1 | //
|
---|
2 | // Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
|
---|
3 | //
|
---|
4 | // The contents of this file are covered under the licence agreement in the
|
---|
5 | // file "LICENCE" distributed with Cforall.
|
---|
6 | //
|
---|
7 | // stdlib --
|
---|
8 | //
|
---|
9 | // Author : Peter A. Buhr
|
---|
10 | // Created On : Thu Jan 28 17:12:35 2016
|
---|
11 | // Last Modified By : Peter A. Buhr
|
---|
12 | // Last Modified On : Tue Apr 23 14:05:21 2024
|
---|
13 | // Update Count : 963
|
---|
14 | //
|
---|
15 |
|
---|
16 | #pragma once
|
---|
17 |
|
---|
18 | #include "bits/defs.hfa" // OPTIONAL_THREAD
|
---|
19 | #include "bits/align.hfa" // libAlign
|
---|
20 | #include "bits/random.hfa" // prng
|
---|
21 | #include <Exception.hfa>
|
---|
22 | #include <heap.hfa>
|
---|
23 |
|
---|
24 | #include <stdlib.h> // *alloc, strto*, ato*
|
---|
25 | #include <errno.h>
|
---|
26 |
|
---|
27 | // Reduce includes by explicitly defining these routines.
|
---|
28 | extern "C" {
|
---|
29 | void * memalign( size_t alignment, size_t size ); // malloc.h
|
---|
30 | void * pvalloc( size_t size ); // malloc.h
|
---|
31 | void * memset( void * dest, int fill, size_t size ); // string.h
|
---|
32 | void * memcpy( void * dest, const void * src, size_t size ); // string.h
|
---|
33 | } // extern "C"
|
---|
34 |
|
---|
35 | //---------------------------------------
|
---|
36 |
|
---|
37 | #ifndef EXIT_FAILURE
|
---|
38 | #define EXIT_FAILURE 1 // failing exit status
|
---|
39 | #define EXIT_SUCCESS 0 // successful exit status
|
---|
40 | #endif // ! EXIT_FAILURE
|
---|
41 |
|
---|
42 | //---------------------------------------
|
---|
43 |
|
---|
44 | #include "common.hfa"
|
---|
45 |
|
---|
46 | //---------------------------------------
|
---|
47 |
|
---|
48 | static inline forall( T & | sized(T) ) {
|
---|
49 | // CFA safe equivalents, i.e., implicit size specification, eliminate return-type cast
|
---|
50 |
|
---|
51 | T * malloc( void ) {
|
---|
52 | if ( _Alignof(T) <= libAlign() ) return (T *)malloc( sizeof(T) ); // C allocation
|
---|
53 | else return (T *)memalign( _Alignof(T), sizeof(T) );
|
---|
54 | } // malloc
|
---|
55 |
|
---|
56 | T * aalloc( size_t dim ) {
|
---|
57 | if ( _Alignof(T) <= libAlign() ) return (T *)aalloc( dim, sizeof(T) ); // C allocation
|
---|
58 | else return (T *)amemalign( _Alignof(T), dim, sizeof(T) );
|
---|
59 | } // aalloc
|
---|
60 |
|
---|
61 | T * calloc( size_t dim ) {
|
---|
62 | if ( _Alignof(T) <= libAlign() ) return (T *)calloc( dim, sizeof(T) ); // C allocation
|
---|
63 | else return (T *)cmemalign( _Alignof(T), dim, sizeof(T) );
|
---|
64 | } // calloc
|
---|
65 |
|
---|
66 | T * resize( T * ptr, size_t size ) {
|
---|
67 | if ( _Alignof(T) <= libAlign() ) return (T *)resize( (void *)ptr, size ); // C resize
|
---|
68 | else return (T *)resize( (void *)ptr, _Alignof(T), size ); // CFA resize
|
---|
69 | } // resize
|
---|
70 |
|
---|
71 | T * resize( T * ptr, size_t alignment, size_t size ) {
|
---|
72 | return (T *)resize( (void *)ptr, alignment, size ); // CFA resize
|
---|
73 | } // resize
|
---|
74 |
|
---|
75 | T * realloc( T * ptr, size_t size ) { // CFA realloc
|
---|
76 | if ( _Alignof(T) <= libAlign() ) return (T *)realloc( (void *)ptr, size ); // C realloc
|
---|
77 | else return (T *)realloc( (void *)ptr, _Alignof(T), size ); // CFA realloc
|
---|
78 | } // realloc
|
---|
79 |
|
---|
80 | T * realloc( T * ptr, size_t alignment, size_t size ) {
|
---|
81 | return (T *)realloc( (void *)ptr, alignment, size ); // CFA realloc
|
---|
82 | } // realloc
|
---|
83 |
|
---|
84 | T * reallocarray( T * ptr, size_t dim ) { // CFA reallocarray
|
---|
85 | if ( _Alignof(T) <= libAlign() ) return (T *)reallocarray( (void *)ptr, dim, sizeof(T) ); // C reallocarray
|
---|
86 | else return (T *)reallocarray( (void *)ptr, _Alignof(T), dim ); // CFA reallocarray
|
---|
87 | } // realloc
|
---|
88 |
|
---|
89 | T * reallocarray( T * ptr, size_t alignment, size_t dim ) {
|
---|
90 | return (T *)reallocarray( (void *)ptr, alignment, dim ); // CFA reallocarray
|
---|
91 | } // realloc
|
---|
92 |
|
---|
93 | T * memalign( size_t align ) {
