_parameters().push_back( sizeParam ); 526 ObjectDecl *alignParam = new ObjectDecl( "__alignof_" + unionDecl->get_name(), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignOutType->clone(), 0 );533 ObjectDecl *alignParam = new ObjectDecl( alignofName( unionDecl->get_name() ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignOutType->clone(), 0 ); 527 534 layoutFnType->get_parameters().push_back( alignParam ); 528 535 addOtypeParams( layoutFnType, otypeParams ); 529 536 530 537 // build function decl 531 FunctionDecl *layoutDecl = buildLayoutFunctionDecl( unionDecl ->get_name(), functionNesting, layoutFnType );538 FunctionDecl *layoutDecl = buildLayoutFunctionDecl( unionDecl, functionNesting, layoutFnType ); 532 539 533 540 // calculate union layout in function body … … 653 660 654 661 DeclarationWithType *Pass1::mutate( FunctionDecl *functionDecl ) { 655 // if this is a polymorphicassignment function, put it in the map for this scope662 // if this is a assignment function, put it in the map for this scope 656 663 if ( Type *assignedType = isAssignment( functionDecl ) ) { 657 664 if ( ! dynamic_cast< TypeInstType* >( assignedType ) ) { … … 662 669 if ( functionDecl->get_statements() ) { // empty routine body ? 663 670 doBeginScope(); 664 TyVarMap oldtyVars = scopeTyVars;665 std::map< std::string, DeclarationWithType *> oldassignOps = assignOps;671 scopeTyVars.beginScope(); 672 assignOps.beginScope(); 666 673 DeclarationWithType *oldRetval = retval; 667 674 bool oldUseRetval = useRetval; … … 704 711 functionDecl->set_statements( functionDecl->get_statements()->acceptMutator( *this ) ); 705 712 706 scopeTyVars = oldtyVars; 707 assignOps = oldassignOps; 708 // std::cerr << "end FunctionDecl: "; 709 // for ( TyVarMap::iterator i = scopeTyVars.begin(); i != scopeTyVars.end(); ++i ) { 710 // std::cerr << i->first << " "; 711 // } 712 // std::cerr << "\n"; 713 scopeTyVars.endScope(); 714 assignOps.endScope(); 713 715 retval = oldRetval; 714 716 useRetval = oldUseRetval; … … 743 745 } 744 746 745 Expression *Pass1::makeOffsetArray( StructInstType *ty ) {746 std::list< Declaration* > &baseMembers = ty->get_baseStruct()->get_members();747 748 // make a new temporary array749 Type *offsetType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );750 std::stringstream lenGen;751 lenGen << baseMembers.size();752 ConstantExpr *lenExpr = new ConstantExpr( Constant( offsetType->clone(), lenGen.str() ) );753 ObjectDecl *arrayTemp = makeTemporary( new ArrayType( Type::Qualifiers(), offsetType, lenExpr, false, false ) );754 755 // build initializer list for temporary756 std::list< Initializer* > inits;757 for ( std::list< Declaration* >::const_iterator member = baseMembers.begin(); member != baseMembers.end(); ++member ) {758 DeclarationWithType *memberDecl;759 if ( DeclarationWithType *origMember = dynamic_cast< DeclarationWithType* >( *member ) ) {760 memberDecl = origMember->clone();761 } else {762 memberDecl = new ObjectDecl( (*member)->get_name(), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, offsetType->clone(), 0 );763 }764 inits.push_back( new SingleInit( new OffsetofExpr( ty->clone(), memberDecl ) ) );765 }766 arrayTemp->set_init( new ListInit( inits ) );767 768 // return variable pointing to temporary769 return new VariableExpr( arrayTemp );770 }771 772 747 void Pass1::passArgTypeVars( ApplicationExpr *appExpr, Type *parmType, Type *argBaseType, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars, std::set< std::string > &seenTypes ) { 773 Type *poly Base = hasPolyBase( parmType, exprTyVars );774 if ( poly Base && ! dynamic_cast< TypeInstType* >( polyBase ) ) {775 std::string sizeName = sizeofName( polyBase );776 if ( seenTypes.count( sizeName ) ) return;748 Type *polyType = isPolyType( parmType, exprTyVars ); 749 if ( polyType && ! dynamic_cast< TypeInstType* >( polyType ) ) { 750 std::string typeName = mangleType( polyType ); 751 if ( seenTypes.count( typeName ) ) return; 777 752 778 753 arg = appExpr->get_args().insert( arg, new SizeofExpr( argBaseType->clone() ) ); … … 780 755 arg = appExpr->get_args().insert( arg, new AlignofExpr( argBaseType->clone() ) ); 781 756 arg++; 782 if ( dynamic_cast< StructInstType* >( poly Base ) ) {757 if ( dynamic_cast< StructInstType* >( polyType ) ) { 783 758 if ( StructInstType *argBaseStructType = dynamic_cast< StructInstType* >( argBaseType ) ) { 784 arg = appExpr->get_args().insert( arg, makeOffsetArray( argBaseStructType ) ); 785 arg++; 759 // zero-length arrays are forbidden by C, so don't pass offset for empty struct 760 if ( ! argBaseStructType->get_baseStruct()->get_members().empty() ) { 761 arg = appExpr->get_args().insert( arg, new OffsetPackExpr( argBaseStructType->clone() ) ); 762 arg++; 763 } 786 764 } else { 787 765 throw SemanticError( "Cannot pass non-struct type for generic struct" ); … … 789 767 } 790 768 791 seenTypes.insert( sizeName );769 seenTypes.insert( typeName ); 792 770 } 793 771 } … … 931 909 return; 932 910 } else if ( arg->get_results().front()->get_isLvalue() ) { 933 // VariableExpr and MemberExpr are lvalues 934 arg = new AddressExpr( arg ); 911 // VariableExpr and MemberExpr are lvalues; need to check this isn't coming from the second arg of a comma expression though (not an lvalue) 912 if ( CommaExpr *commaArg = dynamic_cast< CommaExpr* >( arg ) ) { 913 commaArg->set_arg2( new AddressExpr( commaArg->get_arg2() ) ); 914 } else { 915 arg = new AddressExpr( arg ); 916 } 935 917 } else { 936 918 // use type computed in unification to declare boxed variables … … 1027 1009 } // for 1028 1010 } 1029 1030 1031 1011 1032 1012 FunctionDecl *Pass1::makeAdapter( FunctionType *adaptee, FunctionType *realType, const std::string &mangleName, const TyVarMap &tyVars ) { … … 1145 1125 addAssign->get_args().push_back( appExpr->get_args().front() ); 1146 1126 } // if 1147 addAssign->get_args().push_back( new NameExpr( sizeofName( polyType) ) );1127 addAssign->get_args().push_back( new NameExpr( sizeofName( mangleType( polyType ) ) ) ); 1148 1128 addAssign->get_results().front() = appExpr->get_results().front()->clone(); 1149 1129 if ( appExpr->get_env() ) { … … 1172 1152 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) ); 1173 1153 multiply->get_args().push_back( appExpr->get_args().back() ); 1174 multiply->get_args().push_back( new NameExpr( sizeofName( baseType1) ) );1154 multiply->get_args().push_back( new SizeofExpr( baseType1->clone() ) ); 1175 1155 ret->get_args().push_back( appExpr->get_args().front() ); 1176 1156 ret->get_args().push_back( multiply ); … … 1178 1158 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) ); 1179 1159 multiply->get_args().push_back( appExpr->get_args().front() ); 1180 multiply->get_args().push_back( new NameExpr( sizeofName( baseType2) ) );1160 multiply->get_args().push_back( new SizeofExpr( baseType2->clone() ) ); 1181 1161 ret->get_args().push_back( multiply ); 1182 1162 ret->get_args().push_back( appExpr->get_args().back() ); … … 1241 1221 UntypedExpr *divide = new UntypedExpr( new NameExpr( "?/?" ) ); 1242 1222 divide->get_args().push_back( appExpr ); 1243 divide->get_args().push_back( new NameExpr( sizeofName( baseType1) ) );1223 divide->get_args().push_back( new SizeofExpr( baseType1->clone() ) ); 1244 1224 divide->get_results().push_front( appExpr->get_results().front()->clone() ); 1245 1225 if ( appExpr->get_env() ) { … … 1251 1231 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) ); 1252 1232 multiply->get_args().push_back( appExpr->get_args().back() ); 1253 multiply->get_args().push_back( new NameExpr( sizeofName( baseType1) ) );1233 multiply->get_args().push_back( new SizeofExpr( baseType1->clone() ) ); 1254 1234 appExpr->get_args().back() = multiply; 1255 1235 } else if ( baseType2 ) { 1256 1236 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) ); 1257 1237 multiply->get_args().push_back( appExpr->get_args().front() ); 1258 multiply->get_args().push_back( new NameExpr( sizeofName( baseType2) ) );1238 multiply->get_args().push_back( new SizeofExpr( baseType2->clone() ) ); 1259 1239 appExpr->get_args().front() = multiply; 1260 1240 } // if … … 1266 1246 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) ); 1267 1247 multiply->get_args().push_back( appExpr->get_args().back() ); 1268 multiply->get_args().push_back( new NameExpr( sizeofName( baseType) ) );1248 