source: libcfa/src/stdlib.hfa@ 358e1152

Last change on this file since 358e1152 was d4264e8, checked in by Peter A. Buhr <pabuhr@…>, 17 months ago

formatting, add CFA versions of resize, realloc, and reallocarray

  • Property mode set to 100644
File size: 22.2 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// stdlib --
8//
9// Author : Peter A. Buhr
10// Created On : Thu Jan 28 17:12:35 2016
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Fri Apr 19 09:47:55 2024
13// Update Count : 826
14//
15
16#pragma once
17
18#include "bits/defs.hfa" // OPTIONAL_THREAD
19#include "bits/align.hfa" // libAlign
20#include "bits/random.hfa" // prng
21#include <Exception.hfa>
22#include <heap.hfa>
23
24#include <stdlib.h> // *alloc, strto*, ato*
25#include <errno.h>
26
27// Reduce includes by explicitly defining these routines.
28extern "C" {
29 void * memalign( size_t alignment, size_t size ); // malloc.h
30 void * pvalloc( size_t size ); // malloc.h
31 void * memset( void * dest, int fill, size_t size ); // string.h
32 void * memcpy( void * dest, const void * src, size_t size ); // string.h
33} // extern "C"
34
35//---------------------------------------
36
37#ifndef EXIT_FAILURE
38#define EXIT_FAILURE 1 // failing exit status
39#define EXIT_SUCCESS 0 // successful exit status
40#endif // ! EXIT_FAILURE
41
42//---------------------------------------
43
44#include "common.hfa"
45
46//---------------------------------------
47
48static inline forall( T & | sized(T) ) {
49 // CFA safe equivalents, i.e., implicit size specification, eliminate return-type cast
50
51 T * malloc( void ) {
52 if ( _Alignof(T) <= libAlign() ) return (T *)malloc( sizeof(T) ); // C allocation
53 else return (T *)memalign( _Alignof(T), sizeof(T) );
54 } // malloc
55
56 T * aalloc( size_t dim ) {
57 if ( _Alignof(T) <= libAlign() ) return (T *)aalloc( dim, sizeof(T) ); // C allocation
58 else return (T *)amemalign( _Alignof(T), dim, sizeof(T) );
59 } // aalloc
60
61 T * calloc( size_t dim ) {
62 if ( _Alignof(T) <= libAlign() ) return (T *)calloc( dim, sizeof(T) ); // C allocation
63 else return (T *)cmemalign( _Alignof(T), dim, sizeof(T) );
64 } // calloc
65
66 T * resize( T * ptr, size_t size ) {
67 if ( _Alignof(T) <= libAlign() ) return (T *)resize( (void *)ptr, size ); // C resize
68 else return (T *)resize( (void *)ptr, _Alignof(T), size ); // CFA resize
69 } // resize
70
71 T * resize( T * ptr, size_t alignment, size_t size ) {
72 return (T *)resize( (void *)ptr, alignment, size ); // CFA resize
73 } // resize
74
75 T * realloc( T * ptr, size_t size ) { // CFA realloc
76 if ( _Alignof(T) <= libAlign() ) return (T *)realloc( (void *)ptr, size ); // C realloc
77 else return (T *)realloc( (void *)ptr, _Alignof(T), size ); // CFA realloc
78 } // realloc
79
80 T * realloc( T * ptr, size_t alignment, size_t size ) {
81 return (T *)realloc( (void *)ptr, alignment, size ); // CFA realloc
82 } // realloc
83
84 T * reallocarray( T * ptr, size_t dim ) { // CFA reallocarray
85 if ( _Alignof(T) <= libAlign() ) return (T *)reallocarray( (void *)ptr, dim, sizeof(T) ); // C reallocarray
86 else return (T *)reallocarray( (void *)ptr, _Alignof(T), dim ); // CFA reallocarray
87 } // realloc
88
89 T * reallocarray( T * ptr, size_t alignment, size_t dim ) {
90 return (T *)reallocarray( (void *)ptr, alignment, dim ); // CFA reallocarray
91 } // realloc
92
93 T * memalign( size_t align ) {
94 return (T *)memalign( align, sizeof(T) ); // C memalign
95 } // memalign
96
97 T * amemalign( size_t align, size_t dim ) {
98 return (T *)amemalign( align, dim, sizeof(T) ); // CFA amemalign
99 } // amemalign
