source: libcfa/src/stdlib.hfa @ c08c3cf

ADTarm-ehast-experimentalenumforall-pointer-decayjacob/cs343-translationnew-ast-unique-exprpthread-emulationqualifiedEnum
Last change on this file since c08c3cf was c08c3cf, checked in by Peter A. Buhr <pabuhr@…>, 4 years ago

fix conflict

  • Property mode set to 100644
File size: 15.5 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// stdlib --
8//
9// Author           : Peter A. Buhr
10// Created On       : Thu Jan 28 17:12:35 2016
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Mon Jan 18 21:51:13 2021
13// Update Count     : 569
14//
15
16#pragma once
17
18#include "bits/defs.hfa"                                                                // OPTIONAL_THREAD
19#include "bits/align.hfa"                                                               // libAlign
20
21#include <stdlib.h>                                                                             // *alloc, strto*, ato*
22#include <heap.hfa>
23
24// Reduce includes by explicitly defining these routines.
25extern "C" {
26        void * memalign( size_t alignment, size_t size );       // malloc.h
27        void * pvalloc( size_t size );                                          // malloc.h
28        void * memset( void * dest, int fill, size_t size ); // string.h
29        void * memcpy( void * dest, const void * src, size_t size ); // string.h
30} // extern "C"
31
32//---------------------------------------
33
34#ifndef EXIT_FAILURE
35#define EXIT_FAILURE    1                                                               // failing exit status
36#define EXIT_SUCCESS    0                                                               // successful exit status
37#endif // ! EXIT_FAILURE
38
39//---------------------------------------
40
41#include "common.hfa"
42
43//---------------------------------------
44
45// Macro because of returns
46#define $ARRAY_ALLOC( allocation, alignment, dim ) \
47        if ( _Alignof(T) <= libAlign() ) return (T *)(void *)allocation( dim, (size_t)sizeof(T) ); /* C allocation */ \
48        else return (T *)alignment( _Alignof(T), dim, sizeof(T) )
49
50static inline forall( T & | sized(T) ) {
51        // CFA safe equivalents, i.e., implicit size specification
52
53        T * malloc( void ) {
54                if ( _Alignof(T) <= libAlign() ) return (T *)(void *)malloc( (size_t)sizeof(T) ); // C allocation
55                else return (T *)memalign( _Alignof(T), sizeof(T) );
56        } // malloc
57
58        T * aalloc( size_t dim ) {
59                $ARRAY_ALLOC( aalloc, amemalign, dim );
60        } // aalloc
61
62        T * calloc( size_t dim ) {
63                $ARRAY_ALLOC( calloc, cmemalign, dim );
64        } // calloc
65
66        T * resize( T * ptr, size_t size ) {                            // CFA resize, eliminate return-type cast
67                if ( _Alignof(T) <= libAlign() ) return (T *)(void *)resize( (void *)ptr, size ); // CFA resize
68                else return (T *)(void *)resize( (void *)ptr, _Alignof(T), size ); // CFA resize
69        } // resize
70
71        T * realloc( T * ptr, size_t size ) {                           // CFA realloc, eliminate return-type cast
72                if ( _Alignof(T) <= libAlign() ) return (T *)(void *)realloc( (void *)ptr, size ); // C realloc
73                else return (T *)(void *)realloc( (void *)ptr, _Alignof(T), size ); // CFA realloc
74        } // realloc
75
76        T * memalign( size_t align ) {
77                return (T *)memalign( align, sizeof(T) );               // C memalign
78        } // memalign
79
80        T * amemalign( size_t align, size_t dim ) {
81                return (T *)amemalign( align, dim, sizeof(T) ); // CFA amemalign
82        } // amemalign
83
84        T * cmemalign( size_t align, size_t dim  ) {
85                return (T *)cmemalign( align, dim, sizeof(T) ); // CFA cmemalign
86        } // cmemalign
87
88        T * aligned_alloc( size_t align ) {
89                return (T *)aligned_alloc( align, sizeof(T) );  // C aligned_alloc
90        } // aligned_alloc
91
92        int posix_memalign( T ** ptr, size_t align ) {
93                return posix_memalign( (void **)ptr, align, sizeof(T) ); // C posix_memalign
94        } // posix_memalign
95
96        T * valloc( void ) {
97                return (T *)valloc( sizeof(T) );                                // C valloc
98        } // valloc
99
100        T * pvalloc( void ) {
101                return (T *)pvalloc( sizeof(T) );                               // C pvalloc
102        } // pvalloc
103} // distribution
104
105/*
106        FIX ME : fix alloc interface after Ticker Number 214 is resolved, define and add union to S_fill. Then, modify postfix-fill functions to support T * with nmemb, char, and T object of any size. Finally, change alloc_internal.
