| 1 | //
|
|---|
| 2 | // Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
|
|---|
| 3 | //
|
|---|
| 4 | // The contents of this file are covered under the licence agreement in the
|
|---|
| 5 | // file "LICENCE" distributed with Cforall.
|
|---|
| 6 | //
|
|---|
| 7 | // rational.c --
|
|---|
| 8 | //
|
|---|
| 9 | // Author : Peter A. Buhr
|
|---|
| 10 | // Created On : Wed Apr 6 17:54:28 2016
|
|---|
| 11 | // Last Modified By : Peter A. Buhr
|
|---|
| 12 | // Last Modified On : Wed Nov 27 18:06:43 2024
|
|---|
| 13 | // Update Count : 208
|
|---|
| 14 | //
|
|---|
| 15 |
|
|---|
| 16 | #include "rational.hfa"
|
|---|
| 17 | #include "fstream.hfa"
|
|---|
| 18 | #include "stdlib.hfa"
|
|---|
| 19 |
|
|---|
| 20 | #pragma GCC visibility push(default)
|
|---|
| 21 |
|
|---|
| 22 | // Arithmetic, Relational
|
|---|
| 23 | forall( T | Simple(T) ) {
|
|---|
| 24 | // helper routines
|
|---|
| 25 | // Calculate greatest common denominator of two numbers, the first of which may be negative. Used to reduce
|
|---|
| 26 | // rationals. alternative: https://en.wikipedia.org/wiki/Binary_GCD_algorithm
|
|---|
| 27 | static T gcd( T a, T b ) {
|
|---|
| 28 | for () { // Euclid's algorithm
|
|---|
| 29 | T r = a % b;
|
|---|
| 30 | if ( r == (T){0} ) break;
|
|---|
| 31 | a = b;
|
|---|
| 32 | b = r;
|
|---|
| 33 | } // for
|
|---|
| 34 | return b;
|
|---|
| 35 | } // gcd
|
|---|
| 36 |
|
|---|
| 37 | static T simplify( T & n, T & d ) {
|
|---|
| 38 | if ( d == (T){0} ) {
|
|---|
| 39 | abort | "Invalid rational number construction: denominator cannot be equal to 0.";
|
|---|
| 40 | } // exit
|
|---|
| 41 | if ( d < (T){0} ) { d = -d; n = -n; } // move sign to numerator
|
|---|
| 42 | return gcd( abs( n ), d ); // simplify
|
|---|
| 43 | } // simplify
|
|---|
| 44 | }
|
|---|
| 45 |
|
|---|
| 46 | forall( T | arithmetic( T ) ) {
|
|---|
| 47 | // constructors
|
|---|
| 48 |
|
|---|
| 49 | void ?{}( rational(T) & r, zero_t ) {
|
|---|
| 50 | r{ (T){0}, (T){1} };
|
|---|
| 51 | } // rational
|
|---|
| 52 |
|
|---|
| 53 | void ?{}( rational(T) & r, one_t ) {
|
|---|
| 54 | r{ (T){1}, (T){1} };
|
|---|
| 55 | } // rational
|
|---|
| 56 |
|
|---|
| 57 | void ?{}( rational(T) & r ) {
|
|---|
| 58 | r{ (T){0}, (T){1} };
|
|---|
| 59 | } // rational
|
|---|
| 60 |
|
|---|
| 61 | void ?{}( rational(T) & r, T n ) {
|
|---|
| 62 | r{ n, (T){1} };
|
|---|
| 63 | } // rational
|
|---|
| 64 |
|
|---|
| 65 | void ?{}( rational(T) & r, T n, T d ) {
|
|---|
| 66 | T t = simplify( n, d ); // simplify
|
|---|
| 67 | r.[numerator, denominator] = [n / t, d / t];
|
|---|
| 68 | } // rational
|
|---|
| 69 |
|
|---|
| 70 | // getter for numerator/denominator
|
|---|
| 71 |
|
|---|
| 72 | T numerator( rational(T) r ) {
|
|---|
| 73 | return r.numerator;
|
|---|
| 74 | } // numerator
|
|---|
| 75 |
|
|---|
| 76 | T denominator( rational(T) r ) {
|
|---|
| 77 | return r.denominator;
|
|---|
| 78 | } // denominator
|
|---|
| 79 |
|
|---|
| 80 | [ T, T ] ?=?( & [ T, T ] dst, rational(T) src ) {
|
|---|
| 81 | return dst = src.[ numerator, denominator ];
|
|---|
| 82 | } // ?=?
