1 | //
|
---|
2 | // Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
|
---|
3 | //
|
---|
4 | // The contents of this file are covered under the licence agreement in the
|
---|
5 | // file "LICENCE" distributed with Cforall.
|
---|
6 | //
|
---|
7 | // stdlib --
|
---|
8 | //
|
---|
9 | // Author : Peter A. Buhr
|
---|
10 | // Created On : Thu Jan 28 17:12:35 2016
|
---|
11 | // Last Modified By : Peter A. Buhr
|
---|
12 | // Last Modified On : Mon Jan 10 17:03:18 2022
|
---|
13 | // Update Count : 619
|
---|
14 | //
|
---|
15 |
|
---|
16 | #pragma once
|
---|
17 |
|
---|
18 | #include "bits/defs.hfa" // OPTIONAL_THREAD
|
---|
19 | #include "bits/align.hfa" // libAlign
|
---|
20 |
|
---|
21 | #include <stdlib.h> // *alloc, strto*, ato*
|
---|
22 | #include <heap.hfa>
|
---|
23 |
|
---|
24 |
|
---|
25 | // Reduce includes by explicitly defining these routines.
|
---|
26 | extern "C" {
|
---|
27 | void * memalign( size_t alignment, size_t size ); // malloc.h
|
---|
28 | void * pvalloc( size_t size ); // malloc.h
|
---|
29 | void * memset( void * dest, int fill, size_t size ); // string.h
|
---|
30 | void * memcpy( void * dest, const void * src, size_t size ); // string.h
|
---|
31 | } // extern "C"
|
---|
32 |
|
---|
33 | //---------------------------------------
|
---|
34 |
|
---|
35 | #ifndef EXIT_FAILURE
|
---|
36 | #define EXIT_FAILURE 1 // failing exit status
|
---|
37 | #define EXIT_SUCCESS 0 // successful exit status
|
---|
38 | #endif // ! EXIT_FAILURE
|
---|
39 |
|
---|
40 | //---------------------------------------
|
---|
41 |
|
---|
42 | #include "common.hfa"
|
---|
43 |
|
---|
44 | //---------------------------------------
|
---|
45 |
|
---|
46 | static inline forall( T & | sized(T) ) {
|
---|
47 | // CFA safe equivalents, i.e., implicit size specification
|
---|
48 |
|
---|
49 | T * malloc( void ) {
|
---|
50 | if ( _Alignof(T) <= libAlign() ) return (T *)malloc( sizeof(T) ); // C allocation
|
---|
51 | else return (T *)memalign( _Alignof(T), sizeof(T) );
|
---|
52 | } // malloc
|
---|
53 |
|
---|
54 | T * aalloc( size_t dim ) {
|
---|
55 | if ( _Alignof(T) <= libAlign() ) return (T *)aalloc( dim, sizeof(T) ); // C allocation
|
---|
56 | else return (T *)amemalign( _Alignof(T), dim, sizeof(T) );
|
---|
57 | } // aalloc
|
---|
58 |
|
---|
59 | T * calloc( size_t dim ) {
|
---|
60 | if ( _Alignof(T) <= libAlign() ) return (T *)calloc( dim, sizeof(T) ); // C allocation
|
---|
61 | else return (T *)cmemalign( _Alignof(T), dim, sizeof(T) );
|
---|
62 | } // calloc
|
---|
63 |
|
---|
64 | T * resize( T * ptr, size_t size ) { // CFA resize, eliminate return-type cast
|
---|
65 | if ( _Alignof(T) <= libAlign() ) return (T *)resize( (void *)ptr, size ); // CFA resize
|
---|
66 | else return (T *)resize( (void *)ptr, _Alignof(T), size ); // CFA resize
|
---|
67 | } // resize
|
---|
68 |
|
---|
69 | T * realloc( T * ptr, size_t size ) { // CFA realloc, eliminate return-type cast
|
---|
70 | if ( _Alignof(T) <= libAlign() ) return (T *)realloc( (void *)ptr, size ); // C realloc
|
---|
71 | else return (T *)realloc( (void *)ptr, _Alignof(T), size ); // CFA realloc
|
---|
