source: libcfa/src/stdlib.hfa@ a491a3c

ADT arm-eh ast-experimental enum forall-pointer-decay jacob/cs343-translation new-ast new-ast-unique-expr pthread-emulation qualifiedEnum
Last change on this file since a491a3c was ada0246d, checked in by Peter A. Buhr <pabuhr@…>, 6 years ago

create heap.hfa, use it in malloc.h, and cleanup includes with respect to extern "C"

  • Property mode set to 100644
File size: 13.1 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// stdlib --
8//
9// Author : Peter A. Buhr
10// Created On : Thu Jan 28 17:12:35 2016
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Tue May 26 22:50:08 2020
13// Update Count : 439
14//
15
16#pragma once
17
18#include "bits/defs.hfa"
19#include "bits/align.hfa"
20
21#include <malloc.h>
22#include <stdlib.h> // *alloc, strto*, ato*
23
24// Reduce includes by explicitly defining these routines.
25extern "C" {
26 void * memset( void * dest, int fill, size_t size ); // string.h
27 void * memcpy( void * dest, const void * src, size_t size ); // string.h
28} // extern "C"
29
30//---------------------------------------
31
32#ifndef EXIT_FAILURE
33#define EXIT_FAILURE 1 // failing exit status
34#define EXIT_SUCCESS 0 // successful exit status
35#endif // ! EXIT_FAILURE
36
37//---------------------------------------
38
39static inline forall( dtype T | sized(T) ) {
40 // Cforall safe equivalents, i.e., implicit size specification
41
42 T * malloc( void ) {
43 if ( _Alignof(T) <= libAlign() ) return (T *)(void *)malloc( (size_t)sizeof(T) ); // C malloc
44 else return (T *)memalign( _Alignof(T), sizeof(T) );
45 } // malloc
46
47 T * aalloc( size_t dim ) {
48 if ( _Alignof(T) <= libAlign() ) return (T *)(void *)aalloc( dim, (size_t)sizeof(T) ); // CFA aalloc
49 else return (T *)amemalign( _Alignof(T), dim, sizeof(T) );
50 } // aalloc
51
52 T * calloc( size_t dim ) {
53 if ( _Alignof(T) <= libAlign() )return (T *)(void *)calloc( dim, sizeof(T) ); // C calloc
54 else return (T *)cmemalign( _Alignof(T), dim, sizeof(T) );
55 } // calloc
56
57 T * resize( T * ptr, size_t size ) { // CFA realloc, eliminate return-type cast
58 return (T *)(void *)resize( (void *)ptr, size ); // C realloc
59 } // resize
60
61 T * realloc( T * ptr, size_t size ) { // CFA realloc, eliminate return-type cast
62 return (T *)(void *)realloc( (void *)ptr, size ); // C realloc
63 } // realloc
64
65 T * memalign( size_t align ) {
66 return (T *)memalign( align, sizeof(T) ); // C memalign
67 } // memalign
68
69 T * amemalign( size_t align, size_t dim ) {
70 return (T *)amemalign( align, dim, sizeof(T) ); // CFA amemalign
71 } // amemalign
72
73 T * cmemalign( size_t align, size_t dim ) {
74 return (T *)cmemalign( align, dim, sizeof(T) ); // CFA cmemalign
75 } // cmemalign
76
77 T * aligned_alloc( size_t align ) {
78 return (T *)aligned_alloc( align, sizeof(T) ); // C aligned_alloc
79 } // aligned_alloc
80
81 int posix_memalign( T ** ptr, size_t align ) {
82 return posix_memalign( (void **)ptr, align, sizeof(T) ); // C posix_memalign
83 } // posix_memalign
84
85 T * valloc( void ) {
86 return (T *)valloc( sizeof(T) ); // C valloc
87 } // valloc
88
89 T * pvalloc( void ) {
90 return (T *)pvalloc( sizeof(T) ); // C pvalloc
91 } // pvalloc
92} // distribution
93
94static inline forall( dtype T | sized(T) ) {
95 // Cforall safe general allocation, fill, resize, array
96
97 T * alloc( void ) {
98 return malloc();
99 } // alloc
100
101 T * alloc( size_t dim ) {
102 return aalloc( dim );
103 } // alloc
104
105 forall( dtype S | sized(S) )
106 T * alloc( S ptr[], size_t dim = 1 ) { // singleton/array resize
107 size_t len = malloc_usable_size( ptr ); // current bucket size
108 if ( sizeof(T) * dim > len ) { // not enough space ?
