source: libcfa/src/stdlib.hfa@ feb999f

Last change on this file since feb999f was b6a71bc, checked in by Peter A. Buhr <pabuhr@…>, 17 months ago

formatting

  • Property mode set to 100644
File size: 21.6 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// stdlib --
8//
9// Author : Peter A. Buhr
10// Created On : Thu Jan 28 17:12:35 2016
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Fri Apr 12 07:39:15 2024
13// Update Count : 812
14//
15
16#pragma once
17
18#include "bits/defs.hfa" // OPTIONAL_THREAD
19#include "bits/align.hfa" // libAlign
20#include "bits/random.hfa" // prng
21#include <Exception.hfa>
22#include <heap.hfa>
23
24#include <stdlib.h> // *alloc, strto*, ato*
25#include <errno.h>
26
27// Reduce includes by explicitly defining these routines.
28extern "C" {
29 void * memalign( size_t alignment, size_t size ); // malloc.h
30 void * pvalloc( size_t size ); // malloc.h
31 void * memset( void * dest, int fill, size_t size ); // string.h
32 void * memcpy( void * dest, const void * src, size_t size ); // string.h
33} // extern "C"
34
35//---------------------------------------
36
37#ifndef EXIT_FAILURE
38#define EXIT_FAILURE 1 // failing exit status
39#define EXIT_SUCCESS 0 // successful exit status
40#endif // ! EXIT_FAILURE
41
42//---------------------------------------
43
44#include "common.hfa"
45
46//---------------------------------------
47
48static inline forall( T & | sized(T) ) {
49 // CFA safe equivalents, i.e., implicit size specification
50
51 T * malloc( void ) {
52 if ( _Alignof(T) <= libAlign() ) return (T *)malloc( sizeof(T) ); // C allocation
53 else return (T *)memalign( _Alignof(T), sizeof(T) );
54 } // malloc
55
56 T * aalloc( size_t dim ) {
57 if ( _Alignof(T) <= libAlign() ) return (T *)aalloc( dim, sizeof(T) ); // C allocation
58 else return (T *)amemalign( _Alignof(T), dim, sizeof(T) );
59 } // aalloc
60
61 T * calloc( size_t dim ) {
62 if ( _Alignof(T) <= libAlign() ) return (T *)calloc( dim, sizeof(T) ); // C allocation
63 else return (T *)cmemalign( _Alignof(T), dim, sizeof(T) );
64 } // calloc
65
66 T * resize( T * ptr, size_t size ) { // CFA resize, eliminate return-type cast
67 if ( _Alignof(T) <= libAlign() ) return (T *)resize( (void *)ptr, size ); // CFA resize
68 else return (T *)resize( (void *)ptr, _Alignof(T), size ); // CFA resize
69 } // resize
70
71 T * realloc( T * ptr, size_t size ) { // CFA realloc, eliminate return-type cast
72 if ( _Alignof(T) <= libAlign() ) return (T *)realloc( (void *)ptr, size ); // C realloc
73 else return (T *)realloc( (void *)ptr, _Alignof(T), size ); // CFA realloc
74 } // realloc
75
76 T * memalign( size_t align ) {
77 return (T *)memalign( align, sizeof(T) ); // C memalign
78 } // memalign
79
80 T * amemalign( size_t align, size_t dim ) {
81 return (T *)amemalign( align, dim, sizeof(T) ); // CFA amemalign
82 } // amemalign
83
84 T * cmemalign( size_t align, size_t dim ) {
85 return (T *)cmemalign( align, dim, sizeof(T) ); // CFA cmemalign
86 } // cmemalign
87
88 T * aligned_alloc( size_t align ) {
89 return (T *)aligned_alloc( align, sizeof(T) ); // C aligned_alloc
90 } // aligned_alloc
91
92 int posix_memalign( T ** ptr, size_t align ) {
93 return posix_memalign( (void **)ptr, align, sizeof(T) ); // C posix_memalign
94 } // posix_memalign
95
96 T * valloc( void ) {
97 return (T *)valloc( sizeof(T) ); // C valloc
98 } // valloc
99
100 T * pvalloc( void ) {
101 return (T *)pvalloc( sizeof(T) ); // C pvalloc
102 } // pvalloc
103} // distribution
104
105/*
106 FIX ME : fix alloc interface after Ticker Number 214 is resolved, define and add union to S_fill. Then, modify postfix-fill functions to support T * with nmemb, char, and T object of any size. Finally, change alloc_internal.