|
---|
94 | return (T *)memalign( align, sizeof(T) ); // C memalign
|
---|
95 | } // memalign
|
---|
96 |
|
---|
97 | T * amemalign( size_t align, size_t dim ) {
|
---|
98 | return (T *)amemalign( align, dim, sizeof(T) ); // CFA amemalign
|
---|
99 | } // amemalign
|
---|
100 |
|
---|
101 | T * cmemalign( size_t align, size_t dim ) {
|
---|
102 | return (T *)cmemalign( align, dim, sizeof(T) ); // CFA cmemalign
|
---|
103 | } // cmemalign
|
---|
104 |
|
---|
105 | T * aligned_alloc( size_t align ) {
|
---|
106 | return (T *)aligned_alloc( align, sizeof(T) ); // C aligned_alloc
|
---|
107 | } // aligned_alloc
|
---|
108 |
|
---|
109 | int posix_memalign( T ** ptr, size_t align ) {
|
---|
110 | return posix_memalign( (void **)ptr, align, sizeof(T) ); // C posix_memalign
|
---|
111 | } // posix_memalign
|
---|
112 |
|
---|
113 | T * valloc( void ) {
|
---|
114 | return (T *)valloc( sizeof(T) ); // C valloc
|
---|
115 | } // valloc
|
---|
116 |
|
---|
117 | T * pvalloc( void ) {
|
---|
118 | return (T *)pvalloc( sizeof(T) ); // C pvalloc
|
---|
119 | } // pvalloc
|
---|
120 | } // distribution
|
---|
121 |
|
---|
122 | /*
|
---|
123 | FIX ME : fix alloc interface after Ticker Number 214 is resolved, define and add union to S_fill. Then, modify
|
---|
124 | postfix-fill functions to support T * with nmemb, char, and T object of any size. Finally, change alloc_internal.
|
---|
125 | Or, just follow the instructions below for that.
|
---|
126 |
|
---|
127 | 1. Replace the current forall-block that contains defintions of S_fill and S_realloc with following:
|
---|
128 | forall( T & | sized(T) ) {
|
---|
129 | union U_fill { char c; T * a; T t; };
|
---|
130 | struct S_fill { char tag; U_fill(T) fill; };
|
---|
131 | struct S_realloc { inline T *; };
|
---|
132 | }
|
---|
133 |
|
---|
134 | 2. Replace all current postfix-fill functions with following for updated S_fill:
|
---|
135 | S_fill(T) ?`fill( char a ) { S_fill(T) ret = {'c'}; ret.fill.c = a; return ret; }
|
---|
136 | S_fill(T) ?`fill( T a ) { S_fill(T) ret = {'t'}; memcpy(&ret.fill.t, &a, sizeof(T)); return ret; }
|
---|
137 | S_fill(T) ?`fill( T a[], size_t nmemb ) { S_fill(T) ret = {'a', nmemb}; ret.fill.a = a; return ret; }
|
---|
138 |
|
---|
139 | 3. Replace the alloc_internal$ function which is outside ttype forall-block with following function:
|
---|
140 | T * alloc_internal$( void * Resize, T * Realloc, size_t Align, size_t Dim, S_fill(T) Fill) {
|
---|
141 | T * ptr = NULL;
|
---|
142 | size_t size = sizeof(T);
|
---|
143 | size_t copy_end = 0;
|
---|
144 |
|
---|
145 | if(Resize) {
|
---|
146 | ptr = (T*) (void *) resize( (int *)Resize, Align, Dim * size );
|
---|
147 | } else if (Realloc) {
|
---|
148 | if (Fill.tag != '0') copy_end = min(malloc_size( Realloc ), Dim * size);
|
---|
149 | ptr = (T*) (void *) realloc( (int *)Realloc, Align, Dim * size );
|
---|
150 | } else {
|
---|
151 | ptr = (T*) (void *) memalign( Align, Dim * size );
|
---|
152 | }
|
---|
153 |
|
---|
154 | if(Fill.tag == 'c') {
|
---|
155 | memset( (char *)ptr + copy_end, (int)Fill.fill.c, Dim * size - copy_end );
|
---|
156 | } else if(Fill.tag == 't') {
|
---|
157 | for ( int i = copy_end; i <= Dim * size - size ; i += size ) {
|
---|
158 | memcpy( (char *)ptr + i, &Fill.fill.t, size );
|
---|
159 | }
|
---|
160 | } else if(Fill.tag == 'a') {
|
---|
161 | memcpy( (char *)ptr + copy_end, Fill.fill.a, min(Dim * size - copy_end, size * Fill.nmemb) );
|
---|
162 | }
|
---|
163 |
|
---|
164 | return ptr;
|
---|
165 | } // alloc_internal$
|
---|
166 | */
|
---|
167 |
|
---|
168 | #pragma GCC diagnostic push
|
---|
169 | #pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
|
---|
170 | #pragma GCC diagnostic ignored "-Wuninitialized"
|
---|
171 |
|
---|
172 | struct T_align { size_t align; };
|
---|
173 | struct T_resize { void * addr; };
|
---|
174 | struct T_realloc { void * addr; };
|
---|
175 | forall( T & ) struct T_fill {
|
---|
176 | // 'N' => no fill, 'c' => fill with character c, 'a' => fill first N array elements from another array,
|
---|
177 | // 'A' => fill all array elements from another array, 'T' => fill using a T value.