100
101 T * cmemalign( size_t align, size_t dim ) {
102 return (T *)cmemalign( align, dim, sizeof(T) ); // CFA cmemalign
103 } // cmemalign
104
105 T * aligned_alloc( size_t align ) {
106 return (T *)aligned_alloc( align, sizeof(T) ); // C aligned_alloc
107 } // aligned_alloc
108
109 int posix_memalign( T ** ptr, size_t align ) {
110 return posix_memalign( (void **)ptr, align, sizeof(T) ); // C posix_memalign
111 } // posix_memalign
112
113 T * valloc( void ) {
114 return (T *)valloc( sizeof(T) ); // C valloc
115 } // valloc
116
117 T * pvalloc( void ) {
118 return (T *)pvalloc( sizeof(T) ); // C pvalloc
119 } // pvalloc
120} // distribution
121
122/*
123 FIX ME : fix alloc interface after Ticker Number 214 is resolved, define and add union to S_fill. Then, modify postfix-fill functions to support T * with nmemb, char, and T object of any size. Finally, change alloc_internal.
124 Or, just follow the instructions below for that.
125
126 1. Replace the current forall-block that contains defintions of S_fill and S_realloc with following:
127 forall( T & | sized(T) ) {
128 union U_fill { char c; T * a; T t; };
129 struct S_fill { char tag; U_fill(T) fill; };
130 struct S_realloc { inline T *; };
131 }
132
133 2. Replace all current postfix-fill functions with following for updated S_fill:
134 S_fill(T) ?`fill( char a ) { S_fill(T) ret = {'c'}; ret.fill.c = a; return ret; }
135 S_fill(T) ?`fill( T a ) { S_fill(T) ret = {'t'}; memcpy(&ret.fill.t, &a, sizeof(T)); return ret; }
136 S_fill(T) ?`fill( T a[], size_t nmemb ) { S_fill(T) ret = {'a', nmemb}; ret.fill.a = a; return ret; }
137
138 3. Replace the alloc_internal$ function which is outside ttype forall-block with following function:
139 T * alloc_internal$( void * Resize, T * Realloc, size_t Align, size_t Dim, S_fill(T) Fill) {
140 T * ptr = NULL;
141 size_t size = sizeof(T);
142 size_t copy_end = 0;
143
144 if(Resize) {
145 ptr = (T*) (void *) resize( (int *)Resize, Align, Dim * size );
146 } else if (Realloc) {
147 if (Fill.tag != '0') copy_end = min(malloc_size( Realloc ), Dim * size);
148 ptr = (T*) (void *) realloc( (int *)Realloc, Align, Dim * size );
149 } else {
150 ptr = (T*) (void *) memalign( Align, Dim * size );
151 }
152
153 if(Fill.tag == 'c') {
154 memset( (char *)ptr + copy_end, (int)Fill.fill.c, Dim * size - copy_end );
155 } else if(Fill.tag == 't') {
156 for ( int i = copy_end; i <= Dim * size - size ; i += size ) {
157 memcpy( (char *)ptr + i, &Fill.fill.t, size );
158 }
159 } else if(Fill.tag == 'a') {
160 memcpy( (char *)ptr + copy_end, Fill.fill.a, min(Dim * size - copy_end, size * Fill.nmemb) );
161 }
162
163 return ptr;
164 } // alloc_internal$
165*/
166
167typedef struct S_align { inline size_t; } T_align;
168typedef struct S_resize { inline void *; } T_resize;
169
170forall( T & ) {
171 struct S_fill { char tag; char c; size_t size; T * at; char t[50]; };
172 struct S_realloc { inline T *; };
173}
174
175static inline T_align ?`align( size_t a ) { return (T_align){a}; }
176static inline T_resize ?`resize( void * a ) { return (T_resize){a}; }
177
178static inline forall( T & | sized(T) ) {
179 S_fill(T) ?`fill( T t ) {
180 S_fill(T) ret = { 't' };
181 size_t size = sizeof(T);
182 if ( size > sizeof(ret.t) ) {
183 abort( "ERROR: const object of size greater than 50 bytes given for dynamic memory fill\n" );
184 } // if
185 memcpy( &ret.t, &t, size );
186 return ret;
187 }
188 S_fill(T) ?`fill( zero_t ) = void; // FIX ME: remove this once ticket 214 is resolved
189 S_fill(T) ?`fill( T * a ) { return (S_fill(T)){ 'T', '0', 0, a }; } // FIX ME: remove this once ticket 214 is resolved
