source: libcfa/src/stdlib.hfa@ 0fe07be

Last change on this file since 0fe07be was 0fe07be, checked in by Peter A. Buhr <pabuhr@…>, 20 months ago

formatting, documentation refactor alloc code, remove annoying warnings

  • Property mode set to 100644
File size: 22.8 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// stdlib --
8//
9// Author : Peter A. Buhr
10// Created On : Thu Jan 28 17:12:35 2016
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Mon Apr 22 23:23:58 2024
13// Update Count : 958
14//
15
16#pragma once
17
18#include "bits/defs.hfa" // OPTIONAL_THREAD
19#include "bits/align.hfa" // libAlign
20#include "bits/random.hfa" // prng
21#include <Exception.hfa>
22#include <heap.hfa>
23
24#include <stdlib.h> // *alloc, strto*, ato*
25#include <errno.h>
26
27// Reduce includes by explicitly defining these routines.
28extern "C" {
29 void * memalign( size_t alignment, size_t size ); // malloc.h
30 void * pvalloc( size_t size ); // malloc.h
31 void * memset( void * dest, int fill, size_t size ); // string.h
32 void * memcpy( void * dest, const void * src, size_t size ); // string.h
33} // extern "C"
34
35//---------------------------------------
36
37#ifndef EXIT_FAILURE
38#define EXIT_FAILURE 1 // failing exit status
39#define EXIT_SUCCESS 0 // successful exit status
40#endif // ! EXIT_FAILURE
41
42//---------------------------------------
43
44#include "common.hfa"
45
46//---------------------------------------
47
48static inline forall( T & | sized(T) ) {
49 // CFA safe equivalents, i.e., implicit size specification, eliminate return-type cast
50
51 T * malloc( void ) {
52 if ( _Alignof(T) <= libAlign() ) return (T *)malloc( sizeof(T) ); // C allocation
53 else return (T *)memalign( _Alignof(T), sizeof(T) );
54 } // malloc
55
56 T * aalloc( size_t dim ) {
57 if ( _Alignof(T) <= libAlign() ) return (T *)aalloc( dim, sizeof(T) ); // C allocation
58 else return (T *)amemalign( _Alignof(T), dim, sizeof(T) );
59 } // aalloc
60
61 T * calloc( size_t dim ) {
62 if ( _Alignof(T) <= libAlign() ) return (T *)calloc( dim, sizeof(T) ); // C allocation
63 else return (T *)cmemalign( _Alignof(T), dim, sizeof(T) );
64 } // calloc
65
66 T * resize( T * ptr, size_t size ) {
67 if ( _Alignof(T) <= libAlign() ) return (T *)resize( (void *)ptr, size ); // C resize
68 else return (T *)resize( (void *)ptr, _Alignof(T), size ); // CFA resize
69 } // resize
70
71 T * resize( T * ptr, size_t alignment, size_t size ) {
72 return (T *)resize( (void *)ptr, alignment, size ); // CFA resize
73 } // resize
74
75 T * realloc( T * ptr, size_t size ) { // CFA realloc
76 if ( _Alignof(T) <= libAlign() ) return (T *)realloc( (void *)ptr, size ); // C realloc
77 else return (T *)realloc( (void *)ptr, _Alignof(T), size ); // CFA realloc
78 } // realloc
79
80 T * realloc( T * ptr, size_t alignment, size_t size ) {
81 return (T *)realloc( (void *)ptr, alignment, size ); // CFA realloc
82 } // realloc
83
84 T * reallocarray( T * ptr, size_t dim ) { // CFA reallocarray
85 if ( _Alignof(T) <= libAlign() ) return (T *)reallocarray( (void *)ptr, dim, sizeof(T) ); // C reallocarray
86 else return (T *)reallocarray( (void *)ptr, _Alignof(T), dim ); // CFA reallocarray
87 } // realloc
88
89 T * reallocarray( T * ptr, size_t alignment, size_t dim ) {
90 return (T *)reallocarray( (void *)ptr, alignment, dim ); // CFA reallocarray
91 } // realloc
92
93 T * memalign( size_t align ) {
94 return (T *)memalign( align, sizeof(T) ); // C memalign
95 } // memalign
96
97 T * amemalign( size_t align, size_t dim ) {
98 return (T *)amemalign( align, dim, sizeof(T) ); // CFA amemalign
99 } // amemalign
100
101 T * cmemalign( size_t align, size_t dim ) {
102 return (T *)cmemalign( align, dim, sizeof(T) ); // CFA cmemalign
103 } // cmemalign
104
105 T * aligned_alloc( size_t align ) {
106 return (T *)aligned_alloc( align, sizeof(T) ); // C aligned_alloc
107 } // aligned_alloc
108
109 int posix_memalign( T ** ptr, size_t align ) {
110 return posix_memalign( (void **)ptr, align, sizeof(T) ); // C posix_memalign
111 } // posix_memalign
112
113 T * valloc( void ) {
114 return (T *)valloc( sizeof(T) ); // C valloc
115 } // valloc
116
117 T * pvalloc( void ) {
118 return (T *)pvalloc( sizeof(T) ); // C pvalloc
119 } // pvalloc
120} // distribution
121
122/*
123 FIX ME : fix alloc interface after Ticker Number 214 is resolved, define and add union to S_fill. Then, modify
124 postfix-fill functions to support T * with nmemb, char, and T object of any size. Finally, change alloc_internal.