|
---|
178 | char tag;
|
---|
179 | size_t nelem; // number of elements copied from "at" (used with tag 'a')
|
---|
180 | // union {
|
---|
181 | char c;
|
---|
182 | T * at;
|
---|
183 | char t[64]; // T t;
|
---|
184 | // };
|
---|
185 | };
|
---|
186 |
|
---|
187 | #pragma GCC diagnostic pop
|
---|
188 |
|
---|
189 | static inline {
|
---|
190 | T_align ?`align( size_t a ) { return (T_align){ a }; }
|
---|
191 | T_resize ?`resize( void * a ) { return (T_resize){ a }; }
|
---|
192 | T_realloc ?`realloc( void * a ) { return (T_realloc){ a }; }
|
---|
193 | }
|
---|
194 |
|
---|
195 | static inline forall( T & | sized(T) ) {
|
---|
196 | T_fill(T) ?`fill( char c ) { return (T_fill(T)){ 'c', 0, c }; }
|
---|
197 | T_fill(T) ?`fill( T t ) {
|
---|
198 | T_fill(T) ret = { 'T' };
|
---|
199 | size_t size = sizeof(T);
|
---|
200 | if ( size > sizeof(ret.t) ) {
|
---|
201 | abort( "ERROR: const object of size greater than 50 bytes given for dynamic memory fill\n" );
|
---|
202 | } // if
|
---|
203 | memcpy( &ret.t, &t, size );
|
---|
204 | return ret;
|
---|
205 | }
|
---|
206 | T_fill(T) ?`fill( T a[] ) { return (T_fill(T)){ 'A', 0, '\0', a }; } // FIX ME: remove this once ticket 214 is resolved
|
---|
207 | T_fill(T) ?`fill( T a[], size_t nelem ) { return (T_fill(T)){ 'a', nelem * sizeof(T), '\0', a }; }
|
---|
208 |
|
---|
209 | // private interface
|
---|
210 | T * alloc_internal$( size_t Dim, T_resize Resize, T_realloc Realloc, size_t Align, T_fill(T) Fill ) {
|
---|
211 | T * ptr;
|
---|
212 | size_t tsize = sizeof(T);
|
---|
213 | size_t copy_end = 0;
|
---|
214 |
|
---|
215 | if ( Resize.addr ) {
|
---|
216 | ptr = (T *)(void *)resize( Resize.addr, Align, Dim * tsize );
|
---|
217 | } else if ( Realloc.addr ) {
|
---|
218 | if ( Fill.tag != 'N' ) copy_end = min(malloc_size( Realloc.addr ), Dim * tsize );
|
---|
219 | ptr = (T *)(void *)realloc( Realloc.addr, Align, Dim * tsize );
|
---|
220 | } else {
|
---|
221 | ptr = (T *)(void *)memalign( Align, Dim * tsize );
|
---|
222 | } // if
|
---|
223 |
|
---|
224 | if ( Fill.tag == 'c' ) {
|
---|
225 | memset( (char *)ptr + copy_end, (int)Fill.c, Dim * tsize - copy_end );
|
---|
226 | } else if ( Fill.tag == 'T' ) {
|
---|
227 | for ( i; copy_end ~ Dim * tsize ~ tsize ) {
|
---|
228 | assert( tsize <= sizeof(Fill.t) );
|
---|
229 | memcpy( (char *)ptr + i, &Fill.t, tsize );
|
---|
230 | } // for
|
---|
231 | } else if ( Fill.tag == 'a' ) {
|
---|
232 | memcpy( (char *)ptr + copy_end, Fill.at, min( Dim * tsize - copy_end, Fill.nelem ) );
|
---|
233 | } else if ( Fill.tag == 'A' ) {
|
---|
234 | memcpy( (char *)ptr + copy_end, Fill.at, Dim * tsize );
|
---|
235 | } // if
|
---|
236 | return ptr;
|
---|
237 | } // alloc_internal$
|
---|
238 |
|
---|
239 | // Dim is a fixed (optional first) parameter, and hence is not set using a postfix function. A dummy parameter is
|
---|
240 | // being overwritten by the postfix argument in the ttype.
