source: libcfa/src/stdlib.hfa@ 55b060d

Last change on this file since 55b060d was b5e725a, checked in by Peter A. Buhr <pabuhr@…>, 2 years ago

move setting the default random-generator size from PRNG.cfa to stdlib.hfa, change to the exception macros

  • Property mode set to 100644
File size: 20.7 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// stdlib --
8//
9// Author : Peter A. Buhr
10// Created On : Thu Jan 28 17:12:35 2016
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Mon Aug 14 18:19:12 2023
13// Update Count : 777
14//
15
16#pragma once
17
18#include "bits/defs.hfa" // OPTIONAL_THREAD
19#include "bits/align.hfa" // libAlign
20#include "bits/random.hfa" // prng
21#include <Exception.hfa>
22#include <heap.hfa>
23
24#include <stdlib.h> // *alloc, strto*, ato*
25#include <errno.h>
26
27// Reduce includes by explicitly defining these routines.
28extern "C" {
29 void * memalign( size_t alignment, size_t size ); // malloc.h
30 void * pvalloc( size_t size ); // malloc.h
31 void * memset( void * dest, int fill, size_t size ); // string.h
32 void * memcpy( void * dest, const void * src, size_t size ); // string.h
33} // extern "C"
34
35//---------------------------------------
36
37#ifndef EXIT_FAILURE
38#define EXIT_FAILURE 1 // failing exit status
39#define EXIT_SUCCESS 0 // successful exit status
40#endif // ! EXIT_FAILURE
41
42//---------------------------------------
43
44#include "common.hfa"
45
46//---------------------------------------
47
48static inline forall( T & | sized(T) ) {
49 // CFA safe equivalents, i.e., implicit size specification
50
51 T * malloc( void ) {
52 if ( _Alignof(T) <= libAlign() ) return (T *)malloc( sizeof(T) ); // C allocation
53 else return (T *)memalign( _Alignof(T), sizeof(T) );
54 } // malloc
55
56 T * aalloc( size_t dim ) {
57 if ( _Alignof(T) <= libAlign() ) return (T *)aalloc( dim, sizeof(T) ); // C allocation
58 else return (T *)amemalign( _Alignof(T), dim, sizeof(T) );
59 } // aalloc
60
61 T * calloc( size_t dim ) {
62 if ( _Alignof(T) <= libAlign() ) return (T *)calloc( dim, sizeof(T) ); // C allocation
63 else return (T *)cmemalign( _Alignof(T), dim, sizeof(T) );
64 } // calloc
65
66 T * resize( T * ptr, size_t size ) { // CFA resize, eliminate return-type cast
67 if ( _Alignof(T) <= libAlign() ) return (T *)resize( (void *)ptr, size ); // CFA resize
68 else return (T *)resize( (void *)ptr, _Alignof(T), size ); // CFA resize
69 } // resize
70
71 T * realloc( T * ptr, size_t size ) { // CFA realloc, eliminate return-type cast
72 if ( _Alignof(T) <= libAlign() ) return (T *)realloc( (void *)ptr, size ); // C realloc
73 else return (T *)realloc( (void *)ptr, _Alignof(T), size ); // CFA realloc
74 } // realloc
75
76 T * memalign( size_t align ) {
77 return (T *)memalign( align, sizeof(T) ); // C memalign
78 } // memalign
79
80 T * amemalign( size_t align, size_t dim ) {
81 return (T *)amemalign( align, dim, sizeof(T) ); // CFA amemalign
82 } // amemalign
83
84 T * cmemalign( size_t align, size_t dim ) {
85 return (T *)cmemalign( align, dim, sizeof(T) ); // CFA cmemalign
86 } // cmemalign
87
88 T * aligned_alloc( size_t align ) {
89 return (T *)aligned_alloc( align, sizeof(T) ); // C aligned_alloc
90 } // aligned_alloc
91
92 int posix_memalign( T ** ptr, size_t align ) {
93 return posix_memalign( (void **)ptr, align, sizeof(T) ); // C posix_memalign
94 } // posix_memalign
95
96 T * valloc( void ) {
97 return (T *)valloc( sizeof(T) ); // C valloc
98 } // valloc
99
100 T * pvalloc( void ) {
101 return (T *)pvalloc( sizeof(T) ); // C pvalloc
102 } // pvalloc
103} // distribution
104
105/*
106 FIX ME : fix alloc interface after Ticker Number 214 is resolved, define and add union to S_fill. Then, modify postfix-fill functions to support T * with nmemb, char, and T object of any size. Finally, change alloc_internal.
