1 | //
|
---|
2 | // Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
|
---|
3 | //
|
---|
4 | // The contents of this file are covered under the licence agreement in the
|
---|
5 | // file "LICENCE" distributed with Cforall.
|
---|
6 | //
|
---|
7 | // rational.c --
|
---|
8 | //
|
---|
9 | // Author : Peter A. Buhr
|
---|
10 | // Created On : Wed Apr 6 17:54:28 2016
|
---|
11 | // Last Modified By : Peter A. Buhr
|
---|
12 | // Last Modified On : Mon Jun 5 22:49:06 2023
|
---|
13 | // Update Count : 196
|
---|
14 | //
|
---|
15 |
|
---|
16 | #include "rational.hfa"
|
---|
17 | #include "fstream.hfa"
|
---|
18 | #include "stdlib.hfa"
|
---|
19 |
|
---|
20 | #pragma GCC visibility push(default)
|
---|
21 |
|
---|
22 | forall( T | arithmetic( T ) ) {
|
---|
23 | // helper routines
|
---|
24 |
|
---|
25 | // Calculate greatest common denominator of two numbers, the first of which may be negative. Used to reduce
|
---|
26 | // rationals. alternative: https://en.wikipedia.org/wiki/Binary_GCD_algorithm
|
---|
27 | static T gcd( T a, T b ) {
|
---|
28 | for () { // Euclid's algorithm
|
---|
29 | T r = a % b;
|
---|
30 | if ( r == (T){0} ) break;
|
---|
31 | a = b;
|
---|
32 | b = r;
|
---|
33 | } // for
|
---|
34 | return b;
|
---|
35 | } // gcd
|
---|
36 |
|
---|
37 | static T simplify( T & n, T & d ) {
|
---|
38 | if ( d == (T){0} ) {
|
---|
39 | abort | "Invalid rational number construction: denominator cannot be equal to 0.";
|
---|
40 | } // exit
|
---|
41 | if ( d < (T){0} ) { d = -d; n = -n; } // move sign to numerator
|
---|
42 | return gcd( abs( n ), d ); // simplify
|
---|
43 | } // simplify
|
---|
44 |
|
---|
45 | // constructors
|
---|
46 |
|
---|
47 | void ?{}( rational(T) & r, zero_t ) {
|
---|
48 | r{ (T){0}, (T){1} };
|
---|
49 | } // rational
|
---|
50 |
|
---|
51 | void ?{}( rational(T) & r, one_t ) {
|
---|
52 | r{ (T){1}, (T){1} };
|
---|
53 | } // rational
|
---|
54 |
|
---|
55 | void ?{}( rational(T) & r ) {
|
---|
56 | r{ (T){0}, (T){1} };
|
---|
57 | } // rational
|
---|
58 |
|
---|
59 | void ?{}( rational(T) & r, T n ) {
|
---|
60 | r{ n, (T){1} };
|
---|
61 | } // rational
|
---|
62 |
|
---|
63 | void ?{}( rational(T) & r, T n, T d ) {
|
---|
64 | T t = simplify( n, d ); // simplify
|
---|
65 | r.[numerator, denominator] = [n / t, d / t];
|
---|
66 | } // rational
|
---|
67 |
|
---|
68 | // getter for numerator/denominator
|
---|
69 |
|
---|
70 | T numerator( rational(T) r ) {
|
---|
71 | return r.numerator;
|
---|
72 | } // numerator
|
---|
73 |
|
---|
74 | T denominator( rational(T) r ) {
|
---|
75 | return r.denominator;
|
---|
76 | } // denominator
|
---|
77 |
|
---|
78 | [ T, T ] ?=?( & [ T, T ] dest, rational(T) src ) {
|
---|
79 | return dest = src.[ numerator, denominator ];
|
---|
80 | } // ?=?
|
---|
81 |
|
---|
82 | // setter for numerator/denominator
|
---|
83 |
|
---|
84 | T numerator( rational(T) r, T n ) {
|
---|
85 | T prev = r.numerator;
|
---|
86 | T t = gcd( abs( n ), r.denominator ); // simplify
|
---|
87 | r.[numerator, denominator] = [n / t, r.denominator / t];
|
---|
88 | return prev;
|
---|
89 | } // numerator
|
---|
90 |
|
---|
91 | T denominator( rational(T) r, T d ) {
|
---|
92 | T prev = r.denominator;
|
---|
93 | T t = simplify( r.numerator, d ); // simplify
|
---|
94 | r.[numerator, denominator] = [r.numerator / t, d / t];
|
---|
95 | return prev;
|
---|
96 | } // denominator
|
---|
97 |
|
---|
98 | // comparison
|
---|
99 |
|
---|
100 | int ?==?( rational(T) l, rational(T) r ) {
|
---|
101 | return l.numerator * r.denominator == l.denominator * r.numerator;
|
---|
102 | } // ?==?
