source: libcfa/src/stdlib.hfa@ 8ec4a52

ADT arm-eh ast-experimental enum forall-pointer-decay jacob/cs343-translation new-ast-unique-expr pthread-emulation qualifiedEnum
Last change on this file since 8ec4a52 was ceb7db8, checked in by m3zulfiq <m3zulfiq@…>, 5 years ago

Added alloc interface with backtick and removed polymorphic alloc interface. Also, changed ready_queue.cfa: 549, 640; setup.cfa: 386; to fit the new alloc interface.

  • Property mode set to 100644
File size: 15.3 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// stdlib --
8//
9// Author : Peter A. Buhr
10// Created On : Thu Jan 28 17:12:35 2016
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Fri Aug 14 23:38:50 2020
13// Update Count : 504
14//
15
16#pragma once
17
18#include "bits/defs.hfa"
19#include "bits/align.hfa"
20
21#include <stdlib.h> // *alloc, strto*, ato*
22#include <heap.hfa>
23
24// Reduce includes by explicitly defining these routines.
25extern "C" {
26 void * memalign( size_t alignment, size_t size ); // malloc.h
27 void * pvalloc( size_t size ); // malloc.h
28 void * memset( void * dest, int fill, size_t size ); // string.h
29 void * memcpy( void * dest, const void * src, size_t size ); // string.h
30} // extern "C"
31
32//---------------------------------------
33
34#ifndef EXIT_FAILURE
35#define EXIT_FAILURE 1 // failing exit status
36#define EXIT_SUCCESS 0 // successful exit status
37#endif // ! EXIT_FAILURE
38
39//---------------------------------------
40
41#include "common.hfa"
42
43//---------------------------------------
44
45// Macro because of returns
46#define $VAR_ALLOC( allocation, alignment ) \
47 if ( _Alignof(T) <= libAlign() ) return (T *)(void *)allocation( (size_t)sizeof(T) ); /* C allocation */ \
48 else return (T *)alignment( _Alignof(T), sizeof(T) )
49
50#define $ARRAY_ALLOC( allocation, alignment, dim ) \
51 if ( _Alignof(T) <= libAlign() ) return (T *)(void *)allocation( dim, (size_t)sizeof(T) ); /* C allocation */ \
52 else return (T *)alignment( _Alignof(T), dim, sizeof(T) )
53
54#define $RE_SPECIALS( ptr, size, allocation, alignment ) \
55 if ( unlikely( size == 0 ) || unlikely( ptr == 0p ) ) { \
56 if ( unlikely( size == 0 ) ) free( ptr ); \
57 $VAR_ALLOC( malloc, memalign ); \
58 } /* if */
59
60static inline forall( dtype T | sized(T) ) {
61 // Cforall safe equivalents, i.e., implicit size specification
62
63 T * malloc( void ) {
64 $VAR_ALLOC( malloc, memalign );
65 } // malloc
66
67 T * aalloc( size_t dim ) {
68 $ARRAY_ALLOC( aalloc, amemalign, dim );
69 } // aalloc
70
71 T * calloc( size_t dim ) {
72 $ARRAY_ALLOC( calloc, cmemalign, dim );
73 } // calloc
74
75 T * resize( T * ptr, size_t size ) { // CFA resize, eliminate return-type cast
76 $RE_SPECIALS( ptr, size, malloc, memalign );
77 if ( _Alignof(T) <= libAlign() ) return (T *)(void *)resize( (void *)ptr, size ); // CFA resize
78 else return (T *)(void *)resize( (void *)ptr, _Alignof(T), size ); // CFA resize
79 } // resize
80
81 T * realloc( T * ptr, size_t size ) { // CFA realloc, eliminate return-type cast
82 $RE_SPECIALS( ptr, size, malloc, memalign );
83 if ( _Alignof(T) <= libAlign() ) return (T *)(void *)realloc( (void *)ptr, size ); // C realloc
84 else return (T *)(void *)realloc( (void *)ptr, _Alignof(T), size ); // CFA realloc
85 } // realloc
86
87 T * memalign( size_t align ) {
