| 1 | //
 | 
|---|
| 2 | // Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
 | 
|---|
| 3 | //
 | 
|---|
| 4 | // The contents of this file are covered under the licence agreement in the
 | 
|---|
| 5 | // file "LICENCE" distributed with Cforall.
 | 
|---|
| 6 | //
 | 
|---|
| 7 | // rational.c --
 | 
|---|
| 8 | //
 | 
|---|
| 9 | // Author           : Peter A. Buhr
 | 
|---|
| 10 | // Created On       : Wed Apr  6 17:54:28 2016
 | 
|---|
| 11 | // Last Modified By : Peter A. Buhr
 | 
|---|
| 12 | // Last Modified On : Thu Aug 25 18:09:58 2022
 | 
|---|
| 13 | // Update Count     : 194
 | 
|---|
| 14 | //
 | 
|---|
| 15 | 
 | 
|---|
| 16 | #include "rational.hfa"
 | 
|---|
| 17 | #include "fstream.hfa"
 | 
|---|
| 18 | #include "stdlib.hfa"
 | 
|---|
| 19 | 
 | 
|---|
| 20 | #pragma GCC visibility push(default)
 | 
|---|
| 21 | 
 | 
|---|
| 22 | forall( T | Arithmetic( T ) ) {
 | 
|---|
| 23 |         // helper routines
 | 
|---|
| 24 | 
 | 
|---|
| 25 |         // Calculate greatest common denominator of two numbers, the first of which may be negative. Used to reduce
 | 
|---|
| 26 |         // rationals.  alternative: https://en.wikipedia.org/wiki/Binary_GCD_algorithm
 | 
|---|
| 27 |         static T gcd( T a, T b ) {
 | 
|---|
| 28 |                 for () {                                                                                // Euclid's algorithm
 | 
|---|
| 29 |                         T r = a % b;
 | 
|---|
| 30 |                   if ( r == (T){0} ) break;
 | 
|---|
| 31 |                         a = b;
 | 
|---|
| 32 |                         b = r;
 | 
|---|
| 33 |                 } // for
 | 
|---|
| 34 |                 return b;
 | 
|---|
| 35 |         } // gcd
 | 
|---|
| 36 | 
 | 
|---|
| 37 |         static T simplify( T & n, T & d ) {
 | 
|---|
| 38 |                 if ( d == (T){0} ) {
 | 
|---|
| 39 |                         abort | "Invalid rational number construction: denominator cannot be equal to 0.";
 | 
|---|
| 40 |                 } // exit
 | 
|---|
| 41 |                 if ( d < (T){0} ) { d = -d; n = -n; } // move sign to numerator
 | 
|---|
| 42 |                 return gcd( abs( n ), d );                                              // simplify
 | 
|---|
| 43 |         } // Rationalnumber::simplify
 | 
|---|
| 44 | 
 | 
|---|
| 45 |         // constructors
 | 
|---|
| 46 | 
 | 
|---|
| 47 |         void ?{}( Rational(T) & r, zero_t ) {
 | 
|---|
| 48 |                 r{ (T){0}, (T){1} };
 | 
|---|
| 49 |         } // rational
 | 
|---|
| 50 | 
 | 
|---|
| 51 |         void ?{}( Rational(T) & r, one_t ) {
 | 
|---|
| 52 |                 r{ (T){1}, (T){1} };
 | 
|---|
| 53 |         } // rational
 | 
|---|
| 54 | 
 | 
|---|
| 55 |         void ?{}( Rational(T) & r ) {
 | 
|---|
| 56 |                 r{ (T){0}, (T){1} };
 | 
|---|
| 57 |         } // rational
 | 
|---|
| 58 | 
 | 
|---|
| 59 |         void ?{}( Rational(T) & r, T n ) {
 | 
|---|
| 60 |                 r{ n, (T){1} };
 | 
|---|
| 61 |         } // rational
 | 
|---|
| 62 | 
 | 
|---|
| 63 |         void ?{}( Rational(T) & r, T n, T d ) {
 | 
|---|
| 64 |                 T t = simplify( n, d );                         // simplify
 | 
|---|
| 65 |                 r.[numerator, denominator] = [n / t, d / t];
 | 
|---|
| 66 |         } // rational
 | 
|---|
| 67 | 
 | 
|---|
| 68 |         // getter for numerator/denominator
 | 
|---|
| 69 | 
 | 
|---|
| 70 |         T numerator( Rational(T) r ) {
 | 
|---|
| 71 |                 return r.numerator;
 | 
|---|
| 72 |         } // numerator
 | 
|---|
| 73 | 
 | 
|---|
| 74 |         T denominator( Rational(T) r ) {
 | 
|---|
| 75 |                 return r.denominator;
 | 
|---|
| 76 |         } // denominator
 | 
|---|
| 77 | 
 | 
|---|
| 78 |         [ T, T ] ?=?( & [ T, T ] dest, Rational(T) src ) {
 | 
|---|
| 79 |                 return dest = src.[ numerator, denominator ];
 | 
|---|
| 80 |         } // ?=?
