source: libcfa/src/stdlib.hfa@ 2f4c910

Last change on this file since 2f4c910 was 4a3eb1c, checked in by Peter A. Buhr <pabuhr@…>, 17 months ago

add combinations of pointer/reference for memset and memcpy

  • Property mode set to 100644
File size: 23.4 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// stdlib --
8//
9// Author : Peter A. Buhr
10// Created On : Thu Jan 28 17:12:35 2016
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Tue Apr 23 14:05:21 2024
13// Update Count : 963
14//
15
16#pragma once
17
18#include "bits/defs.hfa" // OPTIONAL_THREAD
19#include "bits/align.hfa" // libAlign
20#include "bits/random.hfa" // prng
21#include <Exception.hfa>
22#include <heap.hfa>
23
24#include <stdlib.h> // *alloc, strto*, ato*
25#include <errno.h>
26
27// Reduce includes by explicitly defining these routines.
28extern "C" {
29 void * memalign( size_t alignment, size_t size ); // malloc.h
30 void * pvalloc( size_t size ); // malloc.h
31 void * memset( void * dest, int fill, size_t size ); // string.h
32 void * memcpy( void * dest, const void * src, size_t size ); // string.h
33} // extern "C"
34
35//---------------------------------------
36
37#ifndef EXIT_FAILURE
38#define EXIT_FAILURE 1 // failing exit status
39#define EXIT_SUCCESS 0 // successful exit status
40#endif // ! EXIT_FAILURE
41
42//---------------------------------------
43
44#include "common.hfa"
45
46//---------------------------------------
47
48static inline forall( T & | sized(T) ) {
49 // CFA safe equivalents, i.e., implicit size specification, eliminate return-type cast
50
51 T * malloc( void ) {
52 if ( _Alignof(T) <= libAlign() ) return (T *)malloc( sizeof(T) ); // C allocation
53 else return (T *)memalign( _Alignof(T), sizeof(T) );
54 } // malloc
55
56 T * aalloc( size_t dim ) {
57 if ( _Alignof(T) <= libAlign() ) return (T *)aalloc( dim, sizeof(T) ); // C allocation
58 else return (T *)amemalign( _Alignof(T), dim, sizeof(T) );
59 } // aalloc
60
61 T * calloc( size_t dim ) {
62 if ( _Alignof(T) <= libAlign() ) return (T *)calloc( dim, sizeof(T) ); // C allocation
63 else return (T *)cmemalign( _Alignof(T), dim, sizeof(T) );
64 } // calloc
65
66 T * resize( T * ptr, size_t size ) {
67 if ( _Alignof(T) <= libAlign() ) return (T *)resize( (void *)ptr, size ); // C resize
68 else return (T *)resize( (void *)ptr, _Alignof(T), size ); // CFA resize
69 } // resize
70
71 T * resize( T * ptr, size_t alignment, size_t size ) {
72 return (T *)resize( (void *)ptr, alignment, size ); // CFA resize
73 } // resize
74
75 T * realloc( T * ptr, size_t size ) { // CFA realloc
76 if ( _Alignof(T) <= libAlign() ) return (T *)realloc( (void *)ptr, size ); // C realloc
77 else return (T *)realloc( (void *)ptr, _Alignof(T), size ); // CFA realloc
78 } // realloc
79
80 T * realloc( T * ptr, size_t alignment, size_t size ) {
81 return (T *)realloc( (void *)ptr, alignment, size ); // CFA realloc
82 } // realloc
83
84 T * reallocarray( T * ptr, size_t dim ) { // CFA reallocarray
85 if ( _Alignof(T) <= libAlign() ) return (T *)reallocarray( (void *)ptr, dim, sizeof(T) ); // C reallocarray
86 else return (T *)reallocarray( (void *)ptr, _Alignof(T), dim ); // CFA reallocarray
87 } // realloc
88
89 T * reallocarray( T * ptr, size_t alignment, size_t dim ) {
90 return (T *)reallocarray( (void *)ptr, alignment, dim ); // CFA reallocarray
91 } // realloc
92
93 T * memalign( size_t align ) {
94 return (T *)memalign( align, sizeof(T) ); // C memalign
95 } // memalign
96
97 T * amemalign( size_t align, size_t dim ) {
98 return (T *)amemalign( align, dim, sizeof(T) ); // CFA amemalign
99 } // amemalign
100
101 T * cmemalign( size_t align, size_t dim ) {
102 return (T *)cmemalign( align, dim, sizeof(T) ); // CFA cmemalign
103 } // cmemalign
104
105 T * aligned_alloc( size_t align ) {
106 return (T *)aligned_alloc( align, sizeof(T) ); // C aligned_alloc
107 } // aligned_alloc
108
109 int posix_memalign( T ** ptr, size_t align ) {
110 return posix_memalign( (void **)ptr, align, sizeof(T) ); // C posix_memalign
111 } // posix_memalign
112
113 T * valloc( void ) {
114 return (T *)valloc( sizeof(T) ); // C valloc
115 } // valloc
116
117 T * pvalloc( void ) {
118 return (T *)pvalloc( sizeof(T) ); // C pvalloc
119 } // pvalloc
120} // distribution
121
122/*
123 FIX ME : fix alloc interface after Ticker Number 214 is resolved, define and add union to S_fill. Then, modify
124 postfix-fill functions to support T * with nmemb, char, and T object of any size. Finally, change alloc_internal.