88 return (T *)memalign( align, sizeof(T) ); // C memalign
89 } // memalign
90
91 T * amemalign( size_t align, size_t dim ) {
92 return (T *)amemalign( align, dim, sizeof(T) ); // CFA amemalign
93 } // amemalign
94
95 T * cmemalign( size_t align, size_t dim ) {
96 return (T *)cmemalign( align, dim, sizeof(T) ); // CFA cmemalign
97 } // cmemalign
98
99 T * aligned_alloc( size_t align ) {
100 return (T *)aligned_alloc( align, sizeof(T) ); // C aligned_alloc
101 } // aligned_alloc
102
103 int posix_memalign( T ** ptr, size_t align ) {
104 return posix_memalign( (void **)ptr, align, sizeof(T) ); // C posix_memalign
105 } // posix_memalign
106
107 T * valloc( void ) {
108 return (T *)valloc( sizeof(T) ); // C valloc
109 } // valloc
110
111 T * pvalloc( void ) {
112 return (T *)pvalloc( sizeof(T) ); // C pvalloc
113 } // pvalloc
114} // distribution
115
116/*
117 FIX ME : fix alloc interface after Ticker Number 214 is resolved, define and add union to S_fill. Then, modify postfix-fill functions to support T * with nmemb, char, and T object of any size. Finally, change alloc_internal.
118 Or, just follow the instructions below for that.
119
120 1. Replace the current forall-block that contains defintions of S_fill and S_realloc with following:
121 forall( dtype T | sized(T) ) {
122 union U_fill { char c; T * a; T t; };
123 struct S_fill { char tag; char c; size_t size; T * at; char t[50]; };
124 struct S_realloc { inline T *; };
125 }
126
127 2. Replace all current postfix-fill functions with following for updated S_fill:
128 S_fill(T) ?`fill( char a ) { S_fill(T) ret = {'c'}; ret.fill.c = a; return ret; }
129 S_fill(T) ?`fill( T a ) { S_fill(T) ret = {'t'}; memcpy(&ret.fill.t, &a, sizeof(T)); return ret; }
130 S_fill(T) ?`fill( T a[], size_t nmemb ) { S_fill(T) ret = {'a', nmemb}; ret.fill.a = a; return ret; }
131
132 3. Replace the $alloc_internal function which is outside ttype forall-block with following function:
133 T * $alloc_internal( void * Resize, T * Realloc, size_t Align, size_t Dim, S_fill(T) Fill) {
134 T * ptr = NULL;
135 size_t size = sizeof(T);
136 size_t copy_end = 0;
137
138 if(Resize) {
139 ptr = (T*) (void *) resize( (int *)Resize, Align, Dim * size );
140 } else if (Realloc) {
141 if (Fill.tag != '0') copy_end = min(malloc_size( Realloc ), Dim * size);
142 ptr = (T*) (void *) realloc( (int *)Realloc, Align, Dim * size );
143 } else {
144 ptr = (T*) (void *) memalign( Align, Dim * size );
145 }
146
147 if(Fill.tag == 'c') {
148 memset( (char *)ptr + copy_end, (int)Fill.fill.c, Dim * size - copy_end );
149 } else if(Fill.tag == 't') {
150 for ( int i = copy_end; i <= Dim * size - size ; i += size ) {
151 memcpy( (char *)ptr + i, &Fill.fill.t, size );
152 }
153 } else if(Fill.tag == 'a') {
154 memcpy( (char *)ptr + copy_end, Fill.fill.a, min(Dim * size - copy_end, size * Fill.nmemb) );
155 }
156
157 return ptr;
158 } // $alloc_internal
159*/
160
161typedef struct S_align { inline size_t; } T_align;
162typedef struct S_resize { inline void *; } T_resize;
163
164forall( dtype T ) {
165 struct S_fill { char tag; char c; size_t size; T * at; char t[50]; };
166 struct S_realloc { inline T *; };
167}
168
169static inline T_align ?`align ( size_t a ) { return (T_align){a}; }
170static inline T_resize ?`resize ( void * a ) { return (T_resize){a}; }
171static inline forall( dtype T | sized(T) ) {