107        Or, just follow the instructions below for that.
108
109        1. Replace the current forall-block that contains defintions of S_fill and S_realloc with following:
110                forall( T & | sized(T) ) {
111                        union  U_fill           { char c; T * a; T t; };
112                        struct S_fill           { char tag; U_fill(T) fill; };
113                        struct S_realloc        { inline T *; };
114                }
115
116        2. Replace all current postfix-fill functions with following for updated S_fill:
117                S_fill(T) ?`fill( char a )                                      { S_fill(T) ret = {'c'}; ret.fill.c = a; return ret; }
118                S_fill(T) ?`fill( T    a )                                      { S_fill(T) ret = {'t'}; memcpy(&ret.fill.t, &a, sizeof(T)); return ret; }
119                S_fill(T) ?`fill( T    a[], size_t nmemb )      { S_fill(T) ret = {'a', nmemb}; ret.fill.a = a; return ret; }
120
121        3. Replace the $alloc_internal function which is outside ttype forall-block with following function:
122                T * $alloc_internal( void * Resize, T * Realloc, size_t Align, size_t Dim, S_fill(T) Fill) {
123                        T * ptr = NULL;
124                        size_t size = sizeof(T);
125                        size_t copy_end = 0;
126
127                        if(Resize) {
128                                ptr = (T*) (void *) resize( (int *)Resize, Align, Dim * size );
129                        } else if (Realloc) {
130                                if (Fill.tag != '0') copy_end = min(malloc_size( Realloc ), Dim * size);
131                                ptr = (T*) (void *) realloc( (int *)Realloc, Align, Dim * size );
132                        } else {
133                                ptr = (T*) (void *) memalign( Align, Dim * size );
134                        }
135
136                        if(Fill.tag == 'c') {
137                                memset( (char *)ptr + copy_end, (int)Fill.fill.c, Dim * size - copy_end );
138                        } else if(Fill.tag == 't') {
139                                for ( int i = copy_end; i <= Dim * size - size ; i += size ) {
140                                        memcpy( (char *)ptr + i, &Fill.fill.t, size );
141                                }
142                        } else if(Fill.tag == 'a') {
143                                memcpy( (char *)ptr + copy_end, Fill.fill.a, min(Dim * size - copy_end, size * Fill.nmemb) );
144                        }
145
146                        return ptr;
147                } // $alloc_internal
148*/
149
150typedef struct S_align                  { inline size_t;  } T_align;
151typedef struct S_resize                 { inline void *;  }     T_resize;
152
153forall( T & ) {
154        struct S_fill           { char tag; char c; size_t size; T * at; char t[50]; };
155        struct S_realloc        { inline T *; };
156}
157
158static inline T_align   ?`align   ( size_t a )  { return (T_align){a}; }
159static inline T_resize  ?`resize  ( void * a )  { return (T_resize){a}; }
160
161static inline forall( T & | sized(T) ) {
162        S_fill(T) ?`fill ( T t ) {
163                S_fill(T) ret = { 't' };
164                size_t size = sizeof(T);
165                if ( size > sizeof(ret.t) ) {
166                        abort( "ERROR: const object of size greater than 50 bytes given for dynamic memory fill\n" );
167                } // if
168                memcpy( &ret.t, &t, size );
169                return ret;
170        }
171        S_fill(T)               ?`fill ( char c )                               { return (S_fill(T)){ 'c', c }; }
172        S_fill(T)               ?`fill ( T * a )                                { return (S_fill(T)){ 'T', '0', 0, a }; }
173        S_fill(T)               ?`fill ( T a[], size_t nmemb )  { return (S_fill(T)){ 'a', '0', nmemb * sizeof(T), a }; }
174
175        S_realloc(T)    ?`realloc ( T * a )                             { return (S_realloc(T)){a}; }