125 Or, just follow the instructions below for that.
126
127 1. Replace the current forall-block that contains defintions of S_fill and S_realloc with following:
128 forall( T & | sized(T) ) {
129 union U_fill { char c; T * a; T t; };
130 struct S_fill { char tag; U_fill(T) fill; };
131 struct S_realloc { inline T *; };
132 }
133
134 2. Replace all current postfix-fill functions with following for updated S_fill:
135 S_fill(T) ?`fill( char a ) { S_fill(T) ret = {'c'}; ret.fill.c = a; return ret; }
136 S_fill(T) ?`fill( T a ) { S_fill(T) ret = {'t'}; memcpy(&ret.fill.t, &a, sizeof(T)); return ret; }
137 S_fill(T) ?`fill( T a[], size_t nmemb ) { S_fill(T) ret = {'a', nmemb}; ret.fill.a = a; return ret; }
138
139 3. Replace the alloc_internal$ function which is outside ttype forall-block with following function:
140 T * alloc_internal$( void * Resize, T * Realloc, size_t Align, size_t Dim, S_fill(T) Fill) {
141 T * ptr = NULL;
142 size_t size = sizeof(T);
143 size_t copy_end = 0;
144
145 if(Resize) {
146 ptr = (T*) (void *) resize( (int *)Resize, Align, Dim * size );
147 } else if (Realloc) {
148 if (Fill.tag != '0') copy_end = min(malloc_size( Realloc ), Dim * size);
149 ptr = (T*) (void *) realloc( (int *)Realloc, Align, Dim * size );
150 } else {
151 ptr = (T*) (void *) memalign( Align, Dim * size );
152 }
153
154 if(Fill.tag == 'c') {
155 memset( (char *)ptr + copy_end, (int)Fill.fill.c, Dim * size - copy_end );
156 } else if(Fill.tag == 't') {
157 for ( int i = copy_end; i <= Dim * size - size ; i += size ) {
158 memcpy( (char *)ptr + i, &Fill.fill.t, size );
159 }
160 } else if(Fill.tag == 'a') {
161 memcpy( (char *)ptr + copy_end, Fill.fill.a, min(Dim * size - copy_end, size * Fill.nmemb) );
162 }
163
164 return ptr;
165 } // alloc_internal$
166*/
167
168#pragma GCC diagnostic push
169#pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
170#pragma GCC diagnostic ignored "-Wuninitialized"
171
172struct T_align { size_t align; };
173struct T_resize { void * addr; };
174struct T_realloc { void * addr; };
175forall( T & ) struct T_fill {
176 // 'N' => no fill, 'c' => fill with character c, 'a' => fill first N array elements from another array,
177 // 'A' => fill all array elements from another array, 'T' => fill using a T value.
