source: libcfa/src/stdlib.hfa@ d5d3a90

ADT arm-eh ast-experimental enum forall-pointer-decay jacob/cs343-translation new-ast new-ast-unique-expr pthread-emulation qualifiedEnum
Last change on this file since d5d3a90 was b81fd95, checked in by Michael Brooks <mlbrooks@…>, 5 years ago

Fix bug where pointer and reference types allow unsound initialization and return. Fixes #189

There are two instances of the same basic change, which is using conversionCost instead of castCost for resolving...
A: an InitExpr, always; affects variable initializations
B: a CastExpr, for type-system-generated casts only; affects function returns

Changing the behaviour of the typechecker on initialization (do A) and cast (do B):
src/ResolvExpr/AlternativeFinder.cc
src/SynTree/Expression.h
testsinit1.*

Making type of string literal consistent with how C defines it (accommodate A):
src/Parser/ExpressionNode.cc

Making type system happy with incumbent use of void* (accommodate A):
libcfa/src/concurrency/kernel.cfa
libcfa/src/containers/list.hfa
tests/bugs/66.cfa
tests/avltree/avl1.cfa
tests/concurrent/signal/block.cfa
tests/searchsort.cfa

Making type system happy with incumbent plan-9 downcast (accommodate B):
libcfa/src/containers/list.hfa

Fixing previously incorrect constness of declarations (accommodate A):
tests/exceptions/defaults.cfa
libcfa/src/iostream.hfa

Fixing previously incorrect isGenerated classification of casts that desugaring introduces (accommodate B):
src/Concurrency/Keywords.cc
src/Concurrency/Waitfor.cc

Working around trac #207 (revealed by A):
tests/io2.cfa

Working around trac #208 (speculatively created by B):
libcfa/src/bits/locks.hfa
libcfa/src/concurrency/preemption.cfa

Misc:
tests/exceptions/conditional.cfa (accommodate A)

a _msg function for an exception was declared with wrong return type, so it was not compatible for assignment into the vtable instance

libcfa/src/stdlib.hfa

the compiler now prohibits a prior attempt to call a nonexistent realloc overload; calling alloc_align in its place

