source: src/GenPoly/Box.cc@ baba5d8

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors ctor deferred_resn demangler enum forall-pointer-decay gc_noraii jacob/cs343-translation jenkins-sandbox memory new-ast new-ast-unique-expr new-env no_list persistent-indexer pthread-emulation qualifiedEnum resolv-new string with_gc
Last change on this file since baba5d8 was aa19ccf, checked in by Aaron Moss <a3moss@…>, 9 years ago

Box no longer marks generic type layouts calculated past scope of declaration

  • Property mode set to 100644
File size: 102.7 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Box.cc --
8//
9// Author : Richard C. Bilson
10// Created On : Mon May 18 07:44:20 2015
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Fri Feb 5 16:45:07 2016
13// Update Count : 286
14//
15
16#include <algorithm>
17#include <iterator>
18#include <list>
19#include <map>
20#include <set>
21#include <stack>
22#include <string>
23#include <utility>
24#include <vector>
25#include <cassert>
26
27#include "Box.h"
28#include "DeclMutator.h"
29#include "PolyMutator.h"
30#include "FindFunction.h"
31#include "ScopedMap.h"
32#include "ScopedSet.h"
33#include "ScrubTyVars.h"
34
35#include "Parser/ParseNode.h"
36
37#include "SynTree/Constant.h"
38#include "SynTree/Declaration.h"
39#include "SynTree/Expression.h"
40#include "SynTree/Initializer.h"
41#include "SynTree/Mutator.h"
42#include "SynTree/Statement.h"
43#include "SynTree/Type.h"
44#include "SynTree/TypeSubstitution.h"
45
46#include "ResolvExpr/TypeEnvironment.h"
47#include "ResolvExpr/TypeMap.h"
48#include "ResolvExpr/typeops.h"
49
50#include "SymTab/Indexer.h"
51#include "SymTab/Mangler.h"
52
53#include "Common/SemanticError.h"
54#include "Common/UniqueName.h"
55#include "Common/utility.h"
56
57#include <ext/functional> // temporary
58
59namespace GenPoly {
60 namespace {
61 const std::list<Label> noLabels;
62
63 FunctionType *makeAdapterType( FunctionType *adaptee, const TyVarMap &tyVars );
64
65 /// Abstracts type equality for a list of parameter types
66 struct TypeList {
67 TypeList() : params() {}
68 TypeList( const std::list< Type* > &_params ) : params() { cloneAll(_params, params); }
69 TypeList( std::list< Type* > &&_params ) : params( _params ) {}
70
71 TypeList( const TypeList &that ) : params() { cloneAll(that.params, params); }
72 TypeList( TypeList &&that ) : params( std::move( that.params ) ) {}
73
74 /// Extracts types from a list of TypeExpr*
75 TypeList( const std::list< TypeExpr* >& _params ) : params() {
76 for ( std::list< TypeExpr* >::const_iterator param = _params.begin(); param != _params.end(); ++param ) {
77 params.push_back( (*param)->get_type()->clone() );
78 }
79 }
80
81 TypeList& operator= ( const TypeList &that ) {
82 deleteAll( params );
83
84 params.clear();
85 cloneAll( that.params, params );
86
87 return *this;
88 }
89
90 TypeList& operator= ( TypeList &&that ) {
91 deleteAll( params );
92
93 params = std::move( that.params );
94
95 return *this;
96 }
97
98 ~TypeList() { deleteAll( params ); }
99
100 bool operator== ( const TypeList& that ) const {
101 if ( params.size() != that.params.size() ) return false;
102
103 SymTab::Indexer dummy;
104 for ( std::list< Type* >::const_iterator it = params.begin(), jt = that.params.begin(); it != params.end(); ++it, ++jt ) {
105 if ( ! ResolvExpr::typesCompatible( *it, *jt, dummy ) ) return false;
106 }
107 return true;
108 }
109
110 std::list< Type* > params; ///< Instantiation parameters
111 };
112
113 /// Maps a key and a TypeList to the some value, accounting for scope
114 template< typename Key, typename Value >
115 class InstantiationMap {
116 /// Wraps value for a specific (Key, TypeList) combination
117 typedef std::pair< TypeList, Value* > Instantiation;
118 /// List of TypeLists paired with their appropriate values
119 typedef std::vector< Instantiation > ValueList;
120 /// Underlying map type; maps keys to a linear list of corresponding TypeLists and values
121 typedef ScopedMap< Key*, ValueList > InnerMap;
122
123 InnerMap instantiations; ///< instantiations
124
125 public:
126 /// Starts a new scope
127 void beginScope() { instantiations.beginScope(); }
128
129 /// Ends a scope
130 void endScope() { instantiations.endScope(); }
131
132 /// Gets the value for the (key, typeList) pair, returns NULL on none such.
133 Value *lookup( Key *key, const std::list< TypeExpr* >& params ) const {
134 TypeList typeList( params );
135
136 // scan scopes for matches to the key
137 for ( typename InnerMap::const_iterator insts = instantiations.find( key ); insts != instantiations.end(); insts = instantiations.findNext( insts, key ) ) {
138 for ( typename ValueList::const_reverse_iterator inst = insts->second.rbegin(); inst != insts->second.rend(); ++inst ) {
139 if ( inst->first == typeList ) return inst->second;
140 }
141 }
142 // no matching instantiations found
143 return 0;
144 }
145
146 /// Adds a value for a (key, typeList) pair to the current scope
147 void insert( Key *key, const std::list< TypeExpr* > &params, Value *value ) {
148 instantiations[ key ].push_back( Instantiation( TypeList( params ), value ) );
149 }
150 };
151
152 /// Adds layout-generation functions to polymorphic types
153 class LayoutFunctionBuilder : public DeclMutator {
154 unsigned int functionNesting; // current level of nested functions
155 public:
156 LayoutFunctionBuilder() : functionNesting( 0 ) {}
157
158 virtual DeclarationWithType *mutate( FunctionDecl *functionDecl );
159 virtual Declaration *mutate( StructDecl *structDecl );
160 virtual Declaration *mutate( UnionDecl *unionDecl );
161 };
162
163 /// Replaces polymorphic return types with out-parameters, replaces calls to polymorphic functions with adapter calls as needed, and adds appropriate type variables to the function call
164 class Pass1 : public PolyMutator {
165 public:
166 Pass1();
167 virtual Expression *mutate( ApplicationExpr *appExpr );
168 virtual Expression *mutate( AddressExpr *addrExpr );
169 virtual Expression *mutate( UntypedExpr *expr );
170 virtual DeclarationWithType* mutate( FunctionDecl *functionDecl );
171 virtual TypeDecl *mutate( TypeDecl *typeDecl );
172 virtual Expression *mutate( CommaExpr *commaExpr );
173 virtual Expression *mutate( ConditionalExpr *condExpr );
174 virtual Statement * mutate( ReturnStmt *returnStmt );
175 virtual Type *mutate( PointerType *pointerType );
176 virtual Type * mutate( FunctionType *functionType );
177
178 virtual void doBeginScope();
179 virtual void doEndScope();
180 private:
181 /// Pass the extra type parameters from polymorphic generic arguments or return types into a function application
182 void passArgTypeVars( ApplicationExpr *appExpr, Type *parmType, Type *argBaseType, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars, std::set< std::string > &seenTypes );
183 /// passes extra type parameters into a polymorphic function application
184 void passTypeVars( ApplicationExpr *appExpr, ReferenceToType *polyRetType, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars );
185 /// wraps a function application with a new temporary for the out-parameter return value
186 Expression *addRetParam( ApplicationExpr *appExpr, FunctionType *function, Type *retType, std::list< Expression *>::iterator &arg );
187 /// Replaces all the type parameters of a generic type with their concrete equivalents under the current environment
188 void replaceParametersWithConcrete( ApplicationExpr *appExpr, std::list< Expression* >& params );
189 /// Replaces a polymorphic type with its concrete equivalant under the current environment (returns itself if concrete).
190 /// If `doClone` is set to false, will not clone interior types
191 Type *replaceWithConcrete( ApplicationExpr *appExpr, Type *type, bool doClone = true );
192 /// wraps a function application returning a polymorphic type with a new temporary for the out-parameter return value
193 Expression *addPolyRetParam( ApplicationExpr *appExpr, FunctionType *function, ReferenceToType *polyType, std::list< Expression *>::iterator &arg );
194 Expression *applyAdapter( ApplicationExpr *appExpr, FunctionType *function, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars );
195 void boxParam( Type *formal, Expression *&arg, const TyVarMap &exprTyVars );
196 void boxParams( ApplicationExpr *appExpr, FunctionType *function, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars );
197 void addInferredParams( ApplicationExpr *appExpr, FunctionType *functionType, std::list< Expression *>::iterator &arg, const TyVarMap &tyVars );
198 /// Stores assignment operators from assertion list in local map of assignment operations
199 void findAssignOps( const std::list< TypeDecl *> &forall );
200 void passAdapters( ApplicationExpr *appExpr, FunctionType *functionType, const TyVarMap &exprTyVars );
201 FunctionDecl *makeAdapter( FunctionType *adaptee, FunctionType *realType, const std::string &mangleName, const TyVarMap &tyVars );
202 /// Replaces intrinsic operator functions with their arithmetic desugaring
203 Expression *handleIntrinsics( ApplicationExpr *appExpr );
204 /// Inserts a new temporary variable into the current scope with an auto-generated name
205 ObjectDecl *makeTemporary( Type *type );
206
207 ScopedMap< std::string, DeclarationWithType *> assignOps; ///< Currently known type variable assignment operators
208 ResolvExpr::TypeMap< DeclarationWithType > scopedAssignOps; ///< Currently known assignment operators
209 ScopedMap< std::string, DeclarationWithType* > adapters; ///< Set of adapter functions in the current scope
210
211 DeclarationWithType *retval;
212 bool useRetval;
213 UniqueName tempNamer;
214 };
215
216 /// * Moves polymorphic returns in function types to pointer-type parameters
217 /// * adds type size and assertion parameters to parameter lists
218 class Pass2 : public PolyMutator {
219 public:
220 template< typename DeclClass >
221 DeclClass *handleDecl( DeclClass *decl, Type *type );
222 virtual DeclarationWithType *mutate( FunctionDecl *functionDecl );
223 virtual ObjectDecl *mutate( ObjectDecl *objectDecl );
224 virtual TypeDecl *mutate( TypeDecl *typeDecl );
225 virtual TypedefDecl *mutate( TypedefDecl *typedefDecl );
226 virtual Type *mutate( PointerType *pointerType );
227 virtual Type *mutate( FunctionType *funcType );
228
229 private:
230 void addAdapters( FunctionType *functionType );
231
232 std::map< UniqueId, std::string > adapterName;
233 };
234
235 /// Mutator pass that replaces concrete instantiations of generic types with actual struct declarations, scoped appropriately
236 class GenericInstantiator : public DeclMutator {
237 /// Map of (generic type, parameter list) pairs to concrete type instantiations
238 InstantiationMap< AggregateDecl, AggregateDecl > instantiations;
239 /// Namer for concrete types
240 UniqueName typeNamer;
241
242 public:
243 GenericInstantiator() : DeclMutator(), instantiations(), typeNamer("_conc_") {}
244
245 virtual Type* mutate( StructInstType *inst );
246 virtual Type* mutate( UnionInstType *inst );
247
248 // virtual Expression* mutate( MemberExpr *memberExpr );
249
250 virtual void doBeginScope();
251 virtual void doEndScope();
252 private:
253 /// Wrap instantiation lookup for structs
254 StructDecl* lookup( StructInstType *inst, const std::list< TypeExpr* > &typeSubs ) { return (StructDecl*)instantiations.lookup( inst->get_baseStruct(), typeSubs ); }
255 /// Wrap instantiation lookup for unions
256 UnionDecl* lookup( UnionInstType *inst, const std::list< TypeExpr* > &typeSubs ) { return (UnionDecl*)instantiations.lookup( inst->get_baseUnion(), typeSubs ); }
257 /// Wrap instantiation insertion for structs
258 void insert( StructInstType *inst, const std::list< TypeExpr* > &typeSubs, StructDecl *decl ) { instantiations.insert( inst->get_baseStruct(), typeSubs, decl ); }
259 /// Wrap instantiation insertion for unions
260 void insert( UnionInstType *inst, const std::list< TypeExpr* > &typeSubs, UnionDecl *decl ) { instantiations.insert( inst->get_baseUnion(), typeSubs, decl ); }
261 };
262
263 /// Replaces member and size/align/offsetof expressions on polymorphic generic types with calculated expressions.
