source: libcfa/src/stdlib.hfa@ 4557bcf7

ADT arm-eh ast-experimental enum forall-pointer-decay jacob/cs343-translation new-ast-unique-expr pthread-emulation qualifiedEnum
Last change on this file since 4557bcf7 was 68f0c4e, checked in by m3zulfiq <m3zulfiq@…>, 5 years ago

stdlib.hfa: changed CFA malloc, realloc and resize as discussed with Peter. malloc.cfa: corrected CFA posix-memalign test. alloc.txt: corrected expected alloc test output (temporarily, yet to be reviewed by Peter) while old expected output is in alloc-old.txt (temporary file to be removed after review with Peter)

  • Property mode set to 100644
File size: 15.1 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// stdlib --
8//
9// Author : Peter A. Buhr
10// Created On : Thu Jan 28 17:12:35 2016
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Fri Aug 14 23:38:50 2020
13// Update Count : 504
14//
15
16#pragma once
17
18#include "bits/defs.hfa"
19#include "bits/align.hfa"
20
21#include <stdlib.h> // *alloc, strto*, ato*
22#include <heap.hfa>
23
24// Reduce includes by explicitly defining these routines.
25extern "C" {
26 void * memalign( size_t alignment, size_t size ); // malloc.h
27 void * pvalloc( size_t size ); // malloc.h
28 void * memset( void * dest, int fill, size_t size ); // string.h
29 void * memcpy( void * dest, const void * src, size_t size ); // string.h
30} // extern "C"
31
32//---------------------------------------
33
34#ifndef EXIT_FAILURE
35#define EXIT_FAILURE 1 // failing exit status
36#define EXIT_SUCCESS 0 // successful exit status
37#endif // ! EXIT_FAILURE
38
39//---------------------------------------
40
41#include "common.hfa"
42
43//---------------------------------------
44
45#define $ARRAY_ALLOC( allocation, alignment, dim ) \
46 if ( _Alignof(T) <= libAlign() ) return (T *)(void *)allocation( dim, (size_t)sizeof(T) ); /* C allocation */ \
47 else return (T *)alignment( _Alignof(T), dim, sizeof(T) )
48
49static inline forall( dtype T | sized(T) ) {
50 // Cforall safe equivalents, i.e., implicit size specification
51
52 T * malloc( void ) {
53 if ( _Alignof(T) <= libAlign() ) return (T *)(void *)malloc( (size_t)sizeof(T) ); /* C allocation */
54 else return (T *)memalign( _Alignof(T), sizeof(T) );
55 } // malloc
56
57 T * aalloc( size_t dim ) {
58 $ARRAY_ALLOC( aalloc, amemalign, dim );
59 } // aalloc
60
61 T * calloc( size_t dim ) {
62 $ARRAY_ALLOC( calloc, cmemalign, dim );
63 } // calloc
64
65 T * resize( T * ptr, size_t size ) { // CFA resize, eliminate return-type cast
66 if ( _Alignof(T) <= libAlign() ) return (T *)(void *)resize( (void *)ptr, size ); // CFA resize
67 else return (T *)(void *)resize( (void *)ptr, _Alignof(T), size ); // CFA resize
68 } // resize
69
70 T * realloc( T * ptr, size_t size ) { // CFA realloc, eliminate return-type cast
71 if ( _Alignof(T) <= libAlign() ) return (T *)(void *)realloc( (void *)ptr, size ); // C realloc
72 else return (T *)(void *)realloc( (void *)ptr, _Alignof(T), size ); // CFA realloc
73 } // realloc
74
75 T * memalign( size_t align ) {
76 return (T *)memalign( align, sizeof(T) ); // C memalign
77 } // memalign
78
79 T * amemalign( size_t align, size_t dim ) {
80 return (T *)amemalign( align, dim, sizeof(T) ); // CFA amemalign
81 } // amemalign
82
83 T * cmemalign( size_t align, size_t dim ) {
84 return (T *)cmemalign( align, dim, sizeof(T) ); // CFA cmemalign
85 } // cmemalign
86
87 T * aligned_alloc( size_t align ) {
88 return (T *)aligned_alloc( align, sizeof(T) ); // C aligned_alloc
89 } // aligned_alloc
90
91 int posix_memalign( T ** ptr, size_t align ) {
92 return posix_memalign( (void **)ptr, align, sizeof(T) ); // C posix_memalign
93 } // posix_memalign
94
95 T * valloc( void ) {
96 return (T *)valloc( sizeof(T) ); // C valloc
97 } // valloc
98
99 T * pvalloc( void ) {
100 return (T *)pvalloc( sizeof(T) ); // C pvalloc
101 } // pvalloc
102} // distribution
103
104/*
105 FIX ME : fix alloc interface after Ticker Number 214 is resolved, define and add union to S_fill. Then, modify postfix-fill functions to support T * with nmemb, char, and T object of any size. Finally, change alloc_internal.