107 Or, just follow the instructions below for that.
108
109 1. Replace the current forall-block that contains defintions of S_fill and S_realloc with following:
110 forall( T & | sized(T) ) {
111 union U_fill { char c; T * a; T t; };
112 struct S_fill { char tag; U_fill(T) fill; };
113 struct S_realloc { inline T *; };
114 }
115
116 2. Replace all current postfix-fill functions with following for updated S_fill:
117 S_fill(T) ?`fill( char a ) { S_fill(T) ret = {'c'}; ret.fill.c = a; return ret; }
118 S_fill(T) ?`fill( T a ) { S_fill(T) ret = {'t'}; memcpy(&ret.fill.t, &a, sizeof(T)); return ret; }
119 S_fill(T) ?`fill( T a[], size_t nmemb ) { S_fill(T) ret = {'a', nmemb}; ret.fill.a = a; return ret; }
120
121 3. Replace the alloc_internal$ function which is outside ttype forall-block with following function:
122 T * alloc_internal$( void * Resize, T * Realloc, size_t Align, size_t Dim, S_fill(T) Fill) {
123 T * ptr = NULL;
124 size_t size = sizeof(T);
125 size_t copy_end = 0;
126
127 if(Resize) {
128 ptr = (T*) (void *) resize( (int *)Resize, Align, Dim * size );
129 } else if (Realloc) {
130 if (Fill.tag != '0') copy_end = min(malloc_size( Realloc ), Dim * size);
131 ptr = (T*) (void *) realloc( (int *)Realloc, Align, Dim * size );
132 } else {
133 ptr = (T*) (void *) memalign( Align, Dim * size );
134 }
135
136 if(Fill.tag == 'c') {
137 memset( (char *)ptr + copy_end, (int)Fill.fill.c, Dim * size - copy_end );
138 } else if(Fill.tag == 't') {
139 for ( int i = copy_end; i <= Dim * size - size ; i += size ) {
140 memcpy( (char *)ptr + i, &Fill.fill.t, size );
141 }
142 } else if(Fill.tag == 'a') {
143 memcpy( (char *)ptr + copy_end, Fill.fill.a, min(Dim * size - copy_end, size * Fill.nmemb) );
144 }
145
146 return ptr;
147 } // alloc_internal$
148*/
149
150typedef struct S_align { inline size_t; } T_align;
151typedef struct S_resize { inline void *; } T_resize;
152
153forall( T & ) {
154 struct S_fill { char tag; char c; size_t size; T * at; char t[50]; };
155 struct S_realloc { inline T *; };
156}
157
158static inline T_align ?`align( size_t a ) { return (T_align){a}; }
159static inline T_resize ?`resize( void * a ) { return (T_resize){a}; }
160
161extern "C" ssize_t write(int fd, const void *buf, size_t count);
162static inline forall( T & | sized(T) ) {
163 S_fill(T) ?`fill ( T t ) {
164 S_fill(T) ret = { 't' };
165 size_t size = sizeof(T);
166 if ( size > sizeof(ret.t) ) {
167 abort( "ERROR: const object of size greater than 50 bytes given for dynamic memory fill\n" );
168 } // if
169 memcpy( &ret.t, &t, size );
170 return ret;
171 }
172 S_fill(T) ?`fill ( zero_t ) = void; // FIX ME: remove this once ticket 214 is resolved
173 S_fill(T) ?`fill ( T * a ) { return (S_fill(T)){ 'T', '0', 0, a }; } // FIX ME: remove this once ticket 214 is resolved
174 S_fill(T) ?`fill ( char c ) { return (S_fill(T)){ 'c', c }; }
175 S_fill(T) ?`fill ( T a[], size_t nmemb ) { return (S_fill(T)){ 'a', '0', nmemb * sizeof(T), a }; }
176
177 S_realloc(T) ?`realloc ( T * a ) { return (S_realloc(T)){a}; }
178
179 T * alloc_internal$( void * Resize, T * Realloc, size_t Align, size_t Dim, S_fill(T) Fill ) {
180 T * ptr = NULL;
181 size_t size = sizeof(T);
182 size_t copy_end = 0;
183
184 if ( Resize ) {
185 ptr = (T*)(void *)resize( (void *)Resize, Align, Dim * size );
186 } else if ( Realloc ) {
187 if ( Fill.tag != '0' ) copy_end = min(malloc_size( Realloc ), Dim * size );