125 Or, just follow the instructions below for that.
126
127 1. Replace the current forall-block that contains defintions of S_fill and S_realloc with following:
128 forall( T & | sized(T) ) {
129 union U_fill { char c; T * a; T t; };
130 struct S_fill { char tag; U_fill(T) fill; };
131 struct S_realloc { inline T *; };
132 }
133
134 2. Replace all current postfix-fill functions with following for updated S_fill:
135 S_fill(T) ?`fill( char a ) { S_fill(T) ret = {'c'}; ret.fill.c = a; return ret; }
136 S_fill(T) ?`fill( T a ) { S_fill(T) ret = {'t'}; memcpy(&ret.fill.t, &a, sizeof(T)); return ret; }
137 S_fill(T) ?`fill( T a[], size_t nmemb ) { S_fill(T) ret = {'a', nmemb}; ret.fill.a = a; return ret; }
138
139 3. Replace the alloc_internal$ function which is outside ttype forall-block with following function:
140 T * alloc_internal$( void * Resize, T * Realloc, size_t Align, size_t Dim, S_fill(T) Fill) {
141 T * ptr = NULL;
142 size_t size = sizeof(T);
143 size_t copy_end = 0;
144
145 if(Resize) {
146 ptr = (T*) (void *) resize( (int *)Resize, Align, Dim * size );
147 } else if (Realloc) {
148 if (Fill.tag != '0') copy_end = min(malloc_size( Realloc ), Dim * size);
149 ptr = (T*) (void *) realloc( (int *)Realloc, Align, Dim * size );
150 } else {
151 ptr = (T*) (void *) memalign( Align, Dim * size );
152 }
153
154 if(Fill.tag == 'c') {
155 memset( (char *)ptr + copy_end, (int)Fill.fill.c, Dim * size - copy_end );
156 } else if(Fill.tag == 't') {
157 for ( int i = copy_end; i <= Dim * size - size ; i += size ) {
158 memcpy( (char *)ptr + i, &Fill.fill.t, size );
159 }
160 } else if(Fill.tag == 'a') {
161 memcpy( (char *)ptr + copy_end, Fill.fill.a, min(Dim * size - copy_end, size * Fill.nmemb) );
162 }
163
164 return ptr;
165 } // alloc_internal$
166*/
167
168#pragma GCC diagnostic push
169#pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
170#pragma GCC diagnostic ignored "-Wuninitialized"
171
172struct T_align { size_t align; };
173struct T_resize { void * addr; };
174struct T_realloc { void * addr; };
175forall( T & ) struct T_fill {
176 // 'N' => no fill, 'c' => fill with character c, 'a' => fill first N array elements from another array,
177 // 'A' => fill all array elements from another array, 'T' => fill using a T value.