multiply->get_args().push_back( new SizeofExpr( baseType->clone() ) ); 1269 1249 appExpr->get_args().back() = multiply; 1270 1250 } // if … … 1303 1283 std::list< Expression *>::iterator paramBegin = appExpr->get_args().begin(); 1304 1284 1305 TyVarMap exprTyVars ;1285 TyVarMap exprTyVars( (TypeDecl::Kind)-1 ); 1306 1286 makeTyVarMap( function, exprTyVars ); 1307 1287 ReferenceToType *polyRetType = isPolyRet( function ); … … 1326 1306 1327 1307 boxParams( appExpr, function, arg, exprTyVars ); 1328 1329 1308 passAdapters( appExpr, function, exprTyVars ); 1330 1309 … … 1406 1385 if ( TypeInstType *typeInst = dynamic_cast< TypeInstType *>( retval->get_type() ) ) { 1407 1386 // find assignment operator for type variable 1408 std::map< std::string, DeclarationWithType *>::const_iterator assignIter = assignOps.find( typeInst->get_name() );1387 ScopedMap< std::string, DeclarationWithType *>::const_iterator assignIter = assignOps.find( typeInst->get_name() ); 1409 1388 if ( assignIter == assignOps.end() ) { 1410 1389 throw SemanticError( "Attempt to return dtype or ftype object in ", returnStmt->get_expr() ); … … 1428 1407 std::list< TypeDecl* >::const_iterator forallIt = forallParams.begin(); 1429 1408 for ( ; tyIt != tyParams.end() && forallIt != forallParams.end(); ++tyIt, ++forallIt ) { 1430 if ( (*forallIt)->get_kind() != TypeDecl::Any ) continue; // skip types with no assign op (ftype/dtype) 1431 1432 std::list< DeclarationWithType* > &asserts = (*forallIt)->get_assertions(); 1433 assert( ! asserts.empty() && "Type param needs assignment operator assertion" ); 1434 DeclarationWithType *actualDecl = asserts.front(); 1435 TypeInstType *actualType = isTypeInstAssignment( actualDecl ); 1436 assert( actualType && "First assertion of type with assertions should be assignment operator" ); 1409 // Add appropriate mapping to assignment expression environment 1437 1410 TypeExpr *formalTypeExpr = dynamic_cast< TypeExpr* >( *tyIt ); 1438 1411 assert( formalTypeExpr && "type parameters must be type expressions" ); 1439 1412 Type *formalType = formalTypeExpr->get_type(); 1440 assignExpr->get_env()->add( actualType->get_name(), formalType ); 1441 1413 assignExpr->get_env()->add( (*forallIt)->get_name(), formalType ); 1414 1415 // skip types with no assign op (ftype/dtype) 1416 if ( (*forallIt)->get_kind() != TypeDecl::Any ) continue; 1417 1418 // find assignment operator for formal type 1442 1419 DeclarationWithType *assertAssign = 0; 1443 1420 if ( TypeInstType *formalTypeInstType = dynamic_cast< TypeInstType* >( formalType ) ) { 1444 std::map< std::string, DeclarationWithType *>::const_iterator assertAssignIt = assignOps.find( formalTypeInstType->get_name() );1421 ScopedMap< std::string, DeclarationWithType *>::const_iterator assertAssignIt = assignOps.find( formalTypeInstType->get_name() ); 1445 1422 if ( assertAssignIt == assignOps.end() ) { 1446 1423 throw SemanticError( "No assignment operation found for ", formalTypeInstType ); … … 1453 1430 } 1454 1431 } 1455 1456 1432 1433 // add inferred parameter for field assignment operator to assignment expression 1434 std::list< DeclarationWithType* > &asserts = (*forallIt)->get_assertions(); 1435 assert( ! asserts.empty() && "Type param needs assignment operator assertion" ); 1436 DeclarationWithType *actualDecl = asserts.front(); 1457 1437 assignExpr->get_inferParams()[ actualDecl->get_uniqueId() ] 1458 1438 = ParamEntry( assertAssign->get_uniqueId(), assertAssign->get_type()->clone(), actualDecl->get_type()->clone(), wrapFunctionDecl( assertAssign ) ); … … 1480 1460 1481 1461 Type * Pass1::mutate( PointerType *pointerType ) { 1482 TyVarMap oldtyVars = scopeTyVars;1462 scopeTyVars.beginScope(); 1483 1463 makeTyVarMap( pointerType, scopeTyVars ); 1484 1464 1485 1465 Type *ret = Mutator::mutate( pointerType ); 1486 1466 1487 scopeTyVars = oldtyVars;1467 scopeTyVars.endScope(); 1488 1468 return ret; 1489 1469 } 1490 1470 1491 1471 Type * Pass1::mutate( FunctionType *functionType ) { 1492 TyVarMap oldtyVars = scopeTyVars;1472 scopeTyVars.beginScope(); 1493 1473 makeTyVarMap( functionType, scopeTyVars ); 1494 1474 1495 1475 Type *ret = Mutator::mutate( functionType ); 1496 1476 1497 scopeTyVars = oldtyVars;1477 scopeTyVars.endScope(); 1498 1478 return ret; 1499 1479 } … … 1560 1540 1561 1541 Type * Pass2::mutate( PointerType *pointerType ) { 1562 TyVarMap oldtyVars = scopeTyVars;1542 scopeTyVars.beginScope(); 1563 1543 makeTyVarMap( pointerType, scopeTyVars ); 1564 1544 1565 1545 Type *ret = Mutator::mutate( pointerType ); 1566 1546 1567 scopeTyVars = oldtyVars;1547 scopeTyVars.endScope(); 1568 1548 return ret; 1569 1549 } 1570 1550 1571 1551 Type *Pass2::mutate( FunctionType *funcType ) { 1572 TyVarMap oldtyVars = scopeTyVars;1552 scopeTyVars.beginScope(); 1573 1553 makeTyVarMap( funcType, scopeTyVars ); 1574 1554 … … 1587 1567 ObjectDecl newPtr( "", DeclarationNode::NoStorageClass, LinkageSpec::C, 0, 1588 1568 new PointerType( Type::Qualifiers(), new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ) ), 0 ); 1589 // ObjectDecl *newFunPtr = new ObjectDecl( "", DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, new PointerType( Type::Qualifiers(), new FunctionType( Type::Qualifiers(), true ) ), 0 );1590 1569 for ( std::list< TypeDecl *>::const_iterator tyParm = funcType->get_forall().begin(); tyParm != funcType->get_forall().end(); ++tyParm ) { 1591 1570 ObjectDecl *sizeParm, *alignParm; … … 1593 1572 if ( (*tyParm)->get_kind() == TypeDecl::Any ) { 1594 1573 TypeInstType parmType( Type::Qualifiers(), (*tyParm)->get_name(), *tyParm ); 1574 std::string parmName = mangleType( &parmType ); 1595 1575 1596 1576 sizeParm = newObj.clone(); 1597 sizeParm->set_name( sizeofName( &parmType ) );1577 sizeParm->set_name( sizeofName( parmName ) ); 1598 1578 last = funcType->get_parameters().insert( last, sizeParm ); 1599 1579 ++last; 1600 1580 1601 1581 alignParm = newObj.clone(); 1602 alignParm->set_name( alignofName( &parmType ) );1582 alignParm->set_name( alignofName( parmName ) ); 1603 1583 last = funcType->get_parameters().insert( last, alignParm ); 1604 1584 ++last; … … 1615 1595 std::set< std::string > seenTypes; // sizeofName for generic types we've seen 1616 1596 for ( std::list< DeclarationWithType* >::const_iterator fnParm = last; fnParm != funcType->get_parameters().end(); ++fnParm ) { 1617 Type *poly Base = hasPolyBase( (*fnParm)->get_type(), scopeTyVars );1618 if ( poly Base && ! dynamic_cast< TypeInstType* >( polyBase ) ) {1619 std::string sizeName = sizeofName( polyBase );1620 if ( seenTypes.count( sizeName ) ) continue;1597 Type *polyType = isPolyType( (*fnParm)->get_type(), scopeTyVars ); 1598 if ( polyType && ! dynamic_cast< TypeInstType* >( polyType ) ) { 1599 std::string typeName = mangleType( polyType ); 1600 if ( seenTypes.count( typeName ) ) continue; 1621 1601 1622 1602 ObjectDecl *sizeParm, *alignParm, *offsetParm; 1623 1603 sizeParm = newObj.clone(); 1624 sizeParm->set_name( size Name);1604 sizeParm->set_name( sizeofName( typeName ) ); 1625 1605 last = funcType->get_parameters().insert( last, sizeParm ); 1626 1606 ++last; 1627 1607 1628 1608 alignParm = newObj.clone(); 1629 alignParm->set_name( alignofName( polyBase ) );1609 alignParm->set_name( alignofName( typeName ) ); 1630 1610 last = funcType->get_parameters().insert( last, alignParm ); 1631 1611 ++last; 1632 1612 1633 if ( dynamic_cast< StructInstType* >( polyBase ) ) { 1634 offsetParm = newPtr.clone(); 1635 offsetParm->set_name( offsetofName( polyBase ) ); 1636 last = funcType->get_parameters().insert( last, offsetParm ); 1637 ++last; 1613 if ( StructInstType *polyBaseStruct = dynamic_cast< StructInstType* >( polyType ) ) { 1614 // NOTE zero-length arrays are illegal in C, so empty structs have no offset array 1615 if ( ! polyBaseStruct->get_baseStruct()->get_members().empty() ) { 1616 offsetParm = newPtr.clone(); 1617 offsetParm->set_name( offsetofName( typeName ) ); 1618 last = funcType->get_parameters().insert( last, offsetParm ); 1619 ++last; 1620 } 1638 1621 } 1639 1622 1640 seenTypes.insert( sizeName );1623 seenTypes.insert( typeName ); 1641 1624 } 1642 1625 } … … 1648 1631 mutateAll( funcType->get_parameters(), *this ); 1649 1632 1650 scopeTyVars = oldtyVars;1633 scopeTyVars.endScope(); 1651 1634 return funcType; 1652 1635 } … … 1841 1824 } 1842 1825 1843 ////////////////////////////////////////// MemberExprFixer //////////////////////////////////////////////////// 1826 ////////////////////////////////////////// PolyGenericCalculator //////////////////////////////////////////////////// 1827 1828 void PolyGenericCalculator::beginTypeScope( Type *ty ) { 1829 scopeTyVars.beginScope(); 1830 makeTyVarMap( ty, scopeTyVars ); 1831 } 1832 1833 void PolyGenericCalculator::endTypeScope() { 1834 scopeTyVars.endScope(); 1835 } 1844 1836 1845 1837 template< typename DeclClass > 1846 DeclClass * MemberExprFixer::handleDecl( DeclClass *decl, Type *type ) { 1847 TyVarMap oldtyVars = scopeTyVars; 1848 makeTyVarMap( type, scopeTyVars ); 1838 DeclClass * PolyGenericCalculator::handleDecl( DeclClass *decl, Type *type ) { 1839 beginTypeScope( type ); 1840 knownLayouts.beginScope(); 1841 knownOffsets.beginScope(); 1849 1842 1850 1843 DeclClass *ret = static_cast< DeclClass *>( Mutator::mutate( decl ) ); 1851 1844 1852 scopeTyVars = oldtyVars; 1845 knownOffsets.endScope(); 1846 knownLayouts.endScope(); 1847 endTypeScope(); 1853 1848 return ret; 1854 1849 } 1855 1850 1856 ObjectDecl * MemberExprFixer::mutate( ObjectDecl *objectDecl ) {1851 ObjectDecl * PolyGenericCalculator::mutate( ObjectDecl *objectDecl ) { 1857 1852 return handleDecl( objectDecl, objectDecl->get_type() ); 1858 1853 } 1859 1854 1860 DeclarationWithType * MemberExprFixer::mutate( FunctionDecl *functionDecl ) {1855 DeclarationWithType * PolyGenericCalculator::mutate( FunctionDecl *functionDecl ) { 1861 1856 return handleDecl( functionDecl, functionDecl->get_functionType() ); 1862 1857 } 1863 1858 1864 TypedefDecl * MemberExprFixer::mutate( TypedefDecl *typedefDecl ) {1859 TypedefDecl * PolyGenericCalculator::mutate( TypedefDecl *typedefDecl ) { 1865 1860 return handleDecl( typedefDecl, typedefDecl->get_base() ); 1866 1861 } 1867 1862 1868 TypeDecl * MemberExprFixer::mutate( TypeDecl *typeDecl ) {1863 TypeDecl * PolyGenericCalculator::mutate( TypeDecl *typeDecl ) { 1869 1864 scopeTyVars[ typeDecl->get_name() ] = typeDecl->get_kind(); 1870 1865 return Mutator::mutate( typeDecl ); 1871 1866 } 1872 1867 1873 Type * MemberExprFixer::mutate( PointerType *pointerType ) { 1874 TyVarMap oldtyVars = scopeTyVars; 1875 makeTyVarMap( pointerType, scopeTyVars ); 1868 Type * PolyGenericCalculator::mutate( PointerType *pointerType ) { 1869 beginTypeScope( pointerType ); 1876 1870 1877 1871 Type *ret = Mutator::mutate( pointerType ); 1878 1872 1879 scopeTyVars = oldtyVars;1873 endTypeScope(); 1880 1874 return ret; 1881 1875 } 1882 1876 1883 Type * MemberExprFixer::mutate( FunctionType *functionType ) { 1884 TyVarMap oldtyVars = scopeTyVars; 1885 makeTyVarMap( functionType, scopeTyVars ); 1886 1887 Type *ret = Mutator::mutate( functionType ); 1888 1889 scopeTyVars = oldtyVars; 1877 Type * PolyGenericCalculator::mutate( FunctionType *funcType ) { 1878 beginTypeScope( funcType ); 1879 1880 // make sure that any type information passed into the function is accounted for 1881 for ( std::list< DeclarationWithType* >::const_iterator fnParm = funcType->get_parameters().begin(); fnParm != funcType->get_parameters().end(); ++fnParm ) { 1882 // condition here duplicates that in Pass2::mutate( FunctionType* ) 1883 Type *polyType = isPolyType( (*fnParm)->get_type(), scopeTyVars ); 1884 if ( polyType && ! dynamic_cast< TypeInstType* >( polyType ) ) { 1885 knownLayouts.insert( mangleType( polyType ) ); 1886 } 1887 } 1888 1889 Type *ret = Mutator::mutate( funcType ); 1890 1891 endTypeScope(); 1890 1892 return ret; 1891 1893 } 1892 1894 1893 Statement * MemberExprFixer::mutate( DeclStmt *declStmt ) {1895 Statement *PolyGenericCalculator::mutate( DeclStmt *declStmt ) { 1894 1896 if ( ObjectDecl *objectDecl = dynamic_cast< ObjectDecl *>( declStmt->get_decl() ) ) { 1895 if ( isPolyType( objectDecl->get_type(), scopeTyVars) ) {1897 if ( findGeneric( objectDecl->get_type() ) ) { 1896 1898 // change initialization of a polymorphic value object 1897 1899 // to allocate storage with alloca 1898 1900 Type *declType = objectDecl->get_type(); 1899 1901 UntypedExpr *alloc = new UntypedExpr( new NameExpr( "__builtin_alloca" ) ); 1900 alloc->get_args().push_back( new NameExpr( sizeofName( declType) ) );1902 alloc->get_args().push_back( new NameExpr( sizeofName( mangleType( declType ) ) ) ); 1901 1903 1902 1904 delete objectDecl->get_init(); … … 1930 1932 ConstantExpr *fieldIndex = new ConstantExpr( Constant( new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ), offset_namer.str() ) ); 1931 1933 UntypedExpr *fieldOffset = new UntypedExpr( new NameExpr( "?