| [a493682] | 1 | // | 
|---|
| [53ba273] | 2 | // Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo | 
|---|
|  | 3 | // | 
|---|
|  | 4 | // The contents of this file are covered under the licence agreement in the | 
|---|
|  | 5 | // file "LICENCE" distributed with Cforall. | 
|---|
| [a493682] | 6 | // | 
|---|
|  | 7 | // rational.c -- | 
|---|
|  | 8 | // | 
|---|
| [53ba273] | 9 | // Author           : Peter A. Buhr | 
|---|
|  | 10 | // Created On       : Wed Apr  6 17:54:28 2016 | 
|---|
|  | 11 | // Last Modified By : Peter A. Buhr | 
|---|
| [5dc4c7e] | 12 | // Last Modified On : Tue Jul 20 16:30:06 2021 | 
|---|
|  | 13 | // Update Count     : 193 | 
|---|
| [a493682] | 14 | // | 
|---|
| [53ba273] | 15 |  | 
|---|
| [58b6d1b] | 16 | #include "rational.hfa" | 
|---|
|  | 17 | #include "fstream.hfa" | 
|---|
|  | 18 | #include "stdlib.hfa" | 
|---|
| [53ba273] | 19 |  | 
|---|
| [5dc4c7e] | 20 | forall( T | Arithmetic( T ) ) { | 
|---|
| [3ce0d440] | 21 | // helper routines | 
|---|
|  | 22 |  | 
|---|
|  | 23 | // Calculate greatest common denominator of two numbers, the first of which may be negative. Used to reduce | 
|---|
|  | 24 | // rationals.  alternative: https://en.wikipedia.org/wiki/Binary_GCD_algorithm | 
|---|
| [5dc4c7e] | 25 | static T gcd( T a, T b ) { | 
|---|
| [3ce0d440] | 26 | for ( ;; ) {                                                                    // Euclid's algorithm | 
|---|
| [5dc4c7e] | 27 | T r = a % b; | 
|---|
|  | 28 | if ( r == (T){0} ) break; | 
|---|
| [3ce0d440] | 29 | a = b; | 
|---|
|  | 30 | b = r; | 
|---|
|  | 31 | } // for | 
|---|
|  | 32 | return b; | 
|---|
|  | 33 | } // gcd | 
|---|
|  | 34 |  | 
|---|
| [5dc4c7e] | 35 | static T simplify( T & n, T & d ) { | 
|---|
|  | 36 | if ( d == (T){0} ) { | 
|---|
| [ff2a33e] | 37 | abort | "Invalid rational number construction: denominator cannot be equal to 0."; | 
|---|
| [3ce0d440] | 38 | } // exit | 
|---|
| [5dc4c7e] | 39 | if ( d < (T){0} ) { d = -d; n = -n; } // move sign to numerator | 
|---|
| [3ce0d440] | 40 | return gcd( abs( n ), d );                                              // simplify | 
|---|
|  | 41 | } // Rationalnumber::simplify | 
|---|
|  | 42 |  | 
|---|
|  | 43 | // constructors | 
|---|
|  | 44 |  | 
|---|
| [5dc4c7e] | 45 | void ?{}( Rational(T) & r, zero_t ) { | 
|---|
|  | 46 | r{ (T){0}, (T){1} }; | 
|---|
| [3ce0d440] | 47 | } // rational | 
|---|
|  | 48 |  | 
|---|
| [5dc4c7e] | 49 | void ?{}( Rational(T) & r, one_t ) { | 
|---|
|  | 50 | r{ (T){1}, (T){1} }; | 
|---|
| [3ce0d440] | 51 | } // rational | 
|---|
|  | 52 |  | 
|---|
| [5dc4c7e] | 53 | void ?{}( Rational(T) & r ) { | 
|---|
|  | 54 | r{ (T){0}, (T){1} }; | 
|---|
| [3ce0d440] | 55 | } // rational | 
|---|
|  | 56 |  | 
|---|
| [5dc4c7e] | 57 | void ?{}( Rational(T) & r, T n ) { | 
|---|
|  | 58 | r{ n, (T){1} }; | 
|---|
| [f00b2c2c] | 59 | } // rational | 
|---|
|  | 60 |  | 
|---|
| [5dc4c7e] | 61 | void ?{}( Rational(T) & r, T n, T d ) { | 
|---|
|  | 62 | T t = simplify( n, d );                         // simplify | 
|---|
|  | 63 | r.[numerator, denominator] = [n / t, d / t]; | 
|---|
| [f00b2c2c] | 64 | } // rational | 
|---|
| [3ce0d440] | 65 |  | 
|---|
|  | 66 | // getter for numerator/denominator | 
|---|