178 char tag;
179 size_t nelem; // number of elements copied from "at" (used with tag 'a')
180// union {
181 char c;
182 T * at;
183 char t[64]; // T t;
184// };
185};
186
187#pragma GCC diagnostic pop
188
189static inline {
190 T_align ?`align( size_t a ) { return (T_align){ a }; }
191 T_resize ?`resize( void * a ) { return (T_resize){ a }; }
192 T_realloc ?`realloc( void * a ) { return (T_realloc){ a }; }
193}
194
195static inline forall( T & | sized(T) ) {
196 T_fill(T) ?`fill( char c ) { return (T_fill(T)){ 'c', 0, c }; }
197 T_fill(T) ?`fill( T t ) {
198 T_fill(T) ret = { 'T' };
199 size_t size = sizeof(T);
200 if ( size > sizeof(ret.t) ) {
201 abort( "ERROR: const object of size greater than 50 bytes given for dynamic memory fill\n" );
202 } // if
203 memcpy( &ret.t, &t, size );
204 return ret;
205 }
206 T_fill(T) ?`fill( T a[] ) { return (T_fill(T)){ 'A', 0, '\0', a }; } // FIX ME: remove this once ticket 214 is resolved
207 T_fill(T) ?`fill( T a[], size_t nelem ) { return (T_fill(T)){ 'a', nelem * sizeof(T), '\0', a }; }
208
209 // private interface
210 T * alloc_internal$( size_t Dim, T_resize Resize, T_realloc Realloc, size_t Align, T_fill(T) Fill ) {
211 T * ptr;
212 size_t tsize = sizeof(T);
213 size_t copy_end = 0;
214
215 if ( Resize.addr ) {
216 ptr = (T *)(void *)resize( Resize.addr, Align, Dim * tsize );
217 } else if ( Realloc.addr ) {
218 if ( Fill.tag != 'N' ) copy_end = min(malloc_size( Realloc.addr ), Dim * tsize );
219 ptr = (T *)(void *)realloc( Realloc.addr, Align, Dim * tsize );
220 } else {
221 ptr = (T *)(void *)memalign( Align, Dim * tsize );
222 } // if
223
224 if ( Fill.tag == 'c' ) {
225 memset( (char *)ptr + copy_end, (int)Fill.c, Dim * tsize - copy_end );
226 } else if ( Fill.tag == 'T' ) {
227 for ( i; copy_end ~ Dim * tsize ~ tsize ) {
228 assert( tsize <= sizeof(Fill.t) );
229 memcpy( (char *)ptr + i, &Fill.t, tsize );
230 } // for
231 } else if ( Fill.tag == 'a' ) {
232 memcpy( (char *)ptr + copy_end, Fill.at, min( Dim * tsize - copy_end, Fill.nelem ) );
233 } else if ( Fill.tag == 'A' ) {
234 memcpy( (char *)ptr + copy_end, Fill.at, Dim * tsize );
235 } // if
236 return ptr;
237 } // alloc_internal$
238
239 // Dim is a fixed (optional first) parameter, and hence is not set using a postfix function. A dummy parameter is
240 // being overwritten by the postfix argument in the ttype.
241 forall( List ... | { T * alloc_internal$( size_t Dim, T_resize Resize, T_realloc Realloc, size_t Align, T_fill(T) Fill, List ); } ) {
242 // middle interface
243 T * alloc_internal$( size_t Dim, T_resize dummy, T_realloc Realloc, size_t Align, T_fill(T) Fill, T_resize Resize, List rest ) {
244 return alloc_internal$( Dim, Resize, (T_realloc){0p}, Align, Fill, rest );
245 }
246 T * alloc_internal$( size_t Dim, T_resize Resize, T_realloc dummy, size_t Align, T_fill(T) Fill, T_realloc Realloc, List rest ) {
247 return alloc_internal$( Dim, (T_resize){0p}, Realloc, Align, Fill, rest );
248 }
249 T * alloc_internal$( size_t Dim, T_resize Resize, T_realloc Realloc, size_t dummy, T_fill(T) Fill, T_align Align, List rest ) {
250 return alloc_internal$( Dim, Resize, Realloc, Align.align, Fill, rest );
251 }
252 T * alloc_internal$( size_t Dim, T_resize Resize, T_realloc Realloc, size_t Align, T_fill(T) dummy, T_fill(T) Fill, List rest ) {
253 return alloc_internal$( Dim, Resize, Realloc, Align, Fill, rest );
254 }
255 // public interface
256 T * alloc( List rest ) {
257 return alloc_internal$( (size_t)1, (T_resize){0p}, (T_realloc){0p}, (_Alignof(T) > libAlign() ? _Alignof(T) : libAlign()), (T_fill(T)){'N'}, rest );
258 }
259 T * alloc( size_t Dim, List rest ) {
260 return alloc_internal$( Dim, (T_resize){0p}, (T_realloc){0p}, (_Alignof(T) > libAlign() ? _Alignof(T) : libAlign()), (T_fill(T)){'N'}, rest );
261 }
262 } // distribution List
263} // distribution T
264
265static inline forall( T & | sized(T) ) {
266 // CFA safe initialization/copy, i.e., implicit size specification, non-array types
