| 1 | // | 
|---|
| 2 | // Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo | 
|---|
| 3 | // | 
|---|
| 4 | // The contents of this file are covered under the licence agreement in the | 
|---|
| 5 | // file "LICENCE" distributed with Cforall. | 
|---|
| 6 | // | 
|---|
| 7 | // rational.c -- | 
|---|
| 8 | // | 
|---|
| 9 | // Author           : Peter A. Buhr | 
|---|
| 10 | // Created On       : Wed Apr  6 17:54:28 2016 | 
|---|
| 11 | // Last Modified By : Peter A. Buhr | 
|---|
| 12 | // Last Modified On : Fri Oct  6 07:52:13 2023 | 
|---|
| 13 | // Update Count     : 198 | 
|---|
| 14 | // | 
|---|
| 15 |  | 
|---|
| 16 | #include "rational.hfa" | 
|---|
| 17 | #include "fstream.hfa" | 
|---|
| 18 | #include "stdlib.hfa" | 
|---|
| 19 |  | 
|---|
| 20 | #pragma GCC visibility push(default) | 
|---|
| 21 |  | 
|---|
| 22 | forall( T | arithmetic( T ) ) { | 
|---|
| 23 | // helper routines | 
|---|
| 24 |  | 
|---|
| 25 | // Calculate greatest common denominator of two numbers, the first of which may be negative. Used to reduce | 
|---|
| 26 | // rationals.  alternative: https://en.wikipedia.org/wiki/Binary_GCD_algorithm | 
|---|
| 27 | static T gcd( T a, T b ) { | 
|---|
| 28 | for () {                                                                                // Euclid's algorithm | 
|---|
| 29 | T r = a % b; | 
|---|
| 30 | if ( r == (T){0} ) break; | 
|---|
| 31 | a = b; | 
|---|
| 32 | b = r; | 
|---|
| 33 | } // for | 
|---|
| 34 | return b; | 
|---|
| 35 | } // gcd | 
|---|
| 36 |  | 
|---|
| 37 | static T simplify( T & n, T & d ) { | 
|---|
| 38 | if ( d == (T){0} ) { | 
|---|
| 39 | abort | "Invalid rational number construction: denominator cannot be equal to 0."; | 
|---|
| 40 | } // exit | 
|---|
| 41 | if ( d < (T){0} ) { d = -d; n = -n; }                   // move sign to numerator | 
|---|
| 42 | return gcd( abs( n ), d );                                              // simplify | 
|---|
| 43 | } // simplify | 
|---|
| 44 |  | 
|---|
| 45 | // constructors | 
|---|
| 46 |  | 
|---|
| 47 | void ?{}( rational(T) & r, zero_t ) { | 
|---|
| 48 | r{ (T){0}, (T){1} }; | 
|---|
| 49 | } // rational | 
|---|
| 50 |  | 
|---|
| 51 | void ?{}( rational(T) & r, one_t ) { | 
|---|
| 52 | r{ (T){1}, (T){1} }; | 
|---|
| 53 | } // rational | 
|---|
| 54 |  | 
|---|
| 55 | void ?{}( rational(T) & r ) { | 
|---|
| 56 | r{ (T){0}, (T){1} }; | 
|---|
| 57 | } // rational | 
|---|
| 58 |  | 
|---|
| 59 | void ?{}( rational(T) & r, T n ) { | 
|---|
| 60 | r{ n, (T){1} }; | 
|---|
| 61 | } // rational | 
|---|
| 62 |  | 
|---|
| 63 | void ?{}( rational(T) & r, T n, T d ) { | 
|---|
| 64 | T t = simplify( n, d );                                                 // simplify | 
|---|
| 65 | r.[numerator, denominator] = [n / t, d / t]; | 
|---|
| 66 | } // rational | 
|---|
| 67 |  | 
|---|
