1 | #pragma once
|
---|
2 | #include <math.hfa>
|
---|
3 | #include <iostream.hfa>
|
---|
4 |
|
---|
5 | trait vec3_t(otype T) {
|
---|
6 | void ?{}(T&, int);
|
---|
7 | T ?=?(T&, zero_t);
|
---|
8 | T ?-?(T, T);
|
---|
9 | T -?(T);
|
---|
10 | T ?+?(T, T);
|
---|
11 | T ?*?(T, T);
|
---|
12 | T ?/?(T, T);
|
---|
13 | int ?==?(T, T);
|
---|
14 | int ?<?(T, T);
|
---|
15 | T sqrt(T);
|
---|
16 | };
|
---|
17 |
|
---|
18 | static inline {
|
---|
19 | // int
|
---|
20 | int ?=?(int& n, zero_t) { return n = 0.f; }
|
---|
21 | int sqrt(int a) { return sqrt((float)a); }
|
---|
22 | /* float */
|
---|
23 | void ?{}(float& a, int b) { a = b; }
|
---|
24 | float ?=?(float& n, zero_t) { return n = 0.f; }
|
---|
25 | /* double */
|
---|
26 | void ?{}(double& a, int b) { a = b; }
|
---|
27 | double ?=?(double& n, zero_t) { return n = 0L; }
|
---|
28 | // long double
|
---|
29 | void ?{}(long double& a, int b) { a = b; }
|
---|
30 | long double ?=?(long double& n, zero_t) { return n = 0L; }
|
---|
31 | }
|
---|
32 |
|
---|
33 | forall(otype T | vec3_t(T)) {
|
---|
34 | struct vec3 {
|
---|
35 | T x, y, z;
|
---|
36 | };
|
---|
37 | }
|
---|
38 |
|
---|
39 | /* static inline { */
|
---|
40 | forall(otype T | vec3_t(T)) {
|
---|
41 | static inline {
|
---|
42 |
|
---|
43 | // Constructors
|
---|
44 |
|
---|
45 | void ?{}(vec3(T)& v, T x, T y, T z) {
|
---|
46 | v.[x, y, z] = [x, y, z];
|
---|
47 | }
|
---|
48 | void ?{}(vec3(T)& vec, zero_t) with (vec) {
|
---|
49 | x = y = z = 0;
|
---|
50 | }
|
---|
51 | void ?{}(vec3(T)& vec, T val) with (vec) {
|
---|
52 | x = y = z = val;
|
---|
53 | }
|
---|
54 | void ?{}(vec3(T)& vec, vec3(T) other) with (vec) {
|
---|
55 | [x,y,z] = other.[x,y,z];
|
---|
56 | }
|
---|
57 |
|
---|
58 | // Assignment
|
---|
59 | void ?=?(vec3(T)& vec, vec3(T) other) with (vec) {
|
---|
60 | [x,y,z] = other.[x,y,z];
|
---|
61 | }
|
---|
62 | void ?=?(vec3(T)& vec, zero_t) with (vec) {
|
---|
63 | x = y = z = 0;
|
---|
64 | }
|
---|
65 |
|
---|
66 | // Primitive mathematical operations
|
---|
67 |
|
---|
68 | // Subtraction
|
---|
69 | vec3(T) ?-?(vec3(T) u, vec3(T) v) { // TODO( can't make this const ref )
|
---|
70 | return [u.x - v.x, u.y - v.y, u.z - v.z];
|
---|
71 | }
|
---|
72 | vec3(T)& ?-=?(vec3(T)& u, vec3(T) v) {
|
---|
73 | u = u - v;
|
---|
74 | return u;
|
---|
75 | }
|
---|
76 | vec3(T) -?(vec3(T)& v) with (v) {
|
---|
77 | return [-x, -y, -z];
|
---|
78 | }
|
---|
79 |
|
---|
80 | // Addition
|
---|
81 | vec3(T) ?+?(vec3(T) u, vec3(T) v) { // TODO( can't make this const ref )
|
---|
82 | return [u.x + v.x, u.y + v.y, u.z + v.z];
|
---|
83 | }
|
---|
84 | vec3(T)& ?+=?(vec3(T)& u, vec3(T) v) {
|
---|
85 | u = u + v;
|
---|
86 | return u;
|
---|
87 | }
|
---|
88 |
|
---|
89 | // Scalar Multiplication
|
---|
90 | vec3(T) ?*?(vec3(T) v, T scalar) with (v) { // TODO (can't make this const ref)
|
---|
91 | return [x * scalar, y * scalar, z * scalar];
|
---|
92 | }
|
---|
93 | vec3(T) ?*?(T scalar, vec3(T) v) { // TODO (can't make this const ref)
|
---|
94 | return v * scalar;
|
---|
95 | }
|
---|
96 | vec3(T)& ?*=?(vec3(T)& v, T scalar) {
|
---|
97 | v = v * scalar;
|
---|
98 | return v;
|
---|
99 | }
|
---|
100 |
|
---|
101 |
|
---|
102 | // Scalar Division