106 Or, just follow the instructions below for that.
107
108 1. Replace the current forall-block that contains defintions of S_fill and S_realloc with following:
109 forall( dtype T | sized(T) ) {
110 union U_fill { char c; T * a; T t; };
111 struct S_fill { char tag; char c; size_t size; T * at; char t[50]; };
112 struct S_realloc { inline T *; };
113 }
114
115 2. Replace all current postfix-fill functions with following for updated S_fill:
116 S_fill(T) ?`fill( char a ) { S_fill(T) ret = {'c'}; ret.fill.c = a; return ret; }
117 S_fill(T) ?`fill( T a ) { S_fill(T) ret = {'t'}; memcpy(&ret.fill.t, &a, sizeof(T)); return ret; }
118 S_fill(T) ?`fill( T a[], size_t nmemb ) { S_fill(T) ret = {'a', nmemb}; ret.fill.a = a; return ret; }
119
120 3. Replace the $alloc_internal function which is outside ttype forall-block with following function:
121 T * $alloc_internal( void * Resize, T * Realloc, size_t Align, size_t Dim, S_fill(T) Fill) {
122 T * ptr = NULL;
123 size_t size = sizeof(T);
124 size_t copy_end = 0;
125
126 if(Resize) {
127 ptr = (T*) (void *) resize( (int *)Resize, Align, Dim * size );
128 } else if (Realloc) {
129 if (Fill.tag != '0') copy_end = min(malloc_size( Realloc ), Dim * size);
130 ptr = (T*) (void *) realloc( (int *)Realloc, Align, Dim * size );
131 } else {
132 ptr = (T*) (void *) memalign( Align, Dim * size );
133 }
134
135 if(Fill.tag == 'c') {
136 memset( (char *)ptr + copy_end, (int)Fill.fill.c, Dim * size - copy_end );
137 } else if(Fill.tag == 't') {
138 for ( int i = copy_end; i <= Dim * size - size ; i += size ) {
139 memcpy( (char *)ptr + i, &Fill.fill.t, size );
140 }
141 } else if(Fill.tag == 'a') {
142 memcpy( (char *)ptr + copy_end, Fill.fill.a, min(Dim * size - copy_end, size * Fill.nmemb) );
143 }
144
145 return ptr;
146 } // $alloc_internal
147*/
148
149typedef struct S_align { inline size_t; } T_align;
150typedef struct S_resize { inline void *; } T_resize;
151
152forall( dtype T ) {
153 struct S_fill { char tag; char c; size_t size; T * at; char t[50]; };
154 struct S_realloc { inline T *; };
155}
156
157static inline T_align ?`align ( size_t a ) { return (T_align){a}; }
158static inline T_resize ?`resize ( void * a ) { return (T_resize){a}; }
159static inline forall( dtype T | sized(T) ) {
160
161 S_fill(T) ?`fill ( T t ) {
162 S_fill(T) ret = { 't' };
163 size_t size = sizeof(T);
164 if(size > sizeof(ret.t)) { printf("ERROR: const object of size greater than 50 bytes given for dynamic memory fill\n"); exit(1); }
165 memcpy( &ret.t, &t, size );
166 return ret;
167 }
168 S_fill(T) ?`fill ( char c ) { return (S_fill(T)){ 'c', c }; }
169 S_fill(T) ?`fill ( T * a ) { return (S_fill(T)){ 'T', '0', 0, a }; }
170 S_fill(T) ?`fill ( T a[], size_t nmemb ) { return (S_fill(T)){ 'a', '0', nmemb * sizeof(T), a }; }
171
172 S_realloc(T) ?`realloc ( T * a ) { return (S_realloc(T)){a}; }
173
174 T * $alloc_internal( void * Resize, T * Realloc, size_t Align, size_t Dim, S_fill(T) Fill) {
175 T * ptr = NULL;
176 size_t size = sizeof(T);
177 size_t copy_end = 0;
178 if(Resize) {
179//printf("1. $alloc_internal got: %p %p %lu %lu\n", Resize, Realloc, Align, Dim); // these prints are temporary
