source: libcfa/src/stdlib.hfa@ df75fe97

ADT arm-eh ast-experimental enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr pthread-emulation qualifiedEnum
Last change on this file since df75fe97 was cafb687, checked in by Peter A. Buhr <pabuhr@…>, 6 years ago

start allocation updates for arrays and alignment

  • Property mode set to 100644
File size: 11.0 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// stdlib --
8//
9// Author : Peter A. Buhr
10// Created On : Thu Jan 28 17:12:35 2016
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Sun Oct 20 22:57:33 2019
13// Update Count : 390
14//
15
16#pragma once
17
18#include "bits/defs.hfa"
19#include "bits/align.hfa"
20
21#include <stdlib.h> // *alloc, strto*, ato*
22
23extern "C" {
24 void * memalign( size_t align, size_t size ); // malloc.h
25 void * memset( void * dest, int fill, size_t size ); // string.h
26 void * memcpy( void * dest, const void * src, size_t size ); // string.h
27 void * cmemalign( size_t alignment, size_t noOfElems, size_t elemSize ); // CFA heap
28} // extern "C"
29
30//---------------------------------------
31
32#ifndef EXIT_FAILURE
33#define EXIT_FAILURE 1 // failing exit status
34#define EXIT_SUCCESS 0 // successful exit status
35#endif // ! EXIT_FAILURE
36
37//---------------------------------------
38
39static inline forall( dtype T | sized(T) ) {
40 // C dynamic allocation
41
42 T * malloc( void ) {
43 if ( _Alignof(T) <= libAlign() ) return (T *)(void *)malloc( (size_t)sizeof(T) ); // C malloc
44 else return (T *)memalign( _Alignof(T), sizeof(T) );
45 } // malloc
46
47 T * calloc( size_t dim ) {
48 if ( _Alignof(T) <= libAlign() )return (T *)(void *)calloc( dim, sizeof(T) ); // C calloc
49 else return (T *)cmemalign( _Alignof(T), dim, sizeof(T) );
50 } // calloc
51
52 T * realloc( T * ptr, size_t size ) {
53 if ( unlikely( ptr == 0 ) ) return malloc();
54 return (T *)(void *)realloc( (void *)ptr, size ); // C realloc
55 } // realloc
56
57 T * memalign( size_t align ) {
58 return (T *)memalign( align, sizeof(T) ); // C memalign
59 } // memalign
60
61 T * aligned_alloc( size_t align ) {
62 return (T *)aligned_alloc( align, sizeof(T) ); // C aligned_alloc
63 } // aligned_alloc
64
65 int posix_memalign( T ** ptr, size_t align ) {
66 return posix_memalign( (void **)ptr, align, sizeof(T) ); // C posix_memalign
67 } // posix_memalign
68
69 // Cforall dynamic allocation
70
71 T * alloc( void ) {
72 return malloc();
73 } // alloc
74
75 T * alloc( size_t dim ) {
76 if ( _Alignof(T) <= libAlign() ) return (T *)(void *)malloc( dim * (size_t)sizeof(T) );
77 else return (T *)memalign( _Alignof(T), dim * sizeof(T) );
78 } // alloc
79
80 T * alloc( T ptr[], size_t dim ) { // realloc
81 return realloc( ptr, dim * sizeof(T) );
82 } // alloc
83
84 T * alloc_set( char fill ) {
85 return (T *)memset( (T *)alloc(), (int)fill, sizeof(T) ); // initialize with fill value
86 } // alloc
87
88 T * alloc_set( T fill ) {
89 return (T *)memcpy( (T *)alloc(), &fill, sizeof(T) ); // initialize with fill value
90 } // alloc
91
92 T * alloc_set( size_t dim, char fill ) {
93 return (T *)memset( (T *)alloc( dim ), (int)fill, dim * sizeof(T) ); // initialize with fill value
94 } // alloc
95
96 T * alloc_set( size_t dim, T fill ) {
97 T * r = (T *)alloc( dim );
98 for ( i; dim ) { memcpy( &r[i], &fill, sizeof(T) ); } // initialize with fill value
99 return r;
100 } // alloc
101
102 T * alloc_set( size_t dim, const T fill[] ) {
103 return (T *)memcpy( (T *)alloc( dim ), fill, dim * sizeof(T) ); // initialize with fill value
104 } // alloc
105} // distribution
106
107forall( dtype T | sized(T) ) {
108 T * alloc_set( T ptr[], size_t dim, char fill ); // realloc array with fill
109} // distribution
110
111static inline forall( dtype T | sized(T) ) {
112 T * alloc_align( size_t align ) {
113 return (T *)memalign( align, sizeof(T) );
114 } // alloc_align
115
116 T * alloc_align( size_t align, size_t dim ) {
117 return (T *)memalign( align, dim * sizeof(T) );
118 } // alloc_align
119
120 T * alloc_align_set( size_t align, char fill ) {