188 ptr = (T *)(void *)realloc( (void *)Realloc, Align, Dim * size );
189 } else {
190 ptr = (T *)(void *) memalign( Align, Dim * size );
191 }
192
193 if ( Fill.tag == 'c' ) {
194 memset( (char *)ptr + copy_end, (int)Fill.c, Dim * size - copy_end );
195 } else if ( Fill.tag == 't' ) {
196 for ( i; copy_end ~ Dim * size ~ size ) {
197 #pragma GCC diagnostic push
198 #pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
199 assert( size <= sizeof(Fill.t) );
200 memcpy( (char *)ptr + i, &Fill.t, size );
201 #pragma GCC diagnostic pop
202 }
203 } else if ( Fill.tag == 'a' ) {
204 memcpy( (char *)ptr + copy_end, Fill.at, min(Dim * size - copy_end, Fill.size) );
205 } else if ( Fill.tag == 'T' ) {
206 memcpy( (char *)ptr + copy_end, Fill.at, Dim * size );
207 }
208
209 return ptr;
210 } // alloc_internal$
211
212 forall( TT... | { T * alloc_internal$( void *, T *, size_t, size_t, S_fill(T), TT ); } ) {
213 T * alloc_internal$( void *, T *, size_t Align, size_t Dim, S_fill(T) Fill, T_resize Resize, TT rest ) {
214 return alloc_internal$( Resize, (T*)0p, Align, Dim, Fill, rest);
215 }
216
217 T * alloc_internal$( void *, T *, size_t Align, size_t Dim, S_fill(T) Fill, S_realloc(T) Realloc, TT rest ) {
218 return alloc_internal$( (void*)0p, Realloc, Align, Dim, Fill, rest);
219 }
220
221 T * alloc_internal$( void * Resize, T * Realloc, size_t, size_t Dim, S_fill(T) Fill, T_align Align, TT rest ) {
222 return alloc_internal$( Resize, Realloc, Align, Dim, Fill, rest);
223 }
224
225 T * alloc_internal$( void * Resize, T * Realloc, size_t Align, size_t Dim, S_fill(T), S_fill(T) Fill, TT rest ) {
226 return alloc_internal$( Resize, Realloc, Align, Dim, Fill, rest );
227 }
228
229 T * alloc( TT all ) {
230 return alloc_internal$( (void*)0p, (T*)0p, (_Alignof(T) > libAlign() ? _Alignof(T) : libAlign()), (size_t)1, (S_fill(T)){'0'}, all );
231 }
232
233 T * alloc( size_t dim, TT all ) {
234 return alloc_internal$( (void*)0p, (T*)0p, (_Alignof(T) > libAlign() ? _Alignof(T) : libAlign()), dim, (S_fill(T)){'0'}, all );
235 }
236 } // distribution TT
237} // distribution T
238
239static inline forall( T & | sized(T) ) {
240 // CFA safe initialization/copy, i.e., implicit size specification, non-array types
241 T * memset( T * dest, char fill ) {
242 return (T *)memset( dest, fill, sizeof(T) );
243 } // memset
244
245 T * memcpy( T * dest, const T * src ) {
246 return (T *)memcpy( dest, src, sizeof(T) );
247 } // memcpy
248
249 // CFA safe initialization/copy, i.e., implicit size specification, array types
250 T * amemset( T dest[], char fill, size_t dim ) {
251 return (T *)(void *)memset( dest, fill, dim * sizeof(T) ); // C memset
252 } // amemset
253
254 T * amemcpy( T dest[], const T src[], size_t dim ) {
255 return (T *)(void *)memcpy( dest, src, dim * sizeof(T) ); // C memcpy
256 } // amemcpy
257} // distribution
258
259// CFA deallocation for multiple objects
260static inline forall( T & ) // FIX ME, problems with 0p in list
261void free( T * ptr ) {
262 free( (void *)ptr ); // C free
263} // free
264static inline forall( T &, TT... | { void free( TT ); } )
265void free( T * ptr, TT rest ) {
266 free( ptr );
267 free( rest );
268} // free
269
270// CFA allocation/deallocation and constructor/destructor, non-array types
271static inline forall( T & | sized(T), TT... | { void ?{}( T &, TT ); } )
272T * new( TT p ) {
