source: libcfa/src/stdlib.hfa@ 31bb2e1

ADT arm-eh ast-experimental enum forall-pointer-decay jacob/cs343-translation new-ast new-ast-unique-expr pthread-emulation qualifiedEnum
Last change on this file since 31bb2e1 was aabb846, checked in by Andrew Beach <ajbeach@…>, 5 years ago

Added a first draft of the memory management library module.

  • Property mode set to 100644
File size: 13.3 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// stdlib --
8//
9// Author : Peter A. Buhr
10// Created On : Thu Jan 28 17:12:35 2016
11// Last Modified By : Andrew Beach
12// Last Modified On : Tue Jun 2 16:47:00 2020
13// Update Count : 451
14//
15
16#pragma once
17
18#include "bits/defs.hfa"
19#include "bits/align.hfa"
20
21#include <stdlib.h> // *alloc, strto*, ato*
22#include <heap.hfa>
23
24// Reduce includes by explicitly defining these routines.
25extern "C" {
26 void * memalign( size_t alignment, size_t size ); // malloc.h
27 void * pvalloc( size_t size ); // malloc.h
28 void * memset( void * dest, int fill, size_t size ); // string.h
29 void * memcpy( void * dest, const void * src, size_t size ); // string.h
30} // extern "C"
31
32//---------------------------------------
33
34#ifndef EXIT_FAILURE
35#define EXIT_FAILURE 1 // failing exit status
36#define EXIT_SUCCESS 0 // successful exit status
37#endif // ! EXIT_FAILURE
38
39//---------------------------------------
40
41static inline forall( dtype T | sized(T) ) {
42 // Cforall safe equivalents, i.e., implicit size specification
43
44 T * malloc( void ) {
45 if ( _Alignof(T) <= libAlign() ) return (T *)(void *)malloc( (size_t)sizeof(T) ); // C malloc
46 else return (T *)memalign( _Alignof(T), sizeof(T) );
47 } // malloc
48
49 T * aalloc( size_t dim ) {
50 if ( _Alignof(T) <= libAlign() ) return (T *)(void *)aalloc( dim, (size_t)sizeof(T) ); // CFA aalloc
51 else return (T *)amemalign( _Alignof(T), dim, sizeof(T) );
52 } // aalloc
53
54 T * calloc( size_t dim ) {
55 if ( _Alignof(T) <= libAlign() )return (T *)(void *)calloc( dim, sizeof(T) ); // C calloc
56 else return (T *)cmemalign( _Alignof(T), dim, sizeof(T) );
57 } // calloc
58
59 T * resize( T * ptr, size_t size ) { // CFA realloc, eliminate return-type cast
60 return (T *)(void *)resize( (void *)ptr, size ); // C realloc
61 } // resize
62
63 T * realloc( T * ptr, size_t size ) { // CFA realloc, eliminate return-type cast
64 return (T *)(void *)realloc( (void *)ptr, size ); // C realloc
65 } // realloc
66
67 T * memalign( size_t align ) {
68 return (T *)memalign( align, sizeof(T) ); // C memalign
69 } // memalign
70
71 T * amemalign( size_t align, size_t dim ) {
72 return (T *)amemalign( align, dim, sizeof(T) ); // CFA amemalign
73 } // amemalign
74
75 T * cmemalign( size_t align, size_t dim ) {
76 return (T *)cmemalign( align, dim, sizeof(T) ); // CFA cmemalign
77 } // cmemalign
78
79 T * aligned_alloc( size_t align ) {
80 return (T *)aligned_alloc( align, sizeof(T) ); // C aligned_alloc
81 } // aligned_alloc
82
83 int posix_memalign( T ** ptr, size_t align ) {
84 return posix_memalign( (void **)ptr, align, sizeof(T) ); // C posix_memalign
85 } // posix_memalign
86
87 T * valloc( void ) {
88 return (T *)valloc( sizeof(T) ); // C valloc
89 } // valloc
90
91 T * pvalloc( void ) {
92 return (T *)pvalloc( sizeof(T) ); // C pvalloc
93 } // pvalloc
94} // distribution
95
96static inline forall( dtype T | sized(T) ) {
97 // Cforall safe general allocation, fill, resize, array
98
99 T * alloc( void ) {
100 return malloc();
101 } // alloc
102
103 T * alloc( size_t dim ) {
104 return aalloc( dim );
105 } // alloc
106
107 forall( dtype S | sized(S) )
108 T * alloc( S ptr[], size_t dim = 1 ) { // singleton/array resize
109 size_t len = malloc_usable_size( ptr ); // current bucket size
110 if ( sizeof(T) * dim > len ) { // not enough space ?