267 T * memset( T * dest, char fill ) {
268 return (T *)memset( dest, fill, sizeof(T) );
269 } // memset
270
271 T * memcpy( T * dest, const T * src ) {
272 return (T *)memcpy( dest, src, sizeof(T) );
273 } // memcpy
274
275 // CFA safe initialization/copy, i.e., implicit size specification, array types
276 T * amemset( T dest[], char fill, size_t dim ) {
277 return (T *)(void *)memset( dest, fill, dim * sizeof(T) ); // C memset
278 } // amemset
279
280 T * amemcpy( T dest[], const T src[], size_t dim ) {
281 return (T *)(void *)memcpy( dest, src, dim * sizeof(T) ); // C memcpy
282 } // amemcpy
283} // distribution
284
285// CFA deallocation for multiple objects
286static inline forall( T & )
287void free( T * ptr ) {
288 free( (void *)ptr ); // C free
289} // free
290static inline forall( T &, List ... | { void free( List ); } )
291void free( T * ptr, List rest ) {
292 free( ptr );
293 free( rest );
294} // free
295
296// CFA allocation/deallocation and constructor/destructor, non-array types
297static inline forall( T & | sized(T), Parms ... | { void ?{}( T &, Parms ); } )
298T * new( Parms p ) {
299 return &(*(T *)malloc()){ p }; // run constructor
300} // new
301
302static inline forall( T & | { void ^?{}( T & ); } )
303void delete( T * ptr ) {
304 // special case for 0-sized object => always call destructor
305 if ( ptr || sizeof(ptr) == 0 ) { // ignore null but not 0-sized objects
306 ^(*ptr){}; // run destructor
307 } // if
308 free( ptr ); // always call free
309} // delete
310static inline forall( T &, List ... | { void ^?{}( T & ); void delete( List ); } )
311void delete( T * ptr, List rest ) {
312 delete( ptr );
313 delete( rest );
314} // delete
315
316// CFA allocation/deallocation and constructor/destructor, array types
317forall( T & | sized(T), Parms ... | { void ?{}( T &, Parms ); } ) T * anew( size_t dim, Parms p );
318forall( T & | sized(T) | { void ^?{}( T & ); } ) void adelete( T arr[] );
319forall( T & | sized(T) | { void ^?{}( T & ); }, List ... | { void adelete( List ); } ) void adelete( T arr[], List rest );
320
321//---------------------------------------
322
323// Check if all string characters are a specific kind, e.g., checkif( s, isblank )
324bool checkif( const char s[], int (* kind)( int ) );
325bool checkif( const char s[], int (* kind)( int, locale_t ), locale_t locale );
326
327//---------------------------------------
328
329static inline {
330 int strto( const char sptr[], char * eptr[], int base ) { return (int)strtol( sptr, eptr, base ); }
331 unsigned int strto( const char sptr[], char * eptr[], int base ) { return (unsigned int)strtoul( sptr, eptr, base ); }
332 long int strto( const char sptr[], char * eptr[], int base ) { return strtol( sptr, eptr, base ); }
333 unsigned long int strto( const char sptr[], char * eptr[], int base ) { return strtoul( sptr, eptr, base ); }
334 long long int strto( const char sptr[], char * eptr[], int base ) { return strtoll( sptr, eptr, base ); }
335 unsigned long long int strto( const char sptr[], char * eptr[], int base ) { return strtoull( sptr, eptr, base ); }
336
337 float strto( const char sptr[], char * eptr[] ) { return strtof( sptr, eptr ); }
338 double strto( const char sptr[], char * eptr[] ) { return strtod( sptr, eptr ); }
339 long double strto( const char sptr[], char * eptr[] ) { return strtold( sptr, eptr ); }
340} // distribution
341
342float _Complex strto( const char sptr[], char * eptr[] );
343double _Complex strto( const char sptr[], char * eptr[] );
344long double _Complex strto( const char sptr[], char * eptr[] );
345
346ExceptionDecl( out_of_range );
347ExceptionDecl( invalid_argument );
348
349forall( T | { T strto( const char sptr[], char * eptr[], int ); } )
350T convert( const char sptr[] ); // integrals
351forall( T | { T strto( const char sptr[], char * eptr[] ); } )
352T convert( const char sptr[] ); // floating-point (no base)
353
354static inline {
355 int ato( const char sptr[] ) { return (int)strtol( sptr, 0p, 10 ); }