273 return &(*(T *)malloc()){ p }; // run constructor
274} // new
275
276static inline forall( T & | { void ^?{}( T & ); } )
277void delete( T * ptr ) {
278 // special case for 0-sized object => always call destructor
279 if ( ptr || sizeof(ptr) == 0 ) { // ignore null but not 0-sized objects
280 ^(*ptr){}; // run destructor
281 } // if
282 free( ptr ); // always call free
283} // delete
284static inline forall( T &, TT... | { void ^?{}( T & ); void delete( TT ); } )
285void delete( T * ptr, TT rest ) {
286 delete( ptr );
287 delete( rest );
288} // delete
289
290// CFA allocation/deallocation and constructor/destructor, array types
291forall( T & | sized(T), TT... | { void ?{}( T &, TT ); } ) T * anew( size_t dim, TT p );
292forall( T & | sized(T) | { void ^?{}( T & ); } ) void adelete( T arr[] );
293forall( T & | sized(T) | { void ^?{}( T & ); }, TT... | { void adelete( TT ); } ) void adelete( T arr[], TT rest );
294//---------------------------------------
295
296// Check if all string characters are a specific kind, e.g., checkif( s, isblank )
297bool checkif( const char s[], int (* kind)( int ) );
298bool checkif( const char s[], int (* kind)( int, locale_t ), locale_t locale );
299
300//---------------------------------------
301
302static inline {
303 int strto( const char sptr[], char * eptr[], int base ) { return (int)strtol( sptr, eptr, base ); }
304 unsigned int strto( const char sptr[], char * eptr[], int base ) { return (unsigned int)strtoul( sptr, eptr, base ); }
305 long int strto( const char sptr[], char * eptr[], int base ) { return strtol( sptr, eptr, base ); }
306 unsigned long int strto( const char sptr[], char * eptr[], int base ) { return strtoul( sptr, eptr, base ); }
307 long long int strto( const char sptr[], char * eptr[], int base ) { return strtoll( sptr, eptr, base ); }
308 unsigned long long int strto( const char sptr[], char * eptr[], int base ) { return strtoull( sptr, eptr, base ); }
309
310 float strto( const char sptr[], char * eptr[] ) { return strtof( sptr, eptr ); }
311 double strto( const char sptr[], char * eptr[] ) { return strtod( sptr, eptr ); }
312 long double strto( const char sptr[], char * eptr[] ) { return strtold( sptr, eptr ); }
313} // distribution
314
315float _Complex strto( const char sptr[], char * eptr[] );
316double _Complex strto( const char sptr[], char * eptr[] );
317long double _Complex strto( const char sptr[], char * eptr[] );
318
319ExceptionDecl( out_of_range );
320ExceptionDecl( invalid_argument );
321
322forall( T | { T strto( const char sptr[], char * eptr[], int ); } )
323T convert( const char sptr[] ); // integrals
324forall( T | { T strto( const char sptr[], char * eptr[] ); } )
325T convert( const char sptr[] ); // floating-point (no base)
326
327static inline {
328 int ato( const char sptr[] ) { return (int)strtol( sptr, 0p, 10 ); }
329 unsigned int ato( const char sptr[] ) { return (unsigned int)strtoul( sptr, 0p, 10 ); }
330 long int ato( const char sptr[] ) { return strtol( sptr, 0p, 10 ); }
331 unsigned long int ato( const char sptr[] ) { return strtoul( sptr, 0p, 10 ); }
332 long long int ato( const char sptr[] ) { return strtoll( sptr, 0p, 10 ); }
333 unsigned long long int ato( const char sptr[] ) { return strtoull( sptr, 0p, 10 ); }
334
335 float ato( const char sptr[] ) { return strtof( sptr, 0p ); }
336 double ato( const char sptr[] ) { return strtod( sptr, 0p ); }
