source: libcfa/src/stdlib.hfa@ 851fd92

ADT arm-eh ast-experimental enum forall-pointer-decay jacob/cs343-translation new-ast new-ast-unique-expr pthread-emulation qualifiedEnum
Last change on this file since 851fd92 was 76e2113, checked in by Peter A. Buhr <pabuhr@…>, 5 years ago

add setter routines for sticky operations, add allocation size to header

  • Property mode set to 100644
File size: 13.1 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// stdlib --
8//
9// Author : Peter A. Buhr
10// Created On : Thu Jan 28 17:12:35 2016
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Thu Apr 16 22:44:05 2020
13// Update Count : 432
14//
15
16#pragma once
17
18#include "bits/defs.hfa"
19#include "bits/align.hfa"
20
21#include <stdlib.h> // *alloc, strto*, ato*
22
23// Reduce includes by explicitly defining these routines.
24extern "C" {
25 void * memalign( size_t align, size_t size ); // malloc.h
26 size_t malloc_usable_size( void * ptr ); // malloc.h
27 size_t malloc_size( void * addr ); // CFA heap
28 void * cmemalign( size_t alignment, size_t noOfElems, size_t elemSize ); // CFA heap
29 void * memset( void * dest, int fill, size_t size ); // string.h
30 void * memcpy( void * dest, const void * src, size_t size ); // string.h
31 void * resize( void * oaddr, size_t size ); // CFA heap
32} // extern "C"
33
34void * resize( void * oaddr, size_t nalign, size_t size ); // CFA heap
35void * realloc( void * oaddr, size_t nalign, size_t size ); // CFA heap
36
37//---------------------------------------
38
39#ifndef EXIT_FAILURE
40#define EXIT_FAILURE 1 // failing exit status
41#define EXIT_SUCCESS 0 // successful exit status
42#endif // ! EXIT_FAILURE
43
44//---------------------------------------
45
46static inline forall( dtype T | sized(T) ) {
47 // Cforall safe equivalents, i.e., implicit size specification
48
49 T * malloc( void ) {
50 if ( _Alignof(T) <= libAlign() ) return (T *)(void *)malloc( (size_t)sizeof(T) ); // C malloc
51 else return (T *)memalign( _Alignof(T), sizeof(T) );
52 } // malloc
53
54 T * calloc( size_t dim ) {
55 if ( _Alignof(T) <= libAlign() )return (T *)(void *)calloc( dim, sizeof(T) ); // C calloc
56 else return (T *)cmemalign( _Alignof(T), dim, sizeof(T) );
57 } // calloc
58
59 T * realloc( T * ptr, size_t size ) { // CFA realloc, eliminate return-type cast
60 return (T *)(void *)realloc( (void *)ptr, size ); // C realloc
61 } // realloc
62
63 T * memalign( size_t align ) {
64 return (T *)memalign( align, sizeof(T) ); // C memalign
65 } // memalign
66
67 T * cmemalign( size_t align, size_t dim ) {
68 return (T *)cmemalign( align, dim, sizeof(T) ); // CFA cmemalign
69 } // cmemalign
70
71 T * aligned_alloc( size_t align ) {
72 return (T *)aligned_alloc( align, sizeof(T) ); // C aligned_alloc
73 } // aligned_alloc
74
75 int posix_memalign( T ** ptr, size_t align ) {
76 return posix_memalign( (void **)ptr, align, sizeof(T) ); // C posix_memalign
77 } // posix_memalign
78} // distribution
79
80static inline forall( dtype T | sized(T) ) {
81 // Cforall safe general allocation, fill, resize, array
82
83 T * alloc( void ) {
84 return malloc();
85 } // alloc
86
87 T * alloc( size_t dim ) {
88 if ( _Alignof(T) <= libAlign() ) return (T *)(void *)malloc( dim * (size_t)sizeof(T) );
89 else return (T *)memalign( _Alignof(T), dim * sizeof(T) );
90 } // alloc
91
92 forall( dtype S | sized(S) )
93 T * alloc( S ptr[], size_t dim = 1 ) { // singleton/array resize
94 size_t len = malloc_usable_size( ptr ); // current bucket size
95 if ( sizeof(T) * dim > len ) { // not enough space ?