264 /// * Replaces member expressions for polymorphic types with calculated add-field-offset-and-dereference
265 /// * Calculates polymorphic offsetof expressions from offset array
266 /// * Inserts dynamic calculation of polymorphic type layouts where needed
267 class PolyGenericCalculator : public PolyMutator {
268 public:
269 template< typename DeclClass >
270 DeclClass *handleDecl( DeclClass *decl, Type *type );
271 virtual DeclarationWithType *mutate( FunctionDecl *functionDecl );
272 virtual ObjectDecl *mutate( ObjectDecl *objectDecl );
273 virtual TypedefDecl *mutate( TypedefDecl *objectDecl );
274 virtual TypeDecl *mutate( TypeDecl *objectDecl );
275 virtual Statement *mutate( DeclStmt *declStmt );
276 virtual Type *mutate( PointerType *pointerType );
277 virtual Type *mutate( FunctionType *funcType );
278 virtual Expression *mutate( MemberExpr *memberExpr );
279 virtual Expression *mutate( SizeofExpr *sizeofExpr );
280 virtual Expression *mutate( AlignofExpr *alignofExpr );
281 virtual Expression *mutate( OffsetofExpr *offsetofExpr );
282 virtual Expression *mutate( OffsetPackExpr *offsetPackExpr );
283
284 virtual void doBeginScope();
285 virtual void doEndScope();
286
287 private:
288 /// Makes a new variable in the current scope with the given name, type & optional initializer
289 ObjectDecl *makeVar( const std::string &name, Type *type, Initializer *init = 0 );
290 /// returns true if the type has a dynamic layout; such a layout will be stored in appropriately-named local variables when the function returns
291 bool findGeneric( Type *ty );
292 /// adds type parameters to the layout call; will generate the appropriate parameters if needed
293 void addOtypeParamsToLayoutCall( UntypedExpr *layoutCall, const std::list< Type* > &otypeParams );
294
295 /// Enters a new scope for type-variables, adding the type variables from ty
296 void beginTypeScope( Type *ty );
297 /// Exits the type-variable scope
298 void endTypeScope();
299
300 ScopedSet< std::string > knownLayouts; ///< Set of generic type layouts known in the current scope, indexed by sizeofName
301 ScopedSet< std::string > knownOffsets; ///< Set of non-generic types for which the offset array exists in the current scope, indexed by offsetofName
302 };
303
304 /// Replaces initialization of polymorphic values with alloca, declaration of dtype/ftype with appropriate void expression, and sizeof expressions of polymorphic types with the proper variable
305 class Pass3 : public PolyMutator {
306 public:
307 template< typename DeclClass >
308 DeclClass *handleDecl( DeclClass *decl, Type *type );
309 virtual DeclarationWithType *mutate( FunctionDecl *functionDecl );
310 virtual ObjectDecl *mutate( ObjectDecl *objectDecl );
311 virtual TypedefDecl *mutate( TypedefDecl *objectDecl );
312 virtual TypeDecl *mutate( TypeDecl *objectDecl );
313 virtual Type *mutate( PointerType *pointerType );
314 virtual Type *mutate( FunctionType *funcType );
315 private:
316 };
317
318 } // anonymous namespace
319
320 /// version of mutateAll with special handling for translation unit so you can check the end of the prelude when debugging
321 template< typename MutatorType >
322 inline void mutateTranslationUnit( std::list< Declaration* > &translationUnit, MutatorType &mutator ) {
323 bool seenIntrinsic = false;
324 SemanticError errors;
325 for ( typename std::list< Declaration* >::iterator i = translationUnit.begin(); i != translationUnit.end(); ++i ) {
326 try {
327 if ( *i ) {
328 if ( (*i)->get_linkage() == LinkageSpec::Intrinsic ) {
329 seenIntrinsic = true;
330 } else if ( seenIntrinsic ) {
331 seenIntrinsic = false; // break on this line when debugging for end of prelude
332 }
333
334 *i = dynamic_cast< Declaration* >( (*i)->acceptMutator( mutator ) );
335 assert( *i );
336 } // if
337 } catch( SemanticError &e ) {
338 errors.append( e );
339 } // try
340 } // for
341 if ( ! errors.isEmpty() ) {
342 throw errors;
343 } // if
344 }
345
346 void box( std::list< Declaration *>& translationUnit ) {
347 LayoutFunctionBuilder layoutBuilder;
348 Pass1 pass1;
349 Pass2 pass2;
350 GenericInstantiator instantiator;
351 PolyGenericCalculator polyCalculator;
352 Pass3 pass3;
353
354 layoutBuilder.mutateDeclarationList( translationUnit );
355 mutateTranslationUnit/*All*/( translationUnit, pass1 );
356 mutateTranslationUnit/*All*/( translationUnit, pass2 );
357 instantiator.mutateDeclarationList( translationUnit );
358 mutateTranslationUnit/*All*/( translationUnit, polyCalculator );
359 mutateTranslationUnit/*All*/( translationUnit, pass3 );
360 }
361
362 ////////////////////////////////// LayoutFunctionBuilder ////////////////////////////////////////////
363
364 DeclarationWithType *LayoutFunctionBuilder::mutate( FunctionDecl *functionDecl ) {
365 functionDecl->set_functionType( maybeMutate( functionDecl->get_functionType(), *this ) );
366 mutateAll( functionDecl->get_oldDecls(), *this );
367 ++functionNesting;
368 functionDecl->set_statements( maybeMutate( functionDecl->get_statements(), *this ) );
369 --functionNesting;
370 return functionDecl;
371 }
372
373 /// Get a list of type declarations that will affect a layout function
374 std::list< TypeDecl* > takeOtypeOnly( std::list< TypeDecl* > &decls ) {
375 std::list< TypeDecl * > otypeDecls;
376
377 for ( std::list< TypeDecl* >::const_iterator decl = decls.begin(); decl != decls.end(); ++decl ) {
378 if ( (*decl)->get_kind() == TypeDecl::Any ) {
379 otypeDecls.push_back( *decl );
380 }
381 }
382
383 return otypeDecls;
384 }
385
386 /// Adds parameters for otype layout to a function type
387 void addOtypeParams( FunctionType *layoutFnType, std::list< TypeDecl* > &otypeParams ) {
388 BasicType sizeAlignType( Type::Qualifiers(), BasicType::LongUnsignedInt );
389
390 for ( std::list< TypeDecl* >::const_iterator param = otypeParams.begin(); param != otypeParams.end(); ++param ) {
391 TypeInstType paramType( Type::Qualifiers(), (*param)->get_name(), *param );
392 std::string paramName = mangleType( &paramType );
393 layoutFnType->get_parameters().push_back( new ObjectDecl( sizeofName( paramName ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignType.clone(), 0 ) );
394 layoutFnType->get_parameters().push_back( new ObjectDecl( alignofName( paramName ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignType.clone(), 0 ) );
395 }
396 }
397
398 /// Builds a layout function declaration
399 FunctionDecl *buildLayoutFunctionDecl( AggregateDecl *typeDecl, unsigned int functionNesting, FunctionType *layoutFnType ) {
400 // Routines at global scope marked "static" to prevent multiple definitions is separate translation units
401 // because each unit generates copies of the default routines for each aggregate.
402 FunctionDecl *layoutDecl = new FunctionDecl(
403 layoutofName( typeDecl ), functionNesting > 0 ? DeclarationNode::NoStorageClass : DeclarationNode::Static, LinkageSpec::AutoGen, layoutFnType, new CompoundStmt( noLabels ), true, false );
404 layoutDecl->fixUniqueId();
405 return layoutDecl;
406 }
407
408 /// Makes a unary operation
409 Expression *makeOp( const std::string &name, Expression *arg ) {
410 UntypedExpr *expr = new UntypedExpr( new NameExpr( name ) );
411 expr->get_args().push_back( arg );
412 return expr;
413 }
414
415 /// Makes a binary operation
416 Expression *makeOp( const std::string &name, Expression *lhs, Expression *rhs ) {
417 UntypedExpr *expr = new UntypedExpr( new NameExpr( name ) );
418 expr->get_args().push_back( lhs );
419 expr->get_args().push_back( rhs );
420 return expr;
421 }
422
423 /// Returns the dereference of a local pointer variable
424 Expression *derefVar( ObjectDecl *var ) {
425 return makeOp( "*?", new VariableExpr( var ) );
426 }
427
428 /// makes an if-statement with a single-expression if-block and no then block
429 Statement *makeCond( Expression *cond, Expression *ifPart ) {
430 return new IfStmt( noLabels, cond, new ExprStmt( noLabels, ifPart ), 0 );
431 }
432
433 /// makes a statement that assigns rhs to lhs if lhs < rhs
434 Statement *makeAssignMax( Expression *lhs, Expression *rhs ) {
435 return makeCond( makeOp( "?<?", lhs, rhs ), makeOp( "?=?", lhs->clone(), rhs->clone() ) );
436 }
437
438 /// makes a statement that aligns lhs to rhs (rhs should be an integer power of two)
439 Statement *makeAlignTo( Expression *lhs, Expression *rhs ) {
440 // check that the lhs is zeroed out to the level of rhs
441 Expression *ifCond = makeOp( "?&?", lhs, makeOp( "?-?", rhs, new ConstantExpr( Constant( new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ), "1" ) ) ) );
442 // if not aligned, increment to alignment
443 Expression *ifExpr = makeOp( "?+=?", lhs->clone(), makeOp( "?-?", rhs->clone(), ifCond->clone() ) );
444 return makeCond( ifCond, ifExpr );
445 }
446
447 /// adds an expression to a compound statement
448 void addExpr( CompoundStmt *stmts, Expression *expr ) {
449 stmts->get_kids().push_back( new ExprStmt( noLabels, expr ) );
450 }
451
452 /// adds a statement to a compound statement
453 void addStmt( CompoundStmt *stmts, Statement *stmt ) {
454 stmts->get_kids().push_back( stmt );
455 }
456
457 Declaration *LayoutFunctionBuilder::mutate( StructDecl *structDecl ) {
458 // do not generate layout function for "empty" tag structs
459 if ( structDecl->get_members().empty() ) return structDecl;
460
461 // get parameters that can change layout, exiting early if none
462 std::list< TypeDecl* > otypeParams = takeOtypeOnly( structDecl->get_parameters() );
463 if ( otypeParams.empty() ) return structDecl;
464
465 // build layout function signature
466 FunctionType *layoutFnType = new FunctionType( Type::Qualifiers(), false );
467 BasicType *sizeAlignType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
468 PointerType *sizeAlignOutType = new PointerType( Type::Qualifiers(), sizeAlignType );
469
470 ObjectDecl *sizeParam = new ObjectDecl( sizeofName( structDecl->get_name() ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignOutType, 0 );
471 layoutFnType->get_parameters().push_back( sizeParam );
472 ObjectDecl *alignParam = new ObjectDecl( alignofName( structDecl->get_name() ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignOutType->clone(), 0 );
473 layoutFnType->get_parameters().push_back( alignParam );
474 ObjectDecl *offsetParam = new ObjectDecl( offsetofName( structDecl->get_name() ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignOutType->clone(), 0 );
475 layoutFnType->get_parameters().push_back( offsetParam );
476 addOtypeParams( layoutFnType, otypeParams );
477
478 // build function decl
479 FunctionDecl *layoutDecl = buildLayoutFunctionDecl( structDecl, functionNesting, layoutFnType );
480
481 // calculate struct layout in function body
482
483 // initialize size and alignment to 0 and 1 (will have at least one member to re-edit size
484 addExpr( layoutDecl->get_statements(), makeOp( "?=?", derefVar( sizeParam ), new ConstantExpr( Constant( sizeAlignType->clone(), "0" ) ) ) );
485 addExpr( layoutDecl->get_statements(), makeOp( "?=?", derefVar( alignParam ), new ConstantExpr( Constant( sizeAlignType->clone(), "1" ) ) ) );
486 unsigned long n_members = 0;
487 bool firstMember = true;
488 for ( std::list< Declaration* >::const_iterator member = structDecl->get_members().begin(); member != structDecl->get_members().end(); ++member ) {
489 DeclarationWithType *dwt = dynamic_cast< DeclarationWithType * >( *member );
490 assert( dwt );
491 Type *memberType = dwt->get_type();
492
493 if ( firstMember ) {
494 firstMember = false;
495 } else {
496 // make sure all members after the first (automatically aligned at 0) are properly padded for alignment
497 addStmt( layoutDecl->get_statements(), makeAlignTo( derefVar( sizeParam ), new AlignofExpr( memberType->clone() ) ) );
498 }
499
500 // place current size in the current offset index
501 addExpr( layoutDecl->get_statements(), makeOp( "?=?", makeOp( "?[?]", new VariableExpr( offsetParam ), new ConstantExpr( Constant::from( n_members ) ) ),
502 derefVar( sizeParam ) ) );
503 ++n_members;
504
505 // add member size to current size
506 addExpr( layoutDecl->get_statements(), makeOp( "?+=?", derefVar( sizeParam ), new SizeofExpr( memberType->clone() ) ) );
507
508 // take max of member alignment and global alignment
509 addStmt( layoutDecl->get_statements(), makeAssignMax( derefVar( alignParam ), new AlignofExpr( memberType->clone() ) ) );
510 }
511 // make sure the type is end-padded to a multiple of its alignment
512 addStmt( layoutDecl->get_statements(), makeAlignTo( derefVar( sizeParam ), derefVar( alignParam ) ) );
513
514 addDeclarationAfter( layoutDecl );
515 return structDecl;
516 }
517
518 Declaration *LayoutFunctionBuilder::mutate( UnionDecl *unionDecl ) {
519 // do not generate layout function for "empty" tag unions
520 if ( unionDecl->get_members().empty() ) return unionDecl;
521
522 // get parameters that can change layout, exiting early if none
523 std::list< TypeDecl* > otypeParams = takeOtypeOnly( unionDecl->get_parameters() );
524 if ( otypeParams.empty() ) return unionDecl;
525
526 // build layout function signature
527 FunctionType *layoutFnType = new FunctionType( Type::Qualifiers(), false );
528 BasicType *sizeAlignType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
529 PointerType *sizeAlignOutType = new PointerType( Type::Qualifiers(), sizeAlignType );
530
531 ObjectDecl *sizeParam = new ObjectDecl( sizeofName( unionDecl->get_name() ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignOutType, 0 );
532 layoutFnType->get_parameters().push_back( sizeParam );
533 ObjectDecl *alignParam = new ObjectDecl( alignofName( unionDecl->get_name() ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignOutType->clone(), 0 );
534 layoutFnType->get_parameters().push_back( alignParam );
535 addOtypeParams( layoutFnType, otypeParams );
536
537 // build function decl
538 FunctionDecl *layoutDecl = buildLayoutFunctionDecl( unionDecl, functionNesting, layoutFnType );
539
540 // calculate union layout in function body
541 addExpr( layoutDecl->get_statements(), makeOp( "?=?", derefVar( sizeParam ), new ConstantExpr( Constant( sizeAlignType->clone(), "1" ) ) ) );
542 addExpr( layoutDecl->get_statements(), makeOp( "?=?", derefVar( alignParam ), new ConstantExpr( Constant( sizeAlignType->clone(), "1" ) ) ) );
543 for ( std::list< Declaration* >::const_iterator member = unionDecl->get_members().begin(); member != unionDecl->get_members().end(); ++member ) {
544 DeclarationWithType *dwt = dynamic_cast< DeclarationWithType * >( *member );
545 assert( dwt );
546 Type *memberType = dwt->get_type();
547
548 // take max member size and global size
549 addStmt( layoutDecl->get_statements(), makeAssignMax( derefVar( sizeParam ), new SizeofExpr( memberType->clone() ) ) );
550
551 // take max of member alignment and global alignment
552 addStmt( layoutDecl->get_statements(), makeAssignMax( derefVar( alignParam ), new AlignofExpr( memberType->clone() ) ) );
553 }
554 // make sure the type is end-padded to a multiple of its alignment
555 addStmt( layoutDecl->get_statements(), makeAlignTo( derefVar( sizeParam ), derefVar( alignParam ) ) );
556
557 addDeclarationAfter( layoutDecl );
558 return unionDecl;
559 }
560
561 ////////////////////////////////////////// Pass1 ////////////////////////////////////////////////////
562
563 namespace {
564 std::string makePolyMonoSuffix( FunctionType * function, const TyVarMap &tyVars ) {
565 std::stringstream name;
566
567 // NOTE: this function previously used isPolyObj, which failed to produce
568 // the correct thing in some situations. It's not clear to me why this wasn't working.
569
570 // if the return type or a parameter type involved polymorphic types, then the adapter will need
571 // to take those polymorphic types as pointers. Therefore, there can be two different functions
572 // with the same mangled name, so we need to further mangle the names.