180 ptr = (T*) (void *) resize( (void *)Resize, Align, Dim * size );
181 } else if (Realloc) {
182 if (Fill.tag != '0') copy_end = min(malloc_size( Realloc ), Dim * size);
183//printf("2. $alloc_internal got: %p %p %lu %lu\n", Resize, Realloc, Align, Dim);
184 ptr = (T*) (void *) realloc( (void *)Realloc, Align, Dim * size );
185 } else {
186//printf("3. $alloc_internal got: %p %p %lu %lu\n", Resize, Realloc, Align, Dim);
187 ptr = (T*) (void *) memalign( Align, Dim * size );
188 }
189
190 if(Fill.tag == 'c') {
191 memset( (char *)ptr + copy_end, (int)Fill.c, Dim * size - copy_end );
192 } else if(Fill.tag == 't') {
193 for ( int i = copy_end; i < Dim * size; i += size ) {
194 memcpy( (char *)ptr + i, &Fill.t, size );
195 }
196 } else if(Fill.tag == 'a') {
197 memcpy( (char *)ptr + copy_end, Fill.at, min(Dim * size - copy_end, Fill.size) );
198 } else if(Fill.tag == 'T') {
199 for ( int i = copy_end; i < Dim * size; i += size ) {
200 memcpy( (char *)ptr + i, Fill.at, size );
201 }
202 }
203
204 return ptr;
205 } // $alloc_internal
206
207 forall( ttype TT | { T * $alloc_internal( void *, T *, size_t, size_t, S_fill(T), TT ); } ) {
208
209 T * $alloc_internal( void * , T * Realloc, size_t Align, size_t Dim, S_fill(T) Fill, T_resize Resize, TT rest) {
210 return $alloc_internal( Resize, (T*)0p, Align, Dim, Fill, rest);
211 }
212
213 T * $alloc_internal( void * Resize, T * , size_t Align, size_t Dim, S_fill(T) Fill, S_realloc(T) Realloc, TT rest) {
214 return $alloc_internal( (void*)0p, Realloc, Align, Dim, Fill, rest);
215 }
216
217 T * $alloc_internal( void * Resize, T * Realloc, size_t , size_t Dim, S_fill(T) Fill, T_align Align, TT rest) {
218 return $alloc_internal( Resize, Realloc, Align, Dim, Fill, rest);
219 }
220
221 T * $alloc_internal( void * Resize, T * Realloc, size_t Align, size_t Dim, S_fill(T) , S_fill(T) Fill, TT rest) {
222 return $alloc_internal( Resize, Realloc, Align, Dim, Fill, rest);
223 }
224
225 T * alloc( TT all ) {
226 return $alloc_internal( (void*)0p, (T*)0p, (_Alignof(T) > libAlign() ? _Alignof(T) : libAlign()), (size_t)1, (S_fill(T)){'0'}, all);
227 }
228
229 T * alloc( size_t dim, TT all ) {
230 return $alloc_internal( (void*)0p, (T*)0p, (_Alignof(T) > libAlign() ? _Alignof(T) : libAlign()), dim, (S_fill(T)){'0'}, all);
231 }
232
233 } // distribution TT
234
235} // distribution T
236
237static inline forall( dtype T | sized(T) ) {
238 // Cforall safe initialization/copy, i.e., implicit size specification, non-array types
239 T * memset( T * dest, char fill ) {
240 return (T *)memset( dest, fill, sizeof(T) );
241 } // memset
242
243 T * memcpy( T * dest, const T * src ) {
244 return (T *)memcpy( dest, src, sizeof(T) );
245 } // memcpy
246} // distribution
247
248static inline forall( dtype T | sized(T) ) {
249 // Cforall safe initialization/copy, i.e., implicit size specification, array types
250 T * amemset( T dest[], char fill, size_t dim ) {
251 return (T *)(void *)memset( dest, fill, dim * sizeof(T) ); // C memset
252 } // amemset
253
254 T * amemcpy( T dest[], const T src[], size_t dim ) {