121 return (T *)memset( (T *)alloc_align( align ), (int)fill, sizeof(T) ); // initialize with fill value
122 } // alloc_align
123
124 T * alloc_align_set( size_t align, T fill ) {
125 return (T *)memcpy( (T *)alloc_align( align ), &fill, sizeof(T) ); // initialize with fill value
126 } // alloc_align
127
128 T * alloc_align_set( size_t align, size_t dim, char fill ) {
129 return (T *)memset( (T *)alloc_align( align, dim ), (int)fill, dim * sizeof(T) ); // initialize with fill value
130 } // alloc_align
131
132 T * alloc_align_set( size_t align, size_t dim, T fill ) {
133 T * r = (T *)alloc_align( align, dim );
134 for ( i; dim ) { memcpy( &r[i], &fill, sizeof(T) ); } // initialize with fill value
135 return r;
136 } // alloc_align
137
138 T * alloc_align_set( size_t align, size_t dim, const T fill[] ) {
139 return (T *)memcpy( (T *)alloc_align( align, dim ), fill, dim * sizeof(T) );
140 } // alloc_align
141} // distribution
142
143forall( dtype T | sized(T) ) {
144 T * alloc_align( T ptr[], size_t align ); // realign
145 T * alloc_align( T ptr[], size_t align, size_t dim ); // aligned realloc array
146 T * alloc_align_set( T ptr[], size_t align, size_t dim, char fill ); // aligned realloc array with fill
147} // distribution
148
149static inline forall( dtype T | sized(T) ) {
150 // data, non-array types
151 T * memset( T * dest, char fill ) {
152 return (T *)memset( dest, fill, sizeof(T) );
153 } // memset
154
155 T * memcpy( T * dest, const T * src ) {
156 return (T *)memcpy( dest, src, sizeof(T) );
157 } // memcpy
158} // distribution
159
160static inline forall( dtype T | sized(T) ) {
161 // data, array types
162 T * amemset( T dest[], char fill, size_t dim ) {
163 return (T *)(void *)memset( dest, fill, dim * sizeof(T) ); // C memset
164 } // amemset
165
166 T * amemcpy( T dest[], const T src[], size_t dim ) {
167 return (T *)(void *)memcpy( dest, src, dim * sizeof(T) ); // C memcpy
168 } // amemcpy
169} // distribution
170
171// allocation/deallocation and constructor/destructor, non-array types
172forall( dtype T | sized(T), ttype Params | { void ?{}( T &, Params ); } ) T * new( Params p );
173forall( dtype T | sized(T) | { void ^?{}( T & ); } ) void delete( T * ptr );
174forall( dtype T, ttype Params | sized(T) | { void ^?{}( T & ); void delete( Params ); } ) void delete( T * ptr, Params rest );
175
176// allocation/deallocation and constructor/destructor, array types
177forall( dtype T | sized(T), ttype Params | { void ?{}( T &, Params ); } ) T * anew( size_t dim, Params p );
178forall( dtype T | sized(T) | { void ^?{}( T & ); } ) void adelete( size_t dim, T arr[] );
179forall( dtype T | sized(T) | { void ^?{}( T & ); }, ttype Params | { void adelete( Params ); } ) void adelete( size_t dim, T arr[], Params rest );
180
181//---------------------------------------
182
183static inline {
184 int strto( const char * sptr, char ** eptr, int base ) { return (int)strtol( sptr, eptr, base ); }
185 unsigned int strto( const char * sptr, char ** eptr, int base ) { return (unsigned int)strtoul( sptr, eptr, base ); }
186 long int strto( const char * sptr, char ** eptr, int base ) { return strtol( sptr, eptr, base ); }
187 unsigned long int strto( const char * sptr, char ** eptr, int base ) { return strtoul( sptr, eptr, base ); }
188 long long int strto( const char * sptr, char ** eptr, int base ) { return strtoll( sptr, eptr, base ); }
189 unsigned long long int strto( const char * sptr, char ** eptr, int base ) { return strtoull( sptr, eptr, base ); }
190
191 float strto( const char * sptr, char ** eptr ) { return strtof( sptr, eptr ); }
192 double strto( const char * sptr, char ** eptr ) { return strtod( sptr, eptr ); }
193 long double strto( const char * sptr, char ** eptr ) { return strtold( sptr, eptr ); }
194} // distribution
195
196float _Complex strto( const char * sptr, char ** eptr );
197double _Complex strto( const char * sptr, char ** eptr );
198long double _Complex strto( const char * sptr, char ** eptr );
199
200static inline {