573 for ( std::list< DeclarationWithType *>::iterator retval = function->get_returnVals().begin(); retval != function->get_returnVals().end(); ++retval ) {
574 if ( isPolyType( (*retval)->get_type(), tyVars ) ) {
575 name << "P";
576 } else {
577 name << "M";
578 }
579 }
580 name << "_";
581 std::list< DeclarationWithType *> &paramList = function->get_parameters();
582 for ( std::list< DeclarationWithType *>::iterator arg = paramList.begin(); arg != paramList.end(); ++arg ) {
583 if ( isPolyType( (*arg)->get_type(), tyVars ) ) {
584 name << "P";
585 } else {
586 name << "M";
587 }
588 } // for
589 return name.str();
590 }
591
592 std::string mangleAdapterName( FunctionType * function, const TyVarMap &tyVars ) {
593 return SymTab::Mangler::mangle( function ) + makePolyMonoSuffix( function, tyVars );
594 }
595
596 std::string makeAdapterName( const std::string &mangleName ) {
597 return "_adapter" + mangleName;
598 }
599
600 Pass1::Pass1() : useRetval( false ), tempNamer( "_temp" ) {}
601
602 /// Returns T if the given declaration is (*?=?)(T *, T) for some TypeInstType T (return not checked, but maybe should be), NULL otherwise
603 TypeInstType *isTypeInstAssignment( DeclarationWithType *decl ) {
604 if ( decl->get_name() == "?=?" ) {
605 if ( FunctionType *funType = getFunctionType( decl->get_type() ) ) {
606 if ( funType->get_parameters().size() == 2 ) {
607 if ( PointerType *pointer = dynamic_cast< PointerType *>( funType->get_parameters().front()->get_type() ) ) {
608 if ( TypeInstType *refType = dynamic_cast< TypeInstType *>( pointer->get_base() ) ) {
609 if ( TypeInstType *refType2 = dynamic_cast< TypeInstType *>( funType->get_parameters().back()->get_type() ) ) {
610 if ( refType->get_name() == refType2->get_name() ) {
611 return refType;
612 } // if
613 } // if
614 } // if
615 } // if
616 } // if
617 } // if
618 } // if
619 return 0;
620 }
621
622 /// returns T if the given declaration is: (*?=?)(T *, T) for some type T (return not checked, but maybe should be), NULL otherwise
623 /// Only picks assignments where neither parameter is cv-qualified
624 Type *isAssignment( DeclarationWithType *decl ) {
625 if ( decl->get_name() == "?=?" ) {
626 if ( FunctionType *funType = getFunctionType( decl->get_type() ) ) {
627 if ( funType->get_parameters().size() == 2 ) {
628 Type::Qualifiers defaultQualifiers;
629 Type *paramType1 = funType->get_parameters().front()->get_type();
630 if ( paramType1->get_qualifiers() != defaultQualifiers ) return 0;
631 Type *paramType2 = funType->get_parameters().back()->get_type();
632 if ( paramType2->get_qualifiers() != defaultQualifiers ) return 0;
633
634 if ( PointerType *pointerType = dynamic_cast< PointerType* >( paramType1 ) ) {
635 Type *baseType1 = pointerType->get_base();
636 if ( baseType1->get_qualifiers() != defaultQualifiers ) return 0;
637 SymTab::Indexer dummy;
638 if ( ResolvExpr::typesCompatible( baseType1, paramType2, dummy ) ) {
639 return baseType1;
640 } // if
641 } // if
642 } // if
643 } // if
644 } // if
645 return 0;
646 }
647
648 void Pass1::findAssignOps( const std::list< TypeDecl *> &forall ) {
649 // what if a nested function uses an assignment operator?
650 // assignOps.clear();
651 for ( std::list< TypeDecl *>::const_iterator i = forall.begin(); i != forall.end(); ++i ) {
652 for ( std::list< DeclarationWithType *>::const_iterator assert = (*i)->get_assertions().begin(); assert != (*i)->get_assertions().end(); ++assert ) {
653 std::string typeName;
654 if ( TypeInstType *typeInst = isTypeInstAssignment( *assert ) ) {
655 assignOps[ typeInst->get_name() ] = *assert;
656 } // if
657 } // for
658 } // for
659 }
660
661 DeclarationWithType *Pass1::mutate( FunctionDecl *functionDecl ) {
662 // if this is a assignment function, put it in the map for this scope
663 if ( Type *assignedType = isAssignment( functionDecl ) ) {
664 if ( ! dynamic_cast< TypeInstType* >( assignedType ) ) {
665 scopedAssignOps.insert( assignedType, functionDecl );
666 }
667 }
668
669 if ( functionDecl->get_statements() ) { // empty routine body ?
670 doBeginScope();
671 scopeTyVars.beginScope();
672 assignOps.beginScope();
673 DeclarationWithType *oldRetval = retval;
674 bool oldUseRetval = useRetval;
675
676 // process polymorphic return value
677 retval = 0;
678 if ( isPolyRet( functionDecl->get_functionType() ) && functionDecl->get_linkage() == LinkageSpec::Cforall ) {
679 retval = functionDecl->get_functionType()->get_returnVals().front();
680
681 // give names to unnamed return values
682 if ( retval->get_name() == "" ) {
683 retval->set_name( "_retparm" );
684 retval->set_linkage( LinkageSpec::C );
685 } // if
686 } // if
687
688 FunctionType *functionType = functionDecl->get_functionType();
689 makeTyVarMap( functionDecl->get_functionType(), scopeTyVars );
690 findAssignOps( functionDecl->get_functionType()->get_forall() );
691
692 std::list< DeclarationWithType *> &paramList = functionType->get_parameters();
693 std::list< FunctionType *> functions;
694 for ( std::list< TypeDecl *>::iterator tyVar = functionType->get_forall().begin(); tyVar != functionType->get_forall().end(); ++tyVar ) {
695 for ( std::list< DeclarationWithType *>::iterator assert = (*tyVar)->get_assertions().begin(); assert != (*tyVar)->get_assertions().end(); ++assert ) {
696 findFunction( (*assert)->get_type(), functions, scopeTyVars, needsAdapter );
697 } // for
698 } // for
699 for ( std::list< DeclarationWithType *>::iterator arg = paramList.begin(); arg != paramList.end(); ++arg ) {
700 findFunction( (*arg)->get_type(), functions, scopeTyVars, needsAdapter );
701 } // for
702
703 for ( std::list< FunctionType *>::iterator funType = functions.begin(); funType != functions.end(); ++funType ) {
704 std::string mangleName = mangleAdapterName( *funType, scopeTyVars );
705 if ( adapters.find( mangleName ) == adapters.end() ) {
706 std::string adapterName = makeAdapterName( mangleName );
707 adapters.insert( std::pair< std::string, DeclarationWithType *>( mangleName, new ObjectDecl( adapterName, DeclarationNode::NoStorageClass, LinkageSpec::C, 0, new PointerType( Type::Qualifiers(), makeAdapterType( *funType, scopeTyVars ) ), 0 ) ) );
708 } // if
709 } // for
710
711 functionDecl->set_statements( functionDecl->get_statements()->acceptMutator( *this ) );
712
713 scopeTyVars.endScope();
714 assignOps.endScope();
715 retval = oldRetval;
716 useRetval = oldUseRetval;
717 doEndScope();
718 } // if
719 return functionDecl;
720 }
721
722 TypeDecl *Pass1::mutate( TypeDecl *typeDecl ) {
723 scopeTyVars[ typeDecl->get_name() ] = typeDecl->get_kind();
724 return Mutator::mutate( typeDecl );
725 }
726
727 Expression *Pass1::mutate( CommaExpr *commaExpr ) {
728 bool oldUseRetval = useRetval;
729 useRetval = false;
730 commaExpr->set_arg1( maybeMutate( commaExpr->get_arg1(), *this ) );
731 useRetval = oldUseRetval;
732 commaExpr->set_arg2( maybeMutate( commaExpr->get_arg2(), *this ) );
733 return commaExpr;
734 }
735
736 Expression *Pass1::mutate( ConditionalExpr *condExpr ) {
737 bool oldUseRetval = useRetval;
738 useRetval = false;
739 condExpr->set_arg1( maybeMutate( condExpr->get_arg1(), *this ) );
740 useRetval = oldUseRetval;
741 condExpr->set_arg2( maybeMutate( condExpr->get_arg2(), *this ) );
742 condExpr->set_arg3( maybeMutate( condExpr->get_arg3(), *this ) );
743 return condExpr;
744
745 }
746
747 void Pass1::passArgTypeVars( ApplicationExpr *appExpr, Type *parmType, Type *argBaseType, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars, std::set< std::string > &seenTypes ) {
748 Type *polyType = isPolyType( parmType, exprTyVars );
749 if ( polyType && ! dynamic_cast< TypeInstType* >( polyType ) ) {
750 std::string typeName = mangleType( polyType );
751 if ( seenTypes.count( typeName ) ) return;
752
753 arg = appExpr->get_args().insert( arg, new SizeofExpr( argBaseType->clone() ) );
754 arg++;
755 arg = appExpr->get_args().insert( arg, new AlignofExpr( argBaseType->clone() ) );
756 arg++;
757 if ( dynamic_cast< StructInstType* >( polyType ) ) {
758 if ( StructInstType *argBaseStructType = dynamic_cast< StructInstType* >( argBaseType ) ) {
759 // zero-length arrays are forbidden by C, so don't pass offset for empty struct
760 if ( ! argBaseStructType->get_baseStruct()->get_members().empty() ) {
761 arg = appExpr->get_args().insert( arg, new OffsetPackExpr( argBaseStructType->clone() ) );
762 arg++;
763 }
764 } else {
765 throw SemanticError( "Cannot pass non-struct type for generic struct" );
766 }
767 }
768
769 seenTypes.insert( typeName );
770 }
771 }
772
773 void Pass1::passTypeVars( ApplicationExpr *appExpr, ReferenceToType *polyRetType, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars ) {
774 // pass size/align for type variables
775 for ( TyVarMap::const_iterator tyParm = exprTyVars.begin(); tyParm != exprTyVars.end(); ++tyParm ) {
776 ResolvExpr::EqvClass eqvClass;
777 assert( env );
778 if ( tyParm->second == TypeDecl::Any ) {
779 Type *concrete = env->lookup( tyParm->first );
780 if ( concrete ) {
781 arg = appExpr->get_args().insert( arg, new SizeofExpr( concrete->clone() ) );
782 arg++;
783 arg = appExpr->get_args().insert( arg, new AlignofExpr( concrete->clone() ) );
784 arg++;
785 } else {
786 throw SemanticError( "unbound type variable in application ", appExpr );
787 } // if
788 } // if
789 } // for
790
791 // add size/align for generic types to parameter list
792 if ( appExpr->get_function()->get_results().empty() ) return;
793 FunctionType *funcType = getFunctionType( appExpr->get_function()->get_results().front() );
794 assert( funcType );
795
796 std::list< DeclarationWithType* >::const_iterator fnParm = funcType->get_parameters().begin();
797 std::list< Expression* >::const_iterator fnArg = arg;
798 std::set< std::string > seenTypes; //< names for generic types we've seen
799
800 // a polymorphic return type may need to be added to the argument list
801 if ( polyRetType ) {
802 Type *concRetType = replaceWithConcrete( appExpr, polyRetType );
803 passArgTypeVars( appExpr, polyRetType, concRetType, arg, exprTyVars, seenTypes );
804 }
805
806 // add type information args for presently unseen types in parameter list
807 for ( ; fnParm != funcType->get_parameters().end() && fnArg != appExpr->get_args().end(); ++fnParm, ++fnArg ) {
808 VariableExpr *fnArgBase = getBaseVar( *fnArg );
809 if ( ! fnArgBase || fnArgBase->get_results().empty() ) continue;
810 passArgTypeVars( appExpr, (*fnParm)->get_type(), fnArgBase->get_results().front(), arg, exprTyVars, seenTypes );
811 }
812 }
813
814 ObjectDecl *Pass1::makeTemporary( Type *type ) {
815 ObjectDecl *newObj = new ObjectDecl( tempNamer.newName(), DeclarationNode::NoStorageClass, LinkageSpec::C, 0, type, 0 );
816 stmtsToAdd.push_back( new DeclStmt( noLabels, newObj ) );
817 return newObj;
818 }
819
820 Expression *Pass1::addRetParam( ApplicationExpr *appExpr, FunctionType *function, Type *retType, std::list< Expression *>::iterator &arg ) {
821 // ***** Code Removal ***** After introducing a temporary variable for all return expressions, the following code appears superfluous.
822 // if ( useRetval ) {
823 // assert( retval );
824 // arg = appExpr->get_args().insert( arg, new VariableExpr( retval ) );
825 // arg++;
826 // } else {
827
828 // Create temporary to hold return value of polymorphic function and produce that temporary as a result
829 // using a comma expression. Possibly change comma expression into statement expression "{}" for multiple
830 // return values.
831 ObjectDecl *newObj = makeTemporary( retType->clone() );
832 Expression *paramExpr = new VariableExpr( newObj );
833
834 // If the type of the temporary is not polymorphic, box temporary by taking its address;
835 // otherwise the temporary is already boxed and can be used directly.
836 if ( ! isPolyType( newObj->get_type(), scopeTyVars, env ) ) {
837 paramExpr = new AddressExpr( paramExpr );
838 } // if
839 arg = appExpr->get_args().insert( arg, paramExpr ); // add argument to function call
840 arg++;
841 // Build a comma expression to call the function and emulate a normal return.
842 CommaExpr *commaExpr = new CommaExpr( appExpr, new VariableExpr( newObj ) );
843 commaExpr->set_env( appExpr->get_env() );
844 appExpr->set_env( 0 );
845 return commaExpr;
846 // } // if
847 // return appExpr;
848 }
849
850 void Pass1::replaceParametersWithConcrete( ApplicationExpr *appExpr, std::list< Expression* >& params ) {
851 for ( std::list< Expression* >::iterator param = params.begin(); param != params.end(); ++param ) {
852 TypeExpr *paramType = dynamic_cast< TypeExpr* >( *param );
853 assert(paramType && "Aggregate parameters should be type expressions");
854 paramType->set_type( replaceWithConcrete( appExpr, paramType->get_type(), false ) );
855 }
856 }
857
858 Type *Pass1::replaceWithConcrete( ApplicationExpr *appExpr, Type *type, bool doClone ) {
859 if ( TypeInstType *typeInst = dynamic_cast< TypeInstType * >( type ) ) {
860 Type *concrete = env->lookup( typeInst->get_name() );
861 if ( concrete == 0 ) {
862 throw SemanticError( "Unbound type variable " + typeInst->get_name() + " in ", appExpr );
863 } // if
864 return concrete;
865 } else if ( StructInstType *structType = dynamic_cast< StructInstType* >( type ) ) {
866 if ( doClone ) {
867 structType = structType->clone();
868 }
869 replaceParametersWithConcrete( appExpr, structType->get_parameters() );
870 return structType;
871 } else if ( UnionInstType *unionType = dynamic_cast< UnionInstType* >( type ) ) {
872 if ( doClone ) {
873 unionType = unionType->clone();
874 }
875 replaceParametersWithConcrete( appExpr, unionType->get_parameters() );
876 return unionType;
877 }
878 return type;
879 }
880
881 Expression *Pass1::addPolyRetParam( ApplicationExpr *appExpr, FunctionType *function, ReferenceToType *polyType, std::list< Expression *>::iterator &arg ) {
882 assert( env );
883 Type *concrete = replaceWithConcrete( appExpr, polyType );
884 // add out-parameter for return value
885 return addRetParam( appExpr, function, concrete, arg );
886 }
887
888 Expression *Pass1::applyAdapter( ApplicationExpr *appExpr, FunctionType *function, std::list< Expression *>::iterator &arg, const TyVarMap &tyVars ) {
889 Expression *ret = appExpr;
890 if ( ! function->get_returnVals().empty() && isPolyType( function->get_returnVals().front()->get_type(), tyVars ) ) {
891 ret = addRetParam( appExpr, function, function->get_returnVals().front()->get_type(), arg );
892 } // if
893 std::string mangleName = mangleAdapterName( function, tyVars );
894 std::string adapterName = makeAdapterName( mangleName );
895
896 // cast adaptee to void (*)(), since it may have any type inside a polymorphic function
897 Type * adapteeType = new PointerType( Type::Qualifiers(), new FunctionType( Type::Qualifiers(), true ) );
898 appExpr->get_args().push_front( new CastExpr( appExpr->get_function(), adapteeType ) );
899 appExpr->set_function( new NameExpr( adapterName ) );
900
901 return ret;
902 }
903
904 void Pass1::boxParam( Type *param, Expression *&arg, const TyVarMap &exprTyVars ) {
905 assert( ! arg->get_results().empty() );
906 if ( isPolyType( param, exprTyVars ) ) {
907 if ( isPolyType( arg->get_results().front() ) ) {
908 // if the argument's type is polymorphic, we don't need to box again!