|  | 67 |  | 
|---|
| [5dc4c7e] | 68 | T numerator( Rational(T) r ) { | 
|---|
| [3ce0d440] | 69 | return r.numerator; | 
|---|
|  | 70 | } // numerator | 
|---|
|  | 71 |  | 
|---|
| [5dc4c7e] | 72 | T denominator( Rational(T) r ) { | 
|---|
| [3ce0d440] | 73 | return r.denominator; | 
|---|
|  | 74 | } // denominator | 
|---|
|  | 75 |  | 
|---|
| [5dc4c7e] | 76 | [ T, T ] ?=?( & [ T, T ] dest, Rational(T) src ) { | 
|---|
| [3ce0d440] | 77 | return dest = src.[ numerator, denominator ]; | 
|---|
|  | 78 | } // ?=? | 
|---|
|  | 79 |  | 
|---|
|  | 80 | // setter for numerator/denominator | 
|---|
|  | 81 |  | 
|---|
| [5dc4c7e] | 82 | T numerator( Rational(T) r, T n ) { | 
|---|
|  | 83 | T prev = r.numerator; | 
|---|
|  | 84 | T t = gcd( abs( n ), r.denominator ); // simplify | 
|---|
| [0087e0e] | 85 | r.[numerator, denominator] = [n / t, r.denominator / t]; | 
|---|
| [3ce0d440] | 86 | return prev; | 
|---|
|  | 87 | } // numerator | 
|---|
|  | 88 |  | 
|---|
| [5dc4c7e] | 89 | T denominator( Rational(T) r, T d ) { | 
|---|
|  | 90 | T prev = r.denominator; | 
|---|
|  | 91 | T t = simplify( r.numerator, d );       // simplify | 
|---|
| [0087e0e] | 92 | r.[numerator, denominator] = [r.numerator / t, d / t]; | 
|---|
| [3ce0d440] | 93 | return prev; | 
|---|
|  | 94 | } // denominator | 
|---|
|  | 95 |  | 
|---|
|  | 96 | // comparison | 
|---|
|  | 97 |  | 
|---|
| [5dc4c7e] | 98 | int ?==?( Rational(T) l, Rational(T) r ) { | 
|---|
| [3ce0d440] | 99 | return l.numerator * r.denominator == l.denominator * r.numerator; | 
|---|
|  | 100 | } // ?==? | 
|---|
|  | 101 |  | 
|---|
| [5dc4c7e] | 102 | int ?!=?( Rational(T) l, Rational(T) r ) { | 
|---|
| [3ce0d440] | 103 | return ! ( l == r ); | 
|---|
|  | 104 | } // ?!=? | 
|---|
|  | 105 |  | 
|---|
| [5dc4c7e] | 106 | int ?!=?( Rational(T) l, zero_t ) { | 
|---|
|  | 107 | return ! ( l == (Rational(T)){ 0 } ); | 
|---|
|  | 108 | } // ?!=? | 
|---|
|  | 109 |  | 
|---|
|  | 110 | int ?<?( Rational(T) l, Rational(T) r ) { | 
|---|
| [3ce0d440] | 111 | return l.numerator * r.denominator < l.denominator * r.numerator; | 
|---|
|  | 112 | } // ?<? | 
|---|
|  | 113 |  | 
|---|
| [5dc4c7e] | 114 | int ?<=?( Rational(T) l, Rational(T) r ) { | 
|---|
| [3ce0d440] | 115 | return l.numerator * r.denominator <= l.denominator * r.numerator; | 
|---|
|  | 116 | } // ?<=? | 
|---|
|  | 117 |  | 
|---|
| [5dc4c7e] | 118 | int ?>?( Rational(T) l, Rational(T) r ) { | 
|---|
| [3ce0d440] | 119 | return ! ( l <= r ); | 
|---|
|  | 120 | } // ?>? | 
|---|
|  | 121 |  | 
|---|
| [5dc4c7e] | 122 | int ?>=?( Rational(T) l, Rational(T) r ) { | 
|---|
| [3ce0d440] | 123 | return ! ( l < r ); | 
|---|
|  | 124 | } // ?>=? | 
|---|
|  | 125 |  | 
|---|
|  | 126 | // arithmetic | 
|---|
|  | 127 |  | 
|---|
| [5dc4c7e] | 128 | Rational(T) +?( Rational(T) r ) { | 
|---|
|  | 129 | return (Rational(T)){ r.numerator, r.denominator }; | 
|---|
| [3ce0d440] | 130 | } // +? | 
|---|
| [53ba273] | 131 |  | 
|---|
| [5dc4c7e] | 132 | Rational(T) -?( Rational(T) r ) { | 
|---|
|  | 133 | return (Rational(T)){ -r.numerator, r.denominator }; | 
|---|
| [3ce0d440] | 134 | } // -? | 
|---|
|  | 135 |  | 
|---|
| [5dc4c7e] | 136 | Rational(T) ?+?( Rational(T) l, Rational(T) r ) { | 
|---|