111 T * temp = alloc( dim ); // new storage
112 free( ptr ); // free old storage
113 return temp;
114 } else {
115 return (T *)ptr;
116 } // if
117 } // alloc
118
119 T * alloc( T ptr[], size_t dim, bool copy = true ) {
120 if ( copy ) { // realloc
121 return (T *)(void *)realloc( (void *)ptr, dim * sizeof(T) ); // C realloc
122 } else {
123 return resize( ptr, dim * sizeof(T) ); // resize
124 } // if
125 } // alloc
126
127 T * alloc_set( char fill ) {
128 return (T *)memset( (T *)alloc(), (int)fill, sizeof(T) ); // initialize with fill value
129 } // alloc
130
131 T * alloc_set( T fill ) {
132 return (T *)memcpy( (T *)alloc(), &fill, sizeof(T) ); // initialize with fill value
133 } // alloc
134
135 T * alloc_set( size_t dim, char fill ) {
136 return (T *)memset( (T *)alloc( dim ), (int)fill, dim * sizeof(T) ); // initialize with fill value
137 } // alloc
138
139 T * alloc_set( size_t dim, T fill ) {
140 T * r = (T *)alloc( dim );
141 for ( i; dim ) { memcpy( &r[i], &fill, sizeof(T) ); } // initialize with fill value
142 return r;
143 } // alloc
144
145 T * alloc_set( size_t dim, const T fill[] ) {
146 return (T *)memcpy( (T *)alloc( dim ), fill, dim * sizeof(T) ); // initialize with fill value
147 } // alloc
148} // distribution
149
150forall( dtype T | sized(T) ) {
151 T * alloc_set( T ptr[], size_t dim, char fill ); // realloc array with fill
152 T * alloc_set( T ptr[], size_t dim, T fill ); // realloc array with fill
153} // distribution
154
155static inline forall( dtype T | sized(T) ) {
156 T * alloc_align( size_t align ) {
157 return (T *)memalign( align, sizeof(T) );
158 } // alloc_align
159
160 T * alloc_align( size_t align, size_t dim ) {
161 return (T *)memalign( align, dim * sizeof(T) );
162 } // alloc_align
163
164 T * alloc_align( T * ptr, size_t align ) { // aligned realloc array
165 return (T *)(void *)realloc( (void *)ptr, align, sizeof(T) ); // CFA realloc
166 } // alloc_align
167
168 forall( dtype S | sized(S) )
169 T * alloc_align( S ptr[], size_t align ) { // aligned reuse array
170 return (T *)(void *)resize( (void *)ptr, align, sizeof(T) ); // CFA realloc
171 } // alloc_align
172
173 T * alloc_align( T ptr[], size_t align, size_t dim ) { // aligned realloc array
174 return (T *)(void *)realloc( (void *)ptr, align, dim * sizeof(T) ); // CFA realloc
175 } // alloc_align
176
177 T * alloc_align_set( size_t align, char fill ) {
178 return (T *)memset( (T *)alloc_align( align ), (int)fill, sizeof(T) ); // initialize with fill value
179 } // alloc_align
180
181 T * alloc_align_set( size_t align, T fill ) {
182 return (T *)memcpy( (T *)alloc_align( align ), &fill, sizeof(T) ); // initialize with fill value
183 } // alloc_align
184
185 T * alloc_align_set( size_t align, size_t dim, char fill ) {
186 return (T *)memset( (T *)alloc_align( align, dim ), (int)fill, dim * sizeof(T) ); // initialize with fill value
187 } // alloc_align
188
189 T * alloc_align_set( size_t align, size_t dim, T fill ) {
190 T * r = (T *)alloc_align( align, dim );
191 for ( i; dim ) { memcpy( &r[i], &fill, sizeof(T) ); } // initialize with fill value
192 return r;
193 } // alloc_align
194
195 T * alloc_align_set( size_t align, size_t dim, const T fill[] ) {
196 return (T *)memcpy( (T *)alloc_align( align, dim ), fill, dim * sizeof(T) );
197 } // alloc_align
198} // distribution
199
200forall( dtype T | sized(T) ) {
201 T * alloc_align_set( T ptr[], size_t align, char fill ); // aligned realloc with fill
202 T * alloc_align_set( T ptr[], size_t align, T fill ); // aligned realloc with fill
203 T * alloc_align_set( T ptr[], size_t align, size_t dim, char fill ); // aligned realloc array with fill
