1 | //
|
---|
2 | // Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
|
---|
3 | //
|
---|
4 | // The contents of this file are covered under the licence agreement in the
|
---|
5 | // file "LICENCE" distributed with Cforall.
|
---|
6 | //
|
---|
7 | // rational.c --
|
---|
8 | //
|
---|
9 | // Author : Peter A. Buhr
|
---|
10 | // Created On : Wed Apr 6 17:54:28 2016
|
---|
11 | // Last Modified By : Peter A. Buhr
|
---|
12 | // Last Modified On : Sat Feb 8 17:56:36 2020
|
---|
13 | // Update Count : 187
|
---|
14 | //
|
---|
15 |
|
---|
16 | #include "rational.hfa"
|
---|
17 | #include "fstream.hfa"
|
---|
18 | #include "stdlib.hfa"
|
---|
19 |
|
---|
20 | forall( otype RationalImpl | arithmetic( RationalImpl ) ) {
|
---|
21 | // helper routines
|
---|
22 |
|
---|
23 | // Calculate greatest common denominator of two numbers, the first of which may be negative. Used to reduce
|
---|
24 | // rationals. alternative: https://en.wikipedia.org/wiki/Binary_GCD_algorithm
|
---|
25 | static RationalImpl gcd( RationalImpl a, RationalImpl b ) {
|
---|
26 | for ( ;; ) { // Euclid's algorithm
|
---|
27 | RationalImpl r = a % b;
|
---|
28 | if ( r == (RationalImpl){0} ) break;
|
---|
29 | a = b;
|
---|
30 | b = r;
|
---|
31 | } // for
|
---|
32 | return b;
|
---|
33 | } // gcd
|
---|
34 |
|
---|
35 | static RationalImpl simplify( RationalImpl & n, RationalImpl & d ) {
|
---|
36 | if ( d == (RationalImpl){0} ) {
|
---|
37 | abort | "Invalid rational number construction: denominator cannot be equal to 0.";
|
---|
38 | } // exit
|
---|
39 | if ( d < (RationalImpl){0} ) { d = -d; n = -n; } // move sign to numerator
|
---|
40 | return gcd( abs( n ), d ); // simplify
|
---|
41 | } // Rationalnumber::simplify
|
---|
42 |
|
---|
43 | // constructors
|
---|
44 |
|
---|
45 | void ?{}( Rational(RationalImpl) & r ) {
|
---|
46 | r{ (RationalImpl){0}, (RationalImpl){1} };
|
---|
47 | } // rational
|
---|
48 |
|
---|
49 | void ?{}( Rational(RationalImpl) & r, RationalImpl n ) {
|
---|
50 | r{ n, (RationalImpl){1} };
|
---|
51 | } // rational
|
---|
52 |
|
---|
53 | void ?{}( Rational(RationalImpl) & r, RationalImpl n, RationalImpl d ) {
|
---|
54 | RationalImpl t = simplify( n, d ); // simplify
|
---|
55 | r.[numerator, denominator] = [n / t, d / t];
|
---|
56 | } // rational
|
---|
57 |
|
---|
58 | void ?{}( Rational(RationalImpl) & r, zero_t ) {
|
---|
59 | r{ (RationalImpl){0}, (RationalImpl){1} };
|
---|
60 | } // rational
|
---|
61 |
|
---|
62 | void ?{}( Rational(RationalImpl) & r, one_t ) {
|
---|
63 | r{ (RationalImpl){1}, (RationalImpl){1} };
|
---|
64 | } // rational
|
---|
65 |
|
---|
66 | // getter for numerator/denominator
|
---|
67 |
|
---|
68 | RationalImpl numerator( Rational(RationalImpl) r ) {
|
---|
69 | return r.numerator;
|
---|
70 | } // numerator
|
---|
71 |
|
---|
72 | RationalImpl denominator( Rational(RationalImpl) r ) {
|
---|
73 | return r.denominator;
|
---|
74 | } // denominator
|
---|
75 |
|
---|
76 | [ RationalImpl, RationalImpl ] ?=?( & [ RationalImpl, RationalImpl ] dest, Rational(RationalImpl) src ) {
|
---|
77 | return dest = src.[ numerator, denominator ];
|
---|
78 | } // ?=?
