source: src/AST/Pass.proto.hpp @ 4b60b28

ADTast-experimental
Last change on this file since 4b60b28 was 26e6d88, checked in by Andrew Beach <ajbeach@…>, 15 months ago

Updated indentation in Pass.proto.hpp.

  • Property mode set to 100644
File size: 17.2 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2019 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Pass.impl.hpp --
8//
9// Author           : Thierry Delisle
10// Created On       : Thu May 09 15::37::05 2019
11// Last Modified By :
12// Last Modified On :
13// Update Count     :
14//
15
16#pragma once
17// IWYU pragma: private, include "Pass.hpp"
18
19#include "Common/Stats/Heap.h"
20namespace ast {
21        template<typename core_t> class Pass;
22        class TranslationUnit;
23        struct PureVisitor;
24        template<typename node_t> node_t * deepCopy( const node_t * );
25}
26
27namespace ast::__pass {
28
29typedef std::function<void( void * )> cleanup_func_t;
30typedef std::function<void( cleanup_func_t, void * )> at_cleanup_t;
31
32// boolean reference that may be null
33// either refers to a boolean value or is null and returns true
34class bool_ref {
35public:
36        bool_ref() = default;
37        ~bool_ref() = default;
38
39        operator bool() { return m_ref ? *m_ref : true; }
40        bool operator=( bool val ) { assert(m_ref); return *m_ref = val; }
41
42private:
43
44        friend class visit_children_guard;
45
46        bool * set( bool * val ) {
47                bool * prev = m_ref;
48                m_ref = val;
49                return prev;
50        }
51
52        bool * m_ref = nullptr;
53};
54
55// Implementation of the guard value
56// Created inside the visit scope
57class guard_value {
58public:
59        /// Push onto the cleanup
60        guard_value( at_cleanup_t * at_cleanup ) {
61                if( at_cleanup ) {
62                        *at_cleanup = [this]( cleanup_func_t && func, void* val ) {
63                                push( std::move( func ), val );
64                        };
65                }
66        }
67
68        ~guard_value() {
69                while( !cleanups.empty() ) {
70                        auto& cleanup = cleanups.top();
71                        cleanup.func( cleanup.val );
72                        cleanups.pop();
73                }
74        }
75
76        void push( cleanup_func_t && func, void* val ) {
77                cleanups.emplace( std::move(func), val );
78        }
79
80private:
81        struct cleanup_t {
82                cleanup_func_t func;
83                void * val;
84
85                cleanup_t( cleanup_func_t&& func, void * val ) : func(func), val(val) {}
86        };
87
88        std::stack< cleanup_t, std::vector<cleanup_t> > cleanups;
89};
90
91// Guard structure implementation for whether or not children should be visited
92class visit_children_guard {
93public:
94
95        visit_children_guard( bool_ref * ref )
96                : m_val ( true )
97                , m_prev( ref ? ref->set( &m_val ) : nullptr )
98                , m_ref ( ref )
99        {}
100
101        ~visit_children_guard() {
102                if( m_ref ) {
103                        m_ref->set( m_prev );
104                }
105        }
106
107        operator bool() { return m_val; }
108
109private:
110        bool       m_val;
111        bool     * m_prev;
112        bool_ref * m_ref;
113};
114
115/// "Short hand" to check if this is a valid previsit function
116/// Mostly used to make the static_assert look (and print) prettier
117template<typename core_t, typename node_t>
118struct is_valid_previsit {
119        using ret_t = decltype( std::declval<core_t*>()->previsit( std::declval<const node_t *>() ) );
120
121        static constexpr bool value = std::is_void< ret_t >::value ||
122                std::is_base_of<const node_t, typename std::remove_pointer<ret_t>::type >::value;
123};
124
125/// The result is a single node.
126template< typename node_t >
127struct result1 {
128        bool differs = false;
129        const node_t * value = nullptr;
130
131        template< typename object_t, typename super_t, typename field_t >
132        void apply( object_t *, field_t super_t::* field );
133};
134
135/// The result is a container of statements.