72 | } // realloc
|
---|
73 |
|
---|
74 | T * memalign( size_t align ) {
|
---|
75 | return (T *)memalign( align, sizeof(T) ); // C memalign
|
---|
76 | } // memalign
|
---|
77 |
|
---|
78 | T * amemalign( size_t align, size_t dim ) {
|
---|
79 | return (T *)amemalign( align, dim, sizeof(T) ); // CFA amemalign
|
---|
80 | } // amemalign
|
---|
81 |
|
---|
82 | T * cmemalign( size_t align, size_t dim ) {
|
---|
83 | return (T *)cmemalign( align, dim, sizeof(T) ); // CFA cmemalign
|
---|
84 | } // cmemalign
|
---|
85 |
|
---|
86 | T * aligned_alloc( size_t align ) {
|
---|
87 | return (T *)aligned_alloc( align, sizeof(T) ); // C aligned_alloc
|
---|
88 | } // aligned_alloc
|
---|
89 |
|
---|
90 | int posix_memalign( T ** ptr, size_t align ) {
|
---|
91 | return posix_memalign( (void **)ptr, align, sizeof(T) ); // C posix_memalign
|
---|
92 | } // posix_memalign
|
---|
93 |
|
---|
94 | T * valloc( void ) {
|
---|
95 | return (T *)valloc( sizeof(T) ); // C valloc
|
---|
96 | } // valloc
|
---|
97 |
|
---|
98 | T * pvalloc( void ) {
|
---|
99 | return (T *)pvalloc( sizeof(T) ); // C pvalloc
|
---|
100 | } // pvalloc
|
---|
101 | } // distribution
|
---|
102 |
|
---|
103 | /*
|
---|
104 | FIX ME : fix alloc interface after Ticker Number 214 is resolved, define and add union to S_fill. Then, modify postfix-fill functions to support T * with nmemb, char, and T object of any size. Finally, change alloc_internal.
|
---|
105 | Or, just follow the instructions below for that.
|
---|
106 |
|
---|
107 | 1. Replace the current forall-block that contains defintions of S_fill and S_realloc with following:
|
---|
108 | forall( T & | sized(T) ) {
|
---|
109 | union U_fill { char c; T * a; T t; };
|
---|
110 | struct S_fill { char tag; U_fill(T) fill; };
|
---|
111 | struct S_realloc { inline T *; };
|
---|
112 | }
|
---|
113 |
|
---|
114 | 2. Replace all current postfix-fill functions with following for updated S_fill:
|
---|
115 | S_fill(T) ?`fill( char a ) { S_fill(T) ret = {'c'}; ret.fill.c = a; return ret; }
|
---|
116 | S_fill(T) ?`fill( T a ) { S_fill(T) ret = {'t'}; memcpy(&ret.fill.t, &a, sizeof(T)); return ret; }
|
---|
117 | S_fill(T) ?`fill( T a[], size_t nmemb ) { S_fill(T) ret = {'a', nmemb}; ret.fill.a = a; return ret; }
|
---|
118 |
|
---|
119 | 3. Replace the alloc_internal$ function which is outside ttype forall-block with following function:
|
---|
120 | T * alloc_internal$( void * Resize, T * Realloc, size_t Align, size_t Dim, S_fill(T) Fill) {
|
---|
121 | T * ptr = NULL;
|
---|
122 | size_t size = sizeof(T);
|
---|
123 | size_t copy_end = 0;
|
---|
124 |
|
---|
125 | if(Resize) {
|
---|
126 | ptr = (T*) (void *) resize( (int *)Resize, Align, Dim * size );
|
---|
127 | } else if (Realloc) {
|
---|
128 | if (Fill.tag != '0') copy_end = min(malloc_size( Realloc ), Dim * size);
|
---|
129 | ptr = (T*) (void *) realloc( (int *)Realloc, Align, Dim * size );
|
---|
130 | } else {
|
---|
131 | ptr = (T*) (void *) memalign( Align, Dim * size );
|
---|
132 | }
|
---|
133 |
|
---|
134 | if(Fill.tag == 'c') {
|
---|
135 | memset( (char *)ptr + copy_end, (int)Fill.fill.c, Dim * size - copy_end );