190 S_fill(T) ?`fill( char c ) { return (S_fill(T)){ 'c', c }; }
191 S_fill(T) ?`fill( T a[], size_t nmemb ) { return (S_fill(T)){ 'a', '0', nmemb * sizeof(T), a }; }
192
193 S_realloc(T) ?`realloc ( T * a ) { return (S_realloc(T)){a}; }
194
195 T * alloc_internal$( void * Resize, T * Realloc, size_t Align, size_t Dim, S_fill(T) Fill ) {
196 T * ptr = NULL;
197 size_t size = sizeof(T);
198 size_t copy_end = 0;
199
200 if ( Resize ) {
201 ptr = (T*)(void *)resize( (void *)Resize, Align, Dim * size );
202 } else if ( Realloc ) {
203 if ( Fill.tag != '0' ) copy_end = min(malloc_size( Realloc ), Dim * size );
204 ptr = (T *)(void *)realloc( (void *)Realloc, Align, Dim * size );
205 } else {
206 ptr = (T *)(void *) memalign( Align, Dim * size );
207 }
208
209 if ( Fill.tag == 'c' ) {
210 memset( (char *)ptr + copy_end, (int)Fill.c, Dim * size - copy_end );
211 } else if ( Fill.tag == 't' ) {
212 for ( i; copy_end ~ Dim * size ~ size ) {
213 #pragma GCC diagnostic push
214 #pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
215 assert( size <= sizeof(Fill.t) );
216 memcpy( (char *)ptr + i, &Fill.t, size );
217 #pragma GCC diagnostic pop
218 }
219 } else if ( Fill.tag == 'a' ) {
220 memcpy( (char *)ptr + copy_end, Fill.at, min(Dim * size - copy_end, Fill.size) );
221 } else if ( Fill.tag == 'T' ) {
222 memcpy( (char *)ptr + copy_end, Fill.at, Dim * size );
223 }
224
225 return ptr;
226 } // alloc_internal$
227
228 forall( List ... | { T * alloc_internal$( void *, T *, size_t, size_t, S_fill(T), List ); } ) {
229 T * alloc_internal$( void *, T *, size_t Align, size_t Dim, S_fill(T) Fill, T_resize Resize, List rest ) {
230 return alloc_internal$( Resize, (T*)0p, Align, Dim, Fill, rest);
231 }
232
233 T * alloc_internal$( void *, T *, size_t Align, size_t Dim, S_fill(T) Fill, S_realloc(T) Realloc, List rest ) {
234 return alloc_internal$( (void*)0p, Realloc, Align, Dim, Fill, rest);
235 }
236
237 T * alloc_internal$( void * Resize, T * Realloc, size_t, size_t Dim, S_fill(T) Fill, T_align Align, List rest ) {
238 return alloc_internal$( Resize, Realloc, Align, Dim, Fill, rest);
239 }
240
241 T * alloc_internal$( void * Resize, T * Realloc, size_t Align, size_t Dim, S_fill(T), S_fill(T) Fill, List rest ) {
242 return alloc_internal$( Resize, Realloc, Align, Dim, Fill, rest );
243 }
244
245 T * alloc( List all ) {
246 return alloc_internal$( (void*)0p, (T*)0p, (_Alignof(T) > libAlign() ? _Alignof(T) : libAlign()), (size_t)1, (S_fill(T)){'0'}, all );
247 }
248
249 T * alloc( size_t dim, List all ) {
250 return alloc_internal$( (void*)0p, (T*)0p, (_Alignof(T) > libAlign() ? _Alignof(T) : libAlign()), dim, (S_fill(T)){'0'}, all );
251 }
252 } // distribution List
253} // distribution T
254
255static inline forall( T & | sized(T) ) {
256 // CFA safe initialization/copy, i.e., implicit size specification, non-array types
257 T * memset( T * dest, char fill ) {
258 return (T *)memset( dest, fill, sizeof(T) );
259 } // memset
260
261 T * memcpy( T * dest, const T * src ) {
262 return (T *)memcpy( dest, src, sizeof(T) );
263 } // memcpy
264
265 // CFA safe initialization/copy, i.e., implicit size specification, array types
266 T * amemset( T dest[], char fill, size_t dim ) {
267 return (T *)(void *)memset( dest, fill, dim * sizeof(T) ); // C memset
268 } // amemset
269
270 T * amemcpy( T dest[], const T src[], size_t dim ) {
271 return (T *)(void *)memcpy( dest, src, dim * sizeof(T) ); // C memcpy
272 } // amemcpy
273} // distribution
274
275// CFA deallocation for multiple objects
276static inline forall( T & )
277void free( T * ptr ) {