136template< template<class...> class container_t >
137struct resultNstmt {
138        /// The delta/change on a single node.
139        struct delta {
140                ptr<Stmt> new_val;
141                ssize_t old_idx;
142                bool is_old;
143
144                delta(const Stmt * s, ssize_t i, bool old) :
145                        new_val(s), old_idx(i), is_old(old) {}
146        };
147
148        bool differs = false;
149        container_t< delta > values;
150
151        template< typename object_t, typename super_t, typename field_t >
152        void apply( object_t *, field_t super_t::* field );
153
154        template< template<class...> class incontainer_t >
155        void take_all( incontainer_t<ptr<Stmt>> * stmts );
156
157        template< template<class...> class incontainer_t >
158        void take_all( incontainer_t<ptr<Decl>> * decls );
159};
160
161/// The result is a container of nodes.
162template< template<class...> class container_t, typename node_t >
163struct resultN {
164        bool differs = false;
165        container_t<ptr<node_t>> values;
166
167        template< typename object_t, typename super_t, typename field_t >
168        void apply( object_t *, field_t super_t::* field );
169};
170
171/// Used by previsit implementation
172/// We need to reassign the result to 'node', unless the function
173/// returns void, then we just leave 'node' unchanged
174template<bool is_void>
175struct __assign;
176
177template<>
178struct __assign<true> {
179        template<typename core_t, typename node_t>
180        static inline void result( core_t & core, const node_t * & node ) {
181                core.previsit( node );
182        }
183};
184
185template<>
186struct __assign<false> {
187        template<typename core_t, typename node_t>
188        static inline void result( core_t & core, const node_t * & node ) {
189                node = core.previsit( node );
190                assertf(node, "Previsit must not return NULL");
191        }
192};
193
194/// Used by postvisit implementation
195/// We need to return the result unless the function
196/// returns void, then we just return the original node
197template<bool is_void>
198struct __return;
199
200template<>
201struct __return<true> {
202        template<typename core_t, typename node_t>
203        static inline const node_t * result( core_t & core, const node_t * & node ) {
204                core.postvisit( node );
205                return node;
206        }
207};
208
209template<>
210struct __return<false> {
211        template<typename core_t, typename node_t>
212        static inline auto result( core_t & core, const node_t * & node ) {
213                return core.postvisit( node );
214        }
215};
216
217//-------------------------------------------------------------------------------------------------------------------------------------------------------------------------
218// Deep magic (a.k.a template meta programming) to make the templated visitor work
219// Basically the goal is to make 2 previsit
220// 1 - Use when a pass implements a valid previsit. This uses overloading which means the any overload of
221//     'pass.previsit( node )' that compiles will be used for that node for that type
222//     This requires that this option only compile for passes that actually define an appropriate visit.
223//     SFINAE will make sure the compilation errors in this function don't halt the build.
224//     See http://en.cppreference.com/w/cpp/language/sfinae for details on SFINAE
225// 2 - Since the first implementation might not be specilizable, the second implementation exists and does nothing.
226//     This is needed only to eliminate the need for passes to specify any kind of handlers.
227//     The second implementation only works because it has a lower priority. This is due to the bogus last parameter.
228//     The second implementation takes a long while the first takes an int. Since the caller always passes an literal 0
229//     the first implementation takes priority in regards to overloading.
230//-------------------------------------------------------------------------------------------------------------------------------------------------------------------------
231// PreVisit : may mutate the pointer passed in if the node is mutated in the previsit call
232template<typename core_t, typename node_t>
233static inline auto previsit( core_t & core, const node_t * & node, int ) -> decltype( core.previsit( node ), void() ) {
234        static_assert(
235                is_valid_previsit<core_t, node_t>::value,
236                "Previsit may not change the type of the node. It must return its paremeter or void."