 | 
|---|
| 81 | 
 | 
|---|
| 82 |         // setter for numerator/denominator
 | 
|---|
| 83 | 
 | 
|---|
| 84 |         T numerator( Rational(T) r, T n ) {
 | 
|---|
| 85 |                 T prev = r.numerator;
 | 
|---|
| 86 |                 T t = gcd( abs( n ), r.denominator ); // simplify
 | 
|---|
| 87 |                 r.[numerator, denominator] = [n / t, r.denominator / t];
 | 
|---|
| 88 |                 return prev;
 | 
|---|
| 89 |         } // numerator
 | 
|---|
| 90 | 
 | 
|---|
| 91 |         T denominator( Rational(T) r, T d ) {
 | 
|---|
| 92 |                 T prev = r.denominator;
 | 
|---|
| 93 |                 T t = simplify( r.numerator, d );       // simplify
 | 
|---|
| 94 |                 r.[numerator, denominator] = [r.numerator / t, d / t];
 | 
|---|
| 95 |                 return prev;
 | 
|---|
| 96 |         } // denominator
 | 
|---|
| 97 | 
 | 
|---|
| 98 |         // comparison
 | 
|---|
| 99 | 
 | 
|---|
| 100 |         int ?==?( Rational(T) l, Rational(T) r ) {
 | 
|---|
| 101 |                 return l.numerator * r.denominator == l.denominator * r.numerator;
 | 
|---|
| 102 |         } // ?==?
 | 
|---|
| 103 | 
 | 
|---|
| 104 |         int ?!=?( Rational(T) l, Rational(T) r ) {
 | 
|---|
| 105 |                 return ! ( l == r );
 | 
|---|
| 106 |         } // ?!=?
 | 
|---|
| 107 | 
 | 
|---|
| 108 |         int ?!=?( Rational(T) l, zero_t ) {
 | 
|---|
| 109 |                 return ! ( l == (Rational(T)){ 0 } );
 | 
|---|
| 110 |         } // ?!=?
 | 
|---|
| 111 | 
 | 
|---|
| 112 |         int ?<?( Rational(T) l, Rational(T) r ) {
 | 
|---|
| 113 |                 return l.numerator * r.denominator < l.denominator * r.numerator;
 | 
|---|
| 114 |         } // ?<?
 | 
|---|
| 115 | 
 | 
|---|
| 116 |         int ?<=?( Rational(T) l, Rational(T) r ) {
 | 
|---|
| 117 |                 return l.numerator * r.denominator <= l.denominator * r.numerator;
 | 
|---|
| 118 |         } // ?<=?
 | 
|---|
| 119 | 
 | 
|---|
| 120 |         int ?>?( Rational(T) l, Rational(T) r ) {
 | 
|---|
| 121 |                 return ! ( l <= r );
 | 
|---|
| 122 |         } // ?>?
 | 
|---|
| 123 | 
 | 
|---|
| 124 |         int ?>=?( Rational(T) l, Rational(T) r ) {
 | 
|---|
| 125 |                 return ! ( l < r );
 | 
|---|
| 126 |         } // ?>=?
 | 
|---|
| 127 | 
 | 
|---|
| 128 |         // arithmetic
 | 
|---|
| 129 | 
 | 
|---|
| 130 |         Rational(T) +?( Rational(T) r ) {
 | 
|---|
| 131 |                 return (Rational(T)){ r.numerator, r.denominator };
 | 
|---|
| 132 |         } // +?
 | 
|---|
| 133 | 
 | 
|---|
| 134 |         Rational(T) -?( Rational(T) r ) {
 | 
|---|
| 135 |                 return (Rational(T)){ -r.numerator, r.denominator };
 | 
|---|
| 136 |         } // -?