278 free( (void *)ptr ); // C free
279} // free
280static inline forall( T &, List ... | { void free( List ); } )
281void free( T * ptr, List rest ) {
282 free( ptr );
283 free( rest );
284} // free
285
286// CFA allocation/deallocation and constructor/destructor, non-array types
287static inline forall( T & | sized(T), Parms ... | { void ?{}( T &, Parms ); } )
288T * new( Parms p ) {
289 return &(*(T *)malloc()){ p }; // run constructor
290} // new
291
292static inline forall( T & | { void ^?{}( T & ); } )
293void delete( T * ptr ) {
294 // special case for 0-sized object => always call destructor
295 if ( ptr || sizeof(ptr) == 0 ) { // ignore null but not 0-sized objects
296 ^(*ptr){}; // run destructor
297 } // if
298 free( ptr ); // always call free
299} // delete
300static inline forall( T &, List ... | { void ^?{}( T & ); void delete( List ); } )
301void delete( T * ptr, List rest ) {
302 delete( ptr );
303 delete( rest );
304} // delete
305
306// CFA allocation/deallocation and constructor/destructor, array types
307forall( T & | sized(T), Parms ... | { void ?{}( T &, Parms ); } ) T * anew( size_t dim, Parms p );
308forall( T & | sized(T) | { void ^?{}( T & ); } ) void adelete( T arr[] );
309forall( T & | sized(T) | { void ^?{}( T & ); }, List ... | { void adelete( List ); } ) void adelete( T arr[], List rest );
310
311//---------------------------------------
312
313// Check if all string characters are a specific kind, e.g., checkif( s, isblank )
314bool checkif( const char s[], int (* kind)( int ) );
315bool checkif( const char s[], int (* kind)( int, locale_t ), locale_t locale );
316
317//---------------------------------------
318
319static inline {
320 int strto( const char sptr[], char * eptr[], int base ) { return (int)strtol( sptr, eptr, base ); }
321 unsigned int strto( const char sptr[], char * eptr[], int base ) { return (unsigned int)strtoul( sptr, eptr, base ); }
322 long int strto( const char sptr[], char * eptr[], int base ) { return strtol( sptr, eptr, base ); }
323 unsigned long int strto( const char sptr[], char * eptr[], int base ) { return strtoul( sptr, eptr, base ); }
324 long long int strto( const char sptr[], char * eptr[], int base ) { return strtoll( sptr, eptr, base ); }
325 unsigned long long int strto( const char sptr[], char * eptr[], int base ) { return strtoull( sptr, eptr, base ); }
326
327 float strto( const char sptr[], char * eptr[] ) { return strtof( sptr, eptr ); }
328 double strto( const char sptr[], char * eptr[] ) { return strtod( sptr, eptr ); }
329 long double strto( const char sptr[], char * eptr[] ) { return strtold( sptr, eptr ); }
330} // distribution
331
332float _Complex strto( const char sptr[], char * eptr[] );
333double _Complex strto( const char sptr[], char * eptr[] );
334long double _Complex strto( const char sptr[], char * eptr[] );
335
336ExceptionDecl( out_of_range );
337ExceptionDecl( invalid_argument );
338
339forall( T | { T strto( const char sptr[], char * eptr[], int ); } )
340T convert( const char sptr[] ); // integrals
341forall( T | { T strto( const char sptr[], char * eptr[] ); } )
342T convert( const char sptr[] ); // floating-point (no base)
343
344static inline {
345 int ato( const char sptr[] ) { return (int)strtol( sptr, 0p, 10 ); }
346 unsigned int ato( const char sptr[] ) { return (unsigned int)strtoul( sptr, 0p, 10 ); }
347 long int ato( const char sptr[] ) { return strtol( sptr, 0p, 10 ); }
348 unsigned long int ato( const char sptr[] ) { return strtoul( sptr, 0p, 10 ); }
349 long long int ato( const char sptr[] ) { return strtoll( sptr, 0p, 10 ); }