  • Property mode set to 100644
File size: 15.0 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// stdlib --
8//
9// Author : Peter A. Buhr
10// Created On : Thu Jan 28 17:12:35 2016
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Tue Jul 21 07:58:05 2020
13// Update Count : 475
14//
15
16#pragma once
17
18#include "bits/defs.hfa"
19#include "bits/align.hfa"
20
21#include <stdlib.h> // *alloc, strto*, ato*
22#include <heap.hfa>
23
24// Reduce includes by explicitly defining these routines.
25extern "C" {
26 void * memalign( size_t alignment, size_t size ); // malloc.h
27 void * pvalloc( size_t size ); // malloc.h
28 void * memset( void * dest, int fill, size_t size ); // string.h
29 void * memcpy( void * dest, const void * src, size_t size ); // string.h
30} // extern "C"
31
32//---------------------------------------
33
34#ifndef EXIT_FAILURE
35#define EXIT_FAILURE 1 // failing exit status
36#define EXIT_SUCCESS 0 // successful exit status
37#endif // ! EXIT_FAILURE
38
39//---------------------------------------
40
41// Macro because of returns
42#define $VAR_ALLOC( allocation, alignment ) \
43 if ( _Alignof(T) <= libAlign() ) return (T *)(void *)allocation( (size_t)sizeof(T) ); /* C allocation */ \
44 else return (T *)alignment( _Alignof(T), sizeof(T) )
45
46#define $ARRAY_ALLOC( allocation, alignment, dim ) \
47 if ( _Alignof(T) <= libAlign() ) return (T *)(void *)allocation( dim, (size_t)sizeof(T) ); /* C allocation */ \
48 else return (T *)alignment( _Alignof(T), dim, sizeof(T) )
49
50#define $RE_SPECIALS( ptr, size, allocation, alignment ) \
51 if ( unlikely( size == 0 ) || unlikely( ptr == 0p ) ) { \
52 if ( unlikely( size == 0 ) ) free( ptr ); \
53 $VAR_ALLOC( malloc, memalign ); \
54 } /* if */
55
56static inline forall( dtype T | sized(T) ) {
57 // Cforall safe equivalents, i.e., implicit size specification
58
59 T * malloc( void ) {
60 $VAR_ALLOC( malloc, memalign );
61 } // malloc
62
63 T * aalloc( size_t dim ) {
64 $ARRAY_ALLOC( aalloc, amemalign, dim );
65 } // aalloc
66
67 T * calloc( size_t dim ) {
68 $ARRAY_ALLOC( calloc, cmemalign, dim );
69 } // calloc
70
71 T * resize( T * ptr, size_t size ) { // CFA resize, eliminate return-type cast
72 $RE_SPECIALS( ptr, size, malloc, memalign );
73 return (T *)(void *)resize( (void *)ptr, size ); // CFA resize
74 } // resize
75
76 T * realloc( T * ptr, size_t size ) { // CFA realloc, eliminate return-type cast
77 $RE_SPECIALS( ptr, size, malloc, memalign );
78 return (T *)(void *)realloc( (void *)ptr, size ); // C realloc
79 } // realloc
80
81 T * memalign( size_t align ) {
82 return (T *)memalign( align, sizeof(T) ); // C memalign
83 } // memalign
84
85 T * amemalign( size_t align, size_t dim ) {
86 return (T *)amemalign( align, dim, sizeof(T) ); // CFA amemalign
87 } // amemalign
88
89 T * cmemalign( size_t align, size_t dim ) {
90 return (T *)cmemalign( align, dim, sizeof(T) ); // CFA cmemalign
91 } // cmemalign
92
93 T * aligned_alloc( size_t align ) {
94 return (T *)aligned_alloc( align, sizeof(T) ); // C aligned_alloc
95 } // aligned_alloc
96
97 int posix_memalign( T ** ptr, size_t align ) {
98 return posix_memalign( (void **)ptr, align, sizeof(T) ); // C posix_memalign
99 } // posix_memalign
100
101 T * valloc( void ) {
102 return (T *)valloc( sizeof(T) ); // C valloc
103 } // valloc
104
105 T * pvalloc( void ) {
106 return (T *)pvalloc( sizeof(T) ); // C pvalloc
107 } // pvalloc
108} // distribution
109
110static inline forall( dtype T | sized(T) ) {
111 // Cforall safe general allocation, fill, resize, array
112
113 T * alloc( void ) {
114 return malloc();
115 } // alloc
116
117 T * alloc( size_t dim ) {
118 return aalloc( dim );
119 } // alloc
120
121 forall( dtype S | sized(S) )
122 T * alloc( S ptr[], size_t dim = 1 ) { // singleton/array resize
123 size_t len = malloc_usable_size( ptr ); // current bucket size
124 if ( sizeof(T) * dim > len ) { // not enough space ?
125 T * temp = alloc( dim ); // new storage
126 free( ptr ); // free old storage
127 return temp;