| 68 | // getter for numerator/denominator | 
|---|
| 69 |  | 
|---|
| 70 | T numerator( rational(T) r ) { | 
|---|
| 71 | return r.numerator; | 
|---|
| 72 | } // numerator | 
|---|
| 73 |  | 
|---|
| 74 | T denominator( rational(T) r ) { | 
|---|
| 75 | return r.denominator; | 
|---|
| 76 | } // denominator | 
|---|
| 77 |  | 
|---|
| 78 | [ T, T ] ?=?( & [ T, T ] dst, rational(T) src ) { | 
|---|
| 79 | return dst = src.[ numerator, denominator ]; | 
|---|
| 80 | } // ?=? | 
|---|
| 81 |  | 
|---|
| 82 | // setter for numerator/denominator | 
|---|
| 83 |  | 
|---|
| 84 | T numerator( rational(T) r, T n ) { | 
|---|
| 85 | T prev = r.numerator; | 
|---|
| 86 | T t = gcd( abs( n ), r.denominator );                   // simplify | 
|---|
| 87 | r.[numerator, denominator] = [n / t, r.denominator / t]; | 
|---|
| 88 | return prev; | 
|---|
| 89 | } // numerator | 
|---|
| 90 |  | 
|---|
| 91 | T denominator( rational(T) r, T d ) { | 
|---|
| 92 | T prev = r.denominator; | 
|---|
| 93 | T t = simplify( r.numerator, d );                               // simplify | 
|---|
| 94 | r.[numerator, denominator] = [r.numerator / t, d / t]; | 
|---|
| 95 | return prev; | 
|---|
| 96 | } // denominator | 
|---|
| 97 |  | 
|---|
| 98 | // comparison | 
|---|
| 99 |  | 
|---|
| 100 | int ?==?( rational(T) l, rational(T) r ) { | 
|---|
| 101 | return l.numerator * r.denominator == l.denominator * r.numerator; | 
|---|
| 102 | } // ?==? | 
|---|
| 103 |  | 
|---|
| 104 | int ?!=?( rational(T) l, rational(T) r ) { | 
|---|
| 105 | return ! ( l == r ); | 
|---|
| 106 | } // ?!=? | 
|---|
| 107 |  | 
|---|
| 108 | int ?!=?( rational(T) l, zero_t ) { | 
|---|
| 109 | return ! ( l == (rational(T)){ 0 } ); | 
|---|
| 110 | } // ?!=? | 
|---|
| 111 |  | 
|---|
| 112 | int ?<?( rational(T) l, rational(T) r ) { | 
|---|
| 113 | return l.numerator * r.denominator < l.denominator * r.numerator; | 
|---|
| 114 | } // ?<? | 
|---|
| 115 |  | 
|---|
| 116 | int ?<=?( rational(T) l, rational(T) r ) { | 
|---|
| 117 | return l.numerator * r.denominator <= l.denominator * r.numerator; | 
|---|
| 118 | } // ?<=? | 
|---|
| 119 |  | 
|---|
| 120 | int ?>?( rational(T) l, rational(T) r ) { | 
|---|
| 121 | return ! ( l <= r ); | 
|---|
| 122 | } // ?>? | 
|---|
| 123 |  | 
|---|
| 124 | int ?>=?( rational(T) l, rational(T) r ) { | 
|---|
| 125 | return ! ( l < r ); | 
|---|
| 126 | } // ?>=? | 
|---|
| 127 |  | 
|---|
| 128 | // arithmetic | 
|---|
| 129 |  | 
|---|
| 130 | rational(T) +?( rational(T) r ) { | 
|---|
| 131 | return (rational(T)){ r.numerator, r.denominator }; | 
|---|
| 132 | } // +? | 
|---|
| 133 |  | 
|---|
| 134 | rational(T) -?( rational(T) r ) { | 
|---|
| 135 | return (rational(T)){ -r.numerator, r.denominator }; | 
|---|
| 136 | } // -? | 
|---|
| 137 |  | 
|---|
| 138 | rational(T) ?+?( rational(T) l, rational(T) r ) { | 
|---|