| [3ce0d440] | 137 | if ( l.denominator == r.denominator ) {                 // special case | 
|---|
| [5dc4c7e] | 138 | return (Rational(T)){ l.numerator + r.numerator, l.denominator }; | 
|---|
| [3ce0d440] | 139 | } else { | 
|---|
| [5dc4c7e] | 140 | return (Rational(T)){ l.numerator * r.denominator + l.denominator * r.numerator, l.denominator * r.denominator }; | 
|---|
| [3ce0d440] | 141 | } // if | 
|---|
|  | 142 | } // ?+? | 
|---|
|  | 143 |  | 
|---|
| [5dc4c7e] | 144 | Rational(T) ?+=?( Rational(T) & l, Rational(T) r ) { | 
|---|
|  | 145 | l = l + r; | 
|---|
|  | 146 | return l; | 
|---|
|  | 147 | } // ?+? | 
|---|
|  | 148 |  | 
|---|
|  | 149 | Rational(T) ?+=?( Rational(T) & l, one_t ) { | 
|---|
|  | 150 | l = l + (Rational(T)){ 1 }; | 
|---|
|  | 151 | return l; | 
|---|
|  | 152 | } // ?+? | 
|---|
|  | 153 |  | 
|---|
|  | 154 | Rational(T) ?-?( Rational(T) l, Rational(T) r ) { | 
|---|
| [3ce0d440] | 155 | if ( l.denominator == r.denominator ) {                 // special case | 
|---|
| [5dc4c7e] | 156 | return (Rational(T)){ l.numerator - r.numerator, l.denominator }; | 
|---|
| [3ce0d440] | 157 | } else { | 
|---|
| [5dc4c7e] | 158 | return (Rational(T)){ l.numerator * r.denominator - l.denominator * r.numerator, l.denominator * r.denominator }; | 
|---|
| [3ce0d440] | 159 | } // if | 
|---|
|  | 160 | } // ?-? | 
|---|
|  | 161 |  | 
|---|
| [5dc4c7e] | 162 | Rational(T) ?-=?( Rational(T) & l, Rational(T) r ) { | 
|---|
|  | 163 | l = l - r; | 
|---|
|  | 164 | return l; | 
|---|
|  | 165 | } // ?-? | 
|---|
|  | 166 |  | 
|---|
|  | 167 | Rational(T) ?-=?( Rational(T) & l, one_t ) { | 
|---|
|  | 168 | l = l - (Rational(T)){ 1 }; | 
|---|
|  | 169 | return l; | 
|---|
|  | 170 | } // ?-? | 
|---|
|  | 171 |  | 
|---|
|  | 172 | Rational(T) ?*?( Rational(T) l, Rational(T) r ) { | 
|---|
|  | 173 | return (Rational(T)){ l.numerator * r.numerator, l.denominator * r.denominator }; | 
|---|
|  | 174 | } // ?*? | 
|---|
|  | 175 |  | 
|---|
|  | 176 | Rational(T) ?*=?( Rational(T) & l, Rational(T) r ) { | 
|---|
|  | 177 | return l = l * r; | 
|---|
| [3ce0d440] | 178 | } // ?*? | 
|---|
|  | 179 |  | 
|---|
| [5dc4c7e] | 180 | Rational(T) ?/?( Rational(T) l, Rational(T) r ) { | 
|---|
|  | 181 | if ( r.numerator < (T){0} ) { | 
|---|
| [0087e0e] | 182 | r.[numerator, denominator] = [-r.numerator, -r.denominator]; | 
|---|
| [3ce0d440] | 183 | } // if | 
|---|
| [5dc4c7e] | 184 | return (Rational(T)){ l.numerator * r.denominator, l.denominator * r.numerator }; | 
|---|
|  | 185 | } // ?/? | 
|---|
|  | 186 |  | 
|---|
|  | 187 | Rational(T) ?/=?( Rational(T) & l, Rational(T) r ) { | 
|---|
|  | 188 | return l = l / r; | 
|---|
| [3ce0d440] | 189 | } // ?/? | 
|---|
|  | 190 |  | 
|---|
|  | 191 | // I/O | 
|---|
|  | 192 |  | 
|---|
| [5dc4c7e] | 193 | forall( istype & | istream( istype ) | { istype & ?|?( istype &, T & ); } ) | 
|---|
|  | 194 | istype & ?|?( istype & is, Rational(T) & r ) { | 
|---|
| [3ce0d440] | 195 | is | r.numerator | r.denominator; | 
|---|
| [5dc4c7e] | 196 | T t = simplify( r.numerator, r.denominator ); | 
|---|
| [3ce0d440] | 197 | r.numerator /= t; | 
|---|
|  | 198 | r.denominator /= t; | 
|---|
|  | 199 | return is; | 
|---|
|  | 200 | } // ?|? | 
|---|
|  | 201 |  | 
|---|