107 Or, just follow the instructions below for that.
108
109 1. Replace the current forall-block that contains defintions of S_fill and S_realloc with following:
110 forall( T & | sized(T) ) {
111 union U_fill { char c; T * a; T t; };
112 struct S_fill { char tag; U_fill(T) fill; };
113 struct S_realloc { inline T *; };
114 }
115
116 2. Replace all current postfix-fill functions with following for updated S_fill:
117 S_fill(T) ?`fill( char a ) { S_fill(T) ret = {'c'}; ret.fill.c = a; return ret; }
118 S_fill(T) ?`fill( T a ) { S_fill(T) ret = {'t'}; memcpy(&ret.fill.t, &a, sizeof(T)); return ret; }
119 S_fill(T) ?`fill( T a[], size_t nmemb ) { S_fill(T) ret = {'a', nmemb}; ret.fill.a = a; return ret; }
120
121 3. Replace the alloc_internal$ function which is outside ttype forall-block with following function:
122 T * alloc_internal$( void * Resize, T * Realloc, size_t Align, size_t Dim, S_fill(T) Fill) {
123 T * ptr = NULL;
124 size_t size = sizeof(T);
125 size_t copy_end = 0;
126
127 if(Resize) {
128 ptr = (T*) (void *) resize( (int *)Resize, Align, Dim * size );
129 } else if (Realloc) {
130 if (Fill.tag != '0') copy_end = min(malloc_size( Realloc ), Dim * size);
131 ptr = (T*) (void *) realloc( (int *)Realloc, Align, Dim * size );
132 } else {
133 ptr = (T*) (void *) memalign( Align, Dim * size );
134 }
135
136 if(Fill.tag == 'c') {
137 memset( (char *)ptr + copy_end, (int)Fill.fill.c, Dim * size - copy_end );
138 } else if(Fill.tag == 't') {
139 for ( int i = copy_end; i <= Dim * size - size ; i += size ) {
140 memcpy( (char *)ptr + i, &Fill.fill.t, size );
141 }
142 } else if(Fill.tag == 'a') {
143 memcpy( (char *)ptr + copy_end, Fill.fill.a, min(Dim * size - copy_end, size * Fill.nmemb) );
144 }
145
146 return ptr;
147 } // alloc_internal$
148*/
149
150typedef struct S_align { inline size_t; } T_align;
151typedef struct S_resize { inline void *; } T_resize;
152
153forall( T & ) {
154 struct S_fill { char tag; char c; size_t size; T * at; char t[50]; };
155 struct S_realloc { inline T *; };
156}
157
158static inline T_align ?`align ( size_t a ) { return (T_align){a}; }
159static inline T_resize ?`resize ( void * a ) { return (T_resize){a}; }
160
161static inline forall( T & | sized(T) ) {
162 S_fill(T) ?`fill ( T t ) {
163 S_fill(T) ret = { 't' };
164 size_t size = sizeof(T);
165 if ( size > sizeof(ret.t) ) {
166 abort( "ERROR: const object of size greater than 50 bytes given for dynamic memory fill\n" );
167 } // if
168 memcpy( &ret.t, &t, size );
169 return ret;
170 }
171 S_fill(T) ?`fill ( zero_t ) = void; // FIX ME: remove this once ticket 214 is resolved
172 S_fill(T) ?`fill ( T * a ) { return (S_fill(T)){ 'T', '0', 0, a }; } // FIX ME: remove this once ticket 214 is resolved
173 S_fill(T) ?`fill ( char c ) { return (S_fill(T)){ 'c', c }; }
174 S_fill(T) ?`fill ( T a[], size_t nmemb ) { return (S_fill(T)){ 'a', '0', nmemb * sizeof(T), a }; }
175
176 S_realloc(T) ?`realloc ( T * a ) { return (S_realloc(T)){a}; }
177
178 T * alloc_internal$( void * Resize, T * Realloc, size_t Align, size_t Dim, S_fill(T) Fill ) {
179 T * ptr = NULL;
180 size_t size = sizeof(T);
181 size_t copy_end = 0;
182
183 if ( Resize ) {
184 ptr = (T*) (void *) resize( (void *)Resize, Align, Dim * size );
185 } else if ( Realloc ) {
186 if ( Fill.tag != '0' ) copy_end = min(malloc_size( Realloc ), Dim * size );
187 ptr = (T *) (void *) realloc( (void *)Realloc, Align, Dim * size );
188 } else {
189 ptr = (T *) (void *) memalign( Align, Dim * size );
190 }
191
192 if ( Fill.tag == 'c' ) {
193 memset( (char *)ptr + copy_end, (int)Fill.c, Dim * size - copy_end );
194 } else if ( Fill.tag == 't' ) {
195 for ( i; copy_end ~ Dim * size ~ size ) {