178 char tag;
179 size_t nelem; // number of elements copied from "at" (used with tag 'a')
180// union {
181 char c;
182 T * at;
183 char t[64]; // T t;
184// };
185};
186
187#pragma GCC diagnostic pop
188
189static inline {
190 T_align ?`align( size_t a ) { return (T_align){ a }; }
191 T_resize ?`resize( void * a ) { return (T_resize){ a }; }
192 T_realloc ?`realloc( void * a ) { return (T_realloc){ a }; }
193}
194
195static inline forall( T & | sized(T) ) {
196 T_fill(T) ?`fill( char c ) { return (T_fill(T)){ 'c', 0, c }; }
197 T_fill(T) ?`fill( T t ) {
198 T_fill(T) ret = { 'T' };
199 size_t size = sizeof(T);
200 if ( size > sizeof(ret.t) ) {
201 abort( "ERROR: const object of size greater than 50 bytes given for dynamic memory fill\n" );
202 } // if
203 memcpy( &ret.t, &t, size );
204 return ret;
205 }
206 T_fill(T) ?`fill( T a[] ) { return (T_fill(T)){ 'A', 0, '\0', a }; } // FIX ME: remove this once ticket 214 is resolved
207 T_fill(T) ?`fill( T a[], size_t nelem ) { return (T_fill(T)){ 'a', nelem * sizeof(T), '\0', a }; }
208
209 // private interface
210 T * alloc_internal$( size_t Dim, T_resize Resize, T_realloc Realloc, size_t Align, T_fill(T) Fill ) {
211 T * ptr;
212 size_t tsize = sizeof(T);
213 size_t copy_end = 0;
214
215 if ( Resize.addr ) {
216 ptr = (T *)(void *)resize( Resize.addr, Align, Dim * tsize );
217 } else if ( Realloc.addr ) {
218 if ( Fill.tag != 'N' ) copy_end = min(malloc_size( Realloc.addr ), Dim * tsize );
219 ptr = (T *)(void *)realloc( Realloc.addr, Align, Dim * tsize );
220 } else {
221 ptr = (T *)(void *)memalign( Align, Dim * tsize );
222 } // if
223
224 if ( Fill.tag == 'c' ) {
225 memset( (char *)ptr + copy_end, (int)Fill.c, Dim * tsize - copy_end );
226 } else if ( Fill.tag == 'T' ) {
227 for ( i; copy_end ~ Dim * tsize ~ tsize ) {
228 assert( tsize <= sizeof(Fill.t) );
229 memcpy( (char *)ptr + i, &Fill.t, tsize );
230 } // for
231 } else if ( Fill.tag == 'a' ) {
232 memcpy( (char *)ptr + copy_end, Fill.at, min( Dim * tsize - copy_end, Fill.nelem ) );
233 } else if ( Fill.tag == 'A' ) {
234 memcpy( (char *)ptr + copy_end, Fill.at, Dim * tsize );
235 } // if
236 return ptr;
237 } // alloc_internal$
238
239 // Dim is a fixed (optional first) parameter, and hence is not set using a postfix function. A dummy parameter is
240 // being overwritten by the postfix argument in the ttype.
241 forall( List ... | { T * alloc_internal$( size_t Dim, T_resize Resize, T_realloc Realloc, size_t Align, T_fill(T) Fill, List ); } ) {
242 // middle interface
243 T * alloc_internal$( size_t Dim, T_resize dummy, T_realloc Realloc, size_t Align, T_fill(T) Fill, T_resize Resize, List rest ) {
244 return alloc_internal$( Dim, Resize, (T_realloc){0p}, Align, Fill, rest );
245 }
246 T * alloc_internal$( size_t Dim, T_resize Resize, T_realloc dummy, size_t Align, T_fill(T) Fill, T_realloc Realloc, List rest ) {
247 return alloc_internal$( Dim, (T_resize){0p}, Realloc, Align, Fill, rest );
248 }
249 T * alloc_internal$( size_t Dim, T_resize Resize, T_realloc Realloc, size_t dummy, T_fill(T) Fill, T_align Align, List rest ) {
250 return alloc_internal$( Dim, Resize, Realloc, Align.align, Fill, rest );
251 }
252 T * alloc_internal$( size_t Dim, T_resize Resize, T_realloc Realloc, size_t Align, T_fill(T) dummy, T_fill(T) Fill, List rest ) {
253 return alloc_internal$( Dim, Resize, Realloc, Align, Fill, rest );
254 }
255 // public interface
256 T * alloc( List rest ) {
257 return alloc_internal$( (size_t)1, (T_resize){0p}, (T_realloc){0p}, (_Alignof(T) > libAlign() ? _Alignof(T) : libAlign()), (T_fill(T)){'N'}, rest );
258 }
259 T * alloc( size_t Dim, List rest ) {