176
177        T * $alloc_internal( void * Resize, T * Realloc, size_t Align, size_t Dim, S_fill(T) Fill ) {
178                T * ptr = NULL;
179                size_t size = sizeof(T);
180                size_t copy_end = 0;
181
182                if ( Resize ) {
183                        ptr = (T*) (void *) resize( (void *)Resize, Align, Dim * size );
184                } else if ( Realloc ) {
185                        if ( Fill.tag != '0' ) copy_end = min(malloc_size( Realloc ), Dim * size );
186                        ptr = (T *) (void *) realloc( (void *)Realloc, Align, Dim * size );
187                } else {
188                        ptr = (T *) (void *) memalign( Align, Dim * size );
189                }
190
191                if ( Fill.tag == 'c' ) {
192                        memset( (char *)ptr + copy_end, (int)Fill.c, Dim * size - copy_end );
193                } else if ( Fill.tag == 't' ) {
194                        for ( int i = copy_end; i < Dim * size; i += size ) {
195                                #pragma GCC diagnostic push
196                                #pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
197                                memcpy( (char *)ptr + i, &Fill.t, sizeof(Fill.t) );
198                                #pragma GCC diagnostic pop
199                        }
200                } else if ( Fill.tag == 'a' ) {
201                        memcpy( (char *)ptr + copy_end, Fill.at, min(Dim * size - copy_end, Fill.size) );
202                } else if ( Fill.tag == 'T' ) {
203                        memcpy( (char *)ptr + copy_end, Fill.at, Dim * size );
204                }
205
206                return ptr;
207        } // $alloc_internal
208
209        forall( TT... | { T * $alloc_internal( void *, T *, size_t, size_t, S_fill(T), TT ); } ) {
210
211                T * $alloc_internal( void *       , T * Realloc, size_t Align, size_t Dim, S_fill(T) Fill, T_resize Resize, TT rest) {
212                return $alloc_internal( Resize, (T*)0p, Align, Dim, Fill, rest);
213                }
214
215                T * $alloc_internal( void * Resize, T *        , size_t Align, size_t Dim, S_fill(T) Fill, S_realloc(T) Realloc, TT rest) {
216                return $alloc_internal( (void*)0p, Realloc, Align, Dim, Fill, rest);
217                }
218
219                T * $alloc_internal( void * Resize, T * Realloc, size_t      , size_t Dim, S_fill(T) Fill, T_align Align, TT rest) {
220                return $alloc_internal( Resize, Realloc, Align, Dim, Fill, rest);
221                }
222
223                T * $alloc_internal( void * Resize, T * Realloc, size_t Align, size_t Dim, S_fill(T)     , S_fill(T) Fill, TT rest) {
224                return $alloc_internal( Resize, Realloc, Align, Dim, Fill, rest);
225                }
226
227            T * alloc( TT all ) {
228                return $alloc_internal( (void*)0p, (T*)0p, (_Alignof(T) > libAlign() ? _Alignof(T) : libAlign()), (size_t)1, (S_fill(T)){'0'}, all);
229            }
230
231            T * alloc( size_t dim, TT all ) {
232                return $alloc_internal( (void*)0p, (T*)0p, (_Alignof(T) > libAlign() ? _Alignof(T) : libAlign()), dim, (S_fill(T)){'0'}, all);
233            }
234
235        } // distribution TT
236} // distribution T
237
238static inline forall( T & | sized(T) ) {
239        // CFA safe initialization/copy, i.e., implicit size specification, non-array types
240        T * memset( T * dest, char fill ) {
241                return (T *)memset( dest, fill, sizeof(T) );
242        } // memset
243
244        T * memcpy( T * dest, const T * src ) {
245                return (T *)memcpy( dest, src, sizeof(T) );
246        } // memcpy
247
248        // CFA safe initialization/copy, i.e., implicit size specification, array types
249        T * amemset( T dest[], char fill, size_t dim ) {
250                return (T *)(void *)memset( dest, fill, dim * sizeof(T) ); // C memset
251        } // amemset
252
253        T * amemcpy( T dest[], const T src[], size_t dim ) {