|
---|
79 |
|
---|
80 | // setter for numerator/denominator
|
---|
81 |
|
---|
82 | RationalImpl numerator( Rational(RationalImpl) r, RationalImpl n ) {
|
---|
83 | RationalImpl prev = r.numerator;
|
---|
84 | RationalImpl t = gcd( abs( n ), r.denominator ); // simplify
|
---|
85 | r.[numerator, denominator] = [n / t, r.denominator / t];
|
---|
86 | return prev;
|
---|
87 | } // numerator
|
---|
88 |
|
---|
89 | RationalImpl denominator( Rational(RationalImpl) r, RationalImpl d ) {
|
---|
90 | RationalImpl prev = r.denominator;
|
---|
91 | RationalImpl t = simplify( r.numerator, d ); // simplify
|
---|
92 | r.[numerator, denominator] = [r.numerator / t, d / t];
|
---|
93 | return prev;
|
---|
94 | } // denominator
|
---|
95 |
|
---|
96 | // comparison
|
---|
97 |
|
---|
98 | int ?==?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
|
---|
99 | return l.numerator * r.denominator == l.denominator * r.numerator;
|
---|
100 | } // ?==?
|
---|
101 |
|
---|
102 | int ?!=?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
|
---|
103 | return ! ( l == r );
|
---|
104 | } // ?!=?
|
---|
105 |
|
---|
106 | int ?<?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
|
---|
107 | return l.numerator * r.denominator < l.denominator * r.numerator;
|
---|
108 | } // ?<?
|
---|
109 |
|
---|
110 | int ?<=?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
|
---|
111 | return l.numerator * r.denominator <= l.denominator * r.numerator;
|
---|
112 | } // ?<=?
|
---|
113 |
|
---|
114 | int ?>?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
|
---|
115 | return ! ( l <= r );
|
---|
116 | } // ?>?
|
---|
117 |
|
---|
118 | int ?>=?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
|
---|
119 | return ! ( l < r );
|
---|
120 | } // ?>=?
|
---|
121 |
|
---|
122 | // arithmetic
|
---|
123 |
|
---|
124 | Rational(RationalImpl) +?( Rational(RationalImpl) r ) {
|
---|
125 | return (Rational(RationalImpl)){ r.numerator, r.denominator };
|
---|
126 | } // +?
|
---|
127 |
|
---|
128 | Rational(RationalImpl) -?( Rational(RationalImpl) r ) {
|
---|
129 | return (Rational(RationalImpl)){ -r.numerator, r.denominator };
|
---|
130 | } // -?
|
---|
131 |
|
---|
132 | Rational(RationalImpl) ?+?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
|
---|
133 | if ( l.denominator == r.denominator ) { // special case
|
---|
134 | return (Rational(RationalImpl)){ l.numerator + r.numerator, l.denominator };
|
---|
135 | } else {
|
---|
136 | return (Rational(RationalImpl)){ l.numerator * r.denominator + l.denominator * r.numerator, l.denominator * r.denominator };
|
---|
137 | } // if
|
---|
138 | } // ?+?
|
---|
139 |
|
---|
140 | Rational(RationalImpl) ?-?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
|
---|
141 | if ( l.denominator == r.denominator ) { // special case
|
---|
142 | return (Rational(RationalImpl)){ l.numerator - r.numerator, l.denominator };
|
---|
143 | } else {
|
---|
144 | return (Rational(RationalImpl)){ l.numerator * r.denominator - l.denominator * r.numerator, l.denominator * r.denominator };
|
---|
145 | } // if
|
---|
146 | } // ?-?
|
---|
147 |
|
---|
148 | Rational(RationalImpl) ?*?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
|
---|
149 | return (Rational(RationalImpl)){ l.numerator * r.numerator, l.denominator * r.denominator };
|
---|
150 | } // ?*?
|
---|
151 |
|
---|
152 | Rational(RationalImpl) ?/?( Rational(RationalImpl) l, Rational(RationalImpl) r ) {
|
---|
153 | if ( r.numerator < (RationalImpl){0} ) {
|
---|
154 | r.[numerator, denominator] = [-r.numerator, -r.denominator];
|
---|
155 | } // if
|
---|
156 | return (Rational(RationalImpl)){ l.numerator * r.denominator, l.denominator * r.numerator };
|
---|
157 | } // ?/?