196 #pragma GCC diagnostic push
197 #pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
198 assert( size <= sizeof(Fill.t) );
199 memcpy( (char *)ptr + i, &Fill.t, size );
200 #pragma GCC diagnostic pop
201 }
202 } else if ( Fill.tag == 'a' ) {
203 memcpy( (char *)ptr + copy_end, Fill.at, min(Dim * size - copy_end, Fill.size) );
204 } else if ( Fill.tag == 'T' ) {
205 memcpy( (char *)ptr + copy_end, Fill.at, Dim * size );
206 }
207
208 return ptr;
209 } // alloc_internal$
210
211 forall( TT... | { T * alloc_internal$( void *, T *, size_t, size_t, S_fill(T), TT ); } ) {
212 T * alloc_internal$( void *, T *, size_t Align, size_t Dim, S_fill(T) Fill, T_resize Resize, TT rest ) {
213 return alloc_internal$( Resize, (T*)0p, Align, Dim, Fill, rest);
214 }
215
216 T * alloc_internal$( void *, T *, size_t Align, size_t Dim, S_fill(T) Fill, S_realloc(T) Realloc, TT rest ) {
217 return alloc_internal$( (void*)0p, Realloc, Align, Dim, Fill, rest);
218 }
219
220 T * alloc_internal$( void * Resize, T * Realloc, size_t, size_t Dim, S_fill(T) Fill, T_align Align, TT rest ) {
221 return alloc_internal$( Resize, Realloc, Align, Dim, Fill, rest);
222 }
223
224 T * alloc_internal$( void * Resize, T * Realloc, size_t Align, size_t Dim, S_fill(T), S_fill(T) Fill, TT rest ) {
225 return alloc_internal$( Resize, Realloc, Align, Dim, Fill, rest );
226 }
227
228 T * alloc( TT all ) {
229 return alloc_internal$( (void*)0p, (T*)0p, (_Alignof(T) > libAlign() ? _Alignof(T) : libAlign()), (size_t)1, (S_fill(T)){'0'}, all );
230 }
231
232 T * alloc( size_t dim, TT all ) {
233 return alloc_internal$( (void*)0p, (T*)0p, (_Alignof(T) > libAlign() ? _Alignof(T) : libAlign()), dim, (S_fill(T)){'0'}, all );
234 }
235 } // distribution TT
236} // distribution T
237
238static inline forall( T & | sized(T) ) {
239 // CFA safe initialization/copy, i.e., implicit size specification, non-array types
240 T * memset( T * dest, char fill ) {
241 return (T *)memset( dest, fill, sizeof(T) );
242 } // memset
243
244 T * memcpy( T * dest, const T * src ) {
245 return (T *)memcpy( dest, src, sizeof(T) );
246 } // memcpy
247
248 // CFA safe initialization/copy, i.e., implicit size specification, array types
249 T * amemset( T dest[], char fill, size_t dim ) {
250 return (T *)(void *)memset( dest, fill, dim * sizeof(T) ); // C memset
251 } // amemset
252
253 T * amemcpy( T dest[], const T src[], size_t dim ) {
254 return (T *)(void *)memcpy( dest, src, dim * sizeof(T) ); // C memcpy
255 } // amemcpy
256} // distribution
257
258// CFA deallocation for multiple objects
259static inline forall( T & ) // FIX ME, problems with 0p in list
260void free( T * ptr ) {
261 free( (void *)ptr ); // C free
262} // free
263static inline forall( T &, TT... | { void free( TT ); } )
264void free( T * ptr, TT rest ) {
265 free( ptr );
266 free( rest );
267} // free
268
269// CFA allocation/deallocation and constructor/destructor, non-array types
270static inline forall( T & | sized(T), TT... | { void ?{}( T &, TT ); } )
271T * new( TT p ) {
272 return &(*(T *)malloc()){ p }; // run constructor
273} // new
274
275static inline forall( T & | { void ^?{}( T & ); } )
276void delete( T * ptr ) {
277 // special case for 0-sized object => always call destructor
278 if ( ptr || sizeof(ptr) == 0 ) { // ignore null but not 0-sized objects
279 ^(*ptr){}; // run destructor
280 } // if
281 free( ptr ); // always call free
282} // delete
283static inline forall( T &, TT... | { void ^?{}( T & ); void delete( TT ); } )
284void delete( T * ptr, TT rest ) {
285 delete( ptr );
286 delete( rest );
287} // delete
288
289// CFA allocation/deallocation and constructor/destructor, array types
