source: libcfa/src/stdlib.hfa@ 3a038fa

ADT ast-experimental enum pthread-emulation qualifiedEnum
Last change on this file since 3a038fa was 0ebbca4, checked in by Peter A. Buhr <pabuhr@…>, 4 years ago

optimization calls, initialize callcnt

  • Property mode set to 100644
File size: 18.4 KB
RevLine 
[bd85400]1//
2// Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
[bb82c03]7// stdlib --
[bd85400]8//
9// Author : Peter A. Buhr
10// Created On : Thu Jan 28 17:12:35 2016
[b89c7c2]11// Last Modified By : Peter A. Buhr
[0ebbca4]12// Last Modified On : Sat Feb 12 17:22:25 2022
13// Update Count : 643
[bd85400]14//
15
[53a6c2a]16#pragma once
[17e5e2b]17
[94429f8]18#include "bits/defs.hfa" // OPTIONAL_THREAD
19#include "bits/align.hfa" // libAlign
[12b5e94a]20#include "bits/random.hfa" // prng
[2026bb6]21
[d46ed6e]22#include <stdlib.h> // *alloc, strto*, ato*
[4e7c0fc0]23#include <heap.hfa>
[d6b03b7]24
[2210cfc]25
[ca7949b]26// Reduce includes by explicitly defining these routines.
[3ce0d440]27extern "C" {
[4e7c0fc0]28 void * memalign( size_t alignment, size_t size ); // malloc.h
29 void * pvalloc( size_t size ); // malloc.h
[b9c04946]30 void * memset( void * dest, int fill, size_t size ); // string.h
[57fc7d8]31 void * memcpy( void * dest, const void * src, size_t size ); // string.h
[3ce0d440]32} // extern "C"
[e672372]33
[bd85400]34//---------------------------------------
35
[45161b4d]36#ifndef EXIT_FAILURE
37#define EXIT_FAILURE 1 // failing exit status
38#define EXIT_SUCCESS 0 // successful exit status
39#endif // ! EXIT_FAILURE
40
41//---------------------------------------
42
[c354108]43#include "common.hfa"
44
45//---------------------------------------
46
[fd54fef]47static inline forall( T & | sized(T) ) {
[4803a901]48 // CFA safe equivalents, i.e., implicit size specification
[3ce0d440]49
[74b19fb]50 T * malloc( void ) {
[aa0a1ad]51 if ( _Alignof(T) <= libAlign() ) return (T *)malloc( sizeof(T) ); // C allocation
[68f0c4e]52 else return (T *)memalign( _Alignof(T), sizeof(T) );
[74b19fb]53 } // malloc
54
[856fe3e]55 T * aalloc( size_t dim ) {
[aa0a1ad]56 if ( _Alignof(T) <= libAlign() ) return (T *)aalloc( dim, sizeof(T) ); // C allocation
57 else return (T *)amemalign( _Alignof(T), dim, sizeof(T) );
[856fe3e]58 } // aalloc
59
[74b19fb]60 T * calloc( size_t dim ) {
[aa0a1ad]61 if ( _Alignof(T) <= libAlign() ) return (T *)calloc( dim, sizeof(T) ); // C allocation
62 else return (T *)cmemalign( _Alignof(T), dim, sizeof(T) );
[74b19fb]63 } // calloc
64
[b89c7c2]65 T * resize( T * ptr, size_t size ) { // CFA resize, eliminate return-type cast
[aa0a1ad]66 if ( _Alignof(T) <= libAlign() ) return (T *)resize( (void *)ptr, size ); // CFA resize
67 else return (T *)resize( (void *)ptr, _Alignof(T), size ); // CFA resize
[856fe3e]68 } // resize
69
[d74369b]70 T * realloc( T * ptr, size_t size ) { // CFA realloc, eliminate return-type cast
[aa0a1ad]71 if ( _Alignof(T) <= libAlign() ) return (T *)realloc( (void *)ptr, size ); // C realloc
72 else return (T *)realloc( (void *)ptr, _Alignof(T), size ); // CFA realloc