350 unsigned long long int ato( const char sptr[] ) { return strtoull( sptr, 0p, 10 ); }
351
352 float ato( const char sptr[] ) { return strtof( sptr, 0p ); }
353 double ato( const char sptr[] ) { return strtod( sptr, 0p ); }
354 long double ato( const char sptr[] ) { return strtold( sptr, 0p ); }
355
356 float _Complex ato( const char sptr[] ) { return strto( sptr, 0p ); }
357 double _Complex ato( const char sptr[] ) { return strto( sptr, 0p ); }
358 long double _Complex ato( const char sptr[] ) { return strto( sptr, 0p ); }
359} // distribution
360
361//---------------------------------------
362
363forall( E | { int ?<?( E, E ); } ) {
364 E * bsearch( E key, const E * vals, size_t dim );
365 size_t bsearch( E key, const E * vals, size_t dim );
366 E * bsearchl( E key, const E * vals, size_t dim );
367 size_t bsearchl( E key, const E * vals, size_t dim );
368 E * bsearchu( E key, const E * vals, size_t dim );
369 size_t bsearchu( E key, const E * vals, size_t dim );
370} // distribution
371
372forall( K, E | { int ?<?( K, K ); K getKey( const E & ); } ) {
373 E * bsearch( K key, const E * vals, size_t dim );
374 size_t bsearch( K key, const E * vals, size_t dim );
375 E * bsearchl( K key, const E * vals, size_t dim );
376 size_t bsearchl( K key, const E * vals, size_t dim );
377 E * bsearchu( K key, const E * vals, size_t dim );
378 size_t bsearchu( K key, const E * vals, size_t dim );
379} // distribution
380
381forall( E | { int ?<?( E, E ); } ) {
382 void qsort( E * vals, size_t dim );
383} // distribution
384
385//---------------------------------------
386
387extern "C" { // override C version
388 void srandom( unsigned int seed );
389 long int random( void ); // GENERATES POSITIVE AND NEGATIVE VALUES
390 // For positive values, use unsigned int, e.g., unsigned int r = random() % 100U;
391} // extern "C"
392
393static inline {
394 long int random( long int l, long int u ) { if ( u < l ) [u, l] = [l, u]; return lrand48() % (u - l + 1) + l; } // [l,u]
395 long int random( long int u ) { return random( 0, u - 1 ); } // [0,u)
396 unsigned long int random( void ) { return lrand48(); }
397 unsigned long int random( unsigned long int u ) { return lrand48() % u; } // [0,u)
398 unsigned long int random( unsigned long int l, unsigned long int u ) { if ( u < l ) [u, l] = [l, u]; return lrand48() % (u - l + 1) + l; } // [l,u]
399
400 char random( void ) { return (unsigned long int)random(); }
401 char random( char u ) { return (unsigned long int)random( (unsigned long int)u ); } // [0,u)
402 char random( char l, char u ) { return random( (unsigned long int)l, (unsigned long int)u ); } // [l,u)
403 int random( void ) { return (long int)random(); }
404 int random( int u ) { return (long int)random( (long int)u ); } // [0,u]
405 int random( int l, int u ) { return random( (long int)l, (long int)u ); } // [l,u)
406 unsigned int random( void ) { return (unsigned long int)random(); }
407 unsigned int random( unsigned int u ) { return (unsigned long int)random( (unsigned long int)u ); } // [0,u]
408 unsigned int random( unsigned int l, unsigned int u ) { return random( (unsigned long int)l, (unsigned long int)u ); } // [l,u)
409} // distribution
410
411float random( void ); // [0.0, 1.0)
412double random( void ); // [0.0, 1.0)
413float _Complex random( void ); // [0.0, 1.0)+[0.0, 1.0)i
414double _Complex random( void ); // [0.0, 1.0)+[0.0, 1.0)i
415long double _Complex random( void ); // [0.0, 1.0)+[0.0, 1.0)i
416
417//---------------------------------------
418
419// Sequential Pseudo Random-Number Generator : generate repeatable sequence of values that appear random.