 | 
|---|
| 137 | 
 | 
|---|
| 138 |         Rational(T) ?+?( Rational(T) l, Rational(T) r ) {
 | 
|---|
| 139 |                 if ( l.denominator == r.denominator ) {                 // special case
 | 
|---|
| 140 |                         return (Rational(T)){ l.numerator + r.numerator, l.denominator };
 | 
|---|
| 141 |                 } else {
 | 
|---|
| 142 |                         return (Rational(T)){ l.numerator * r.denominator + l.denominator * r.numerator, l.denominator * r.denominator };
 | 
|---|
| 143 |                 } // if
 | 
|---|
| 144 |         } // ?+?
 | 
|---|
| 145 | 
 | 
|---|
| 146 |         Rational(T) ?+=?( Rational(T) & l, Rational(T) r ) {
 | 
|---|
| 147 |                 l = l + r;
 | 
|---|
| 148 |                 return l;
 | 
|---|
| 149 |         } // ?+?
 | 
|---|
| 150 | 
 | 
|---|
| 151 |         Rational(T) ?+=?( Rational(T) & l, one_t ) {
 | 
|---|
| 152 |                 l = l + (Rational(T)){ 1 };
 | 
|---|
| 153 |                 return l;
 | 
|---|
| 154 |         } // ?+?
 | 
|---|
| 155 | 
 | 
|---|
| 156 |         Rational(T) ?-?( Rational(T) l, Rational(T) r ) {
 | 
|---|
| 157 |                 if ( l.denominator == r.denominator ) {                 // special case
 | 
|---|
| 158 |                         return (Rational(T)){ l.numerator - r.numerator, l.denominator };
 | 
|---|
| 159 |                 } else {
 | 
|---|
| 160 |                         return (Rational(T)){ l.numerator * r.denominator - l.denominator * r.numerator, l.denominator * r.denominator };
 | 
|---|
| 161 |                 } // if
 | 
|---|
| 162 |         } // ?-?
 | 
|---|
| 163 | 
 | 
|---|
| 164 |         Rational(T) ?-=?( Rational(T) & l, Rational(T) r ) {
 | 
|---|
| 165 |                 l = l - r;
 | 
|---|
| 166 |                 return l;
 | 
|---|
| 167 |         } // ?-?
 | 
|---|
| 168 | 
 | 
|---|
| 169 |         Rational(T) ?-=?( Rational(T) & l, one_t ) {
 | 
|---|
| 170 |                 l = l - (Rational(T)){ 1 };
 | 
|---|
| 171 |                 return l;
 | 
|---|
| 172 |         } // ?-?
 | 
|---|
| 173 | 
 | 
|---|
| 174 |         Rational(T) ?*?( Rational(T) l, Rational(T) r ) {
 | 
|---|
| 175 |                 return (Rational(T)){ l.numerator * r.numerator, l.denominator * r.denominator };
 | 
|---|
| 176 |         } // ?*?
 | 
|---|
| 177 | 
 | 
|---|
| 178 |         Rational(T) ?*=?( Rational(T) & l, Rational(T) r ) {
 | 
|---|
| 179 |                 return l = l * r;
 | 
|---|
| 180 |         } // ?*?
 | 
|---|
| 181 | 
 | 
|---|
| 182 |         Rational(T) ?/?( Rational(T) l, Rational(T) r ) {
 | 
|---|
| 183 |                 if ( r.numerator < (T){0} ) {
 | 
|---|
| 184 |                         r.[numerator, denominator] = [-r.numerator, -r.denominator];
 | 
|---|
| 185 |                 } // if
 | 
|---|
| 186 |                 return (Rational(T)){ l.numerator * r.denominator, l.denominator * r.numerator };
 | 
|---|
| 187 |         } // ?/?
 | 
|---|
| 188 | 
 | 
|---|
| 189 |         Rational(T) ?/=?( Rational(T) & l, Rational(T) r ) {
 | 
|---|
| 190 |                 return l = l / r;
 | 
|---|
| 191 |         } // ?/?
 | 
|---|
| 192 | 
 | 
|---|
| 193 |         // I/O
 | 
|---|
| 194 | 
 | 
|---|
| 195 |         forall( istype & | istream( istype ) | { istype & ?|?( istype &, T & ); } )
 | 
|---|
| 196 |         istype & ?|?( istype & is, Rational(T) & r ) {
 | 
|---|
| 197 |                 is | r.numerator | r.denominator;
 | 
|---|
| 198 |                 T t = simplify( r.numerator, r.denominator );
 | 
|---|
| 199 |                 r.numerator /= t;
 | 
|---|
| 200 |                 r.denominator /= t;
 | 
|---|
| 201 |                 return is;
 | 
|---|
| 202 |         } // ?|?
