| 1 | // | 
|---|
| 2 | // Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo | 
|---|
| 3 | // | 
|---|
| 4 | // The contents of this file are covered under the licence agreement in the | 
|---|
| 5 | // file "LICENCE" distributed with Cforall. | 
|---|
| 6 | // | 
|---|
| 7 | // rational.c -- | 
|---|
| 8 | // | 
|---|
| 9 | // Author           : Peter A. Buhr | 
|---|
| 10 | // Created On       : Wed Apr  6 17:54:28 2016 | 
|---|
| 11 | // Last Modified By : Peter A. Buhr | 
|---|
| 12 | // Last Modified On : Tue Jul 20 16:30:06 2021 | 
|---|
| 13 | // Update Count     : 193 | 
|---|
| 14 | // | 
|---|
| 15 |  | 
|---|
| 16 | #include "rational.hfa" | 
|---|
| 17 | #include "fstream.hfa" | 
|---|
| 18 | #include "stdlib.hfa" | 
|---|
| 19 |  | 
|---|
| 20 | forall( T | Arithmetic( T ) ) { | 
|---|
| 21 | // helper routines | 
|---|
| 22 |  | 
|---|
| 23 | // Calculate greatest common denominator of two numbers, the first of which may be negative. Used to reduce | 
|---|
| 24 | // rationals.  alternative: https://en.wikipedia.org/wiki/Binary_GCD_algorithm | 
|---|
| 25 | static T gcd( T a, T b ) { | 
|---|
| 26 | for ( ;; ) {                                                                    // Euclid's algorithm | 
|---|
| 27 | T r = a % b; | 
|---|
| 28 | if ( r == (T){0} ) break; | 
|---|
| 29 | a = b; | 
|---|
| 30 | b = r; | 
|---|
| 31 | } // for | 
|---|
| 32 | return b; | 
|---|
| 33 | } // gcd | 
|---|
| 34 |  | 
|---|
| 35 | static T simplify( T & n, T & d ) { | 
|---|
| 36 | if ( d == (T){0} ) { | 
|---|
| 37 | abort | "Invalid rational number construction: denominator cannot be equal to 0."; | 
|---|
| 38 | } // exit | 
|---|
| 39 | if ( d < (T){0} ) { d = -d; n = -n; } // move sign to numerator | 
|---|
| 40 | return gcd( abs( n ), d );                                              // simplify | 
|---|
| 41 | } // Rationalnumber::simplify | 
|---|
| 42 |  | 
|---|
| 43 | // constructors | 
|---|
| 44 |  | 
|---|
| 45 | void ?{}( Rational(T) & r, zero_t ) { | 
|---|
| 46 | r{ (T){0}, (T){1} }; | 
|---|
| 47 | } // rational | 
|---|
| 48 |  | 
|---|
| 49 | void ?{}( Rational(T) & r, one_t ) { | 
|---|
| 50 | r{ (T){1}, (T){1} }; | 
|---|
| 51 | } // rational | 
|---|
| 52 |  | 
|---|
| 53 | void ?{}( Rational(T) & r ) { | 
|---|
| 54 | r{ (T){0}, (T){1} }; | 
|---|
| 55 | } // rational | 
|---|
| 56 |  | 
|---|
| 57 | void ?{}( Rational(T) & r, T n ) { | 
|---|
| 58 | r{ n, (T){1} }; | 
|---|
| 59 | } // rational | 
|---|
| 60 |  | 
|---|
| 61 | void ?{}( Rational(T) & r, T n, T d ) { | 
|---|
| 62 | T t = simplify( n, d );                         // simplify | 
|---|
| 63 | r.[numerator, denominator] = [n / t, d / t]; | 
|---|
| 64 | } // rational | 
|---|
| 65 |  | 
|---|
| 66 | // getter for numerator/denominator | 
|---|
| 67 |  | 
|---|
| 68 | T numerator( Rational(T) r ) { | 