128 } else {
129 return (T *)ptr;
130 } // if
131 } // alloc
132
133 T * alloc( T ptr[], size_t dim, bool copy = true ) {
134 if ( copy ) {
135 return realloc( ptr, dim * sizeof(T) ); // CFA realloc
136 } else {
137 return resize( ptr, dim * sizeof(T) ); // CFA resize
138 } // if
139 } // alloc
140
141 T * alloc_set( char fill ) {
142 return (T *)memset( (T *)alloc(), (int)fill, sizeof(T) ); // initialize with fill value
143 } // alloc
144
145 T * alloc_set( T fill ) {
146 return (T *)memcpy( (T *)alloc(), &fill, sizeof(T) ); // initialize with fill value
147 } // alloc
148
149 T * alloc_set( size_t dim, char fill ) {
150 return (T *)memset( (T *)alloc( dim ), (int)fill, dim * sizeof(T) ); // initialize with fill value
151 } // alloc
152
153 T * alloc_set( size_t dim, T fill ) {
154 T * r = (T *)alloc( dim );
155 for ( i; dim ) { memcpy( &r[i], &fill, sizeof(T) ); } // initialize with fill value
156 return r;
157 } // alloc
158
159 T * alloc_set( size_t dim, const T fill[] ) {
160 return (T *)memcpy( (T *)alloc( dim ), fill, dim * sizeof(T) ); // initialize with fill value
161 } // alloc
162
163 T * alloc_set( T ptr[], size_t dim, char fill ) { // realloc array with fill
164 size_t osize = malloc_size( ptr ); // current allocation
165 size_t nsize = dim * sizeof(T); // new allocation
166 T * nptr = realloc( ptr, nsize ); // CFA realloc
167 if ( nsize > osize ) { // larger ?
168 memset( (char *)nptr + osize, (int)fill, nsize - osize ); // initialize added storage
169 } // if
170 return (T *)nptr;
171 } // alloc_set
172
173 T * alloc_set( T ptr[], size_t dim, T & fill ) { // realloc array with fill
174 size_t odim = malloc_size( ptr ) / sizeof(T); // current dimension
175 size_t nsize = dim * sizeof(T); // new allocation
176 size_t ndim = nsize / sizeof(T); // new dimension
177 T * nptr = realloc( ptr, nsize ); // CFA realloc
178 if ( ndim > odim ) { // larger ?
179 for ( i; odim ~ ndim ) {
180 memcpy( &nptr[i], &fill, sizeof(T) ); // initialize with fill value
181 } // for
182 } // if
183 return (T *)nptr;
184 } // alloc_align_set
185} // distribution
186
187static inline forall( dtype T | sized(T) ) {
188 T * alloc_align( size_t align ) {
189 return (T *)memalign( align, sizeof(T) );
190 } // alloc_align
191
192 T * alloc_align( size_t align, size_t dim ) {
193 return (T *)memalign( align, dim * sizeof(T) );
194 } // alloc_align
195
196 T * alloc_align( T * ptr, size_t align ) { // aligned realloc array
197 return (T *)(void *)realloc( (void *)ptr, align, sizeof(T) ); // CFA realloc
198 } // alloc_align
199
200 forall( dtype S | sized(S) )
201 T * alloc_align( S ptr[], size_t align ) { // aligned reuse array
202 return (T *)(void *)resize( (void *)ptr, align, sizeof(T) ); // CFA realloc
203 } // alloc_align
204
205 T * alloc_align( T ptr[], size_t align, size_t dim ) { // aligned realloc array
206 return (T *)(void *)realloc( (void *)ptr, align, dim * sizeof(T) ); // CFA realloc
207 } // alloc_align
208
209 T * alloc_align_set( size_t align, char fill ) {
210 return (T *)memset( (T *)alloc_align( align ), (int)fill, sizeof(T) ); // initialize with fill value
211 } // alloc_align
212
213 T * alloc_align_set( size_t align, T fill ) {
214 return (T *)memcpy( (T *)alloc_align( align ), &fill, sizeof(T) ); // initialize with fill value
215 } // alloc_align
216
217 T * alloc_align_set( size_t align, size_t dim, char fill ) {
218 return (T *)memset( (T *)alloc_align( align, dim ), (int)fill, dim * sizeof(T) ); // initialize with fill value
219 } // alloc_align
220
221 T * alloc_align_set( size_t align, size_t dim, T fill ) {
222 T * r = (T *)alloc_align( align, dim );
223 for ( i; dim ) { memcpy( &r[i], &fill, sizeof(T) ); } // initialize with fill value
224 return r;
225 } // alloc_align
226
227 T * alloc_align_set( size_t align, size_t dim, const T fill[] ) {
228 return (T *)memcpy( (T *)alloc_align( align, dim ), fill, dim * sizeof(T) );
229 } // alloc_align
230
231 T * alloc_align_set( T ptr[], size_t align, size_t dim, char fill ) {
