source: libcfa/src/rational.cfa@ 6b765d5

Last change on this file since 6b765d5 was eae8b37, checked in by JiadaL <j82liang@…>, 10 months ago

Move enum.hfa/enum.cfa to prelude

  • Property mode set to 100644
File size: 6.9 KB
RevLine 
[a493682]1//
[53ba273]2// Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
[a493682]6//
7// rational.c --
8//
[53ba273]9// Author : Peter A. Buhr
10// Created On : Wed Apr 6 17:54:28 2016
11// Last Modified By : Peter A. Buhr
[f5e37a4]12// Last Modified On : Wed Nov 27 18:06:43 2024
13// Update Count : 208
[a493682]14//
[53ba273]15
[58b6d1b]16#include "rational.hfa"
17#include "fstream.hfa"
18#include "stdlib.hfa"
[53ba273]19
[0aa4beb]20#pragma GCC visibility push(default)
21
[f5e37a4]22// Arithmetic, Relational
[eae8b37]23forall( T | Simple(T) ) {
[3ce0d440]24 // helper routines
25 // Calculate greatest common denominator of two numbers, the first of which may be negative. Used to reduce
26 // rationals. alternative: https://en.wikipedia.org/wiki/Binary_GCD_algorithm
[5dc4c7e]27 static T gcd( T a, T b ) {
[f6a4917]28 for () { // Euclid's algorithm
[5dc4c7e]29 T r = a % b;
30 if ( r == (T){0} ) break;
[3ce0d440]31 a = b;
32 b = r;
33 } // for
34 return b;
35 } // gcd
36
[5dc4c7e]37 static T simplify( T & n, T & d ) {
38 if ( d == (T){0} ) {
[ff2a33e]39 abort | "Invalid rational number construction: denominator cannot be equal to 0.";
[3ce0d440]40 } // exit
[541dbc09]41 if ( d < (T){0} ) { d = -d; n = -n; } // move sign to numerator
[3ce0d440]42 return gcd( abs( n ), d ); // simplify
[541dbc09]43 } // simplify
[eae8b37]44}
[3ce0d440]45
[eae8b37]46forall( T | arithmetic( T ) ) {
[3ce0d440]47 // constructors
48
[541dbc09]49 void ?{}( rational(T) & r, zero_t ) {
[5dc4c7e]50 r{ (T){0}, (T){1} };
[3ce0d440]51 } // rational
52
[541dbc09]53 void ?{}( rational(T) & r, one_t ) {
[5dc4c7e]54 r{ (T){1}, (T){1} };
[3ce0d440]55 } // rational
56
[541dbc09]57 void ?{}( rational(T) & r ) {
[5dc4c7e]58 r{ (T){0}, (T){1} };
[3ce0d440]59 } // rational
60
[541dbc09]61 void ?{}( rational(T) & r, T n ) {
[5dc4c7e]62 r{ n, (T){1} };
[f00b2c2c]63 } // rational
64
[541dbc09]65 void ?{}( rational(T) & r, T n, T d ) {
66 T t = simplify( n, d ); // simplify
[5dc4c7e]67 r.[numerator, denominator] = [n / t, d / t];
[f00b2c2c]68 } // rational
[3ce0d440]69
70 // getter for numerator/denominator
71
[541dbc09]72 T numerator( rational(T) r ) {
[3ce0d440]73 return r.numerator;
74 } // numerator
75
[541dbc09]76 T denominator( rational(T) r ) {
[3ce0d440]77 return r.denominator;
78 } // denominator
79
[92211d9]80 [ T, T ] ?=?( & [ T, T ] dst, rational(T) src ) {
81 return dst = src.[ numerator, denominator ];
[3ce0d440]82 } // ?=?
83
84 // setter for numerator/denominator
85
[541dbc09]86 T numerator( rational(T) r, T n ) {
[5dc4c7e]87 T prev = r.numerator;
[541dbc09]88 T t = gcd( abs( n ), r.denominator ); // simplify
[0087e0e]89 r.[numerator, denominator] = [n / t, r.denominator / t];
[3ce0d440]90 return prev;
91 } // numerator
92
[541dbc09]93 T denominator( rational(T) r, T d ) {
[5dc4c7e]94 T prev = r.denominator;
[541dbc09]95 T t = simplify( r.numerator, d ); // simplify
[0087e0e]96 r.[numerator, denominator] = [r.numerator / t, d / t];
[3ce0d440]97 return prev;
98 } // denominator
99
100 // comparison
101
[541dbc09]102 int ?==?( rational(T) l, rational(T) r ) {
[3ce0d440]103 return l.numerator * r.denominator == l.denominator * r.numerator;
104 } // ?==?