96 T * temp = alloc( dim ); // new storage
97 free( ptr ); // free old storage
98 return temp;
99 } else {
100 return (T *)ptr;
101 } // if
102 } // alloc
103
104 T * alloc( T ptr[], size_t dim, bool copy = true ) {
105 if ( copy ) { // realloc
106 return (T *)(void *)realloc( (void *)ptr, dim * sizeof(T) ); // C realloc
107 } else {
108 struct __Unknown {};
109 return alloc( (__Unknown *)ptr, dim ); // reuse, cheat making T/S different types
110 } // if
111 } // alloc
112
113 T * alloc_set( char fill ) {
114 return (T *)memset( (T *)alloc(), (int)fill, sizeof(T) ); // initialize with fill value
115 } // alloc
116
117 T * alloc_set( T fill ) {
118 return (T *)memcpy( (T *)alloc(), &fill, sizeof(T) ); // initialize with fill value
119 } // alloc
120
121 T * alloc_set( size_t dim, char fill ) {
122 return (T *)memset( (T *)alloc( dim ), (int)fill, dim * sizeof(T) ); // initialize with fill value
123 } // alloc
124
125 T * alloc_set( size_t dim, T fill ) {
126 T * r = (T *)alloc( dim );
127 for ( i; dim ) { memcpy( &r[i], &fill, sizeof(T) ); } // initialize with fill value
128 return r;
129 } // alloc
130
131 T * alloc_set( size_t dim, const T fill[] ) {
132 return (T *)memcpy( (T *)alloc( dim ), fill, dim * sizeof(T) ); // initialize with fill value
133 } // alloc
134} // distribution
135
136forall( dtype T | sized(T) ) {
137 T * alloc_set( T ptr[], size_t dim, char fill ); // realloc array with fill
138 T * alloc_set( T ptr[], size_t dim, T fill ); // realloc array with fill
139} // distribution
140
141static inline forall( dtype T | sized(T) ) {
142 T * alloc_align( size_t align ) {
143 return (T *)memalign( align, sizeof(T) );
144 } // alloc_align
145
146 T * alloc_align( size_t align, size_t dim ) {
147 return (T *)memalign( align, dim * sizeof(T) );
148 } // alloc_align
149
150 T * alloc_align( T ptr[], size_t align ) { // aligned realloc array
151 return (T *)(void *)realloc( (void *)ptr, align, sizeof(T) ); // CFA realloc
152 } // alloc_align
153
154 forall( dtype S | sized(S) )
155 T * alloc_align( S ptr[], size_t align ) { // aligned reuse array
156 return (T *)(void *)resize( (void *)ptr, align, sizeof(T) ); // CFA realloc
157 } // alloc_align
158
159 T * alloc_align( T ptr[], size_t align, size_t dim ) { // aligned realloc array
160 return (T *)(void *)realloc( (void *)ptr, align, dim * sizeof(T) ); // CFA realloc
161 } // alloc_align
162
163 T * alloc_align_set( size_t align, char fill ) {
164 return (T *)memset( (T *)alloc_align( align ), (int)fill, sizeof(T) ); // initialize with fill value
165 } // alloc_align
166
167 T * alloc_align_set( size_t align, T fill ) {
168 return (T *)memcpy( (T *)alloc_align( align ), &fill, sizeof(T) ); // initialize with fill value
169 } // alloc_align
170
171 T * alloc_align_set( size_t align, size_t dim, char fill ) {
172 return (T *)memset( (T *)alloc_align( align, dim ), (int)fill, dim * sizeof(T) ); // initialize with fill value
173 } // alloc_align
174
175 T * alloc_align_set( size_t align, size_t dim, T fill ) {
176 T * r = (T *)alloc_align( align, dim );
177 for ( i; dim ) { memcpy( &r[i], &fill, sizeof(T) ); } // initialize with fill value
178 return r;
179 } // alloc_align
180
181 T * alloc_align_set( size_t align, size_t dim, const T fill[] ) {
182 return (T *)memcpy( (T *)alloc_align( align, dim ), fill, dim * sizeof(T) );
183 } // alloc_align
184} // distribution
185
186forall( dtype T | sized(T) ) {
187 T * alloc_align_set( T ptr[], size_t align, char fill ); // aligned realloc with fill
188 T * alloc_align_set( T ptr[], size_t align, T fill ); // aligned realloc with fill