|
---|
103 |
|
---|
104 | int ?!=?( rational(T) l, rational(T) r ) {
|
---|
105 | return ! ( l == r );
|
---|
106 | } // ?!=?
|
---|
107 |
|
---|
108 | int ?!=?( rational(T) l, zero_t ) {
|
---|
109 | return ! ( l == (rational(T)){ 0 } );
|
---|
110 | } // ?!=?
|
---|
111 |
|
---|
112 | int ?<?( rational(T) l, rational(T) r ) {
|
---|
113 | return l.numerator * r.denominator < l.denominator * r.numerator;
|
---|
114 | } // ?<?
|
---|
115 |
|
---|
116 | int ?<=?( rational(T) l, rational(T) r ) {
|
---|
117 | return l.numerator * r.denominator <= l.denominator * r.numerator;
|
---|
118 | } // ?<=?
|
---|
119 |
|
---|
120 | int ?>?( rational(T) l, rational(T) r ) {
|
---|
121 | return ! ( l <= r );
|
---|
122 | } // ?>?
|
---|
123 |
|
---|
124 | int ?>=?( rational(T) l, rational(T) r ) {
|
---|
125 | return ! ( l < r );
|
---|
126 | } // ?>=?
|
---|
127 |
|
---|
128 | // arithmetic
|
---|
129 |
|
---|
130 | rational(T) +?( rational(T) r ) {
|
---|
131 | return (rational(T)){ r.numerator, r.denominator };
|
---|
132 | } // +?
|
---|
133 |
|
---|
134 | rational(T) -?( rational(T) r ) {
|
---|
135 | return (rational(T)){ -r.numerator, r.denominator };
|
---|
136 | } // -?
|
---|
137 |
|
---|
138 | rational(T) ?+?( rational(T) l, rational(T) r ) {
|
---|
139 | if ( l.denominator == r.denominator ) { // special case
|
---|
140 | return (rational(T)){ l.numerator + r.numerator, l.denominator };
|
---|
141 | } else {
|
---|
142 | return (rational(T)){ l.numerator * r.denominator + l.denominator * r.numerator, l.denominator * r.denominator };
|
---|
143 | } // if
|
---|
144 | } // ?+?
|
---|
145 |
|
---|
146 | rational(T) ?+=?( rational(T) & l, rational(T) r ) {
|
---|
147 | l = l + r;
|
---|
148 | return l;
|
---|
149 | } // ?+?
|
---|
150 |
|
---|
151 | rational(T) ?+=?( rational(T) & l, one_t ) {
|
---|
152 | l = l + (rational(T)){ 1 };
|
---|
153 | return l;
|
---|
154 | } // ?+?
|
---|
155 |
|
---|
156 | rational(T) ?-?( rational(T) l, rational(T) r ) {
|
---|
157 | if ( l.denominator == r.denominator ) { // special case
|
---|
158 | return (rational(T)){ l.numerator - r.numerator, l.denominator };
|
---|
159 | } else {
|
---|
160 | return (rational(T)){ l.numerator * r.denominator - l.denominator * r.numerator, l.denominator * r.denominator };
|
---|
161 | } // if
|
---|
162 | } // ?-?
|
---|
163 |
|
---|
164 | rational(T) ?-=?( rational(T) & l, rational(T) r ) {
|
---|
165 | l = l - r;
|
---|
166 | return l;
|
---|
167 | } // ?-?
|
---|
168 |
|
---|
169 | rational(T) ?-=?( rational(T) & l, one_t ) {
|
---|
170 | l = l - (rational(T)){ 1 };
|
---|
171 | return l;
|
---|
172 | } // ?-?
|
---|
173 |
|
---|
174 | rational(T) ?*?( rational(T) l, rational(T) r ) {
|
---|
175 | return (rational(T)){ l.numerator * r.numerator, l.denominator * r.denominator };
|
---|
176 | } // ?*?
|
---|
177 |
|
---|
178 | rational(T) ?*=?( rational(T) & l, rational(T) r ) {
|
---|
179 | return l = l * r;
|
---|
180 | } // ?*?