[74b19fb]73 } // realloc
74
75 T * memalign( size_t align ) {
[cafb687]76 return (T *)memalign( align, sizeof(T) ); // C memalign
[74b19fb]77 } // memalign
78
[856fe3e]79 T * amemalign( size_t align, size_t dim ) {
80 return (T *)amemalign( align, dim, sizeof(T) ); // CFA amemalign
81 } // amemalign
82
[d74369b]83 T * cmemalign( size_t align, size_t dim ) {
84 return (T *)cmemalign( align, dim, sizeof(T) ); // CFA cmemalign
85 } // cmemalign
86
[74b19fb]87 T * aligned_alloc( size_t align ) {
[cafb687]88 return (T *)aligned_alloc( align, sizeof(T) ); // C aligned_alloc
[74b19fb]89 } // aligned_alloc
90
91 int posix_memalign( T ** ptr, size_t align ) {
92 return posix_memalign( (void **)ptr, align, sizeof(T) ); // C posix_memalign
93 } // posix_memalign
[ada0246d]94
95 T * valloc( void ) {
96 return (T *)valloc( sizeof(T) ); // C valloc
97 } // valloc
98
99 T * pvalloc( void ) {
100 return (T *)pvalloc( sizeof(T) ); // C pvalloc
101 } // pvalloc
[55acc3a]102} // distribution
103
[ceb7db8]104/*
105 FIX ME : fix alloc interface after Ticker Number 214 is resolved, define and add union to S_fill. Then, modify postfix-fill functions to support T * with nmemb, char, and T object of any size. Finally, change alloc_internal.
106 Or, just follow the instructions below for that.
107
108 1. Replace the current forall-block that contains defintions of S_fill and S_realloc with following:
[fd54fef]109 forall( T & | sized(T) ) {
[ceb7db8]110 union U_fill { char c; T * a; T t; };
[685810e]111 struct S_fill { char tag; U_fill(T) fill; };
[ceb7db8]112 struct S_realloc { inline T *; };
113 }
114
115 2. Replace all current postfix-fill functions with following for updated S_fill:
116 S_fill(T) ?`fill( char a ) { S_fill(T) ret = {'c'}; ret.fill.c = a; return ret; }
117 S_fill(T) ?`fill( T a ) { S_fill(T) ret = {'t'}; memcpy(&ret.fill.t, &a, sizeof(T)); return ret; }
118 S_fill(T) ?`fill( T a[], size_t nmemb ) { S_fill(T) ret = {'a', nmemb}; ret.fill.a = a; return ret; }
119
[6c5d92f]120 3. Replace the alloc_internal$ function which is outside ttype forall-block with following function:
121 T * alloc_internal$( void * Resize, T * Realloc, size_t Align, size_t Dim, S_fill(T) Fill) {
[ceb7db8]122 T * ptr = NULL;
123 size_t size = sizeof(T);
124 size_t copy_end = 0;
125
126 if(Resize) {
127 ptr = (T*) (void *) resize( (int *)Resize, Align, Dim * size );
128 } else if (Realloc) {
129 if (Fill.tag != '0') copy_end = min(malloc_size( Realloc ), Dim * size);
130 ptr = (T*) (void *) realloc( (int *)Realloc, Align, Dim * size );
131 } else {
132 ptr = (T*) (void *) memalign( Align, Dim * size );
133 }
134
135 if(Fill.tag == 'c') {
136 memset( (char *)ptr + copy_end, (int)Fill.fill.c, Dim * size - copy_end );
137 } else if(Fill.tag == 't') {
138 for ( int i = copy_end; i <= Dim * size - size ; i += size ) {
139 memcpy( (char *)ptr + i, &Fill.fill.t, size );
140 }
141 } else if(Fill.tag == 'a') {
142 memcpy( (char *)ptr + copy_end, Fill.fill.a, min(Dim * size - copy_end, size * Fill.nmemb) );
143 }
144