260 return alloc_internal$( Dim, (T_resize){0p}, (T_realloc){0p}, (_Alignof(T) > libAlign() ? _Alignof(T) : libAlign()), (T_fill(T)){'N'}, rest );
261 }
262 } // distribution List
263} // distribution T
264
265static inline forall( T & | sized(T) ) {
266 // CFA safe initialization/copy, i.e., implicit size specification, non-array types
267 T * memset( T * dest, char fill ) { // all combinations of pointer/reference
268 return (T *)memset( dest, fill, sizeof(T) ); // C memset
269 } // memset
270 T * memset( T & dest, char fill ) {
271 return (T *)memset( &dest, fill, sizeof(T) ); // C memset
272 } // memset
273
274 T * memcpy( T * dest, const T * src ) { // all combinations of pointer/reference
275 return (T *)memcpy( dest, src, sizeof(T) ); // C memcpy
276 } // memcpy
277 T * memcpy( T & dest, const T & src ) {
278 return (T *)memcpy( &dest, &src, sizeof(T) ); // C memcpy
279 } // memcpy
280 T * memcpy( T * dest, const T & src ) {
281 return (T *)memcpy( dest, &src, sizeof(T) ); // C memcpy
282 } // memcpy
283 T * memcpy( T & dest, const T * src ) {
284 return (T *)memcpy( &dest, src, sizeof(T) ); // C memcpy
285 } // memcpy
286
287 // CFA safe initialization/copy, i.e., implicit size specification, array types
288 T * amemset( T dest[], char fill, size_t dim ) {
289 return (T *)(void *)memset( dest, fill, dim * sizeof(T) ); // C memset
290 } // amemset
291
292 T * amemcpy( T dest[], const T src[], size_t dim ) {
293 return (T *)(void *)memcpy( dest, src, dim * sizeof(T) ); // C memcpy
294 } // amemcpy
295} // distribution
296
297// CFA deallocation for multiple objects
298static inline forall( T & )
299void free( T * ptr ) {
300 free( (void *)ptr ); // C free
301} // free
302static inline forall( T &, List ... | { void free( List ); } )
303void free( T * ptr, List rest ) {
304 free( ptr );
305 free( rest );
306} // free
307
308// CFA allocation/deallocation and constructor/destructor, non-array types
309static inline forall( T & | sized(T), Parms ... | { void ?{}( T &, Parms ); } )
310T * new( Parms p ) {
311 return &(*(T *)malloc()){ p }; // run constructor
312} // new
313
314static inline forall( T & | { void ^?{}( T & ); } )
315void delete( T * ptr ) {
316 // special case for 0-sized object => always call destructor
317 if ( ptr || sizeof(ptr) == 0 ) { // ignore null but not 0-sized objects
318 ^(*ptr){}; // run destructor
319 } // if
320 free( ptr ); // always call free
321} // delete
322static inline forall( T &, List ... | { void ^?{}( T & ); void delete( List ); } )
323void delete( T * ptr, List rest ) {
324 delete( ptr );
325 delete( rest );
326} // delete
327
328// CFA allocation/deallocation and constructor/destructor, array types
329forall( T & | sized(T), Parms ... | { void ?{}( T &, Parms ); } ) T * anew( size_t dim, Parms p );
330forall( T & | sized(T) | { void ^?{}( T & ); } ) void adelete( T arr[] );
331forall( T & | sized(T) | { void ^?{}( T & ); }, List ... | { void adelete( List ); } ) void adelete( T arr[], List rest );
332
333//---------------------------------------
334
335// Check if all string characters are a specific kind, e.g., checkif( s, isblank )
336bool checkif( const char s[], int (* kind)( int ) );
337bool checkif( const char s[], int (* kind)( int, locale_t ), locale_t locale );
338
339//---------------------------------------
340
341static inline {
342 int strto( const char sptr[], char * eptr[], int base ) { return (int)strtol( sptr, eptr, base ); }
343 unsigned int strto( const char sptr[], char * eptr[], int base ) { return (unsigned int)strtoul( sptr, eptr, base ); }
344 long int strto( const char sptr[], char * eptr[], int base ) { return strtol( sptr, eptr, base ); }