909 return;
910 } else if ( arg->get_results().front()->get_isLvalue() ) {
911 // VariableExpr and MemberExpr are lvalues; need to check this isn't coming from the second arg of a comma expression though (not an lvalue)
912 if ( CommaExpr *commaArg = dynamic_cast< CommaExpr* >( arg ) ) {
913 commaArg->set_arg2( new AddressExpr( commaArg->get_arg2() ) );
914 } else {
915 arg = new AddressExpr( arg );
916 }
917 } else {
918 // use type computed in unification to declare boxed variables
919 Type * newType = param->clone();
920 if ( env ) env->apply( newType );
921 ObjectDecl *newObj = new ObjectDecl( tempNamer.newName(), DeclarationNode::NoStorageClass, LinkageSpec::C, 0, newType, 0 );
922 newObj->get_type()->get_qualifiers() = Type::Qualifiers(); // TODO: is this right???
923 stmtsToAdd.push_back( new DeclStmt( noLabels, newObj ) );
924 UntypedExpr *assign = new UntypedExpr( new NameExpr( "?=?" ) );
925 assign->get_args().push_back( new VariableExpr( newObj ) );
926 assign->get_args().push_back( arg );
927 stmtsToAdd.push_back( new ExprStmt( noLabels, assign ) );
928 arg = new AddressExpr( new VariableExpr( newObj ) );
929 } // if
930 } // if
931 }
932
933 /// cast parameters to polymorphic functions so that types are replaced with
934 /// void * if they are type parameters in the formal type.
935 /// this gets rid of warnings from gcc.
936 void addCast( Expression *&actual, Type *formal, const TyVarMap &tyVars ) {
937 Type * newType = formal->clone();
938 if ( getFunctionType( newType ) ) {
939 newType = ScrubTyVars::scrub( newType, tyVars );
940 actual = new CastExpr( actual, newType );
941 } // if
942 }
943
944 void Pass1::boxParams( ApplicationExpr *appExpr, FunctionType *function, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars ) {
945 for ( std::list< DeclarationWithType *>::const_iterator param = function->get_parameters().begin(); param != function->get_parameters().end(); ++param, ++arg ) {
946 assert( arg != appExpr->get_args().end() );
947 addCast( *arg, (*param)->get_type(), exprTyVars );
948 boxParam( (*param)->get_type(), *arg, exprTyVars );
949 } // for
950 }
951
952 void Pass1::addInferredParams( ApplicationExpr *appExpr, FunctionType *functionType, std::list< Expression *>::iterator &arg, const TyVarMap &tyVars ) {
953 std::list< Expression *>::iterator cur = arg;
954 for ( std::list< TypeDecl *>::iterator tyVar = functionType->get_forall().begin(); tyVar != functionType->get_forall().end(); ++tyVar ) {
955 for ( std::list< DeclarationWithType *>::iterator assert = (*tyVar)->get_assertions().begin(); assert != (*tyVar)->get_assertions().end(); ++assert ) {
956 InferredParams::const_iterator inferParam = appExpr->get_inferParams().find( (*assert)->get_uniqueId() );
957 assert( inferParam != appExpr->get_inferParams().end() && "NOTE: Explicit casts of polymorphic functions to compatible monomorphic functions are currently unsupported" );
958 Expression *newExpr = inferParam->second.expr->clone();
959 addCast( newExpr, (*assert)->get_type(), tyVars );
960 boxParam( (*assert)->get_type(), newExpr, tyVars );
961 appExpr->get_args().insert( cur, newExpr );
962 } // for
963 } // for
964 }
965
966 void makeRetParm( FunctionType *funcType ) {
967 DeclarationWithType *retParm = funcType->get_returnVals().front();
968
969 // make a new parameter that is a pointer to the type of the old return value
970 retParm->set_type( new PointerType( Type::Qualifiers(), retParm->get_type() ) );
971 funcType->get_parameters().push_front( retParm );
972
973 // we don't need the return value any more
974 funcType->get_returnVals().clear();
975 }
976
977 FunctionType *makeAdapterType( FunctionType *adaptee, const TyVarMap &tyVars ) {
978 // actually make the adapter type
979 FunctionType *adapter = adaptee->clone();
980 if ( ! adapter->get_returnVals().empty() && isPolyType( adapter->get_returnVals().front()->get_type(), tyVars ) ) {
981 makeRetParm( adapter );
982 } // if
983 adapter->get_parameters().push_front( new ObjectDecl( "", DeclarationNode::NoStorageClass, LinkageSpec::C, 0, new PointerType( Type::Qualifiers(), new FunctionType( Type::Qualifiers(), true ) ), 0 ) );
984 return adapter;
985 }
986
987 Expression *makeAdapterArg( DeclarationWithType *param, DeclarationWithType *arg, DeclarationWithType *realParam, const TyVarMap &tyVars ) {
988 assert( param );
989 assert( arg );
990 if ( isPolyType( realParam->get_type(), tyVars ) ) {
991 if ( ! isPolyType( arg->get_type() ) ) {
992 UntypedExpr *deref = new UntypedExpr( new NameExpr( "*?" ) );
993 deref->get_args().push_back( new CastExpr( new VariableExpr( param ), new PointerType( Type::Qualifiers(), arg->get_type()->clone() ) ) );
994 deref->get_results().push_back( arg->get_type()->clone() );
995 return deref;
996 } // if
997 } // if
998 return new VariableExpr( param );
999 }
1000
1001 void addAdapterParams( ApplicationExpr *adapteeApp, std::list< DeclarationWithType *>::iterator arg, std::list< DeclarationWithType *>::iterator param, std::list< DeclarationWithType *>::iterator paramEnd, std::list< DeclarationWithType *>::iterator realParam, const TyVarMap &tyVars ) {
1002 UniqueName paramNamer( "_p" );
1003 for ( ; param != paramEnd; ++param, ++arg, ++realParam ) {
1004 if ( (*param)->get_name() == "" ) {
1005 (*param)->set_name( paramNamer.newName() );
1006 (*param)->set_linkage( LinkageSpec::C );
1007 } // if
1008 adapteeApp->get_args().push_back( makeAdapterArg( *param, *arg, *realParam, tyVars ) );
1009 } // for
1010 }
1011
1012 FunctionDecl *Pass1::makeAdapter( FunctionType *adaptee, FunctionType *realType, const std::string &mangleName, const TyVarMap &tyVars ) {
1013 FunctionType *adapterType = makeAdapterType( adaptee, tyVars );
1014 adapterType = ScrubTyVars::scrub( adapterType, tyVars );
1015 DeclarationWithType *adapteeDecl = adapterType->get_parameters().front();
1016 adapteeDecl->set_name( "_adaptee" );
1017 ApplicationExpr *adapteeApp = new ApplicationExpr( new CastExpr( new VariableExpr( adapteeDecl ), new PointerType( Type::Qualifiers(), realType ) ) );
1018 Statement *bodyStmt;
1019
1020 std::list< TypeDecl *>::iterator tyArg = realType->get_forall().begin();
1021 std::list< TypeDecl *>::iterator tyParam = adapterType->get_forall().begin();
1022 std::list< TypeDecl *>::iterator realTyParam = adaptee->get_forall().begin();
1023 for ( ; tyParam != adapterType->get_forall().end(); ++tyArg, ++tyParam, ++realTyParam ) {
1024 assert( tyArg != realType->get_forall().end() );
1025 std::list< DeclarationWithType *>::iterator assertArg = (*tyArg)->get_assertions().begin();
1026 std::list< DeclarationWithType *>::iterator assertParam = (*tyParam)->get_assertions().begin();
1027 std::list< DeclarationWithType *>::iterator realAssertParam = (*realTyParam)->get_assertions().begin();
1028 for ( ; assertParam != (*tyParam)->get_assertions().end(); ++assertArg, ++assertParam, ++realAssertParam ) {
1029 assert( assertArg != (*tyArg)->get_assertions().end() );
1030 adapteeApp->get_args().push_back( makeAdapterArg( *assertParam, *assertArg, *realAssertParam, tyVars ) );
1031 } // for
1032 } // for
1033
1034 std::list< DeclarationWithType *>::iterator arg = realType->get_parameters().begin();
1035 std::list< DeclarationWithType *>::iterator param = adapterType->get_parameters().begin();
1036 std::list< DeclarationWithType *>::iterator realParam = adaptee->get_parameters().begin();
1037 param++; // skip adaptee parameter
1038 if ( realType->get_returnVals().empty() ) {
1039 addAdapterParams( adapteeApp, arg, param, adapterType->get_parameters().end(), realParam, tyVars );
1040 bodyStmt = new ExprStmt( noLabels, adapteeApp );
1041 } else if ( isPolyType( adaptee->get_returnVals().front()->get_type(), tyVars ) ) {
1042 if ( (*param)->get_name() == "" ) {
1043 (*param)->set_name( "_ret" );
1044 (*param)->set_linkage( LinkageSpec::C );
1045 } // if
1046 UntypedExpr *assign = new UntypedExpr( new NameExpr( "?=?" ) );
1047 UntypedExpr *deref = new UntypedExpr( new NameExpr( "*?" ) );
1048 deref->get_args().push_back( new CastExpr( new VariableExpr( *param++ ), new PointerType( Type::Qualifiers(), realType->get_returnVals().front()->get_type()->clone() ) ) );
1049 assign->get_args().push_back( deref );
1050 addAdapterParams( adapteeApp, arg, param, adapterType->get_parameters().end(), realParam, tyVars );
1051 assign->get_args().push_back( adapteeApp );
1052 bodyStmt = new ExprStmt( noLabels, assign );
1053 } else {
1054 // adapter for a function that returns a monomorphic value
1055 addAdapterParams( adapteeApp, arg, param, adapterType->get_parameters().end(), realParam, tyVars );
1056 bodyStmt = new ReturnStmt( noLabels, adapteeApp );
1057 } // if
1058 CompoundStmt *adapterBody = new CompoundStmt( noLabels );
1059 adapterBody->get_kids().push_back( bodyStmt );
1060 std::string adapterName = makeAdapterName( mangleName );
1061 return new FunctionDecl( adapterName, DeclarationNode::NoStorageClass, LinkageSpec::C, adapterType, adapterBody, false, false );
1062 }
1063
1064 void Pass1::passAdapters( ApplicationExpr * appExpr, FunctionType * functionType, const TyVarMap & exprTyVars ) {
1065 // collect a list of function types passed as parameters or implicit parameters (assertions)
1066 std::list< DeclarationWithType *> &paramList = functionType->get_parameters();
1067 std::list< FunctionType *> functions;
1068 for ( std::list< TypeDecl *>::iterator tyVar = functionType->get_forall().begin(); tyVar != functionType->get_forall().end(); ++tyVar ) {
1069 for ( std::list< DeclarationWithType *>::iterator assert = (*tyVar)->get_assertions().begin(); assert != (*tyVar)->get_assertions().end(); ++assert ) {
1070 findFunction( (*assert)->get_type(), functions, exprTyVars, needsAdapter );
1071 } // for
1072 } // for
1073 for ( std::list< DeclarationWithType *>::iterator arg = paramList.begin(); arg != paramList.end(); ++arg ) {
1074 findFunction( (*arg)->get_type(), functions, exprTyVars, needsAdapter );
1075 } // for
1076
1077 // parameter function types for which an appropriate adapter has been generated. we cannot use the types
1078 // after applying substitutions, since two different parameter types may be unified to the same type
1079 std::set< std::string > adaptersDone;
1080
1081 for ( std::list< FunctionType *>::iterator funType = functions.begin(); funType != functions.end(); ++funType ) {
1082 FunctionType *originalFunction = (*funType)->clone();
1083 FunctionType *realFunction = (*funType)->clone();
1084 std::string mangleName = SymTab::Mangler::mangle( realFunction );
1085
1086 // only attempt to create an adapter or pass one as a parameter if we haven't already done so for this
1087 // pre-substitution parameter function type.