145 return ptr;
[6c5d92f]146 } // alloc_internal$
[ceb7db8]147*/
148
149typedef struct S_align { inline size_t; } T_align;
150typedef struct S_resize { inline void *; } T_resize;
151
[fd54fef]152forall( T & ) {
[ceb7db8]153 struct S_fill { char tag; char c; size_t size; T * at; char t[50]; };
154 struct S_realloc { inline T *; };
155}
156
157static inline T_align ?`align ( size_t a ) { return (T_align){a}; }
158static inline T_resize ?`resize ( void * a ) { return (T_resize){a}; }
[74b19fb]159
[fd54fef]160static inline forall( T & | sized(T) ) {
[ceb7db8]161 S_fill(T) ?`fill ( T t ) {
162 S_fill(T) ret = { 't' };
163 size_t size = sizeof(T);
[3d3d75e]164 if ( size > sizeof(ret.t) ) {
165 abort( "ERROR: const object of size greater than 50 bytes given for dynamic memory fill\n" );
166 } // if
[ceb7db8]167 memcpy( &ret.t, &t, size );
168 return ret;
169 }
[7a6ae53]170 S_fill(T) ?`fill ( zero_t ) = void; // FIX ME: remove this once ticket 214 is resolved
171 S_fill(T) ?`fill ( T * a ) { return (S_fill(T)){ 'T', '0', 0, a }; } // FIX ME: remove this once ticket 214 is resolved
[ceb7db8]172 S_fill(T) ?`fill ( char c ) { return (S_fill(T)){ 'c', c }; }
173 S_fill(T) ?`fill ( T a[], size_t nmemb ) { return (S_fill(T)){ 'a', '0', nmemb * sizeof(T), a }; }
174
175 S_realloc(T) ?`realloc ( T * a ) { return (S_realloc(T)){a}; }
176
[6c5d92f]177 T * alloc_internal$( void * Resize, T * Realloc, size_t Align, size_t Dim, S_fill(T) Fill ) {
[ceb7db8]178 T * ptr = NULL;
179 size_t size = sizeof(T);
180 size_t copy_end = 0;
[f67b983]181
182 if ( Resize ) {
[68f0c4e]183 ptr = (T*) (void *) resize( (void *)Resize, Align, Dim * size );
[f67b983]184 } else if ( Realloc ) {
[3d3d75e]185 if ( Fill.tag != '0' ) copy_end = min(malloc_size( Realloc ), Dim * size );
186 ptr = (T *) (void *) realloc( (void *)Realloc, Align, Dim * size );
[cfbc703d]187 } else {
[3d3d75e]188 ptr = (T *) (void *) memalign( Align, Dim * size );
[ceb7db8]189 }
190
[3d3d75e]191 if ( Fill.tag == 'c' ) {
[ceb7db8]192 memset( (char *)ptr + copy_end, (int)Fill.c, Dim * size - copy_end );
[3d3d75e]193 } else if ( Fill.tag == 't' ) {
[191a190]194 for ( int i = copy_end; i < Dim * size; i += size ) {
[3d3d75e]195 #pragma GCC diagnostic push
196 #pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
[d1b70d4]197 assert( size <= sizeof(Fill.t) );
198 memcpy( (char *)ptr + i, &Fill.t, size );
[3d3d75e]199 #pragma GCC diagnostic pop
[ceb7db8]200 }
[3d3d75e]201 } else if ( Fill.tag == 'a' ) {
[ceb7db8]202 memcpy( (char *)ptr + copy_end, Fill.at, min(Dim * size - copy_end, Fill.size) );
[3d3d75e]203 } else if ( Fill.tag == 'T' ) {
204 memcpy( (char *)ptr + copy_end, Fill.at, Dim * size );
[ceb7db8]205 }
206
207 return ptr;
[6c5d92f]208 } // alloc_internal$
[ceb7db8]209
[6c5d92f]210 forall( TT... | { T * alloc_internal$( void *, T *, size_t, size_t, S_fill(T), TT ); } ) {
[a892e61]211 T * alloc_internal$( void * , T * , size_t Align, size_t Dim, S_fill(T) Fill, T_resize Resize, TT rest) {
[6c5d92f]212 return alloc_internal$( Resize, (T*)0p, Align, Dim, Fill, rest);