345 unsigned long int strto( const char sptr[], char * eptr[], int base ) { return strtoul( sptr, eptr, base ); }
346 long long int strto( const char sptr[], char * eptr[], int base ) { return strtoll( sptr, eptr, base ); }
347 unsigned long long int strto( const char sptr[], char * eptr[], int base ) { return strtoull( sptr, eptr, base ); }
348
349 float strto( const char sptr[], char * eptr[] ) { return strtof( sptr, eptr ); }
350 double strto( const char sptr[], char * eptr[] ) { return strtod( sptr, eptr ); }
351 long double strto( const char sptr[], char * eptr[] ) { return strtold( sptr, eptr ); }
352} // distribution
353
354float _Complex strto( const char sptr[], char * eptr[] );
355double _Complex strto( const char sptr[], char * eptr[] );
356long double _Complex strto( const char sptr[], char * eptr[] );
357
358ExceptionDecl( out_of_range );
359ExceptionDecl( invalid_argument );
360
361forall( T | { T strto( const char sptr[], char * eptr[], int ); } )
362T convert( const char sptr[] ); // integrals
363forall( T | { T strto( const char sptr[], char * eptr[] ); } )
364T convert( const char sptr[] ); // floating-point (no base)
365
366static inline {
367 int ato( const char sptr[] ) { return (int)strtol( sptr, 0p, 10 ); }
368 unsigned int ato( const char sptr[] ) { return (unsigned int)strtoul( sptr, 0p, 10 ); }
369 long int ato( const char sptr[] ) { return strtol( sptr, 0p, 10 ); }
370 unsigned long int ato( const char sptr[] ) { return strtoul( sptr, 0p, 10 ); }
371 long long int ato( const char sptr[] ) { return strtoll( sptr, 0p, 10 ); }
372 unsigned long long int ato( const char sptr[] ) { return strtoull( sptr, 0p, 10 ); }
373
374 float ato( const char sptr[] ) { return strtof( sptr, 0p ); }
375 double ato( const char sptr[] ) { return strtod( sptr, 0p ); }
376 long double ato( const char sptr[] ) { return strtold( sptr, 0p ); }
377
378 float _Complex ato( const char sptr[] ) { return strto( sptr, 0p ); }
379 double _Complex ato( const char sptr[] ) { return strto( sptr, 0p ); }
380 long double _Complex ato( const char sptr[] ) { return strto( sptr, 0p ); }
381} // distribution
382
383//---------------------------------------
384
385forall( E | { int ?<?( E, E ); } ) {
386 E * bsearch( E key, const E * vals, size_t dim );
387 size_t bsearch( E key, const E * vals, size_t dim );
388 E * bsearchl( E key, const E * vals, size_t dim );
389 size_t bsearchl( E key, const E * vals, size_t dim );
390 E * bsearchu( E key, const E * vals, size_t dim );
391 size_t bsearchu( E key, const E * vals, size_t dim );
392} // distribution
393
394forall( K, E | { int ?<?( K, K ); K getKey( const E & ); } ) {
395 E * bsearch( K key, const E * vals, size_t dim );
396 size_t bsearch( K key, const E * vals, size_t dim );
397 E * bsearchl( K key, const E * vals, size_t dim );
398 size_t bsearchl( K key, const E * vals, size_t dim );
399 E * bsearchu( K key, const E * vals, size_t dim );
400 size_t bsearchu( K key, const E * vals, size_t dim );
401} // distribution
402
403forall( E | { int ?<?( E, E ); } ) {
404 void qsort( E * vals, size_t dim );
405} // distribution
406
407//---------------------------------------
408
409extern "C" { // override C version
410 void srandom( unsigned int seed );
411 long int random( void ); // GENERATES POSITIVE AND NEGATIVE VALUES
412 // For positive values, use unsigned int, e.g., unsigned int r = random() % 100U;
413} // extern "C"
414
415static inline {
416 long int random( long int l, long int u ) { if ( u < l ) [u, l] = [l, u]; return lrand48() % (u - l + 1) + l; } // [l,u]
417 long int random( long int u ) { return random( 0, u - 1 ); } // [0,u)
418 unsigned long int random( void ) { return lrand48(); }