| [5dc4c7e] | 202 | forall( ostype & | ostream( ostype ) | { ostype & ?|?( ostype &, T ); } ) { | 
|---|
|  | 203 | ostype & ?|?( ostype & os, Rational(T) r ) { | 
|---|
| [200fcb3] | 204 | return os | r.numerator | '/' | r.denominator; | 
|---|
|  | 205 | } // ?|? | 
|---|
|  | 206 |  | 
|---|
| [5dc4c7e] | 207 | void ?|?( ostype & os, Rational(T) r ) { | 
|---|
| [65240bb] | 208 | (ostype &)(os | r); ends( os ); | 
|---|
| [200fcb3] | 209 | } // ?|? | 
|---|
|  | 210 | } // distribution | 
|---|
| [3ce0d440] | 211 | } // distribution | 
|---|
| [630a82a] | 212 |  | 
|---|
| [5dc4c7e] | 213 | forall( T | Arithmetic( T ) | { T ?\?( T, unsigned long ); } ) { | 
|---|
|  | 214 | Rational(T) ?\?( Rational(T) x, long int y ) { | 
|---|
|  | 215 | if ( y < 0 ) { | 
|---|
|  | 216 | return (Rational(T)){ x.denominator \ -y, x.numerator \ -y }; | 
|---|
|  | 217 | } else { | 
|---|
|  | 218 | return (Rational(T)){ x.numerator \ y, x.denominator \ y }; | 
|---|
|  | 219 | } // if | 
|---|
|  | 220 | } // ?\? | 
|---|
|  | 221 |  | 
|---|
|  | 222 | Rational(T) ?\=?( Rational(T) & x, long int y ) { | 
|---|
|  | 223 | return x = x \ y; | 
|---|
|  | 224 | } // ?\? | 
|---|
|  | 225 | } // distribution | 
|---|
| [0087e0e] | 226 |  | 
|---|
| [630a82a] | 227 | // conversion | 
|---|
|  | 228 |  | 
|---|
| [5dc4c7e] | 229 | forall( T | Arithmetic( T ) | { double convert( T ); } ) | 
|---|
|  | 230 | double widen( Rational(T) r ) { | 
|---|
| [6c6455f] | 231 | return convert( r.numerator ) / convert( r.denominator ); | 
|---|
|  | 232 | } // widen | 
|---|
|  | 233 |  | 
|---|
| [5dc4c7e] | 234 | forall( T | Arithmetic( T ) | { double convert( T ); T convert( double ); } ) | 
|---|
|  | 235 | Rational(T) narrow( double f, T md ) { | 
|---|
| [3ce0d440] | 236 | // http://www.ics.uci.edu/~eppstein/numth/frap.c | 
|---|
| [5dc4c7e] | 237 | if ( md <= (T){1} ) {                                   // maximum fractional digits too small? | 
|---|
|  | 238 | return (Rational(T)){ convert( f ), (T){1}}; // truncate fraction | 
|---|
| [6c6455f] | 239 | } // if | 
|---|
|  | 240 |  | 
|---|
|  | 241 | // continued fraction coefficients | 
|---|
| [5dc4c7e] | 242 | T m00 = {1}, m11 = { 1 }, m01 = { 0 }, m10 = { 0 }; | 
|---|
|  | 243 | T ai, t; | 
|---|
| [6c6455f] | 244 |  | 
|---|
|  | 245 | // find terms until denom gets too big | 
|---|
|  | 246 | for ( ;; ) { | 
|---|
|  | 247 | ai = convert( f ); | 
|---|
|  | 248 | if ( ! (m10 * ai + m11 <= md) ) break; | 
|---|
|  | 249 | t = m00 * ai + m01; | 
|---|
|  | 250 | m01 = m00; | 
|---|
|  | 251 | m00 = t; | 
|---|
|  | 252 | t = m10 * ai + m11; | 
|---|
|  | 253 | m11 = m10; | 
|---|
|  | 254 | m10 = t; | 
|---|
|  | 255 | double temp = convert( ai ); | 
|---|
|  | 256 | if ( f == temp ) break;                                                       // prevent division by zero | 
|---|
|  | 257 | f = 1 / (f - temp); | 
|---|
|  | 258 | if ( f > (double)0x7FFFFFFF ) break;                          // representation failure | 
|---|
|  | 259 | } // for | 
|---|
| [5dc4c7e] | 260 | return (Rational(T)){ m00, m10 }; | 
|---|
| [6c6455f] | 261 | } // narrow | 
|---|
| [53ba273] | 262 |  | 
|---|
|  | 263 | // Local Variables: // | 
|---|
|  | 264 | // tab-width: 4 // | 
|---|
|  | 265 | // End: // | 
|---|