[ceb7db8]213 }
214
[a892e61]215 T * alloc_internal$( void * , T * , size_t Align, size_t Dim, S_fill(T) Fill, S_realloc(T) Realloc, TT rest) {
[6c5d92f]216 return alloc_internal$( (void*)0p, Realloc, Align, Dim, Fill, rest);
[ceb7db8]217 }
218
[6c5d92f]219 T * alloc_internal$( void * Resize, T * Realloc, size_t , size_t Dim, S_fill(T) Fill, T_align Align, TT rest) {
220 return alloc_internal$( Resize, Realloc, Align, Dim, Fill, rest);
[ceb7db8]221 }
222
[6c5d92f]223 T * alloc_internal$( void * Resize, T * Realloc, size_t Align, size_t Dim, S_fill(T) , S_fill(T) Fill, TT rest) {
224 return alloc_internal$( Resize, Realloc, Align, Dim, Fill, rest);
[ceb7db8]225 }
226
227 T * alloc( TT all ) {
[6c5d92f]228 return alloc_internal$( (void*)0p, (T*)0p, (_Alignof(T) > libAlign() ? _Alignof(T) : libAlign()), (size_t)1, (S_fill(T)){'0'}, all);
[ceb7db8]229 }
230
231 T * alloc( size_t dim, TT all ) {
[6c5d92f]232 return alloc_internal$( (void*)0p, (T*)0p, (_Alignof(T) > libAlign() ? _Alignof(T) : libAlign()), dim, (S_fill(T)){'0'}, all);
[ceb7db8]233 }
234 } // distribution TT
235} // distribution T
[3ce0d440]236
[fd54fef]237static inline forall( T & | sized(T) ) {
[4803a901]238 // CFA safe initialization/copy, i.e., implicit size specification, non-array types
[b9c04946]239 T * memset( T * dest, char fill ) {
240 return (T *)memset( dest, fill, sizeof(T) );
[3ce0d440]241 } // memset
242
243 T * memcpy( T * dest, const T * src ) {
244 return (T *)memcpy( dest, src, sizeof(T) );
245 } // memcpy
246
[4803a901]247 // CFA safe initialization/copy, i.e., implicit size specification, array types
[b9c04946]248 T * amemset( T dest[], char fill, size_t dim ) {
249 return (T *)(void *)memset( dest, fill, dim * sizeof(T) ); // C memset
250 } // amemset
[3ce0d440]251
[b9c04946]252 T * amemcpy( T dest[], const T src[], size_t dim ) {
[3ce0d440]253 return (T *)(void *)memcpy( dest, src, dim * sizeof(T) ); // C memcpy
[b9c04946]254 } // amemcpy
[3ce0d440]255} // distribution
[f3fc631f]256
[4803a901]257// CFA deallocation for multiple objects
[fd54fef]258static inline forall( T & ) // FIX ME, problems with 0p in list
[4803a901]259void free( T * ptr ) {
260 free( (void *)ptr ); // C free
261} // free
[fd54fef]262static inline forall( T &, TT... | { void free( TT ); } )
[4803a901]263void free( T * ptr, TT rest ) {
264 free( ptr );
[94429f8]265 free( rest );
266} // free
267
[4803a901]268// CFA allocation/deallocation and constructor/destructor, non-array types
[fd54fef]269static inline forall( T & | sized(T), TT... | { void ?{}( T &, TT ); } )
[94429f8]270T * new( TT p ) {
[09ee131]271 return &(*(T *)malloc()){ p }; // run constructor
[94429f8]272} // new
273
[fd54fef]274static inline forall( T & | { void ^?{}( T & ); } )
[94429f8]275void delete( T * ptr ) {
[0f7a0ea]276 // special case for 0-sized object => always call destructor
277 if ( ptr || sizeof(ptr) == 0 ) { // ignore null but not 0-sized objects
[94429f8]278 ^(*ptr){}; // run destructor
279 } // if
[4803a901]280 free( ptr ); // always call free
[94429f8]281} // delete