172
173 S_fill(T) ?`fill ( T t ) {
174 S_fill(T) ret = { 't' };
175 size_t size = sizeof(T);
176 if(size > sizeof(ret.t)) { printf("ERROR: const object of size greater than 50 bytes given for dynamic memory fill\n"); exit(1); }
177 memcpy( &ret.t, &t, size );
178 return ret;
179 }
180 S_fill(T) ?`fill ( char c ) { return (S_fill(T)){ 'c', c }; }
181 S_fill(T) ?`fill ( T * a ) { return (S_fill(T)){ 'T', '0', 0, a }; }
182 S_fill(T) ?`fill ( T a[], size_t nmemb ) { return (S_fill(T)){ 'a', '0', nmemb * sizeof(T), a }; }
183
184 S_realloc(T) ?`realloc ( T * a ) { return (S_realloc(T)){a}; }
185
186 T * $alloc_internal( void * Resize, T * Realloc, size_t Align, size_t Dim, S_fill(T) Fill) {
187 T * ptr = NULL;
188 size_t size = sizeof(T);
189 size_t copy_end = 0;
190
191 if(Resize) {
192 ptr = (T*) (void *) resize( (int *)Resize, Align, Dim * size );
193 } else if (Realloc) {
194 if (Fill.tag != '0') copy_end = min(malloc_size( Realloc ), Dim * size);
195 ptr = (T*) (void *) realloc( (int *)Realloc, Align, Dim * size );
196 } else {
197 ptr = (T*) (void *) memalign( Align, Dim * size );
198 }
199
200 if(Fill.tag == 'c') {
201 memset( (char *)ptr + copy_end, (int)Fill.c, Dim * size - copy_end );
202 } else if(Fill.tag == 't') {
203 for ( int i = copy_end; i <= Dim * size - size ; i += size ) {
204 memcpy( (char *)ptr + i, &Fill.t, size );
205 }
206 } else if(Fill.tag == 'a') {
207 memcpy( (char *)ptr + copy_end, Fill.at, min(Dim * size - copy_end, Fill.size) );
208 } else if(Fill.tag == 'T') {
209 for ( int i = copy_end; i <= Dim * size - size ; i += size ) {
210 memcpy( (char *)ptr + i, Fill.at, size );
211 }
212 }
213
214 return ptr;
215 } // $alloc_internal
216
217 forall( ttype TT | { T * $alloc_internal( void *, T *, size_t, size_t, S_fill(T), TT ); } ) {
218
219 T * $alloc_internal( void * , T * Realloc, size_t Align, size_t Dim, S_fill(T) Fill, T_resize Resize, TT rest) {
220 return $alloc_internal( Resize, (T*)0p, Align, Dim, Fill, rest);
221 }
222
223 T * $alloc_internal( void * Resize, T * , size_t Align, size_t Dim, S_fill(T) Fill, S_realloc(T) Realloc, TT rest) {
224 return $alloc_internal( (void*)0p, Realloc, Align, Dim, Fill, rest);
225 }
226
227 T * $alloc_internal( void * Resize, T * Realloc, size_t , size_t Dim, S_fill(T) Fill, T_align Align, TT rest) {
228 return $alloc_internal( Resize, Realloc, Align, Dim, Fill, rest);
229 }
230
231 T * $alloc_internal( void * Resize, T * Realloc, size_t Align, size_t Dim, S_fill(T) , S_fill(T) Fill, TT rest) {
232 return $alloc_internal( Resize, Realloc, Align, Dim, Fill, rest);
233 }
234
235 T * alloc( TT all ) {
236 return $alloc_internal( (void*)0p, (T*)0p, (_Alignof(T) > libAlign() ? _Alignof(T) : libAlign()), (size_t)1, (S_fill(T)){'0'}, all);
237 }
238
239 T * alloc( size_t dim, TT all ) {
240 return $alloc_internal( (void*)0p, (T*)0p, (_Alignof(T) > libAlign() ? _Alignof(T) : libAlign()), dim, (S_fill(T)){'0'}, all);
241 }
242
243 } // distribution TT
244
245} // distribution T
246
247static inline forall( dtype T | sized(T) ) {
248 // Cforall safe initialization/copy, i.e., implicit size specification, non-array types
249 T * memset( T * dest, char fill ) {
250 return (T *)memset( dest, fill, sizeof(T) );
251 } // memset
252
253 T * memcpy( T * dest, const T * src ) {
254 return (T *)memcpy( dest, src, sizeof(T) );