[?]" ) ); 1932 fieldOffset->get_args().push_back( new NameExpr( offsetofName( objectType) ) );1934 fieldOffset->get_args().push_back( new NameExpr( offsetofName( mangleType( objectType ) ) ) ); 1933 1935 fieldOffset->get_args().push_back( fieldIndex ); 1934 1936 return fieldOffset; … … 1945 1947 } 1946 1948 1947 Expression * MemberExprFixer::mutate( MemberExpr *memberExpr ) {1949 Expression *PolyGenericCalculator::mutate( MemberExpr *memberExpr ) { 1948 1950 // mutate, exiting early if no longer MemberExpr 1949 1951 Expression *expr = Mutator::mutate( memberExpr ); … … 1962 1964 Type *objectType = hasPolyBase( objectDecl->get_type(), scopeTyVars, &tyDepth ); 1963 1965 if ( ! objectType ) return memberExpr; 1966 findGeneric( objectType ); // ensure layout for this type is available 1964 1967 1965 1968 Expression *newMemberExpr = 0; … … 1993 1996 } 1994 1997 1995 Expression *MemberExprFixer::mutate( OffsetofExpr *offsetofExpr ) { 1998 ObjectDecl *PolyGenericCalculator::makeVar( const std::string &name, Type *type, Initializer *init ) { 1999 ObjectDecl *newObj = new ObjectDecl( name, DeclarationNode::NoStorageClass, LinkageSpec::C, 0, type, init ); 2000 stmtsToAdd.push_back( new DeclStmt( noLabels, newObj ) ); 2001 return newObj; 2002 } 2003 2004 void PolyGenericCalculator::addOtypeParamsToLayoutCall( UntypedExpr *layoutCall, const std::list< Type* > &otypeParams ) { 2005 for ( std::list< Type* >::const_iterator param = otypeParams.begin(); param != otypeParams.end(); ++param ) { 2006 if ( findGeneric( *param ) ) { 2007 // push size/align vars for a generic parameter back 2008 std::string paramName = mangleType( *param ); 2009 layoutCall->get_args().push_back( new NameExpr( sizeofName( paramName ) ) ); 2010 layoutCall->get_args().push_back( new NameExpr( alignofName( paramName ) ) ); 2011 } else { 2012 layoutCall->get_args().push_back( new SizeofExpr( (*param)->clone() ) ); 2013 layoutCall->get_args().push_back( new AlignofExpr( (*param)->clone() ) ); 2014 } 2015 } 2016 } 2017 2018 /// returns true if any of the otype parameters have a dynamic layout and puts all otype parameters in the output list 2019 bool findGenericParams( std::list< TypeDecl* > &baseParams, std::list< Expression* > &typeParams, std::list< Type* > &out ) { 2020 bool hasDynamicLayout = false; 2021 2022 std::list< TypeDecl* >::const_iterator baseParam = baseParams.begin(); 2023 std::list< Expression* >::const_iterator typeParam = typeParams.begin(); 2024 for ( ; baseParam != baseParams.end() && typeParam != typeParams.end(); ++baseParam, ++typeParam ) { 2025 // skip non-otype parameters 2026 if ( (*baseParam)->get_kind() != TypeDecl::Any ) continue; 2027 TypeExpr *typeExpr = dynamic_cast< TypeExpr* >( *typeParam ); 2028 assert( typeExpr && "all otype parameters should be type expressions" ); 2029 2030 Type *type = typeExpr->get_type(); 2031 out.push_back( type ); 2032 if ( isPolyType( type ) ) hasDynamicLayout = true; 2033 } 2034 assert( baseParam == baseParams.end() && typeParam == typeParams.end() ); 2035 2036 return hasDynamicLayout; 2037 } 2038 2039 bool PolyGenericCalculator::findGeneric( Type *ty ) { 2040 if ( TypeInstType *typeInst = dynamic_cast< TypeInstType* >( ty ) ) { 2041 // duplicate logic from isPolyType() 2042 if ( env ) { 2043 if ( Type *newType = env->lookup( typeInst->get_name() ) ) { 2044 return findGeneric( newType ); 2045 } // if 2046 } // if 2047 if ( scopeTyVars.find( typeInst->get_name() ) != scopeTyVars.end() ) { 2048 // NOTE assumes here that getting put in the scopeTyVars included having the layout variables set 2049 return true; 2050 } 2051 return false; 2052 } else if ( StructInstType *structTy = dynamic_cast< StructInstType* >( ty ) ) { 2053 // check if this type already has a layout generated for it 