237        );
238
239        __assign<
240                std::is_void<
241                        decltype( core.previsit( node ) )
242                >::value
243        >::result( core, node );
244}
245
246template<typename core_t, typename node_t>
247static inline auto previsit( core_t &, const node_t *, long ) {}
248
249// PostVisit : never mutates the passed pointer but may return a different node
250template<typename core_t, typename node_t>
251static inline auto postvisit( core_t & core, const node_t * node, int ) ->
252        decltype( core.postvisit( node ), node->accept( *(Visitor*)nullptr ) )
253{
254        return __return<
255                std::is_void<
256                        decltype( core.postvisit( node ) )
257                >::value
258        >::result( core, node );
259}
260
261template<typename core_t, typename node_t>
262static inline const node_t * postvisit( core_t &, const node_t * node, long ) { return node; }
263
264//-------------------------------------------------------------------------------------------------------------------------------------------------------------------------
265// Deep magic (a.k.a template meta programming) continued
266// To make the templated visitor be more expressive, we allow 'accessories' : classes/structs the implementation can inherit
267// from in order to get extra functionallity for example
268// class ErrorChecker : WithShortCircuiting { ... };
269// Pass<ErrorChecker> checker;
270// this would define a pass that uses the templated visitor with the additionnal feature that it has short circuiting
271// Note that in all cases the accessories are not required but guarantee the requirements of the feature is matched
272//-------------------------------------------------------------------------------------------------------------------------------------------------------------------------
273// For several accessories, the feature is enabled by detecting that a specific field is present
274// Use a macro the encapsulate the logic of detecting a particular field
275// The type is not strictly enforced but does match the accessory
276#define FIELD_PTR( name, default_type ) \
277template< typename core_t > \
278static inline auto name( core_t & core, int ) -> decltype( &core.name ) { return &core.name; } \
279\
280template< typename core_t > \
281static inline default_type * name( core_t &, long ) { return nullptr; }
282
283// List of fields and their expected types
284FIELD_PTR( typeSubs, const ast::TypeSubstitution * )
285FIELD_PTR( stmtsToAddBefore, std::list< ast::ptr< ast::Stmt > > )
286FIELD_PTR( stmtsToAddAfter , std::list< ast::ptr< ast::Stmt > > )
287FIELD_PTR( declsToAddBefore, std::list< ast::ptr< ast::Decl > > )
288FIELD_PTR( declsToAddAfter , std::list< ast::ptr< ast::Decl > > )
289FIELD_PTR( visit_children, __pass::bool_ref )
290FIELD_PTR( at_cleanup, __pass::at_cleanup_t )
291FIELD_PTR( visitor, ast::Pass<core_t> * const )
292
293// Remove the macro to make sure we don't clash
294#undef FIELD_PTR
295
296template< typename core_t >
297static inline auto beginTrace(core_t &, int) -> decltype( core_t::traceId, void() ) {
298        // Stats::Heap::stacktrace_push(core_t::traceId);
299}
300
301template< typename core_t >
302static inline auto endTrace(core_t &, int) -> decltype( core_t::traceId, void() ) {
303        // Stats::Heap::stacktrace_pop();
304}
305
306template< typename core_t >
307static void beginTrace(core_t &, long) {}
308
309template< typename core_t >
310static void endTrace(core_t &, long) {}
311
312// Allows visitor to handle an error on top-level declarations, and possibly suppress the error.
313// If on_error() returns false, the error will be ignored. By default, it returns true.
314
315template< typename core_t >
316static bool on_error (core_t &, ptr<Decl> &, long) { return true; }
317
318template< typename core_t >
319static auto on_error (core_t & core, ptr<Decl> & decl, int) -> decltype(core.on_error(decl)) {
320        return core.on_error(decl);
321}
322
323template< typename core_t, typename node_t >
324static auto make_location_guard( core_t & core, node_t * node, int )
325                -> decltype( node->location, ValueGuardPtr<const CodeLocation *>( &core.location ) ) {
326        ValueGuardPtr<const CodeLocation *> guard( &core.location );
327        core.location = &node->location;
328        return guard;
329}
330
331template< typename core_t, typename node_t >
332static auto make_location_guard( core_t &, node_t *, long ) -> int {
333        return 0;
334}
335
336// Another feature of the templated visitor is that it calls beginScope()/endScope() for compound statement.
