source: libcfa/src/stdlib.hfa@ e873838

ADT arm-eh ast-experimental enum forall-pointer-decay jacob/cs343-translation new-ast-unique-expr pthread-emulation qualifiedEnum
Last change on this file since e873838 was 45444c3, checked in by m3zulfiq <m3zulfiq@…>, 5 years ago

Removed dimension parameter from adelete.

  • Property mode set to 100644
File size: 14.9 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// stdlib --
8//
9// Author : Peter A. Buhr
10// Created On : Thu Jan 28 17:12:35 2016
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Tue Sep 1 20:32:34 2020
13// Update Count : 505
14//
15
16#pragma once
17
18#include "bits/defs.hfa"
19#include "bits/align.hfa"
20
21#include <stdlib.h> // *alloc, strto*, ato*
22#include <heap.hfa>
23
24// Reduce includes by explicitly defining these routines.
25extern "C" {
26 void * memalign( size_t alignment, size_t size ); // malloc.h
27 void * pvalloc( size_t size ); // malloc.h
28 void * memset( void * dest, int fill, size_t size ); // string.h
29 void * memcpy( void * dest, const void * src, size_t size ); // string.h
30} // extern "C"
31
32//---------------------------------------
33
34#ifndef EXIT_FAILURE
35#define EXIT_FAILURE 1 // failing exit status
36#define EXIT_SUCCESS 0 // successful exit status
37#endif // ! EXIT_FAILURE
38
39//---------------------------------------
40
41#include "common.hfa"
42
43//---------------------------------------
44
45// Macro because of returns
46#define $ARRAY_ALLOC( allocation, alignment, dim ) \
47 if ( _Alignof(T) <= libAlign() ) return (T *)(void *)allocation( dim, (size_t)sizeof(T) ); /* C allocation */ \
48 else return (T *)alignment( _Alignof(T), dim, sizeof(T) )
49
50static inline forall( dtype T | sized(T) ) {
51 // Cforall safe equivalents, i.e., implicit size specification
52
53 T * malloc( void ) {
54 if ( _Alignof(T) <= libAlign() ) return (T *)(void *)malloc( (size_t)sizeof(T) ); // C allocation
55 else return (T *)memalign( _Alignof(T), sizeof(T) );
56 } // malloc
57
58 T * aalloc( size_t dim ) {
59 $ARRAY_ALLOC( aalloc, amemalign, dim );
60 } // aalloc
61
62 T * calloc( size_t dim ) {
63 $ARRAY_ALLOC( calloc, cmemalign, dim );
64 } // calloc
65
66 T * resize( T * ptr, size_t size ) { // CFA resize, eliminate return-type cast
67 if ( _Alignof(T) <= libAlign() ) return (T *)(void *)resize( (void *)ptr, size ); // CFA resize
68 else return (T *)(void *)resize( (void *)ptr, _Alignof(T), size ); // CFA resize
69 } // resize
70
71 T * realloc( T * ptr, size_t size ) { // CFA realloc, eliminate return-type cast
72 if ( _Alignof(T) <= libAlign() ) return (T *)(void *)realloc( (void *)ptr, size ); // C realloc
73 else return (T *)(void *)realloc( (void *)ptr, _Alignof(T), size ); // CFA realloc
74 } // realloc
75
76 T * memalign( size_t align ) {
77 return (T *)memalign( align, sizeof(T) ); // C memalign
78 } // memalign
79
80 T * amemalign( size_t align, size_t dim ) {
81 return (T *)amemalign( align, dim, sizeof(T) ); // CFA amemalign
82 } // amemalign
83
84 T * cmemalign( size_t align, size_t dim ) {
85 return (T *)cmemalign( align, dim, sizeof(T) ); // CFA cmemalign
86 } // cmemalign
87
88 T * aligned_alloc( size_t align ) {
89 return (T *)aligned_alloc( align, sizeof(T) ); // C aligned_alloc
90 } // aligned_alloc
91
92 int posix_memalign( T ** ptr, size_t align ) {
93 return posix_memalign( (void **)ptr, align, sizeof(T) ); // C posix_memalign
94 } // posix_memalign
95
96 T * valloc( void ) {
97 return (T *)valloc( sizeof(T) ); // C valloc
98 } // valloc
99
100 T * pvalloc( void ) {
101 return (T *)pvalloc( sizeof(T) ); // C pvalloc
102 } // pvalloc
103} // distribution
104
105/*
106 FIX ME : fix alloc interface after Ticker Number 214 is resolved, define and add union to S_fill. Then, modify postfix-fill functions to support T * with nmemb, char, and T object of any size. Finally, change alloc_internal.