|
---|
181 |
|
---|
182 | rational(T) ?/?( rational(T) l, rational(T) r ) {
|
---|
183 | if ( r.numerator < (T){0} ) {
|
---|
184 | r.[numerator, denominator] = [-r.numerator, -r.denominator];
|
---|
185 | } // if
|
---|
186 | return (rational(T)){ l.numerator * r.denominator, l.denominator * r.numerator };
|
---|
187 | } // ?/?
|
---|
188 |
|
---|
189 | rational(T) ?/=?( rational(T) & l, rational(T) r ) {
|
---|
190 | return l = l / r;
|
---|
191 | } // ?/?
|
---|
192 |
|
---|
193 | // I/O
|
---|
194 |
|
---|
195 | forall( istype & | istream( istype ) | { istype & ?|?( istype &, T & ); } )
|
---|
196 | istype & ?|?( istype & is, rational(T) & r ) {
|
---|
197 | is | r.numerator | r.denominator;
|
---|
198 | T t = simplify( r.numerator, r.denominator );
|
---|
199 | r.numerator /= t;
|
---|
200 | r.denominator /= t;
|
---|
201 | return is;
|
---|
202 | } // ?|?
|
---|
203 |
|
---|
204 | forall( ostype & | ostream( ostype ) | { ostype & ?|?( ostype &, T ); } ) {
|
---|
205 | ostype & ?|?( ostype & os, rational(T) r ) {
|
---|
206 | return os | r.numerator | '/' | r.denominator;
|
---|
207 | } // ?|?
|
---|
208 |
|
---|
209 | void ?|?( ostype & os, rational(T) r ) {
|
---|
210 | (ostype &)(os | r); ends( os );
|
---|
211 | } // ?|?
|
---|
212 | } // distribution
|
---|
213 | } // distribution
|
---|
214 |
|
---|
215 | forall( T | arithmetic( T ) | { T ?\?( T, unsigned long ); } ) {
|
---|
216 | rational(T) ?\?( rational(T) x, long int y ) {
|
---|
217 | if ( y < 0 ) {
|
---|
218 | return (rational(T)){ x.denominator \ -y, x.numerator \ -y };
|
---|
219 | } else {
|
---|
220 | return (rational(T)){ x.numerator \ y, x.denominator \ y };
|
---|
221 | } // if
|
---|
222 | } // ?\?
|
---|
223 |
|
---|
224 | rational(T) ?\=?( rational(T) & x, long int y ) {
|
---|
225 | return x = x \ y;
|
---|
226 | } // ?\?
|
---|
227 | } // distribution
|
---|
228 |
|
---|
229 | // conversion
|
---|
230 |
|
---|
231 | forall( T | arithmetic( T ) | { double convert( T ); } )
|
---|
232 | double widen( rational(T) r ) {
|
---|
233 | return convert( r.numerator ) / convert( r.denominator );
|
---|
234 | } // widen
|
---|
235 |
|
---|
236 | forall( T | arithmetic( T ) | { double convert( T ); T convert( double ); } )
|
---|
237 | rational(T) narrow( double f, T md ) {
|
---|
238 | // http://www.ics.uci.edu/~eppstein/numth/frap.c
|
---|
239 | if ( md <= (T){1} ) { // maximum fractional digits too small?
|
---|
240 | return (rational(T)){ convert( f ), (T){1}}; // truncate fraction
|
---|
241 | } // if
|
---|
242 |
|
---|
243 | // continued fraction coefficients
|
---|
244 | T m00 = {1}, m11 = { 1 }, m01 = { 0 }, m10 = { 0 };
|
---|
245 | T ai, t;
|
---|
246 |
|
---|
247 | // find terms until denom gets too big
|
---|
248 | for () {
|
---|
249 | ai = convert( f );
|
---|
250 | if ( ! (m10 * ai + m11 <= md) ) break;
|
---|
251 | t = m00 * ai + m01;
|
---|
252 | m01 = m00;
|
---|
253 | m00 = t;
|
---|
254 | t = m10 * ai + m11;
|
---|
255 | m11 = m10;
|
---|
256 | m10 = t;
|
---|
257 | double temp = convert( ai );
|
---|
258 | if ( f == temp ) break; // prevent division by zero
|
---|
259 | f = 1 / (f - temp);
|
---|
260 | if ( f > (double)0x7FFFFFFF ) break; // representation failure
|
---|
261 | } // for
|
---|
262 | return (rational(T)){ m00, m10 };
|
---|
263 | } // narrow
|
---|
264 |
|
---|
265 | // Local Variables: //
|
---|
266 | // tab-width: 4 //
|
---|
267 | // End: //
|
---|