356 unsigned int ato( const char sptr[] ) { return (unsigned int)strtoul( sptr, 0p, 10 ); }
357 long int ato( const char sptr[] ) { return strtol( sptr, 0p, 10 ); }
358 unsigned long int ato( const char sptr[] ) { return strtoul( sptr, 0p, 10 ); }
359 long long int ato( const char sptr[] ) { return strtoll( sptr, 0p, 10 ); }
360 unsigned long long int ato( const char sptr[] ) { return strtoull( sptr, 0p, 10 ); }
361
362 float ato( const char sptr[] ) { return strtof( sptr, 0p ); }
363 double ato( const char sptr[] ) { return strtod( sptr, 0p ); }
364 long double ato( const char sptr[] ) { return strtold( sptr, 0p ); }
365
366 float _Complex ato( const char sptr[] ) { return strto( sptr, 0p ); }
367 double _Complex ato( const char sptr[] ) { return strto( sptr, 0p ); }
368 long double _Complex ato( const char sptr[] ) { return strto( sptr, 0p ); }
369} // distribution
370
371//---------------------------------------
372
373forall( E | { int ?<?( E, E ); } ) {
374 E * bsearch( E key, const E * vals, size_t dim );
375 size_t bsearch( E key, const E * vals, size_t dim );
376 E * bsearchl( E key, const E * vals, size_t dim );
377 size_t bsearchl( E key, const E * vals, size_t dim );
378 E * bsearchu( E key, const E * vals, size_t dim );
379 size_t bsearchu( E key, const E * vals, size_t dim );
380} // distribution
381
382forall( K, E | { int ?<?( K, K ); K getKey( const E & ); } ) {
383 E * bsearch( K key, const E * vals, size_t dim );
384 size_t bsearch( K key, const E * vals, size_t dim );
385 E * bsearchl( K key, const E * vals, size_t dim );
386 size_t bsearchl( K key, const E * vals, size_t dim );
387 E * bsearchu( K key, const E * vals, size_t dim );
388 size_t bsearchu( K key, const E * vals, size_t dim );
389} // distribution
390
391forall( E | { int ?<?( E, E ); } ) {
392 void qsort( E * vals, size_t dim );
393} // distribution
394
395//---------------------------------------
396
397extern "C" { // override C version
398 void srandom( unsigned int seed );
399 long int random( void ); // GENERATES POSITIVE AND NEGATIVE VALUES
400 // For positive values, use unsigned int, e.g., unsigned int r = random() % 100U;
401} // extern "C"
402
403static inline {
404 long int random( long int l, long int u ) { if ( u < l ) [u, l] = [l, u]; return lrand48() % (u - l + 1) + l; } // [l,u]
405 long int random( long int u ) { return random( 0, u - 1 ); } // [0,u)
406 unsigned long int random( void ) { return lrand48(); }
407 unsigned long int random( unsigned long int u ) { return lrand48() % u; } // [0,u)
408 unsigned long int random( unsigned long int l, unsigned long int u ) { if ( u < l ) [u, l] = [l, u]; return lrand48() % (u - l + 1) + l; } // [l,u]
409
410 char random( void ) { return (unsigned long int)random(); }
411 char random( char u ) { return (unsigned long int)random( (unsigned long int)u ); } // [0,u)
412 char random( char l, char u ) { return random( (unsigned long int)l, (unsigned long int)u ); } // [l,u)
413 int random( void ) { return (long int)random(); }
414 int random( int u ) { return (long int)random( (long int)u ); } // [0,u]
415 int random( int l, int u ) { return random( (long int)l, (long int)u ); } // [l,u)
416 unsigned int random( void ) { return (unsigned long int)random(); }
417 unsigned int random( unsigned int u ) { return (unsigned long int)random( (unsigned long int)u ); } // [0,u]
418 unsigned int random( unsigned int l, unsigned int u ) { return random( (unsigned long int)l, (unsigned long int)u ); } // [l,u)
419} // distribution
420
421float random( void ); // [0.0, 1.0)
422double random( void ); // [0.0, 1.0)
423float _Complex random( void ); // [0.0, 1.0)+[0.0, 1.0)i
424double _Complex random( void ); // [0.0, 1.0)+[0.0, 1.0)i
425long double _Complex random( void ); // [0.0, 1.0)+[0.0, 1.0)i
426
427//---------------------------------------
428
429// Sequential Pseudo Random-Number Generator : generate repeatable sequence of values that appear random.
