[9ec35db] | 1 | #pragma once
|
---|
| 2 | #include <math.hfa>
|
---|
| 3 | #include <iostream.hfa>
|
---|
| 4 |
|
---|
| 5 | trait vec3_t(otype T) {
|
---|
| 6 | void ?{}(T&, int);
|
---|
| 7 | T ?=?(T&, zero_t);
|
---|
| 8 | T ?-?(T, T);
|
---|
| 9 | T -?(T);
|
---|
| 10 | T ?+?(T, T);
|
---|
| 11 | T ?*?(T, T);
|
---|
| 12 | T ?/?(T, T);
|
---|
| 13 | int ?==?(T, T);
|
---|
| 14 | int ?<?(T, T);
|
---|
| 15 | T sqrt(T);
|
---|
| 16 | };
|
---|
| 17 |
|
---|
| 18 | static inline {
|
---|
| 19 | // int
|
---|
| 20 | int ?=?(int& n, zero_t) { return n = 0.f; }
|
---|
| 21 | int sqrt(int a) { return sqrt((float)a); }
|
---|
| 22 | /* float */
|
---|
| 23 | void ?{}(float& a, int b) { a = b; }
|
---|
| 24 | float ?=?(float& n, zero_t) { return n = 0.f; }
|
---|
| 25 | /* double */
|
---|
| 26 | void ?{}(double& a, int b) { a = b; }
|
---|
| 27 | double ?=?(double& n, zero_t) { return n = 0L; }
|
---|
| 28 | // long double
|
---|
| 29 | void ?{}(long double& a, int b) { a = b; }
|
---|
| 30 | long double ?=?(long double& n, zero_t) { return n = 0L; }
|
---|
| 31 | }
|
---|
| 32 |
|
---|
| 33 | forall(otype T | vec3_t(T)) {
|
---|
| 34 | struct vec3 {
|
---|
| 35 | T x, y, z;
|
---|
| 36 | };
|
---|
| 37 | }
|
---|
| 38 |
|
---|
| 39 | /* static inline { */
|
---|
| 40 | forall(otype T | vec3_t(T)) {
|
---|
| 41 | static inline {
|
---|
| 42 |
|
---|
| 43 | // Constructors
|
---|
| 44 |
|
---|
| 45 | void ?{}(vec3(T)& v, T x, T y, T z) {
|
---|
| 46 | v.[x, y, z] = [x, y, z];
|
---|
| 47 | }
|
---|
| 48 | void ?{}(vec3(T)& vec, zero_t) with (vec) {
|
---|
| 49 | x = y = z = 0;
|
---|
| 50 | }
|
---|
| 51 | void ?{}(vec3(T)& vec, T val) with (vec) {
|
---|
| 52 | x = y = z = val;
|
---|
| 53 | }
|
---|
| 54 | void ?{}(vec3(T)& vec, vec3(T) other) with (vec) {
|
---|
| 55 | [x,y,z] = other.[x,y,z];
|
---|
| 56 | }
|
---|
| 57 |
|
---|
| 58 | // Assignment
|
---|
| 59 | void ?=?(vec3(T)& vec, vec3(T) other) with (vec) {
|
---|
| 60 | [x,y,z] = other.[x,y,z];
|
---|
| 61 | }
|
---|
| 62 | void ?=?(vec3(T)& vec, zero_t) with (vec) {
|
---|
| 63 | x = y = z = 0;
|
---|
| 64 | }
|
---|
| 65 |
|
---|
| 66 | // Primitive mathematical operations
|
---|
| 67 |
|
---|
| 68 | // Subtraction
|
---|
| 69 | vec3(T) ?-?(vec3(T) u, vec3(T) v) { // TODO( can't make this const ref )
|
---|
| 70 | return [u.x - v.x, u.y - v.y, u.z - v.z];
|
---|
| 71 | }
|
---|
| 72 | vec3(T)& ?-=?(vec3(T)& u, vec3(T) v) {
|
---|
| 73 | u = u - v;
|
---|
| 74 | return u;
|
---|
| 75 | }
|
---|
| 76 | vec3(T) -?(vec3(T)& v) with (v) {
|
---|
| 77 | return [-x, -y, -z];
|
---|
| 78 | }
|
---|
| 79 |
|
---|
| 80 | // Addition
|
---|
| 81 | vec3(T) ?+?(vec3(T) u, vec3(T) v) { // TODO( can't make this const ref )
|
---|
| 82 | return [u.x + v.x, u.y + v.y, u.z + v.z];
|
---|
| 83 | }
|
---|
| 84 | vec3(T)& ?+=?(vec3(T)& u, vec3(T) v) {
|
---|
| 85 | u = u + v;
|
---|
| 86 | return u;
|
---|
| 87 | }
|
---|
| 88 |
|
---|
| 89 | // Scalar Multiplication
|
---|
| 90 | vec3(T) ?*?(vec3(T) v, T scalar) with (v) { // TODO (can't make this const ref)
|
---|
| 91 | return [x * scalar, y * scalar, z * scalar];
|
---|
| 92 | }
|
---|
| 93 | vec3(T) ?*?(T scalar, vec3(T) v) { // TODO (can't make this const ref)
|
---|
| 94 | return v * scalar;
|
---|
| 95 | }
|
---|
| 96 | vec3(T)& ?*=?(vec3(T)& v, T scalar) {
|
---|
| 97 | v = v * scalar;
|
---|
| 98 | return v;
|
---|
| 99 | }
|
---|
| 100 |
|
---|
| 101 |
|