|---|
| 69 | return r.numerator; | 
|---|
| 70 | } // numerator | 
|---|
| 71 |  | 
|---|
| 72 | T denominator( Rational(T) r ) { | 
|---|
| 73 | return r.denominator; | 
|---|
| 74 | } // denominator | 
|---|
| 75 |  | 
|---|
| 76 | [ T, T ] ?=?( & [ T, T ] dest, Rational(T) src ) { | 
|---|
| 77 | return dest = src.[ numerator, denominator ]; | 
|---|
| 78 | } // ?=? | 
|---|
| 79 |  | 
|---|
| 80 | // setter for numerator/denominator | 
|---|
| 81 |  | 
|---|
| 82 | T numerator( Rational(T) r, T n ) { | 
|---|
| 83 | T prev = r.numerator; | 
|---|
| 84 | T t = gcd( abs( n ), r.denominator ); // simplify | 
|---|
| 85 | r.[numerator, denominator] = [n / t, r.denominator / t]; | 
|---|
| 86 | return prev; | 
|---|
| 87 | } // numerator | 
|---|
| 88 |  | 
|---|
| 89 | T denominator( Rational(T) r, T d ) { | 
|---|
| 90 | T prev = r.denominator; | 
|---|
| 91 | T t = simplify( r.numerator, d );       // simplify | 
|---|
| 92 | r.[numerator, denominator] = [r.numerator / t, d / t]; | 
|---|
| 93 | return prev; | 
|---|
| 94 | } // denominator | 
|---|
| 95 |  | 
|---|
| 96 | // comparison | 
|---|
| 97 |  | 
|---|
| 98 | int ?==?( Rational(T) l, Rational(T) r ) { | 
|---|
| 99 | return l.numerator * r.denominator == l.denominator * r.numerator; | 
|---|
| 100 | } // ?==? | 
|---|
| 101 |  | 
|---|
| 102 | int ?!=?( Rational(T) l, Rational(T) r ) { | 
|---|
| 103 | return ! ( l == r ); | 
|---|
| 104 | } // ?!=? | 
|---|
| 105 |  | 
|---|
| 106 | int ?!=?( Rational(T) l, zero_t ) { | 
|---|
| 107 | return ! ( l == (Rational(T)){ 0 } ); | 
|---|
| 108 | } // ?!=? | 
|---|
| 109 |  | 
|---|
| 110 | int ?<?( Rational(T) l, Rational(T) r ) { | 
|---|
| 111 | return l.numerator * r.denominator < l.denominator * r.numerator; | 
|---|
| 112 | } // ?<? | 
|---|
| 113 |  | 
|---|
| 114 | int ?<=?( Rational(T) l, Rational(T) r ) { | 
|---|
| 115 | return l.numerator * r.denominator <= l.denominator * r.numerator; | 
|---|
| 116 | } // ?<=? | 
|---|
| 117 |  | 
|---|
| 118 | int ?>?( Rational(T) l, Rational(T) r ) { | 
|---|
| 119 | return ! ( l <= r ); | 
|---|
| 120 | } // ?>? | 
|---|
| 121 |  | 
|---|
| 122 | int ?>=?( Rational(T) l, Rational(T) r ) { | 
|---|
| 123 | return ! ( l < r ); | 
|---|
| 124 | } // ?>=? | 
|---|
| 125 |  | 
|---|
| 126 | // arithmetic | 
|---|
| 127 |  | 
|---|
| 128 | Rational(T) +?( Rational(T) r ) { | 
|---|
| 129 | return (Rational(T)){ r.numerator, r.denominator }; | 
|---|
| 130 | } // +? | 
|---|
| 131 |  | 
|---|
| 132 | Rational(T) -?( Rational(T) r ) { | 
|---|
| 133 | return (Rational(T)){ -r.numerator, r.denominator }; | 
|---|
| 134 | } // -? | 
|---|
| 135 |  | 
|---|
| 136 | Rational(T) ?+?( Rational(T) l, Rational(T) r ) { | 
|---|
| 137 | if ( l.denominator == r.denominator ) {                 // special case | 
|---|