107 Or, just follow the instructions below for that.
108
109 1. Replace the current forall-block that contains defintions of S_fill and S_realloc with following:
110 forall( dtype T | sized(T) ) {
111 union U_fill { char c; T * a; T t; };
112 struct S_fill { char tag; char c; size_t size; T * at; char t[50]; };
113 struct S_realloc { inline T *; };
114 }
115
116 2. Replace all current postfix-fill functions with following for updated S_fill:
117 S_fill(T) ?`fill( char a ) { S_fill(T) ret = {'c'}; ret.fill.c = a; return ret; }
118 S_fill(T) ?`fill( T a ) { S_fill(T) ret = {'t'}; memcpy(&ret.fill.t, &a, sizeof(T)); return ret; }
119 S_fill(T) ?`fill( T a[], size_t nmemb ) { S_fill(T) ret = {'a', nmemb}; ret.fill.a = a; return ret; }
120
121 3. Replace the $alloc_internal function which is outside ttype forall-block with following function:
122 T * $alloc_internal( void * Resize, T * Realloc, size_t Align, size_t Dim, S_fill(T) Fill) {
123 T * ptr = NULL;
124 size_t size = sizeof(T);
125 size_t copy_end = 0;
126
127 if(Resize) {
128 ptr = (T*) (void *) resize( (int *)Resize, Align, Dim * size );
129 } else if (Realloc) {
130 if (Fill.tag != '0') copy_end = min(malloc_size( Realloc ), Dim * size);
131 ptr = (T*) (void *) realloc( (int *)Realloc, Align, Dim * size );
132 } else {
133 ptr = (T*) (void *) memalign( Align, Dim * size );
134 }
135
136 if(Fill.tag == 'c') {
137 memset( (char *)ptr + copy_end, (int)Fill.fill.c, Dim * size - copy_end );
138 } else if(Fill.tag == 't') {
139 for ( int i = copy_end; i <= Dim * size - size ; i += size ) {
140 memcpy( (char *)ptr + i, &Fill.fill.t, size );
141 }
142 } else if(Fill.tag == 'a') {
143 memcpy( (char *)ptr + copy_end, Fill.fill.a, min(Dim * size - copy_end, size * Fill.nmemb) );
144 }
145
146 return ptr;
147 } // $alloc_internal
148*/
149
150typedef struct S_align { inline size_t; } T_align;
151typedef struct S_resize { inline void *; } T_resize;
152
153forall( dtype T ) {
154 struct S_fill { char tag; char c; size_t size; T * at; char t[50]; };
155 struct S_realloc { inline T *; };
156}
157
158static inline T_align ?`align ( size_t a ) { return (T_align){a}; }
159static inline T_resize ?`resize ( void * a ) { return (T_resize){a}; }
160static inline forall( dtype T | sized(T) ) {
161
162 S_fill(T) ?`fill ( T t ) {
163 S_fill(T) ret = { 't' };
164 size_t size = sizeof(T);
165 if(size > sizeof(ret.t)) { printf("ERROR: const object of size greater than 50 bytes given for dynamic memory fill\n"); exit(1); }
166 memcpy( &ret.t, &t, size );
167 return ret;
168 }
169 S_fill(T) ?`fill ( char c ) { return (S_fill(T)){ 'c', c }; }
170 S_fill(T) ?`fill ( T * a ) { return (S_fill(T)){ 'T', '0', 0, a }; }
171 S_fill(T) ?`fill ( T a[], size_t nmemb ) { return (S_fill(T)){ 'a', '0', nmemb * sizeof(T), a }; }
172
173 S_realloc(T) ?`realloc ( T * a ) { return (S_realloc(T)){a}; }
174
175 T * $alloc_internal( void * Resize, T * Realloc, size_t Align, size_t Dim, S_fill(T) Fill) {
176 T * ptr = NULL;
177 size_t size = sizeof(T);
178 size_t copy_end = 0;
179
180 if ( Resize ) {