204 T * alloc_align_set( T ptr[], size_t align, size_t dim, T fill ); // aligned realloc array with fill
205} // distribution
206
207static inline forall( dtype T | sized(T) ) {
208 // Cforall safe initialization/copy, i.e., implicit size specification, non-array types
209 T * memset( T * dest, char fill ) {
210 return (T *)memset( dest, fill, sizeof(T) );
211 } // memset
212
213 T * memcpy( T * dest, const T * src ) {
214 return (T *)memcpy( dest, src, sizeof(T) );
215 } // memcpy
216} // distribution
217
218static inline forall( dtype T | sized(T) ) {
219 // Cforall safe initialization/copy, i.e., implicit size specification, array types
220 T * amemset( T dest[], char fill, size_t dim ) {
221 return (T *)(void *)memset( dest, fill, dim * sizeof(T) ); // C memset
222 } // amemset
223
224 T * amemcpy( T dest[], const T src[], size_t dim ) {
225 return (T *)(void *)memcpy( dest, src, dim * sizeof(T) ); // C memcpy
226 } // amemcpy
227} // distribution
228
229// Cforall allocation/deallocation and constructor/destructor, non-array types
230forall( dtype T | sized(T), ttype Params | { void ?{}( T &, Params ); } ) T * new( Params p );
231forall( dtype T | { void ^?{}( T & ); } ) void delete( T * ptr );
232forall( dtype T, ttype Params | { void ^?{}( T & ); void delete( Params ); } ) void delete( T * ptr, Params rest );
233
234// Cforall allocation/deallocation and constructor/destructor, array types
235forall( dtype T | sized(T), ttype Params | { void ?{}( T &, Params ); } ) T * anew( size_t dim, Params p );
236forall( dtype T | sized(T) | { void ^?{}( T & ); } ) void adelete( size_t dim, T arr[] );
237forall( dtype T | sized(T) | { void ^?{}( T & ); }, ttype Params | { void adelete( Params ); } ) void adelete( size_t dim, T arr[], Params rest );
238
239//---------------------------------------
240
241static inline {
242 int strto( const char sptr[], char ** eptr, int base ) { return (int)strtol( sptr, eptr, base ); }
243 unsigned int strto( const char sptr[], char ** eptr, int base ) { return (unsigned int)strtoul( sptr, eptr, base ); }
244 long int strto( const char sptr[], char ** eptr, int base ) { return strtol( sptr, eptr, base ); }
245 unsigned long int strto( const char sptr[], char ** eptr, int base ) { return strtoul( sptr, eptr, base ); }
246 long long int strto( const char sptr[], char ** eptr, int base ) { return strtoll( sptr, eptr, base ); }
247 unsigned long long int strto( const char sptr[], char ** eptr, int base ) { return strtoull( sptr, eptr, base ); }
248
249 float strto( const char sptr[], char ** eptr ) { return strtof( sptr, eptr ); }
250 double strto( const char sptr[], char ** eptr ) { return strtod( sptr, eptr ); }
251 long double strto( const char sptr[], char ** eptr ) { return strtold( sptr, eptr ); }
252} // distribution
253
254float _Complex strto( const char sptr[], char ** eptr );
255double _Complex strto( const char sptr[], char ** eptr );
256long double _Complex strto( const char sptr[], char ** eptr );
257
258static inline {
259 int ato( const char sptr[] ) { return (int)strtol( sptr, 0p, 10 ); }
260 unsigned int ato( const char sptr[] ) { return (unsigned int)strtoul( sptr, 0p, 10 ); }
261 long int ato( const char sptr[] ) { return strtol( sptr, 0p, 10 ); }
262 unsigned long int ato( const char sptr[] ) { return strtoul( sptr, 0p, 10 ); }
263 long long int ato( const char sptr[] ) { return strtoll( sptr, 0p, 10 ); }
264 unsigned long long int ato( const char sptr[] ) { return strtoull( sptr, 0p, 10 ); }
265
266 float ato( const char sptr[] ) { return strtof( sptr, 0p ); }