189 T * alloc_align_set( T ptr[], size_t align, size_t dim, char fill ); // aligned realloc array with fill
190 T * alloc_align_set( T ptr[], size_t align, size_t dim, T fill ); // aligned realloc array with fill
191} // distribution
192
193static inline forall( dtype T | sized(T) ) {
194 // Cforall safe initialization/copy, i.e., implicit size specification, non-array types
195 T * memset( T * dest, char fill ) {
196 return (T *)memset( dest, fill, sizeof(T) );
197 } // memset
198
199 T * memcpy( T * dest, const T * src ) {
200 return (T *)memcpy( dest, src, sizeof(T) );
201 } // memcpy
202} // distribution
203
204static inline forall( dtype T | sized(T) ) {
205 // Cforall safe initialization/copy, i.e., implicit size specification, array types
206 T * amemset( T dest[], char fill, size_t dim ) {
207 return (T *)(void *)memset( dest, fill, dim * sizeof(T) ); // C memset
208 } // amemset
209
210 T * amemcpy( T dest[], const T src[], size_t dim ) {
211 return (T *)(void *)memcpy( dest, src, dim * sizeof(T) ); // C memcpy
212 } // amemcpy
213} // distribution
214
215// Cforall allocation/deallocation and constructor/destructor, non-array types
216forall( dtype T | sized(T), ttype Params | { void ?{}( T &, Params ); } ) T * new( Params p );
217forall( dtype T | sized(T) | { void ^?{}( T & ); } ) void delete( T * ptr );
218forall( dtype T, ttype Params | sized(T) | { void ^?{}( T & ); void delete( Params ); } ) void delete( T * ptr, Params rest );
219
220// Cforall allocation/deallocation and constructor/destructor, array types
221forall( dtype T | sized(T), ttype Params | { void ?{}( T &, Params ); } ) T * anew( size_t dim, Params p );
222forall( dtype T | sized(T) | { void ^?{}( T & ); } ) void adelete( size_t dim, T arr[] );
223forall( dtype T | sized(T) | { void ^?{}( T & ); }, ttype Params | { void adelete( Params ); } ) void adelete( size_t dim, T arr[], Params rest );
224
225//---------------------------------------
226
227static inline {
228 int strto( const char sptr[], char ** eptr, int base ) { return (int)strtol( sptr, eptr, base ); }
229 unsigned int strto( const char sptr[], char ** eptr, int base ) { return (unsigned int)strtoul( sptr, eptr, base ); }
230 long int strto( const char sptr[], char ** eptr, int base ) { return strtol( sptr, eptr, base ); }
231 unsigned long int strto( const char sptr[], char ** eptr, int base ) { return strtoul( sptr, eptr, base ); }
232 long long int strto( const char sptr[], char ** eptr, int base ) { return strtoll( sptr, eptr, base ); }
233 unsigned long long int strto( const char sptr[], char ** eptr, int base ) { return strtoull( sptr, eptr, base ); }
234
235 float strto( const char sptr[], char ** eptr ) { return strtof( sptr, eptr ); }
236 double strto( const char sptr[], char ** eptr ) { return strtod( sptr, eptr ); }
237 long double strto( const char sptr[], char ** eptr ) { return strtold( sptr, eptr ); }
238} // distribution
239
240float _Complex strto( const char sptr[], char ** eptr );
241double _Complex strto( const char sptr[], char ** eptr );
242long double _Complex strto( const char sptr[], char ** eptr );
243
244static inline {
245 int ato( const char sptr[] ) { return (int)strtol( sptr, 0p, 10 ); }
246 unsigned int ato( const char sptr[] ) { return (unsigned int)strtoul( sptr, 0p, 10 ); }
247 long int ato( const char sptr[] ) { return strtol( sptr, 0p, 10 ); }
248 unsigned long int ato( const char sptr[] ) { return strtoul( sptr, 0p, 10 ); }
249 long long int ato( const char sptr[] ) { return strtoll( sptr, 0p, 10 ); }
250 unsigned long long int ato( const char sptr[] ) { return strtoull( sptr, 0p, 10 ); }