| 139 | if ( l.denominator == r.denominator ) {                 // special case | 
|---|
| 140 | return (rational(T)){ l.numerator + r.numerator, l.denominator }; | 
|---|
| 141 | } else { | 
|---|
| 142 | return (rational(T)){ l.numerator * r.denominator + l.denominator * r.numerator, l.denominator * r.denominator }; | 
|---|
| 143 | } // if | 
|---|
| 144 | } // ?+? | 
|---|
| 145 |  | 
|---|
| 146 | rational(T) ?+=?( rational(T) & l, rational(T) r ) { | 
|---|
| 147 | l = l + r; | 
|---|
| 148 | return l; | 
|---|
| 149 | } // ?+? | 
|---|
| 150 |  | 
|---|
| 151 | rational(T) ?+=?( rational(T) & l, one_t ) { | 
|---|
| 152 | l = l + (rational(T)){ 1 }; | 
|---|
| 153 | return l; | 
|---|
| 154 | } // ?+? | 
|---|
| 155 |  | 
|---|
| 156 | rational(T) ?-?( rational(T) l, rational(T) r ) { | 
|---|
| 157 | if ( l.denominator == r.denominator ) {                 // special case | 
|---|
| 158 | return (rational(T)){ l.numerator - r.numerator, l.denominator }; | 
|---|
| 159 | } else { | 
|---|
| 160 | return (rational(T)){ l.numerator * r.denominator - l.denominator * r.numerator, l.denominator * r.denominator }; | 
|---|
| 161 | } // if | 
|---|
| 162 | } // ?-? | 
|---|
| 163 |  | 
|---|
| 164 | rational(T) ?-=?( rational(T) & l, rational(T) r ) { | 
|---|
| 165 | l = l - r; | 
|---|
| 166 | return l; | 
|---|
| 167 | } // ?-? | 
|---|
| 168 |  | 
|---|
| 169 | rational(T) ?-=?( rational(T) & l, one_t ) { | 
|---|
| 170 | l = l - (rational(T)){ 1 }; | 
|---|
| 171 | return l; | 
|---|
| 172 | } // ?-? | 
|---|
| 173 |  | 
|---|
| 174 | rational(T) ?*?( rational(T) l, rational(T) r ) { | 
|---|
| 175 | return (rational(T)){ l.numerator * r.numerator, l.denominator * r.denominator }; | 
|---|
| 176 | } // ?*? | 
|---|
| 177 |  | 
|---|
| 178 | rational(T) ?*=?( rational(T) & l, rational(T) r ) { | 
|---|
| 179 | return l = l * r; | 
|---|
| 180 | } // ?*? | 
|---|
| 181 |  | 
|---|
| 182 | rational(T) ?/?( rational(T) l, rational(T) r ) { | 
|---|
| 183 | if ( r.numerator < (T){0} ) { | 
|---|
| 184 | r.[numerator, denominator] = [-r.numerator, -r.denominator]; | 
|---|
| 185 | } // if | 
|---|
| 186 | return (rational(T)){ l.numerator * r.denominator, l.denominator * r.numerator }; | 
|---|
| 187 | } // ?/? | 
|---|
| 188 |  | 
|---|
| 189 | rational(T) ?/=?( rational(T) & l, rational(T) r ) { | 
|---|
| 190 | return l = l / r; | 
|---|
| 191 | } // ?/? | 
|---|
| 192 |  | 
|---|
| 193 | // I/O | 
|---|
| 194 |  | 
|---|
| 195 | forall( istype & | istream( istype ) | { istype & ?|?( istype &, T & ); } ) | 
|---|
| 196 | istype & ?|?( istype & is, rational(T) & r ) { | 
|---|
| 197 | is | r.numerator | r.denominator; | 
|---|
| 198 | T t = simplify( r.numerator, r.denominator ); | 
|---|
| 199 | r.numerator /= t; | 
|---|
| 200 | r.denominator /= t; | 
|---|
| 201 | return is; | 
|---|
| 202 | } // ?|? | 