|
---|
103 | vec3(T) ?/?(vec3(T) v, T scalar) with (v) {
|
---|
104 | return [x / scalar, y / scalar, z / scalar];
|
---|
105 | }
|
---|
106 | vec3(T)& ?/=?(vec3(T)& v, T scalar) with (v) {
|
---|
107 | v = v / scalar;
|
---|
108 | return v;
|
---|
109 | }
|
---|
110 | // Relational Operators
|
---|
111 | bool ?==?(vec3(T) u, vec3(T) v) with (u) {
|
---|
112 | return x == v.x && y == v.y && z == v.z;
|
---|
113 | }
|
---|
114 | bool ?!=?(vec3(T) u, vec3(T) v) {
|
---|
115 | return !(u == v);
|
---|
116 | }
|
---|
117 |
|
---|
118 | T dot(vec3(T) u, vec3(T) v) {
|
---|
119 | return u.x * v.x + u.y * v.y + u.z * v.z;
|
---|
120 | }
|
---|
121 |
|
---|
122 | T length(vec3(T) v) {
|
---|
123 | return sqrt(dot(v, v));
|
---|
124 | }
|
---|
125 |
|
---|
126 | T length_squared(vec3(T) v) {
|
---|
127 | return dot(v, v);
|
---|
128 | }
|
---|
129 |
|
---|
130 | T distance(vec3(T) v1, vec3(T) v2) {
|
---|
131 | return length(v1 - v2);
|
---|
132 | }
|
---|
133 |
|
---|
134 | vec3(T) normalize(vec3(T) v) {
|
---|
135 | return v / sqrt(dot(v, v));
|
---|
136 | }
|
---|
137 |
|
---|
138 | // Project vector u onto vector v
|
---|
139 | vec3(T) project(vec3(T) u, vec3(T) v) {
|
---|
140 | vec3(T) v_norm = normalize(v);
|
---|
141 | return v_norm * dot(u, v_norm);
|
---|
142 | }
|
---|
143 |
|
---|
144 | // Reflect incident vector v with respect to surface with normal n
|
---|
145 | vec3(T) reflect(vec3(T) v, vec3(T) n) {
|
---|
146 | return v - (T){2} * project(v, n);
|
---|
147 | }
|
---|
148 |
|
---|
149 | // Refract incident vector v with respect to surface with normal n
|
---|
150 | // eta is the ratio of indices of refraction between starting material and
|
---|
151 | // entering material (i.e., from air to water, eta = 1/1.33)
|
---|
152 | // v and n must already be normalized
|
---|
153 | vec3(T) refract(vec3(T) v, vec3(T) n, T eta) {
|
---|
154 | T dotValue = dot(n, v);
|
---|
155 | T k = (T){1} - eta * eta * ((T){1} - dotValue * dotValue);
|
---|
156 | if (k < (T){0}) {
|
---|
157 | return 0;
|
---|
158 | }
|
---|
159 | return eta * v - (eta * dotValue + sqrt(k)) * n;
|
---|
160 | }
|
---|
161 |
|
---|
162 | // Given a perturbed normal and a geometric normal,
|
---|
163 | // flip the perturbed normal if the geometric normal is pointing away
|
---|
164 | // from the observer.
|
---|
165 | // n is the perturbed vector that we want to align
|
---|
166 | // i is the incident vector
|
---|
167 | // ng is the geometric normal of the surface
|
---|
168 | vec3(T) faceforward(vec3(T) n, vec3(T) i, vec3(T) ng) {
|
---|
169 | return dot(ng, i) < (T){0} ? n : -n;
|
---|
170 | }
|
---|
171 |
|
---|
172 | vec3(T) cross(vec3(T) u, vec3(T) v) {
|
---|
173 | return (vec3(T)){ u.y * v.z - v.y * u.z,
|
---|
174 | u.z * v.x - v.z * u.x,
|
---|
175 | u.x * v.y - v.x * u.y };
|
---|
176 | }
|
---|
177 | }
|
---|
178 | }
|
---|
179 |
|
---|
180 | forall(dtype ostype, otype T | writeable(T, ostype) | vec3_t(T)) {
|
---|
181 | ostype & ?|?( ostype & os, vec3(T) v) with (v) {
|
---|
182 | return os | '<' | x | ',' | y | ',' | z | '>';
|
---|
183 | }
|
---|
184 | void ?|?( ostype & os, vec3(T) v ) with (v) {
|
---|
185 | (ostype &)(os | v); ends(os);
|
---|
186 | }
|
---|
187 | }
|
---|