 | 
|---|
| 203 | 
 | 
|---|
| 204 |         forall( ostype & | ostream( ostype ) | { ostype & ?|?( ostype &, T ); } ) {
 | 
|---|
| 205 |                 ostype & ?|?( ostype & os, Rational(T) r ) {
 | 
|---|
| 206 |                         return os | r.numerator | '/' | r.denominator;
 | 
|---|
| 207 |                 } // ?|?
 | 
|---|
| 208 | 
 | 
|---|
| 209 |                 void ?|?( ostype & os, Rational(T) r ) {
 | 
|---|
| 210 |                         (ostype &)(os | r); ends( os );
 | 
|---|
| 211 |                 } // ?|?
 | 
|---|
| 212 |         } // distribution
 | 
|---|
| 213 | } // distribution
 | 
|---|
| 214 | 
 | 
|---|
| 215 | forall( T | Arithmetic( T ) | { T ?\?( T, unsigned long ); } ) {
 | 
|---|
| 216 |         Rational(T) ?\?( Rational(T) x, long int y ) {
 | 
|---|
| 217 |                 if ( y < 0 ) {
 | 
|---|
| 218 |                         return (Rational(T)){ x.denominator \ -y, x.numerator \ -y };
 | 
|---|
| 219 |                 } else {
 | 
|---|
| 220 |                         return (Rational(T)){ x.numerator \ y, x.denominator \ y };
 | 
|---|
| 221 |                 } // if
 | 
|---|
| 222 |         } // ?\?
 | 
|---|
| 223 | 
 | 
|---|
| 224 |         Rational(T) ?\=?( Rational(T) & x, long int y ) {
 | 
|---|
| 225 |                 return x = x \ y;
 | 
|---|
| 226 |         } // ?\?
 | 
|---|
| 227 | } // distribution
 | 
|---|
| 228 | 
 | 
|---|
| 229 | // conversion
 | 
|---|
| 230 | 
 | 
|---|
| 231 | forall( T | Arithmetic( T ) | { double convert( T ); } )
 | 
|---|
| 232 | double widen( Rational(T) r ) {
 | 
|---|
| 233 |         return convert( r.numerator ) / convert( r.denominator );
 | 
|---|
| 234 | } // widen
 | 
|---|
| 235 | 
 | 
|---|
| 236 | forall( T | Arithmetic( T ) | { double convert( T ); T convert( double ); } )
 | 
|---|
| 237 | Rational(T) narrow( double f, T md ) {
 | 
|---|
| 238 |         // http://www.ics.uci.edu/~eppstein/numth/frap.c
 | 
|---|
| 239 |         if ( md <= (T){1} ) {                                   // maximum fractional digits too small?
 | 
|---|
| 240 |                 return (Rational(T)){ convert( f ), (T){1}}; // truncate fraction
 | 
|---|
| 241 |         } // if
 | 
|---|
| 242 | 
 | 
|---|
| 243 |         // continued fraction coefficients
 | 
|---|
| 244 |         T m00 = {1}, m11 = { 1 }, m01 = { 0 }, m10 = { 0 };
 | 
|---|
| 245 |         T ai, t;
 | 
|---|
| 246 | 
 | 
|---|
| 247 |         // find terms until denom gets too big
 | 
|---|
| 248 |         for () {
 | 
|---|
| 249 |                 ai = convert( f );
 | 
|---|
| 250 |           if ( ! (m10 * ai + m11 <= md) ) break;
 | 
|---|
| 251 |                 t = m00 * ai + m01;
 | 
|---|
| 252 |                 m01 = m00;
 | 
|---|
| 253 |                 m00 = t;
 | 
|---|
| 254 |                 t = m10 * ai + m11;
 | 
|---|
| 255 |                 m11 = m10;
 | 
|---|
| 256 |                 m10 = t;
 | 
|---|
| 257 |                 double temp = convert( ai );
 | 
|---|
| 258 |           if ( f == temp ) break;                                                       // prevent division by zero
 | 
|---|
| 259 |                 f = 1 / (f - temp);
 | 
|---|
| 260 |           if ( f > (double)0x7FFFFFFF ) break;                          // representation failure
 | 
|---|
| 261 |         } // for
 | 
|---|
| 262 |         return (Rational(T)){ m00, m10 };
 | 
|---|
| 263 | } // narrow
 | 
|---|
| 264 | 
 | 
|---|
| 265 | // Local Variables: //
 | 
|---|
| 266 | // tab-width: 4 //
 | 
|---|
| 267 | // End: //
 | 
|---|