337// All passes which have such functions are assumed desire this behaviour
338// detect it using the same strategy
339namespace scope {
340        template<typename core_t>
341        static inline auto enter( core_t & core, int ) -> decltype( core.beginScope(), void() ) {
342                core.beginScope();
343        }
344
345        template<typename core_t>
346        static inline void enter( core_t &, long ) {}
347
348        template<typename core_t>
349        static inline auto leave( core_t & core, int ) -> decltype( core.endScope(), void() ) {
350                core.endScope();
351        }
352
353        template<typename core_t>
354        static inline void leave( core_t &, long ) {}
355} // namespace scope
356
357// Certain passes desire an up to date symbol table automatically
358// detect the presence of a member name `symtab` and call all the members appropriately
359namespace symtab {
360        // Some simple scoping rules
361        template<typename core_t>
362        static inline auto enter( core_t & core, int ) -> decltype( core.symtab, void() ) {
363                core.symtab.enterScope();
364        }
365
366        template<typename core_t>
367        static inline auto enter( core_t &, long ) {}
368
369        template<typename core_t>
370        static inline auto leave( core_t & core, int ) -> decltype( core.symtab, void() ) {
371                core.symtab.leaveScope();
372        }
373
374        template<typename core_t>
375        static inline auto leave( core_t &, long ) {}
376
377        // The symbol table has 2 kind of functions mostly, 1 argument and 2 arguments
378        // Create macro to condense these common patterns
379        #define SYMTAB_FUNC1( func, type ) \
380        template<typename core_t> \
381        static inline auto func( core_t & core, int, type arg ) -> decltype( core.symtab.func( arg ), void() ) {\
382                core.symtab.func( arg ); \
383        } \
384        \
385        template<typename core_t> \
386        static inline void func( core_t &, long, type ) {}
387
388        #define SYMTAB_FUNC2( func, type1, type2 ) \
389        template<typename core_t> \
390        static inline auto func( core_t & core, int, type1 arg1, type2 arg2 ) -> decltype( core.symtab.func( arg1, arg2 ), void () ) {\
391                core.symtab.func( arg1, arg2 ); \
392        } \
393        \
394        template<typename core_t> \
395        static inline void func( core_t &, long, type1, type2 ) {}
396
397        SYMTAB_FUNC1( addId     , const DeclWithType *  );
398        SYMTAB_FUNC1( addType   , const NamedTypeDecl * );
399        SYMTAB_FUNC1( addStruct , const StructDecl *    );
400        SYMTAB_FUNC1( addEnum   , const EnumDecl *      );
401        SYMTAB_FUNC1( addUnion  , const UnionDecl *     );
402        SYMTAB_FUNC1( addTrait  , const TraitDecl *     );
403        SYMTAB_FUNC2( addWith   , const std::vector< ptr<Expr> > &, const Decl * );
404
405        // A few extra functions have more complicated behaviour, they are hand written
406        template<typename core_t>
407        static inline auto addStructFwd( core_t & core, int, const ast::StructDecl * decl ) -> decltype( core.symtab.addStruct( decl ), void() ) {
408                ast::StructDecl * fwd = new ast::StructDecl( decl->location, decl->name );
409                for ( const auto & param : decl->params ) {
410                        fwd->params.push_back( deepCopy( param.get() ) );
411                }
412                core.symtab.addStruct( fwd );
413        }
414
415        template<typename core_t>
416        static inline void addStructFwd( core_t &, long, const ast::StructDecl * ) {}
417
418        template<typename core_t>
419        static inline auto addUnionFwd( core_t & core, int, const ast::UnionDecl * decl ) -> decltype( core.symtab.addUnion( decl ), void() ) {
420                ast::UnionDecl * fwd = new ast::UnionDecl( decl->location, decl->name );
421                for ( const auto & param : decl->params ) {