|
---|
241 | forall( List ... | { T * alloc_internal$( size_t Dim, T_resize Resize, T_realloc Realloc, size_t Align, T_fill(T) Fill, List ); } ) {
|
---|
242 | // middle interface
|
---|
243 | T * alloc_internal$( size_t Dim, T_resize dummy, T_realloc Realloc, size_t Align, T_fill(T) Fill, T_resize Resize, List rest ) {
|
---|
244 | return alloc_internal$( Dim, Resize, (T_realloc){0p}, Align, Fill, rest );
|
---|
245 | }
|
---|
246 | T * alloc_internal$( size_t Dim, T_resize Resize, T_realloc dummy, size_t Align, T_fill(T) Fill, T_realloc Realloc, List rest ) {
|
---|
247 | return alloc_internal$( Dim, (T_resize){0p}, Realloc, Align, Fill, rest );
|
---|
248 | }
|
---|
249 | T * alloc_internal$( size_t Dim, T_resize Resize, T_realloc Realloc, size_t dummy, T_fill(T) Fill, T_align Align, List rest ) {
|
---|
250 | return alloc_internal$( Dim, Resize, Realloc, Align.align, Fill, rest );
|
---|
251 | }
|
---|
252 | T * alloc_internal$( size_t Dim, T_resize Resize, T_realloc Realloc, size_t Align, T_fill(T) dummy, T_fill(T) Fill, List rest ) {
|
---|
253 | return alloc_internal$( Dim, Resize, Realloc, Align, Fill, rest );
|
---|
254 | }
|
---|
255 | // public interface
|
---|
256 | T * alloc( List rest ) {
|
---|
257 | return alloc_internal$( (size_t)1, (T_resize){0p}, (T_realloc){0p}, (_Alignof(T) > libAlign() ? _Alignof(T) : libAlign()), (T_fill(T)){'N'}, rest );
|
---|
258 | }
|
---|
259 | T * alloc( size_t Dim, List rest ) {
|
---|
260 | return alloc_internal$( Dim, (T_resize){0p}, (T_realloc){0p}, (_Alignof(T) > libAlign() ? _Alignof(T) : libAlign()), (T_fill(T)){'N'}, rest );
|
---|
261 | }
|
---|
262 | } // distribution List
|
---|
263 | } // distribution T
|
---|
264 |
|
---|
265 | static inline forall( T & | sized(T) ) {
|
---|
266 | // CFA safe initialization/copy, i.e., implicit size specification, non-array types
|
---|
267 | T * memset( T * dest, char fill ) { // all combinations of pointer/reference
|
---|
268 | return (T *)memset( dest, fill, sizeof(T) ); // C memset
|
---|
269 | } // memset
|
---|
270 | T * memset( T & dest, char fill ) {
|
---|
271 | return (T *)memset( &dest, fill, sizeof(T) ); // C memset
|
---|
272 | } // memset
|
---|
273 |
|
---|
274 | T * memcpy( T * dest, const T * src ) { // all combinations of pointer/reference
|
---|
275 | return (T *)memcpy( dest, src, sizeof(T) ); // C memcpy
|
---|
276 | } // memcpy
|
---|
277 | T * memcpy( T & dest, const T & src ) {
|
---|
278 | return (T *)memcpy( &dest, &src, sizeof(T) ); // C memcpy
|
---|
279 | } // memcpy
|
---|
280 | T * memcpy( T * dest, const T & src ) {
|
---|
281 | return (T *)memcpy( dest, &src, sizeof(T) ); // C memcpy
|
---|
282 | } // memcpy
|
---|
283 | T * memcpy( T & dest, const T * src ) {
|
---|
284 | return (T *)memcpy( &dest, src, sizeof(T) ); // C memcpy
|
---|
285 | } // memcpy
|
---|
286 |
|
---|
287 | // CFA safe initialization/copy, i.e., implicit size specification, array types
|
---|
288 | T * amemset( T dest[], char fill, size_t dim ) {
|
---|
289 | return (T *)(void *)memset( dest, fill, dim * sizeof(T) ); // C memset
|
---|
290 | } // amemset
|
---|
291 |
|
---|
292 | T * amemcpy( T dest[], const T src[], size_t dim ) {
|
---|
293 | return (T *)(void *)memcpy( dest, src, dim * sizeof(T) ); // C memcpy
|
---|
294 | } // amemcpy
|
---|
295 | } // distribution
|
---|
296 |
|
---|
297 | // CFA deallocation for multiple objects
|
---|
298 | static inline forall( T & )
|
---|
299 | void free( T * ptr ) {
|
---|
300 | free( (void *)ptr ); // C free
|
---|
301 | } // free
|
---|
302 | static inline forall( T &, List ... | { void free( List ); } )
|
---|
303 | void free( T * ptr, List rest ) {
|
---|
304 | free( ptr );
|
---|
305 | free( rest );
|
---|
306 | } // free
|
---|
307 |
|
---|
308 | // CFA allocation/deallocation and constructor/destructor, non-array types
|
---|
309 | static inline forall( T & | sized(T), Parms ... | { void ?{}( T &, Parms ); } )
|
---|
310 | T * new( Parms p ) {
|
---|
311 | return &(*(T *)malloc()){ p }; // run constructor