105
[541dbc09]106 int ?!=?( rational(T) l, rational(T) r ) {
[3ce0d440]107 return ! ( l == r );
108 } // ?!=?
109
[541dbc09]110 int ?!=?( rational(T) l, zero_t ) {
111 return ! ( l == (rational(T)){ 0 } );
[5dc4c7e]112 } // ?!=?
113
[541dbc09]114 int ?<?( rational(T) l, rational(T) r ) {
[3ce0d440]115 return l.numerator * r.denominator < l.denominator * r.numerator;
116 } // ?<?
117
[541dbc09]118 int ?<=?( rational(T) l, rational(T) r ) {
[3ce0d440]119 return l.numerator * r.denominator <= l.denominator * r.numerator;
120 } // ?<=?
121
[541dbc09]122 int ?>?( rational(T) l, rational(T) r ) {
[3ce0d440]123 return ! ( l <= r );
124 } // ?>?
125
[541dbc09]126 int ?>=?( rational(T) l, rational(T) r ) {
[3ce0d440]127 return ! ( l < r );
128 } // ?>=?
129
130 // arithmetic
131
[541dbc09]132 rational(T) +?( rational(T) r ) {
133 return (rational(T)){ r.numerator, r.denominator };
[3ce0d440]134 } // +?
[53ba273]135
[541dbc09]136 rational(T) -?( rational(T) r ) {
137 return (rational(T)){ -r.numerator, r.denominator };
[3ce0d440]138 } // -?
139
[541dbc09]140 rational(T) ?+?( rational(T) l, rational(T) r ) {
[3ce0d440]141 if ( l.denominator == r.denominator ) { // special case
[541dbc09]142 return (rational(T)){ l.numerator + r.numerator, l.denominator };
[3ce0d440]143 } else {
[541dbc09]144 return (rational(T)){ l.numerator * r.denominator + l.denominator * r.numerator, l.denominator * r.denominator };
[3ce0d440]145 } // if
146 } // ?+?
147
[541dbc09]148 rational(T) ?+=?( rational(T) & l, rational(T) r ) {
[5dc4c7e]149 l = l + r;
150 return l;
151 } // ?+?
152
[541dbc09]153 rational(T) ?+=?( rational(T) & l, one_t ) {
154 l = l + (rational(T)){ 1 };
[5dc4c7e]155 return l;
156 } // ?+?
157
[541dbc09]158 rational(T) ?-?( rational(T) l, rational(T) r ) {
[3ce0d440]159 if ( l.denominator == r.denominator ) { // special case
[541dbc09]160 return (rational(T)){ l.numerator - r.numerator, l.denominator };
[3ce0d440]161 } else {
[541dbc09]162 return (rational(T)){ l.numerator * r.denominator - l.denominator * r.numerator, l.denominator * r.denominator };
[3ce0d440]163 } // if
164 } // ?-?
165
[541dbc09]166 rational(T) ?-=?( rational(T) & l, rational(T) r ) {
[5dc4c7e]167 l = l - r;
168 return l;
169 } // ?-?
170
[541dbc09]171 rational(T) ?-=?( rational(T) & l, one_t ) {
172 l = l - (rational(T)){ 1 };
[5dc4c7e]173 return l;
174 } // ?-?
175
[541dbc09]176 rational(T) ?*?( rational(T) l, rational(T) r ) {
177 return (rational(T)){ l.numerator * r.numerator, l.denominator * r.denominator };
[5dc4c7e]178 } // ?*?
179
[541dbc09]180 rational(T) ?*=?( rational(T) & l, rational(T) r ) {
[5dc4c7e]181 return l = l * r;
[3ce0d440]182 } // ?*?