[fd54fef]282static inline forall( T &, TT... | { void ^?{}( T & ); void delete( TT ); } )
[94429f8]283void delete( T * ptr, TT rest ) {
284 delete( ptr );
285 delete( rest );
286} // delete
[627f585]287
[4803a901]288// CFA allocation/deallocation and constructor/destructor, array types
[fd54fef]289forall( T & | sized(T), TT... | { void ?{}( T &, TT ); } ) T * anew( size_t dim, TT p );
290forall( T & | sized(T) | { void ^?{}( T & ); } ) void adelete( T arr[] );
291forall( T & | sized(T) | { void ^?{}( T & ); }, TT... | { void adelete( TT ); } ) void adelete( T arr[], TT rest );
[6065b3aa]292
[bd85400]293//---------------------------------------
294
[57fc7d8]295static inline {
[e3fea42]296 int strto( const char sptr[], char ** eptr, int base ) { return (int)strtol( sptr, eptr, base ); }
297 unsigned int strto( const char sptr[], char ** eptr, int base ) { return (unsigned int)strtoul( sptr, eptr, base ); }
298 long int strto( const char sptr[], char ** eptr, int base ) { return strtol( sptr, eptr, base ); }
299 unsigned long int strto( const char sptr[], char ** eptr, int base ) { return strtoul( sptr, eptr, base ); }
300 long long int strto( const char sptr[], char ** eptr, int base ) { return strtoll( sptr, eptr, base ); }
301 unsigned long long int strto( const char sptr[], char ** eptr, int base ) { return strtoull( sptr, eptr, base ); }
302
303 float strto( const char sptr[], char ** eptr ) { return strtof( sptr, eptr ); }
304 double strto( const char sptr[], char ** eptr ) { return strtod( sptr, eptr ); }
305 long double strto( const char sptr[], char ** eptr ) { return strtold( sptr, eptr ); }
[57fc7d8]306} // distribution
[e672372]307
[e3fea42]308float _Complex strto( const char sptr[], char ** eptr );
309double _Complex strto( const char sptr[], char ** eptr );
310long double _Complex strto( const char sptr[], char ** eptr );
[bd85400]311
[57fc7d8]312static inline {
[e3fea42]313 int ato( const char sptr[] ) { return (int)strtol( sptr, 0p, 10 ); }
314 unsigned int ato( const char sptr[] ) { return (unsigned int)strtoul( sptr, 0p, 10 ); }
315 long int ato( const char sptr[] ) { return strtol( sptr, 0p, 10 ); }
316 unsigned long int ato( const char sptr[] ) { return strtoul( sptr, 0p, 10 ); }
317 long long int ato( const char sptr[] ) { return strtoll( sptr, 0p, 10 ); }
318 unsigned long long int ato( const char sptr[] ) { return strtoull( sptr, 0p, 10 ); }
319
320 float ato( const char sptr[] ) { return strtof( sptr, 0p ); }
321 double ato( const char sptr[] ) { return strtod( sptr, 0p ); }
322 long double ato( const char sptr[] ) { return strtold( sptr, 0p ); }
323
324 float _Complex ato( const char sptr[] ) { return strto( sptr, 0p ); }
325 double _Complex ato( const char sptr[] ) { return strto( sptr, 0p ); }
326 long double _Complex ato( const char sptr[] ) { return strto( sptr, 0p ); }
[57fc7d8]327} // distribution
[e672372]328
[bd85400]329//---------------------------------------
330
[fd54fef]331forall( E | { int ?<?( E, E ); } ) {
[3ce0d440]332 E * bsearch( E key, const E * vals, size_t dim );