1088 if ( adaptersDone.find( mangleName ) == adaptersDone.end() ) {
1089 adaptersDone.insert( adaptersDone.begin(), mangleName );
1090
1091 // apply substitution to type variables to figure out what the adapter's type should look like
1092 assert( env );
1093 env->apply( realFunction );
1094 mangleName = SymTab::Mangler::mangle( realFunction );
1095 mangleName += makePolyMonoSuffix( originalFunction, exprTyVars );
1096
1097 typedef ScopedMap< std::string, DeclarationWithType* >::iterator AdapterIter;
1098 AdapterIter adapter = adapters.find( mangleName );
1099 if ( adapter == adapters.end() ) {
1100 // adapter has not been created yet in the current scope, so define it
1101 FunctionDecl *newAdapter = makeAdapter( *funType, realFunction, mangleName, exprTyVars );
1102 std::pair< AdapterIter, bool > answer = adapters.insert( std::pair< std::string, DeclarationWithType *>( mangleName, newAdapter ) );
1103 adapter = answer.first;
1104 stmtsToAdd.push_back( new DeclStmt( noLabels, newAdapter ) );
1105 } // if
1106 assert( adapter != adapters.end() );
1107
1108 // add the appropriate adapter as a parameter
1109 appExpr->get_args().push_front( new VariableExpr( adapter->second ) );
1110 } // if
1111 } // for
1112 } // passAdapters
1113
1114 Expression *makeIncrDecrExpr( ApplicationExpr *appExpr, Type *polyType, bool isIncr ) {
1115 NameExpr *opExpr;
1116 if ( isIncr ) {
1117 opExpr = new NameExpr( "?+=?" );
1118 } else {
1119 opExpr = new NameExpr( "?-=?" );
1120 } // if
1121 UntypedExpr *addAssign = new UntypedExpr( opExpr );
1122 if ( AddressExpr *address = dynamic_cast< AddressExpr *>( appExpr->get_args().front() ) ) {
1123 addAssign->get_args().push_back( address->get_arg() );
1124 } else {
1125 addAssign->get_args().push_back( appExpr->get_args().front() );
1126 } // if
1127 addAssign->get_args().push_back( new NameExpr( sizeofName( mangleType( polyType ) ) ) );
1128 addAssign->get_results().front() = appExpr->get_results().front()->clone();
1129 if ( appExpr->get_env() ) {
1130 addAssign->set_env( appExpr->get_env() );
1131 appExpr->set_env( 0 );
1132 } // if
1133 appExpr->get_args().clear();
1134 delete appExpr;
1135 return addAssign;
1136 }
1137
1138 Expression *Pass1::handleIntrinsics( ApplicationExpr *appExpr ) {
1139 if ( VariableExpr *varExpr = dynamic_cast< VariableExpr *>( appExpr->get_function() ) ) {
1140 if ( varExpr->get_var()->get_linkage() == LinkageSpec::Intrinsic ) {
1141 if ( varExpr->get_var()->get_name() == "?[?]" ) {
1142 assert( ! appExpr->get_results().empty() );
1143 assert( appExpr->get_args().size() == 2 );
1144 Type *baseType1 = isPolyPtr( appExpr->get_args().front()->get_results().front(), scopeTyVars, env );
1145 Type *baseType2 = isPolyPtr( appExpr->get_args().back()->get_results().front(), scopeTyVars, env );
1146 assert( ! baseType1 || ! baseType2 ); // the arguments cannot both be polymorphic pointers
1147 UntypedExpr *ret = 0;
1148 if ( baseType1 || baseType2 ) { // one of the arguments is a polymorphic pointer
1149 ret = new UntypedExpr( new NameExpr( "?+?" ) );
1150 } // if
1151 if ( baseType1 ) {
1152 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) );
1153 multiply->get_args().push_back( appExpr->get_args().back() );
1154 multiply->get_args().push_back( new SizeofExpr( baseType1->clone() ) );
1155 ret->get_args().push_back( appExpr->get_args().front() );
1156 ret->get_args().push_back( multiply );
1157 } else if ( baseType2 ) {
1158 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) );
1159 multiply->get_args().push_back( appExpr->get_args().front() );
1160 multiply->get_args().push_back( new SizeofExpr( baseType2->clone() ) );
1161 ret->get_args().push_back( multiply );
1162 ret->get_args().push_back( appExpr->get_args().back() );
1163 } // if
1164 if ( baseType1 || baseType2 ) {
1165 ret->get_results().push_front( appExpr->get_results().front()->clone() );
1166 if ( appExpr->get_env() ) {
1167 ret->set_env( appExpr->get_env() );
1168 appExpr->set_env( 0 );
1169 } // if
1170 appExpr->get_args().clear();
1171 delete appExpr;
1172 return ret;
1173 } // if
1174 } else if ( varExpr->get_var()->get_name() == "*?" ) {
1175 assert( ! appExpr->get_results().empty() );
1176 assert( ! appExpr->get_args().empty() );
1177 if ( isPolyType( appExpr->get_results().front(), scopeTyVars, env ) ) {
1178 Expression *ret = appExpr->get_args().front();
1179 delete ret->get_results().front();
1180 ret->get_results().front() = appExpr->get_results().front()->clone();
1181 if ( appExpr->get_env() ) {
1182 ret->set_env( appExpr->get_env() );
1183 appExpr->set_env( 0 );
1184 } // if
1185 appExpr->get_args().clear();
1186 delete appExpr;
1187 return ret;
1188 } // if
1189 } else if ( varExpr->get_var()->get_name() == "?++" || varExpr->get_var()->get_name() == "?--" ) {
1190 assert( ! appExpr->get_results().empty() );
1191 assert( appExpr->get_args().size() == 1 );
1192 if ( Type *baseType = isPolyPtr( appExpr->get_results().front(), scopeTyVars, env ) ) {
1193 Type *tempType = appExpr->get_results().front()->clone();
1194 if ( env ) {
1195 env->apply( tempType );
1196 } // if
1197 ObjectDecl *newObj = makeTemporary( tempType );
1198 VariableExpr *tempExpr = new VariableExpr( newObj );
1199 UntypedExpr *assignExpr = new UntypedExpr( new NameExpr( "?=?" ) );
1200 assignExpr->get_args().push_back( tempExpr->clone() );
1201 if ( AddressExpr *address = dynamic_cast< AddressExpr *>( appExpr->get_args().front() ) ) {
1202 assignExpr->get_args().push_back( address->get_arg()->clone() );
1203 } else {
1204 assignExpr->get_args().push_back( appExpr->get_args().front()->clone() );
1205 } // if
1206 CommaExpr *firstComma = new CommaExpr( assignExpr, makeIncrDecrExpr( appExpr, baseType, varExpr->get_var()->get_name() == "?++" ) );
1207 return new CommaExpr( firstComma, tempExpr );
1208 } // if
1209 } else if ( varExpr->get_var()->get_name() == "++?" || varExpr->get_var()->get_name() == "--?" ) {
1210 assert( ! appExpr->get_results().empty() );
1211 assert( appExpr->get_args().size() == 1 );
1212 if ( Type *baseType = isPolyPtr( appExpr->get_results().front(), scopeTyVars, env ) ) {
1213 return makeIncrDecrExpr( appExpr, baseType, varExpr->get_var()->get_name() == "++?" );
1214 } // if
1215 } else if ( varExpr->get_var()->get_name() == "?+?" || varExpr->get_var()->get_name() == "?-?" ) {
1216 assert( ! appExpr->get_results().empty() );
1217 assert( appExpr->get_args().size() == 2 );
1218 Type *baseType1 = isPolyPtr( appExpr->get_args().front()->get_results().front(), scopeTyVars, env );
1219 Type *baseType2 = isPolyPtr( appExpr->get_args().back()->get_results().front(), scopeTyVars, env );
1220 if ( baseType1 && baseType2 ) {
1221 UntypedExpr *divide = new UntypedExpr( new NameExpr( "?/?" ) );
1222 divide->get_args().push_back( appExpr );
1223 divide->get_args().push_back( new SizeofExpr( baseType1->clone() ) );
1224 divide->get_results().push_front( appExpr->get_results().front()->clone() );
1225 if ( appExpr->get_env() ) {
1226 divide->set_env( appExpr->get_env() );
1227 appExpr->set_env( 0 );
1228 } // if
1229 return divide;
1230 } else if ( baseType1 ) {
1231 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) );
1232 multiply->get_args().push_back( appExpr->get_args().back() );
1233 multiply->get_args().push_back( new SizeofExpr( baseType1->clone() ) );
1234 appExpr->get_args().back() = multiply;
1235 } else if ( baseType2 ) {
1236 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) );
1237 multiply->get_args().push_back( appExpr->get_args().front() );
1238 multiply->get_args().push_back( new SizeofExpr( baseType2->clone() ) );
1239 appExpr->get_args().front() = multiply;
1240 } // if
1241 } else if ( varExpr->get_var()->get_name() == "?+=?" || varExpr->get_var()->get_name() == "?-=?" ) {
1242 assert( ! appExpr->get_results().empty() );
1243 assert( appExpr->get_args().size() == 2 );
1244 Type *baseType = isPolyPtr( appExpr->get_results().front(), scopeTyVars, env );
1245 if ( baseType ) {
1246 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) );
1247 multiply->get_args().push_back( appExpr->get_args().back() );
1248 multiply->get_args().push_back( new SizeofExpr( baseType->clone() ) );
1249 appExpr->get_args().back() = multiply;
1250 } // if
1251 } // if
1252 return appExpr;
1253 } // if
1254 } // if
1255 return 0;
1256 }
1257
1258 Expression *Pass1::mutate( ApplicationExpr *appExpr ) {
1259 // std::cerr << "mutate appExpr: ";
1260 // for ( TyVarMap::iterator i = scopeTyVars.begin(); i != scopeTyVars.end(); ++i ) {
1261 // std::cerr << i->first << " ";
1262 // }
1263 // std::cerr << "\n";
1264 bool oldUseRetval = useRetval;
1265 useRetval = false;
1266 appExpr->get_function()->acceptMutator( *this );
1267 mutateAll( appExpr->get_args(), *this );
1268 useRetval = oldUseRetval;
1269
1270 assert( ! appExpr->get_function()->get_results().empty() );
1271 PointerType *pointer = dynamic_cast< PointerType *>( appExpr->get_function()->get_results().front() );
1272 assert( pointer );
1273 FunctionType *function = dynamic_cast< FunctionType *>( pointer->get_base() );
1274 assert( function );
1275
1276 if ( Expression *newExpr = handleIntrinsics( appExpr ) ) {
1277 return newExpr;
1278 } // if
1279
1280 Expression *ret = appExpr;
1281
1282 std::list< Expression *>::iterator arg = appExpr->get_args().begin();
1283 std::list< Expression *>::iterator paramBegin = appExpr->get_args().begin();
1284
1285 TyVarMap exprTyVars( (TypeDecl::Kind)-1 );
1286 makeTyVarMap( function, exprTyVars );
1287 ReferenceToType *polyRetType = isPolyRet( function );
1288
1289 if ( polyRetType ) {
1290 ret = addPolyRetParam( appExpr, function, polyRetType, arg );
1291 } else if ( needsAdapter( function, scopeTyVars ) ) {
1292 // std::cerr << "needs adapter: ";
1293 // for ( TyVarMap::iterator i = scopeTyVars.begin(); i != scopeTyVars.end(); ++i ) {
1294 // std::cerr << i->first << " ";
1295 // }
1296 // std::cerr << "\n";
1297 // change the application so it calls the adapter rather than the passed function
1298 ret = applyAdapter( appExpr, function, arg, scopeTyVars );
1299 } // if
1300 arg = appExpr->get_args().begin();
1301
1302 passTypeVars( appExpr, polyRetType, arg, exprTyVars );
1303 addInferredParams( appExpr, function, arg, exprTyVars );
1304
1305 arg = paramBegin;
1306
1307 boxParams( appExpr, function, arg, exprTyVars );
1308 passAdapters( appExpr, function, exprTyVars );
1309
1310 return ret;
1311 }
1312
1313 Expression *Pass1::mutate( UntypedExpr *expr ) {
1314 if ( ! expr->get_results().empty() && isPolyType( expr->get_results().front(), scopeTyVars, env ) ) {
1315 if ( NameExpr *name = dynamic_cast< NameExpr *>( expr->get_function() ) ) {
1316 if ( name->get_name() == "*?" ) {
1317 Expression *ret = expr->get_args().front();
1318 expr->get_args().clear();
1319 delete expr;
1320 return ret->acceptMutator( *this );
1321 } // if
1322 } // if
1323 } // if
1324 return PolyMutator::mutate( expr );
1325 }
1326
1327 Expression *Pass1::mutate( AddressExpr *addrExpr ) {
1328 assert( ! addrExpr->get_arg()->get_results().empty() );
1329
1330 bool needs = false;
1331 if ( UntypedExpr *expr = dynamic_cast< UntypedExpr *>( addrExpr->get_arg() ) ) {
1332 if ( ! expr->get_results().empty() && isPolyType( expr->get_results().front(), scopeTyVars, env ) ) {
1333 if ( NameExpr *name = dynamic_cast< NameExpr *>( expr->get_function() ) ) {
1334 if ( name->get_name() == "*?" ) {
1335 if ( ApplicationExpr * appExpr = dynamic_cast< ApplicationExpr * >( expr->get_args().front() ) ) {
1336 assert( ! appExpr->get_function()->get_results().empty() );
1337 PointerType *pointer = dynamic_cast< PointerType *>( appExpr->get_function()->get_results().front() );
1338 assert( pointer );
1339 FunctionType *function = dynamic_cast< FunctionType *>( pointer->get_base() );
1340 assert( function );
1341 needs = needsAdapter( function, scopeTyVars );
1342 } // if
1343 } // if
1344 } // if
1345 } // if
1346 } // if
1347 addrExpr->set_arg( mutateExpression( addrExpr->get_arg() ) );
1348 if ( isPolyType( addrExpr->get_arg()->get_results().front(), scopeTyVars, env ) || needs ) {
1349 Expression *ret = addrExpr->get_arg();
1350 delete ret->get_results().front();
1351 ret->get_results().front() = addrExpr->get_results().front()->clone();
1352 addrExpr->set_arg( 0 );
1353 delete addrExpr;
1354 return ret;
1355 } else {
1356 return addrExpr;
1357 } // if
1358 }
1359
1360 /// Wraps a function declaration in a new pointer-to-function variable expression
1361 VariableExpr *wrapFunctionDecl( DeclarationWithType *functionDecl ) {
1362 // line below cloned from FixFunction.cc
1363 ObjectDecl *functionObj = new ObjectDecl( functionDecl->get_name(), functionDecl->get_storageClass(), functionDecl->get_linkage(), 0,
1364 new PointerType( Type::Qualifiers(), functionDecl->get_type()->clone() ), 0 );
1365 functionObj->set_mangleName( functionDecl->get_mangleName() );
1366 return new VariableExpr( functionObj );
1367 }
1368
1369 Statement * Pass1::mutate( ReturnStmt *returnStmt ) {
1370 if ( retval && returnStmt->get_expr() ) {
1371 assert( ! returnStmt->get_expr()->get_results().empty() );
1372 // ***** Code Removal ***** After introducing a temporary variable for all return expressions, the following code appears superfluous.