430//
431// Declaration :
432// PRNG sprng = { 1009 } - set starting seed versus random seed
433//
434// Interface :
435// set_seed( sprng, 1009 ) - set starting seed for ALL kernel threads versus random seed
436// get_seed( sprng ) - read seed
437// prng( sprng ) - generate random value in range [0,UINT_MAX]
438// prng( sprng, u ) - generate random value in range [0,u)
439// prng( sprng, l, u ) - generate random value in range [l,u]
440// calls( sprng ) - number of generated random value so far
441//
442// Examples : generate random number between 5-21
443// prng( sprng ) % 17 + 5; values 0-16 + 5 = 5-21
444// prng( sprng, 16 + 1 ) + 5;
445// prng( sprng, 5, 21 );
446// calls( sprng );
447
448forall( PRNG &, R )
449trait basic_prng {
450 void set_seed( PRNG & prng, R seed ); // set seed
451 R get_seed( PRNG & prng ); // get seed
452 R prng( PRNG & prng );
453 void ?{}( PRNG & prng ); // random seed
454 void ?{}( PRNG & prng, R seed ); // fixed seed
455}; // basic_prng
456
457static inline forall( PRNG &, R | basic_prng( PRNG, R ) | { R ?%?( R, R ); } ) {
458 R prng( PRNG & prng, R u ) { return prng( prng ) % u; } // [0,u)
459}
460static inline forall( PRNG &, R | basic_prng( PRNG, R ) | { R ?+?( R, R ); R ?-?( R, R ); R ?%?( R, R ); void ?{}( R &, one_t ); } ) {
461 R prng( PRNG & prng, R l, R u ) { return prng( prng, u - l + (R){1} ) + l; } // [l,u]
462}
463
464struct PRNG32 {
465 uint32_t callcnt; // call count
466 uint32_t seed; // current seed
467 PRNG_STATE_32_T state; // random state
468}; // PRNG32
469
470static inline {
471 void set_seed( PRNG32 & prng, uint32_t seed_ ) with( prng ) { seed = seed_; PRNG_SET_SEED_32( state, seed ); }
472 uint32_t get_seed( PRNG32 & prng ) __attribute__(( warn_unused_result )) with( prng ) { return seed; }
473 void ?{}( PRNG32 & prng, uint32_t seed ) with( prng ) { callcnt = 0; set_seed( prng, seed ); } // fixed seed
474 void ?{}( PRNG32 & prng ) with( prng ) { ?{}( prng, rdtscl() ); } // random seed
475 uint32_t prng( PRNG32 & prng ) __attribute__(( warn_unused_result )) with( prng ) { callcnt += 1; return PRNG_NAME_32( state ); } // [0,UINT_MAX]
476 uint32_t prng( PRNG32 & prng, uint32_t u ) __attribute__(( warn_unused_result )) { return prng( prng ) % u; } // [0,u)
477 uint32_t prng( PRNG32 & prng, uint32_t l, uint32_t u ) __attribute__(( warn_unused_result )) { return prng( prng, u - l + 1 ) + l; } // [l,u]
478 uint32_t calls( PRNG32 & prng ) __attribute__(( warn_unused_result )) with( prng ) { return callcnt; }
479 void copy( PRNG32 & dst, PRNG32 & src ) { dst = src; } // checkpoint PRNG state, use autogen assignment
480} // distribution
481void ?{}( PRNG32 &, PRNG32 & ) = void; // no copy, remove autogen copy constructor
482PRNG32 & ?=?( PRNG32 &, const PRNG32 ) = void; // no assignment, remove autogen assignment
483
484struct PRNG64 {
485 uint64_t callcnt; // call count
486 uint64_t seed; // current seed