333 size_t bsearch( E key, const E * vals, size_t dim );
334 E * bsearchl( E key, const E * vals, size_t dim );
335 size_t bsearchl( E key, const E * vals, size_t dim );
336 E * bsearchu( E key, const E * vals, size_t dim );
337 size_t bsearchu( E key, const E * vals, size_t dim );
338} // distribution
[9c47a47]339
[fd54fef]340forall( K, E | { int ?<?( K, K ); K getKey( const E & ); } ) {
[3ce0d440]341 E * bsearch( K key, const E * vals, size_t dim );
342 size_t bsearch( K key, const E * vals, size_t dim );
343 E * bsearchl( K key, const E * vals, size_t dim );
344 size_t bsearchl( K key, const E * vals, size_t dim );
345 E * bsearchu( K key, const E * vals, size_t dim );
346 size_t bsearchu( K key, const E * vals, size_t dim );
347} // distribution
[bd85400]348
[fd54fef]349forall( E | { int ?<?( E, E ); } ) {
[b9c04946]350 void qsort( E * vals, size_t dim );
351} // distribution
352
[bd85400]353//---------------------------------------
354
[bbe1a87]355extern "C" { // override C version
356 void srandom( unsigned int seed );
[4e7c0fc0]357 long int random( void ); // GENERATES POSITIVE AND NEGATIVE VALUES
358 // For positive values, use unsigned int, e.g., unsigned int r = random() % 100U;
[bbe1a87]359} // extern "C"
360
361static inline {
[aa8e24c3]362 long int random( long int l, long int u ) { if ( u < l ) [u, l] = [l, u]; return lrand48() % (u - l + 1) + l; } // [l,u]
363 long int random( long int u ) { return random( 0, u - 1 ); } // [0,u)
[bbe1a87]364 unsigned long int random( void ) { return lrand48(); }
365 unsigned long int random( unsigned long int u ) { return lrand48() % u; } // [0,u)
[aa8e24c3]366 unsigned long int random( unsigned long int l, unsigned long int u ) { if ( u < l ) [u, l] = [l, u]; return lrand48() % (u - l + 1) + l; } // [l,u]
[bbe1a87]367
368 char random( void ) { return (unsigned long int)random(); }
369 char random( char u ) { return random( (unsigned long int)u ); } // [0,u)
370 char random( char l, char u ) { return random( (unsigned long int)l, (unsigned long int)u ); } // [l,u)
371 int random( void ) { return (long int)random(); }
372 int random( int u ) { return random( (long int)u ); } // [0,u]
373 int random( int l, int u ) { return random( (long int)l, (long int)u ); } // [l,u)
374 unsigned int random( void ) { return (unsigned long int)random(); }
375 unsigned int random( unsigned int u ) { return random( (unsigned long int)u ); } // [0,u]
376 unsigned int random( unsigned int l, unsigned int u ) { return random( (unsigned long int)l, (unsigned long int)u ); } // [l,u)
377} // distribution
378
379float random( void ); // [0.0, 1.0)
380double random( void ); // [0.0, 1.0)
381float _Complex random( void ); // [0.0, 1.0)+[0.0, 1.0)i
382double _Complex random( void ); // [0.0, 1.0)+[0.0, 1.0)i
383long double _Complex random( void ); // [0.0, 1.0)+[0.0, 1.0)i
[bd85400]384
385//---------------------------------------
386
[1959528]387// Sequential Pseudo Random-Number Generator : generate repeatable sequence of values that appear random.