337 long double ato( const char sptr[] ) { return strtold( sptr, 0p ); }
338
339 float _Complex ato( const char sptr[] ) { return strto( sptr, 0p ); }
340 double _Complex ato( const char sptr[] ) { return strto( sptr, 0p ); }
341 long double _Complex ato( const char sptr[] ) { return strto( sptr, 0p ); }
342} // distribution
343
344//---------------------------------------
345
346forall( E | { int ?<?( E, E ); } ) {
347 E * bsearch( E key, const E * vals, size_t dim );
348 size_t bsearch( E key, const E * vals, size_t dim );
349 E * bsearchl( E key, const E * vals, size_t dim );
350 size_t bsearchl( E key, const E * vals, size_t dim );
351 E * bsearchu( E key, const E * vals, size_t dim );
352 size_t bsearchu( E key, const E * vals, size_t dim );
353} // distribution
354
355forall( K, E | { int ?<?( K, K ); K getKey( const E & ); } ) {
356 E * bsearch( K key, const E * vals, size_t dim );
357 size_t bsearch( K key, const E * vals, size_t dim );
358 E * bsearchl( K key, const E * vals, size_t dim );
359 size_t bsearchl( K key, const E * vals, size_t dim );
360 E * bsearchu( K key, const E * vals, size_t dim );
361 size_t bsearchu( K key, const E * vals, size_t dim );
362} // distribution
363
364forall( E | { int ?<?( E, E ); } ) {
365 void qsort( E * vals, size_t dim );
366} // distribution
367
368//---------------------------------------
369
370extern "C" { // override C version
371 void srandom( unsigned int seed );
372 long int random( void ); // GENERATES POSITIVE AND NEGATIVE VALUES
373 // For positive values, use unsigned int, e.g., unsigned int r = random() % 100U;
374} // extern "C"
375
376static inline {
377 long int random( long int l, long int u ) { if ( u < l ) [u, l] = [l, u]; return lrand48() % (u - l + 1) + l; } // [l,u]
378 long int random( long int u ) { return random( 0, u - 1 ); } // [0,u)
379 unsigned long int random( void ) { return lrand48(); }
380 unsigned long int random( unsigned long int u ) { return lrand48() % u; } // [0,u)
381 unsigned long int random( unsigned long int l, unsigned long int u ) { if ( u < l ) [u, l] = [l, u]; return lrand48() % (u - l + 1) + l; } // [l,u]
382
383 char random( void ) { return (unsigned long int)random(); }
384 char random( char u ) { return (unsigned long int)random( (unsigned long int)u ); } // [0,u)
385 char random( char l, char u ) { return random( (unsigned long int)l, (unsigned long int)u ); } // [l,u)
386 int random( void ) { return (long int)random(); }
387 int random( int u ) { return (long int)random( (long int)u ); } // [0,u]
388 int random( int l, int u ) { return random( (long int)l, (long int)u ); } // [l,u)
389 unsigned int random( void ) { return (unsigned long int)random(); }
390 unsigned int random( unsigned int u ) { return (unsigned long int)random( (unsigned long int)u ); } // [0,u]
391 unsigned int random( unsigned int l, unsigned int u ) { return random( (unsigned long int)l, (unsigned long int)u ); } // [l,u)
392} // distribution
393
394float random( void ); // [0.0, 1.0)
395double random( void ); // [0.0, 1.0)
396float _Complex random( void ); // [0.0, 1.0)+[0.0, 1.0)i
397double _Complex random( void ); // [0.0, 1.0)+[0.0, 1.0)i
398long double _Complex random( void ); // [0.0, 1.0)+[0.0, 1.0)i
399
400//---------------------------------------
401
402// Sequential Pseudo Random-Number Generator : generate repeatable sequence of values that appear random.