251
252 float ato( const char sptr[] ) { return strtof( sptr, 0p ); }
253 double ato( const char sptr[] ) { return strtod( sptr, 0p ); }
254 long double ato( const char sptr[] ) { return strtold( sptr, 0p ); }
255
256 float _Complex ato( const char sptr[] ) { return strto( sptr, 0p ); }
257 double _Complex ato( const char sptr[] ) { return strto( sptr, 0p ); }
258 long double _Complex ato( const char sptr[] ) { return strto( sptr, 0p ); }
259} // distribution
260
261//---------------------------------------
262
263forall( otype E | { int ?<?( E, E ); } ) {
264 E * bsearch( E key, const E * vals, size_t dim );
265 size_t bsearch( E key, const E * vals, size_t dim );
266 E * bsearchl( E key, const E * vals, size_t dim );
267 size_t bsearchl( E key, const E * vals, size_t dim );
268 E * bsearchu( E key, const E * vals, size_t dim );
269 size_t bsearchu( E key, const E * vals, size_t dim );
270} // distribution
271
272forall( otype K, otype E | { int ?<?( K, K ); K getKey( const E & ); } ) {
273 E * bsearch( K key, const E * vals, size_t dim );
274 size_t bsearch( K key, const E * vals, size_t dim );
275 E * bsearchl( K key, const E * vals, size_t dim );
276 size_t bsearchl( K key, const E * vals, size_t dim );
277 E * bsearchu( K key, const E * vals, size_t dim );
278 size_t bsearchu( K key, const E * vals, size_t dim );
279} // distribution
280
281forall( otype E | { int ?<?( E, E ); } ) {
282 void qsort( E * vals, size_t dim );
283} // distribution
284
285//---------------------------------------
286
287extern "C" { // override C version
288 void srandom( unsigned int seed );
289 long int random( void );
290} // extern "C"
291
292static inline {
293 long int random( long int l, long int u ) { if ( u < l ) [u, l] = [l, u]; return lrand48() % (u - l) + l; } // [l,u)
294 long int random( long int u ) { if ( u < 0 ) return random( u, 0 ); else return random( 0, u ); } // [0,u)
295 unsigned long int random( void ) { return lrand48(); }
296 unsigned long int random( unsigned long int l, unsigned long int u ) { if ( u < l ) [u, l] = [l, u]; return lrand48() % (u - l) + l; } // [l,u)
297 unsigned long int random( unsigned long int u ) { return lrand48() % u; } // [0,u)
298
299 char random( void ) { return (unsigned long int)random(); }
300 char random( char u ) { return random( (unsigned long int)u ); } // [0,u)
301 char random( char l, char u ) { return random( (unsigned long int)l, (unsigned long int)u ); } // [l,u)
302 int random( void ) { return (long int)random(); }
303 int random( int u ) { return random( (long int)u ); } // [0,u]
304 int random( int l, int u ) { return random( (long int)l, (long int)u ); } // [l,u)
305 unsigned int random( void ) { return (unsigned long int)random(); }
306 unsigned int random( unsigned int u ) { return random( (unsigned long int)u ); } // [0,u]
307 unsigned int random( unsigned int l, unsigned int u ) { return random( (unsigned long int)l, (unsigned long int)u ); } // [l,u)
308} // distribution
309
310float random( void ); // [0.0, 1.0)
311double random( void ); // [0.0, 1.0)
312float _Complex random( void ); // [0.0, 1.0)+[0.0, 1.0)i
313double _Complex random( void ); // [0.0, 1.0)+[0.0, 1.0)i
314long double _Complex random( void ); // [0.0, 1.0)+[0.0, 1.0)i
315
316//---------------------------------------
317
318#include "common.hfa"
319
320//---------------------------------------
321
322extern bool threading_enabled(void) OPTIONAL_THREAD;
323
324// Local Variables: //
325// mode: c //
326// tab-width: 4 //
327// End: //
Note: See TracBrowser for help on using the repository browser.