254                return (T *)(void *)memcpy( dest, src, dim * sizeof(T) ); // C memcpy
255        } // amemcpy
256} // distribution
257
258// CFA deallocation for multiple objects
259static inline forall( T & )                                                     // FIX ME, problems with 0p in list
260void free( T * ptr ) {
261        free( (void *)ptr );                                                            // C free
262} // free
263static inline forall( T &, TT... | { void free( TT ); } )
264void free( T * ptr, TT rest ) {
265        free( ptr );
266        free( rest );
267} // free
268
269// CFA allocation/deallocation and constructor/destructor, non-array types
270static inline forall( T & | sized(T), TT... | { void ?{}( T &, TT ); } )
271T * new( TT p ) {
272        return &(*(T *)malloc()){ p };                                          // run constructor
273} // new
274
275static inline forall( T & | { void ^?{}( T & ); } )
276void delete( T * ptr ) {
277        // special case for 0-sized object => always call destructor
278        if ( ptr || sizeof(ptr) == 0 ) {                                        // ignore null but not 0-sized objects
279                ^(*ptr){};                                                                              // run destructor
280        } // if
281        free( ptr );                                                                            // always call free
282} // delete
283static inline forall( T &, TT... | { void ^?{}( T & ); void delete( TT ); } )
284void delete( T * ptr, TT rest ) {
285        delete( ptr );
286        delete( rest );
287} // delete
288
289// CFA allocation/deallocation and constructor/destructor, array types
290forall( T & | sized(T), TT... | { void ?{}( T &, TT ); } ) T * anew( size_t dim, TT p );
291forall( T & | sized(T) | { void ^?{}( T & ); } ) void adelete( T arr[] );
292forall( T & | sized(T) | { void ^?{}( T & ); }, TT... | { void adelete( TT ); } ) void adelete( T arr[], TT rest );
293
294//---------------------------------------
295
296static inline {
297        int strto( const char sptr[], char ** eptr, int base ) { return (int)strtol( sptr, eptr, base ); }
298        unsigned int strto( const char sptr[], char ** eptr, int base ) { return (unsigned int)strtoul( sptr, eptr, base ); }
299        long int strto( const char sptr[], char ** eptr, int base ) { return strtol( sptr, eptr, base ); }
300        unsigned long int strto( const char sptr[], char ** eptr, int base ) { return strtoul( sptr, eptr, base ); }
301        long long int strto( const char sptr[], char ** eptr, int base ) { return strtoll( sptr, eptr, base ); }
302        unsigned long long int strto( const char sptr[], char ** eptr, int base ) { return strtoull( sptr, eptr, base ); }
303
304        float strto( const char sptr[], char ** eptr ) { return strtof( sptr, eptr ); }
305        double strto( const char sptr[], char ** eptr ) { return strtod( sptr, eptr ); }
306        long double strto( const char sptr[], char ** eptr ) { return strtold( sptr, eptr ); }
307} // distribution
308
309float _Complex strto( const char sptr[], char ** eptr );
310double _Complex strto( const char sptr[], char ** eptr );
311long double _Complex strto( const char sptr[], char ** eptr );
312
313static inline {
314        int ato( const char sptr[] ) { return (int)strtol( sptr, 0p, 10 ); }
315        unsigned int ato( const char sptr[] ) { return (unsigned int)strtoul( sptr, 0p, 10 ); }
316        long int ato( const char sptr[] ) { return strtol( sptr, 0p, 10 ); }
317        unsigned long int ato( const char sptr[] ) { return strtoul( sptr, 0p, 10 ); }
318        long long int ato( const char sptr[] ) { return strtoll( sptr, 0p, 10 ); }
319        unsigned long long int ato( const char sptr[] ) { return strtoull( sptr, 0p, 10 ); }
320
321        float ato( const char sptr[] ) { return strtof( sptr, 0p ); }
322        double ato( const char sptr[] ) { return strtod( sptr, 0p ); }
323        long double ato( const char sptr[] ) { return strtold( sptr, 0p ); }