403//
404// Declaration :
405// PRNG sprng = { 1009 } - set starting seed versus random seed
406//
407// Interface :
408// set_seed( sprng, 1009 ) - set starting seed for ALL kernel threads versus random seed
409// get_seed( sprng ) - read seed
410// prng( sprng ) - generate random value in range [0,UINT_MAX]
411// prng( sprng, u ) - generate random value in range [0,u)
412// prng( sprng, l, u ) - generate random value in range [l,u]
413// calls( sprng ) - number of generated random value so far
414//
415// Examples : generate random number between 5-21
416// prng( sprng ) % 17 + 5; values 0-16 + 5 = 5-21
417// prng( sprng, 16 + 1 ) + 5;
418// prng( sprng, 5, 21 );
419// calls( sprng );
420
421forall( PRNG &, R )
422trait basic_prng {
423 void set_seed( PRNG & prng, R seed ); // set seed
424 R get_seed( PRNG & prng ); // get seed
425 R prng( PRNG & prng );
426 void ?{}( PRNG & prng ); // random seed
427 void ?{}( PRNG & prng, R seed ); // fixed seed
428}; // basic_prng
429
430static inline forall( PRNG &, R | basic_prng( PRNG, R ) | { R ?%?( R, R ); } ) {
431 R prng( PRNG & prng, R u ) { return prng( prng ) % u; } // [0,u)
432}
433static inline forall( PRNG &, R | basic_prng( PRNG, R ) | { R ?+?( R, R ); R ?-?( R, R ); R ?%?( R, R ); void ?{}( R &, one_t ); } ) {
434 R prng( PRNG & prng, R l, R u ) { return prng( prng, u - l + (R){1} ) + l; } // [l,u]
435}
436
437struct PRNG32 {
438 uint32_t callcnt; // call count
439 uint32_t seed; // current seed
440 PRNG_STATE_32_T state; // random state
441}; // PRNG32
442
443static inline {
444 void set_seed( PRNG32 & prng, uint32_t seed_ ) with( prng ) { seed = seed_; PRNG_SET_SEED_32( state, seed ); }
445 uint32_t get_seed( PRNG32 & prng ) __attribute__(( warn_unused_result )) with( prng ) { return seed; }
446 void ?{}( PRNG32 & prng, uint32_t seed ) with( prng ) { callcnt = 0; set_seed( prng, seed ); } // fixed seed
447 void ?{}( PRNG32 & prng ) with( prng ) { ?{}( prng, rdtscl() ); } // random seed
448 uint32_t prng( PRNG32 & prng ) __attribute__(( warn_unused_result )) with( prng ) { callcnt += 1; return PRNG_NAME_32( state ); } // [0,UINT_MAX]
449 uint32_t prng( PRNG32 & prng, uint32_t u ) __attribute__(( warn_unused_result )) { return prng( prng ) % u; } // [0,u)
450 uint32_t prng( PRNG32 & prng, uint32_t l, uint32_t u ) __attribute__(( warn_unused_result )) { return prng( prng, u - l + 1 ) + l; } // [l,u]
451 uint32_t calls( PRNG32 & prng ) __attribute__(( warn_unused_result )) with( prng ) { return callcnt; }
452 void copy( PRNG32 & dst, PRNG32 & src ) { dst = src; } // checkpoint PRNG state, use autogen assignment
453} // distribution
454void ?{}( PRNG32 &, PRNG32 & ) = void; // no copy, remove autogen copy constructor
455PRNG32 & ?=?( PRNG32 &, const PRNG32 ) = void; // no assignment, remove autogen assignment
456
457struct PRNG64 {
458 uint64_t callcnt; // call count
459 uint64_t seed; // current seed