|
---|
312 | } // new
|
---|
313 |
|
---|
314 | static inline forall( T & | { void ^?{}( T & ); } )
|
---|
315 | void delete( T * ptr ) {
|
---|
316 | // special case for 0-sized object => always call destructor
|
---|
317 | if ( ptr || sizeof(ptr) == 0 ) { // ignore null but not 0-sized objects
|
---|
318 | ^(*ptr){}; // run destructor
|
---|
319 | } // if
|
---|
320 | free( ptr ); // always call free
|
---|
321 | } // delete
|
---|
322 | static inline forall( T &, List ... | { void ^?{}( T & ); void delete( List ); } )
|
---|
323 | void delete( T * ptr, List rest ) {
|
---|
324 | delete( ptr );
|
---|
325 | delete( rest );
|
---|
326 | } // delete
|
---|
327 |
|
---|
328 | // CFA allocation/deallocation and constructor/destructor, array types
|
---|
329 | forall( T & | sized(T), Parms ... | { void ?{}( T &, Parms ); } ) T * anew( size_t dim, Parms p );
|
---|
330 | forall( T & | sized(T) | { void ^?{}( T & ); } ) void adelete( T arr[] );
|
---|
331 | forall( T & | sized(T) | { void ^?{}( T & ); }, List ... | { void adelete( List ); } ) void adelete( T arr[], List rest );
|
---|
332 |
|
---|
333 | //---------------------------------------
|
---|
334 |
|
---|
335 | // Check if all string characters are a specific kind, e.g., checkif( s, isblank )
|
---|
336 | bool checkif( const char s[], int (* kind)( int ) );
|
---|
337 | bool checkif( const char s[], int (* kind)( int, locale_t ), locale_t locale );
|
---|
338 |
|
---|
339 | //---------------------------------------
|
---|
340 |
|
---|
341 | static inline {
|
---|
342 | int strto( const char sptr[], char * eptr[], int base ) { return (int)strtol( sptr, eptr, base ); }
|
---|
343 | unsigned int strto( const char sptr[], char * eptr[], int base ) { return (unsigned int)strtoul( sptr, eptr, base ); }
|
---|
344 | long int strto( const char sptr[], char * eptr[], int base ) { return strtol( sptr, eptr, base ); }
|
---|
345 | unsigned long int strto( const char sptr[], char * eptr[], int base ) { return strtoul( sptr, eptr, base ); }
|
---|
346 | long long int strto( const char sptr[], char * eptr[], int base ) { return strtoll( sptr, eptr, base ); }
|
---|
347 | unsigned long long int strto( const char sptr[], char * eptr[], int base ) { return strtoull( sptr, eptr, base ); }
|
---|
348 |
|
---|
349 | float strto( const char sptr[], char * eptr[] ) { return strtof( sptr, eptr ); }
|
---|
350 | double strto( const char sptr[], char * eptr[] ) { return strtod( sptr, eptr ); }
|
---|
351 | long double strto( const char sptr[], char * eptr[] ) { return strtold( sptr, eptr ); }
|
---|
352 | } // distribution
|
---|
353 |
|
---|
354 | float _Complex strto( const char sptr[], char * eptr[] );
|
---|
355 | double _Complex strto( const char sptr[], char * eptr[] );
|
---|
356 | long double _Complex strto( const char sptr[], char * eptr[] );
|
---|
357 |
|
---|
358 | ExceptionDecl( out_of_range );
|
---|
359 | ExceptionDecl( invalid_argument );
|
---|
360 |
|
---|
361 | forall( T | { T strto( const char sptr[], char * eptr[], int ); } )
|
---|
362 | T convert( const char sptr[] ); // integrals
|
---|
363 | forall( T | { T strto( const char sptr[], char * eptr[] ); } )
|
---|
364 | T convert( const char sptr[] ); // floating-point (no base)
|
---|
365 |
|
---|
366 | static inline {
|
---|
367 | int ato( const char sptr[] ) { return (int)strtol( sptr, 0p, 10 ); }
|
---|
368 | unsigned int ato( const char sptr[] ) { return (unsigned int)strtoul( sptr, 0p, 10 ); }
|
---|
369 | long int ato( const char sptr[] ) { return strtol( sptr, 0p, 10 ); }
|
---|
370 | unsigned long int ato( const char sptr[] ) { return strtoul( sptr, 0p, 10 ); }
|
---|
371 | long long int ato( const char sptr[] ) { return strtoll( sptr, 0p, 10 ); }
|
---|
372 | unsigned long long int ato( const char sptr[] ) { return strtoull( sptr, 0p, 10 ); }
|
---|
373 |
|
---|
374 | float ato( const char sptr[] ) { return strtof( sptr, 0p ); }
|
---|
375 | double ato( const char sptr[] ) { return strtod( sptr, 0p ); }
|