255 return (T *)(void *)memcpy( dest, src, dim * sizeof(T) ); // C memcpy
256 } // amemcpy
257} // distribution
258
259// Cforall allocation/deallocation and constructor/destructor, non-array types
260forall( dtype T | sized(T), ttype Params | { void ?{}( T &, Params ); } ) T * new( Params p );
261forall( dtype T | { void ^?{}( T & ); } ) void delete( T * ptr );
262forall( dtype T, ttype Params | { void ^?{}( T & ); void delete( Params ); } ) void delete( T * ptr, Params rest );
263
264// Cforall allocation/deallocation and constructor/destructor, array types
265forall( dtype T | sized(T), ttype Params | { void ?{}( T &, Params ); } ) T * anew( size_t dim, Params p );
266forall( dtype T | sized(T) | { void ^?{}( T & ); } ) void adelete( size_t dim, T arr[] );
267forall( dtype T | sized(T) | { void ^?{}( T & ); }, ttype Params | { void adelete( Params ); } ) void adelete( size_t dim, T arr[], Params rest );
268
269//---------------------------------------
270
271static inline {
272 int strto( const char sptr[], char ** eptr, int base ) { return (int)strtol( sptr, eptr, base ); }
273 unsigned int strto( const char sptr[], char ** eptr, int base ) { return (unsigned int)strtoul( sptr, eptr, base ); }
274 long int strto( const char sptr[], char ** eptr, int base ) { return strtol( sptr, eptr, base ); }
275 unsigned long int strto( const char sptr[], char ** eptr, int base ) { return strtoul( sptr, eptr, base ); }
276 long long int strto( const char sptr[], char ** eptr, int base ) { return strtoll( sptr, eptr, base ); }
277 unsigned long long int strto( const char sptr[], char ** eptr, int base ) { return strtoull( sptr, eptr, base ); }
278
279 float strto( const char sptr[], char ** eptr ) { return strtof( sptr, eptr ); }
280 double strto( const char sptr[], char ** eptr ) { return strtod( sptr, eptr ); }
281 long double strto( const char sptr[], char ** eptr ) { return strtold( sptr, eptr ); }
282} // distribution
283
284float _Complex strto( const char sptr[], char ** eptr );
285double _Complex strto( const char sptr[], char ** eptr );
286long double _Complex strto( const char sptr[], char ** eptr );
287
288static inline {
289 int ato( const char sptr[] ) { return (int)strtol( sptr, 0p, 10 ); }
290 unsigned int ato( const char sptr[] ) { return (unsigned int)strtoul( sptr, 0p, 10 ); }
291 long int ato( const char sptr[] ) { return strtol( sptr, 0p, 10 ); }
292 unsigned long int ato( const char sptr[] ) { return strtoul( sptr, 0p, 10 ); }
293 long long int ato( const char sptr[] ) { return strtoll( sptr, 0p, 10 ); }
294 unsigned long long int ato( const char sptr[] ) { return strtoull( sptr, 0p, 10 ); }
295
296 float ato( const char sptr[] ) { return strtof( sptr, 0p ); }
297 double ato( const char sptr[] ) { return strtod( sptr, 0p ); }
298 long double ato( const char sptr[] ) { return strtold( sptr, 0p ); }
299
300 float _Complex ato( const char sptr[] ) { return strto( sptr, 0p ); }
301 double _Complex ato( const char sptr[] ) { return strto( sptr, 0p ); }
302 long double _Complex ato( const char sptr[] ) { return strto( sptr, 0p ); }
303} // distribution
304
305//---------------------------------------