| 138 | return (Rational(T)){ l.numerator + r.numerator, l.denominator }; | 
|---|
| 139 | } else { | 
|---|
| 140 | return (Rational(T)){ l.numerator * r.denominator + l.denominator * r.numerator, l.denominator * r.denominator }; | 
|---|
| 141 | } // if | 
|---|
| 142 | } // ?+? | 
|---|
| 143 |  | 
|---|
| 144 | Rational(T) ?+=?( Rational(T) & l, Rational(T) r ) { | 
|---|
| 145 | l = l + r; | 
|---|
| 146 | return l; | 
|---|
| 147 | } // ?+? | 
|---|
| 148 |  | 
|---|
| 149 | Rational(T) ?+=?( Rational(T) & l, one_t ) { | 
|---|
| 150 | l = l + (Rational(T)){ 1 }; | 
|---|
| 151 | return l; | 
|---|
| 152 | } // ?+? | 
|---|
| 153 |  | 
|---|
| 154 | Rational(T) ?-?( Rational(T) l, Rational(T) r ) { | 
|---|
| 155 | if ( l.denominator == r.denominator ) {                 // special case | 
|---|
| 156 | return (Rational(T)){ l.numerator - r.numerator, l.denominator }; | 
|---|
| 157 | } else { | 
|---|
| 158 | return (Rational(T)){ l.numerator * r.denominator - l.denominator * r.numerator, l.denominator * r.denominator }; | 
|---|
| 159 | } // if | 
|---|
| 160 | } // ?-? | 
|---|
| 161 |  | 
|---|
| 162 | Rational(T) ?-=?( Rational(T) & l, Rational(T) r ) { | 
|---|
| 163 | l = l - r; | 
|---|
| 164 | return l; | 
|---|
| 165 | } // ?-? | 
|---|
| 166 |  | 
|---|
| 167 | Rational(T) ?-=?( Rational(T) & l, one_t ) { | 
|---|
| 168 | l = l - (Rational(T)){ 1 }; | 
|---|
| 169 | return l; | 
|---|
| 170 | } // ?-? | 
|---|
| 171 |  | 
|---|
| 172 | Rational(T) ?*?( Rational(T) l, Rational(T) r ) { | 
|---|
| 173 | return (Rational(T)){ l.numerator * r.numerator, l.denominator * r.denominator }; | 
|---|
| 174 | } // ?*? | 
|---|
| 175 |  | 
|---|
| 176 | Rational(T) ?*=?( Rational(T) & l, Rational(T) r ) { | 
|---|
| 177 | return l = l * r; | 
|---|
| 178 | } // ?*? | 
|---|
| 179 |  | 
|---|
| 180 | Rational(T) ?/?( Rational(T) l, Rational(T) r ) { | 
|---|
| 181 | if ( r.numerator < (T){0} ) { | 
|---|
| 182 | r.[numerator, denominator] = [-r.numerator, -r.denominator]; | 
|---|
| 183 | } // if | 
|---|
| 184 | return (Rational(T)){ l.numerator * r.denominator, l.denominator * r.numerator }; | 
|---|
| 185 | } // ?/? | 
|---|
| 186 |  | 
|---|
| 187 | Rational(T) ?/=?( Rational(T) & l, Rational(T) r ) { | 
|---|
| 188 | return l = l / r; | 
|---|
| 189 | } // ?/? | 
|---|
| 190 |  | 
|---|
| 191 | // I/O | 
|---|
| 192 |  | 
|---|
| 193 | forall( istype & | istream( istype ) | { istype & ?|?( istype &, T & ); } ) | 
|---|
| 194 | istype & ?|?( istype & is, Rational(T) & r ) { | 
|---|
| 195 | is | r.numerator | r.denominator; | 
|---|
| 196 | T t = simplify( r.numerator, r.denominator ); | 
|---|
| 197 | r.numerator /= t; | 
|---|
| 198 | r.denominator /= t; | 
|---|
| 199 | return is; | 
|---|
| 200 | } // ?|? | 
|---|
| 201 |  | 
|---|
| 202 | forall( ostype & | ostream( ostype ) | { ostype & ?|?( ostype &, T ); } ) { | 