|---|
| 203 |  | 
|---|
| 204 | forall( ostype & | ostream( ostype ) | { ostype & ?|?( ostype &, T ); } ) { | 
|---|
| 205 | ostype & ?|?( ostype & os, rational(T) r ) { | 
|---|
| 206 | return os | r.numerator | '/' | r.denominator; | 
|---|
| 207 | } // ?|? | 
|---|
| 208 | OSTYPE_VOID_IMPL( rational(T) ) | 
|---|
| 209 | } // distribution | 
|---|
| 210 | } // distribution | 
|---|
| 211 |  | 
|---|
| 212 | forall( T | arithmetic( T ) | { T ?\?( T, unsigned long ); } ) { | 
|---|
| 213 | rational(T) ?\?( rational(T) x, long int y ) { | 
|---|
| 214 | if ( y < 0 ) { | 
|---|
| 215 | return (rational(T)){ x.denominator \ -y, x.numerator \ -y }; | 
|---|
| 216 | } else { | 
|---|
| 217 | return (rational(T)){ x.numerator \ y, x.denominator \ y }; | 
|---|
| 218 | } // if | 
|---|
| 219 | } // ?\? | 
|---|
| 220 |  | 
|---|
| 221 | rational(T) ?\=?( rational(T) & x, long int y ) { | 
|---|
| 222 | return x = x \ y; | 
|---|
| 223 | } // ?\? | 
|---|
| 224 | } // distribution | 
|---|
| 225 |  | 
|---|
| 226 | // conversion | 
|---|
| 227 |  | 
|---|
| 228 | forall( T | arithmetic( T ) | { double convert( T ); } ) | 
|---|
| 229 | double widen( rational(T) r ) { | 
|---|
| 230 | return convert( r.numerator ) / convert( r.denominator ); | 
|---|
| 231 | } // widen | 
|---|
| 232 |  | 
|---|
| 233 | forall( T | arithmetic( T ) | { double convert( T ); T convert( double ); } ) | 
|---|
| 234 | rational(T) narrow( double f, T md ) { | 
|---|
| 235 | // http://www.ics.uci.edu/~eppstein/numth/frap.c | 
|---|
| 236 | if ( md <= (T){1} ) {                                                           // maximum fractional digits too small? | 
|---|
| 237 | return (rational(T)){ convert( f ), (T){1}};    // truncate fraction | 
|---|
| 238 | } // if | 
|---|
| 239 |  | 
|---|
| 240 | // continued fraction coefficients | 
|---|
| 241 | T m00 = {1}, m11 = { 1 }, m01 = { 0 }, m10 = { 0 }; | 
|---|
| 242 | T ai, t; | 
|---|
| 243 |  | 
|---|
| 244 | // find terms until denom gets too big | 
|---|
| 245 | for () { | 
|---|
| 246 | ai = convert( f ); | 
|---|
| 247 | if ( ! (m10 * ai + m11 <= md) ) break; | 
|---|
| 248 | t = m00 * ai + m01; | 
|---|
| 249 | m01 = m00; | 
|---|
| 250 | m00 = t; | 
|---|
| 251 | t = m10 * ai + m11; | 
|---|
| 252 | m11 = m10; | 
|---|
| 253 | m10 = t; | 
|---|
| 254 | double temp = convert( ai ); | 
|---|
| 255 | if ( f == temp ) break;                                                       // prevent division by zero | 
|---|
| 256 | f = 1 / (f - temp); | 
|---|
| 257 | if ( f > (double)0x7FFFFFFF ) break;                          // representation failure | 
|---|
| 258 | } // for | 
|---|
| 259 | return (rational(T)){ m00, m10 }; | 
|---|
| 260 | } // narrow | 
|---|
| 261 |  | 
|---|
| 262 | // Local Variables: // | 
|---|
| 263 | // tab-width: 4 // | 
|---|
| 264 | // End: // | 
|---|