419 unsigned long int random( unsigned long int u ) { return lrand48() % u; } // [0,u)
420 unsigned long int random( unsigned long int l, unsigned long int u ) { if ( u < l ) [u, l] = [l, u]; return lrand48() % (u - l + 1) + l; } // [l,u]
421
422 char random( void ) { return (unsigned long int)random(); }
423 char random( char u ) { return (unsigned long int)random( (unsigned long int)u ); } // [0,u)
424 char random( char l, char u ) { return random( (unsigned long int)l, (unsigned long int)u ); } // [l,u)
425 int random( void ) { return (long int)random(); }
426 int random( int u ) { return (long int)random( (long int)u ); } // [0,u]
427 int random( int l, int u ) { return random( (long int)l, (long int)u ); } // [l,u)
428 unsigned int random( void ) { return (unsigned long int)random(); }
429 unsigned int random( unsigned int u ) { return (unsigned long int)random( (unsigned long int)u ); } // [0,u]
430 unsigned int random( unsigned int l, unsigned int u ) { return random( (unsigned long int)l, (unsigned long int)u ); } // [l,u)
431} // distribution
432
433float random( void ); // [0.0, 1.0)
434double random( void ); // [0.0, 1.0)
435float _Complex random( void ); // [0.0, 1.0)+[0.0, 1.0)i
436double _Complex random( void ); // [0.0, 1.0)+[0.0, 1.0)i
437long double _Complex random( void ); // [0.0, 1.0)+[0.0, 1.0)i
438
439//---------------------------------------
440
441// Sequential Pseudo Random-Number Generator : generate repeatable sequence of values that appear random.
442//
443// Declaration :
444// PRNG sprng = { 1009 } - set starting seed versus random seed
445//
446// Interface :
447// set_seed( sprng, 1009 ) - set starting seed for ALL kernel threads versus random seed
448// get_seed( sprng ) - read seed
449// prng( sprng ) - generate random value in range [0,UINT_MAX]
450// prng( sprng, u ) - generate random value in range [0,u)
451// prng( sprng, l, u ) - generate random value in range [l,u]
452// calls( sprng ) - number of generated random value so far
453//
454// Examples : generate random number between 5-21
455// prng( sprng ) % 17 + 5; values 0-16 + 5 = 5-21
456// prng( sprng, 16 + 1 ) + 5;
457// prng( sprng, 5, 21 );
458// calls( sprng );
459
460forall( PRNG &, R )
461trait basic_prng {
462 void set_seed( PRNG & prng, R seed ); // set seed
463 R get_seed( PRNG & prng ); // get seed
464 R prng( PRNG & prng );
465 void ?{}( PRNG & prng ); // random seed
466 void ?{}( PRNG & prng, R seed ); // fixed seed
467}; // basic_prng
468
469static inline forall( PRNG &, R | basic_prng( PRNG, R ) | { R ?%?( R, R ); } ) {
470 R prng( PRNG & prng, R u ) { return prng( prng ) % u; } // [0,u)
471}
472static inline forall( PRNG &, R | basic_prng( PRNG, R ) | { R ?+?( R, R ); R ?-?( R, R ); R ?%?( R, R ); void ?{}( R &, one_t ); } ) {
473 R prng( PRNG & prng, R l, R u ) { return prng( prng, u - l + (R){1} ) + l; } // [l,u]
474}
475
476struct PRNG32 {
477 uint32_t callcnt; // call count
478 uint32_t seed; // current seed
479 PRNG_STATE_32_T state; // random state
480}; // PRNG32
481
482static inline {
483 void set_seed( PRNG32 & prng, uint32_t seed_ ) with( prng ) { seed = seed_; PRNG_SET_SEED_32( state, seed ); }
484 uint32_t get_seed( PRNG32 & prng ) __attribute__(( warn_unused_result )) with( prng ) { return seed; }
485 void ?{}( PRNG32 & prng, uint32_t seed ) with( prng ) { callcnt = 0; set_seed( prng, seed ); } // fixed seed
486 void ?{}( PRNG32 & prng ) with( prng ) { ?{}( prng, rdtscl() ); } // random seed
487 uint32_t prng( PRNG32 & prng ) __attribute__(( warn_unused_result )) with( prng ) { callcnt += 1; return PRNG_NAME_32( state ); } // [0,UINT_MAX]