232 size_t osize = malloc_size( ptr ); // current allocation
233 size_t nsize = dim * sizeof(T); // new allocation
234 T * nptr = alloc_align( ptr, align, nsize ); // CFA alloc_align
235 if ( nsize > osize ) { // larger ?
236 memset( (char *)nptr + osize, (int)fill, nsize - osize ); // initialize added storage
237 } // if
238 return (T *)nptr;
239 } // alloc_align_set
240
241 T * alloc_align_set( T ptr[], size_t align, size_t dim, T & fill ) {
242 size_t odim = malloc_size( ptr ) / sizeof(T); // current dimension
243 size_t nsize = dim * sizeof(T); // new allocation
244 size_t ndim = nsize / sizeof(T); // new dimension
245 T * nptr = alloc_align( ptr, align, nsize ); // CFA alloc_align
246 if ( ndim > odim ) { // larger ?
247 for ( i; odim ~ ndim ) {
248 memcpy( &nptr[i], &fill, sizeof(T) ); // initialize with fill value
249 } // for
250 } // if
251 return (T *)nptr;
252 } // alloc_align_set
253} // distribution
254
255static inline forall( dtype T | sized(T) ) {
256 // Cforall safe initialization/copy, i.e., implicit size specification, non-array types
257 T * memset( T * dest, char fill ) {
258 return (T *)memset( dest, fill, sizeof(T) );
259 } // memset
260
261 T * memcpy( T * dest, const T * src ) {
262 return (T *)memcpy( dest, src, sizeof(T) );
263 } // memcpy
264} // distribution
265
266static inline forall( dtype T | sized(T) ) {
267 // Cforall safe initialization/copy, i.e., implicit size specification, array types
268 T * amemset( T dest[], char fill, size_t dim ) {
269 return (T *)(void *)memset( dest, fill, dim * sizeof(T) ); // C memset
270 } // amemset
271
272 T * amemcpy( T dest[], const T src[], size_t dim ) {
273 return (T *)(void *)memcpy( dest, src, dim * sizeof(T) ); // C memcpy
274 } // amemcpy
275} // distribution
276
277// Cforall allocation/deallocation and constructor/destructor, non-array types
278forall( dtype T | sized(T), ttype Params | { void ?{}( T &, Params ); } ) T * new( Params p );
279forall( dtype T | { void ^?{}( T & ); } ) void delete( T * ptr );
280forall( dtype T, ttype Params | { void ^?{}( T & ); void delete( Params ); } ) void delete( T * ptr, Params rest );
281
282// Cforall allocation/deallocation and constructor/destructor, array types
283forall( dtype T | sized(T), ttype Params | { void ?{}( T &, Params ); } ) T * anew( size_t dim, Params p );
284forall( dtype T | sized(T) | { void ^?{}( T & ); } ) void adelete( size_t dim, T arr[] );
285forall( dtype T | sized(T) | { void ^?{}( T & ); }, ttype Params | { void adelete( Params ); } ) void adelete( size_t dim, T arr[], Params rest );
286
287//---------------------------------------
288
289static inline {
290 int strto( const char sptr[], char ** eptr, int base ) { return (int)strtol( sptr, eptr, base ); }
291 unsigned int strto( const char sptr[], char ** eptr, int base ) { return (unsigned int)strtoul( sptr, eptr, base ); }
292 long int strto( const char sptr[], char ** eptr, int base ) { return strtol( sptr, eptr, base ); }
293 unsigned long int strto( const char sptr[], char ** eptr, int base ) { return strtoul( sptr, eptr, base ); }
294 long long int strto( const char sptr[], char ** eptr, int base ) { return strtoll( sptr, eptr, base ); }
295 unsigned long long int strto( const char sptr[], char ** eptr, int base ) { return strtoull( sptr, eptr, base ); }
296
297 float strto( const char sptr[], char ** eptr ) { return strtof( sptr, eptr ); }
298 double strto( const char sptr[], char ** eptr ) { return strtod( sptr, eptr ); }
299 long double strto( const char sptr[], char ** eptr ) { return strtold( sptr, eptr ); }
300} // distribution
301
302float _Complex strto( const char sptr[], char ** eptr );
303double _Complex strto( const char sptr[], char ** eptr );
304long double _Complex strto( const char sptr[], char ** eptr );
305
306static inline {
307 int ato( const char sptr[] ) { return (int)strtol( sptr, 0p, 10 ); }
308 unsigned int ato( const char sptr[] ) { return (unsigned int)strtoul( sptr, 0p, 10 ); }