201 int ato( const char * sptr ) { return (int)strtol( sptr, 0, 10 ); }
202 unsigned int ato( const char * sptr ) { return (unsigned int)strtoul( sptr, 0, 10 ); }
203 long int ato( const char * sptr ) { return strtol( sptr, 0, 10 ); }
204 unsigned long int ato( const char * sptr ) { return strtoul( sptr, 0, 10 ); }
205 long long int ato( const char * sptr ) { return strtoll( sptr, 0, 10 ); }
206 unsigned long long int ato( const char * sptr ) { return strtoull( sptr, 0, 10 ); }
207
208 float ato( const char * sptr ) { return strtof( sptr, 0 ); }
209 double ato( const char * sptr ) { return strtod( sptr, 0 ); }
210 long double ato( const char * sptr ) { return strtold( sptr, 0 ); }
211
212 float _Complex ato( const char * sptr ) { return strto( sptr, NULL ); }
213 double _Complex ato( const char * sptr ) { return strto( sptr, NULL ); }
214 long double _Complex ato( const char * sptr ) { return strto( sptr, NULL ); }
215} // distribution
216
217//---------------------------------------
218
219forall( otype E | { int ?<?( E, E ); } ) {
220 E * bsearch( E key, const E * vals, size_t dim );
221 size_t bsearch( E key, const E * vals, size_t dim );
222 E * bsearchl( E key, const E * vals, size_t dim );
223 size_t bsearchl( E key, const E * vals, size_t dim );
224 E * bsearchu( E key, const E * vals, size_t dim );
225 size_t bsearchu( E key, const E * vals, size_t dim );
226} // distribution
227
228forall( otype K, otype E | { int ?<?( K, K ); K getKey( const E & ); } ) {
229 E * bsearch( K key, const E * vals, size_t dim );
230 size_t bsearch( K key, const E * vals, size_t dim );
231 E * bsearchl( K key, const E * vals, size_t dim );
232 size_t bsearchl( K key, const E * vals, size_t dim );
233 E * bsearchu( K key, const E * vals, size_t dim );
234 size_t bsearchu( K key, const E * vals, size_t dim );
235} // distribution
236
237forall( otype E | { int ?<?( E, E ); } ) {
238 void qsort( E * vals, size_t dim );
239} // distribution
240
241//---------------------------------------
242
243extern "C" { // override C version
244 void srandom( unsigned int seed );
245 long int random( void );
246} // extern "C"
247
248static inline {
249 long int random( long int l, long int u ) { if ( u < l ) [u, l] = [l, u]; return lrand48() % (u - l) + l; } // [l,u)
250 long int random( long int u ) { if ( u < 0 ) return random( u, 0 ); else return random( 0, u ); } // [0,u)
251 unsigned long int random( void ) { return lrand48(); }
252 unsigned long int random( unsigned long int l, unsigned long int u ) { if ( u < l ) [u, l] = [l, u]; return lrand48() % (u - l) + l; } // [l,u)
253 unsigned long int random( unsigned long int u ) { return lrand48() % u; } // [0,u)
254
255 char random( void ) { return (unsigned long int)random(); }
256 char random( char u ) { return random( (unsigned long int)u ); } // [0,u)
257 char random( char l, char u ) { return random( (unsigned long int)l, (unsigned long int)u ); } // [l,u)
258 int random( void ) { return (long int)random(); }
259 int random( int u ) { return random( (long int)u ); } // [0,u]
260 int random( int l, int u ) { return random( (long int)l, (long int)u ); } // [l,u)
261 unsigned int random( void ) { return (unsigned long int)random(); }
262 unsigned int random( unsigned int u ) { return random( (unsigned long int)u ); } // [0,u]
263 unsigned int random( unsigned int l, unsigned int u ) { return random( (unsigned long int)l, (unsigned long int)u ); } // [l,u)
264} // distribution
265
266float random( void ); // [0.0, 1.0)
267double random( void ); // [0.0, 1.0)
268float _Complex random( void ); // [0.0, 1.0)+[0.0, 1.0)i
269double _Complex random( void ); // [0.0, 1.0)+[0.0, 1.0)i
270long double _Complex random( void ); // [0.0, 1.0)+[0.0, 1.0)i
271
272//---------------------------------------
273
274#include "common.hfa"
275
276//---------------------------------------
277
278extern bool threading_enabled(void) OPTIONAL_THREAD;
279
280// Local Variables: //
281// mode: c //
282// tab-width: 4 //
283// End: //
Note: See TracBrowser for help on using the repository browser.