---|
| 102 | // Scalar Division
|
---|
| 103 | vec3(T) ?/?(vec3(T) v, T scalar) with (v) {
|
---|
| 104 | return [x / scalar, y / scalar, z / scalar];
|
---|
| 105 | }
|
---|
| 106 | vec3(T)& ?/=?(vec3(T)& v, T scalar) with (v) {
|
---|
| 107 | v = v / scalar;
|
---|
| 108 | return v;
|
---|
| 109 | }
|
---|
| 110 | // Relational Operators
|
---|
| 111 | bool ?==?(vec3(T) u, vec3(T) v) with (u) {
|
---|
| 112 | return x == v.x && y == v.y && z == v.z;
|
---|
| 113 | }
|
---|
| 114 | bool ?!=?(vec3(T) u, vec3(T) v) {
|
---|
| 115 | return !(u == v);
|
---|
| 116 | }
|
---|
| 117 |
|
---|
| 118 | T dot(vec3(T) u, vec3(T) v) {
|
---|
| 119 | return u.x * v.x + u.y * v.y + u.z * v.z;
|
---|
| 120 | }
|
---|
| 121 |
|
---|
| 122 | T length(vec3(T) v) {
|
---|
| 123 | return sqrt(dot(v, v));
|
---|
| 124 | }
|
---|
| 125 |
|
---|
| 126 | T length_squared(vec3(T) v) {
|
---|
| 127 | return dot(v, v);
|
---|
| 128 | }
|
---|
| 129 |
|
---|
| 130 | T distance(vec3(T) v1, vec3(T) v2) {
|
---|
| 131 | return length(v1 - v2);
|
---|
| 132 | }
|
---|
| 133 |
|
---|
| 134 | vec3(T) normalize(vec3(T) v) {
|
---|
| 135 | return v / sqrt(dot(v, v));
|
---|
| 136 | }
|
---|
| 137 |
|
---|
| 138 | // Project vector u onto vector v
|
---|
| 139 | vec3(T) project(vec3(T) u, vec3(T) v) {
|
---|
| 140 | vec3(T) v_norm = normalize(v);
|
---|
| 141 | return v_norm * dot(u, v_norm);
|
---|
| 142 | }
|
---|
| 143 |
|
---|
| 144 | // Reflect incident vector v with respect to surface with normal n
|
---|
| 145 | vec3(T) reflect(vec3(T) v, vec3(T) n) {
|
---|
| 146 | return v - (T){2} * project(v, n);
|
---|
| 147 | }
|
---|
| 148 |
|
---|
| 149 | // Refract incident vector v with respect to surface with normal n
|
---|
| 150 | // eta is the ratio of indices of refraction between starting material and
|
---|
| 151 | // entering material (i.e., from air to water, eta = 1/1.33)
|
---|
| 152 | // v and n must already be normalized
|
---|
| 153 | vec3(T) refract(vec3(T) v, vec3(T) n, T eta) {
|
---|
| 154 | T dotValue = dot(n, v);
|
---|
| 155 | T k = (T){1} - eta * eta * ((T){1} - dotValue * dotValue);
|
---|
| 156 | if (k < (T){0}) {
|
---|
| 157 | return 0;
|
---|
| 158 | }
|
---|
| 159 | return eta * v - (eta * dotValue + sqrt(k)) * n;
|
---|
| 160 | }
|
---|
| 161 |
|
---|
| 162 | // Given a perturbed normal and a geometric normal,
|
---|
| 163 | // flip the perturbed normal if the geometric normal is pointing away
|
---|
| 164 | // from the observer.
|
---|
| 165 | // n is the perturbed vector that we want to align
|
---|
| 166 | // i is the incident vector
|
---|
| 167 | // ng is the geometric normal of the surface
|
---|
| 168 | vec3(T) faceforward(vec3(T) n, vec3(T) i, vec3(T) ng) {
|
---|
| 169 | return dot(ng, i) < (T){0} ? n : -n;
|
---|
| 170 | }
|
---|
| 171 |
|
---|
| 172 | vec3(T) cross(vec3(T) u, vec3(T) v) {
|
---|
| 173 | return (vec3(T)){ u.y * v.z - v.y * u.z,
|
---|
| 174 | u.z * v.x - v.z * u.x,
|
---|
| 175 | u.x * v.y - v.x * u.y };
|
---|
| 176 | }
|
---|
| 177 | }
|
---|
| 178 | }
|
---|
| 179 |
|
---|
| 180 | forall(dtype ostype, otype T | writeable(T, ostype) | vec3_t(T)) {
|
---|
| 181 | ostype & ?|?( ostype & os, vec3(T) v) with (v) {
|
---|
| 182 | return os | '<' | x | ',' | y | ',' | z | '>';
|
---|
| 183 | }
|
---|
| 184 | void ?|?( ostype & os, vec3(T) v ) with (v) {
|
---|
| 185 | (ostype &)(os | v); ends(os);
|
---|
| 186 | }
|
---|
| 187 | }
|
---|