420//
421// Declaration :
422// PRNG sprng = { 1009 } - set starting seed versus random seed
423//
424// Interface :
425// set_seed( sprng, 1009 ) - set starting seed for ALL kernel threads versus random seed
426// get_seed( sprng ) - read seed
427// prng( sprng ) - generate random value in range [0,UINT_MAX]
428// prng( sprng, u ) - generate random value in range [0,u)
429// prng( sprng, l, u ) - generate random value in range [l,u]
430// calls( sprng ) - number of generated random value so far
431//
432// Examples : generate random number between 5-21
433// prng( sprng ) % 17 + 5; values 0-16 + 5 = 5-21
434// prng( sprng, 16 + 1 ) + 5;
435// prng( sprng, 5, 21 );
436// calls( sprng );
437
438forall( PRNG &, R )
439trait basic_prng {
440 void set_seed( PRNG & prng, R seed ); // set seed
441 R get_seed( PRNG & prng ); // get seed
442 R prng( PRNG & prng );
443 void ?{}( PRNG & prng ); // random seed
444 void ?{}( PRNG & prng, R seed ); // fixed seed
445}; // basic_prng
446
447static inline forall( PRNG &, R | basic_prng( PRNG, R ) | { R ?%?( R, R ); } ) {
448 R prng( PRNG & prng, R u ) { return prng( prng ) % u; } // [0,u)
449}
450static inline forall( PRNG &, R | basic_prng( PRNG, R ) | { R ?+?( R, R ); R ?-?( R, R ); R ?%?( R, R ); void ?{}( R &, one_t ); } ) {
451 R prng( PRNG & prng, R l, R u ) { return prng( prng, u - l + (R){1} ) + l; } // [l,u]
452}
453
454struct PRNG32 {
455 uint32_t callcnt; // call count
456 uint32_t seed; // current seed
457 PRNG_STATE_32_T state; // random state
458}; // PRNG32
459
460static inline {
461 void set_seed( PRNG32 & prng, uint32_t seed_ ) with( prng ) { seed = seed_; PRNG_SET_SEED_32( state, seed ); }
462 uint32_t get_seed( PRNG32 & prng ) __attribute__(( warn_unused_result )) with( prng ) { return seed; }
463 void ?{}( PRNG32 & prng, uint32_t seed ) with( prng ) { callcnt = 0; set_seed( prng, seed ); } // fixed seed
464 void ?{}( PRNG32 & prng ) with( prng ) { ?{}( prng, rdtscl() ); } // random seed
465 uint32_t prng( PRNG32 & prng ) __attribute__(( warn_unused_result )) with( prng ) { callcnt += 1; return PRNG_NAME_32( state ); } // [0,UINT_MAX]
466 uint32_t prng( PRNG32 & prng, uint32_t u ) __attribute__(( warn_unused_result )) { return prng( prng ) % u; } // [0,u)
467 uint32_t prng( PRNG32 & prng, uint32_t l, uint32_t u ) __attribute__(( warn_unused_result )) { return prng( prng, u - l + 1 ) + l; } // [l,u]
468 uint32_t calls( PRNG32 & prng ) __attribute__(( warn_unused_result )) with( prng ) { return callcnt; }
469 void copy( PRNG32 & dst, PRNG32 & src ) { dst = src; } // checkpoint PRNG state, use autogen assignment
470} // distribution
471void ?{}( PRNG32 &, PRNG32 & ) = void; // no copy, remove autogen copy constructor
472PRNG32 & ?=?( PRNG32 &, const PRNG32 ) = void; // no assignment, remove autogen assignment
473
474struct PRNG64 {
475 uint64_t callcnt; // call count
476 uint64_t seed; // current seed