|
---|
136 | } else if(Fill.tag == 't') {
|
---|
137 | for ( int i = copy_end; i <= Dim * size - size ; i += size ) {
|
---|
138 | memcpy( (char *)ptr + i, &Fill.fill.t, size );
|
---|
139 | }
|
---|
140 | } else if(Fill.tag == 'a') {
|
---|
141 | memcpy( (char *)ptr + copy_end, Fill.fill.a, min(Dim * size - copy_end, size * Fill.nmemb) );
|
---|
142 | }
|
---|
143 |
|
---|
144 | return ptr;
|
---|
145 | } // alloc_internal$
|
---|
146 | */
|
---|
147 |
|
---|
148 | typedef struct S_align { inline size_t; } T_align;
|
---|
149 | typedef struct S_resize { inline void *; } T_resize;
|
---|
150 |
|
---|
151 | forall( T & ) {
|
---|
152 | struct S_fill { char tag; char c; size_t size; T * at; char t[50]; };
|
---|
153 | struct S_realloc { inline T *; };
|
---|
154 | }
|
---|
155 |
|
---|
156 | static inline T_align ?`align ( size_t a ) { return (T_align){a}; }
|
---|
157 | static inline T_resize ?`resize ( void * a ) { return (T_resize){a}; }
|
---|
158 |
|
---|
159 | static inline forall( T & | sized(T) ) {
|
---|
160 | S_fill(T) ?`fill ( T t ) {
|
---|
161 | S_fill(T) ret = { 't' };
|
---|
162 | size_t size = sizeof(T);
|
---|
163 | if ( size > sizeof(ret.t) ) {
|
---|
164 | abort( "ERROR: const object of size greater than 50 bytes given for dynamic memory fill\n" );
|
---|
165 | } // if
|
---|
166 | memcpy( &ret.t, &t, size );
|
---|
167 | return ret;
|
---|
168 | }
|
---|
169 | S_fill(T) ?`fill ( zero_t ) = void; // FIX ME: remove this once ticket 214 is resolved
|
---|
170 | S_fill(T) ?`fill ( T * a ) { return (S_fill(T)){ 'T', '0', 0, a }; } // FIX ME: remove this once ticket 214 is resolved
|
---|
171 | S_fill(T) ?`fill ( char c ) { return (S_fill(T)){ 'c', c }; }
|
---|
172 | S_fill(T) ?`fill ( T a[], size_t nmemb ) { return (S_fill(T)){ 'a', '0', nmemb * sizeof(T), a }; }
|
---|
173 |
|
---|
174 | S_realloc(T) ?`realloc ( T * a ) { return (S_realloc(T)){a}; }
|
---|
175 |
|
---|
176 | T * alloc_internal$( void * Resize, T * Realloc, size_t Align, size_t Dim, S_fill(T) Fill ) {
|
---|
177 | T * ptr = NULL;
|
---|
178 | size_t size = sizeof(T);
|
---|
179 | size_t copy_end = 0;
|
---|
180 |
|
---|
181 | if ( Resize ) {
|
---|
182 | ptr = (T*) (void *) resize( (void *)Resize, Align, Dim * size );
|
---|
183 | } else if ( Realloc ) {
|
---|
184 | if ( Fill.tag != '0' ) copy_end = min(malloc_size( Realloc ), Dim * size );
|
---|
185 | ptr = (T *) (void *) realloc( (void *)Realloc, Align, Dim * size );
|
---|
186 | } else {
|
---|
187 | ptr = (T *) (void *) memalign( Align, Dim * size );
|
---|
188 | }
|
---|
189 |
|
---|
190 | if ( Fill.tag == 'c' ) {
|
---|
191 | memset( (char *)ptr + copy_end, (int)Fill.c, Dim * size - copy_end );
|
---|
192 | } else if ( Fill.tag == 't' ) {
|
---|
193 | for ( int i = copy_end; i < Dim * size; i += size ) {
|
---|
194 | #pragma GCC diagnostic push
|
---|
195 | #pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
|
---|
196 | assert( size <= sizeof(Fill.t) );
|
---|
197 | memcpy( (char *)ptr + i, &Fill.t, size );
|
---|
198 | #pragma GCC diagnostic pop
|
---|
199 | }
|
---|
200 | } else if ( Fill.tag == 'a' ) {
|
---|