290forall( T & | sized(T), TT... | { void ?{}( T &, TT ); } ) T * anew( size_t dim, TT p );
291forall( T & | sized(T) | { void ^?{}( T & ); } ) void adelete( T arr[] );
292forall( T & | sized(T) | { void ^?{}( T & ); }, TT... | { void adelete( TT ); } ) void adelete( T arr[], TT rest );
293
294//---------------------------------------
295
296static inline {
297 int strto( const char sptr[], char * eptr[], int base ) { return (int)strtol( sptr, eptr, base ); }
298 unsigned int strto( const char sptr[], char * eptr[], int base ) { return (unsigned int)strtoul( sptr, eptr, base ); }
299 long int strto( const char sptr[], char * eptr[], int base ) { return strtol( sptr, eptr, base ); }
300 unsigned long int strto( const char sptr[], char * eptr[], int base ) { return strtoul( sptr, eptr, base ); }
301 long long int strto( const char sptr[], char * eptr[], int base ) { return strtoll( sptr, eptr, base ); }
302 unsigned long long int strto( const char sptr[], char * eptr[], int base ) { return strtoull( sptr, eptr, base ); }
303
304 float strto( const char sptr[], char * eptr[] ) { return strtof( sptr, eptr ); }
305 double strto( const char sptr[], char * eptr[] ) { return strtod( sptr, eptr ); }
306 long double strto( const char sptr[], char * eptr[] ) { return strtold( sptr, eptr ); }
307} // distribution
308
309float _Complex strto( const char sptr[], char * eptr[] );
310double _Complex strto( const char sptr[], char * eptr[] );
311long double _Complex strto( const char sptr[], char * eptr[] );
312
313ExceptionDecl( out_of_range );
314ExceptionDecl( invalid_argument );
315
316forall( T | { T strto( const char sptr[], char * eptr[], int ); } )
317T convert( const char sptr[] );
318
319static inline {
320 int ato( const char sptr[] ) { return (int)strtol( sptr, 0p, 10 ); }
321 unsigned int ato( const char sptr[] ) { return (unsigned int)strtoul( sptr, 0p, 10 ); }
322 long int ato( const char sptr[] ) { return strtol( sptr, 0p, 10 ); }
323 unsigned long int ato( const char sptr[] ) { return strtoul( sptr, 0p, 10 ); }
324 long long int ato( const char sptr[] ) { return strtoll( sptr, 0p, 10 ); }
325 unsigned long long int ato( const char sptr[] ) { return strtoull( sptr, 0p, 10 ); }
326
327 float ato( const char sptr[] ) { return strtof( sptr, 0p ); }
328 double ato( const char sptr[] ) { return strtod( sptr, 0p ); }
329 long double ato( const char sptr[] ) { return strtold( sptr, 0p ); }
330
331 float _Complex ato( const char sptr[] ) { return strto( sptr, 0p ); }
332 double _Complex ato( const char sptr[] ) { return strto( sptr, 0p ); }
333 long double _Complex ato( const char sptr[] ) { return strto( sptr, 0p ); }
334} // distribution
335
336//---------------------------------------
337
338forall( E | { int ?<?( E, E ); } ) {
339 E * bsearch( E key, const E * vals, size_t dim );
340 size_t bsearch( E key, const E * vals, size_t dim );
341 E * bsearchl( E key, const E * vals, size_t dim );
342 size_t bsearchl( E key, const E * vals, size_t dim );
343 E * bsearchu( E key, const E * vals, size_t dim );
344 size_t bsearchu( E key, const E * vals, size_t dim );
345} // distribution
346
347forall( K, E | { int ?<?( K, K ); K getKey( const E & ); } ) {
348 E * bsearch( K key, const E * vals, size_t dim );
349 size_t bsearch( K key, const E * vals, size_t dim );
350 E * bsearchl( K key, const E * vals, size_t dim );
351 size_t bsearchl( K key, const E * vals, size_t dim );
352 E * bsearchu( K key, const E * vals, size_t dim );
353 size_t bsearchu( K key, const E * vals, size_t dim );
354} // distribution
355
356forall( E | { int ?<?( E, E ); } ) {
357 void qsort( E * vals, size_t dim );
358} // distribution
359