309 long int ato( const char sptr[] ) { return strtol( sptr, 0p, 10 ); }
310 unsigned long int ato( const char sptr[] ) { return strtoul( sptr, 0p, 10 ); }
311 long long int ato( const char sptr[] ) { return strtoll( sptr, 0p, 10 ); }
312 unsigned long long int ato( const char sptr[] ) { return strtoull( sptr, 0p, 10 ); }
313
314 float ato( const char sptr[] ) { return strtof( sptr, 0p ); }
315 double ato( const char sptr[] ) { return strtod( sptr, 0p ); }
316 long double ato( const char sptr[] ) { return strtold( sptr, 0p ); }
317
318 float _Complex ato( const char sptr[] ) { return strto( sptr, 0p ); }
319 double _Complex ato( const char sptr[] ) { return strto( sptr, 0p ); }
320 long double _Complex ato( const char sptr[] ) { return strto( sptr, 0p ); }
321} // distribution
322
323//---------------------------------------
324
325forall( otype E | { int ?<?( E, E ); } ) {
326 E * bsearch( E key, const E * vals, size_t dim );
327 size_t bsearch( E key, const E * vals, size_t dim );
328 E * bsearchl( E key, const E * vals, size_t dim );
329 size_t bsearchl( E key, const E * vals, size_t dim );
330 E * bsearchu( E key, const E * vals, size_t dim );
331 size_t bsearchu( E key, const E * vals, size_t dim );
332} // distribution
333
334forall( otype K, otype E | { int ?<?( K, K ); K getKey( const E & ); } ) {
335 E * bsearch( K key, const E * vals, size_t dim );
336 size_t bsearch( K key, const E * vals, size_t dim );
337 E * bsearchl( K key, const E * vals, size_t dim );
338 size_t bsearchl( K key, const E * vals, size_t dim );
339 E * bsearchu( K key, const E * vals, size_t dim );
340 size_t bsearchu( K key, const E * vals, size_t dim );
341} // distribution
342
343forall( otype E | { int ?<?( E, E ); } ) {
344 void qsort( E * vals, size_t dim );
345} // distribution
346
347//---------------------------------------
348
349extern "C" { // override C version
350 void srandom( unsigned int seed );
351 long int random( void ); // GENERATES POSITIVE AND NEGATIVE VALUES
352 // For positive values, use unsigned int, e.g., unsigned int r = random() % 100U;
353} // extern "C"
354
355static inline {
356 long int random( long int l, long int u ) { if ( u < l ) [u, l] = [l, u]; return lrand48() % (u - l) + l; } // [l,u)
357 long int random( long int u ) { if ( u < 0 ) return random( u, 0 ); else return random( 0, u ); } // [0,u)
358 unsigned long int random( void ) { return lrand48(); }
359 unsigned long int random( unsigned long int u ) { return lrand48() % u; } // [0,u)
360 unsigned long int random( unsigned long int l, unsigned long int u ) { if ( u < l ) [u, l] = [l, u]; return lrand48() % (u - l) + l; } // [l,u)
361
362 char random( void ) { return (unsigned long int)random(); }
363 char random( char u ) { return random( (unsigned long int)u ); } // [0,u)
364 char random( char l, char u ) { return random( (unsigned long int)l, (unsigned long int)u ); } // [l,u)
365 int random( void ) { return (long int)random(); }
366 int random( int u ) { return random( (long int)u ); } // [0,u]
367 int random( int l, int u ) { return random( (long int)l, (long int)u ); } // [l,u)
368 unsigned int random( void ) { return (unsigned long int)random(); }
369 unsigned int random( unsigned int u ) { return random( (unsigned long int)u ); } // [0,u]
370 unsigned int random( unsigned int l, unsigned int u ) { return random( (unsigned long int)l, (unsigned long int)u ); } // [l,u)
371} // distribution
372
373float random( void ); // [0.0, 1.0)
374double random( void ); // [0.0, 1.0)
375float _Complex random( void ); // [0.0, 1.0)+[0.0, 1.0)i
376double _Complex random( void ); // [0.0, 1.0)+[0.0, 1.0)i
377long double _Complex random( void ); // [0.0, 1.0)+[0.0, 1.0)i
378
379//---------------------------------------
380
381#include "common.hfa"
382
383//---------------------------------------
384
385extern bool threading_enabled(void) OPTIONAL_THREAD;
386
387// Local Variables: //
388// mode: c //
389// tab-width: 4 //
390// End: //
Note: See TracBrowser for help on using the repository browser.