1373 // if ( returnStmt->get_expr()->get_results().front()->get_isLvalue() ) {
1374 // by this point, a cast expr on a polymorphic return value is redundant
1375 while ( CastExpr *castExpr = dynamic_cast< CastExpr *>( returnStmt->get_expr() ) ) {
1376 returnStmt->set_expr( castExpr->get_arg() );
1377 returnStmt->get_expr()->set_env( castExpr->get_env() );
1378 castExpr->set_env( 0 );
1379 castExpr->set_arg( 0 );
1380 delete castExpr;
1381 } //while
1382
1383 // find assignment operator for (polymorphic) return type
1384 ApplicationExpr *assignExpr = 0;
1385 if ( TypeInstType *typeInst = dynamic_cast< TypeInstType *>( retval->get_type() ) ) {
1386 // find assignment operator for type variable
1387 ScopedMap< std::string, DeclarationWithType *>::const_iterator assignIter = assignOps.find( typeInst->get_name() );
1388 if ( assignIter == assignOps.end() ) {
1389 throw SemanticError( "Attempt to return dtype or ftype object in ", returnStmt->get_expr() );
1390 } // if
1391 assignExpr = new ApplicationExpr( new VariableExpr( assignIter->second ) );
1392 } else if ( ReferenceToType *refType = dynamic_cast< ReferenceToType *>( retval->get_type() ) ) {
1393 // find assignment operator for generic type
1394 DeclarationWithType *functionDecl = scopedAssignOps.find( refType );
1395 if ( ! functionDecl ) {
1396 throw SemanticError( "Attempt to return dtype or ftype generic object in ", returnStmt->get_expr() );
1397 }
1398
1399 // wrap it up in an application expression
1400 assignExpr = new ApplicationExpr( wrapFunctionDecl( functionDecl ) );
1401 assignExpr->set_env( env->clone() );
1402
1403 // find each of its needed secondary assignment operators
1404 std::list< Expression* > &tyParams = refType->get_parameters();
1405 std::list< TypeDecl* > &forallParams = functionDecl->get_type()->get_forall();
1406 std::list< Expression* >::const_iterator tyIt = tyParams.begin();
1407 std::list< TypeDecl* >::const_iterator forallIt = forallParams.begin();
1408 for ( ; tyIt != tyParams.end() && forallIt != forallParams.end(); ++tyIt, ++forallIt ) {
1409 // Add appropriate mapping to assignment expression environment
1410 TypeExpr *formalTypeExpr = dynamic_cast< TypeExpr* >( *tyIt );
1411 assert( formalTypeExpr && "type parameters must be type expressions" );
1412 Type *formalType = formalTypeExpr->get_type();
1413 assignExpr->get_env()->add( (*forallIt)->get_name(), formalType );
1414
1415 // skip types with no assign op (ftype/dtype)
1416 if ( (*forallIt)->get_kind() != TypeDecl::Any ) continue;
1417
1418 // find assignment operator for formal type
1419 DeclarationWithType *assertAssign = 0;
1420 if ( TypeInstType *formalTypeInstType = dynamic_cast< TypeInstType* >( formalType ) ) {
1421 ScopedMap< std::string, DeclarationWithType *>::const_iterator assertAssignIt = assignOps.find( formalTypeInstType->get_name() );
1422 if ( assertAssignIt == assignOps.end() ) {
1423 throw SemanticError( "No assignment operation found for ", formalTypeInstType );
1424 }
1425 assertAssign = assertAssignIt->second;
1426 } else {
1427 assertAssign = scopedAssignOps.find( formalType );
1428 if ( ! assertAssign ) {
1429 throw SemanticError( "No assignment operation found for ", formalType );
1430 }
1431 }
1432
1433 // add inferred parameter for field assignment operator to assignment expression
1434 std::list< DeclarationWithType* > &asserts = (*forallIt)->get_assertions();
1435 assert( ! asserts.empty() && "Type param needs assignment operator assertion" );
1436 DeclarationWithType *actualDecl = asserts.front();
1437 assignExpr->get_inferParams()[ actualDecl->get_uniqueId() ]
1438 = ParamEntry( assertAssign->get_uniqueId(), assertAssign->get_type()->clone(), actualDecl->get_type()->clone(), wrapFunctionDecl( assertAssign ) );
1439 }
1440 }
1441 assert( assignExpr );
1442
1443 // replace return statement with appropriate assignment to out parameter
1444 Expression *retParm = new NameExpr( retval->get_name() );
1445 retParm->get_results().push_back( new PointerType( Type::Qualifiers(), retval->get_type()->clone() ) );
1446 assignExpr->get_args().push_back( retParm );
1447 assignExpr->get_args().push_back( returnStmt->get_expr() );
1448 stmtsToAdd.push_back( new ExprStmt( noLabels, mutateExpression( assignExpr ) ) );
1449 // } else {
1450 // useRetval = true;
1451 // stmtsToAdd.push_back( new ExprStmt( noLabels, mutateExpression( returnStmt->get_expr() ) ) );
1452 // useRetval = false;
1453 // } // if
1454 returnStmt->set_expr( 0 );
1455 } else {
1456 returnStmt->set_expr( mutateExpression( returnStmt->get_expr() ) );
1457 } // if
1458 return returnStmt;
1459 }
1460
1461 Type * Pass1::mutate( PointerType *pointerType ) {
1462 scopeTyVars.beginScope();
1463 makeTyVarMap( pointerType, scopeTyVars );
1464
1465 Type *ret = Mutator::mutate( pointerType );
1466
1467 scopeTyVars.endScope();
1468 return ret;
1469 }
1470
1471 Type * Pass1::mutate( FunctionType *functionType ) {
1472 scopeTyVars.beginScope();
1473 makeTyVarMap( functionType, scopeTyVars );
1474
1475 Type *ret = Mutator::mutate( functionType );
1476
1477 scopeTyVars.endScope();
1478 return ret;
1479 }
1480
1481 void Pass1::doBeginScope() {
1482 adapters.beginScope();
1483 scopedAssignOps.beginScope();
1484 }
1485
1486 void Pass1::doEndScope() {
1487 adapters.endScope();
1488 scopedAssignOps.endScope();
1489 }
1490
1491////////////////////////////////////////// Pass2 ////////////////////////////////////////////////////
1492
1493 void Pass2::addAdapters( FunctionType *functionType ) {
1494 std::list< DeclarationWithType *> &paramList = functionType->get_parameters();
1495 std::list< FunctionType *> functions;
1496 for ( std::list< DeclarationWithType *>::iterator arg = paramList.begin(); arg != paramList.end(); ++arg ) {
1497 Type *orig = (*arg)->get_type();
1498 findAndReplaceFunction( orig, functions, scopeTyVars, needsAdapter );
1499 (*arg)->set_type( orig );
1500 }
1501 std::set< std::string > adaptersDone;
1502 for ( std::list< FunctionType *>::iterator funType = functions.begin(); funType != functions.end(); ++funType ) {
1503 std::string mangleName = mangleAdapterName( *funType, scopeTyVars );
1504 if ( adaptersDone.find( mangleName ) == adaptersDone.end() ) {
1505 std::string adapterName = makeAdapterName( mangleName );
1506 paramList.push_front( new ObjectDecl( adapterName, DeclarationNode::NoStorageClass, LinkageSpec::C, 0, new PointerType( Type::Qualifiers(), makeAdapterType( *funType, scopeTyVars ) ), 0 ) );
1507 adaptersDone.insert( adaptersDone.begin(), mangleName );
1508 }
1509 }
1510// deleteAll( functions );
1511 }
1512
1513 template< typename DeclClass >
1514 DeclClass * Pass2::handleDecl( DeclClass *decl, Type *type ) {
1515 DeclClass *ret = static_cast< DeclClass *>( Mutator::mutate( decl ) );
1516
1517 return ret;
1518 }
1519
1520 DeclarationWithType * Pass2::mutate( FunctionDecl *functionDecl ) {
1521 return handleDecl( functionDecl, functionDecl->get_functionType() );
1522 }
1523
1524 ObjectDecl * Pass2::mutate( ObjectDecl *objectDecl ) {
1525 return handleDecl( objectDecl, objectDecl->get_type() );
1526 }
1527
1528 TypeDecl * Pass2::mutate( TypeDecl *typeDecl ) {
1529 scopeTyVars[ typeDecl->get_name() ] = typeDecl->get_kind();
1530 if ( typeDecl->get_base() ) {
1531 return handleDecl( typeDecl, typeDecl->get_base() );
1532 } else {
1533 return Mutator::mutate( typeDecl );
1534 }
1535 }
1536
1537 TypedefDecl * Pass2::mutate( TypedefDecl *typedefDecl ) {
1538 return handleDecl( typedefDecl, typedefDecl->get_base() );
1539 }
1540
1541 Type * Pass2::mutate( PointerType *pointerType ) {
1542 scopeTyVars.beginScope();
1543 makeTyVarMap( pointerType, scopeTyVars );
1544
1545 Type *ret = Mutator::mutate( pointerType );
1546
1547 scopeTyVars.endScope();
1548 return ret;
1549 }
1550
1551 Type *Pass2::mutate( FunctionType *funcType ) {
1552 scopeTyVars.beginScope();
1553 makeTyVarMap( funcType, scopeTyVars );
1554
1555 // move polymorphic return type to parameter list
1556 if ( isPolyRet( funcType ) ) {
1557 DeclarationWithType *ret = funcType->get_returnVals().front();
1558 ret->set_type( new PointerType( Type::Qualifiers(), ret->get_type() ) );
1559 funcType->get_parameters().push_front( ret );
1560 funcType->get_returnVals().pop_front();
1561 }
1562
1563 // add size/align and assertions for type parameters to parameter list
1564 std::list< DeclarationWithType *>::iterator last = funcType->get_parameters().begin();
1565 std::list< DeclarationWithType *> inferredParams;
1566 ObjectDecl newObj( "", DeclarationNode::NoStorageClass, LinkageSpec::C, 0, new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ), 0 );
1567 ObjectDecl newPtr( "", DeclarationNode::NoStorageClass, LinkageSpec::C, 0,
1568 new PointerType( Type::Qualifiers(), new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ) ), 0 );
1569 for ( std::list< TypeDecl *>::const_iterator tyParm = funcType->get_forall().begin(); tyParm != funcType->get_forall().end(); ++tyParm ) {
1570 ObjectDecl *sizeParm, *alignParm;
1571 // add all size and alignment parameters to parameter list
1572 if ( (*tyParm)->get_kind() == TypeDecl::Any ) {
1573 TypeInstType parmType( Type::Qualifiers(), (*tyParm)->get_name(), *tyParm );
1574 std::string parmName = mangleType( &parmType );
1575
1576 sizeParm = newObj.clone();
1577 sizeParm->set_name( sizeofName( parmName ) );
1578 last = funcType->get_parameters().insert( last, sizeParm );
1579 ++last;
1580
1581 alignParm = newObj.clone();
1582 alignParm->set_name( alignofName( parmName ) );
1583 last = funcType->get_parameters().insert( last, alignParm );
1584 ++last;
1585 }
1586 // move all assertions into parameter list
1587 for ( std::list< DeclarationWithType *>::iterator assert = (*tyParm)->get_assertions().begin(); assert != (*tyParm)->get_assertions().end(); ++assert ) {
1588// *assert = (*assert)->acceptMutator( *this );
1589 inferredParams.push_back( *assert );
1590 }
1591 (*tyParm)->get_assertions().clear();
1592 }
1593
1594 // add size/align for generic parameter types to parameter list
1595 std::set< std::string > seenTypes; // sizeofName for generic types we've seen
1596 for ( std::list< DeclarationWithType* >::const_iterator fnParm = last; fnParm != funcType->get_parameters().end(); ++fnParm ) {
1597 Type *polyType = isPolyType( (*fnParm)->get_type(), scopeTyVars );
1598 if ( polyType && ! dynamic_cast< TypeInstType* >( polyType ) ) {
1599 std::string typeName = mangleType( polyType );
1600 if ( seenTypes.count( typeName ) ) continue;
1601
1602 ObjectDecl *sizeParm, *alignParm, *offsetParm;
1603 sizeParm = newObj.clone();
1604 sizeParm->set_name( sizeofName( typeName ) );
1605 last = funcType->get_parameters().insert( last, sizeParm );
1606 ++last;
1607
1608 alignParm = newObj.clone();
1609 alignParm->set_name( alignofName( typeName ) );
1610 last = funcType->get_parameters().insert( last, alignParm );
1611 ++last;
1612
1613 if ( StructInstType *polyBaseStruct = dynamic_cast< StructInstType* >( polyType ) ) {
1614 // NOTE zero-length arrays are illegal in C, so empty structs have no offset array
1615 if ( ! polyBaseStruct->get_baseStruct()->get_members().empty() ) {
1616 offsetParm = newPtr.clone();
1617 offsetParm->set_name( offsetofName( typeName ) );
1618 last = funcType->get_parameters().insert( last, offsetParm );
1619 ++last;
1620 }
1621 }
1622
1623 seenTypes.insert( typeName );
1624 }
1625 }
1626
1627 // splice assertion parameters into parameter list
1628 funcType->get_parameters().splice( last, inferredParams );
1629 addAdapters( funcType );
1630 mutateAll( funcType->get_returnVals(), *this );
1631 mutateAll( funcType->get_parameters(), *this );
1632
1633 scopeTyVars.endScope();
1634 return funcType;
1635 }
1636
1637//////////////////////////////////////// GenericInstantiator //////////////////////////////////////////////////
1638
1639 /// Makes substitutions of params into baseParams; returns true if all parameters substituted for a concrete type
1640 bool makeSubstitutions( const std::list< TypeDecl* >& baseParams, const std::list< Expression* >& params, std::list< TypeExpr* >& out ) {
1641 bool allConcrete = true; // will finish the substitution list even if they're not all concrete
1642
1643 // substitute concrete types for given parameters, and incomplete types for placeholders
1644 std::list< TypeDecl* >::const_iterator baseParam = baseParams.begin();
1645 std::list< Expression* >::const_iterator param = params.begin();
1646 for ( ; baseParam != baseParams.end() && param != params.end(); ++baseParam, ++param ) {
1647 // switch ( (*baseParam)->get_kind() ) {
1648 // case TypeDecl::Any: { // any type is a valid substitution here; complete types can be used to instantiate generics
1649 TypeExpr *paramType = dynamic_cast< TypeExpr* >( *param );
1650 assert(paramType && "Aggregate parameters should be type expressions");
1651 out.push_back( paramType->clone() );
1652 // check that the substituted type isn't a type variable itself
1653 if ( dynamic_cast< TypeInstType* >( paramType->get_type() ) ) {
1654 allConcrete = false;
1655 }
1656 // break;
1657 // }
1658 // case TypeDecl::Dtype: // dtype can be consistently replaced with void [only pointers, which become void*]
1659 // out.push_back( new TypeExpr( new VoidType( Type::Qualifiers() ) ) );
1660 // break;
1661 // case TypeDecl::Ftype: // pointer-to-ftype can be consistently replaced with void (*)(void) [similar to dtype]
1662 // out.push_back( new TypeExpr( new FunctionType( Type::Qualifiers(), false ) ) );
1663 // break;
1664 // }
1665 }
1666
1667 // if any parameters left over, not done
1668 if ( baseParam != baseParams.end() ) return false;