|
---|
158 |
|
---|
159 | // I/O
|
---|
160 |
|
---|
161 | forall( dtype istype | istream( istype ) | { istype & ?|?( istype &, RationalImpl & ); } )
|
---|
162 | istype & ?|?( istype & is, Rational(RationalImpl) & r ) {
|
---|
163 | is | r.numerator | r.denominator;
|
---|
164 | RationalImpl t = simplify( r.numerator, r.denominator );
|
---|
165 | r.numerator /= t;
|
---|
166 | r.denominator /= t;
|
---|
167 | return is;
|
---|
168 | } // ?|?
|
---|
169 |
|
---|
170 | forall( dtype ostype | ostream( ostype ) | { ostype & ?|?( ostype &, RationalImpl ); } ) {
|
---|
171 | ostype & ?|?( ostype & os, Rational(RationalImpl) r ) {
|
---|
172 | return os | r.numerator | '/' | r.denominator;
|
---|
173 | } // ?|?
|
---|
174 |
|
---|
175 | void ?|?( ostype & os, Rational(RationalImpl) r ) {
|
---|
176 | (ostype &)(os | r); ends( os );
|
---|
177 | } // ?|?
|
---|
178 | } // distribution
|
---|
179 | } // distribution
|
---|
180 |
|
---|
181 | forall( otype RationalImpl | arithmetic( RationalImpl ) | { RationalImpl ?\?( RationalImpl, unsigned long ); } )
|
---|
182 | Rational(RationalImpl) ?\?( Rational(RationalImpl) x, long int y ) {
|
---|
183 | if ( y < 0 ) {
|
---|
184 | return (Rational(RationalImpl)){ x.denominator \ -y, x.numerator \ -y };
|
---|
185 | } else {
|
---|
186 | return (Rational(RationalImpl)){ x.numerator \ y, x.denominator \ y };
|
---|
187 | } // if
|
---|
188 | }
|
---|
189 |
|
---|
190 | // conversion
|
---|
191 |
|
---|
192 | forall( otype RationalImpl | arithmetic( RationalImpl ) | { double convert( RationalImpl ); } )
|
---|
193 | double widen( Rational(RationalImpl) r ) {
|
---|
194 | return convert( r.numerator ) / convert( r.denominator );
|
---|
195 | } // widen
|
---|
196 |
|
---|
197 | forall( otype RationalImpl | arithmetic( RationalImpl ) | { double convert( RationalImpl ); RationalImpl convert( double ); } )
|
---|
198 | Rational(RationalImpl) narrow( double f, RationalImpl md ) {
|
---|
199 | // http://www.ics.uci.edu/~eppstein/numth/frap.c
|
---|
200 | if ( md <= (RationalImpl){1} ) { // maximum fractional digits too small?
|
---|
201 | return (Rational(RationalImpl)){ convert( f ), (RationalImpl){1}}; // truncate fraction
|
---|
202 | } // if
|
---|
203 |
|
---|
204 | // continued fraction coefficients
|
---|
205 | RationalImpl m00 = {1}, m11 = { 1 }, m01 = { 0 }, m10 = { 0 };
|
---|
206 | RationalImpl ai, t;
|
---|
207 |
|
---|
208 | // find terms until denom gets too big
|
---|
209 | for ( ;; ) {
|
---|
210 | ai = convert( f );
|
---|
211 | if ( ! (m10 * ai + m11 <= md) ) break;
|
---|
212 | t = m00 * ai + m01;
|
---|
213 | m01 = m00;
|
---|
214 | m00 = t;
|
---|
215 | t = m10 * ai + m11;
|
---|
216 | m11 = m10;
|
---|
217 | m10 = t;
|
---|
218 | double temp = convert( ai );
|
---|
219 | if ( f == temp ) break; // prevent division by zero
|
---|
220 | f = 1 / (f - temp);
|
---|
221 | if ( f > (double)0x7FFFFFFF ) break; // representation failure
|
---|
222 | } // for
|
---|
223 | return (Rational(RationalImpl)){ m00, m10 };
|
---|
224 | } // narrow
|
---|
225 |
|
---|
226 | // Local Variables: //
|
---|
227 | // tab-width: 4 //
|
---|
228 | // End: //
|
---|