181 ptr = (T*) (void *) resize( (void *)Resize, Align, Dim * size );
182 } else if ( Realloc ) {
183 if (Fill.tag != '0') copy_end = min(malloc_size( Realloc ), Dim * size);
184 ptr = (T*) (void *) realloc( (void *)Realloc, Align, Dim * size );
185 } else {
186 ptr = (T*) (void *) memalign( Align, Dim * size );
187 }
188
189 if(Fill.tag == 'c') {
190 memset( (char *)ptr + copy_end, (int)Fill.c, Dim * size - copy_end );
191 } else if(Fill.tag == 't') {
192 for ( int i = copy_end; i < Dim * size; i += size ) {
193 memcpy( (char *)ptr + i, &Fill.t, size );
194 }
195 } else if(Fill.tag == 'a') {
196 memcpy( (char *)ptr + copy_end, Fill.at, min(Dim * size - copy_end, Fill.size) );
197 } else if(Fill.tag == 'T') {
198 for ( int i = copy_end; i < Dim * size; i += size ) {
199 memcpy( (char *)ptr + i, Fill.at, size );
200 }
201 }
202
203 return ptr;
204 } // $alloc_internal
205
206 forall( ttype TT | { T * $alloc_internal( void *, T *, size_t, size_t, S_fill(T), TT ); } ) {
207
208 T * $alloc_internal( void * , T * Realloc, size_t Align, size_t Dim, S_fill(T) Fill, T_resize Resize, TT rest) {
209 return $alloc_internal( Resize, (T*)0p, Align, Dim, Fill, rest);
210 }
211
212 T * $alloc_internal( void * Resize, T * , size_t Align, size_t Dim, S_fill(T) Fill, S_realloc(T) Realloc, TT rest) {
213 return $alloc_internal( (void*)0p, Realloc, Align, Dim, Fill, rest);
214 }
215
216 T * $alloc_internal( void * Resize, T * Realloc, size_t , size_t Dim, S_fill(T) Fill, T_align Align, TT rest) {
217 return $alloc_internal( Resize, Realloc, Align, Dim, Fill, rest);
218 }
219
220 T * $alloc_internal( void * Resize, T * Realloc, size_t Align, size_t Dim, S_fill(T) , S_fill(T) Fill, TT rest) {
221 return $alloc_internal( Resize, Realloc, Align, Dim, Fill, rest);
222 }
223
224 T * alloc( TT all ) {
225 return $alloc_internal( (void*)0p, (T*)0p, (_Alignof(T) > libAlign() ? _Alignof(T) : libAlign()), (size_t)1, (S_fill(T)){'0'}, all);
226 }
227
228 T * alloc( size_t dim, TT all ) {
229 return $alloc_internal( (void*)0p, (T*)0p, (_Alignof(T) > libAlign() ? _Alignof(T) : libAlign()), dim, (S_fill(T)){'0'}, all);
230 }
231
232 } // distribution TT
233
234} // distribution T
235
236static inline forall( dtype T | sized(T) ) {
237 // Cforall safe initialization/copy, i.e., implicit size specification, non-array types
238 T * memset( T * dest, char fill ) {
239 return (T *)memset( dest, fill, sizeof(T) );
240 } // memset
241
242 T * memcpy( T * dest, const T * src ) {
243 return (T *)memcpy( dest, src, sizeof(T) );
244 } // memcpy
245} // distribution
246
247static inline forall( dtype T | sized(T) ) {
248 // Cforall safe initialization/copy, i.e., implicit size specification, array types
249 T * amemset( T dest[], char fill, size_t dim ) {
250 return (T *)(void *)memset( dest, fill, dim * sizeof(T) ); // C memset
251 } // amemset
252
253 T * amemcpy( T dest[], const T src[], size_t dim ) {
254 return (T *)(void *)memcpy( dest, src, dim * sizeof(T) ); // C memcpy
255 } // amemcpy
256} // distribution
257