255 } // memcpy
256} // distribution
257
258static inline forall( dtype T | sized(T) ) {
259 // Cforall safe initialization/copy, i.e., implicit size specification, array types
260 T * amemset( T dest[], char fill, size_t dim ) {
261 return (T *)(void *)memset( dest, fill, dim * sizeof(T) ); // C memset
262 } // amemset
263
264 T * amemcpy( T dest[], const T src[], size_t dim ) {
265 return (T *)(void *)memcpy( dest, src, dim * sizeof(T) ); // C memcpy
266 } // amemcpy
267} // distribution
268
269// Cforall allocation/deallocation and constructor/destructor, non-array types
270forall( dtype T | sized(T), ttype Params | { void ?{}( T &, Params ); } ) T * new( Params p );
271forall( dtype T | { void ^?{}( T & ); } ) void delete( T * ptr );
272forall( dtype T, ttype Params | { void ^?{}( T & ); void delete( Params ); } ) void delete( T * ptr, Params rest );
273
274// Cforall allocation/deallocation and constructor/destructor, array types
275forall( dtype T | sized(T), ttype Params | { void ?{}( T &, Params ); } ) T * anew( size_t dim, Params p );
276forall( dtype T | sized(T) | { void ^?{}( T & ); } ) void adelete( size_t dim, T arr[] );
277forall( dtype T | sized(T) | { void ^?{}( T & ); }, ttype Params | { void adelete( Params ); } ) void adelete( size_t dim, T arr[], Params rest );
278
279//---------------------------------------
280
281static inline {
282 int strto( const char sptr[], char ** eptr, int base ) { return (int)strtol( sptr, eptr, base ); }
283 unsigned int strto( const char sptr[], char ** eptr, int base ) { return (unsigned int)strtoul( sptr, eptr, base ); }
284 long int strto( const char sptr[], char ** eptr, int base ) { return strtol( sptr, eptr, base ); }
285 unsigned long int strto( const char sptr[], char ** eptr, int base ) { return strtoul( sptr, eptr, base ); }
286 long long int strto( const char sptr[], char ** eptr, int base ) { return strtoll( sptr, eptr, base ); }
287 unsigned long long int strto( const char sptr[], char ** eptr, int base ) { return strtoull( sptr, eptr, base ); }
288
289 float strto( const char sptr[], char ** eptr ) { return strtof( sptr, eptr ); }
290 double strto( const char sptr[], char ** eptr ) { return strtod( sptr, eptr ); }
291 long double strto( const char sptr[], char ** eptr ) { return strtold( sptr, eptr ); }
292} // distribution
293
294float _Complex strto( const char sptr[], char ** eptr );
295double _Complex strto( const char sptr[], char ** eptr );
296long double _Complex strto( const char sptr[], char ** eptr );
297
298static inline {
299 int ato( const char sptr[] ) { return (int)strtol( sptr, 0p, 10 ); }
300 unsigned int ato( const char sptr[] ) { return (unsigned int)strtoul( sptr, 0p, 10 ); }
301 long int ato( const char sptr[] ) { return strtol( sptr, 0p, 10 ); }
302 unsigned long int ato( const char sptr[] ) { return strtoul( sptr, 0p, 10 ); }
303 long long int ato( const char sptr[] ) { return strtoll( sptr, 0p, 10 ); }
304 unsigned long long int ato( const char sptr[] ) { return strtoull( sptr, 0p, 10 ); }
305
306 float ato( const char sptr[] ) { return strtof( sptr, 0p ); }
307 double ato( const char sptr[] ) { return strtod( sptr, 0p ); }
308 long double ato( const char sptr[] ) { return strtold( sptr, 0p ); }
309
310 float _Complex ato( const char sptr[] ) { return strto( sptr, 0p ); }