477 PRNG_STATE_64_T state; // random state
478}; // PRNG64
479
480static inline {
481 void set_seed( PRNG64 & prng, uint64_t seed_ ) with( prng ) { seed = seed_; PRNG_SET_SEED_64( state, seed ); }
482 uint64_t get_seed( PRNG64 & prng ) __attribute__(( warn_unused_result )) with( prng ) { return seed; }
483 void ?{}( PRNG64 & prng, uint64_t seed ) with( prng ) { callcnt = 0; set_seed( prng, seed ); } // fixed seed
484 void ?{}( PRNG64 & prng ) with( prng ) { ?{}( prng, rdtscl() ); } // random seed
485 uint64_t prng( PRNG64 & prng ) __attribute__(( warn_unused_result )) with( prng ) { callcnt += 1; return PRNG_NAME_64( state ); } // [0,UINT_MAX]
486 uint64_t prng( PRNG64 & prng, uint64_t u ) __attribute__(( warn_unused_result )) { return prng( prng ) % u; } // [0,u)
487 uint64_t prng( PRNG64 & prng, uint64_t l, uint64_t u ) __attribute__(( warn_unused_result )) { return prng( prng, u - l + 1 ) + l; } // [l,u]
488 uint64_t calls( PRNG64 & prng ) __attribute__(( warn_unused_result )) with( prng ) { return callcnt; }
489 void copy( PRNG64 & dst, PRNG64 & src ) { dst = src; } // checkpoint PRNG state, use autogen assignment
490} // distribution
491void ?{}( PRNG64 &, PRNG64 & ) = void; // no copy, remove autogen copy constructor
492PRNG64 & ?=?( PRNG64 &, const PRNG64 ) = void; // no assignment, remove autogen assignment
493
494// Set default random-generator size.
495#if defined( __x86_64__ ) || defined( __aarch64__ ) // 64-bit architecture
496#define PRNG PRNG64
497#else // 32-bit architecture
498#define PRNG PRNG32
499#endif // __x86_64__
500
501// Concurrent Pseudo Random-Number Generator : generate repeatable sequence of values that appear random.
502//
503// Interface :
504// set_seed( 1009 ) - fixed seed for all kernel threads versus random seed
505// get_seed() - read seed
506// prng() - generate random value in range [0,UINT_MAX]
507// prng( u ) - generate random value in range [0,u)
508// prng( l, u ) - generate random value in range [l,u]
509//
510// Examples : generate random number between 5-21
511// prng() % 17 + 5; values 0-16 + 5 = 5-21
512// prng( 16 + 1 ) + 5;
513// prng( 5, 21 );
514
515// Harmonize with concurrency/thread.hfa.
516void set_seed( size_t seed_ ) OPTIONAL_THREAD; // set global seed
517size_t get_seed() __attribute__(( warn_unused_result )); // get global seed
518size_t prng( void ) __attribute__(( warn_unused_result )) OPTIONAL_THREAD; // [0,UINT_MAX]
519static inline {
520 size_t prng( size_t u ) __attribute__(( warn_unused_result )) { return prng() % u; } // [0,u)
521 size_t prng( size_t l, size_t u ) __attribute__(( warn_unused_result )) { return prng( u - l + 1 ) + l; } // [l,u]
522} // distribution
523
524//---------------------------------------
525
526extern bool threading_enabled( void ) OPTIONAL_THREAD;
527
528// Local Variables: //
529// mode: c //
530// tab-width: 4 //
531// End: //
Note: See TracBrowser for help on using the repository browser.