|
|---|
| 83 |
|
|---|
| 84 | // setter for numerator/denominator
|
|---|
| 85 |
|
|---|
| 86 | T numerator( rational(T) r, T n ) {
|
|---|
| 87 | T prev = r.numerator;
|
|---|
| 88 | T t = gcd( abs( n ), r.denominator ); // simplify
|
|---|
| 89 | r.[numerator, denominator] = [n / t, r.denominator / t];
|
|---|
| 90 | return prev;
|
|---|
| 91 | } // numerator
|
|---|
| 92 |
|
|---|
| 93 | T denominator( rational(T) r, T d ) {
|
|---|
| 94 | T prev = r.denominator;
|
|---|
| 95 | T t = simplify( r.numerator, d ); // simplify
|
|---|
| 96 | r.[numerator, denominator] = [r.numerator / t, d / t];
|
|---|
| 97 | return prev;
|
|---|
| 98 | } // denominator
|
|---|
| 99 |
|
|---|
| 100 | // comparison
|
|---|
| 101 |
|
|---|
| 102 | int ?==?( rational(T) l, rational(T) r ) {
|
|---|
| 103 | return l.numerator * r.denominator == l.denominator * r.numerator;
|
|---|
| 104 | } // ?==?
|
|---|
| 105 |
|
|---|
| 106 | int ?!=?( rational(T) l, rational(T) r ) {
|
|---|
| 107 | return ! ( l == r );
|
|---|
| 108 | } // ?!=?
|
|---|
| 109 |
|
|---|
| 110 | int ?!=?( rational(T) l, zero_t ) {
|
|---|
| 111 | return ! ( l == (rational(T)){ 0 } );
|
|---|
| 112 | } // ?!=?
|
|---|
| 113 |
|
|---|
| 114 | int ?<?( rational(T) l, rational(T) r ) {
|
|---|
| 115 | return l.numerator * r.denominator < l.denominator * r.numerator;
|
|---|
| 116 | } // ?<?
|
|---|
| 117 |
|
|---|
| 118 | int ?<=?( rational(T) l, rational(T) r ) {
|
|---|
| 119 | return l.numerator * r.denominator <= l.denominator * r.numerator;
|
|---|
| 120 | } // ?<=?
|
|---|
| 121 |
|
|---|
| 122 | int ?>?( rational(T) l, rational(T) r ) {
|
|---|
| 123 | return ! ( l <= r );
|
|---|
| 124 | } // ?>?
|
|---|
| 125 |
|
|---|
| 126 | int ?>=?( rational(T) l, rational(T) r ) {
|
|---|
| 127 | return ! ( l < r );
|
|---|
| 128 | } // ?>=?
|
|---|
| 129 |
|
|---|
| 130 | // arithmetic
|
|---|
| 131 |
|
|---|
| 132 | rational(T) +?( rational(T) r ) {
|
|---|
| 133 | return (rational(T)){ r.numerator, r.denominator };
|
|---|
| 134 | } // +?
|
|---|
| 135 |
|
|---|
| 136 | rational(T) -?( rational(T) r ) {
|
|---|
| 137 | return (rational(T)){ -r.numerator, r.denominator };
|
|---|
| 138 | } // -?