422                        fwd->params.push_back( deepCopy( param.get() ) );
423                }
424                core.symtab.addUnion( fwd );
425        }
426
427        template<typename core_t>
428        static inline void addUnionFwd( core_t &, long, const ast::UnionDecl * ) {}
429
430        template<typename core_t>
431        static inline auto addStruct( core_t & core, int, const std::string & str ) -> decltype( core.symtab.addStruct( str ), void() ) {
432                if ( ! core.symtab.lookupStruct( str ) ) {
433                        core.symtab.addStruct( str );
434                }
435        }
436
437        template<typename core_t>
438        static inline void addStruct( core_t &, long, const std::string & ) {}
439
440        template<typename core_t>
441        static inline auto addUnion( core_t & core, int, const std::string & str ) -> decltype( core.symtab.addUnion( str ), void() ) {
442                if ( ! core.symtab.lookupUnion( str ) ) {
443                        core.symtab.addUnion( str );
444                }
445        }
446
447        template<typename core_t>
448        static inline void addUnion( core_t &, long, const std::string & ) {}
449
450        #undef SYMTAB_FUNC1
451        #undef SYMTAB_FUNC2
452} // namespace symtab
453
454// Some passes need to mutate TypeDecl and properly update their pointing TypeInstType.
455// Detect the presence of a member name `subs` and call all members appropriately
456namespace forall {
457        // Some simple scoping rules
458        template<typename core_t>
459        static inline auto enter( core_t & core, int, const ast::FunctionType * type )
460                        -> decltype( core.subs, void() ) {
461                if ( ! type->forall.empty() ) core.subs.beginScope();
462        }
463
464        template<typename core_t>
465        static inline auto enter( core_t &, long, const ast::FunctionType * ) {}
466
467        template<typename core_t>
468        static inline auto leave( core_t & core, int, const ast::FunctionType * type )
469                        -> decltype( core.subs, void() ) {
470                if ( ! type->forall.empty() ) { core.subs.endScope(); }
471        }
472
473        template<typename core_t>
474        static inline auto leave( core_t &, long, const ast::FunctionType * ) {}
475
476        // Replaces a TypeInstType's base TypeDecl according to the table
477        template<typename core_t>
478        static inline auto replace( core_t & core, int, const ast::TypeInstType *& inst )
479                        -> decltype( core.subs, void() ) {
480                inst = ast::mutate_field(
481                        inst, &ast::TypeInstType::base, core.subs.replace( inst->base ) );
482        }
483
484        template<typename core_t>
485        static inline auto replace( core_t &, long, const ast::TypeInstType *& ) {}
486} // namespace forall
487
488// For passes that need access to the global context. Searches `translationUnit`
489namespace translation_unit {
490        template<typename core_t>
491        static inline auto get_cptr( core_t & core, int )
492                        -> decltype( &core.translationUnit ) {
493                return &core.translationUnit;
494        }
495
496        template<typename core_t>
497        static inline const TranslationUnit ** get_cptr( core_t &, long ) {
498                return nullptr;
499        }
500}
501
502// For passes, usually utility passes, that have a result.
503namespace result {
504        template<typename core_t>
505        static inline auto get( core_t & core, char ) -> decltype( core.result() ) {
506                return core.result();
507        }
508
509        template<typename core_t>
510        static inline auto get( core_t & core, int ) -> decltype( core.result ) {
511                return core.result;
512        }
513
514        template<typename core_t>
515        static inline void get( core_t &, long ) {}
516}
517
518} // namespace ast::__pass
Note: See TracBrowser for help on using the repository browser.