109 T * temp = alloc( dim ); // new storage
110 free( ptr ); // free old storage
111 return temp;
112 } else {
113 return (T *)ptr;
114 } // if
115 } // alloc
116
117 T * alloc( T ptr[], size_t dim, bool copy = true ) {
118 if ( copy ) { // realloc
119 return (T *)(void *)realloc( (void *)ptr, dim * sizeof(T) ); // C realloc
120 } else {
121 return resize( ptr, dim * sizeof(T) ); // resize
122 } // if
123 } // alloc
124
125 T * alloc_set( char fill ) {
126 return (T *)memset( (T *)alloc(), (int)fill, sizeof(T) ); // initialize with fill value
127 } // alloc
128
129 T * alloc_set( T fill ) {
130 return (T *)memcpy( (T *)alloc(), &fill, sizeof(T) ); // initialize with fill value
131 } // alloc
132
133 T * alloc_set( size_t dim, char fill ) {
134 return (T *)memset( (T *)alloc( dim ), (int)fill, dim * sizeof(T) ); // initialize with fill value
135 } // alloc
136
137 T * alloc_set( size_t dim, T fill ) {
138 T * r = (T *)alloc( dim );
139 for ( i; dim ) { memcpy( &r[i], &fill, sizeof(T) ); } // initialize with fill value
140 return r;
141 } // alloc
142
143 T * alloc_set( size_t dim, const T fill[] ) {
144 return (T *)memcpy( (T *)alloc( dim ), fill, dim * sizeof(T) ); // initialize with fill value
145 } // alloc
146} // distribution
147
148forall( dtype T | sized(T) ) {
149 T * alloc_set( T ptr[], size_t dim, char fill ); // realloc array with fill
150 T * alloc_set( T ptr[], size_t dim, T fill ); // realloc array with fill
151} // distribution
152
153static inline forall( dtype T | sized(T) ) {
154 T * alloc_align( size_t align ) {
155 return (T *)memalign( align, sizeof(T) );
156 } // alloc_align
157
158 T * alloc_align( size_t align, size_t dim ) {
159 return (T *)memalign( align, dim * sizeof(T) );
160 } // alloc_align
161
162 T * alloc_align( T * ptr, size_t align ) { // aligned realloc array
163 return (T *)(void *)realloc( (void *)ptr, align, sizeof(T) ); // CFA realloc
164 } // alloc_align
165
166 forall( dtype S | sized(S) )
167 T * alloc_align( S ptr[], size_t align ) { // aligned reuse array
168 return (T *)(void *)resize( (void *)ptr, align, sizeof(T) ); // CFA realloc
169 } // alloc_align
170
171 T * alloc_align( T ptr[], size_t align, size_t dim ) { // aligned realloc array
172 return (T *)(void *)realloc( (void *)ptr, align, dim * sizeof(T) ); // CFA realloc
173 } // alloc_align
174
175 T * alloc_align_set( size_t align, char fill ) {
176 return (T *)memset( (T *)alloc_align( align ), (int)fill, sizeof(T) ); // initialize with fill value
177 } // alloc_align
178
179 T * alloc_align_set( size_t align, T fill ) {
180 return (T *)memcpy( (T *)alloc_align( align ), &fill, sizeof(T) ); // initialize with fill value
181 } // alloc_align
182
183 T * alloc_align_set( size_t align, size_t dim, char fill ) {
184 return (T *)memset( (T *)alloc_align( align, dim ), (int)fill, dim * sizeof(T) ); // initialize with fill value
185 } // alloc_align
186
187 T * alloc_align_set( size_t align, size_t dim, T fill ) {
188 T * r = (T *)alloc_align( align, dim );
189 for ( i; dim ) { memcpy( &r[i], &fill, sizeof(T) ); } // initialize with fill value
190 return r;
191 } // alloc_align
192
193 T * alloc_align_set( size_t align, size_t dim, const T fill[] ) {
194 return (T *)memcpy( (T *)alloc_align( align, dim ), fill, dim * sizeof(T) );
195 } // alloc_align
196} // distribution
197
198forall( dtype T | sized(T) ) {
199 T * alloc_align_set( T ptr[], size_t align, char fill ); // aligned realloc with fill
200 T * alloc_align_set( T ptr[], size_t align, T fill ); // aligned realloc with fill