183
[541dbc09]184 rational(T) ?/?( rational(T) l, rational(T) r ) {
[5dc4c7e]185 if ( r.numerator < (T){0} ) {
[0087e0e]186 r.[numerator, denominator] = [-r.numerator, -r.denominator];
[3ce0d440]187 } // if
[541dbc09]188 return (rational(T)){ l.numerator * r.denominator, l.denominator * r.numerator };
[5dc4c7e]189 } // ?/?
190
[541dbc09]191 rational(T) ?/=?( rational(T) & l, rational(T) r ) {
[5dc4c7e]192 return l = l / r;
[3ce0d440]193 } // ?/?
[f5e37a4]194} // distribution
[3ce0d440]195
[f5e37a4]196// I/O
[3ce0d440]197
[f5e37a4]198forall( T ) {
[eae8b37]199 forall( istype & | istream( istype ) | { istype & ?|?( istype &, T & ); } | Simple(T) )
[541dbc09]200 istype & ?|?( istype & is, rational(T) & r ) {
[3ce0d440]201 is | r.numerator | r.denominator;
[5dc4c7e]202 T t = simplify( r.numerator, r.denominator );
[3ce0d440]203 r.numerator /= t;
204 r.denominator /= t;
205 return is;
206 } // ?|?
207
[5dc4c7e]208 forall( ostype & | ostream( ostype ) | { ostype & ?|?( ostype &, T ); } ) {
[74cbaa3]209 ostype & ?|?( ostype & os, rational(T) r ) {
[200fcb3]210 return os | r.numerator | '/' | r.denominator;
211 } // ?|?
[b12e4ad]212 OSTYPE_VOID_IMPL( os, rational(T) )
[200fcb3]213 } // distribution
[3ce0d440]214} // distribution
[630a82a]215
[f5e37a4]216// Exponentiation
217
[541dbc09]218forall( T | arithmetic( T ) | { T ?\?( T, unsigned long ); } ) {
[47174c4]219 rational(T) ?\?( rational(T) x, long int y ) {
[5dc4c7e]220 if ( y < 0 ) {
[541dbc09]221 return (rational(T)){ x.denominator \ -y, x.numerator \ -y };
[5dc4c7e]222 } else {
[541dbc09]223 return (rational(T)){ x.numerator \ y, x.denominator \ y };
[5dc4c7e]224 } // if
225 } // ?\?
226
[541dbc09]227 rational(T) ?\=?( rational(T) & x, long int y ) {
[5dc4c7e]228 return x = x \ y;
229 } // ?\?
230} // distribution
[0087e0e]231
[f5e37a4]232// Conversion
[630a82a]233
[541dbc09]234forall( T | arithmetic( T ) | { double convert( T ); } )
235double widen( rational(T) r ) {
[6c6455f]236 return convert( r.numerator ) / convert( r.denominator );
237} // widen
238
[541dbc09]239forall( T | arithmetic( T ) | { double convert( T ); T convert( double ); } )
240rational(T) narrow( double f, T md ) {
[3ce0d440]241 // http://www.ics.uci.edu/~eppstein/numth/frap.c
[541dbc09]242 if ( md <= (T){1} ) { // maximum fractional digits too small?
243 return (rational(T)){ convert( f ), (T){1}}; // truncate fraction
[6c6455f]244 } // if
245
246 // continued fraction coefficients
[5dc4c7e]247 T m00 = {1}, m11 = { 1 }, m01 = { 0 }, m10 = { 0 };
248 T ai, t;
[6c6455f]249
250 // find terms until denom gets too big
[f6a4917]251 for () {
[6c6455f]252 ai = convert( f );
253 if ( ! (m10 * ai + m11 <= md) ) break;
254 t = m00 * ai + m01;
255 m01 = m00;
256 m00 = t;
257 t = m10 * ai + m11;
258 m11 = m10;
259 m10 = t;
260 double temp = convert( ai );
261 if ( f == temp ) break; // prevent division by zero
262 f = 1 / (f - temp);
263 if ( f > (double)0x7FFFFFFF ) break; // representation failure
264 } // for
[541dbc09]265 return (rational(T)){ m00, m10 };
[6c6455f]266} // narrow
[53ba273]267
268// Local Variables: //
269// tab-width: 4 //
270// End: //
Note: See TracBrowser for help on using the repository browser.