2054 std::string typeName = mangleType( ty ); 2055 if ( knownLayouts.find( typeName ) != knownLayouts.end() ) return true; 2056 2057 // check if any of the type parameters have dynamic layout; if none do, this type is (or will be) monomorphized 2058 std::list< Type* > otypeParams; 2059 if ( ! findGenericParams( *structTy->get_baseParameters(), structTy->get_parameters(), otypeParams ) ) return false; 2060 2061 // insert local variables for layout and generate call to layout function 2062 knownLayouts.insert( typeName ); // done early so as not to interfere with the later addition of parameters to the layout call 2063 Type *layoutType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ); 2064 2065 int n_members = structTy->get_baseStruct()->get_members().size(); 2066 if ( n_members == 0 ) { 2067 // all empty structs have the same layout - size 1, align 1 2068 makeVar( sizeofName( typeName ), layoutType, new SingleInit( new ConstantExpr( Constant::from( (unsigned long)1 ) ) ) ); 2069 makeVar( alignofName( typeName ), layoutType->clone(), new SingleInit( new ConstantExpr( Constant::from( (unsigned long)1 ) ) ) ); 2070 // NOTE zero-length arrays are forbidden in C, so empty structs have no offsetof array 2071 } else { 2072 ObjectDecl *sizeVar = makeVar( sizeofName( typeName ), layoutType ); 2073 ObjectDecl *alignVar = makeVar( alignofName( typeName ), layoutType->clone() ); 2074 ObjectDecl *offsetVar = makeVar( offsetofName( typeName ), new ArrayType( Type::Qualifiers(), layoutType->clone(), new ConstantExpr( Constant::from( n_members ) ), false, false ) ); 2075 2076 // generate call to layout function 2077 UntypedExpr *layoutCall = new UntypedExpr( new NameExpr( layoutofName( structTy->get_baseStruct() ) ) ); 2078 layoutCall->get_args().push_back( new AddressExpr( new VariableExpr( sizeVar ) ) ); 2079 layoutCall->get_args().push_back( new AddressExpr( new VariableExpr( alignVar ) ) ); 2080 layoutCall->get_args().push_back( new VariableExpr( offsetVar ) ); 2081 addOtypeParamsToLayoutCall( layoutCall, otypeParams ); 2082 2083 stmtsToAdd.push_back( new ExprStmt( noLabels, layoutCall ) ); 2084 } 2085 2086 return true; 2087 } else if ( UnionInstType *unionTy = dynamic_cast< UnionInstType* >( ty ) ) { 2088 // check if this type already has a layout generated for it 2089 std::string typeName = mangleType( ty ); 2090 if ( knownLayouts.find( typeName ) != knownLayouts.end() ) return true; 2091 2092 // check if any of the type parameters have dynamic layout; if none do, this type is (or will be) monomorphized 2093 std::list< Type* > otypeParams; 2094 if ( ! findGenericParams( *unionTy->get_baseParameters(), unionTy->get_parameters(), otypeParams ) ) return false; 2095 2096 // insert local variables for layout and generate call to layout function 2097 knownLayouts.insert( typeName ); // done early so as not to interfere with the later addition of parameters to the layout call 2098 Type *layoutType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ); 2099 2100 ObjectDecl *sizeVar = makeVar( sizeofName( typeName ), layoutType ); 2101 ObjectDecl *alignVar = makeVar( alignofName( typeName ), layoutType->clone() ); 2102 2103 // generate call to layout function 2104 UntypedExpr *layoutCall = new UntypedExpr( new NameExpr( layoutofName( unionTy->get_baseUnion() ) ) ); 2105 layoutCall->get_args().push_back( new AddressExpr( new VariableExpr( sizeVar ) ) ); 2106 layoutCall->get_args().push_back( new AddressExpr( new VariableExpr( alignVar ) ) ); 2107 addOtypeParamsToLayoutCall( layoutCall, otypeParams ); 2108 2109 stmtsToAdd.push_back( new ExprStmt( noLabels, layoutCall ) ); 2110 2111 return true; 2112 } 2113 2114 return false; 2115 } 2116 2117 Expression *PolyGenericCalculator::mutate( SizeofExpr *sizeofExpr ) { 2118 Type *ty = sizeofExpr->get_type(); 2119 if ( findGeneric( ty ) ) { 2120 Expression *ret = new NameExpr( sizeofName( mangleType( ty ) ) ); 2121 delete sizeofExpr; 2122 return ret; 2123 } 2124 return sizeofExpr; 2125 } 2126 2127 Expression *PolyGenericCalculator::mutate( AlignofExpr *alignofExpr ) { 2128 Type *ty = alignofExpr->get_type(); 2129 if ( findGeneric( ty ) ) { 2130 Expression *ret = new