201 T * alloc_align_set( T ptr[], size_t align, size_t dim, char fill ); // aligned realloc array with fill
202 T * alloc_align_set( T ptr[], size_t align, size_t dim, T fill ); // aligned realloc array with fill
203} // distribution
204
205static inline forall( dtype T | sized(T) ) {
206 // Cforall safe initialization/copy, i.e., implicit size specification, non-array types
207 T * memset( T * dest, char fill ) {
208 return (T *)memset( dest, fill, sizeof(T) );
209 } // memset
210
211 T * memcpy( T * dest, const T * src ) {
212 return (T *)memcpy( dest, src, sizeof(T) );
213 } // memcpy
214} // distribution
215
216static inline forall( dtype T | sized(T) ) {
217 // Cforall safe initialization/copy, i.e., implicit size specification, array types
218 T * amemset( T dest[], char fill, size_t dim ) {
219 return (T *)(void *)memset( dest, fill, dim * sizeof(T) ); // C memset
220 } // amemset
221
222 T * amemcpy( T dest[], const T src[], size_t dim ) {
223 return (T *)(void *)memcpy( dest, src, dim * sizeof(T) ); // C memcpy
224 } // amemcpy
225} // distribution
226
227// Cforall allocation/deallocation and constructor/destructor, non-array types
228forall( dtype T | sized(T), ttype Params | { void ?{}( T &, Params ); } ) T * new( Params p );
229forall( dtype T | sized(T) | { void ^?{}( T & ); } ) void delete( T * ptr );
230forall( dtype T, ttype Params | sized(T) | { void ^?{}( T & ); void delete( Params ); } ) void delete( T * ptr, Params rest );
231
232// Cforall allocation/deallocation and constructor/destructor, array types
233forall( dtype T | sized(T), ttype Params | { void ?{}( T &, Params ); } ) T * anew( size_t dim, Params p );
234forall( dtype T | sized(T) | { void ^?{}( T & ); } ) void adelete( size_t dim, T arr[] );
235forall( dtype T | sized(T) | { void ^?{}( T & ); }, ttype Params | { void adelete( Params ); } ) void adelete( size_t dim, T arr[], Params rest );
236
237//---------------------------------------
238
239static inline {
240 int strto( const char sptr[], char ** eptr, int base ) { return (int)strtol( sptr, eptr, base ); }
241 unsigned int strto( const char sptr[], char ** eptr, int base ) { return (unsigned int)strtoul( sptr, eptr, base ); }
242 long int strto( const char sptr[], char ** eptr, int base ) { return strtol( sptr, eptr, base ); }
243 unsigned long int strto( const char sptr[], char ** eptr, int base ) { return strtoul( sptr, eptr, base ); }
244 long long int strto( const char sptr[], char ** eptr, int base ) { return strtoll( sptr, eptr, base ); }
245 unsigned long long int strto( const char sptr[], char ** eptr, int base ) { return strtoull( sptr, eptr, base ); }
246
247 float strto( const char sptr[], char ** eptr ) { return strtof( sptr, eptr ); }
248 double strto( const char sptr[], char ** eptr ) { return strtod( sptr, eptr ); }
249 long double strto( const char sptr[], char ** eptr ) { return strtold( sptr, eptr ); }
250} // distribution
251
252float _Complex strto( const char sptr[], char ** eptr );
253double _Complex strto( const char sptr[], char ** eptr );
254long double _Complex strto( const char sptr[], char ** eptr );
255
256static inline {
257 int ato( const char sptr[] ) { return (int)strtol( sptr, 0p, 10 ); }
258 unsigned int ato( const char sptr[] ) { return (unsigned int)strtoul( sptr, 0p, 10 ); }
259 long int ato( const char sptr[] ) { return strtol( sptr, 0p, 10 ); }
260 unsigned long int ato( const char sptr[] ) { return strtoul( sptr, 0p, 10 ); }
261 long long int ato( const char sptr[] ) { return strtoll( sptr, 0p, 10 ); }
262 unsigned long long int ato( const char sptr[] ) { return strtoull( sptr, 0p, 10 ); }