---|
376 | long double ato( const char sptr[] ) { return strtold( sptr, 0p ); }
|
---|
377 |
|
---|
378 | float _Complex ato( const char sptr[] ) { return strto( sptr, 0p ); }
|
---|
379 | double _Complex ato( const char sptr[] ) { return strto( sptr, 0p ); }
|
---|
380 | long double _Complex ato( const char sptr[] ) { return strto( sptr, 0p ); }
|
---|
381 | } // distribution
|
---|
382 |
|
---|
383 | //---------------------------------------
|
---|
384 |
|
---|
385 | forall( E | { int ?<?( E, E ); } ) {
|
---|
386 | E * bsearch( E key, const E * vals, size_t dim );
|
---|
387 | size_t bsearch( E key, const E * vals, size_t dim );
|
---|
388 | E * bsearchl( E key, const E * vals, size_t dim );
|
---|
389 | size_t bsearchl( E key, const E * vals, size_t dim );
|
---|
390 | E * bsearchu( E key, const E * vals, size_t dim );
|
---|
391 | size_t bsearchu( E key, const E * vals, size_t dim );
|
---|
392 | } // distribution
|
---|
393 |
|
---|
394 | forall( K, E | { int ?<?( K, K ); K getKey( const E & ); } ) {
|
---|
395 | E * bsearch( K key, const E * vals, size_t dim );
|
---|
396 | size_t bsearch( K key, const E * vals, size_t dim );
|
---|
397 | E * bsearchl( K key, const E * vals, size_t dim );
|
---|
398 | size_t bsearchl( K key, const E * vals, size_t dim );
|
---|
399 | E * bsearchu( K key, const E * vals, size_t dim );
|
---|
400 | size_t bsearchu( K key, const E * vals, size_t dim );
|
---|
401 | } // distribution
|
---|
402 |
|
---|
403 | forall( E | { int ?<?( E, E ); } ) {
|
---|
404 | void qsort( E * vals, size_t dim );
|
---|
405 | } // distribution
|
---|
406 |
|
---|
407 | //---------------------------------------
|
---|
408 |
|
---|
409 | extern "C" { // override C version
|
---|
410 | void srandom( unsigned int seed );
|
---|
411 | long int random( void ); // GENERATES POSITIVE AND NEGATIVE VALUES
|
---|
412 | // For positive values, use unsigned int, e.g., unsigned int r = random() % 100U;
|
---|
413 | } // extern "C"
|
---|
414 |
|
---|
415 | static inline {
|
---|
416 | long int random( long int l, long int u ) { if ( u < l ) [u, l] = [l, u]; return lrand48() % (u - l + 1) + l; } // [l,u]
|
---|
417 | long int random( long int u ) { return random( 0, u - 1 ); } // [0,u)
|
---|
418 | unsigned long int random( void ) { return lrand48(); }
|
---|
419 | unsigned long int random( unsigned long int u ) { return lrand48() % u; } // [0,u)
|
---|
420 | unsigned long int random( unsigned long int l, unsigned long int u ) { if ( u < l ) [u, l] = [l, u]; return lrand48() % (u - l + 1) + l; } // [l,u]
|
---|
421 |
|
---|
422 | char random( void ) { return (unsigned long int)random(); }
|
---|
423 | char random( char u ) { return (unsigned long int)random( (unsigned long int)u ); } // [0,u)
|
---|
424 | char random( char l, char u ) { return random( (unsigned long int)l, (unsigned long int)u ); } // [l,u)
|
---|
425 | int random( void ) { return (long int)random(); }
|
---|
426 | int random( int u ) { return (long int)random( (long int)u ); } // [0,u]
|
---|
427 | int random( int l, int u ) { return random( (long int)l, (long int)u ); } // [l,u)
|
---|
428 | unsigned int random( void ) { return (unsigned long int)random(); }
|
---|
429 | unsigned int random( unsigned int u ) { return (unsigned long int)random( (unsigned long int)u ); } // [0,u]
|
---|
430 | unsigned int random( unsigned int l, unsigned int u ) { return random( (unsigned long int)l, (unsigned long int)u ); } // [l,u)
|
---|
431 | } // distribution
|
---|
432 |
|
---|
433 | float random( void ); // [0.0, 1.0)
|
---|
434 | double random( void ); // [0.0, 1.0)
|
---|
435 | float _Complex random( void ); // [0.0, 1.0)+[0.0, 1.0)i
|
---|
436 | double _Complex random( void ); // [0.0, 1.0)+[0.0, 1.0)i
|
---|
437 | long double _Complex random( void ); // [0.0, 1.0)+[0.0, 1.0)i
|
---|
438 |
|
---|
439 | //---------------------------------------
|
---|
440 |
|
---|
441 | // Sequential Pseudo Random-Number Generator : generate repeatable sequence of values that appear random.