267 double ato( const char sptr[] ) { return strtod( sptr, 0p ); }
268 long double ato( const char sptr[] ) { return strtold( sptr, 0p ); }
269
270 float _Complex ato( const char sptr[] ) { return strto( sptr, 0p ); }
271 double _Complex ato( const char sptr[] ) { return strto( sptr, 0p ); }
272 long double _Complex ato( const char sptr[] ) { return strto( sptr, 0p ); }
273} // distribution
274
275//---------------------------------------
276
277forall( otype E | { int ?<?( E, E ); } ) {
278 E * bsearch( E key, const E * vals, size_t dim );
279 size_t bsearch( E key, const E * vals, size_t dim );
280 E * bsearchl( E key, const E * vals, size_t dim );
281 size_t bsearchl( E key, const E * vals, size_t dim );
282 E * bsearchu( E key, const E * vals, size_t dim );
283 size_t bsearchu( E key, const E * vals, size_t dim );
284} // distribution
285
286forall( otype K, otype E | { int ?<?( K, K ); K getKey( const E & ); } ) {
287 E * bsearch( K key, const E * vals, size_t dim );
288 size_t bsearch( K key, const E * vals, size_t dim );
289 E * bsearchl( K key, const E * vals, size_t dim );
290 size_t bsearchl( K key, const E * vals, size_t dim );
291 E * bsearchu( K key, const E * vals, size_t dim );
292 size_t bsearchu( K key, const E * vals, size_t dim );
293} // distribution
294
295forall( otype E | { int ?<?( E, E ); } ) {
296 void qsort( E * vals, size_t dim );
297} // distribution
298
299//---------------------------------------
300
301extern "C" { // override C version
302 void srandom( unsigned int seed );
303 long int random( void ); // GENERATES POSITIVE AND NEGATIVE VALUES
304 // For positive values, use unsigned int, e.g., unsigned int r = random() % 100U;
305} // extern "C"
306
307static inline {
308 long int random( long int l, long int u ) { if ( u < l ) [u, l] = [l, u]; return lrand48() % (u - l) + l; } // [l,u)
309 long int random( long int u ) { if ( u < 0 ) return random( u, 0 ); else return random( 0, u ); } // [0,u)
310 unsigned long int random( void ) { return lrand48(); }
311 unsigned long int random( unsigned long int u ) { return lrand48() % u; } // [0,u)
312 unsigned long int random( unsigned long int l, unsigned long int u ) { if ( u < l ) [u, l] = [l, u]; return lrand48() % (u - l) + l; } // [l,u)
313
314 char random( void ) { return (unsigned long int)random(); }
315 char random( char u ) { return random( (unsigned long int)u ); } // [0,u)
316 char random( char l, char u ) { return random( (unsigned long int)l, (unsigned long int)u ); } // [l,u)
317 int random( void ) { return (long int)random(); }
318 int random( int u ) { return random( (long int)u ); } // [0,u]
319 int random( int l, int u ) { return random( (long int)l, (long int)u ); } // [l,u)
320 unsigned int random( void ) { return (unsigned long int)random(); }
321 unsigned int random( unsigned int u ) { return random( (unsigned long int)u ); } // [0,u]
322 unsigned int random( unsigned int l, unsigned int u ) { return random( (unsigned long int)l, (unsigned long int)u ); } // [l,u)
323} // distribution
324
325float random( void ); // [0.0, 1.0)
326double random( void ); // [0.0, 1.0)
327float _Complex random( void ); // [0.0, 1.0)+[0.0, 1.0)i
328double _Complex random( void ); // [0.0, 1.0)+[0.0, 1.0)i
329long double _Complex random( void ); // [0.0, 1.0)+[0.0, 1.0)i
330
331//---------------------------------------
332
333#include "common.hfa"
334
335//---------------------------------------
336
337extern bool threading_enabled(void) OPTIONAL_THREAD;
338
339// Local Variables: //
340// mode: c //
341// tab-width: 4 //
342// End: //
Note: See TracBrowser for help on using the repository browser.