306
307forall( otype E | { int ?<?( E, E ); } ) {
308 E * bsearch( E key, const E * vals, size_t dim );
309 size_t bsearch( E key, const E * vals, size_t dim );
310 E * bsearchl( E key, const E * vals, size_t dim );
311 size_t bsearchl( E key, const E * vals, size_t dim );
312 E * bsearchu( E key, const E * vals, size_t dim );
313 size_t bsearchu( E key, const E * vals, size_t dim );
314} // distribution
315
316forall( otype K, otype E | { int ?<?( K, K ); K getKey( const E & ); } ) {
317 E * bsearch( K key, const E * vals, size_t dim );
318 size_t bsearch( K key, const E * vals, size_t dim );
319 E * bsearchl( K key, const E * vals, size_t dim );
320 size_t bsearchl( K key, const E * vals, size_t dim );
321 E * bsearchu( K key, const E * vals, size_t dim );
322 size_t bsearchu( K key, const E * vals, size_t dim );
323} // distribution
324
325forall( otype E | { int ?<?( E, E ); } ) {
326 void qsort( E * vals, size_t dim );
327} // distribution
328
329//---------------------------------------
330
331extern "C" { // override C version
332 void srandom( unsigned int seed );
333 long int random( void ); // GENERATES POSITIVE AND NEGATIVE VALUES
334 // For positive values, use unsigned int, e.g., unsigned int r = random() % 100U;
335} // extern "C"
336
337static inline {
338 long int random( long int l, long int u ) { if ( u < l ) [u, l] = [l, u]; return lrand48() % (u - l) + l; } // [l,u)
339 long int random( long int u ) { if ( u < 0 ) return random( u, 0 ); else return random( 0, u ); } // [0,u)
340 unsigned long int random( void ) { return lrand48(); }
341 unsigned long int random( unsigned long int u ) { return lrand48() % u; } // [0,u)
342 unsigned long int random( unsigned long int l, unsigned long int u ) { if ( u < l ) [u, l] = [l, u]; return lrand48() % (u - l) + l; } // [l,u)
343
344 char random( void ) { return (unsigned long int)random(); }
345 char random( char u ) { return random( (unsigned long int)u ); } // [0,u)
346 char random( char l, char u ) { return random( (unsigned long int)l, (unsigned long int)u ); } // [l,u)
347 int random( void ) { return (long int)random(); }
348 int random( int u ) { return random( (long int)u ); } // [0,u]
349 int random( int l, int u ) { return random( (long int)l, (long int)u ); } // [l,u)
350 unsigned int random( void ) { return (unsigned long int)random(); }
351 unsigned int random( unsigned int u ) { return random( (unsigned long int)u ); } // [0,u]
352 unsigned int random( unsigned int l, unsigned int u ) { return random( (unsigned long int)l, (unsigned long int)u ); } // [l,u)
353} // distribution
354
355float random( void ); // [0.0, 1.0)
356double random( void ); // [0.0, 1.0)
357float _Complex random( void ); // [0.0, 1.0)+[0.0, 1.0)i
358double _Complex random( void ); // [0.0, 1.0)+[0.0, 1.0)i
359long double _Complex random( void ); // [0.0, 1.0)+[0.0, 1.0)i
360
361//---------------------------------------
362
363extern bool threading_enabled(void) OPTIONAL_THREAD;
364
365// Local Variables: //
366// mode: c //
367// tab-width: 4 //
368// End: //
Note: See TracBrowser for help on using the repository browser.