388//
389// Declaration :
390// PRNG sprng = { 1009 } - set starting seed versus random seed
[a892e61]391//
[1959528]392// Interface :
393// set_seed( sprng, 1009 ) - set starting seed for ALL kernel threads versus random seed
394// get_seed( sprng ) - read seed
395// prng( sprng ) - generate random value in range [0,UINT_MAX]
396// prng( sprng, u ) - generate random value in range [0,u)
397// prng( sprng, l, u ) - generate random value in range [l,u]
398// calls( sprng ) - number of generated random value so far
399//
400// Examples : generate random number between 5-21
401// prng( sprng ) % 17 + 5; values 0-16 + 5 = 5-21
402// prng( sprng, 16 + 1 ) + 5;
403// prng( sprng, 5, 21 );
404// calls( sprng );
405
[aa8e24c3]406struct PRNG {
407 uint32_t callcnt; // call count
408 uint32_t seed; // current seed
409 uint32_t state; // random state
410}; // PRNG
411
[1959528]412void set_seed( PRNG & prng, uint32_t seed_ );
[aa8e24c3]413static inline {
[0ebbca4]414 void ?{}( PRNG & prng ) with( prng ) { callcnt = 0; set_seed( prng, rdtscl() ); } // random seed
415 void ?{}( PRNG & prng, uint32_t seed ) with( prng ) { callcnt = 0; set_seed( prng, seed ); } // fixed seed
[aa8e24c3]416 uint32_t get_seed( PRNG & prng ) __attribute__(( warn_unused_result )) with( prng ) { return seed; } // get seed
[6a823241]417 uint32_t prng( PRNG & prng ) __attribute__(( warn_unused_result )) with( prng ) { callcnt += 1; return LCG( state ); } // [0,UINT_MAX]
[aa8e24c3]418 uint32_t prng( PRNG & prng, uint32_t u ) __attribute__(( warn_unused_result )) { return prng( prng ) % u; } // [0,u)
419 uint32_t prng( PRNG & prng, uint32_t l, uint32_t u ) __attribute__(( warn_unused_result )) { return prng( prng, u - l + 1 ) + l; } // [l,u]
420 uint32_t calls( PRNG & prng ) __attribute__(( warn_unused_result )) with( prng ) { return callcnt; }
421} // distribution
422
[1959528]423// Concurrent Pseudo Random-Number Generator : generate repeatable sequence of values that appear random.
424//
425// Interface :
426// set_seed( 1009 ) - fixed seed for all kernel threads versus random seed
427// get_seed() - read seed
428// prng() - generate random value in range [0,UINT_MAX]
429// prng( u ) - generate random value in range [0,u)
430// prng( l, u ) - generate random value in range [l,u]
431//
432// Examples : generate random number between 5-21
433// prng() % 17 + 5; values 0-16 + 5 = 5-21
434// prng( 16 + 1 ) + 5;
435// prng( 5, 21 );
436
[2210cfc]437void set_seed( uint32_t seed_ ) OPTIONAL_THREAD;
438uint32_t get_seed() __attribute__(( warn_unused_result ));
439uint32_t prng( void ) __attribute__(( warn_unused_result )) OPTIONAL_THREAD; // [0,UINT_MAX]
[aa8e24c3]440static inline {
[2210cfc]441 uint32_t prng( uint32_t u ) __attribute__(( warn_unused_result )) { return prng() % u; } // [0,u)
442 uint32_t prng( uint32_t l, uint32_t u ) __attribute__(( warn_unused_result )) { return prng( u - l + 1 ) + l; } // [l,u]
[aa8e24c3]443} // distribution
444
445//---------------------------------------
446
[94429f8]447extern bool threading_enabled( void ) OPTIONAL_THREAD;
[2026bb6]448
[bd85400]449// Local Variables: //
450// mode: c //
451// tab-width: 4 //
452// End: //
Note: See TracBrowser for help on using the repository browser.