1669 // // if not enough parameters given, substitute remaining incomplete types for placeholders
1670 // for ( ; baseParam != baseParams.end(); ++baseParam ) {
1671 // switch ( (*baseParam)->get_kind() ) {
1672 // case TypeDecl::Any: // no more substitutions here, fail early
1673 // return false;
1674 // case TypeDecl::Dtype: // dtype can be consistently replaced with void [only pointers, which become void*]
1675 // out.push_back( new TypeExpr( new VoidType( Type::Qualifiers() ) ) );
1676 // break;
1677 // case TypeDecl::Ftype: // pointer-to-ftype can be consistently replaced with void (*)(void) [similar to dtype]
1678 // out.push_back( new TypeExpr( new FunctionType( Type::Qualifiers(), false ) ) );
1679 // break;
1680 // }
1681 // }
1682
1683 return allConcrete;
1684 }
1685
1686 /// Substitutes types of members of in according to baseParams => typeSubs, appending the result to out
1687 void substituteMembers( const std::list< Declaration* >& in, const std::list< TypeDecl* >& baseParams, const std::list< TypeExpr* >& typeSubs,
1688 std::list< Declaration* >& out ) {
1689 // substitute types into new members
1690 TypeSubstitution subs( baseParams.begin(), baseParams.end(), typeSubs.begin() );
1691 for ( std::list< Declaration* >::const_iterator member = in.begin(); member != in.end(); ++member ) {
1692 Declaration *newMember = (*member)->clone();
1693 subs.apply(newMember);
1694 out.push_back( newMember );
1695 }
1696 }
1697
1698 Type* GenericInstantiator::mutate( StructInstType *inst ) {
1699 // mutate subtypes
1700 Type *mutated = Mutator::mutate( inst );
1701 inst = dynamic_cast< StructInstType* >( mutated );
1702 if ( ! inst ) return mutated;
1703
1704 // exit early if no need for further mutation
1705 if ( inst->get_parameters().empty() ) return inst;
1706 assert( inst->get_baseParameters() && "Base struct has parameters" );
1707
1708 // check if type can be concretely instantiated; put substitutions into typeSubs
1709 std::list< TypeExpr* > typeSubs;
1710 if ( ! makeSubstitutions( *inst->get_baseParameters(), inst->get_parameters(), typeSubs ) ) {
1711 deleteAll( typeSubs );
1712 return inst;
1713 }
1714
1715 // make concrete instantiation of generic type
1716 StructDecl *concDecl = lookup( inst, typeSubs );
1717 if ( ! concDecl ) {
1718 // set concDecl to new type, insert type declaration into statements to add
1719 concDecl = new StructDecl( typeNamer.newName( inst->get_name() ) );
1720 substituteMembers( inst->get_baseStruct()->get_members(), *inst->get_baseParameters(), typeSubs, concDecl->get_members() );
1721 DeclMutator::addDeclaration( concDecl );
1722 insert( inst, typeSubs, concDecl );
1723 }
1724 StructInstType *newInst = new StructInstType( inst->get_qualifiers(), concDecl->get_name() );
1725 newInst->set_baseStruct( concDecl );
1726
1727 deleteAll( typeSubs );
1728 delete inst;
1729 return newInst;
1730 }
1731
1732 Type* GenericInstantiator::mutate( UnionInstType *inst ) {
1733 // mutate subtypes
1734 Type *mutated = Mutator::mutate( inst );
1735 inst = dynamic_cast< UnionInstType* >( mutated );
1736 if ( ! inst ) return mutated;
1737
1738 // exit early if no need for further mutation
1739 if ( inst->get_parameters().empty() ) return inst;
1740 assert( inst->get_baseParameters() && "Base union has parameters" );
1741
1742 // check if type can be concretely instantiated; put substitutions into typeSubs
1743 std::list< TypeExpr* > typeSubs;
1744 if ( ! makeSubstitutions( *inst->get_baseParameters(), inst->get_parameters(), typeSubs ) ) {
1745 deleteAll( typeSubs );
1746 return inst;
1747 }
1748
1749 // make concrete instantiation of generic type
1750 UnionDecl *concDecl = lookup( inst, typeSubs );
1751 if ( ! concDecl ) {
1752 // set concDecl to new type, insert type declaration into statements to add
1753 concDecl = new UnionDecl( typeNamer.newName( inst->get_name() ) );
1754 substituteMembers( inst->get_baseUnion()->get_members(), *inst->get_baseParameters(), typeSubs, concDecl->get_members() );
1755 DeclMutator::addDeclaration( concDecl );
1756 insert( inst, typeSubs, concDecl );
1757 }
1758 UnionInstType *newInst = new UnionInstType( inst->get_qualifiers(), concDecl->get_name() );
1759 newInst->set_baseUnion( concDecl );
1760
1761 deleteAll( typeSubs );
1762 delete inst;
1763 return newInst;
1764 }
1765
1766 // /// Gets the base struct or union declaration for a member expression; NULL if not applicable
1767 // AggregateDecl* getMemberBaseDecl( MemberExpr *memberExpr ) {
1768 // // get variable for member aggregate
1769 // VariableExpr *varExpr = dynamic_cast< VariableExpr* >( memberExpr->get_aggregate() );
1770 // if ( ! varExpr ) return NULL;
1771 //
1772 // // get object for variable
1773 // ObjectDecl *objectDecl = dynamic_cast< ObjectDecl* >( varExpr->get_var() );
1774 // if ( ! objectDecl ) return NULL;
1775 //
1776 // // get base declaration from object type
1777 // Type *objectType = objectDecl->get_type();
1778 // StructInstType *structType = dynamic_cast< StructInstType* >( objectType );
1779 // if ( structType ) return structType->get_baseStruct();
1780 // UnionInstType *unionType = dynamic_cast< UnionInstType* >( objectType );
1781 // if ( unionType ) return unionType->get_baseUnion();
1782 //
1783 // return NULL;
1784 // }
1785 //
1786 // /// Finds the declaration with the given name, returning decls.end() if none such
1787 // std::list< Declaration* >::const_iterator findDeclNamed( const std::list< Declaration* > &decls, const std::string &name ) {
1788 // for( std::list< Declaration* >::const_iterator decl = decls.begin(); decl != decls.end(); ++decl ) {
1789 // if ( (*decl)->get_name() == name ) return decl;
1790 // }
1791 // return decls.end();
1792 // }
1793 //
1794 // Expression* Instantiate::mutate( MemberExpr *memberExpr ) {
1795 // // mutate, exiting early if no longer MemberExpr
1796 // Expression *expr = Mutator::mutate( memberExpr );
1797 // memberExpr = dynamic_cast< MemberExpr* >( expr );
1798 // if ( ! memberExpr ) return expr;
1799 //
1800 // // get declaration of member and base declaration of member, exiting early if not found
1801 // AggregateDecl *memberBase = getMemberBaseDecl( memberExpr );
1802 // if ( ! memberBase ) return memberExpr;
1803 // DeclarationWithType *memberDecl = memberExpr->get_member();
1804 // std::list< Declaration* >::const_iterator baseIt = findDeclNamed( memberBase->get_members(), memberDecl->get_name() );
1805 // if ( baseIt == memberBase->get_members().end() ) return memberExpr;
1806 // DeclarationWithType *baseDecl = dynamic_cast< DeclarationWithType* >( *baseIt );
1807 // if ( ! baseDecl ) return memberExpr;
1808 //
1809 // // check if stated type of the member is not the type of the member's declaration; if so, need a cast
1810 // // this *SHOULD* be safe, I don't think anything but the void-replacements I put in for dtypes would make it past the typechecker
1811 // SymTab::Indexer dummy;
1812 // if ( ResolvExpr::typesCompatible( memberDecl->get_type(), baseDecl->get_type(), dummy ) ) return memberExpr;
1813 // else return new CastExpr( memberExpr, memberDecl->get_type() );
1814 // }
1815
1816 void GenericInstantiator::doBeginScope() {
1817 DeclMutator::doBeginScope();
1818 instantiations.beginScope();
1819 }
1820
1821 void GenericInstantiator::doEndScope() {
1822 DeclMutator::doEndScope();
1823 instantiations.endScope();
1824 }
1825
1826////////////////////////////////////////// PolyGenericCalculator ////////////////////////////////////////////////////
1827
1828 void PolyGenericCalculator::beginTypeScope( Type *ty ) {
1829 scopeTyVars.beginScope();
1830 makeTyVarMap( ty, scopeTyVars );
1831 }
1832
1833 void PolyGenericCalculator::endTypeScope() {
1834 scopeTyVars.endScope();
1835 }
1836
1837 template< typename DeclClass >
1838 DeclClass * PolyGenericCalculator::handleDecl( DeclClass *decl, Type *type ) {
1839 beginTypeScope( type );
1840 knownLayouts.beginScope();
1841 knownOffsets.beginScope();
1842
1843 DeclClass *ret = static_cast< DeclClass *>( Mutator::mutate( decl ) );
1844
1845 knownOffsets.endScope();
1846 knownLayouts.endScope();
1847 endTypeScope();
1848 return ret;
1849 }
1850
1851 ObjectDecl * PolyGenericCalculator::mutate( ObjectDecl *objectDecl ) {
1852 return handleDecl( objectDecl, objectDecl->get_type() );
1853 }
1854
1855 DeclarationWithType * PolyGenericCalculator::mutate( FunctionDecl *functionDecl ) {
1856 return handleDecl( functionDecl, functionDecl->get_functionType() );
1857 }
1858
1859 TypedefDecl * PolyGenericCalculator::mutate( TypedefDecl *typedefDecl ) {
1860 return handleDecl( typedefDecl, typedefDecl->get_base() );
1861 }
1862
1863 TypeDecl * PolyGenericCalculator::mutate( TypeDecl *typeDecl ) {
1864 scopeTyVars[ typeDecl->get_name() ] = typeDecl->get_kind();
1865 return Mutator::mutate( typeDecl );
1866 }
1867
1868 Type * PolyGenericCalculator::mutate( PointerType *pointerType ) {
1869 beginTypeScope( pointerType );
1870
1871 Type *ret = Mutator::mutate( pointerType );
1872
1873 endTypeScope();
1874 return ret;
1875 }
1876
1877 Type * PolyGenericCalculator::mutate( FunctionType *funcType ) {
1878 beginTypeScope( funcType );
1879
1880 // make sure that any type information passed into the function is accounted for
1881 for ( std::list< DeclarationWithType* >::const_iterator fnParm = funcType->get_parameters().begin(); fnParm != funcType->get_parameters().end(); ++fnParm ) {
1882 // condition here duplicates that in Pass2::mutate( FunctionType* )
1883 Type *polyType = isPolyType( (*fnParm)->get_type(), scopeTyVars );
1884 if ( polyType && ! dynamic_cast< TypeInstType* >( polyType ) ) {
1885 knownLayouts.insert( mangleType( polyType ) );
1886 }
1887 }
1888
1889 Type *ret = Mutator::mutate( funcType );
1890
1891 endTypeScope();
1892 return ret;
1893 }
1894
1895 Statement *PolyGenericCalculator::mutate( DeclStmt *declStmt ) {
1896 if ( ObjectDecl *objectDecl = dynamic_cast< ObjectDecl *>( declStmt->get_decl() ) ) {
1897 if ( findGeneric( objectDecl->get_type() ) ) {
1898 // change initialization of a polymorphic value object
1899 // to allocate storage with alloca
1900 Type *declType = objectDecl->get_type();
1901 UntypedExpr *alloc = new UntypedExpr( new NameExpr( "__builtin_alloca" ) );
1902 alloc->get_args().push_back( new NameExpr( sizeofName( mangleType( declType ) ) ) );
1903
1904 delete objectDecl->get_init();
1905
1906 std::list<Expression*> designators;
1907 objectDecl->set_init( new SingleInit( alloc, designators ) );
1908 }
1909 }
1910 return Mutator::mutate( declStmt );
1911 }
1912
1913 /// Finds the member in the base list that matches the given declaration; returns its index, or -1 if not present
1914 long findMember( DeclarationWithType *memberDecl, std::list< Declaration* > &baseDecls ) {
1915 long i = 0;
1916 for(std::list< Declaration* >::const_iterator decl = baseDecls.begin(); decl != baseDecls.end(); ++decl, ++i ) {
1917 if ( memberDecl->get_name() != (*decl)->get_name() ) continue;
1918
1919 if ( DeclarationWithType *declWithType = dynamic_cast< DeclarationWithType* >( *decl ) ) {
1920 if ( memberDecl->get_mangleName().empty() || declWithType->get_mangleName().empty()
1921 || memberDecl->get_mangleName() == declWithType->get_mangleName() ) return i;
1922 else continue;
1923 } else return i;
1924 }
1925 return -1;
1926 }
1927
1928 /// Returns an index expression into the offset array for a type
1929 Expression *makeOffsetIndex( Type *objectType, long i ) {
1930 std::stringstream offset_namer;
1931 offset_namer << i;
1932 ConstantExpr *fieldIndex = new ConstantExpr( Constant( new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ), offset_namer.str() ) );
1933 UntypedExpr *fieldOffset = new UntypedExpr( new NameExpr( "?[?]" ) );
1934 fieldOffset->get_args().push_back( new NameExpr( offsetofName( mangleType( objectType ) ) ) );
1935 fieldOffset->get_args().push_back( fieldIndex );
1936 return fieldOffset;
1937 }
1938
1939 /// Returns an expression dereferenced n times
1940 Expression *makeDerefdVar( Expression *derefdVar, long n ) {
1941 for ( int i = 1; i < n; ++i ) {
1942 UntypedExpr *derefExpr = new UntypedExpr( new NameExpr( "*?" ) );
1943 derefExpr->get_args().push_back( derefdVar );
1944 derefdVar = derefExpr;
1945 }
1946 return derefdVar;
1947 }
1948
1949 Expression *PolyGenericCalculator::mutate( MemberExpr *memberExpr ) {
1950 // mutate, exiting early if no longer MemberExpr
1951 Expression *expr = Mutator::mutate( memberExpr );
1952 memberExpr = dynamic_cast< MemberExpr* >( expr );
1953 if ( ! memberExpr ) return expr;
1954
1955 // get declaration for base struct, exiting early if not found
1956 int varDepth;
1957 VariableExpr *varExpr = getBaseVar( memberExpr->get_aggregate(), &varDepth );
1958 if ( ! varExpr ) return memberExpr;
1959 ObjectDecl *objectDecl = dynamic_cast< ObjectDecl* >( varExpr->get_var() );
1960 if ( ! objectDecl ) return memberExpr;
1961
1962 // only mutate member expressions for polymorphic types
1963 int tyDepth;
1964 Type *objectType = hasPolyBase( objectDecl->get_type(), scopeTyVars, &tyDepth );
1965 if ( ! objectType ) return memberExpr;
1966 findGeneric( objectType ); // ensure layout for this type is available
1967
1968 Expression *newMemberExpr = 0;
1969 if ( StructInstType *structType = dynamic_cast< StructInstType* >( objectType ) ) {
1970 // look up offset index
1971 long i = findMember( memberExpr->get_member(), structType->get_baseStruct()->get_members() );
1972 if ( i == -1 ) return memberExpr;
1973
1974 // replace member expression with pointer to base plus offset
1975 UntypedExpr *fieldLoc = new UntypedExpr( new NameExpr( "?+?" ) );
1976 fieldLoc->get_args().push_back( makeDerefdVar( varExpr->clone(), varDepth ) );