258// Cforall allocation/deallocation and constructor/destructor, non-array types
259forall( dtype T | sized(T), ttype Params | { void ?{}( T &, Params ); } ) T * new( Params p );
260forall( dtype T | { void ^?{}( T & ); } ) void delete( T * ptr );
261forall( dtype T, ttype Params | { void ^?{}( T & ); void delete( Params ); } ) void delete( T * ptr, Params rest );
262
263// Cforall allocation/deallocation and constructor/destructor, array types
264forall( dtype T | sized(T), ttype Params | { void ?{}( T &, Params ); } ) T * anew( size_t dim, Params p );
265forall( dtype T | sized(T) | { void ^?{}( T & ); } ) void adelete( T arr[] );
266forall( dtype T | sized(T) | { void ^?{}( T & ); }, ttype Params | { void adelete( Params ); } ) void adelete( T arr[], Params rest );
267
268//---------------------------------------
269
270static inline {
271 int strto( const char sptr[], char ** eptr, int base ) { return (int)strtol( sptr, eptr, base ); }
272 unsigned int strto( const char sptr[], char ** eptr, int base ) { return (unsigned int)strtoul( sptr, eptr, base ); }
273 long int strto( const char sptr[], char ** eptr, int base ) { return strtol( sptr, eptr, base ); }
274 unsigned long int strto( const char sptr[], char ** eptr, int base ) { return strtoul( sptr, eptr, base ); }
275 long long int strto( const char sptr[], char ** eptr, int base ) { return strtoll( sptr, eptr, base ); }
276 unsigned long long int strto( const char sptr[], char ** eptr, int base ) { return strtoull( sptr, eptr, base ); }
277
278 float strto( const char sptr[], char ** eptr ) { return strtof( sptr, eptr ); }
279 double strto( const char sptr[], char ** eptr ) { return strtod( sptr, eptr ); }
280 long double strto( const char sptr[], char ** eptr ) { return strtold( sptr, eptr ); }
281} // distribution
282
283float _Complex strto( const char sptr[], char ** eptr );
284double _Complex strto( const char sptr[], char ** eptr );
285long double _Complex strto( const char sptr[], char ** eptr );
286
287static inline {
288 int ato( const char sptr[] ) { return (int)strtol( sptr, 0p, 10 ); }
289 unsigned int ato( const char sptr[] ) { return (unsigned int)strtoul( sptr, 0p, 10 ); }
290 long int ato( const char sptr[] ) { return strtol( sptr, 0p, 10 ); }
291 unsigned long int ato( const char sptr[] ) { return strtoul( sptr, 0p, 10 ); }
292 long long int ato( const char sptr[] ) { return strtoll( sptr, 0p, 10 ); }
293 unsigned long long int ato( const char sptr[] ) { return strtoull( sptr, 0p, 10 ); }
294
295 float ato( const char sptr[] ) { return strtof( sptr, 0p ); }
296 double ato( const char sptr[] ) { return strtod( sptr, 0p ); }
297 long double ato( const char sptr[] ) { return strtold( sptr, 0p ); }
298
299 float _Complex ato( const char sptr[] ) { return strto( sptr, 0p ); }
300 double _Complex ato( const char sptr[] ) { return strto( sptr, 0p ); }
301 long double _Complex ato( const char sptr[] ) { return strto( sptr, 0p ); }
302} // distribution
303
304//---------------------------------------
305
306forall( otype E | { int ?<?( E, E ); } ) {