NameExpr( alignofName( mangleType( ty ) ) ); 2131 delete alignofExpr; 2132 return ret; 2133 } 2134 return alignofExpr; 2135 } 2136 2137 Expression *PolyGenericCalculator::mutate( OffsetofExpr *offsetofExpr ) { 1996 2138 // mutate, exiting early if no longer OffsetofExpr 1997 2139 Expression *expr = Mutator::mutate( offsetofExpr ); … … 2000 2142 2001 2143 // only mutate expressions for polymorphic structs/unions 2002 Type *ty = isPolyType( offsetofExpr->get_type(), scopeTyVars);2003 if ( ! ty) return offsetofExpr;2004 2144 Type *ty = offsetofExpr->get_type(); 2145 if ( ! findGeneric( ty ) ) return offsetofExpr; 2146 2005 2147 if ( StructInstType *structType = dynamic_cast< StructInstType* >( ty ) ) { 2006 2148 // replace offsetof expression by index into offset array … … 2018 2160 } 2019 2161 2162 Expression *PolyGenericCalculator::mutate( OffsetPackExpr *offsetPackExpr ) { 2163 StructInstType *ty = offsetPackExpr->get_type(); 2164 2165 Expression *ret = 0; 2166 if ( findGeneric( ty ) ) { 2167 // pull offset back from generated type information 2168 ret = new NameExpr( offsetofName( mangleType( ty ) ) ); 2169 } else { 2170 std::string offsetName = offsetofName( mangleType( ty ) ); 2171 if ( knownOffsets.find( offsetName ) != knownOffsets.end() ) { 2172 // use the already-generated offsets for this type 2173 ret = new NameExpr( offsetName ); 2174 } else { 2175 knownOffsets.insert( offsetName ); 2176 2177 std::list< Declaration* > &baseMembers = ty->get_baseStruct()->get_members(); 2178 Type *offsetType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ); 2179 2180 // build initializer list for offset array 2181 std::list< Initializer* > inits; 2182 for ( std::list< Declaration* >::const_iterator member = baseMembers.begin(); member != baseMembers.end(); ++member ) { 2183 DeclarationWithType *memberDecl; 2184 if ( DeclarationWithType *origMember = dynamic_cast< DeclarationWithType* >( *member ) ) { 2185 memberDecl = origMember->clone(); 2186 } else { 2187 memberDecl = new ObjectDecl( (*member)->get_name(), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, offsetType->clone(), 0 ); 2188 } 2189 inits.push_back( new SingleInit( new OffsetofExpr( ty->clone(), memberDecl ) ) ); 2190 } 2191 2192 // build the offset array and replace the pack with a reference to it 2193 ObjectDecl *offsetArray = makeVar( offsetName, new ArrayType( Type::Qualifiers(), offsetType, new ConstantExpr( Constant::from( baseMembers.size() ) ), false, false ), 2194 new ListInit( inits ) ); 2195 ret = new VariableExpr( offsetArray ); 2196 } 2197 } 2198 2199 delete offsetPackExpr; 2200 return ret; 2201 } 2202 2203 void PolyGenericCalculator::doBeginScope() { 2204 knownLayouts.beginScope(); 2205 knownOffsets.beginScope(); 2206 } 2207 2208 void PolyGenericCalculator::doEndScope() { 2209 knownLayouts.endScope(); 2210 knownOffsets.endScope(); 2211 } 2212 2020 2213 ////////////////////////////////////////// Pass3 //////////////////////////////////////////////////// 2021 2214 2022 2215 template< typename DeclClass > 2023 2216 DeclClass * Pass3::handleDecl( DeclClass *decl, Type *type ) { 2024 TyVarMap oldtyVars = scopeTyVars;2217 scopeTyVars.beginScope(); 2025 2218 makeTyVarMap( type, scopeTyVars ); 2026 2219 … … 2028 2221 ScrubTyVars::scrub( decl, scopeTyVars ); 2029 2222 2030 scopeTyVars = oldtyVars;2223 scopeTyVars.endScope(); 2031 2224 return ret; 2032 2225 } … … 2058 2251 2059 2252 Type * Pass3::mutate( PointerType *pointerType ) { 2060 TyVarMap oldtyVars = scopeTyVars;2253 scopeTyVars.beginScope(); 2061 2254 makeTyVarMap( pointerType, scopeTyVars ); 2062 2255 2063 2256 Type *ret = Mutator::mutate( pointerType ); 2064 2257 2065 scopeTyVars = oldtyVars;2258 scopeTyVars.endScope(); 2066 2259 return ret; 2067 2260 } 2068 2261 2069 2262 Type * Pass3::mutate( FunctionType *functionType ) { 2070 TyVarMap oldtyVars = scopeTyVars;2263 scopeTyVars.beginScope(); 2071 2264 makeTyVarMap( functionType, scopeTyVars ); 2072 2265 2073 2266 Type *ret = Mutator::mutate( functionType ); 2074 2267 2075 scopeTyVars = oldtyVars;2268 scopeTyVars.endScope(); 2076 2269 return ret; 2077 2270 }
Note:
See TracChangeset
for help on using the changeset viewer.