487 PRNG_STATE_64_T state; // random state
488}; // PRNG64
489
490static inline {
491 void set_seed( PRNG64 & prng, uint64_t seed_ ) with( prng ) { seed = seed_; PRNG_SET_SEED_64( state, seed ); }
492 uint64_t get_seed( PRNG64 & prng ) __attribute__(( warn_unused_result )) with( prng ) { return seed; }
493 void ?{}( PRNG64 & prng, uint64_t seed ) with( prng ) { callcnt = 0; set_seed( prng, seed ); } // fixed seed
494 void ?{}( PRNG64 & prng ) with( prng ) { ?{}( prng, rdtscl() ); } // random seed
495 uint64_t prng( PRNG64 & prng ) __attribute__(( warn_unused_result )) with( prng ) { callcnt += 1; return PRNG_NAME_64( state ); } // [0,UINT_MAX]
496 uint64_t prng( PRNG64 & prng, uint64_t u ) __attribute__(( warn_unused_result )) { return prng( prng ) % u; } // [0,u)
497 uint64_t prng( PRNG64 & prng, uint64_t l, uint64_t u ) __attribute__(( warn_unused_result )) { return prng( prng, u - l + 1 ) + l; } // [l,u]
498 uint64_t calls( PRNG64 & prng ) __attribute__(( warn_unused_result )) with( prng ) { return callcnt; }
499 void copy( PRNG64 & dst, PRNG64 & src ) { dst = src; } // checkpoint PRNG state, use autogen assignment
500} // distribution
501void ?{}( PRNG64 &, PRNG64 & ) = void; // no copy, remove autogen copy constructor
502PRNG64 & ?=?( PRNG64 &, const PRNG64 ) = void; // no assignment, remove autogen assignment
503
504// Set default random-generator size.
505#if defined( __x86_64__ ) || defined( __aarch64__ ) // 64-bit architecture
506#define PRNG PRNG64
507#else // 32-bit architecture
508#define PRNG PRNG32
509#endif // __x86_64__
510
511// Concurrent Pseudo Random-Number Generator : generate repeatable sequence of values that appear random.
512//
513// Interface :
514// set_seed( 1009 ) - fixed seed for all kernel threads versus random seed
515// get_seed() - read seed
516// prng() - generate random value in range [0,UINT_MAX]
517// prng( u ) - generate random value in range [0,u)
518// prng( l, u ) - generate random value in range [l,u]
519//
520// Examples : generate random number between 5-21
521// prng() % 17 + 5; values 0-16 + 5 = 5-21
522// prng( 16 + 1 ) + 5;
523// prng( 5, 21 );
524
525// Harmonize with concurrency/thread.hfa.
526void set_seed( size_t seed_ ) OPTIONAL_THREAD; // set global seed
527size_t get_seed() __attribute__(( warn_unused_result )); // get global seed
528size_t prng( void ) __attribute__(( warn_unused_result )) OPTIONAL_THREAD; // [0,UINT_MAX]
529static inline {
530 size_t prng( size_t u ) __attribute__(( warn_unused_result )) { return prng() % u; } // [0,u)
531 size_t prng( size_t l, size_t u ) __attribute__(( warn_unused_result )) { return prng( u - l + 1 ) + l; } // [l,u]
532} // distribution
533
534//---------------------------------------
535
536extern bool threading_enabled( void ) OPTIONAL_THREAD;
537
538// Local Variables: //
539// mode: c //
540// tab-width: 4 //
541// End: //
Note: See TracBrowser for help on using the repository browser.