201 | memcpy( (char *)ptr + copy_end, Fill.at, min(Dim * size - copy_end, Fill.size) );
|
---|
202 | } else if ( Fill.tag == 'T' ) {
|
---|
203 | memcpy( (char *)ptr + copy_end, Fill.at, Dim * size );
|
---|
204 | }
|
---|
205 |
|
---|
206 | return ptr;
|
---|
207 | } // alloc_internal$
|
---|
208 |
|
---|
209 | forall( TT... | { T * alloc_internal$( void *, T *, size_t, size_t, S_fill(T), TT ); } ) {
|
---|
210 |
|
---|
211 | T * alloc_internal$( void * , T * Realloc, size_t Align, size_t Dim, S_fill(T) Fill, T_resize Resize, TT rest) {
|
---|
212 | return alloc_internal$( Resize, (T*)0p, Align, Dim, Fill, rest);
|
---|
213 | }
|
---|
214 |
|
---|
215 | T * alloc_internal$( void * Resize, T * , size_t Align, size_t Dim, S_fill(T) Fill, S_realloc(T) Realloc, TT rest) {
|
---|
216 | return alloc_internal$( (void*)0p, Realloc, Align, Dim, Fill, rest);
|
---|
217 | }
|
---|
218 |
|
---|
219 | T * alloc_internal$( void * Resize, T * Realloc, size_t , size_t Dim, S_fill(T) Fill, T_align Align, TT rest) {
|
---|
220 | return alloc_internal$( Resize, Realloc, Align, Dim, Fill, rest);
|
---|
221 | }
|
---|
222 |
|
---|
223 | T * alloc_internal$( void * Resize, T * Realloc, size_t Align, size_t Dim, S_fill(T) , S_fill(T) Fill, TT rest) {
|
---|
224 | return alloc_internal$( Resize, Realloc, Align, Dim, Fill, rest);
|
---|
225 | }
|
---|
226 |
|
---|
227 | T * alloc( TT all ) {
|
---|
228 | return alloc_internal$( (void*)0p, (T*)0p, (_Alignof(T) > libAlign() ? _Alignof(T) : libAlign()), (size_t)1, (S_fill(T)){'0'}, all);
|
---|
229 | }
|
---|
230 |
|
---|
231 | T * alloc( size_t dim, TT all ) {
|
---|
232 | return alloc_internal$( (void*)0p, (T*)0p, (_Alignof(T) > libAlign() ? _Alignof(T) : libAlign()), dim, (S_fill(T)){'0'}, all);
|
---|
233 | }
|
---|
234 |
|
---|
235 | } // distribution TT
|
---|
236 | } // distribution T
|
---|
237 |
|
---|
238 | static inline forall( T & | sized(T) ) {
|
---|
239 | // CFA safe initialization/copy, i.e., implicit size specification, non-array types
|
---|
240 | T * memset( T * dest, char fill ) {
|
---|
241 | return (T *)memset( dest, fill, sizeof(T) );
|
---|
242 | } // memset
|
---|
243 |
|
---|
244 | T * memcpy( T * dest, const T * src ) {
|
---|
245 | return (T *)memcpy( dest, src, sizeof(T) );
|
---|
246 | } // memcpy
|
---|
247 |
|
---|
248 | // CFA safe initialization/copy, i.e., implicit size specification, array types
|
---|
249 | T * amemset( T dest[], char fill, size_t dim ) {
|
---|
250 | return (T *)(void *)memset( dest, fill, dim * sizeof(T) ); // C memset
|
---|
251 | } // amemset
|
---|
252 |
|
---|
253 | T * amemcpy( T dest[], const T src[], size_t dim ) {
|
---|
254 | return (T *)(void *)memcpy( dest, src, dim * sizeof(T) ); // C memcpy
|
---|
255 | } // amemcpy
|
---|
256 | } // distribution
|
---|
257 |
|
---|
258 | // CFA deallocation for multiple objects
|
---|
259 | static inline forall( T & ) // FIX ME, problems with 0p in list
|
---|
260 | void free( T * ptr ) {
|
---|
261 | free( (void *)ptr ); // C free
|
---|
262 | } // free
|
---|
263 | static inline forall( T &, TT... | { void free( TT ); } )
|
---|
264 | void free( T * ptr, TT rest ) {
|
---|