1977 fieldLoc->get_args().push_back( makeOffsetIndex( objectType, i ) );
1978 newMemberExpr = fieldLoc;
1979 } else if ( dynamic_cast< UnionInstType* >( objectType ) ) {
1980 // union members are all at offset zero, so build appropriately-dereferenced variable
1981 newMemberExpr = makeDerefdVar( varExpr->clone(), varDepth );
1982 } else return memberExpr;
1983 assert( newMemberExpr );
1984
1985 Type *memberType = memberExpr->get_member()->get_type();
1986 if ( ! isPolyType( memberType, scopeTyVars ) ) {
1987 // Not all members of a polymorphic type are themselves of polymorphic type; in this case the member expression should be wrapped and dereferenced to form an lvalue
1988 CastExpr *ptrCastExpr = new CastExpr( newMemberExpr, new PointerType( Type::Qualifiers(), memberType->clone() ) );
1989 UntypedExpr *derefExpr = new UntypedExpr( new NameExpr( "*?" ) );
1990 derefExpr->get_args().push_back( ptrCastExpr );
1991 newMemberExpr = derefExpr;
1992 }
1993
1994 delete memberExpr;
1995 return newMemberExpr;
1996 }
1997
1998 ObjectDecl *PolyGenericCalculator::makeVar( const std::string &name, Type *type, Initializer *init ) {
1999 ObjectDecl *newObj = new ObjectDecl( name, DeclarationNode::NoStorageClass, LinkageSpec::C, 0, type, init );
2000 stmtsToAdd.push_back( new DeclStmt( noLabels, newObj ) );
2001 return newObj;
2002 }
2003
2004 void PolyGenericCalculator::addOtypeParamsToLayoutCall( UntypedExpr *layoutCall, const std::list< Type* > &otypeParams ) {
2005 for ( std::list< Type* >::const_iterator param = otypeParams.begin(); param != otypeParams.end(); ++param ) {
2006 if ( findGeneric( *param ) ) {
2007 // push size/align vars for a generic parameter back
2008 std::string paramName = mangleType( *param );
2009 layoutCall->get_args().push_back( new NameExpr( sizeofName( paramName ) ) );
2010 layoutCall->get_args().push_back( new NameExpr( alignofName( paramName ) ) );
2011 } else {
2012 layoutCall->get_args().push_back( new SizeofExpr( (*param)->clone() ) );
2013 layoutCall->get_args().push_back( new AlignofExpr( (*param)->clone() ) );
2014 }
2015 }
2016 }
2017
2018 /// returns true if any of the otype parameters have a dynamic layout and puts all otype parameters in the output list
2019 bool findGenericParams( std::list< TypeDecl* > &baseParams, std::list< Expression* > &typeParams, std::list< Type* > &out ) {
2020 bool hasDynamicLayout = false;
2021
2022 std::list< TypeDecl* >::const_iterator baseParam = baseParams.begin();
2023 std::list< Expression* >::const_iterator typeParam = typeParams.begin();
2024 for ( ; baseParam != baseParams.end() && typeParam != typeParams.end(); ++baseParam, ++typeParam ) {
2025 // skip non-otype parameters
2026 if ( (*baseParam)->get_kind() != TypeDecl::Any ) continue;
2027 TypeExpr *typeExpr = dynamic_cast< TypeExpr* >( *typeParam );
2028 assert( typeExpr && "all otype parameters should be type expressions" );
2029
2030 Type *type = typeExpr->get_type();
2031 out.push_back( type );
2032 if ( isPolyType( type ) ) hasDynamicLayout = true;
2033 }
2034 assert( baseParam == baseParams.end() && typeParam == typeParams.end() );
2035
2036 return hasDynamicLayout;
2037 }
2038
2039 bool PolyGenericCalculator::findGeneric( Type *ty ) {
2040 if ( TypeInstType *typeInst = dynamic_cast< TypeInstType* >( ty ) ) {
2041 // duplicate logic from isPolyType()
2042 if ( env ) {
2043 if ( Type *newType = env->lookup( typeInst->get_name() ) ) {
2044 return findGeneric( newType );
2045 } // if
2046 } // if
2047 if ( scopeTyVars.find( typeInst->get_name() ) != scopeTyVars.end() ) {
2048 // NOTE assumes here that getting put in the scopeTyVars included having the layout variables set
2049 return true;
2050 }
2051 return false;
2052 } else if ( StructInstType *structTy = dynamic_cast< StructInstType* >( ty ) ) {
2053 // check if this type already has a layout generated for it
2054 std::string typeName = mangleType( ty );
2055 if ( knownLayouts.find( typeName ) != knownLayouts.end() ) return true;
2056
2057 // check if any of the type parameters have dynamic layout; if none do, this type is (or will be) monomorphized
2058 std::list< Type* > otypeParams;
2059 if ( ! findGenericParams( *structTy->get_baseParameters(), structTy->get_parameters(), otypeParams ) ) return false;
2060
2061 // insert local variables for layout and generate call to layout function
2062 knownLayouts.insert( typeName ); // done early so as not to interfere with the later addition of parameters to the layout call
2063 Type *layoutType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
2064
2065 int n_members = structTy->get_baseStruct()->get_members().size();
2066 if ( n_members == 0 ) {
2067 // all empty structs have the same layout - size 1, align 1
2068 makeVar( sizeofName( typeName ), layoutType, new SingleInit( new ConstantExpr( Constant::from( (unsigned long)1 ) ) ) );
2069 makeVar( alignofName( typeName ), layoutType->clone(), new SingleInit( new ConstantExpr( Constant::from( (unsigned long)1 ) ) ) );
2070 // NOTE zero-length arrays are forbidden in C, so empty structs have no offsetof array
2071 } else {
2072 ObjectDecl *sizeVar = makeVar( sizeofName( typeName ), layoutType );
2073 ObjectDecl *alignVar = makeVar( alignofName( typeName ), layoutType->clone() );
2074 ObjectDecl *offsetVar = makeVar( offsetofName( typeName ), new ArrayType( Type::Qualifiers(), layoutType->clone(), new ConstantExpr( Constant::from( n_members ) ), false, false ) );
2075
2076 // generate call to layout function
2077 UntypedExpr *layoutCall = new UntypedExpr( new NameExpr( layoutofName( structTy->get_baseStruct() ) ) );
2078 layoutCall->get_args().push_back( new AddressExpr( new VariableExpr( sizeVar ) ) );
2079 layoutCall->get_args().push_back( new AddressExpr( new VariableExpr( alignVar ) ) );
2080 layoutCall->get_args().push_back( new VariableExpr( offsetVar ) );
2081 addOtypeParamsToLayoutCall( layoutCall, otypeParams );
2082
2083 stmtsToAdd.push_back( new ExprStmt( noLabels, layoutCall ) );
2084 }
2085
2086 return true;
2087 } else if ( UnionInstType *unionTy = dynamic_cast< UnionInstType* >( ty ) ) {
2088 // check if this type already has a layout generated for it
2089 std::string typeName = mangleType( ty );
2090 if ( knownLayouts.find( typeName ) != knownLayouts.end() ) return true;
2091
2092 // check if any of the type parameters have dynamic layout; if none do, this type is (or will be) monomorphized
2093 std::list< Type* > otypeParams;
2094 if ( ! findGenericParams( *unionTy->get_baseParameters(), unionTy->get_parameters(), otypeParams ) ) return false;
2095
2096 // insert local variables for layout and generate call to layout function
2097 knownLayouts.insert( typeName ); // done early so as not to interfere with the later addition of parameters to the layout call
2098 Type *layoutType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
2099
2100 ObjectDecl *sizeVar = makeVar( sizeofName( typeName ), layoutType );
2101 ObjectDecl *alignVar = makeVar( alignofName( typeName ), layoutType->clone() );
2102
2103 // generate call to layout function
2104 UntypedExpr *layoutCall = new UntypedExpr( new NameExpr( layoutofName( unionTy->get_baseUnion() ) ) );
2105 layoutCall->get_args().push_back( new AddressExpr( new VariableExpr( sizeVar ) ) );
2106 layoutCall->get_args().push_back( new AddressExpr( new VariableExpr( alignVar ) ) );
2107 addOtypeParamsToLayoutCall( layoutCall, otypeParams );
2108
2109 stmtsToAdd.push_back( new ExprStmt( noLabels, layoutCall ) );
2110
2111 return true;
2112 }
2113
2114 return false;
2115 }
2116
2117 Expression *PolyGenericCalculator::mutate( SizeofExpr *sizeofExpr ) {
2118 Type *ty = sizeofExpr->get_type();
2119 if ( findGeneric( ty ) ) {
2120 Expression *ret = new NameExpr( sizeofName( mangleType( ty ) ) );
2121 delete sizeofExpr;
2122 return ret;
2123 }
2124 return sizeofExpr;
2125 }
2126
2127 Expression *PolyGenericCalculator::mutate( AlignofExpr *alignofExpr ) {
2128 Type *ty = alignofExpr->get_type();
2129 if ( findGeneric( ty ) ) {
2130 Expression *ret = new NameExpr( alignofName( mangleType( ty ) ) );
2131 delete alignofExpr;
2132 return ret;
2133 }
2134 return alignofExpr;
2135 }
2136
2137 Expression *PolyGenericCalculator::mutate( OffsetofExpr *offsetofExpr ) {
2138 // mutate, exiting early if no longer OffsetofExpr
2139 Expression *expr = Mutator::mutate( offsetofExpr );
2140 offsetofExpr = dynamic_cast< OffsetofExpr* >( expr );
2141 if ( ! offsetofExpr ) return expr;
2142
2143 // only mutate expressions for polymorphic structs/unions
2144 Type *ty = offsetofExpr->get_type();
2145 if ( ! findGeneric( ty ) ) return offsetofExpr;
2146
2147 if ( StructInstType *structType = dynamic_cast< StructInstType* >( ty ) ) {
2148 // replace offsetof expression by index into offset array
2149 long i = findMember( offsetofExpr->get_member(), structType->get_baseStruct()->get_members() );
2150 if ( i == -1 ) return offsetofExpr;
2151
2152 Expression *offsetInd = makeOffsetIndex( ty, i );
2153 delete offsetofExpr;
2154 return offsetInd;
2155 } else if ( dynamic_cast< UnionInstType* >( ty ) ) {
2156 // all union members are at offset zero
2157 delete offsetofExpr;
2158 return new ConstantExpr( Constant( new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ), std::string("0") ) );
2159 } else return offsetofExpr;
2160 }
2161
2162 Expression *PolyGenericCalculator::mutate( OffsetPackExpr *offsetPackExpr ) {
2163 StructInstType *ty = offsetPackExpr->get_type();
2164
2165 Expression *ret = 0;
2166 if ( findGeneric( ty ) ) {
2167 // pull offset back from generated type information
2168 ret = new NameExpr( offsetofName( mangleType( ty ) ) );
2169 } else {
2170 std::string offsetName = offsetofName( mangleType( ty ) );
2171 if ( knownOffsets.find( offsetName ) != knownOffsets.end() ) {
2172 // use the already-generated offsets for this type
2173 ret = new NameExpr( offsetName );
2174 } else {
2175 knownOffsets.insert( offsetName );
2176
2177 std::list< Declaration* > &baseMembers = ty->get_baseStruct()->get_members();
2178 Type *offsetType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
2179
2180 // build initializer list for offset array
2181 std::list< Initializer* > inits;
2182 for ( std::list< Declaration* >::const_iterator member = baseMembers.begin(); member != baseMembers.end(); ++member ) {
2183 DeclarationWithType *memberDecl;
2184 if ( DeclarationWithType *origMember = dynamic_cast< DeclarationWithType* >( *member ) ) {
2185 memberDecl = origMember->clone();
2186 } else {
2187 memberDecl = new ObjectDecl( (*member)->get_name(), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, offsetType->clone(), 0 );
2188 }
2189 inits.push_back( new SingleInit( new OffsetofExpr( ty->clone(), memberDecl ) ) );
2190 }
2191
2192 // build the offset array and replace the pack with a reference to it
2193 ObjectDecl *offsetArray = makeVar( offsetName, new ArrayType( Type::Qualifiers(), offsetType, new ConstantExpr( Constant::from( baseMembers.size() ) ), false, false ),
2194 new ListInit( inits ) );
2195 ret = new VariableExpr( offsetArray );
2196 }
2197 }
2198
2199 delete offsetPackExpr;
2200 return ret;
2201 }
2202
2203 void PolyGenericCalculator::doBeginScope() {
2204 knownLayouts.beginScope();
2205 knownOffsets.beginScope();
2206 }
2207
2208 void PolyGenericCalculator::doEndScope() {
2209 knownLayouts.endScope();
2210 knownOffsets.endScope();
2211 }
2212
2213////////////////////////////////////////// Pass3 ////////////////////////////////////////////////////
2214
2215 template< typename DeclClass >
2216 DeclClass * Pass3::handleDecl( DeclClass *decl, Type *type ) {
2217 scopeTyVars.beginScope();
2218 makeTyVarMap( type, scopeTyVars );
2219
2220 DeclClass *ret = static_cast< DeclClass *>( Mutator::mutate( decl ) );
2221 ScrubTyVars::scrub( decl, scopeTyVars );
2222
2223 scopeTyVars.endScope();
2224 return ret;
2225 }
2226
2227 ObjectDecl * Pass3::mutate( ObjectDecl *objectDecl ) {
2228 return handleDecl( objectDecl, objectDecl->get_type() );
2229 }
2230
2231 DeclarationWithType * Pass3::mutate( FunctionDecl *functionDecl ) {
2232 return handleDecl( functionDecl, functionDecl->get_functionType() );
2233 }
2234
2235 TypedefDecl * Pass3::mutate( TypedefDecl *typedefDecl ) {
2236 return handleDecl( typedefDecl, typedefDecl->get_base() );
2237 }
2238
2239 TypeDecl * Pass3::mutate( TypeDecl *typeDecl ) {
2240// Initializer *init = 0;
2241// std::list< Expression *> designators;
2242// scopeTyVars[ typeDecl->get_name() ] = typeDecl->get_kind();
2243// if ( typeDecl->get_base() ) {
2244// init = new SimpleInit( new SizeofExpr( handleDecl( typeDecl, typeDecl->get_base() ) ), designators );
2245// }
2246// return new ObjectDecl( typeDecl->get_name(), Declaration::Extern, LinkageSpec::C, 0, new BasicType( Type::Qualifiers(), BasicType::UnsignedInt ), init );
2247
2248 scopeTyVars[ typeDecl->get_name() ] = typeDecl->get_kind();
2249 return Mutator::mutate( typeDecl );
2250 }
2251
2252 Type * Pass3::mutate( PointerType *pointerType ) {
2253 scopeTyVars.beginScope();
2254 makeTyVarMap( pointerType, scopeTyVars );
2255
2256 Type *ret = Mutator::mutate( pointerType );
2257
2258 scopeTyVars.endScope();
2259 return ret;
2260 }
2261
2262 Type * Pass3::mutate( FunctionType *functionType ) {
2263 scopeTyVars.beginScope();
2264 makeTyVarMap( functionType, scopeTyVars );
2265
2266 Type *ret = Mutator::mutate( functionType );
2267
2268 scopeTyVars.endScope();
2269 return ret;
2270 }
2271 } // anonymous namespace
2272} // namespace GenPoly
2273
2274// Local Variables: //
2275// tab-width: 4 //
2276// mode: c++ //
2277// compile-command: "make install" //
2278// End: //
Note: See TracBrowser for help on using the repository browser.