460 PRNG_STATE_64_T state; // random state
461}; // PRNG64
462
463static inline {
464 void set_seed( PRNG64 & prng, uint64_t seed_ ) with( prng ) { seed = seed_; PRNG_SET_SEED_64( state, seed ); }
465 uint64_t get_seed( PRNG64 & prng ) __attribute__(( warn_unused_result )) with( prng ) { return seed; }
466 void ?{}( PRNG64 & prng, uint64_t seed ) with( prng ) { callcnt = 0; set_seed( prng, seed ); } // fixed seed
467 void ?{}( PRNG64 & prng ) with( prng ) { ?{}( prng, rdtscl() ); } // random seed
468 uint64_t prng( PRNG64 & prng ) __attribute__(( warn_unused_result )) with( prng ) { callcnt += 1; return PRNG_NAME_64( state ); } // [0,UINT_MAX]
469 uint64_t prng( PRNG64 & prng, uint64_t u ) __attribute__(( warn_unused_result )) { return prng( prng ) % u; } // [0,u)
470 uint64_t prng( PRNG64 & prng, uint64_t l, uint64_t u ) __attribute__(( warn_unused_result )) { return prng( prng, u - l + 1 ) + l; } // [l,u]
471 uint64_t calls( PRNG64 & prng ) __attribute__(( warn_unused_result )) with( prng ) { return callcnt; }
472 void copy( PRNG64 & dst, PRNG64 & src ) { dst = src; } // checkpoint PRNG state, use autogen assignment
473} // distribution
474void ?{}( PRNG64 &, PRNG64 & ) = void; // no copy, remove autogen copy constructor
475PRNG64 & ?=?( PRNG64 &, const PRNG64 ) = void; // no assignment, remove autogen assignment
476
477// Set default random-generator size.
478#if defined( __x86_64__ ) || defined( __aarch64__ ) // 64-bit architecture
479#define PRNG PRNG64
480#else // 32-bit architecture
481#define PRNG PRNG32
482#endif // __x86_64__
483
484// Concurrent Pseudo Random-Number Generator : generate repeatable sequence of values that appear random.
485//
486// Interface :
487// set_seed( 1009 ) - fixed seed for all kernel threads versus random seed
488// get_seed() - read seed
489// prng() - generate random value in range [0,UINT_MAX]
490// prng( u ) - generate random value in range [0,u)
491// prng( l, u ) - generate random value in range [l,u]
492//
493// Examples : generate random number between 5-21
494// prng() % 17 + 5; values 0-16 + 5 = 5-21
495// prng( 16 + 1 ) + 5;
496// prng( 5, 21 );
497
498// Harmonize with concurrency/thread.hfa.
499void set_seed( size_t seed_ ) OPTIONAL_THREAD; // set global seed
500size_t get_seed() __attribute__(( warn_unused_result )); // get global seed
501size_t prng( void ) __attribute__(( warn_unused_result )) OPTIONAL_THREAD; // [0,UINT_MAX]
502static inline {
503 size_t prng( size_t u ) __attribute__(( warn_unused_result )) { return prng() % u; } // [0,u)
504 size_t prng( size_t l, size_t u ) __attribute__(( warn_unused_result )) { return prng( u - l + 1 ) + l; } // [l,u]
505} // distribution
506
507//---------------------------------------
508
509extern bool threading_enabled( void ) OPTIONAL_THREAD;
510
511// Local Variables: //
512// mode: c //
513// tab-width: 4 //
514// End: //
Note: See TracBrowser for help on using the repository browser.