|
|---|
| 139 |
|
|---|
| 140 | rational(T) ?+?( rational(T) l, rational(T) r ) {
|
|---|
| 141 | if ( l.denominator == r.denominator ) { // special case
|
|---|
| 142 | return (rational(T)){ l.numerator + r.numerator, l.denominator };
|
|---|
| 143 | } else {
|
|---|
| 144 | return (rational(T)){ l.numerator * r.denominator + l.denominator * r.numerator, l.denominator * r.denominator };
|
|---|
| 145 | } // if
|
|---|
| 146 | } // ?+?
|
|---|
| 147 |
|
|---|
| 148 | rational(T) ?+=?( rational(T) & l, rational(T) r ) {
|
|---|
| 149 | l = l + r;
|
|---|
| 150 | return l;
|
|---|
| 151 | } // ?+?
|
|---|
| 152 |
|
|---|
| 153 | rational(T) ?+=?( rational(T) & l, one_t ) {
|
|---|
| 154 | l = l + (rational(T)){ 1 };
|
|---|
| 155 | return l;
|
|---|
| 156 | } // ?+?
|
|---|
| 157 |
|
|---|
| 158 | rational(T) ?-?( rational(T) l, rational(T) r ) {
|
|---|
| 159 | if ( l.denominator == r.denominator ) { // special case
|
|---|
| 160 | return (rational(T)){ l.numerator - r.numerator, l.denominator };
|
|---|
| 161 | } else {
|
|---|
| 162 | return (rational(T)){ l.numerator * r.denominator - l.denominator * r.numerator, l.denominator * r.denominator };
|
|---|
| 163 | } // if
|
|---|
| 164 | } // ?-?
|
|---|
| 165 |
|
|---|
| 166 | rational(T) ?-=?( rational(T) & l, rational(T) r ) {
|
|---|
| 167 | l = l - r;
|
|---|
| 168 | return l;
|
|---|
| 169 | } // ?-?
|
|---|
| 170 |
|
|---|
| 171 | rational(T) ?-=?( rational(T) & l, one_t ) {
|
|---|
| 172 | l = l - (rational(T)){ 1 };
|
|---|
| 173 | return l;
|
|---|
| 174 | } // ?-?
|
|---|
| 175 |
|
|---|
| 176 | rational(T) ?*?( rational(T) l, rational(T) r ) {
|
|---|
| 177 | return (rational(T)){ l.numerator * r.numerator, l.denominator * r.denominator };
|
|---|
| 178 | } // ?*?
|
|---|
| 179 |
|
|---|
| 180 | rational(T) ?*=?( rational(T) & l, rational(T) r ) {
|
|---|
| 181 | return l = l * r;
|
|---|
| 182 | } // ?*?
|
|---|
| 183 |
|
|---|
| 184 | rational(T) ?/?( rational(T) l, rational(T) r ) {
|
|---|
| 185 | if ( r.numerator < (T){0} ) {
|
|---|
| 186 | r.[numerator, denominator] = [-r.numerator, -r.denominator];
|
|---|
| 187 | } // if
|
|---|
| 188 | return (rational(T)){ l.numerator * r.denominator, l.denominator * r.numerator };
|
|---|
| 189 | } // ?/?
|
|---|
| 190 |
|
|---|
| 191 | rational(T) ?/=?( rational(T) & l, rational(T) r ) {
|
|---|
| 192 | return l = l / r;
|
|---|
| 193 | } // ?/?
|
|---|
| 194 | } // distribution
|
|---|
| 195 |
|
|---|
| 196 | // I/O
|
|---|
| 197 |
|
|---|
| 198 | forall( T ) {
|
|---|
| 199 | forall( istype & | istream( istype ) | { istype & ?|?( istype &, T & ); } | Simple(T) )
|
|---|
| 200 | istype & ?|?( istype & is, rational(T) & r ) {
|
|---|
| 201 | is | r.numerator | r.denominator;
|
|---|
| 202 | T t = simplify( r.numerator, r.denominator );
|
|---|
| 203 | r.numerator /= t;
|
|---|
| 204 | r.denominator /= t;
|
|---|
| 205 | return is;
|
|---|
| 206 | } // ?|?