311 double _Complex ato( const char sptr[] ) { return strto( sptr, 0p ); }
312 long double _Complex ato( const char sptr[] ) { return strto( sptr, 0p ); }
313} // distribution
314
315//---------------------------------------
316
317forall( otype E | { int ?<?( E, E ); } ) {
318 E * bsearch( E key, const E * vals, size_t dim );
319 size_t bsearch( E key, const E * vals, size_t dim );
320 E * bsearchl( E key, const E * vals, size_t dim );
321 size_t bsearchl( E key, const E * vals, size_t dim );
322 E * bsearchu( E key, const E * vals, size_t dim );
323 size_t bsearchu( E key, const E * vals, size_t dim );
324} // distribution
325
326forall( otype K, otype E | { int ?<?( K, K ); K getKey( const E & ); } ) {
327 E * bsearch( K key, const E * vals, size_t dim );
328 size_t bsearch( K key, const E * vals, size_t dim );
329 E * bsearchl( K key, const E * vals, size_t dim );
330 size_t bsearchl( K key, const E * vals, size_t dim );
331 E * bsearchu( K key, const E * vals, size_t dim );
332 size_t bsearchu( K key, const E * vals, size_t dim );
333} // distribution
334
335forall( otype E | { int ?<?( E, E ); } ) {
336 void qsort( E * vals, size_t dim );
337} // distribution
338
339//---------------------------------------
340
341extern "C" { // override C version
342 void srandom( unsigned int seed );
343 long int random( void ); // GENERATES POSITIVE AND NEGATIVE VALUES
344 // For positive values, use unsigned int, e.g., unsigned int r = random() % 100U;
345} // extern "C"
346
347static inline {
348 long int random( long int l, long int u ) { if ( u < l ) [u, l] = [l, u]; return lrand48() % (u - l) + l; } // [l,u)
349 long int random( long int u ) { if ( u < 0 ) return random( u, 0 ); else return random( 0, u ); } // [0,u)
350 unsigned long int random( void ) { return lrand48(); }
351 unsigned long int random( unsigned long int u ) { return lrand48() % u; } // [0,u)
352 unsigned long int random( unsigned long int l, unsigned long int u ) { if ( u < l ) [u, l] = [l, u]; return lrand48() % (u - l) + l; } // [l,u)
353
354 char random( void ) { return (unsigned long int)random(); }
355 char random( char u ) { return random( (unsigned long int)u ); } // [0,u)
356 char random( char l, char u ) { return random( (unsigned long int)l, (unsigned long int)u ); } // [l,u)
357 int random( void ) { return (long int)random(); }
358 int random( int u ) { return random( (long int)u ); } // [0,u]
359 int random( int l, int u ) { return random( (long int)l, (long int)u ); } // [l,u)
360 unsigned int random( void ) { return (unsigned long int)random(); }
361 unsigned int random( unsigned int u ) { return random( (unsigned long int)u ); } // [0,u]
362 unsigned int random( unsigned int l, unsigned int u ) { return random( (unsigned long int)l, (unsigned long int)u ); } // [l,u)
363} // distribution
364
365float random( void ); // [0.0, 1.0)
366double random( void ); // [0.0, 1.0)
367float _Complex random( void ); // [0.0, 1.0)+[0.0, 1.0)i
368double _Complex random( void ); // [0.0, 1.0)+[0.0, 1.0)i
369long double _Complex random( void ); // [0.0, 1.0)+[0.0, 1.0)i
370
371//---------------------------------------
372
373extern bool threading_enabled(void) OPTIONAL_THREAD;
374
375// Local Variables: //
376// mode: c //
377// tab-width: 4 //
378// End: //
Note: See TracBrowser for help on using the repository browser.