360//---------------------------------------
361
362extern "C" { // override C version
363 void srandom( unsigned int seed );
364 long int random( void ); // GENERATES POSITIVE AND NEGATIVE VALUES
365 // For positive values, use unsigned int, e.g., unsigned int r = random() % 100U;
366} // extern "C"
367
368static inline {
369 long int random( long int l, long int u ) { if ( u < l ) [u, l] = [l, u]; return lrand48() % (u - l + 1) + l; } // [l,u]
370 long int random( long int u ) { return random( 0, u - 1 ); } // [0,u)
371 unsigned long int random( void ) { return lrand48(); }
372 unsigned long int random( unsigned long int u ) { return lrand48() % u; } // [0,u)
373 unsigned long int random( unsigned long int l, unsigned long int u ) { if ( u < l ) [u, l] = [l, u]; return lrand48() % (u - l + 1) + l; } // [l,u]
374
375 char random( void ) { return (unsigned long int)random(); }
376 char random( char u ) { return (unsigned long int)random( (unsigned long int)u ); } // [0,u)
377 char random( char l, char u ) { return random( (unsigned long int)l, (unsigned long int)u ); } // [l,u)
378 int random( void ) { return (long int)random(); }
379 int random( int u ) { return (long int)random( (long int)u ); } // [0,u]
380 int random( int l, int u ) { return random( (long int)l, (long int)u ); } // [l,u)
381 unsigned int random( void ) { return (unsigned long int)random(); }
382 unsigned int random( unsigned int u ) { return (unsigned long int)random( (unsigned long int)u ); } // [0,u]
383 unsigned int random( unsigned int l, unsigned int u ) { return random( (unsigned long int)l, (unsigned long int)u ); } // [l,u)
384} // distribution
385
386float random( void ); // [0.0, 1.0)
387double random( void ); // [0.0, 1.0)
388float _Complex random( void ); // [0.0, 1.0)+[0.0, 1.0)i
389double _Complex random( void ); // [0.0, 1.0)+[0.0, 1.0)i
390long double _Complex random( void ); // [0.0, 1.0)+[0.0, 1.0)i
391
392//---------------------------------------
393
394// Sequential Pseudo Random-Number Generator : generate repeatable sequence of values that appear random.
395//
396// Declaration :
397// PRNG sprng = { 1009 } - set starting seed versus random seed
398//
399// Interface :
400// set_seed( sprng, 1009 ) - set starting seed for ALL kernel threads versus random seed
401// get_seed( sprng ) - read seed
402// prng( sprng ) - generate random value in range [0,UINT_MAX]
403// prng( sprng, u ) - generate random value in range [0,u)
404// prng( sprng, l, u ) - generate random value in range [l,u]
405// calls( sprng ) - number of generated random value so far
406//
407// Examples : generate random number between 5-21
408// prng( sprng ) % 17 + 5; values 0-16 + 5 = 5-21
409// prng( sprng, 16 + 1 ) + 5;
410// prng( sprng, 5, 21 );
411// calls( sprng );
412
413forall( PRNG &, R )
414trait basic_prng {
415 void set_seed( PRNG & prng, R seed ); // set seed
416 R get_seed( PRNG & prng ); // get seed
417 R prng( PRNG & prng );
418 void ?{}( PRNG & prng ); // random seed
419 void ?{}( PRNG & prng, R seed ); // fixed seed
420}; // basic_prng
421
422static inline forall( PRNG &, R | basic_prng( PRNG, R ) | { R ?%?( R, R ); } ) {
423 R prng( PRNG & prng, R u ) { return prng( prng ) % u; } // [0,u)
424}
425static inline forall( PRNG &, R | basic_prng( PRNG, R ) | { R ?+?( R, R ); R ?-?( R, R ); R ?%?( R, R ); void ?{}( R &, one_t ); } ) {
426 R prng( PRNG & prng, R l, R u ) { return prng( prng, u - l + (R){1} ) + l; } // [l,u]
427}
428
429struct PRNG32 {
430 uint32_t callcnt; // call count
431 uint32_t seed; // current seed
432 PRNG_STATE_32_T state; // random state
433}; // PRNG
434
435static inline {
436 void set_seed( PRNG32 & prng, uint32_t seed_ ) with( prng ) { seed = seed_; PRNG_SET_SEED_32( state, seed ); }