|
---|
442 | //
|
---|
443 | // Declaration :
|
---|
444 | // PRNG sprng = { 1009 } - set starting seed versus random seed
|
---|
445 | //
|
---|
446 | // Interface :
|
---|
447 | // set_seed( sprng, 1009 ) - set starting seed for ALL kernel threads versus random seed
|
---|
448 | // get_seed( sprng ) - read seed
|
---|
449 | // prng( sprng ) - generate random value in range [0,UINT_MAX]
|
---|
450 | // prng( sprng, u ) - generate random value in range [0,u)
|
---|
451 | // prng( sprng, l, u ) - generate random value in range [l,u]
|
---|
452 | // calls( sprng ) - number of generated random value so far
|
---|
453 | //
|
---|
454 | // Examples : generate random number between 5-21
|
---|
455 | // prng( sprng ) % 17 + 5; values 0-16 + 5 = 5-21
|
---|
456 | // prng( sprng, 16 + 1 ) + 5;
|
---|
457 | // prng( sprng, 5, 21 );
|
---|
458 | // calls( sprng );
|
---|
459 |
|
---|
460 | forall( PRNG &, R )
|
---|
461 | trait basic_prng {
|
---|
462 | void set_seed( PRNG & prng, R seed ); // set seed
|
---|
463 | R get_seed( PRNG & prng ); // get seed
|
---|
464 | R prng( PRNG & prng );
|
---|
465 | void ?{}( PRNG & prng ); // random seed
|
---|
466 | void ?{}( PRNG & prng, R seed ); // fixed seed
|
---|
467 | }; // basic_prng
|
---|
468 |
|
---|
469 | static inline forall( PRNG &, R | basic_prng( PRNG, R ) | { R ?%?( R, R ); } ) {
|
---|
470 | R prng( PRNG & prng, R u ) { return prng( prng ) % u; } // [0,u)
|
---|
471 | }
|
---|
472 | static inline forall( PRNG &, R | basic_prng( PRNG, R ) | { R ?+?( R, R ); R ?-?( R, R ); R ?%?( R, R ); void ?{}( R &, one_t ); } ) {
|
---|
473 | R prng( PRNG & prng, R l, R u ) { return prng( prng, u - l + (R){1} ) + l; } // [l,u]
|
---|
474 | }
|
---|
475 |
|
---|
476 | struct PRNG32 {
|
---|
477 | uint32_t callcnt; // call count
|
---|
478 | uint32_t seed; // current seed
|
---|
479 | PRNG_STATE_32_T state; // random state
|
---|
480 | }; // PRNG32
|
---|
481 |
|
---|
482 | static inline {
|
---|
483 | void set_seed( PRNG32 & prng, uint32_t seed_ ) with( prng ) { seed = seed_; PRNG_SET_SEED_32( state, seed ); }
|
---|
484 | uint32_t get_seed( PRNG32 & prng ) __attribute__(( warn_unused_result )) with( prng ) { return seed; }
|
---|
485 | void ?{}( PRNG32 & prng, uint32_t seed ) with( prng ) { callcnt = 0; set_seed( prng, seed ); } // fixed seed
|
---|
486 | void ?{}( PRNG32 & prng ) with( prng ) { ?{}( prng, rdtscl() ); } // random seed
|
---|
487 | uint32_t prng( PRNG32 & prng ) __attribute__(( warn_unused_result )) with( prng ) { callcnt += 1; return PRNG_NAME_32( state ); } // [0,UINT_MAX]
|
---|
488 | uint32_t prng( PRNG32 & prng, uint32_t u ) __attribute__(( warn_unused_result )) { return prng( prng ) % u; } // [0,u)
|
---|
489 | uint32_t prng( PRNG32 & prng, uint32_t l, uint32_t u ) __attribute__(( warn_unused_result )) { return prng( prng, u - l + 1 ) + l; } // [l,u]
|
---|
490 | uint32_t calls( PRNG32 & prng ) __attribute__(( warn_unused_result )) with( prng ) { return callcnt; }
|
---|
491 | void copy( PRNG32 & dst, PRNG32 & src ) { dst = src; } // checkpoint PRNG state, use autogen assignment
|
---|
492 | } // distribution
|
---|
493 | void ?{}( PRNG32 &, PRNG32 & ) = void; // no copy, remove autogen copy constructor
|
---|
494 | PRNG32 & ?=?( PRNG32 &, const PRNG32 ) = void; // no assignment, remove autogen assignment
|
---|
495 |
|
---|
496 | struct PRNG64 {
|
---|
497 | uint64_t callcnt; // call count
|
---|