|
|---|
| 207 |
|
|---|
| 208 | forall( ostype & | ostream( ostype ) | { ostype & ?|?( ostype &, T ); } ) {
|
|---|
| 209 | ostype & ?|?( ostype & os, rational(T) r ) {
|
|---|
| 210 | return os | r.numerator | '/' | r.denominator;
|
|---|
| 211 | } // ?|?
|
|---|
| 212 | OSTYPE_VOID_IMPL( os, rational(T) )
|
|---|
| 213 | } // distribution
|
|---|
| 214 | } // distribution
|
|---|
| 215 |
|
|---|
| 216 | // Exponentiation
|
|---|
| 217 |
|
|---|
| 218 | forall( T | arithmetic( T ) | { T ?\?( T, unsigned long ); } ) {
|
|---|
| 219 | rational(T) ?\?( rational(T) x, long int y ) {
|
|---|
| 220 | if ( y < 0 ) {
|
|---|
| 221 | return (rational(T)){ x.denominator \ -y, x.numerator \ -y };
|
|---|
| 222 | } else {
|
|---|
| 223 | return (rational(T)){ x.numerator \ y, x.denominator \ y };
|
|---|
| 224 | } // if
|
|---|
| 225 | } // ?\?
|
|---|
| 226 |
|
|---|
| 227 | rational(T) ?\=?( rational(T) & x, long int y ) {
|
|---|
| 228 | return x = x \ y;
|
|---|
| 229 | } // ?\?
|
|---|
| 230 | } // distribution
|
|---|
| 231 |
|
|---|
| 232 | // Conversion
|
|---|
| 233 |
|
|---|
| 234 | forall( T | arithmetic( T ) | { double convert( T ); } )
|
|---|
| 235 | double widen( rational(T) r ) {
|
|---|
| 236 | return convert( r.numerator ) / convert( r.denominator );
|
|---|
| 237 | } // widen
|
|---|
| 238 |
|
|---|
| 239 | forall( T | arithmetic( T ) | { double convert( T ); T convert( double ); } )
|
|---|
| 240 | rational(T) narrow( double f, T md ) {
|
|---|
| 241 | // http://www.ics.uci.edu/~eppstein/numth/frap.c
|
|---|
| 242 | if ( md <= (T){1} ) { // maximum fractional digits too small?
|
|---|
| 243 | return (rational(T)){ convert( f ), (T){1}}; // truncate fraction
|
|---|
| 244 | } // if
|
|---|
| 245 |
|
|---|
| 246 | // continued fraction coefficients
|
|---|
| 247 | T m00 = {1}, m11 = { 1 }, m01 = { 0 }, m10 = { 0 };
|
|---|
| 248 | T ai, t;
|
|---|
| 249 |
|
|---|
| 250 | // find terms until denom gets too big
|
|---|
| 251 | for () {
|
|---|
| 252 | ai = convert( f );
|
|---|
| 253 | if ( ! (m10 * ai + m11 <= md) ) break;
|
|---|
| 254 | t = m00 * ai + m01;
|
|---|
| 255 | m01 = m00;
|
|---|
| 256 | m00 = t;
|
|---|
| 257 | t = m10 * ai + m11;
|
|---|
| 258 | m11 = m10;
|
|---|
| 259 | m10 = t;
|
|---|
| 260 | double temp = convert( ai );
|
|---|
| 261 | if ( f == temp ) break; // prevent division by zero
|
|---|
| 262 | f = 1 / (f - temp);
|
|---|
| 263 | if ( f > (double)0x7FFFFFFF ) break; // representation failure
|
|---|
| 264 | } // for
|
|---|
| 265 | return (rational(T)){ m00, m10 };
|
|---|
| 266 | } // narrow
|
|---|
| 267 |
|
|---|
| 268 | // Local Variables: //
|
|---|
| 269 | // tab-width: 4 //
|
|---|
| 270 | // End: //
|
|---|