437 uint32_t get_seed( PRNG32 & prng ) __attribute__(( warn_unused_result )) with( prng ) { return seed; }
438 uint32_t prng( PRNG32 & prng ) __attribute__(( warn_unused_result )) with( prng ) { callcnt += 1; return PRNG_NAME_32( state ); } // [0,UINT_MAX]
439 uint32_t prng( PRNG32 & prng, uint32_t u ) __attribute__(( warn_unused_result )) { return prng( prng ) % u; } // [0,u)
440 uint32_t prng( PRNG32 & prng, uint32_t l, uint32_t u ) __attribute__(( warn_unused_result )) { return prng( prng, u - l + 1 ) + l; } // [l,u]
441 uint32_t calls( PRNG32 & prng ) __attribute__(( warn_unused_result )) with( prng ) { return callcnt; }
442 void ?{}( PRNG32 & prng ) with( prng ) { callcnt = 0; set_seed( prng, rdtscl() ); } // random seed
443 void ?{}( PRNG32 & prng, uint32_t seed ) with( prng ) { callcnt = 0; set_seed( prng, seed ); } // fixed seed
444} // distribution
445
446struct PRNG64 {
447 uint64_t callcnt; // call count
448 uint64_t seed; // current seed
449 PRNG_STATE_64_T state; // random state
450}; // PRNG
451
452static inline {
453 void set_seed( PRNG64 & prng, uint64_t seed_ ) with( prng ) { seed = seed_; PRNG_SET_SEED_64( state, seed ); }
454 uint64_t get_seed( PRNG64 & prng ) __attribute__(( warn_unused_result )) with( prng ) { return seed; }
455 uint64_t prng( PRNG64 & prng ) __attribute__(( warn_unused_result )) with( prng ) { callcnt += 1; return PRNG_NAME_64( state ); } // [0,UINT_MAX]
456 uint64_t prng( PRNG64 & prng, uint64_t u ) __attribute__(( warn_unused_result )) { return prng( prng ) % u; } // [0,u)
457 uint64_t prng( PRNG64 & prng, uint64_t l, uint64_t u ) __attribute__(( warn_unused_result )) { return prng( prng, u - l + 1 ) + l; } // [l,u]
458 uint64_t calls( PRNG64 & prng ) __attribute__(( warn_unused_result )) with( prng ) { return callcnt; }
459 void ?{}( PRNG64 & prng ) with( prng ) { callcnt = 0; set_seed( prng, rdtscl() ); } // random seed
460 void ?{}( PRNG64 & prng, uint64_t seed ) with( prng ) { callcnt = 0; set_seed( prng, seed ); } // fixed seed
461} // distribution
462
463// Set default random-generator size.
464#if defined( __x86_64__ ) || defined( __aarch64__ ) // 64-bit architecture
465#define PRNG PRNG64
466#else // 32-bit architecture
467#define PRNG PRNG32
468#endif // __x86_64__
469
470// Concurrent Pseudo Random-Number Generator : generate repeatable sequence of values that appear random.
471//
472// Interface :
473// set_seed( 1009 ) - fixed seed for all kernel threads versus random seed
474// get_seed() - read seed
475// prng() - generate random value in range [0,UINT_MAX]
476// prng( u ) - generate random value in range [0,u)
477// prng( l, u ) - generate random value in range [l,u]
478//
479// Examples : generate random number between 5-21
480// prng() % 17 + 5; values 0-16 + 5 = 5-21
481// prng( 16 + 1 ) + 5;
482// prng( 5, 21 );
483
484// Harmonize with concurrency/thread.hfa.
485void set_seed( size_t seed_ ) OPTIONAL_THREAD; // set global seed
486size_t get_seed() __attribute__(( warn_unused_result )); // get global seed
487size_t prng( void ) __attribute__(( warn_unused_result )) OPTIONAL_THREAD; // [0,UINT_MAX]
488static inline {
489 size_t prng( size_t u ) __attribute__(( warn_unused_result )) { return prng() % u; } // [0,u)
490 size_t prng( size_t l, size_t u ) __attribute__(( warn_unused_result )) { return prng( u - l + 1 ) + l; } // [l,u]
491} // distribution
492
493//---------------------------------------
494
495extern bool threading_enabled( void ) OPTIONAL_THREAD;
496
497// Local Variables: //
498// mode: c //
499// tab-width: 4 //
500// End: //
Note: See TracBrowser for help on using the repository browser.