324
325        float _Complex ato( const char sptr[] ) { return strto( sptr, 0p ); }
326        double _Complex ato( const char sptr[] ) { return strto( sptr, 0p ); }
327        long double _Complex ato( const char sptr[] ) { return strto( sptr, 0p ); }
328} // distribution
329
330//---------------------------------------
331
332forall( E | { int ?<?( E, E ); } ) {
333        E * bsearch( E key, const E * vals, size_t dim );
334        size_t bsearch( E key, const E * vals, size_t dim );
335        E * bsearchl( E key, const E * vals, size_t dim );
336        size_t bsearchl( E key, const E * vals, size_t dim );
337        E * bsearchu( E key, const E * vals, size_t dim );
338        size_t bsearchu( E key, const E * vals, size_t dim );
339} // distribution
340
341forall( K, E | { int ?<?( K, K ); K getKey( const E & ); } ) {
342        E * bsearch( K key, const E * vals, size_t dim );
343        size_t bsearch( K key, const E * vals, size_t dim );
344        E * bsearchl( K key, const E * vals, size_t dim );
345        size_t bsearchl( K key, const E * vals, size_t dim );
346        E * bsearchu( K key, const E * vals, size_t dim );
347        size_t bsearchu( K key, const E * vals, size_t dim );
348} // distribution
349
350forall( E | { int ?<?( E, E ); } ) {
351        void qsort( E * vals, size_t dim );
352} // distribution
353
354//---------------------------------------
355
356extern "C" {                                                                                    // override C version
357        void srandom( unsigned int seed );
358        long int random( void );                                                        // GENERATES POSITIVE AND NEGATIVE VALUES
359        // For positive values, use unsigned int, e.g., unsigned int r = random() % 100U;
360} // extern "C"
361
362static inline {
363        long int random( long int l, long int u ) { if ( u < l ) [u, l] = [l, u]; return lrand48() % (u - l) + l; } // [l,u)
364        long int random( long int u ) { if ( u < 0 ) return random( u, 0 ); else return random( 0, u ); } // [0,u)
365        unsigned long int random( void ) { return lrand48(); }
366        unsigned long int random( unsigned long int u ) { return lrand48() % u; } // [0,u)
367        unsigned long int random( unsigned long int l, unsigned long int u ) { if ( u < l ) [u, l] = [l, u]; return lrand48() % (u - l) + l; } // [l,u)
368
369        char random( void ) { return (unsigned long int)random(); }
370        char random( char u ) { return random( (unsigned long int)u ); } // [0,u)
371        char random( char l, char u ) { return random( (unsigned long int)l, (unsigned long int)u ); } // [l,u)
372        int random( void ) { return (long int)random(); }
373        int random( int u ) { return random( (long int)u ); } // [0,u]
374        int random( int l, int u ) { return random( (long int)l, (long int)u ); } // [l,u)
375        unsigned int random( void ) { return (unsigned long int)random(); }
376        unsigned int random( unsigned int u ) { return random( (unsigned long int)u ); } // [0,u]
377        unsigned int random( unsigned int l, unsigned int u ) { return random( (unsigned long int)l, (unsigned long int)u ); } // [l,u)
378} // distribution
379
380float random( void );                                                                   // [0.0, 1.0)
381double random( void );                                                                  // [0.0, 1.0)
382float _Complex random( void );                                                  // [0.0, 1.0)+[0.0, 1.0)i
383double _Complex random( void );                                                 // [0.0, 1.0)+[0.0, 1.0)i
384long double _Complex random( void );                                    // [0.0, 1.0)+[0.0, 1.0)i
385
386//---------------------------------------
387
388extern bool threading_enabled( void ) OPTIONAL_THREAD;
389
390// Local Variables: //
391// mode: c //
392// tab-width: 4 //
393// End: //
Note: See TracBrowser for help on using the repository browser.