498 | uint64_t seed; // current seed
|
---|
499 | PRNG_STATE_64_T state; // random state
|
---|
500 | }; // PRNG64
|
---|
501 |
|
---|
502 | static inline {
|
---|
503 | void set_seed( PRNG64 & prng, uint64_t seed_ ) with( prng ) { seed = seed_; PRNG_SET_SEED_64( state, seed ); }
|
---|
504 | uint64_t get_seed( PRNG64 & prng ) __attribute__(( warn_unused_result )) with( prng ) { return seed; }
|
---|
505 | void ?{}( PRNG64 & prng, uint64_t seed ) with( prng ) { callcnt = 0; set_seed( prng, seed ); } // fixed seed
|
---|
506 | void ?{}( PRNG64 & prng ) with( prng ) { ?{}( prng, rdtscl() ); } // random seed
|
---|
507 | uint64_t prng( PRNG64 & prng ) __attribute__(( warn_unused_result )) with( prng ) { callcnt += 1; return PRNG_NAME_64( state ); } // [0,UINT_MAX]
|
---|
508 | uint64_t prng( PRNG64 & prng, uint64_t u ) __attribute__(( warn_unused_result )) { return prng( prng ) % u; } // [0,u)
|
---|
509 | uint64_t prng( PRNG64 & prng, uint64_t l, uint64_t u ) __attribute__(( warn_unused_result )) { return prng( prng, u - l + 1 ) + l; } // [l,u]
|
---|
510 | uint64_t calls( PRNG64 & prng ) __attribute__(( warn_unused_result )) with( prng ) { return callcnt; }
|
---|
511 | void copy( PRNG64 & dst, PRNG64 & src ) { dst = src; } // checkpoint PRNG state, use autogen assignment
|
---|
512 | } // distribution
|
---|
513 | void ?{}( PRNG64 &, PRNG64 & ) = void; // no copy, remove autogen copy constructor
|
---|
514 | PRNG64 & ?=?( PRNG64 &, const PRNG64 ) = void; // no assignment, remove autogen assignment
|
---|
515 |
|
---|
516 | // Set default random-generator size.
|
---|
517 | #if defined( __x86_64__ ) || defined( __aarch64__ ) // 64-bit architecture
|
---|
518 | #define PRNG PRNG64
|
---|
519 | #else // 32-bit architecture
|
---|
520 | #define PRNG PRNG32
|
---|
521 | #endif // __x86_64__
|
---|
522 |
|
---|
523 | // Concurrent Pseudo Random-Number Generator : generate repeatable sequence of values that appear random.
|
---|
524 | //
|
---|
525 | // Interface :
|
---|
526 | // set_seed( 1009 ) - fixed seed for all kernel threads versus random seed
|
---|
527 | // get_seed() - read seed
|
---|
528 | // prng() - generate random value in range [0,UINT_MAX]
|
---|
529 | // prng( u ) - generate random value in range [0,u)
|
---|
530 | // prng( l, u ) - generate random value in range [l,u]
|
---|
531 | //
|
---|
532 | // Examples : generate random number between 5-21
|
---|
533 | // prng() % 17 + 5; values 0-16 + 5 = 5-21
|
---|
534 | // prng( 16 + 1 ) + 5;
|
---|
535 | // prng( 5, 21 );
|
---|
536 |
|
---|
537 | // Harmonize with concurrency/thread.hfa.
|
---|
538 | void set_seed( size_t seed_ ) OPTIONAL_THREAD; // set global seed
|
---|
539 | size_t get_seed() __attribute__(( warn_unused_result )); // get global seed
|
---|
540 | size_t prng( void ) __attribute__(( warn_unused_result )) OPTIONAL_THREAD; // [0,UINT_MAX]
|
---|
541 | static inline {
|
---|
542 | size_t prng( size_t u ) __attribute__(( warn_unused_result )) { return prng() % u; } // [0,u)
|
---|
543 | size_t prng( size_t l, size_t u ) __attribute__(( warn_unused_result )) { return prng( u - l + 1 ) + l; } // [l,u]
|
---|
544 | } // distribution
|
---|
545 |
|
---|
546 | //---------------------------------------
|
---|
547 |
|
---|
548 | extern bool threading_enabled( void ) OPTIONAL_THREAD;
|
---|
549 |
|
---|
550 | // Local Variables: //
|
---|
551 | // mode: c //
|
---|
552 | // tab-width: 4 //
|
---|
553 | // End: //
|
---|