|---|
| 203 | ostype & ?|?( ostype & os, Rational(T) r ) { | 
|---|
| 204 | return os | r.numerator | '/' | r.denominator; | 
|---|
| 205 | } // ?|? | 
|---|
| 206 |  | 
|---|
| 207 | void ?|?( ostype & os, Rational(T) r ) { | 
|---|
| 208 | (ostype &)(os | r); ends( os ); | 
|---|
| 209 | } // ?|? | 
|---|
| 210 | } // distribution | 
|---|
| 211 | } // distribution | 
|---|
| 212 |  | 
|---|
| 213 | forall( T | Arithmetic( T ) | { T ?\?( T, unsigned long ); } ) { | 
|---|
| 214 | Rational(T) ?\?( Rational(T) x, long int y ) { | 
|---|
| 215 | if ( y < 0 ) { | 
|---|
| 216 | return (Rational(T)){ x.denominator \ -y, x.numerator \ -y }; | 
|---|
| 217 | } else { | 
|---|
| 218 | return (Rational(T)){ x.numerator \ y, x.denominator \ y }; | 
|---|
| 219 | } // if | 
|---|
| 220 | } // ?\? | 
|---|
| 221 |  | 
|---|
| 222 | Rational(T) ?\=?( Rational(T) & x, long int y ) { | 
|---|
| 223 | return x = x \ y; | 
|---|
| 224 | } // ?\? | 
|---|
| 225 | } // distribution | 
|---|
| 226 |  | 
|---|
| 227 | // conversion | 
|---|
| 228 |  | 
|---|
| 229 | forall( T | Arithmetic( T ) | { double convert( T ); } ) | 
|---|
| 230 | double widen( Rational(T) r ) { | 
|---|
| 231 | return convert( r.numerator ) / convert( r.denominator ); | 
|---|
| 232 | } // widen | 
|---|
| 233 |  | 
|---|
| 234 | forall( T | Arithmetic( T ) | { double convert( T ); T convert( double ); } ) | 
|---|
| 235 | Rational(T) narrow( double f, T md ) { | 
|---|
| 236 | // http://www.ics.uci.edu/~eppstein/numth/frap.c | 
|---|
| 237 | if ( md <= (T){1} ) {                                   // maximum fractional digits too small? | 
|---|
| 238 | return (Rational(T)){ convert( f ), (T){1}}; // truncate fraction | 
|---|
| 239 | } // if | 
|---|
| 240 |  | 
|---|
| 241 | // continued fraction coefficients | 
|---|
| 242 | T m00 = {1}, m11 = { 1 }, m01 = { 0 }, m10 = { 0 }; | 
|---|
| 243 | T ai, t; | 
|---|
| 244 |  | 
|---|
| 245 | // find terms until denom gets too big | 
|---|
| 246 | for ( ;; ) { | 
|---|
| 247 | ai = convert( f ); | 
|---|
| 248 | if ( ! (m10 * ai + m11 <= md) ) break; | 
|---|
| 249 | t = m00 * ai + m01; | 
|---|
| 250 | m01 = m00; | 
|---|
| 251 | m00 = t; | 
|---|
| 252 | t = m10 * ai + m11; | 
|---|
| 253 | m11 = m10; | 
|---|
| 254 | m10 = t; | 
|---|
| 255 | double temp = convert( ai ); | 
|---|
| 256 | if ( f == temp ) break;                                                       // prevent division by zero | 
|---|
| 257 | f = 1 / (f - temp); | 
|---|
| 258 | if ( f > (double)0x7FFFFFFF ) break;                          // representation failure | 
|---|
| 259 | } // for | 
|---|
| 260 | return (Rational(T)){ m00, m10 }; | 
|---|
| 261 | } // narrow | 
|---|
| 262 |  | 
|---|
| 263 | // Local Variables: // | 
|---|
| 264 | // tab-width: 4 // | 
|---|
| 265 | // End: // | 
|---|