307 E * bsearch( E key, const E * vals, size_t dim );
308 size_t bsearch( E key, const E * vals, size_t dim );
309 E * bsearchl( E key, const E * vals, size_t dim );
310 size_t bsearchl( E key, const E * vals, size_t dim );
311 E * bsearchu( E key, const E * vals, size_t dim );
312 size_t bsearchu( E key, const E * vals, size_t dim );
313} // distribution
314
315forall( otype K, otype E | { int ?<?( K, K ); K getKey( const E & ); } ) {
316 E * bsearch( K key, const E * vals, size_t dim );
317 size_t bsearch( K key, const E * vals, size_t dim );
318 E * bsearchl( K key, const E * vals, size_t dim );
319 size_t bsearchl( K key, const E * vals, size_t dim );
320 E * bsearchu( K key, const E * vals, size_t dim );
321 size_t bsearchu( K key, const E * vals, size_t dim );
322} // distribution
323
324forall( otype E | { int ?<?( E, E ); } ) {
325 void qsort( E * vals, size_t dim );
326} // distribution
327
328//---------------------------------------
329
330extern "C" { // override C version
331 void srandom( unsigned int seed );
332 long int random( void ); // GENERATES POSITIVE AND NEGATIVE VALUES
333 // For positive values, use unsigned int, e.g., unsigned int r = random() % 100U;
334} // extern "C"
335
336static inline {
337 long int random( long int l, long int u ) { if ( u < l ) [u, l] = [l, u]; return lrand48() % (u - l) + l; } // [l,u)
338 long int random( long int u ) { if ( u < 0 ) return random( u, 0 ); else return random( 0, u ); } // [0,u)
339 unsigned long int random( void ) { return lrand48(); }
340 unsigned long int random( unsigned long int u ) { return lrand48() % u; } // [0,u)
341 unsigned long int random( unsigned long int l, unsigned long int u ) { if ( u < l ) [u, l] = [l, u]; return lrand48() % (u - l) + l; } // [l,u)
342
343 char random( void ) { return (unsigned long int)random(); }
344 char random( char u ) { return random( (unsigned long int)u ); } // [0,u)
345 char random( char l, char u ) { return random( (unsigned long int)l, (unsigned long int)u ); } // [l,u)
346 int random( void ) { return (long int)random(); }
347 int random( int u ) { return random( (long int)u ); } // [0,u]
348 int random( int l, int u ) { return random( (long int)l, (long int)u ); } // [l,u)
349 unsigned int random( void ) { return (unsigned long int)random(); }
350 unsigned int random( unsigned int u ) { return random( (unsigned long int)u ); } // [0,u]
351 unsigned int random( unsigned int l, unsigned int u ) { return random( (unsigned long int)l, (unsigned long int)u ); } // [l,u)
352} // distribution
353
354float random( void ); // [0.0, 1.0)
355double random( void ); // [0.0, 1.0)
356float _Complex random( void ); // [0.0, 1.0)+[0.0, 1.0)i
357double _Complex random( void ); // [0.0, 1.0)+[0.0, 1.0)i
358long double _Complex random( void ); // [0.0, 1.0)+[0.0, 1.0)i
359
360//---------------------------------------
361
362extern bool threading_enabled(void) OPTIONAL_THREAD;
363
364// Local Variables: //
365// mode: c //
366// tab-width: 4 //
367// End: //
Note: See TracBrowser for help on using the repository browser.