265 | free( ptr );
|
---|
266 | free( rest );
|
---|
267 | } // free
|
---|
268 |
|
---|
269 | // CFA allocation/deallocation and constructor/destructor, non-array types
|
---|
270 | static inline forall( T & | sized(T), TT... | { void ?{}( T &, TT ); } )
|
---|
271 | T * new( TT p ) {
|
---|
272 | return &(*(T *)malloc()){ p }; // run constructor
|
---|
273 | } // new
|
---|
274 |
|
---|
275 | static inline forall( T & | { void ^?{}( T & ); } )
|
---|
276 | void delete( T * ptr ) {
|
---|
277 | // special case for 0-sized object => always call destructor
|
---|
278 | if ( ptr || sizeof(ptr) == 0 ) { // ignore null but not 0-sized objects
|
---|
279 | ^(*ptr){}; // run destructor
|
---|
280 | } // if
|
---|
281 | free( ptr ); // always call free
|
---|
282 | } // delete
|
---|
283 | static inline forall( T &, TT... | { void ^?{}( T & ); void delete( TT ); } )
|
---|
284 | void delete( T * ptr, TT rest ) {
|
---|
285 | delete( ptr );
|
---|
286 | delete( rest );
|
---|
287 | } // delete
|
---|
288 |
|
---|
289 | // CFA allocation/deallocation and constructor/destructor, array types
|
---|
290 | forall( T & | sized(T), TT... | { void ?{}( T &, TT ); } ) T * anew( size_t dim, TT p );
|
---|
291 | forall( T & | sized(T) | { void ^?{}( T & ); } ) void adelete( T arr[] );
|
---|
292 | forall( T & | sized(T) | { void ^?{}( T & ); }, TT... | { void adelete( TT ); } ) void adelete( T arr[], TT rest );
|
---|
293 |
|
---|
294 | //---------------------------------------
|
---|
295 |
|
---|
296 | static inline {
|
---|
297 | int strto( const char sptr[], char ** eptr, int base ) { return (int)strtol( sptr, eptr, base ); }
|
---|
298 | unsigned int strto( const char sptr[], char ** eptr, int base ) { return (unsigned int)strtoul( sptr, eptr, base ); }
|
---|
299 | long int strto( const char sptr[], char ** eptr, int base ) { return strtol( sptr, eptr, base ); }
|
---|
300 | unsigned long int strto( const char sptr[], char ** eptr, int base ) { return strtoul( sptr, eptr, base ); }
|
---|
301 | long long int strto( const char sptr[], char ** eptr, int base ) { return strtoll( sptr, eptr, base ); }
|
---|
302 | unsigned long long int strto( const char sptr[], char ** eptr, int base ) { return strtoull( sptr, eptr, base ); }
|
---|
303 |
|
---|
304 | float strto( const char sptr[], char ** eptr ) { return strtof( sptr, eptr ); }
|
---|
305 | double strto( const char sptr[], char ** eptr ) { return strtod( sptr, eptr ); }
|
---|
306 | long double strto( const char sptr[], char ** eptr ) { return strtold( sptr, eptr ); }
|
---|
307 | } // distribution
|
---|
308 |
|
---|
309 | float _Complex strto( const char sptr[], char ** eptr );
|
---|
310 | double _Complex strto( const char sptr[], char ** eptr );
|
---|
311 | long double _Complex strto( const char sptr[], char ** eptr );
|
---|
312 |
|
---|
313 | static inline {
|
---|
314 | int ato( const char sptr[] ) { return (int)strtol( sptr, 0p, 10 ); }
|
---|
315 | unsigned int ato( const char sptr[] ) { return (unsigned int)strtoul( sptr, 0p, 10 ); }
|
---|
316 | long int ato( const char sptr[] ) { return strtol( sptr, 0p, 10 ); }
|
---|