263
264 float ato( const char sptr[] ) { return strtof( sptr, 0p ); }
265 double ato( const char sptr[] ) { return strtod( sptr, 0p ); }
266 long double ato( const char sptr[] ) { return strtold( sptr, 0p ); }
267
268 float _Complex ato( const char sptr[] ) { return strto( sptr, 0p ); }
269 double _Complex ato( const char sptr[] ) { return strto( sptr, 0p ); }
270 long double _Complex ato( const char sptr[] ) { return strto( sptr, 0p ); }
271} // distribution
272
273//---------------------------------------
274
275forall( otype E | { int ?<?( E, E ); } ) {
276 E * bsearch( E key, const E * vals, size_t dim );
277 size_t bsearch( E key, const E * vals, size_t dim );
278 E * bsearchl( E key, const E * vals, size_t dim );
279 size_t bsearchl( E key, const E * vals, size_t dim );
280 E * bsearchu( E key, const E * vals, size_t dim );
281 size_t bsearchu( E key, const E * vals, size_t dim );
282} // distribution
283
284forall( otype K, otype E | { int ?<?( K, K ); K getKey( const E & ); } ) {
285 E * bsearch( K key, const E * vals, size_t dim );
286 size_t bsearch( K key, const E * vals, size_t dim );
287 E * bsearchl( K key, const E * vals, size_t dim );
288 size_t bsearchl( K key, const E * vals, size_t dim );
289 E * bsearchu( K key, const E * vals, size_t dim );
290 size_t bsearchu( K key, const E * vals, size_t dim );
291} // distribution
292
293forall( otype E | { int ?<?( E, E ); } ) {
294 void qsort( E * vals, size_t dim );
295} // distribution
296
297//---------------------------------------
298
299extern "C" { // override C version
300 void srandom( unsigned int seed );
301 long int random( void );
302} // extern "C"
303
304static inline {
305 long int random( long int l, long int u ) { if ( u < l ) [u, l] = [l, u]; return lrand48() % (u - l) + l; } // [l,u)
306 long int random( long int u ) { if ( u < 0 ) return random( u, 0 ); else return random( 0, u ); } // [0,u)
307 unsigned long int random( void ) { return lrand48(); }
308 unsigned long int random( unsigned long int l, unsigned long int u ) { if ( u < l ) [u, l] = [l, u]; return lrand48() % (u - l) + l; } // [l,u)
309 unsigned long int random( unsigned long int u ) { return lrand48() % u; } // [0,u)
310
311 char random( void ) { return (unsigned long int)random(); }
312 char random( char u ) { return random( (unsigned long int)u ); } // [0,u)
313 char random( char l, char u ) { return random( (unsigned long int)l, (unsigned long int)u ); } // [l,u)
314 int random( void ) { return (long int)random(); }
315 int random( int u ) { return random( (long int)u ); } // [0,u]
316 int random( int l, int u ) { return random( (long int)l, (long int)u ); } // [l,u)
317 unsigned int random( void ) { return (unsigned long int)random(); }
318 unsigned int random( unsigned int u ) { return random( (unsigned long int)u ); } // [0,u]
319 unsigned int random( unsigned int l, unsigned int u ) { return random( (unsigned long int)l, (unsigned long int)u ); } // [l,u)
320} // distribution
321
322float random( void ); // [0.0, 1.0)
323double random( void ); // [0.0, 1.0)
324float _Complex random( void ); // [0.0, 1.0)+[0.0, 1.0)i
325double _Complex random( void ); // [0.0, 1.0)+[0.0, 1.0)i
326long double _Complex random( void ); // [0.0, 1.0)+[0.0, 1.0)i
327
328//---------------------------------------
329
330#include "common.hfa"
331
332//---------------------------------------
333
334extern bool threading_enabled(void) OPTIONAL_THREAD;
335
336// Local Variables: //
337// mode: c //
338// tab-width: 4 //
339// End: //
Note: See TracBrowser for help on using the repository browser.