488 uint32_t prng( PRNG32 & prng, uint32_t u ) __attribute__(( warn_unused_result )) { return prng( prng ) % u; } // [0,u)
489 uint32_t prng( PRNG32 & prng, uint32_t l, uint32_t u ) __attribute__(( warn_unused_result )) { return prng( prng, u - l + 1 ) + l; } // [l,u]
490 uint32_t calls( PRNG32 & prng ) __attribute__(( warn_unused_result )) with( prng ) { return callcnt; }
491 void copy( PRNG32 & dst, PRNG32 & src ) { dst = src; } // checkpoint PRNG state, use autogen assignment
492} // distribution
493void ?{}( PRNG32 &, PRNG32 & ) = void; // no copy, remove autogen copy constructor
494PRNG32 & ?=?( PRNG32 &, const PRNG32 ) = void; // no assignment, remove autogen assignment
495
496struct PRNG64 {
497 uint64_t callcnt; // call count
498 uint64_t seed; // current seed
499 PRNG_STATE_64_T state; // random state
500}; // PRNG64
501
502static inline {
503 void set_seed( PRNG64 & prng, uint64_t seed_ ) with( prng ) { seed = seed_; PRNG_SET_SEED_64( state, seed ); }
504 uint64_t get_seed( PRNG64 & prng ) __attribute__(( warn_unused_result )) with( prng ) { return seed; }
505 void ?{}( PRNG64 & prng, uint64_t seed ) with( prng ) { callcnt = 0; set_seed( prng, seed ); } // fixed seed
506 void ?{}( PRNG64 & prng ) with( prng ) { ?{}( prng, rdtscl() ); } // random seed
507 uint64_t prng( PRNG64 & prng ) __attribute__(( warn_unused_result )) with( prng ) { callcnt += 1; return PRNG_NAME_64( state ); } // [0,UINT_MAX]
508 uint64_t prng( PRNG64 & prng, uint64_t u ) __attribute__(( warn_unused_result )) { return prng( prng ) % u; } // [0,u)
509 uint64_t prng( PRNG64 & prng, uint64_t l, uint64_t u ) __attribute__(( warn_unused_result )) { return prng( prng, u - l + 1 ) + l; } // [l,u]
510 uint64_t calls( PRNG64 & prng ) __attribute__(( warn_unused_result )) with( prng ) { return callcnt; }
511 void copy( PRNG64 & dst, PRNG64 & src ) { dst = src; } // checkpoint PRNG state, use autogen assignment
512} // distribution
513void ?{}( PRNG64 &, PRNG64 & ) = void; // no copy, remove autogen copy constructor
514PRNG64 & ?=?( PRNG64 &, const PRNG64 ) = void; // no assignment, remove autogen assignment
515
516// Set default random-generator size.
517#if defined( __x86_64__ ) || defined( __aarch64__ ) // 64-bit architecture
518#define PRNG PRNG64
519#else // 32-bit architecture
520#define PRNG PRNG32
521#endif // __x86_64__
522
523// Concurrent Pseudo Random-Number Generator : generate repeatable sequence of values that appear random.
524//
525// Interface :
526// set_seed( 1009 ) - fixed seed for all kernel threads versus random seed
527// get_seed() - read seed
528// prng() - generate random value in range [0,UINT_MAX]
529// prng( u ) - generate random value in range [0,u)
530// prng( l, u ) - generate random value in range [l,u]
531//
532// Examples : generate random number between 5-21
533// prng() % 17 + 5; values 0-16 + 5 = 5-21
534// prng( 16 + 1 ) + 5;
535// prng( 5, 21 );
536
537// Harmonize with concurrency/thread.hfa.
538void set_seed( size_t seed_ ) OPTIONAL_THREAD; // set global seed
539size_t get_seed() __attribute__(( warn_unused_result )); // get global seed
540size_t prng( void ) __attribute__(( warn_unused_result )) OPTIONAL_THREAD; // [0,UINT_MAX]
541static inline {
542 size_t prng( size_t u ) __attribute__(( warn_unused_result )) { return prng() % u; } // [0,u)
543 size_t prng( size_t l, size_t u ) __attribute__(( warn_unused_result )) { return prng( u - l + 1 ) + l; } // [l,u]
544} // distribution
545
546//---------------------------------------
547
548extern bool threading_enabled( void ) OPTIONAL_THREAD;
549
550// Local Variables: //
551// mode: c //
552// tab-width: 4 //
553// End: //
Note: See TracBrowser for help on using the repository browser.