317 | unsigned long int ato( const char sptr[] ) { return strtoul( sptr, 0p, 10 ); }
|
---|
318 | long long int ato( const char sptr[] ) { return strtoll( sptr, 0p, 10 ); }
|
---|
319 | unsigned long long int ato( const char sptr[] ) { return strtoull( sptr, 0p, 10 ); }
|
---|
320 |
|
---|
321 | float ato( const char sptr[] ) { return strtof( sptr, 0p ); }
|
---|
322 | double ato( const char sptr[] ) { return strtod( sptr, 0p ); }
|
---|
323 | long double ato( const char sptr[] ) { return strtold( sptr, 0p ); }
|
---|
324 |
|
---|
325 | float _Complex ato( const char sptr[] ) { return strto( sptr, 0p ); }
|
---|
326 | double _Complex ato( const char sptr[] ) { return strto( sptr, 0p ); }
|
---|
327 | long double _Complex ato( const char sptr[] ) { return strto( sptr, 0p ); }
|
---|
328 | } // distribution
|
---|
329 |
|
---|
330 | //---------------------------------------
|
---|
331 |
|
---|
332 | forall( E | { int ?<?( E, E ); } ) {
|
---|
333 | E * bsearch( E key, const E * vals, size_t dim );
|
---|
334 | size_t bsearch( E key, const E * vals, size_t dim );
|
---|
335 | E * bsearchl( E key, const E * vals, size_t dim );
|
---|
336 | size_t bsearchl( E key, const E * vals, size_t dim );
|
---|
337 | E * bsearchu( E key, const E * vals, size_t dim );
|
---|
338 | size_t bsearchu( E key, const E * vals, size_t dim );
|
---|
339 | } // distribution
|
---|
340 |
|
---|
341 | forall( K, E | { int ?<?( K, K ); K getKey( const E & ); } ) {
|
---|
342 | E * bsearch( K key, const E * vals, size_t dim );
|
---|
343 | size_t bsearch( K key, const E * vals, size_t dim );
|
---|
344 | E * bsearchl( K key, const E * vals, size_t dim );
|
---|
345 | size_t bsearchl( K key, const E * vals, size_t dim );
|
---|
346 | E * bsearchu( K key, const E * vals, size_t dim );
|
---|
347 | size_t bsearchu( K key, const E * vals, size_t dim );
|
---|
348 | } // distribution
|
---|
349 |
|
---|
350 | forall( E | { int ?<?( E, E ); } ) {
|
---|
351 | void qsort( E * vals, size_t dim );
|
---|
352 | } // distribution
|
---|
353 |
|
---|
354 | //---------------------------------------
|
---|
355 |
|
---|
356 | extern "C" { // override C version
|
---|
357 | void srandom( unsigned int seed );
|
---|
358 | long int random( void ); // GENERATES POSITIVE AND NEGATIVE VALUES
|
---|
359 | // For positive values, use unsigned int, e.g., unsigned int r = random() % 100U;
|
---|
360 | } // extern "C"
|
---|
361 |
|
---|
362 | static inline {
|
---|
363 | long int random( long int l, long int u ) { if ( u < l ) [u, l] = [l, u]; return lrand48() % (u - l + 1) + l; } // [l,u]
|
---|
364 | long int random( long int u ) { return random( 0, u - 1 ); } // [0,u)
|
---|
365 | unsigned long int random( void ) { return lrand48(); }
|
---|
366 | unsigned long int random( unsigned long int u ) { return lrand48() % u; } // [0,u)
|
---|
367 | unsigned long int random( unsigned long int l, unsigned long int u ) { if ( u < l ) [u, l] = [l, u]; return lrand48() % (u - l + 1) + l; } // [l,u]
|
---|
368 |
|
---|
369 | char random( void ) { return (unsigned long int)random(); }
|
---|
370 | char random( char u ) { return random( (unsigned long int)u ); } // [0,u)
|
---|
371 | char random( char l, char u ) { return random( (unsigned long int)l, (unsigned long int)u ); } // [l,u)
|
---|
372 | int random( void ) { return (long int)random(); }
|
---|
373 | int random( int u ) { return random( (long int)u ); } // [0,u]
|
---|
374 | int random( int l, int u ) { return random( (long int)l, (long int)u ); } // [l,u)
|
---|
375 | unsigned int random( void ) { return (unsigned long int)random(); }
|
---|
376 | unsigned int random( unsigned int u ) { return random( (unsigned long int)u ); } // [0,u]
|
---|
377 | unsigned int random( unsigned int l, unsigned int u ) { return random( (unsigned long int)l, (unsigned long int)u ); } // [l,u)
|
---|
378 | } // distribution
|
---|
379 |
|
---|
380 | float random( void ); // [0.0, 1.0)
|
---|
381 | double random( void ); // [0.0, 1.0)
|
---|
382 | float _Complex random( void ); // [0.0, 1.0)+[0.0, 1.0)i
|
---|
383 | double _Complex random( void ); // [0.0, 1.0)+[0.0, 1.0)i
|
---|
384 | long double _Complex random( void ); // [0.0, 1.0)+[0.0, 1.0)i
|
---|
385 |
|
---|
386 | //---------------------------------------
|
---|
387 |
|
---|
388 | struct PRNG {
|
---|
389 | uint32_t callcnt; // call count
|
---|
390 | uint32_t seed; // current seed
|
---|
391 | uint32_t state; // random state
|
---|
392 | }; // PRNG
|
---|
393 |
|
---|
394 | uint32_t prng( PRNG & prng ) __attribute__(( warn_unused_result )); // [0,UINT_MAX]
|
---|
395 | static inline {
|
---|
396 | void set_seed( PRNG & prng, uint32_t seed_ ) with( prng ) { state = seed = seed_; } // set seed
|
---|
397 | void ?{}( PRNG & prng ) { set_seed( prng, rdtscl() ); } // random seed
|
---|
398 | void ?{}( PRNG & prng, uint32_t seed ) { set_seed( prng, seed ); } // fixed seed
|
---|
399 | uint32_t get_seed( PRNG & prng ) __attribute__(( warn_unused_result )) with( prng ) { return seed; } // get seed
|
---|
400 | uint32_t prng( PRNG & prng, uint32_t u ) __attribute__(( warn_unused_result )) { return prng( prng ) % u; } // [0,u)
|
---|
401 | uint32_t prng( PRNG & prng, uint32_t l, uint32_t u ) __attribute__(( warn_unused_result )) { return prng( prng, u - l + 1 ) + l; } // [l,u]
|
---|
402 | uint32_t calls( PRNG & prng ) __attribute__(( warn_unused_result )) with( prng ) { return callcnt; }
|
---|
403 | } // distribution
|
---|
404 |
|
---|
405 | void set_seed( uint32_t seed_ ) OPTIONAL_THREAD;
|
---|
406 | uint32_t get_seed() __attribute__(( warn_unused_result ));
|
---|
407 | uint32_t prng( void ) __attribute__(( warn_unused_result )) OPTIONAL_THREAD; // [0,UINT_MAX]
|
---|
408 | static inline {
|
---|
409 | uint32_t prng( uint32_t u ) __attribute__(( warn_unused_result )) { return prng() % u; } // [0,u)
|
---|
410 | uint32_t prng( uint32_t l, uint32_t u ) __attribute__(( warn_unused_result )) { return prng( u - l + 1 ) + l; } // [l,u]
|
---|
411 | } // distribution
|
---|
412 |
|
---|
413 | //---------------------------------------
|
---|
414 |
|
---|
415 | extern bool threading_enabled( void ) OPTIONAL_THREAD;
|
---|
416 |
|
---|
417 | // Local Variables: //
|
---|
418 | // mode: c //
|
---|
419 | // tab-width: 4 //
|
---|
420 | // End: //
|
---|